WO2012026517A1 - 通過時刻推定装置、車速算出方法、及びプログラム - Google Patents

通過時刻推定装置、車速算出方法、及びプログラム Download PDF

Info

Publication number
WO2012026517A1
WO2012026517A1 PCT/JP2011/069149 JP2011069149W WO2012026517A1 WO 2012026517 A1 WO2012026517 A1 WO 2012026517A1 JP 2011069149 W JP2011069149 W JP 2011069149W WO 2012026517 A1 WO2012026517 A1 WO 2012026517A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
strain
strain value
vehicle
unit
Prior art date
Application number
PCT/JP2011/069149
Other languages
English (en)
French (fr)
Inventor
早苗 若松
石川 裕治
Original Assignee
株式会社エヌ・ティ・ティ・データ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・データ filed Critical 株式会社エヌ・ティ・ティ・データ
Publication of WO2012026517A1 publication Critical patent/WO2012026517A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/052Detecting movement of traffic to be counted or controlled with provision for determining speed or overspeed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/64Devices characterised by the determination of the time taken to traverse a fixed distance
    • G01P3/80Devices characterised by the determination of the time taken to traverse a fixed distance using auto-correlation or cross-correlation detection means
    • G01P3/803Devices characterised by the determination of the time taken to traverse a fixed distance using auto-correlation or cross-correlation detection means in devices of the type to be classified in G01P3/66

Definitions

  • the present invention relates to a passage time estimation device, a vehicle speed calculation method, and a program for calculating the speed of a vehicle traveling from one end to the other end of a main girder of a bridge.
  • Patent Document 1 discloses a method for calculating the time of entry to and from the main girder of a bridge of a vehicle, which is required for measuring the axle weight of the vehicle by Bridge Weigh-in-motion.
  • two sets of vehicle detection sensors are arranged at a predetermined distance in a direction parallel to the lane of the main girder, and the correlation between output waveforms of the two sets of vehicle detection sensors
  • the speed of the vehicle is calculated by dividing the distance between the sensors for detecting the vehicle by the time difference when the function becomes maximum.
  • the time obtained by multiplying the distance between the vehicle detection sensor behind the vehicle traveling direction and one end of the main girder by the calculated speed is subtracted from the time when the vehicle passes over the vehicle detection sensor.
  • the approach time to the main girder of the bridge of the vehicle is calculated.
  • the time obtained by multiplying the distance between the vehicle detection sensor ahead of the vehicle traveling direction and the other end of the main girder by the calculated speed is added to the time when the vehicle passes over the vehicle detection sensor.
  • the exit time from the main girder of the vehicle bridge is calculated.
  • the present invention has been made to solve the above problems.
  • the present invention is a transit time estimation device that estimates a time when a measurement target vehicle enters one end of a main girder of a bridge and a time when the measurement target vehicle exits from the other end of the main girder, the measurement target vehicle
  • a first strain value acquisition unit that acquires, in time series, a first strain value that is a strain value of a first location in which strain continuously occurs while passing over the main girder, and the vehicle to be measured
  • a second strain value acquisition unit that acquires, in time series, a second strain value that is a strain value of a second location where the strain is generated independently of the passage of the vehicle axle, and the vehicle is attached to one end of the main beam
  • a first-side strain rate indicating a ratio between the first strain value when the vehicle is positioned and the first strain value when the vehicle is positioned immediately above the second location;
  • the first strain value in the case of being located at the other end and the A strain rate storage unit that stores a
  • the vehicle to be measured has the latest time before the time specified by the passage time specifying unit.
  • An entry time estimation unit that estimates a main beam entry time indicating a time of entry to one end of the main girder, and the first strain value that the first strain value stores the other end side strain rate that the strain rate storage unit stores. Obtained by multiplying the strain value of 1 Among the times below the threshold value, the most recent time after the time specified by the passage time specifying unit is estimated as the main digit exit time indicating the time when the measurement target vehicle exits from the other end of the main digit. And an exit time estimation unit.
  • the passage time estimation apparatus of the present invention obtains a third strain value, which is a strain value at a third location where the strain is independently generated with respect to the axle passage of the vehicle to be measured, in a time series.
  • a peak value indicating a maximum value greater than or equal to a predetermined threshold is specified, and a second value in a predetermined range before and after the peak value is specified.
  • a peak value extraction unit for extracting a strain value of the first time
  • a time difference calculation unit for calculating a time difference at which the degree of correlation between the second strain value extracted by the peak value extraction unit and the third strain value is maximized
  • a correlation degree determination unit that determines whether or not a correlation degree in the time difference calculated by the time difference calculation unit is equal to or greater than a predetermined threshold value, and the correlation degree determination unit determines that the correlation degree is equal to or greater than a predetermined threshold value.
  • Time difference calculated by the time difference calculation unit A vehicle speed calculation unit that calculates the speed of the vehicle to be measured by dividing the distance between the second location and the third location, the speed calculated by the vehicle speed calculation unit, and the main digit
  • the vehicle to be measured obtains the time obtained by subtracting the time obtained by multiplying the distance between one end and the second location from the time when the peak value specified by the peak value extraction unit is obtained.
  • a highly correlated entry time estimation unit that estimates a main digit entry time indicating a time of entry to one end of a digit, a speed calculated by the vehicle speed calculation unit, and a distance between the other end of the main digit and the second location And the time difference obtained by adding the time difference calculated by the time difference calculation unit to the time when the peak value specified by the peak value extraction unit is acquired by the measurement target vehicle.
  • Main girder exit time indicating the time of exit from the other end of the main girder And the second location is one end side of the main girder from the first location, and the third location is the first location.
  • the entry time estimation unit estimates the entry time of the main beam when the correlation degree determination unit determines that the correlation degree is less than a predetermined threshold.
  • the exit time estimation unit may estimate the main digit exit time when the correlation degree determination unit determines that the correlation degree is less than a predetermined threshold.
  • the first location is a central portion of the main girder in the vehicle traveling direction, and the one end side strain rate and the other end side strain rate indicate the same value, You may make it memorize
  • the passage time estimation device of the present invention is a time preceding the time specified by the passage time specifying unit by a time obtained by multiplying a distance from one end side of the main girder to the second location by a predetermined speed. From the time specified by the passage time specifying unit to the time after the time obtained by multiplying the distance from the other end of the main girder to the second location by a predetermined speed.
  • a strain value extraction unit that extracts at least the strain value acquired by the first strain value acquisition unit and outputs the extracted strain value in association with the time acquired by the first strain value acquisition unit; and the strain value extraction unit.
  • a noise removal unit that performs a noise removal process on the plurality of output distortion values
  • the main girder entry time specifying unit includes a plurality of distortion values subjected to the noise removal process by the noise removal unit.
  • Said helix A strain value equal to or lower than the strain value obtained by multiplying the strain value specified by the value specifying unit by the one-side strain rate stored in the strain rate storage unit is specified, and among the times associated with the specified strain value, The most recent time before the time specified by the passage time specifying unit is specified as a main digit entry time indicating the time when the measurement target vehicle entered one end of the main digit, and the main digit exit time specifying unit is Among a plurality of strain values subjected to noise removal processing by the noise removing unit, a strain value obtained by multiplying the strain value specified by the strain value specifying unit by the other end side strain rate stored in the strain rate storage unit. The following distortion values are specified, and the vehicle to be measured advances to one end of the main digit of the time associated with the specified
  • the present invention is also a transit time estimation method for estimating a time when a measurement target vehicle enters one end of a main girder of a bridge and a time when the measurement target vehicle exits from the other end of the main girder,
  • a first step of acquiring a first strain value which is a strain value of a first member that continuously generates strain while the target vehicle passes over the main beam, in time series
  • a second step of acquiring in time series a second strain value which is a strain value of the second member that is strained independently of the passage of the axle, and the second strain value exceeds a predetermined threshold value
  • a third step of specifying the time a fourth step of specifying the first strain value at the specified time, and the first strain value when the vehicle is located at one end of the main girder.
  • the first strain value and the vehicle are Among the times when the first strain value obtained by multiplying the specified first strain value by the one end side strain rate indicating the ratio with the first strain value when positioned directly above the member 2 is equal to or less than the strain value.
  • the strain value indicates the ratio between the first strain value when the vehicle is located at the other end of the main girder and the first strain value when the vehicle is located immediately above the second member.
  • the latest time after the time specified in the third step is the measurement object.
  • the vehicle leaves the other end of the main girder And a sixth step of estimating a main beam exit time indicating the time was.
  • the program according to the present invention allows a passage time estimation device that calculates the speed of a vehicle to be measured traveling from one end of the main girder to the other end to continuously distort while the vehicle to be measured passes over the main girder.
  • a first strain value acquisition unit that acquires, in time series, a first strain value that is a strain value of a first location where the occurrence of the second distortion occurs independently of the passage of the measurement target vehicle through the axle.
  • a second strain value acquiring unit that acquires a second strain value that is a strain value of the point in time series, a passage time specifying unit that specifies a time when the second strain value exceeds a predetermined threshold, and the specifying
  • a strain value identifying unit for identifying the first strain value at the time when the vehicle is positioned at one end of the main beam, and the first strain value and the vehicle are the second strain value.
  • An approach time estimation unit that estimates a previous previous time as a main girder entry time indicating a time when the measurement target vehicle entered one end of the main girder, and the first strain value indicates that the vehicle is not the main girder.
  • the first-side specified strain rate indicating the ratio between the first strain value when located at the end and the first strain value when the vehicle is located directly above the second member Among the times that are less than or equal to the strain value obtained by multiplying the strain value, the measurement target vehicle has exited from the other end of the main girder the latest time after the time specified by the passage time specifying unit Estimated as main digit exit time indicating time To function as the de time estimation unit.
  • the time when the vehicle to be measured passes immediately above the second strain gauge is identified from the strain value output by the second strain gauge, and the strain value output by the first strain gauge at this time is determined.
  • the time when the vehicle to be measured enters the main girder and the time when it exits are estimated.
  • the speed of the vehicle to be measured can be calculated without using the correlation between the output waveforms of the two sets of vehicle detection sensors. Therefore, even when the vehicle to be measured is accelerated or decelerated during the passage of the main girder.
  • FIG. 1A It is a top view which shows the example of installation of the strain gauge in the bridge passage vehicle monitoring system by one Embodiment of this invention. It is a side view which shows the example of installation of the strain gauge shown by FIG. 1A. It is sectional drawing which shows the example of installation of the strain gauge shown by FIG. 1A. It is a block diagram which shows the bridge passage vehicle monitoring system by this embodiment. It is a flowchart which shows the vehicle weight calculation operation
  • FIG. 1A, FIG. 1B, and FIG. 1C are diagrams showing an installation example of a strain gauge in a bridge passing vehicle monitoring system 1 including a passing time estimation device according to an embodiment of the present invention.
  • the bridge passing vehicle monitoring system 1 includes an axial load calculation strain meter 10, an approach side axle detection strain meter 20, and an exit side axle detection strain meter 30.
  • FIG. 1A is a plan view of a bridge. As shown in FIG. 1A, the axle load calculation strain gauge 10, the approach-side axle detection strain gauge 20, and the exit-side axle detection strain gauge 30 are each installed so that it is easy to grasp the traffic situation of the traveling lane. .
  • FIG. 1B is a side view of the bridge.
  • FIG. 1C is a cross-sectional view of the bridge. As shown in FIGS. 1B and 1C, the axial load calculating strain gauge 10 is the lower surface of the main girder 3 installed on the pier 2, and is installed in the center portion (first location) in the vehicle traveling direction D.
  • the bottom surface of the main girder 3 has a long strain response time with respect to the passage of the axle, and the strain is continuously generated while the vehicle passes over the main girder.
  • the approach-side axle detection strain gauge 20 is installed on the vertical stiffener 4 (second location) behind the main girder 3 in the vehicle traveling direction D.
  • the exit-side axle detection strain gauge 30 is installed on the vertical stiffener 4 (third location) in front of the main girder 3 in the vehicle traveling direction D.
  • the vertical stiffener 4 of the main girder 3 has a short response time with respect to the passage of the axle and is distorted independently of the passage of the axle.
  • Each strain gauge measures the elongation strain at the installed location.
  • Each strain gauge includes a film-like sheet that serves as a strain detection sensor and an amplifier that amplifies the signal from the sensor.
  • Strain is a deformation of the shape of a substance, and locally becomes the amount of expansion / contraction of the measurement location. For example, a strain at a certain location of 0.1 means that the location has become 0.9 times as long, that is, a reduction of 10% has occurred. Therefore, strain is a ratio and there is no unit.
  • FIG. 2 is a schematic block diagram showing the configuration of the bridge passing vehicle monitoring system 1 according to the present embodiment.
  • the bridge passing vehicle monitoring system 1 is a system for calculating the vehicle weight of a measurement target vehicle passing through a bridge.
  • the bridge passing vehicle monitoring system 1 includes a first strain value acquisition unit 101, a second strain value acquisition unit 102, a third strain value acquisition unit 103, a first strain value database 104, and a second strain value database 105.
  • Third strain value database 106 Third strain value database 106, time difference calculation unit 107 (peak value extraction unit), correlation degree determination unit 108, high correlation time estimation unit 109 (vehicle speed estimation unit, high correlation time entry time estimation unit, high correlation time exit) Time estimation unit), passage time identification unit 110, strain value extraction unit 111, noise removal unit 112, strain value identification unit 113, low correlation time estimation unit 114 (entry time estimation unit, exit time estimation unit), distortion rate storage Unit 115, vehicle weight calculation processing unit 116, and axle load comparison data storage unit 117.
  • time difference calculation unit 107 peak value extraction unit
  • correlation degree determination unit 108 high correlation time estimation unit 109 (vehicle speed estimation unit, high correlation time entry time estimation unit, high correlation time exit) Time estimation unit)
  • passage time identification unit 110 strain value extraction unit 111, noise removal unit 112, strain value identification unit 113, low correlation time estimation unit 114 (entry time estimation unit, exit time estimation unit), distortion rate storage Unit 115, vehicle weight calculation processing unit 116, and axle load comparison data storage unit
  • the first strain value acquisition unit 101 acquires strain values (first strain values) in time series from the axial load calculation strain meter 10, and obtains these strain values and the times at which these strain values are acquired.
  • the first strain value database 104 records the associated information.
  • the second strain value acquisition unit 102 acquires strain values (second strain values) in time series from the approach-side axle detection strain gauge 20, and these strain values and the time when these strain values are acquired. Are associated and recorded in the second strain value database 105.
  • the third strain value acquisition unit 103 acquires strain values (third strain values) in time series from the exit-side axle detection strain meter 30, and these strain values and the time at which these strain values are acquired. Are associated and recorded in the third strain value database 106.
  • the first strain value database 104 stores the strain value acquired by the first strain value acquisition unit 101 in association with the time.
  • the second strain value database 105 stores the strain value acquired by the second strain value acquisition unit 102 in association with the time.
  • the third strain value database 106 stores the strain value acquired by the third strain value acquisition unit 103 in association with the time.
  • the time difference calculation unit 107 calculates the time difference at which the degree of correlation between the time series strain value stored in the second strain value database 105 and the time series strain value stored in the third strain value database 106 is maximum. calculate.
  • the correlation degree determination unit 108 includes a time series strain value stored in the second strain value database 105 and a time series strain value stored in the third strain value database 106 at the time difference calculated by the time difference calculation unit 107. It is determined whether or not the degree of correlation between the two is greater than or equal to a predetermined threshold.
  • the highly correlated time estimation unit 109 uses the time difference calculated by the time difference calculation unit 107 when the correlation determination unit 108 determines that the correlation is equal to or greater than a predetermined threshold.
  • the speed of the vehicle to be measured is calculated by dividing the distance between the installation location and the installation location of the exit-side axle detection strain gauge 30.
  • the highly correlated time estimation unit 109 also calculates the calculated speed, the distance between the approach side axle detection strain gauge 20 and the end (one end) of the main girder, and the exit side axle detection strain gauge 30 and the main girder. Using the distance from the exit end (the other end) and the time difference calculated by the time difference calculation unit 107, the main girder entry time and main girder exit time are calculated.
  • the passage time specifying unit 110 specifies a time associated with a strain value exceeding a predetermined threshold among the strain values stored in the second strain value database 105.
  • the strain value extraction unit 111 includes strain values associated with a time between predetermined times before and after the time specified by the passage time specifying unit 110 among the strain values stored in the first strain value database 104 and these values. A pair with the time associated with the strain value is extracted.
  • the predetermined time before and after the time specified by the passage time specifying unit 110 is a time during which at least the vehicle to be measured is expected to pass between the two piers.
  • the distance from the end on the entry side of the main girder to the approach side axle detection strain gauge 20 from the time specified by the passage time specifying unit 110 From the time before the time obtained by multiplying by a predetermined speed (for example, 20 km / h) and the time specified by the passage time specifying unit 110 from the exit side end of the main girder to the approach side axle detection strain gauge 20 At least a time later than the time obtained by multiplying the distance by a predetermined speed.
  • the noise removal unit 112 performs noise removal processing on the plurality of strain values output from the strain value extraction unit 111.
  • the strain value specifying unit 113 specifies a strain value associated with the time specified by the passage time specifying unit 110 among the strain values stored in the first strain value database 104.
  • the low correlation time estimation unit 114 has an end strain rate (one end side strain rate, the other end side strain rate) stored in the strain rate storage unit 115 among a plurality of strain values subjected to noise removal processing by the noise removal unit 112. ) Is multiplied by the strain value specified by the strain value specifying unit 113 to specify a strain value equal to or less than the strain value obtained.
  • the low correlation time estimation unit 114 estimates the latest time before the time specified by the passage time specification unit 110 among the times associated with the specified strain value as the main digit entry time, and specifies the passage time.
  • the strain rate storage unit 115 includes a strain value output by the axle load calculating strain gauge 10 when the vehicle is positioned at the entry side end or the exit side end of the main girder, and the entry side axle detection strain gauge 20. The edge strain rate indicating the ratio to the strain value output by the axial load calculating strain gauge 10 when it is positioned directly above is stored.
  • the vehicle weight calculation processing unit 116 includes the main digit entry time and main digit exit time estimated by the high correlation time estimation unit 109 or the low correlation time estimation unit 114 and the reference axle weight stored in the axle weight comparison data storage unit 117. Based on the distortion waveform, the vehicle weight of the vehicle to be measured is calculated.
  • the axle load comparison data storage unit 117 stores a time series strain value measured by the axle load calculating strain gauge 10 when the 1t axle passes over the main beam as a reference axle weight strain waveform.
  • the hour / time estimation unit 114 and the distortion rate storage unit 115 operate as a passage time estimation device.
  • the bridge passing vehicle monitoring system 1 includes the above-described configuration, thereby executing the following process.
  • the first strain value acquisition unit 101 acquires, in time series, the strain values of the lower surface of the main girder that continuously generate distortion while the vehicle to be measured passes over the main girder.
  • the second strain value acquisition unit 102 acquires, in time series, the strain values of the vertical stiffeners of the main girder that generate strains independently of the measurement target vehicle passing through the axle.
  • the passage time specifying unit 110 specifies the time when the strain value of the vertical stiffener exceeds a predetermined threshold
  • the strain value specifying unit 113 specifies the strain value of the lower surface of the main girder at the specified time. .
  • the low correlation time estimation unit 114 obtains the distortion value of the lower surface of the main girder by multiplying the distortion value specified by the distortion value specifying unit 113 by the edge distortion rate stored in the distortion rate storage unit 115.
  • the most recent time before the time specified by the passage time specifying unit 110 is the main girder entry time indicating the time when the measurement target vehicle entered the end of the main girder on the entry side.
  • the low correlation time estimation unit 114 is obtained by multiplying the strain value specified by the strain value specifying unit 113 by the end strain rate stored in the strain rate storage unit 115 by the strain value on the lower surface of the main girder.
  • the bridge passing vehicle monitoring system 1 accurately measures the speed of the measurement target vehicle even when the measurement target vehicle is accelerated or decelerated while the main girder is passing.
  • FIG. 3 is a flowchart showing the vehicle weight calculation operation of the vehicle to be measured by the bridge passing vehicle monitoring system 1.
  • the vehicle to be measured has already passed through the bridge before executing the vehicle weight calculation operation, and the first strain value database 104, the second strain value database 105, and the third strain value database 106 include Assume that the first strain value acquisition unit 101, the second strain value acquisition unit 102, and the third strain value acquisition unit 103 have already stored data associating strain values with time.
  • the time difference calculation unit 107 calculates a time-series strain value stored in the second strain value database 105 to a predetermined threshold value or more (for example, 1t The time associated with the peak value, which is the maximum value of the strain value corresponding to the axle of the vehicle, is specified (step S1).
  • the time difference calculation unit 107 reads out from the second strain value database 105 strain values associated with times from 0.5 seconds before to 1 second after the specified time. Thereby, the time difference calculation part 107 reads the distortion value which the approach side axle detection strain meter 20 output, when the measurement object vehicle passes right above the approach side axle detection strain meter 20 (step S2).
  • the time difference calculation unit 107 calculates a time difference that maximizes the degree of correlation between the read strain value and the time-series strain value stored in the third strain value database 106 (step S3). Specifically, the time difference calculation unit 107 calculates the time difference ⁇ that maximizes the solution of the correlation function represented by the following equation (1).
  • g 2 (t), of the time difference calculating section 107 a plurality of strain values read in step S2, indicates distortion value associated with the time t
  • g 3 (t) the third strain value database Of the strain values stored in 106, the strain value associated with time t is shown.
  • the time difference ⁇ is determined by the time assumed to be required when the vehicle to be measured passes over the main girder. For example, when it is assumed that the time required for the vehicle to be measured to pass over the main girder is 10 seconds or less, the time difference ⁇ may be 0 seconds or more and 10 seconds or less.
  • the correlation degree determination unit 108 determines whether or not the value of the solution of the correlation function at the time difference ⁇ calculated by the time difference calculation unit 107 is greater than or equal to a predetermined threshold (for example, 0.7) (step S4). ).
  • a predetermined threshold for example, 0.7
  • the time estimation unit 109 at the time of high correlation detects the approach side axle detection strain meter at time t. It is determined that both the strain value output by 20 and the strain value output by the exit-side axle detection strain meter 30 at time t- ⁇ are due to the passage of the vehicle to be measured.
  • the highly correlated time estimation unit 109 divides the distance between the installation position of the entry-side axle detection strain gauge 20 and the installation position of the exit-side axle detection strain gauge 30 by the time difference ⁇ to measure The speed of the vehicle is calculated (step S5).
  • the highly correlated time estimation unit 109 multiplies the calculated speed by the distance from the entry side end (one end) of the main girder to the entry side axle detection strain gauge 20 so that the vehicle to be measured becomes the main vehicle. The time taken to move from the entry end of the girder to just above the entry side axle detection strain gauge 20 is calculated.
  • the high correlation time estimation unit 109 subtracts the calculated time from the time specified in step S1, thereby indicating the main girder entry time indicating the time when the measurement target vehicle entered the end of the main girder. Is estimated (step S6).
  • the highly correlated time estimation unit 109 multiplies the calculated speed by the distance from the exit side end (the other end) of the main girder to the exit side axle detection strain gauge 30 so that the vehicle to be measured becomes the main vehicle. The time taken to move from the exit end of the girder to just above the exit side axle detection strain gauge 30 is calculated. Next, the highly correlated time estimation unit 109 adds the calculated time and the time difference calculated in step S3 to the time specified in step S1, so that the vehicle to be measured is moved from the exit end of the main girder. The main digit exit time indicating the exit time is estimated (step S7).
  • step S4 when the correlation degree determination unit 108 determines that the value of the correlation function solution is equal to or greater than a predetermined threshold (step S4: NO), the strain output from the approach-side axle detection strain gauge 20 at time t. It is unlikely that both the value and the strain value output from the exit-side axle detection strain meter 30 at time t- ⁇ are due to the passage of the vehicle to be measured. This is because the vehicle to be measured is accelerated or decelerated while the vehicle to be measured passes through the main girder. For this reason, when the processes in steps S5 to S7 are executed, there is a risk that the time is estimated incorrectly. Therefore, the following process is performed to accurately estimate the time.
  • a predetermined threshold step S4: NO
  • FIG. 4 shows estimation of main girder entry time and main girder exit time when the correlation between the strain value output from the approach-side axle detection strain gauge 20 and the strain value output from the exit-side axle detection strain gauge 30 is low.
  • FIG. 2 is a schematic diagram illustrating a method. In FIG. 4, as shown in the position (A) of the strain gauge, strain gauges 10, 20 and 30 are arranged on the bridge. First, as shown in the output (C) of the approach-side axle detection strain gauge 20 in FIG.
  • the passage time specifying unit 110 has a predetermined threshold value (of the strain values stored in the second strain value database 105 (for example, the time associated with the strain value exceeding the strain value corresponding to the 1t axle is specified as the time when the vehicle to be measured passes immediately above the approach-side axle detection strain gauge 20 (step S8).
  • the strain value extraction unit 111 extracts, from the first strain value database 104, the strain value associated with the time from 5 seconds before to 10 seconds after the time specified by the passage time specifying unit 110 (step). S9).
  • the strain value extraction unit 111 includes a strain value including a strain value while the vehicle to be measured is traveling at least in the main girder, as shown in the output (B) of the axle load calculation strain meter 10 in FIG. To extract.
  • the noise removal unit 112 performs noise removal processing on the strain value extracted by the strain value extraction unit 111 (step S10).
  • the noise removal processing method include a method of performing low-pass filter processing on a plurality of extracted strain values, a method of calculating a moving average value on the extracted plurality of strain values, and the like.
  • the strain value specifying unit 113 is a strain associated with the time (TD in in the output (B) of FIG. 4) specified by the passage time specifying unit 110 among the plurality of strain values output by the noise removing unit 112.
  • a value is specified (step S11). That is, the strain value specifying unit 113 specifies the strain value output by the axle load calculating strain gauge 10 at the time when the measurement target vehicle passes immediately above the approach-side axle detection strain gauge 20.
  • the low correlation time estimation unit 114 stores the strain rate storage unit 115 in the strain value specified by the strain value specification unit 113 among the plurality of strain values subjected to the noise removal processing by the noise removal unit 112.
  • a strain value equal to or smaller than the strain value obtained by multiplying the end portion strain rate (for example, 50%) is specified (step S12).
  • the low correlation time estimation unit 114 out of the time associated with the identified distortion value, the latest time before the time identified by the passage time identification unit 110 (TG in at the output (B) in FIG. 4). ) Is estimated as the main girder entry time (step S13). Further, the low correlation time estimation unit 114, among the times associated with the distortion value identified in step S12, is the latest time (at the output (B) in FIG.
  • the vehicle weight calculation processing unit 116 determines the length of the main girder in the vehicle traveling direction D from the main girder entry time specified by the high correlation time estimation unit 109 or the low correlation time estimation unit 114.
  • the speed of the vehicle to be measured is calculated by dividing by the time until (step S15). If the speed of the vehicle to be measured has already been calculated in step S5, the speed need not be calculated in step S15.
  • the weight calculation processing unit calculates the time associated with the peak value, which is a maximum value exceeding a predetermined threshold, from the strain value read by the time difference calculation unit 107 from the second strain value database 105 in step S2. Are extracted as times when the vehicle passes right above the approach-side axle detection strain gauge 20 (step S16).
  • the weight calculation processing unit calculates the axle interval by multiplying the extracted time interval by the speed calculated in step S15 (step S17).
  • the vehicle weight calculation processing unit 116 reads the reference axle weight strain waveform from the axle weight comparison data storage unit 117 (step S18).
  • the reference axle weight strain waveform is a strain value when a 1-t vehicle passes from the output of the axle weight calculation strain gauge 10 when an axial surface whose axle weight is known in advance passes over the main girder. This is what we have found and shows the relationship between the distance and strain value when the vehicle travels from the end of the main girder on the entry side.
  • FIGS. 5A to 5D are explanatory diagrams of reference axis weight strain waveforms stored in the vehicle weight comparison data storage unit.
  • FIG. 5A when considering the strain measured when the 1t single-shaft vehicle 1V passes through the main shaft, a distortion waveform as shown in FIG. 5B is obtained.
  • the measured strain is W times the strain measured when the 1t vehicle passes through the main shaft as shown in FIG. 5D.
  • a reference axial strain waveform is obtained by calculating a quarter of the strain value. be able to.
  • FIG. 6A to 6E are schematic views showing a method for calculating the vehicle weight using the vehicle speed and the axle position.
  • the vehicle weight calculation processing unit 116 uses the speed of the vehicle to be measured calculated in step S15 to obtain the reference axle weight strain waveform read out in step S18 shown in FIG. 6A as a strain value and a travel time as shown in FIG. 6B. (Step S19). In other words, the distance associated with the strain value of the reference axial weight strain waveform is divided by the speed to convert to travel time.
  • the vehicle weight calculation processing unit 116 determines from the main girder entry time specified by the high correlation time estimation unit 109 or the low correlation time estimation unit 114 from the first strain value database 104. A strain value associated with the time up to the main digit exit time is extracted (step S20).
  • the axle load calculation processing unit arranges the reference axle load strain waveform converted in step S19 on the time axis according to the axle interval calculated in step S17.
  • the axial weight of each axis is calculated by the least square method so that the error between the generated waveform and the strain value extracted from the first strain value database 104 in step S20 is minimized.
  • the weight of each axis is obtained (step S21).
  • the axle weight calculation processing unit calculates the vehicle weight by summing the obtained weights of the respective axes (step S22).
  • the entry-side axle detection strain gauge 20 when the correlation between the output waveforms of the entry-side axle detection strain gauge 20 and the exit-side axle detection strain gauge 30 is low, the entry-side axle detection strain gauge 20 is first output. The time at which the vehicle to be measured passes immediately above the approach-side axle detection strain gauge 20 is specified from the strain value to be measured. At this time, the time when the vehicle to be measured enters the main girder and the time when it exits are estimated using the strain value output from the axle load calculating strain gauge 10.
  • the entry-side axle detection strain gauge 20 without using the correlation between the output waveforms of the entry-side axle detection strain gauge 20 and the exit-side axle detection strain gauge 30, using the natural law that the strain response due to the passage of the vehicle differs depending on the member of the bridge, The speed of the vehicle to be measured can be calculated. Therefore, even when the measurement target vehicle accelerates or decelerates while the main girder is passing, the entry time of the measurement target vehicle to the main girder 3 and the exit time from the main girder 3 can be estimated.
  • the present invention has been described in detail with reference to the drawings.
  • the specific configuration is not limited to the above, and various design changes and the like can be made without departing from the scope of the present invention. It is possible to For example, in the present embodiment, only when the correlation between the output waveforms of the approach-side axle detection strain gauge 20 and the exit-side axle detection strain gauge 30 is low, the main girder entry time and the time at which the main girder entry time and the step S8 to S14 are processed Although the main girder exit time has been estimated, the present invention is not limited to this.
  • the main girder entry time and the main girder exit time are estimated by the processing in steps S8 to S14. You can go.
  • the main girder entry time and the main girder exit are calculated using the strain values output from the axle load calculating strain gauge 10 at the time when the vehicle to be measured passes immediately above the approach-side axle detection strain gauge 20.
  • the main girder entry time and the main girder exit time are estimated using the strain values output from the axle load calculation strain gauge 10 at the time when the vehicle to be measured passes immediately above the exit side axle detection strain gauge 30. Also good.
  • the entry-side axle detection strain gauge 20 and the exit-side axle detection strain gauge 30 are other parts in which distortion occurs independently with respect to the axle passage of the vehicle to be measured, such as a bridge floor plate and an end-to-end tilt structure. May be installed.
  • the axial load calculating strain gauge 10 is installed on the bottom surface of the main shaft, but the present invention is not limited thereto. That is, the axle load calculating strain gauge 10 may be installed on another member that continuously generates strain while the vehicle to be measured passes over the main beam.
  • the axial load calculating strain gauge 10 is installed in the central portion of the main girder in the vehicle traveling direction, but the present invention is not limited thereto.
  • the axial load calculating strain gauge 10 may be installed at a position shifted from the central portion.
  • the strain rate storage unit 115 replaces the end portion strain rate with the strain value output by the strain gauge 10 for calculating the axle load when the vehicle is located at the end of the main girder, and the vehicle When the vehicle is positioned at the end on the exit side of the main girder, the strain rate at one end indicates the ratio of the strain value output by the strain meter 10 for calculating the axle load when it is positioned directly above the approach-side axle detection strain meter 20.
  • the low correlation time estimation unit 114 estimates the main girder entry time and the main girder exit time using the one end side distortion rate and the other end side distortion rate.
  • the main girder entry time and main girder exit time of a vehicle in a certain lane is estimated has been described, but the present invention is not limited to this. That is, the main girder entry time and the main girder exit time can be estimated even when a vehicle exists over a plurality of lanes or when a plurality of vehicles exist in one lane.
  • a strain value is obtained from each of a set of a strain gauge 10 for calculating the axle load, a strain gauge 20 for detecting the entry side axle, and a strain gauge 30 for detecting the exit side axle.
  • the above bridge passing vehicle monitoring system 1 (passing time estimation device) has a computer system inside.
  • the operation of each processing unit described above is stored in a computer-readable recording medium in the form of a program, and the above processing is performed by the computer reading and executing this program.
  • the computer-readable recording medium means a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.
  • the program may be for realizing a part of the above-described functions. Furthermore, what can implement
  • the present invention is not limited to this, and a human being can calculate the axial load strain gauge 10 and the approach side. Processing may be performed by hand calculation using the output results of the axle detection strain gauge 20 and the exit-side axle detection strain gauge 30.
  • the present invention can be used for a passage time estimation device that calculates the speed of a vehicle traveling from one end of a main girder of a bridge to the other end. According to the present invention, even when the measurement target vehicle accelerates or decelerates while the main girder is passing, it is possible to estimate the entry time of the measurement target vehicle to the main girder and the exit time from the main girder.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

 橋梁の主桁の通過中に測定対象車両が加減速した場合にも、この測定対象車両の主桁への進入時刻・主桁からの退出時刻を推定するために、通過時刻推定装置の通過時刻特定部は、進入側車軸検知用ひずみ計が出力するひずみ値から、測定対象車両が進入側車軸検知用ひずみ計の直上を通過した時刻を特定する。次に、ひずみ値特定部は、その特定された時刻に軸重算出用ひずみ計が出力するひずみ値を特定する。低相関時時刻推定部は、ひずみ値特定部が特定したひずみ値を用いて、測定対象車両が主桁に進入した時刻及び退出した時刻を推定する。

Description

通過時刻推定装置、車速算出方法、及びプログラム
 本発明は、橋梁の主桁の一端から他端へ走行する車両の速度を算出する通過時刻推定装置、車速算出方法、及びプログラムに関する。
 本願は、2010年8月25日に、日本に出願された特願2010-188202号に基づき優先権を主張し、その内容をここに援用する。
 橋梁を通過する大型車両の車軸重量は、橋梁の維持管理をする上で、橋梁の損傷を予測するために重要な情報となる。そこで、大型車両の軸重測定のため、橋梁の主桁に設置したひずみ計から車両通行時のひずみ値を連続測定し、軸重を算出するBridge Weigh-in-motionという手法が提案されている。また、特許文献1には、Bridge Weigh-in-motionによる車両の軸重測定に要する、車両の橋梁の主桁への進入時刻及び主桁からの退出時刻の算出方法が開示されている。
 特許文献1に記載の方法によると、2組の車両検知用センサが、主桁の車線に平行な方向に所定距離だけ離れて配置されており、2組の車両検知用センサの出力波形の相関関数が最大となるときの時間差で、車両検知用センサ間の距離を除算することで、車両の速度を算出する。次に、車両進行方向後方の車両検知用センサと主桁の一端との距離を算出した速度で乗算して得られた時間を、車両がこの車両検知用センサ上を通過した時刻から減算することで、車両の橋梁の主桁への進入時刻を算出する。同様に、車両進行方向前方の車両検知用センサと主桁の他端との距離を算出した速度で乗算して得られた時間を、車両がこの車両検知用センサ上を通過した時刻に加算することで、車両の橋梁の主桁からの退出時刻を算出する。
日本国特開2006-084404号公報
 2組の車両検知用センサの出力波形間で高い相関を得るには、車両が2つのひずみ計の間を等速で通過する必要がある。しかしながら、実際の交通状況では加減速の発生や他車両の通行等で発生する振動ノイズの影響などにより、必ずしも2組の車両検知用センサの出力波形間で高い相関を得られるとは限られない。そのため、特許文献1に記載の方法では、主桁への車両の進入・退出の時刻を特定することができず、その場合には車軸重量を取得できないという問題がある。
 また、Bridge Weigh-in-motionは、車重による主桁へのダメージの具合を測定することを目的としてなされるため、車軸重量の計測の抜けをできる限り少なくしたいという要望がある。
 本発明は上記の課題を解決するためになされたものである。本発明は、測定対象車両が橋梁の主桁の一端に進入した時刻、及び前記測定対象車両が前記主桁の他端から退出する時刻を推定する通過時刻推定装置であって、前記測定対象車両が前記主桁上を通過する間、継続的にひずみが発生する第1の箇所のひずみ値である第1のひずみ値を時系列に取得する第1のひずみ値取得部と、前記測定対象車両の車軸通過に対して独立してひずみが発生する第2の箇所のひずみ値である第2のひずみ値を時系列に取得する第2のひずみ値取得部と、車両が前記主桁の一端に位置する場合における前記第1のひずみ値と前記車両が前記第2の箇所の直上に位置する場合における前記第1のひずみ値との比率を示す一端側ひずみ率と、前記車両が前記主桁の他端に位置する場合における前記第1のひずみ値と前記車両が前記第2の箇所の直上に位置する場合における前記第1のひずみ値との比率を示す他端側ひずみ率とを記憶するひずみ率記憶部と、前記第2のひずみ値が所定の閾値を超えた時刻を特定する通過時刻特定部と、前記特定した時刻における前記第1のひずみ値を特定するひずみ値特定部と、前記第1のひずみ値が、前記ひずみ率記憶部が記憶する一端側ひずみ率を前記特定した第1のひずみ値に乗算して得られるひずみ値以下となった時刻のうち、前記通過時刻特定部が特定した時刻より前の直近の時刻を、前記測定対象車両が前記主桁の一端に進入した時刻を示す主桁進入時刻として推定する進入時刻推定部と、前記第1のひずみ値が、前記ひずみ率記憶部が記憶する他端側ひずみ率を前記特定した第1のひずみ値に乗算して得られるひずみ値以下となった時刻のうち、前記通過時刻特定部が特定した時刻より後の直近の時刻を、前記測定対象車両が前記主桁の他端から退出した時刻を示す主桁退出時刻として推定する退出時刻推定部とを備える。
 本発明の通過時刻推定装置は、前記測定対象車両の車軸通過に対して独立してひずみが発生する第3の箇所のひずみ値である第3のひずみ値を時系列に取得する第3のひずみ値取得部と、前記第2のひずみ値取得部が取得した第2のひずみ値のうち、所定の閾値以上の極大値を示すピーク値を特定し、このピーク値の前後所定の範囲の第2のひずみ値を抽出するピーク値抽出部と、前記ピーク値抽出部が抽出した第2のひずみ値と前記第3のひずみ値との間の相関度が最大となる時間差を算出する時間差算出部と、前記時間差算出部が算出した時間差における相関度が所定の閾値以上であるか否かを判定する相関度判定部と、前記相関度判定部が、前記相関度が所定の閾値以上であると判定した場合に、前記時間差算出部が算出した時間差で、前記第2の箇所と前記第3の箇所との間の距離を除算することで前記測定対象車両の速度を算出する車速算出部と、前記車速算出部が算出した速度と、前記主桁の一端と前記第2の箇所との距離とを乗算して得られる時間を、前記ピーク値抽出部が特定したピーク値を取得した時刻から減算して得られる時刻を、前記測定対象車両が前記主桁の一端に進入した時刻を示す主桁進入時刻として推定する高相関時進入時刻推定部と、前記車速算出部が算出した速度と、前記主桁の他端と前記第2の箇所との距離とを乗算して得られる時間と、前記時間差算出部が算出した時間差とを、前記ピーク値抽出部が特定したピーク値を取得した時刻に加算して得られる時刻を、前記測定対象車両が前記主桁の他端から退出した時刻を示す主桁退出時刻として推定する高相関時退出時刻推定部とを備えてもよく、前記第2の箇所は、前記第1の箇所より前記主桁の一端側であり、前記第3の箇所は、前記第1の箇所より前記主桁の他端側であり、前記進入時刻推定部は、前記相関度判定部が、前記相関度が所定の閾値未満であると判定した場合に、前記主桁進入時刻を推定し、前記退出時刻推定部は、前記相関度判定部が、前記相関度が所定の閾値未満であると判定した場合に、前記主桁退出時刻を推定するようにしてもよい。
 また、本発明の通過時刻推定装置において、前記第1の箇所は、前記主桁の車両進行方向の中央部分であり、前記一端側ひずみ率と前記他端側ひずみ率は同一の値を示し、端部ひずみ率として前記ひずみ率記憶部に記憶されるようにしてもよい。
 また、本発明の通過時刻推定装置は、前記通過時刻特定部が特定した時刻より前記主桁の一端側から前記第2の箇所までの距離に所定の速度を乗じて得られる時間だけ前の時刻から、前記通過時刻特定部が特定した時刻より前記主桁の他端側から前記第2の箇所までの距離に所定の速度を乗じて得られる時間だけ後の時刻までの時間の間に前記第1のひずみ値取得部が取得したひずみ値を少なくとも抽出し、抽出したひずみ値を前記第1のひずみ値取得部が取得した時刻に関連付けて出力するひずみ値抽出部と、前記ひずみ値抽出部が出力した複数のひずみ値に対してノイズ除去処理を行うノイズ除去部とを備えてもよく、前記主桁進入時刻特定部は、前記ノイズ除去部によってノイズ除去処理がなされた複数のひずみ値のうち、前記ひずみ値特定部が特定したひずみ値に前記ひずみ率記憶部が記憶する一端側ひずみ率を乗算して得られるひずみ値以下のひずみ値を特定し、この特定したひずみ値に関連付けられた時刻のうち、前記通過時刻特定部が特定した時刻より前の直近の時刻を、前記測定対象車両が前記主桁の一端に進入した時刻を示す主桁進入時刻として特定し、前記主桁退出時刻特定部は、前記ノイズ除去部によってノイズ除去処理がなされた複数のひずみ値のうち、前記ひずみ値特定部が特定したひずみ値に前記ひずみ率記憶部が記憶する他端側ひずみ率を乗算して得られるひずみ値以下のひずみ値を特定し、この特定したひずみ値に関連付けられた時刻のうち、前記通過時刻特定部が特定した時刻より後の直近の時刻を、前記測定対象車両が前記主桁の一端に進入した時刻を示す主桁進入時刻として特定するようにしてもよい。
 また、本発明は、測定対象車両が橋梁の主桁の一端に進入した時刻、及び前記測定対象車両が前記主桁の他端から退出する時刻を推定する通過時刻推定方法であって、前記測定対象車両が前記主桁上を通過する間、継続的にひずみが発生する第1の部材のひずみ値である第1のひずみ値を時系列に取得する第1のステップと、前記測定対象車両の車軸通過に対して独立してひずみが発生する第2の部材のひずみ値である第2のひずみ値を時系列に取得する第2のステップと、前記第2のひずみ値が所定の閾値を超えた時刻を特定する第3のステップと、前記特定した時刻における前記第1のひずみ値を特定する第4のステップと、前記第1のひずみ値が、車両が前記主桁の一端に位置する場合における前記第1のひずみ値と前記車両が前記第2の部材の直上に位置する場合における前記第1のひずみ値との比率を示す一端側ひずみ率を前記特定した第1のひずみ値に乗算して得られるひずみ値以下となった時刻のうち、前記第3のステップで特定した時刻より前の直近の時刻を、前記測定対象車両が前記主桁の一端に進入した時刻を示す主桁進入時刻として推定する第5のステップと、前記第1のひずみ値が、車両が前記主桁の他端に位置する場合における前記第1のひずみ値と前記車両が前記第2の部材の直上に位置する場合における前記第1のひずみ値との比率を示す他端側ひずみ率を前記特定した第1のひずみ値に乗算して得られるひずみ値以下となった時刻のうち、前記第3のステップで特定した時刻より後の直近の時刻を、前記測定対象車両が前記主桁の他端から退出した時刻を示す主桁退出時刻として推定する第6のステップとを備える。
 また、本発明によるプログラムは、主桁の一端から他端へ走行する測定対象車両の速度を算出する通過時刻推定装置を、前記測定対象車両が前記主桁上を通過する間、継続的にひずみが発生する第1の箇所のひずみ値である第1のひずみ値を時系列に取得する第1のひずみ値取得部、前記測定対象車両の車軸通過に対して独立してひずみが発生する第2の箇所のひずみ値である第2のひずみ値を時系列に取得する第2のひずみ値取得部、前記第2のひずみ値が所定の閾値を超えた時刻を特定する通過時刻特定部、前記特定した時刻における前記第1のひずみ値を特定するひずみ値特定部、前記第1のひずみ値が、車両が前記主桁の一端に位置する場合における前記第1のひずみ値と前記車両が前記第2の部材の直上に位置する場合における前記第1のひずみ値との比率を示す一端側ひずみ率を前記特定した第1のひずみ値に乗算して得られるひずみ値以下となった時刻のうち、前記通過時刻特定部が特定した時刻より前の直近の時刻を、前記測定対象車両が前記主桁の一端に進入した時刻を示す主桁進入時刻として推定する進入時刻推定部、前記第1のひずみ値が、車両が前記主桁の他端に位置する場合における前記第1のひずみ値と前記車両が前記第2の部材の直上に位置する場合における前記第1のひずみ値との比率を示す他端側ひずみ率を前記特定した第1のひずみ値に乗算して得られるひずみ値以下となった時刻のうち、前記通過時刻特定部が特定した時刻より後の直近の時刻を、前記測定対象車両が前記主桁の他端から退出した時刻を示す主桁退出時刻として推定する退出時刻推定部として機能させる。
 本発明によれば、第2のひずみ計が出力するひずみ値から測定対象車両が第2のひずみ計の直上を通過した時刻を特定し、この時刻に第1のひずみ計が出力するひずみ値から、測定対象車両が主桁に進入した時刻及び退出した時刻を推定する。これにより、2組の車両検知用センサの出力波形間の相関を用いずに、測定対象車両の速度を算出することができるため、主桁の通過中に測定対象車両が加減速した場合にも、この測定対象車両の主桁への進入時刻・主桁からの退出時刻を推定することができる。
本発明の一実施形態による橋梁通過車両監視システムにおけるひずみ計の設置例を示す平面図である。 図1Aに示されたひずみ計の設置例を示す側面図である。 図1Aに示されたひずみ計の設置例を示す断面図である。 本実施形態による橋梁通過車両監視システムを示すブロック図である。 本実施形態による橋梁通過車両監視システムによる測定対象車両の車重算出動作を示すフローチャートである。 進入側車軸検知用ひずみ計と退出側車軸検知用ひずみ計とが出力したひずみ値との相関が低い場合における、主桁進入時刻および主桁退出時刻の推定方法を示す図である。 本発明の一実施形態による車重比較データ記憶部が記憶する基準軸重ひずみ波形の説明図であり、主桁を走行する車両を示す側面図である。 図5Aに示された車両によって計測されるひずみを示すグラフである。 本発明の一実施形態による車重比較データ記憶部が記憶する基準軸重ひずみ波形の説明図であり、主桁を走行する他の車両を示す側面図である。 図5Cに示された車両によって計測されるひずみを示すグラフである。 本発明の一実施形態によって車重を算出する方法を説明するための図であり、基準軸重ひずみ波形を示すグラフである。 本発明の一実施形態によって車重を算出する方法を説明するための図であり、変換後基準軸重ひずみ波形を示すグラフである。 本発明の一実施形態によって車重を算出する方法を説明するための図であり、車軸間隔に従って基準軸重ひずみ波形を配置した場合を示すグラフである。 本発明の一実施形態によって車重を算出する方法を説明するための図であり、軸重算出用ひずみ計の出力を示すグラフである。 本発明の一実施形態によって車重を算出する方法を説明するための図であり、誤差が最小になるように調整された波形を示すグラフである。
 以下、図面を参照しながら本発明の実施形態について詳しく説明する。
 図1A,図1Bおよび図1Cは、本発明の一実施形態による通過時刻推定装置を含む橋梁通過車両監視システム1におけるひずみ計の設置例を示す図である。ここでは、橋梁の主桁が6本ある場合のひずみ計の設置例を説明する。
 本実施形態による橋梁通過車両監視システム1は、軸重算出用ひずみ計10、進入側車軸検知用ひずみ計20、退出側車軸検知用ひずみ計30を備える。
 図1Aは、橋梁の平面図である。図1Aに示すように、軸重算出用ひずみ計10、進入側車軸検知用ひずみ計20、および退出側車軸検知用ひずみ計30は、それぞれ走行車線の通行状況を把握しやすいように設置される。
 図1Bは、橋梁の側面図である。また、図1Cは、橋梁の断面図である。図1B、図1Cに示すように、軸重算出用ひずみ計10は、橋脚2上に設置された主桁3の下面であり、車両進行方向Dの中央部分(第1の箇所)に設置される。主桁3の下面は、車軸の通過に対するひずみの応答時間が長く、車両が主桁上を通過する間、継続的にひずみが発生する。
 また、進入側車軸検知用ひずみ計20は、主桁3の、車両進行方向Dの後方の垂直補剛材4(第2の箇所)に設置される。また、退出側車軸検知用ひずみ計30は、主桁3の、車両進行方向Dの前方の垂直補剛材4(第3の箇所)に設置される。主桁3の垂直補剛材4は、車軸の通過に対する応答時間が短く、車軸の通過に対して独立してひずみが発生する。
 各ひずみ計は、設置された箇所の伸びひずみを計測する。各ひずみ計は、ひずみ検出センサとなる膜状のシートと、このセンサの信号を増幅する増幅器等とを備える。ひずみとは物質の形状の変形であり、局所的には、計測箇所の伸び縮みの量になる。例えば、ある箇所のひずみが0.1であるとは、その箇所が0.9倍の長さになったこと、つまり10%の縮小が生じた状態である。よって、ひずみは比率であり、単位はない。
 図2は、本実施形態による橋梁通過車両監視システム1の構成を示す概略ブロック図である。
 橋梁通過車両監視システム1は、橋梁を通過する測定対象車両の車重を算出するシステムである。橋梁通過車両監視システム1は、第1のひずみ値取得部101、第2のひずみ値取得部102、第3のひずみ値取得部103、第1のひずみ値データベース104、第2のひずみ値データベース105、第3のひずみ値データベース106、時間差算出部107(ピーク値抽出部)、相関度判定部108、高相関時時刻推定部109(車速推定部、高相関時進入時刻推定部、高相関時退出時刻推定部)、通過時刻特定部110、ひずみ値抽出部111、ノイズ除去部112、ひずみ値特定部113、低相関時時刻推定部114(進入時刻推定部、退出時刻推定部)、ひずみ率記憶部115、車重算出処理部116、軸重比較データ記憶部117を備える。
 第1のひずみ値取得部101は、軸重算出用ひずみ計10から時系列にひずみ値(第1のひずみ値)を取得し、これらのひずみ値と、これらのひずみ値を取得した時刻とを関連付けて第1のひずみ値データベース104に記録する。
 第2のひずみ値取得部102は、進入側車軸検知用ひずみ計20から時系列にひずみ値(第2のひずみ値)を取得し、これらのひずみ値と、これらのひずみ値を取得した時刻とを関連付けて第2のひずみ値データベース105に記録する。
 第3のひずみ値取得部103は、退出側車軸検知用ひずみ計30から時系列にひずみ値(第3のひずみ値)を取得し、これらのひずみ値と、これらのひずみ値を取得した時刻とを関連付けて第3のひずみ値データベース106に記録する。
 第1のひずみ値データベース104は、第1のひずみ値取得部101が取得したひずみ値を、時刻に関連付けて記憶する。
 第2のひずみ値データベース105は、第2のひずみ値取得部102が取得したひずみ値を、時刻に関連付けて記憶する。
 第3のひずみ値データベース106は、第3のひずみ値取得部103が取得したひずみ値を、時刻に関連付けて記憶する。
 時間差算出部107は、第2のひずみ値データベース105が記憶する時系列のひずみ値と、第3のひずみ値データベース106が記憶する時系列のひずみ値との間の相関度が最大となる時間差を算出する。
 相関度判定部108は、時間差算出部107が算出した時間差における、第2のひずみ値データベース105が記憶する時系列のひずみ値と、第3のひずみ値データベース106が記憶する時系列のひずみ値との間の相関度が所定の閾値以上であるか否かを判定する。
 高相関時時刻推定部109は、相関度判定部108が、相関度が所定の閾値以上であると判定した場合に、時間差算出部107が算出した時間差で、進入側車軸検知用ひずみ計20の設置箇所と退出側車軸検知用ひずみ計30の設置箇所との間の距離を除算することで、測定対象車両の速度を算出する。また、高相関時時刻推定部109は、算出した速度、進入側車軸検知用ひずみ計20と主桁の進入側の端(一端)との距離、退出側車軸検知用ひずみ計30と主桁の退出側の端(他端)との距離、及び時間差算出部107が算出した時間差を用いて、主桁進入時刻、主桁退出時刻を算出する。
 通過時刻特定部110は、第2のひずみ値データベース105が記憶するひずみ値のうち、所定の閾値を超えるひずみ値に関連付けられた時刻を特定する。
 ひずみ値抽出部111は、第1のひずみ値データベース104が記憶するひずみ値のうち、通過時刻特定部110が特定した時刻の前後の所定の時間の間の時刻に関連付けられたひずみ値とこれらのひずみ値に関連付けられた時刻との組を抽出する。ここで、通過時刻特定部110が特定した時刻の前後の所定の時間とは、少なくとも測定対象車両が2つの橋脚の間を通過することが見込まれる時間である。そのため、通過時刻特定部110が特定した時刻の前後の所定の時間には、通過時刻特定部110が特定した時刻より主桁の進入側の端から進入側車軸検知用ひずみ計20までの距離に、所定の速度(例えば、20km/h)を乗じて得られる時間だけ前の時刻、及び通過時刻特定部110が特定した時刻より主桁の退出側の端から進入側車軸検知用ひずみ計20までの距離に、所定の速度を乗じて得られる時間だけ後の時刻が少なくとも含まれる。
 ノイズ除去部112は、ひずみ値抽出部111が出力した複数のひずみ値に対してノイズ除去処理を行う。
 ひずみ値特定部113は、第1のひずみ値データベース104が記憶するひずみ値のうち、通過時刻特定部110が特定した時刻に関連付けられたひずみ値を特定する。
 低相関時時刻推定部114は、ノイズ除去部112によってノイズ除去処理がなされた複数のひずみ値のうち、ひずみ率記憶部115が記憶する端部ひずみ率(一端側ひずみ率、他端側ひずみ率)をひずみ値特定部113が特定したひずみ値に乗算して得られるひずみ値以下の、ひずみ値を特定する。また、低相関時時刻推定部114は、特定したひずみ値に関連付けられた時刻のうち、通過時刻特定部110が特定した時刻より前の直近の時刻を主桁進入時刻として推定し、通過時刻特定部110が特定した時刻より後の直近の時刻を主桁退出時刻として推定する。なお、低相関時時刻推定部114は、相関度判定部108が、相関度が所定の閾値以下であると判定した場合に、主桁進入時刻及び主桁退出時刻を算出する。
 ひずみ率記憶部115は、車両が主桁の進入側の端または退出側の端に位置する場合に軸重算出用ひずみ計10が出力するひずみ値と、車両が進入側車軸検知用ひずみ計20の直上に位置する場合に軸重算出用ひずみ計10が出力するひずみ値との比率を示す端部ひずみ率を記憶する。
 車重算出処理部116は、高相関時時刻推定部109または低相関時時刻推定部114が推定した主桁進入時刻及び主桁退出時刻と、軸重比較データ記憶部117が記憶する基準軸重ひずみ波形とに基づいて、測定対象車両の車重を算出する。
 軸重比較データ記憶部117は、1tの車軸が主桁上を通過した場合に軸重算出用ひずみ計10が計測する時系列のひずみ値を、基準軸重ひずみ波形として記憶する。
 本実施形態では、第1のひずみ値取得部101、第2のひずみ値取得部102、第3のひずみ値取得部103、第1のひずみ値データベース104、第2のひずみ値データベース105、第3のひずみ値データベース106、時間差算出部107、相関度判定部108、高相関時時刻推定部109、通過時刻特定部110、ひずみ値抽出部111、ノイズ除去部112、ひずみ値特定部113、低相関時時刻推定部114、ひずみ率記憶部115が、通過時刻推定装置として動作する。
 橋梁通過車両監視システム1は、上記構成を備えることで、以下に示す処理を実行する。
 第1のひずみ値取得部101は、測定対象車両が主桁上を通過する間、継続的にひずみが発生する主桁の下面のひずみ値を時系列に取得する。第2のひずみ値取得部102は、測定対象車両の車軸通過に対して独立してひずみが発生する主桁の垂直補剛材のひずみ値を時系列に取得する。次に、通過時刻特定部110は、垂直補剛材のひずみ値が所定の閾値を超えた時刻を特定し、ひずみ値特定部113は、特定した時刻における主桁の下面のひずみ値を特定する。
 次に、低相関時時刻推定部114は、主桁の下面のひずみ値が、ひずみ率記憶部115が記憶する端部ひずみ率を、ひずみ値特定部113が特定したひずみ値に乗算して得られるひずみ値以下となった時刻のうち、通過時刻特定部110が特定した時刻より前の直近の時刻を、測定対象車両が主桁の進入側の端に進入した時刻を示す主桁進入時刻として推定する。また、低相関時時刻推定部114は、主桁の下面のひずみ値が、ひずみ率記憶部115が記憶する端部ひずみ率を、ひずみ値特定部113が特定したひずみ値に乗算して得られるひずみ値以下となった時刻のうち、通過時刻特定部110が特定した時刻より後の直近の時刻を、測定対象車両が主桁の退出側の端から退出した時刻を示す主桁退出時刻として推定する。
 これにより、橋梁通過車両監視システム1は、主桁の通過中に測定対象車両が加減速した場合にも、精度良く測定対象車両の速度を測定する。
 次に、橋梁通過車両監視システム1による測定対象車両の車重算出動作を説明する。
 図3は、橋梁通過車両監視システム1による測定対象車両の車重算出動作を示すフローチャートである。
 測定対象車両は、車重算出動作を実行する前に、既に橋梁を通過しており、第1のひずみ値データベース104、第2のひずみ値データベース105、第3のひずみ値データベース106には、第1のひずみ値取得部101、第2のひずみ値取得部102、第3のひずみ値取得部103により、既にひずみ値と時刻とを関連付けたデータが格納されているものとする。
 まず、橋梁通過車両監視システム1が車重算出動作を開始すると、時間差算出部107は、第2のひずみ値データベース105が記憶する時系列のひずみ値の中から、所定の閾値以上(例えば、1tの車軸に相当するひずみ値)の極大値であるピーク値に関連付けられた時刻を特定する(ステップS1)。次に、時間差算出部107は、この特定した時刻の0.5秒前から1秒後までの時刻に関連付けられたひずみ値を第2のひずみ値データベース105から読み出す。これにより、時間差算出部107は、測定対象車両が進入側車軸検知用ひずみ計20の直上を通過した際に、進入側車軸検知用ひずみ計20が出力したひずみ値を読み出す(ステップS2)。
 次に、時間差算出部107は、読み出したひずみ値と、第3のひずみ値データベース106が記憶する時系列のひずみ値との相関度が最大となる時間差を算出する(ステップS3)。具体的には、時間差算出部107は、以下の式(1)が示す相関関数の解が最大となる時間差τを算出する。
Figure JPOXMLDOC01-appb-M000001

 但し、g(t)は、時間差算出部107がステップS2で読み出した複数のひずみ値のうち、時刻tに関連付けられたひずみ値を示し、g(t)は、第3のひずみ値データベース106が記憶するひずみ値のうち、時刻tに関連付けられたひずみ値を示す。時間差τは、測定対象車両が主桁上を通過する際に要すると仮定される時間によって決定する。例えば、測定対象車両が主桁上を通過する際に要する時間が10秒以下であるものと仮定した場合、時間差τを0秒以上10秒以下とすると良い。
 次に、相関度判定部108は、時間差算出部107が算出した時間差τにおける相関関数の解の値が、所定の閾値(例えば、0.7)以上であるか否かを判定する(ステップS4)。相関度判定部108が、相関関数の解の値が所定の閾値以上であると判定した場合(ステップS4:YES)、高相関時時刻推定部109は、時刻tにおいて進入側車軸検知用ひずみ計20が出力したひずみ値と、時刻t-τにおいて退出側車軸検知用ひずみ計30が出力したひずみ値とが、いずれも測定対象車両の通過によるものであると判定する。次に、高相関時時刻推定部109は、進入側車軸検知用ひずみ計20の設置位置と退出側車軸検知用ひずみ計30の設置位置との距離を、時間差τで除算することで、測定対象車両の速度を算出する(ステップS5)。
 次に、高相関時時刻推定部109は、算出した速度を、主桁の進入側の端(一端)から進入側車軸検知用ひずみ計20までの距離に乗算することで、測定対象車両が主桁の進入側の端から進入側車軸検知用ひずみ計20の直上まで移動する際にかかった時間を算出する。次に、高相関時時刻推定部109は、算出した時間を、ステップS1で特定した時刻から減算することで、測定対象車両が主桁の進入側の端に進入した時刻を示す主桁進入時刻を推定する(ステップS6)。
 また、高相関時時刻推定部109は、算出した速度を、主桁の退出側の端(他端)から退出側車軸検知用ひずみ計30までの距離に乗算することで、測定対象車両が主桁の退出側の端から退出側車軸検知用ひずみ計30の直上まで移動する際にかかった時間を算出する。次に、高相関時時刻推定部109は、算出した時間と、ステップS3で算出した時間差とを、ステップS1で特定した時刻に加算することで、測定対象車両が主桁の退出側の端から退出した時刻を示す主桁退出時刻を推定する(ステップS7)。
 ステップS4で、相関度判定部108が、相関関数の解の値が所定の閾値以上であると判定した場合(ステップS4:NO)、時刻tにおいて進入側車軸検知用ひずみ計20が出力したひずみ値と、時刻t-τにおいて退出側車軸検知用ひずみ計30が出力したひずみ値とが、両方とも測定対象車両の通過によるものである可能性が低い。これは、測定対象車両が主桁の通過中に測定対象車両が加減速したなどの理由によるものである。そのため、上記ステップS5~ステップS7による処理を実行した場合、時刻の推定を誤るおそれがある。そこで、以下に示す処理を行うことで、精度良く時刻の推定を行う。
 図4は、進入側車軸検知用ひずみ計20が出力したひずみ値と退出側車軸検知用ひずみ計30が出力したひずみ値との相関が低い場合における、主桁進入時刻、主桁退出時刻の推定方法を示す概略図である。
 図4において、ひずみ計の位置(A)に示すように、橋梁上にはひずみ計10、20および30が配置されている。まず、図4において、進入側車軸検知用ひずみ計20の出力(C)に示すように、通過時刻特定部110は、第2のひずみ値データベース105が記憶するひずみ値のうち、所定の閾値(例えば、1tの車軸に相当するひずみ値)を超えるひずみ値に関連付けられた時刻を、測定対象車両が進入側車軸検知用ひずみ計20の直上を通過した時刻と特定する(ステップS8)。次に、ひずみ値抽出部111は、第1のひずみ値データベース104から、通過時刻特定部110が特定した時刻の5秒前から10秒後までの時刻に関連付けられたひずみ値を抽出する(ステップS9)。これにより、ひずみ値抽出部111は、図4における軸重算出用ひずみ計10の出力(B)に示すような、測定対象車両が少なくとも主桁を走行している間のひずみ値を含むひずみ値を抽出する。
 次に、ノイズ除去部112は、ひずみ値抽出部111が抽出したひずみ値に対してノイズ除去処理を行う(ステップS10)。なお、ノイズ除去処理の手法としては、抽出した複数のひずみ値に対してローパスフィルタ処理を行う手法、抽出した複数のひずみ値に対して移動平均値を算出する手法などが挙げられる。
 次に、ひずみ値特定部113は、ノイズ除去部112が出力した複数のひずみ値のうち、通過時刻特定部110が特定した時刻(図4の出力(B)におけるTDin)に関連付けられたひずみ値を特定する(ステップS11)。つまり、ひずみ値特定部113は、測定対象車両が進入側車軸検知用ひずみ計20の直上を通過した時刻に、軸重算出用ひずみ計10が出力したひずみ値を特定する。
 次に、低相関時時刻推定部114は、ノイズ除去部112によってノイズ除去処理がなされた複数のひずみ値のうち、ひずみ値特定部113が特定したひずみ値に、ひずみ率記憶部115が記憶する端部ひずみ率(例えば、50%)を乗算して得られるひずみ値以下のひずみ値を特定する(ステップS12)。次に、低相関時時刻推定部114は、特定したひずみ値に関連付けられた時刻のうち、通過時刻特定部110が特定した時刻より前の直近の時刻(図4の出力(B)におけるTGin)を主桁進入時刻として推定する(ステップS13)。また、低相関時時刻推定部114は、ステップS12で特定したひずみ値に関連付けられた時刻のうち、通過時刻特定部110が特定した時刻より後の直近の時刻(図4の出力(B)におけるTGout)を主桁退出時刻として推定する(ステップS14)。
 上記ステップS8~ステップS14の処理により、主桁の通過中に測定対象車両が加減速した場合にも、測定対象車両の主桁への進入時刻・主桁からの退出時刻を精度良く推定することができる。
 次に、車重算出処理部116は、主桁の車両進行方向Dの長さを、高相関時時刻推定部109または低相関時時刻推定部114が特定した主桁進入時刻から主桁退出時刻までの時間で除算することで測定対象車両の速度を算出する(ステップS15)。なお、ステップS5で既に測定対象車両の速度を算出している場合は、ステップS15で速度の算出を行わなくても良い。次に、重量算出処理部は、時間差算出部107がステップS2で第2のひずみ値データベース105から読み出したひずみ値から、所定の閾値を超える極大値であるピーク値に関連付けられた時刻を、車軸が進入側車軸検知用ひずみ計20の直上を通過した時刻として、複数抽出する(ステップS16)。次に、重量算出処理部は、抽出した時刻の間隔にステップS15で算出した速度を乗算することで、車軸間隔を算出する(ステップS17)。
 次に、車重算出処理部116は、軸重比較データ記憶部117から基準軸重ひずみ波形を読み出す(ステップS18)。なお、基準軸重ひずみ波形とは、予め軸重が分かっている軸面が主桁上を通過した際の軸重算出用ひずみ計10の出力から、1tの車両が通過したときのひずみ値として求めておいたものであり、主桁の進入側の端から車両が進んだ際の距離とひずみ値との関係を示す。
 図5A~5Dは、車重比較データ記憶部が記憶する基準軸重ひずみ波形の説明図である。
 図5Aに示すように、1tの1軸車両1Vが主軸を通過したときに計測されるひずみを考えると、図5Bに示すようなひずみ波形となる。図5Cに示すようにWtの1軸車両WVが主軸を通過した場合、図5Dに示すように、計測されるひずみは1tの車両が主軸を通過したときに計測されるひずみのW倍となる。
 つまり、例えば、4tの車両が通過したときに軸重算出用ひずみ計10が出力するひずみ値を取得した場合、このひずみ値の4分の1を算出することで、基準軸重ひずみ波形を求めることができる。
 図6A~6Eは、車速と車軸位置とを用いて車重を算出する方法を示す概略図である。
 車重算出処理部116は、ステップS15で算出した測定対象車両の速度を用いて、図6Aに示すステップS18で読み出した基準軸重ひずみ波形を、図6Bに示すように、ひずみ値と走行時間との関係に変換する(ステップS19)。つまり、基準軸重ひずみ波形のひずみ値に関連付けられた距離を速度で除算することで、走行時間に変換する。
 次に、車重算出処理部116は、図6Dに示すように、第1のひずみ値データベース104から、高相関時時刻推定部109または低相関時時刻推定部114が特定した主桁進入時刻から主桁退出時刻までの時刻に関連付けられたひずみ値を抽出する(ステップS20)。次に、軸重算出処理部は、ステップS17で算出した車軸間隔に従って、図6Cに示すように、ステップS19で変換した基準軸重ひずみ波形を時間軸上に配置する。そして、図6Eに示すように、生成した波形とステップS20で第1のひずみ値データベース104から抽出したひずみ値との誤差が最小となるように、最小二乗法により各軸の軸重を算出し、各軸の重量を求める(ステップS21)。次に、軸重算出処理部は、図6Eの実線で示すように、求めた各軸の重量を合計することにより、車重を算出する(ステップS22)。
 このように、本実施形態によれば、進入側車軸検知用ひずみ計20と退出側車軸検知用ひずみ計30の出力波形間の相関が低い場合、まず、進入側車軸検知用ひずみ計20が出力するひずみ値から、測定対象車両が進入側車軸検知用ひずみ計20の直上を通過した時刻を特定する。この時刻に軸重算出用ひずみ計10が出力するひずみ値を用いて、測定対象車両が主桁に進入した時刻及び退出した時刻を推定する。これにより、進入側車軸検知用ひずみ計20と退出側車軸検知用ひずみ計30の出力波形間の相関を用いずに、橋梁の部材によって車両の通過によるひずみ応答が異なるという自然法則を用いて、測定対象車両の速度を算出することができる。そのため、主桁の通過中に測定対象車両が加減速した場合にも、この測定対象車両の主桁3への進入時刻および主桁3からの退出時刻を推定することができる。
 以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
 例えば、本実施形態では、進入側車軸検知用ひずみ計20と退出側車軸検知用ひずみ計30の出力波形間の相関が低い場合にのみ、上記ステップS8~ステップS14の処理による主桁進入時刻及び主桁退出時刻の推定を行ったが、これに限らない。例えば、進入側車軸検知用ひずみ計20と退出側車軸検知用ひずみ計30の出力波形間の相関度に関わらず、ステップS8~ステップS14の処理によって主桁進入時刻及び主桁退出時刻の推定を行っても良い。
 また、本実施形態では、測定対象車両が進入側車軸検知用ひずみ計20の直上を通過した時刻における軸重算出用ひずみ計10が出力するひずみ値を用いて、主桁進入時刻及び主桁退出時刻を推定する場合を説明したが、これに限らない。例えば、測定対象車両が退出側車軸検知用ひずみ計30の直上を通過した時刻における軸重算出用ひずみ計10が出力するひずみ値を用いて、主桁進入時刻及び主桁退出時刻を推定しても良い。
 また、本実施形態では、進入側車軸検知用ひずみ計20及び退出側車軸検知用ひずみ計30が、主軸の垂直補剛材に設置されている場合を説明したが、これに限らない。例えば、進入側車軸検知用ひずみ計20及び退出側車軸検知用ひずみ計30が、橋梁の床板や、端対傾構など、測定対象車両の車軸通過に対して独立してひずみが発生する他の部分に設置されていても良い。
 また、本実施形態では、軸重算出用ひずみ計10が、主軸の底面に設置されている場合を説明したが、これに限らない。すなわち、軸重算出用ひずみ計10は、測定対象車両が主桁上を通過する間、継続的にひずみが発生する他の部材に設置されていても良い。
 また、本実施形態では、軸重算出用ひずみ計10が、主桁の車両進行方向の中央部分に設置されている場合を説明したが、これに限らない。軸重算出用ひずみ計10は、中央部分からずれた位置に設置されていても良い。但し、この場合、ひずみ率記憶部115は、端部ひずみ率に代えて、車両が主桁の進入側の端に位置する場合に軸重算出用ひずみ計10が出力するひずみ値と、車両が進入側車軸検知用ひずみ計20の直上に位置する場合に軸重算出用ひずみ計10が出力するひずみ値との比率を示す一端側ひずみ率と、車両が主桁の退出側の端に位置する場合に軸重算出用ひずみ計10が出力するひずみ値と、車両が進入側車軸検知用ひずみ計20の直上に位置する場合に軸重算出用ひずみ計10が出力するひずみ値との比率を示す他端側ひずみ率とをそれぞれ記憶しておく必要がある。また、低相関時時刻推定部114は、一端側ひずみ率と他端側ひずみ率を用いて、主桁進入時刻及び主桁退出時刻を推定することとなる。
 また、本実施形態では、ある車線における車両の主桁進入時刻及び主桁退出時刻を推定する場合を説明したが、これに限らない。すなわち、複数車線に亘って車両が存在する場合や、1車線に複数の車両が存在する場合にも、主桁進入時刻及び主桁退出時刻を推定することができる。この場合は、図1Aに示すように、軸重算出用ひずみ計10、進入側車軸検知用ひずみ計20、退出側車軸検知用ひずみ計30の組のそれぞれからひずみ値を取得し、それぞれのひずみ値を用いて連立方程式を解くことで、上記実施形態と同様に主桁進入時刻及び主桁退出時刻を推定する。
 上述の橋梁通過車両監視システム1(通過時刻推定装置)は内部に、コンピュータシステムを有している。そして、上述した各処理部の動作は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータがこのプログラムを実行するようにしても良い。
 また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。
 なお、本実施形態では、上述したように橋梁通過車両監視システムがプログラムを実行することで上記処理を行う場合を説明したが、これに限られず、人間が軸重算出用ひずみ計10、進入側車軸検知用ひずみ計20、退出側車軸検知用ひずみ計30の出力結果を用いて、手計算によって処理を行っても良い。
 本発明は、橋梁の主桁の一端から他端へ走行する車両の速度を算出する通過時刻推定装置に用いることができる。本発明によれば、主桁の通過中に測定対象車両が加減速した場合にも、測定対象車両の主桁への進入時刻・主桁からの退出時刻を推定することができる。
 1…橋梁通過車両監視システム
 10…軸重算出用ひずみ計
 20…進入側車軸検知用ひずみ計
 30…退出側車軸検知用ひずみ計
 101…第1のひずみ値取得部
 102…第2のひずみ値取得部
 103…第3のひずみ値取得部
 104…第1のひずみ値データベース
 105…第2のひずみ値データベース
 106…第3のひずみ値データベース
 107…時間差算出部
 108…相関度判定部
 109…高相関時時刻推定部
 110…通過時刻特定部
 111…ひずみ値抽出部
 112…ノイズ除去部
 113…ひずみ値特定部
 114…低相関時時刻推定部
 115…ひずみ率記憶部
 116…車重算出処理部
 117…軸重比較データ記憶部

Claims (6)

  1.  測定対象車両が橋梁の主桁の一端に進入した時刻、及び前記測定対象車両が前記主桁の他端から退出する時刻を推定する通過時刻推定装置であって、
     前記測定対象車両が前記主桁上を通過する間、継続的にひずみが発生する第1の箇所のひずみ値である第1のひずみ値を時系列に取得する第1のひずみ値取得部と、
     前記測定対象車両の車軸通過に対して独立してひずみが発生する第2の箇所のひずみ値である第2のひずみ値を時系列に取得する第2のひずみ値取得部と、
     車両が前記主桁の一端に位置する場合における前記第1のひずみ値と前記車両が前記第2の箇所の直上に位置する場合における前記第1のひずみ値との比率を示す一端側ひずみ率と、前記車両が前記主桁の他端に位置する場合における前記第1のひずみ値と前記車両が前記第2の箇所の直上に位置する場合における前記第1のひずみ値との比率を示す他端側ひずみ率とを記憶するひずみ率記憶部と、
     前記第2のひずみ値が所定の閾値を超えた時刻を特定する通過時刻特定部と、
     前記特定した時刻における前記第1のひずみ値を特定するひずみ値特定部と、
     前記第1のひずみ値が、前記ひずみ率記憶部が記憶する一端側ひずみ率を前記特定した第1のひずみ値に乗算して得られるひずみ値以下となった時刻のうち、前記通過時刻特定部が特定した時刻より前の直近の時刻を、前記測定対象車両が前記主桁の一端に進入した時刻を示す主桁進入時刻として推定する進入時刻推定部と、
     前記第1のひずみ値が、前記ひずみ率記憶部が記憶する他端側ひずみ率を前記特定した第1のひずみ値に乗算して得られるひずみ値以下となった時刻のうち、前記通過時刻特定部が特定した時刻より後の直近の時刻を、前記測定対象車両が前記主桁の他端から退出した時刻を示す主桁退出時刻として推定する退出時刻推定部と、
     を備える通過時刻推定装置。
  2.  前記測定対象車両の車軸通過に対して独立してひずみが発生する第3の箇所のひずみ値である第3のひずみ値を時系列に取得する第3のひずみ値取得部と、
     前記第2のひずみ値取得部が取得した第2のひずみ値のうち、所定の閾値以上の極大値を示すピーク値を特定し、前記ピーク値の前後所定の範囲の第2のひずみ値を抽出するピーク値抽出部と、
     前記ピーク値抽出部が抽出した第2のひずみ値と前記第3のひずみ値との間の相関度が最大となる時間差を算出する時間差算出部と、
     前記時間差算出部が算出した時間差における相関度が所定の閾値以上であるか否かを判定する相関度判定部と、
     前記相関度判定部が、前記相関度が所定の閾値以上であると判定した場合に、前記時間差算出部が算出した時間差で、前記第2の箇所と前記第3の箇所との間の距離を除算することで前記測定対象車両の速度を算出する車速算出部と、
     前記車速算出部が算出した速度と、前記主桁の一端と前記第2の箇所との距離とを乗算して得られる時間を、前記ピーク値抽出部が特定したピーク値を取得した時刻から減算して得られる時刻を、前記測定対象車両が前記主桁の一端に進入した時刻を示す主桁進入時刻として推定する高相関時進入時刻推定部と、
     前記車速算出部が算出した速度と、前記主桁の他端と前記第2の箇所との距離とを乗算して得られる時間と、前記時間差算出部が算出した時間差とを、前記ピーク値抽出部が特定したピーク値を取得した時刻に加算して得られる時刻を、前記測定対象車両が前記主桁の他端から退出した時刻を示す主桁退出時刻として推定する高相関時退出時刻推定部と、
     を備え、
     前記第2の箇所は、前記第1の箇所より前記主桁の一端側であり、
     前記第3の箇所は、前記第1の箇所より前記主桁の他端側であり、
     前記進入時刻推定部は、前記相関度判定部が、前記相関度が所定の閾値未満であると判定した場合に、前記主桁進入時刻を推定し、
     前記退出時刻推定部は、前記相関度判定部が、前記相関度が所定の閾値未満であると判定した場合に、前記主桁退出時刻を推定する
     請求項1に記載の通過時刻推定装置。
  3.  前記第1の箇所は、前記主桁の車両進行方向の中央部分であり、
     前記一端側ひずみ率と前記他端側ひずみ率は同一の値を示し、端部ひずみ率として前記ひずみ率記憶部に記憶される
     請求項1または請求項2に記載の通過時刻推定装置。
  4.  前記通過時刻特定部が特定した時刻より前記主桁の一端側から前記第2の箇所までの距離に所定の速度を乗じて得られる時間だけ前の時刻から、前記通過時刻特定部が特定した時刻より前記主桁の他端側から前記第2の箇所までの距離に所定の速度を乗じて得られる時間だけ後の時刻までの時間の間に前記第1のひずみ値取得部が取得したひずみ値を少なくとも抽出し、抽出したひずみ値を前記第1のひずみ値取得部が取得した時刻に関連付けて出力するひずみ値抽出部と、
     前記ひずみ値抽出部が出力した複数のひずみ値に対してノイズ除去処理を行うノイズ除去部と
     を備え、
     前記進入時刻推定部は、前記ノイズ除去部によってノイズ除去処理がなされた複数のひずみ値のうち、前記ひずみ値特定部が特定したひずみ値に前記ひずみ率記憶部が記憶する一端側ひずみ率を乗算して得られるひずみ値以下のひずみ値を特定し、前記特定したひずみ値に関連付けられた時刻のうち、前記通過時刻特定部が特定した時刻より前の直近の時刻を、前記測定対象車両が前記主桁の一端に進入した時刻を示す主桁進入時刻として特定し、
     前記退出時刻推定部は、前記ノイズ除去部によってノイズ除去処理がなされた複数のひずみ値のうち、前記ひずみ値特定部が特定したひずみ値に前記ひずみ率記憶部が記憶する他端側ひずみ率を乗算して得られるひずみ値以下のひずみ値を特定し、前記特定したひずみ値に関連付けられた時刻のうち、前記通過時刻特定部が特定した時刻より後の直近の時刻を、前記測定対象車両が前記主桁の一端に進入した時刻を示す主桁進入時刻として特定する
     請求項1から請求項3の何れか1項に記載の通過時刻推定装置。
  5.  測定対象車両が橋梁の主桁の一端に進入した時刻、及び前記測定対象車両が前記主桁の他端から退出する時刻を推定する通過時刻推定方法であって、
     前記測定対象車両が前記主桁上を通過する間、継続的にひずみが発生する第1の部材のひずみ値である第1のひずみ値を時系列に取得する第1のステップと、
     前記測定対象車両の車軸通過に対して独立してひずみが発生する第2の部材のひずみ値である第2のひずみ値を時系列に取得する第2のステップと、
     前記第2のひずみ値が所定の閾値を超えた時刻を特定する第3のステップと、
     前記特定した時刻における前記第1のひずみ値を特定する第4のステップと、
     前記第1のひずみ値が、車両が前記主桁の一端に位置する場合における前記第1のひずみ値と前記車両が前記第2の部材の直上に位置する場合における前記第1のひずみ値との比率を示す一端側ひずみ率を前記特定した第1のひずみ値に乗算して得られるひずみ値以下となった時刻のうち、前記第3のステップで特定した時刻より前の直近の時刻を、前記測定対象車両が前記主桁の一端に進入した時刻を示す主桁進入時刻として推定する第5のステップと、
     前記第1のひずみ値が、車両が前記主桁の他端に位置する場合における前記第1のひずみ値と前記車両が前記第2の部材の直上に位置する場合における前記第1のひずみ値との比率を示す他端側ひずみ率を前記特定した第1のひずみ値に乗算して得られるひずみ値以下となった時刻のうち、前記第3のステップで特定した時刻より後の直近の時刻を、前記測定対象車両が前記主桁の他端から退出した時刻を示す主桁退出時刻として推定する第6のステップと
     を備える車速算出方法。
  6.  主桁の一端から他端へ走行する測定対象車両の速度を算出する通過時刻推定装置を、
     前記測定対象車両が前記主桁上を通過する間、継続的にひずみが発生する第1の箇所のひずみ値である第1のひずみ値を時系列に取得する第1のひずみ値取得部、
     前記測定対象車両の車軸通過に対して独立してひずみが発生する第2の箇所のひずみ値である第2のひずみ値を時系列に取得する第2のひずみ値取得部、
     前記第2のひずみ値が所定の閾値を超えた時刻を特定する通過時刻特定部、
     前記特定した時刻における前記第1のひずみ値を特定するひずみ値特定部、
     前記第1のひずみ値が、車両が前記主桁の一端に位置する場合における前記第1のひずみ値と前記車両が前記第2の部材の直上に位置する場合における前記第1のひずみ値との比率を示す一端側ひずみ率を前記特定した第1のひずみ値に乗算して得られるひずみ値以下となった時刻のうち、前記通過時刻特定部が特定した時刻より前の直近の時刻を、前記測定対象車両が前記主桁の一端に進入した時刻を示す主桁進入時刻として推定する進入時刻推定部、および
     前記第1のひずみ値が、車両が前記主桁の他端に位置する場合における前記第1のひずみ値と前記車両が前記第2の部材の直上に位置する場合における前記第1のひずみ値との比率を示す他端側ひずみ率を前記特定した第1のひずみ値に乗算して得られるひずみ値以下となった時刻のうち、前記通過時刻特定部が特定した時刻より後の直近の時刻を、前記測定対象車両が前記主桁の他端から退出した時刻を示す主桁退出時刻として推定する退出時刻推定部
     として機能させるためのプログラム。
PCT/JP2011/069149 2010-08-25 2011-08-25 通過時刻推定装置、車速算出方法、及びプログラム WO2012026517A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010188202A JP5506599B2 (ja) 2010-08-25 2010-08-25 通過時刻推定装置、車速算出方法、及びプログラム
JP2010-188202 2010-08-25

Publications (1)

Publication Number Publication Date
WO2012026517A1 true WO2012026517A1 (ja) 2012-03-01

Family

ID=45723508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069149 WO2012026517A1 (ja) 2010-08-25 2011-08-25 通過時刻推定装置、車速算出方法、及びプログラム

Country Status (2)

Country Link
JP (1) JP5506599B2 (ja)
WO (1) WO2012026517A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT513258B1 (de) * 2012-12-13 2014-03-15 Univ Wien Verfahren zum Vermessen eines fahrenden Fahrzeugs
JP2017027468A (ja) * 2015-07-24 2017-02-02 株式会社Ttes データ生成装置、データ生成方法、プログラム及び記録媒体

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6086486B2 (ja) * 2013-05-24 2017-03-01 国立大学法人福井大学 通過車両重量解析処理装置及び方法
WO2016022483A1 (en) * 2014-08-04 2016-02-11 Gentex Corporation Driver assist system utilizing an inertial sensor
JP7396139B2 (ja) * 2020-03-18 2023-12-12 セイコーエプソン株式会社 計測方法、計測装置、計測システム及び計測プログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090233A (ja) * 2000-09-13 2002-03-27 Iwateken Doboku Gijutsu Center 橋梁の歪み分布計測方法
JP2005030786A (ja) * 2003-07-07 2005-02-03 Mitsubishi Heavy Ind Ltd 橋梁通過車両の車軸荷重及び重量計測方法並びにその装置
JP2005182289A (ja) * 2003-12-17 2005-07-07 Nec Corp 情報収集方法/システム
JP2006084404A (ja) * 2004-09-17 2006-03-30 Tokyo Institute Of Technology 構造物の特性変化検出システム、方法、プログラム及び記録媒体
JP2009237805A (ja) * 2008-03-26 2009-10-15 Ntt Data Corp 橋梁通過車両監視システム、橋梁通過車両監視方法、およびコンピュータプログラム
JP2010107246A (ja) * 2008-10-28 2010-05-13 Hanshin Kosoku Doro Kanri Gijutsu Center 橋梁の活荷重測定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090233A (ja) * 2000-09-13 2002-03-27 Iwateken Doboku Gijutsu Center 橋梁の歪み分布計測方法
JP2005030786A (ja) * 2003-07-07 2005-02-03 Mitsubishi Heavy Ind Ltd 橋梁通過車両の車軸荷重及び重量計測方法並びにその装置
JP2005182289A (ja) * 2003-12-17 2005-07-07 Nec Corp 情報収集方法/システム
JP2006084404A (ja) * 2004-09-17 2006-03-30 Tokyo Institute Of Technology 構造物の特性変化検出システム、方法、プログラム及び記録媒体
JP2009237805A (ja) * 2008-03-26 2009-10-15 Ntt Data Corp 橋梁通過車両監視システム、橋梁通過車両監視方法、およびコンピュータプログラム
JP2010107246A (ja) * 2008-10-28 2010-05-13 Hanshin Kosoku Doro Kanri Gijutsu Center 橋梁の活荷重測定方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT513258B1 (de) * 2012-12-13 2014-03-15 Univ Wien Verfahren zum Vermessen eines fahrenden Fahrzeugs
AT513258A4 (de) * 2012-12-13 2014-03-15 Univ Wien Verfahren zum Vermessen eines fahrenden Fahrzeugs
JP2017027468A (ja) * 2015-07-24 2017-02-02 株式会社Ttes データ生成装置、データ生成方法、プログラム及び記録媒体

Also Published As

Publication number Publication date
JP5506599B2 (ja) 2014-05-28
JP2012048365A (ja) 2012-03-08

Similar Documents

Publication Publication Date Title
JP6555662B2 (ja) 計測装置、計測方法、プログラム、および計測システム
JP6775213B2 (ja) 計測装置、計測システム、プログラム及び計測方法
EP3098797B1 (en) Anomalous travel location detection device and anomalous travel location detection method
WO2012026517A1 (ja) 通過時刻推定装置、車速算出方法、及びプログラム
JP5164100B2 (ja) 橋梁通過車両監視システム、橋梁通過車両監視方法、およびコンピュータプログラム
AU2017420954B2 (en) Traveling-position identifying system, traveling-position identifying apparatus, and traveling-position identifying method for railroad car
JP6343987B2 (ja) 路面劣化検出方法、情報処理装置及びプログラム
JP7393027B2 (ja) 構造物の変位量計測装置
JP6874858B2 (ja) 損傷診断装置、損傷診断方法、及び、損傷診断プログラム
JP5861318B2 (ja) トロリ線データ比較装置
JP6666207B2 (ja) 構造体変状検知システム、構造体変状検知方法、及びプログラム
EP2325656B1 (en) Device and method for measuring vertical acceleration of pantograph by image processing
CN111521247A (zh) 测量装置、测量系统及测量方法
RU2766480C2 (ru) Система и способ определения угловой скорости оси железнодорожного транспортного средства
JP2016085105A (ja) 移動体の速度推定装置、方法、及びプログラム
CN203142524U (zh) 路面障碍物识别系统
JP6491589B2 (ja) 通行量管理システム
JP5903985B2 (ja) 渋滞誘因運転行動評価方法
US20230003608A1 (en) Derivation Method, Derivation Device, Derivation System, And Program
JP6365633B2 (ja) 車長推定装置、交通管制システム、車長推定方法、および車長推定プログラム
JP2015075999A (ja) 安全運転度判定装置
JP2010224895A (ja) 交通流計測装置および交通流計測方法
JP2023037329A (ja) 導出方法、導出装置、導出システム、プログラム
Nagayama et al. Bridge Weigh-In-Motion using wireless accelerometers on a continuous girder bridge
CN117465454A (zh) 一种车辆行驶道线的预估方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11819980

Country of ref document: EP

Kind code of ref document: A1