WO2012026096A1 - 光学情報再生装置、光学情報再生方法及び情報記録媒体 - Google Patents

光学情報再生装置、光学情報再生方法及び情報記録媒体 Download PDF

Info

Publication number
WO2012026096A1
WO2012026096A1 PCT/JP2011/004615 JP2011004615W WO2012026096A1 WO 2012026096 A1 WO2012026096 A1 WO 2012026096A1 JP 2011004615 W JP2011004615 W JP 2011004615W WO 2012026096 A1 WO2012026096 A1 WO 2012026096A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording
light
plasmon resonance
recording area
optical information
Prior art date
Application number
PCT/JP2011/004615
Other languages
English (en)
French (fr)
Inventor
照弘 塩野
小林 良治
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012530525A priority Critical patent/JP5793717B2/ja
Priority to CN201180040641.4A priority patent/CN103081011B/zh
Priority to US13/816,046 priority patent/US8837265B2/en
Publication of WO2012026096A1 publication Critical patent/WO2012026096A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1387Means for guiding the beam from the source to the record carrier or from the record carrier to the detector using the near-field effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/005Reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2531Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising glass
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2532Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising metals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • G11B7/2538Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polycycloolefins [PCO]

Definitions

  • the present invention relates to an optical information reproducing apparatus and optical information reproducing method for optically reproducing information recorded on an information recording medium, and an information recording medium including at least a substrate and a recording layer.
  • an optical memory system using an optical disc such as a CD (compact disc), DVD, BD (Blu-Ray disc) or an optical card as an information recording medium has been put into practical use.
  • an optical disc such as a CD (compact disc), DVD, BD (Blu-Ray disc) or an optical card as an information recording medium has been put into practical use.
  • FIG. 10 shows a simplified reproduction principle of a conventional optical memory system.
  • FIG. 10 is an explanatory diagram showing a part of the configuration of a conventional optical information recording / reproducing apparatus and a state of reproducing information from an information recording medium.
  • reproducing light 107 from a light source (not shown) is condensed by an objective lens 110, and the reproducing light 107 is recorded on the recording film 102 formed on the substrate 101 of the information recording medium 103.
  • a recording mark 104 which is a recording area in which information is recorded is irradiated as irradiation light 105.
  • Information is reproduced from the information recording medium 103 when the reflected lights 106 and 108 from the recording mark 104 are detected.
  • the reflectance is low, and if the recording mark 104 is in an unrecorded state, the reflectance is high, so that the optical information recording / reproducing apparatus detects the amount of reflected light 106, 108. By doing so, it can be determined whether the recording mark 104 is in a recorded state or an unrecorded state, and the optical information of the information recording medium 103 can be reproduced.
  • the size of the recordable mark (recordable mark length) is limited by the NA (numerical aperture) of the objective lens and the optical limit size called the diffraction limit determined by the wavelength of the reproduced light.
  • NA numerical aperture
  • Patent Document 1 describes an optical recording / reproducing apparatus using a near-field optical probe made of a metal microstructure.
  • recording is performed by forming a recording mark by changing the recording layer of a phase change recording medium from a crystal to an amorphous state using near-field light generated by a near-field optical probe. Is called. Further, near-field light is irradiated to the phase change recording medium on which the recording mark is formed, and reproduction is performed by detecting a change in scattered light intensity returning from the phase change recording medium.
  • Near-field light is localized light (light that does not propagate) that decays rapidly with distance from the source, and thus cannot be extracted generally. However, near-field light can be obtained by bringing an object such as a recording mark close to it. A small part of can be extracted as scattered light.
  • the optical recording / reproducing apparatus of Patent Document 1 can form a recording mark having a size of near-field light (for example, about several tens of nanometers) to perform high-density recording.
  • a size of near-field light for example, about several tens of nanometers
  • the size d of the recording mark is smaller than the diffraction limit.
  • the near-field light is reduced to the size of the recording mark. Even if the light can be condensed to the size of d and irradiated to the recording mark, the amount of returned scattered light rapidly decreases as the size d decreases.
  • the amount of scattered light that returns is, for example, about 0.001% with respect to the amount of irradiated near-field light, and it returns to the amount of reproduction light.
  • the present inventors have estimated by optical calculation that the amount of the scattered light is at most about 1% of the above value, that is, at most about 0.00001%.
  • the intensity change of the scattered light detected corresponding to the presence or absence of the recording mark is, for example, less than 0.00001% with respect to the reproduction light amount, and it is difficult to reproduce good information because it is too small. was there.
  • the present invention has been made to solve the above-described problems, and optical information reproduction that can reproduce information satisfactorily even when the size of a recording area in which information is recorded is smaller than the diffraction limit of light.
  • An object is to provide an apparatus, an optical information reproducing method, and an information recording medium.
  • An optical information reproducing apparatus is an optical information reproducing apparatus for reproducing information recorded on an information recording medium including at least a substrate and a recording layer, the light source emitting reproduction light, and the recording layer And a plasmon resonance element that generates plasmon resonance between the recording region and the resonance part, and the plasmon irradiated with the reproduction light.
  • a reproducing unit that reproduces information recorded in the area.
  • the reproduction light emitted from the light source is applied to the plasmon resonance element, the reflected light or the transmitted light from the plasmon resonance element is detected, and the recording area is in a recorded state and an unrecorded state based on the detection signal.
  • the information recorded in the recording area is reproduced.
  • the amount of reflected or transmitted light from the plasmon resonance element is changed by changing the degree of plasmon resonance between the recording area and the resonance part of the plasmon resonance element according to the state of the recording area.
  • the plasmon resonance element can be made larger than the recording area. Further, since the reflected light or transmitted light from the plasmon resonance element is detected by directly irradiating the plasmon resonance element with the reproduction light instead of the near-field light, the reflected light amount, the transmitted light amount, the change in the reflected light amount or the transmitted light amount The change in the amount of light can be made sufficiently large, and the degree of modulation of the reproduction signal can be improved.
  • FIG. 3B is a diagram illustrating a state in the vicinity of the plasmon resonance element in FIG.
  • FIG. (A) is a figure which shows an example of the information recording medium containing a cone-shaped recording area
  • (B) is the information recording medium containing the recording area which has a hemispherical round shape at the front-end
  • FIG. 7A is a cross-sectional view taken along line VIII-VIII in FIG. 7 showing a state near the plasmon resonance element when the recording area of the information recording medium is in a recording state and the degree of plasmon resonance is large in the third embodiment of the present invention.
  • FIGS. 7B and 7B show the state in the vicinity of the plasmon resonance element when the recording area of the information recording medium is in an unrecorded state and the degree of plasmon resonance is small in the third embodiment of the present invention. It is sectional drawing by a line.
  • Embodiment 1 First, an optical information reproducing apparatus, an optical information reproducing method, and an information recording medium according to Embodiment 1 of the present invention will be described in detail with reference to FIGS. 1, 2, 3A, and 3B.
  • FIG. 1 is a diagram showing a configuration of an optical information reproducing apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is an explanatory diagram showing the plasmon resonance element of the optical information reproducing apparatus according to Embodiment 1 of the present invention and how information is reproduced from the information recording medium.
  • FIG. 3A shows a state near the plasmon resonance element in FIG. 2 when the recording area of the information recording medium is in the recording state and the degree of plasmon resonance is large in the first embodiment of the present invention. It is sectional drawing by.
  • FIG. 3B shows a state near the plasmon resonance element in FIG. 2 when the recording area of the information recording medium is in an unrecorded state and the degree of plasmon resonance is small in the first embodiment of the present invention. It is sectional drawing by a line.
  • the optical information reproducing apparatus is an optical information reproducing apparatus that reproduces information recorded on an information recording medium 3 including at least a substrate 1 and a recording layer 2, and includes a light source 14 that emits reproducing light,
  • the resonance part 22 is arranged close to the recording area 4 of the recording layer 2, and the resonance part 22 generates plasmon resonance between the recording area 4 and the resonance part 22, and the reproduction light is Based on the detection signal from the photodetector 17a that detects the reflected light 6 (or transmitted light) from the irradiated plasmon resonance element 9 and the detection signal from the photodetector 17a, the recording area 4 is either in a recorded state or an unrecorded state.
  • the optical information reproducing apparatus includes a reproducing unit 24 that determines whether or not the information is recorded in the recording area 4.
  • the optical information reproducing method is an optical information reproducing method for reproducing information from an information recording medium 3 including at least a substrate 1 and a recording layer 2, and reproducing light emitted from a light source 14 is used as a recording layer.
  • 2 has a resonance part 22 arranged close to the recording area 4, and the resonance part 22 irradiates the plasmon resonance element 9 that generates plasmon resonance between the recording area 4 and the resonance part 22 (irradiation light 5).
  • the recording area 4 based on the detection signal from the photodetector 17a, the step of detecting the reflected light 6 (or transmitted light) from the plasmon resonance element 9 irradiated with the reproduction light, and the detection signal from the photodetector 17a. Determining whether it is in a recorded state or an unrecorded state, and reproducing the information recorded in the recording area 4.
  • the optical information reproducing apparatus in the first embodiment will be described in detail.
  • 1 includes a plasmon resonance element 9, an objective lens 10, a collimator lens 11, a light source 14, a beam splitter 15, a detection lens 16, photodetectors 17a and 17b, an optical element 19 for servo signal detection, and a reproduction.
  • the unit 24 and the drive unit 25 are provided.
  • the light source 14 emits reproduction light.
  • the plasmon resonance element 9 has a resonance part 22.
  • the resonance part 22 causes plasmon resonance between the recording area 4 of the recording layer 2 and the resonance part 22.
  • the resonance part 22 is arranged so as to be close to the recording area 4.
  • the photodetector 17a detects the reflected light from the plasmon resonance element 9 irradiated with the reproduction light.
  • the reproducing unit 24 determines whether the recording area 4 is in a recording state or an unrecorded state based on a detection signal from the photodetector 17a, and reproduces information recorded in the recording area 4.
  • the optical information reproducing apparatus of the first embodiment includes a semiconductor laser light source as a light source 14 for reproduction.
  • a collimator lens 11, a beam splitter 15, an objective lens 10, and a plasmon resonance element 9 are arranged in the optical path from the light source 14 to the information recording medium 3.
  • a servo signal detection optical element 19 and a detection lens 16 are arranged in the optical path of the return path from the beam splitter 15 to the photodetectors 17a and 17b.
  • the information recording medium 3 includes at least a substrate 1 and a recording layer 2.
  • the information recording medium 3 includes a plurality of recording areas 4 on which information is recorded as the recording layer 2 on the substrate 1. Is either a recorded state or an unrecorded state.
  • the resonance part 22 in the tip region of the plasmon resonance element 9 is arranged close to the recording region 4 so that the distance from the recording region 4 is, for example, within about 100 nm, preferably about 5 to 30 nm. Yes.
  • the plasmon resonance element 9 may be arranged at a position where the plasmon resonance occurs with the resonance part 22 or the plasmon resonance is enhanced when the recording region 4 is at least one of the recorded state and the unrecorded state. good.
  • the reproduction light emitted from the light source 14 is applied to the plasmon resonance element 9.
  • the laser light (reproduced light output light) 12 of the linearly polarized light in the Z-axis direction (polarization direction 8 c) emitted from the light source 14 in the Y-axis direction is substantially collimated by the collimator lens 11. 13 (polarization direction 8b), which passes through the beam splitter 15.
  • the laser light transmitted through the beam splitter 15 is irradiated to the plasmon resonance element 9 by the objective lens 10 so as to include the recording region 4 and the like in the region close to the resonance unit 22 around the vicinity of the resonance unit 22 at the tip. It is condensed as.
  • the polarization direction 8 a indicates the polarization direction on the optical axis of the irradiation light 5.
  • the plasmon resonance is further strengthened by adopting a configuration in which the reproduction light is also applied to the recording region 4 adjacent to the resonance part of the plasmon resonance element 9. This increases the difference in the amount of reflected light between the recorded state and the unrecorded state, thereby improving the detection sensitivity.
  • the reflected light 6 reflected by the plasmon resonance element 9 is folded in the reverse direction and passes through the objective lens 10.
  • the reflected light 6 that has passed through the objective lens 10 is bent in the ⁇ Z-axis direction by the beam splitter 15 and is incident on the servo signal detecting optical element 19.
  • the reflected light 6 is branched into at least two lights by the servo signal detecting optical element 19 and is branched into two kinds of convergent lights 18 a and 18 b by the detection lens 16.
  • the convergent light 18a that becomes the reproduction signal light enters the photodetector 17a.
  • the photodetector 17a detects the signal recorded in the recording area 4.
  • the reproducing unit 24 determines whether the recording area 4 is in a recording state or an unrecorded state based on a detection signal from the photodetector 17a, and reproduces information recorded in the recording area 4.
  • the convergent light 18b is incident on another photodetector 17b.
  • the photodetector 17b detects a servo signal.
  • the optical information reproducing apparatus in the present embodiment includes a drive unit 25 that moves the plasmon resonance element 9 and the objective lens 10 together.
  • the drive unit 25 performs minute position control including the interval between the plasmon resonance element 9 and the recording layer 2 by moving the plasmon resonance element 9 based on the servo signal from the photodetector 17b.
  • the objective lens 10 is a so-called off-axis condensing lens.
  • substantially parallel light 13 whose optical axis is parallel to the Y-axis direction is incident on the objective lens 10
  • outgoing light whose optical axis is YZ plane and inclined from the Y axis by the angle ⁇ in the Z-axis direction is collected.
  • contact between the objective lens 10 and the information recording medium 3 can be prevented, and the reproduction light can be easily collected from the oblique lateral direction near the resonance portion 22 of the plasmon resonance element 9. is there.
  • the plasmon resonance element 9 has a triangular prism shape with a pointed tip made of a metal such as Au.
  • the plasmon resonance element 9 is disposed so as to be inclined by an angle ⁇ 1 with respect to the ZX plane in a state in which the resonance portion 22 at the tip is brought close to the recording region 4 of the recording layer 2.
  • the plasmon resonance element 9 need only have a pointed shape so that plasmon resonance easily occurs, and does not stick to the overall shape.
  • the plasmon resonance element 9 desirably has a flat part.
  • so that the triangular flat part of the plasmon resonance element 9 is substantially perpendicular to the optical axis of the irradiation light 5. and ⁇ 1.
  • the irradiation light 5 to the flat part of the plasmon resonance element 9 can be reflected as the reflected light 6 in the opposite direction at substantially the same angle, which is preferable because the light use efficiency is increased.
  • the area of the flat portion is about 100 to several thousand nm 2 or several thousand nm 2. It is desirable to have a larger flat part.
  • the amount of reflected light from the plasmon resonance element 9 varies depending on the degree of plasmon resonance between the resonance portion 22 of the plasmon resonance element 9 and the recording area 4 in the recording state or the recording area 4 in the unrecorded state. For example, the greater the degree of plasmon resonance between the resonance portion 22 of the plasmon resonance element 9 and the recording area 4a in the recording state or the recording area 4b in the unrecorded state, the change in the amount of reflected light from the plasmon resonance element 9 changes. Becomes larger.
  • FIG. 3A and 3B are examples in which the degree of plasmon resonance is greater in the recording area 4a in the recorded state than in the recording area 4b in the unrecorded state.
  • FIG. 3A shows a case where the resonance portion 22 of the plasmon resonance element 9 exists on the recording area 4a in the recording state.
  • near-field light 7a is generated from the resonance portion 22 to the recording region 4a, and the degree of plasmon resonance is increased.
  • the amount of reflected light 6a changes (decreases in FIG. 3A).
  • FIG. 3B shows a case where the resonance portion 22 of the plasmon resonance element 9 exists on the recording area 4b in an unrecorded state.
  • the near-field light 7b is generated only in the vicinity of the resonance part 22, and the degree of plasmon resonance is small. As a result, the amount of reflected light 6b has hardly changed.
  • the plasmon resonance between the plasmon resonance element 9 and the recording region 4 is enhanced, the dielectric loss (absorption) is increased in the plasmon resonance element 9, and as a result, the amount of reflected light from the plasmon resonance element 9 changes.
  • the amount of reflected light may be reduced or increased.
  • the polarization state such as the polarization angle of the reflected light or transmitted light from the plasmon resonance element 9 may change depending on the degree of plasmon resonance.
  • an optical element such as an analyzer
  • it can be changed to a change in the amount of reflected light or transmitted light. Therefore, by detecting light emitted from the optical element such as an analyzer with a photodetector, Information can be reproduced.
  • the degree of plasmon resonance can be changed depending on whether the recording area 4 is in a recording state or an unrecorded state. For this reason, the reflected light 6 is detected by the photodetector 17a, and based on the detection signal from the photodetector 17a, it is determined whether the recording area 4 is in a recording state or an unrecorded state, so that the recording area 4 can be reproduced. For example, “1” (or “0”) is associated with the recorded state, and “0” (or “1”) is associated with the unrecorded state. The recorded information is reproduced by combination with 0 ′′.
  • the polarization direction of the irradiation light 5 is important.
  • the light source 14 is on the recording layer 2 on the optical axis of the irradiation light 5 irradiated to the plasmon resonance element 9.
  • the amplitude of the polarization component of the reproduction light polarized in the direction perpendicular to the XY plane (XY plane) (Z-axis direction) is larger than the amplitude of the polarization component of the reproduction light polarized in the other polarization direction (Y-axis direction) It is preferable that they are arranged so as to have large characteristics.
  • the angle ⁇ between the optical axis of the laser light incident on the objective lens 10 and the optical axis of the laser light incident on the plasmon resonance element 9 satisfies 0 ° ⁇ ⁇ ⁇ 45 ° and is linearly polarized in the Z-axis direction.
  • the light source 14 is arranged so as to emit the reproduction light having ⁇ in the Y-axis direction (FIG. 1).
  • the angle ⁇ is in the range of 10 ° to 30 ° so that the reproduction light has a somewhat oblique component ( ⁇ > 0 °).
  • the irradiation light 5 can be irradiated obliquely so as to include the recording area 4 and the like in the area close to the resonance portion 22, which is preferable for enhancing plasmon resonance.
  • a polarization control optical element such as a wave plate that converts the polarization state of the emitted light 12 or 13 emitted from the light source 14 may be disposed.
  • the polarization control optical element polarizes the amplitude of the polarization component of the reproduction light polarized in the direction perpendicular to the arrangement surface (XY plane) of the recording layer 2 (XY plane) in the other polarization direction (Y axis direction).
  • the amplitude is larger than the amplitude of the polarization component of the reproduction light.
  • a wave plate such as a half-wave plate may be disposed in the optical path between the light source 14 and the objective lens 10.
  • a part or all of the recording area 4 is made of a recording material.
  • the recording material in the recording region 4 has metallic properties, and specifically, it is desirable that the sign of the real part of the dielectric constant of the recording material is negative.
  • the real part of the relative permittivity of the recording material is ⁇ 5 or less, the degree of plasmon resonance increases. Therefore, the real part of the relative dielectric constant of the recording material is preferably ⁇ 5 or less.
  • Cu has a wavelength of 0.54 ⁇ m or more
  • Ag has a wavelength of 0.44 ⁇ m or more.
  • the wavelength is 0.506 ⁇ m or more
  • the real part of the relative permittivity is ⁇ 5 or less
  • the degree of plasmon resonance is strong in the above range
  • other recording materials have values of the real part of the relative permittivity. Can be used to determine a measure of the degree of resonance.
  • the reflectance of the recording material exhibiting the metallic property This change is larger than the change in reflectance of the recording material exhibiting non-metallic properties. That is, of the real part of the dielectric constant of the recording material in the recording state and the real part of the dielectric constant of the recording material in the unrecorded state, the change in the reflected light amount of the recording material with the smaller real part of the dielectric constant is The change in the amount of reflected light of the recording material having the larger real part of the dielectric constant becomes larger. As a result, the degree of modulation of reproduction increases and good reproduction can be expected.
  • a part or all of the recording area 4 of the recording layer 2 is made of a recording material, and the code of the real part of the dielectric constant of the recording material in the recording state and the recording in the unrecorded state with respect to the wavelength of the reproduction light
  • the sign of the real part of the dielectric constant of the material may be different from each other.
  • one of the real part of the relative dielectric constant of the recording material in the recording state and the real part of the relative dielectric constant of the recording material in the unrecorded state is ⁇ 5 or less with respect to the wavelength of the reproduction light.
  • the other should be larger than ⁇ 5. In this case, since the degree of plasmon resonance of one of the recording material in the recorded state and the recording material in the unrecorded state is increased, there is an effect that the modulation degree of reproduction is further improved.
  • a phase change recording material As a recording material, a phase change recording material, an inorganic material such as bismuth oxide or titanium oxide, a photochromic material such as diarylethene, or an organic dye is known. Regardless of the recording material, the degree of modulation of reproduction can be increased if the above conditions are satisfied at the wavelength of the reproduction light.
  • a main component of the recording material for example, a GeTe—Sb 2 Te 3 chalcogenide system such as Ge 2 Sb 2 Te 5 containing GeTe and Sb 2 Te 3 in a ratio of 2: 1.
  • a phase change recording material is used, and the recording state corresponds to crystal and the unrecorded state corresponds to amorphous. However, the recorded state may correspond to amorphous and the unrecorded state may correspond to crystal.
  • the main component refers to the component of the material having the largest volume ratio that constitutes the recording area 4, and if the volume ratio is 50% or more, the degree of modulation of reproduction is preferably increased.
  • a part or all of the recording area 4 is made of a recording material
  • the main component of the recording material is a phase change recording material
  • the recorded state and the unrecorded state correspond to either one of amorphous and crystalline, respectively.
  • the wavelength range varies depending on the composition, but has a characteristic of exhibiting metallic properties in a certain wavelength region.
  • the reproduction light wavelength ⁇ suitable for the semiconductor laser of the light source 14 is, for example, 0.35 ⁇ m ⁇ ⁇ ⁇ 0. It is preferable to satisfy 45 ⁇ m.
  • the real part of the relative dielectric constant of the recording material which is a crystal is ⁇ 8.7, and the real number of the relative dielectric constant of the recording material which is amorphous. Part is 0.57.
  • the real part of the relative dielectric constant of the crystalline recording material is preferably ⁇ 5 or less, and the real part of the relative dielectric constant of the amorphous recording material is preferably larger than ⁇ 5.
  • the wavelength ⁇ of the red reproduction light that satisfies 0.6 ⁇ m ⁇ ⁇ ⁇ 0.7 ⁇ m, which is suitable for the semiconductor laser of the light source 14, is 0.65 ⁇ m, for example, the ratio of the recording material that is a crystal
  • the real part of the dielectric constant is ⁇ 3.3, and the real part of the relative dielectric constant of the recording material that is amorphous is 12.
  • the wavelength ⁇ of infrared reproduction light that satisfies 0.73 ⁇ m ⁇ ⁇ ⁇ 0.83 ⁇ m, which is suitable for the semiconductor laser of the light source 14, is 0.78 ⁇ m, for example, the relative permittivity of the recording material that is a crystal The real part is 5.9, and the real part of the relative dielectric constant of the recording material which is amorphous is 17.
  • the recording material is Ge 2 Sb 2 Te 5
  • the sign of the real part of the dielectric constant is different between crystal and amorphous when the wavelength is from red light to blue light (0.35 ⁇ m ⁇ ⁇ ⁇ 0.7 ⁇ m). Therefore, it is preferable.
  • the real part of the relative permittivity of the recording material that is crystalline is ⁇ 5 or less
  • the real part of the relative permittivity of the recording material that is amorphous Is more preferable because it is larger than ⁇ 5.
  • Recording materials formed with Ge 22 Sb 2 Te 25 in which the component ratio of GeTe and Sb 2 Te 3 is changed to 22: 1 or other component ratios show the same tendency, and reproduction at the wavelength of blue light is possible. preferable.
  • the real part of the relative permittivity of the recording material which is a crystal is ⁇ 9.3 with respect to the wavelength of blue light
  • the real part of the relative dielectric constant of the recording material that is amorphous is 3.9
  • the real part of the relative dielectric constant of the recording material that is crystalline is ⁇ 2.9 for the wavelength of red light
  • the recording material is amorphous.
  • the real part of the relative permittivity of the recording material is 14, the real part of the relative permittivity of the recording material that is crystalline is 15 with respect to the wavelength of infrared light, and the real part of the relative permittivity of the recording material that is amorphous is 15 It becomes.
  • Ge 31 Bi 2 Te 34 is also preferable for wavelengths from red light to blue light because the sign of the real part of the dielectric constant differs between crystal and amorphous.
  • the real part of the relative dielectric constant of the recording material that is a crystal is ⁇ 5 or less, and the real part of the relative dielectric constant of the recording material that is amorphous is ⁇ 5. Since it is larger, it can be said that it is more preferable.
  • Other GeTe—Bi 2 Te 3 type recording materials with different component ratios show similar effects.
  • phase change materials such as Te 60 Ge 4 Sn 11 Au 25 , Ag 4 In 4 Sb 76 Te 16 , GeTe, (Ge—Sn) Te, (Ge—Sn) Te—Sb 2 Te 3 , ( Ge—Sn) Te—Bi 2 Te 3 , GeTe— (Sb—Bi) 2 Te 3 , (Ge—Sn) Te— (Sb—Bi) 2 Te 3 , GeTe— (Bi—In) 2 Te 3 , ( Ge—Sn) Te— (Bi—In) 2 Te 3 , Sb—Ga, (Sb—Te) —Ga, Sb—Ge, (Sb—Te) —Ge, Sb—In, (Sb—Te) —In , Sb—Mn—Ge, Sb—Sn—Ge, Sb—Mn—Sn—Ge, and (Sb—Te) —Ag—In are also crystalline in a certain wavelength region when crystal
  • Au is exemplified as the material of the plasmon resonance element 9, it is not limited to this, and the recording material and other materials capable of enhancing plasmon resonance or plasmon resonance can be selected in accordance with the wavelength of the reproduction light to be used. Good.
  • the inventors of the present invention have the plasmon resonance element 9 out of Au, Cu, Ti, Ni, and Ag. It has been found that it is preferable to use at least one as a main component in order to improve the modulation degree of reproduction. Since the above material has a small degree of plasmon resonance only by irradiating the reproduction light having a blue wavelength, the generation of the near-field light 7 is small.
  • the plasmon resonance element 9 and the recording area 4 interact with each other. As a result, it has been found that the degree of plasmon resonance is greatly increased, so that the modulation degree of reproduction can be improved.
  • the substrate 1 of the information recording medium 3 it is preferable that the flatness of the surface on which the recording layer 2 is formed is high and the stability when the information recording medium 3 is rotated is high.
  • a material of the substrate for example, a glass substrate or a metal plate such as aluminum is preferable.
  • polycarbonate, PMMA (polymethyl methacrylate resin), norbornene resin for example, “ARTON” (manufactured by JSR Corporation)
  • a resin such as a cycloolefin resin (for example, “ZEONEX” (manufactured by ZEON CORPORATION)) can also be used.
  • the recording layer 2 has a thin film shape, and the recording area 4 may be in the form of a recording mark.
  • the recording area 4 of the recording layer 2 has a thickness h, is arranged in an island shape, and includes fine particles that are partially or entirely made of a recording material. Yes.
  • the recording area 4a shows fine particles in a recording state
  • the recording area 4b shows fine particles in an unrecorded state
  • the arrangement period of the fine particles is ⁇ x in the X-axis direction and ⁇ y in the Y-axis direction.
  • One fine particle corresponds to a conventional recording mark and has recording information.
  • the recording region 4 such as a recording mark is formed in the recording material
  • heat is diffused in the recording material, and a large recording mark exceeding the recording spot is formed. It will be recorded.
  • the difference in the size of the recording mark starts to become noticeable due to such thermal diffusion when the recording mark is 30 nm or less.
  • the recording area 4 of the recording layer 2 is arranged in an island shape and has a fine particle structure with a size of 30 nm or less. Therefore, since the respective fine particles are separated, it is possible to manufacture an information recording medium having a recording region 4 (fine particles) of 30 nm or less favorably avoiding the influence of thermal diffusion during recording.
  • the size of the recording area 4 (fine particles) is preferably 3 nm or more.
  • the fine particles in the recording region 4 it is more preferable in terms of recording density to make the fine particles in the recording region 4 as small as possible to reduce the size and to provide the isolated fine particles as close as possible.
  • the interval between the fine particles is too narrow, the respective fine particles come into contact with each other, and the independence (isolated state) of the fine particles may not be secured. Therefore, it is desirable to design the interval between the fine particles in consideration of these points.
  • the fine particles that are the recording area 4 refer to those processed into a fine convex shape as shown in FIG. 2, and in addition to the cylindrical shape shown in FIG.
  • the shape may be a polygonal pyramid having four or more corners, a triangular prism, or a polygonal prism having four or more corners.
  • a fine particle having a sharp tip such as a cone, a triangular pyramid, or a polygonal pyramid having four or more corners, and further, a cylinder, a triangular prism, as shown in FIG. 4 (B).
  • the present inventors have found that fine particles having a rounded or sharpened tip even in a polygonal column having four or more corners are preferable because near-field light is likely to be collected or concentrated.
  • FIG. 4A is a diagram illustrating an example of an information recording medium including a conical recording area
  • FIG. 4B includes a recording area having a hemispherical round shape at the tip of a cylinder. It is a figure which shows an example of an information recording medium.
  • an information recording medium 3a includes a substrate 1 and a recording layer 2, and the recording layer 2 includes a conical recording area 4 '.
  • the recording area 4 ' includes a recording area 4a' in a recording state and a recording area 4b 'in an unrecorded state.
  • the tip portion of the fine particle, which is the recording region 4 ', has a sharp cross section. More specifically, the fine particles have a conical shape.
  • the information recording medium 3b includes a substrate 1 and a recording layer 2.
  • the recording layer 2 includes a recording area 4 ′′ having a hemispherical round shape at the tip of a cylinder.
  • the recording area 4 ′′ includes a recording area 4a ′′ in a recording state and a recording area 4b ′′ in an unrecorded state.
  • the tip portion of the fine particle that is the recording region 4 ′′ has an arc-shaped cross section. More specifically, the fine particle has a shape in which a hemisphere is formed at the tip portion of the cylinder.
  • the fine particles "" may have a shape in which a cone is formed at the tip of a cylinder, or a shape in which a pyramid is formed at the tip of a prism.
  • the reproduction light emitted from the light source 14 is applied to the plasmon resonance element 9 by the objective lens 10.
  • the reproduction light emitted from the light source 14 may be applied to the plasmon resonance element 9 by, for example, an optical waveguide or an optical fiber.
  • the recording area (fine particles) 4 may be entirely formed of a recording material from a portion protruding from the substrate 1, or only the tip portion of the portion protruding from the substrate 1 may be formed of a recording material. Good.
  • the information recording medium 3 of the first embodiment described above includes at least the substrate 1 and the recording layer 2, and the recording area 4 of the recording layer 2 is arranged in an island shape, and the recording area 4 is partially or entirely. Includes a fine particle made of a recording material, and the code of the real part of the dielectric constant of the recording material in the recording state and the code of the real part of the dielectric constant of the recording material in the unrecorded state with respect to the wavelength of the reproduction light It is an information recording medium characterized by being different.
  • the plasmon resonance element 9 is made of, for example, Au
  • the area of the flat portion is 2500 nm 2
  • the reproduction wavelength ⁇ is 0.405 ⁇ m
  • the recording region 4 is Ge.
  • Fine particles composed of 2 Sb 2 Te 5 the diameter of the fine particles is 20 nm
  • the thickness h of the recording layer 2 is 100 nm
  • the distance between the resonance portion 22 and the recording region 4 is 15 nm.
  • the reflectance when the recording area 4 is crystal is 1.00%
  • the reflectance when the recording area 4 is amorphous is 1.44%
  • the change in reflectance is 0.44%.
  • the plasmon resonance element 9 can be made larger than the recording area such as a recording mark. Since the optical recording / reproducing apparatus of the first embodiment detects the reflected light from the plasmon resonance element 9 by directly irradiating the plasmon resonance element 9 with the reproduction light instead of the near-field light, the amount of reflected light or a change in the amount of light is also changed. Can be large enough.
  • FIG. 5 is a cross-sectional view showing the configuration of the information recording medium 3c in Embodiment 2 of the present invention.
  • a protective layer 23 having a positive sign of the real part of the dielectric constant is formed on the recording region 4 of the recording layer 2 formed on the substrate 1. It is. That is, the information recording medium 3 c further includes a protective layer 23 on the upper layer of the recording area 4, in which the sign of the real part of the dielectric constant is positive and the recording area 4 is protected.
  • the protective layer 23 By providing the protective layer 23, it is possible to improve the environmental resistance of the fine particles, which are the recording region 4 formed of the recording material, and the recording region 4 of the recording region 4 due to contact with the resonance portion 22 at the tip of the plasmon resonance element 9 can be improved. Damage can be reduced. In addition, since the sign of the real part of the dielectric constant of the protective layer 23 is positive, unnecessary plasmon resonance is prevented from occurring between the protective layer 23 and the resonance part 22, and as a result, adverse effects from the protective layer 23 are prevented. It is possible to prevent a decrease in the modulation degree of reproduction due to the above.
  • Examples of the protective layer 23 having a positive sign of the real part of the dielectric constant include ZrSiO 4 , (ZrO 2 ) 25 (SiO 2 ) 25 (Cr 2 O 3 ) 50 , SiCr, TiO 2 , ZrO 2 , and HfO 2.
  • An inorganic material such as one or a plurality of oxides selected from 2 O 3 , La 2 O 3 , Gd 2 O 3 , Dy 2 O 3 , Yb 2 O 3 , CaO, MgO, CeO 2 and TeO 2 is used. be able to.
  • the protective layer 23 CN, Ti—N, Zr—N, Nb—N, Ta—N, Si—N, Ge—N, Cr—N, Al—N, Ge—Si—N, And one or more nitrides selected from Ge—Cr—N and the like can also be used. Further, as the protective layer 23, a sulfide such as ZnS, a carbide such as SiC, or a fluoride such as LaF 3 , CeF 3, or MgF 2 can be used. Further, the protective layer 23 may be formed using a mixture of one or more materials selected from the above materials. Furthermore, the protective layer 23 may be made of an organic material such as a resin. In this case, the impact at the time of collision can be reduced as compared with the inorganic material. The protective layer 23 may be composed of a mixed material of an organic material and an inorganic material.
  • the surface of the protective layer 23 is optically flattened, the surface unevenness is eliminated, so that the contact with the plasmon resonance element 9 due to the surface unevenness can be reduced.
  • the optical information reproducing apparatus according to the third embodiment of the present invention is different from the optical information reproducing apparatus according to the first embodiment with reference to FIGS. 6, 7, 8A, and 8B.
  • the explanation will focus on the points.
  • the optical information reproducing apparatus according to the third embodiment is different from the optical information reproducing apparatus according to the first embodiment in the shape of the plasmon resonance element 9 'and the shape of the objective lens 10'. Furthermore, the optical information reproducing apparatus according to Embodiment 3 stands with the radial polarization generation element 20 between the optical path between the beam splitter 15 and the objective lens 10 ′ in the optical path between the light source 14 and the plasmon resonance element 9 ′. And a raising mirror 21.
  • the plasmon resonance element 9 ′ is a conical prism whose surface other than the bottom surface is covered with a metal film, and the conical prism has a resonance portion 22 ′ in the vicinity of the apex.
  • the objective lens 10 ' is a normal in-line type lens in which the optical axis of incident light coincides with the optical axis of outgoing light.
  • the radial polarization generation element 20 is disposed in the optical path between the light source 14 and the plasmon resonance element 9 ', and includes radial polarization in the reproduction light condensed on the plasmon resonance element 9'.
  • radial polarization generating element 20 By disposing the radial polarization generating element 20, radial polarization can be included in the irradiation light 5 'condensed on the plasmon resonance element 9' by the objective lens 10 '.
  • irradiation light 5 ′ including radial polarized light is incident on the bottom surface of the conical prism that is the plasmon resonance element 9 ′, a propagation type surface plasmon propagates to the interface between the metal film coated on the side surface and the conical prism, and resonance at the tip.
  • Near-field light 7 ′ whose polarization direction is the Z-axis direction is generated in the portion 22 ′.
  • the enhancement of plasmon resonance between the resonance portion 22 ′ and the recording area 4 varies depending on whether the recording area 4 is in a recorded state or an unrecorded state. Therefore, by detecting the reflected light 6 ′ from the plasmon resonance element 9 ′, it is determined whether the recording area 4 is in the recorded state or the unrecorded state, as in the optical information reproducing apparatus of the first embodiment. Thus, the information recorded in the recording area 4 can be reproduced.
  • FIG. 8A and 8B are examples in which the degree of plasmon resonance is greater in the recording area 4a in the recorded state than in the recording area 4b in the unrecorded state.
  • FIG. 8A shows a case where the resonance portion 22 ′ of the plasmon resonance element 9 ′ is present on the recording area 4 a in the recording state.
  • near-field light 7a ' is generated from the resonance portion 22' to the recording area 4a, and the degree of plasmon resonance is increased.
  • the amount of reflected light 6a ' changes (decreases in FIG. 8A).
  • FIG. 8B shows a case where the resonance portion 22 ′ of the plasmon resonance element 9 ′ is present on the recording area 4 b that is in an unrecorded state.
  • the near-field light 7b ' is generated only in the vicinity of the resonance part 22', and the degree of plasmon resonance is small.
  • the light quantity of the reflected light 6b ' has hardly changed.
  • the normal in-line type objective lens 10 ′ is used so that it is perpendicular to the formation surface (XY surface) of the substrate 1 or the recording layer 2 of the information recording medium 3.
  • a condensing optical system can be used. For this reason, the freedom degree of design becomes large and arrangement
  • the objective lens 10 ' is also likely to have a high NA, and as a result, the intensity of the near-field light 7' generated from the resonance portion 22 'can be increased.
  • the plasmon resonance element 9 ' is a vertex angle 2 [Theta] 2, for example, a glass or plastic conical prism, for example, metal such as Au or Al
  • the membrane is coated.
  • Kretschmann arrangement for the shape of the plasmon resonance element 9 ′, it is possible to efficiently convert the radially polarized irradiation light 5 ′ into surface plasmons.
  • the reproduction wavelength ⁇ is 0.405 ⁇ m
  • FIG. 9 is a diagram showing the configuration of the optical information reproducing apparatus in the fourth embodiment of the present invention.
  • the reflected light from the plasmon resonance element 9 is detected.
  • the transmitted light from the plasmon resonance element 9 is detected.
  • the optical information reproducing apparatus includes a plasmon resonance element 9, an objective lens 10, a collimator lens 11, a light source 14, a beam splitter 15, a detection lens 16, photodetectors 17a 'and 17b, and an optical element 19 for servo signal detection.
  • the playback unit 24 and the drive unit 25 are provided.
  • the photodetector 17a ' is disposed in contact with the surface facing the light incident side surface of the plasmon resonance element 9, and detects the transmitted light 18a' from the plasmon resonance element 9 irradiated with the reproduction light.
  • the reproducing unit 24 determines whether the recording area 4 is in a recording state or an unrecorded state based on a detection signal from the photodetector 17a ', and reproduces information recorded in the recording area 4.
  • the amount of transmitted light varies depending on the degree of plasmon resonance between the resonance portion 22 of the plasmon resonance element 9 and the recording area 4 in the recording state or the recording area 4 in the unrecorded state.
  • the change in the amount of transmitted light increases as the degree of plasmon resonance between the resonance portion 22 of the plasmon resonance element 9 and the recording region 4a in the recorded state or the recording region 4b in the unrecorded state increases.
  • the transmitted light 18a ′ is detected by the photodetector 17a ′, and it is determined whether the recording area 4 is in a recording state or an unrecorded state based on the detection signal from the photodetector 17a ′. Thus, the information recorded in the recording area 4 can be reproduced.
  • the configuration other than the configuration for reproducing the information recorded in the recording area 4 by detecting the transmitted light 18a ′ is the same as the configuration of the first embodiment, and detailed description thereof is omitted. To do.
  • the optical recording / reproducing apparatus of the fourth embodiment detects the transmitted light from the plasmon resonance element 9 by directly irradiating the plasmon resonance element 9 with the reproduction light instead of the near-field light. Can be large enough.
  • the photodetector 17a ′ is disposed in contact with the surface facing the light incident side surface of the plasmon resonance element 9, but the present invention is not particularly limited thereto, and the plasmon is not limited to this.
  • a photodetector 17a ′ is provided at a position away from the resonance element 9, and a lens for guiding light transmitted through the plasmon resonance element 9 to the photodetector 17a ′ is provided between the plasmon resonance element 9 and the photodetector 17a ′. Also good.
  • optical information reproducing apparatus, optical information reproducing method, and information recording medium of Embodiments 1 to 4 have been described above, but the present invention is not limited to these embodiments.
  • An optical information reproducing apparatus, an optical information reproducing method, and an information recording medium in which the configurations of the optical information reproducing apparatus, the optical information reproducing method, and the information recording medium according to each embodiment are combined are also included in the present invention, and the same effect can be achieved. Can do.
  • the objective lens, collimator lens, and detection lens used in the first to fourth embodiments are named for convenience and are the same as commonly used lenses.
  • an optical disk has been described as an example of the information recording medium.
  • the optical information reproducing apparatus similar to the first to fourth embodiments has a plurality of specifications such as thickness and recording density.
  • Application to card-like, drum-like or tape-like products designed to be able to reproduce different media is also within the scope of the present invention.
  • An optical information reproducing apparatus is an optical information reproducing apparatus for reproducing information recorded on an information recording medium including at least a substrate and a recording layer, the light source emitting reproduction light, and the recording layer And a plasmon resonance element that generates plasmon resonance between the recording region and the resonance part, and the plasmon irradiated with the reproduction light.
  • a reproducing unit that reproduces information recorded in the area.
  • the reproduction light emitted from the light source is applied to the plasmon resonance element, the reflected light or the transmitted light from the plasmon resonance element is detected, and the recording area is in a recorded state and an unrecorded state based on the detection signal.
  • the information recorded in the recording area is reproduced.
  • the amount of reflected or transmitted light from the plasmon resonance element changes by changing the degree of plasmon resonance between the recording area and the resonance part of the plasmon resonance element according to the state of the recording area, Even when the size of the recording area is smaller than the diffraction limit of light, information can be reproduced satisfactorily.
  • the plasmon resonance element can be made larger than the recording area. Further, since the reflected light or transmitted light from the plasmon resonance element is detected by directly irradiating the plasmon resonance element with the reproduction light instead of the near-field light, the reflected light amount, the transmitted light amount, the change in the reflected light amount or the transmitted light amount The change in the amount of light can be made sufficiently large, and the degree of modulation of the reproduction signal can be improved.
  • the reproducing light is also applied to the recording area adjacent to the resonance portion.
  • the reproduction light is also applied to the recording area 4 adjacent to the resonance part of the plasmon resonance element, the plasmon resonance becomes stronger, and the reflected light amount or the transmitted light amount in the recorded state and the unrecorded state.
  • the difference between the two becomes larger and the detection sensitivity is improved.
  • the plasmon resonance element may be selected depending on a degree of plasmon resonance between the resonance part of the plasmon resonance element and the recording area in the recorded state or the recording area in the unrecorded state. It is preferable that the amount of reflected light or the amount of transmitted light changes.
  • the reflected light amount or transmitted light amount from the plasmon resonance element depends on the degree of plasmon resonance between the resonance part of the plasmon resonance element and the recording area in the recording state or the recording area in the unrecorded state. Therefore, by detecting the reflected light or transmitted light from the plasmon resonance element, it can be determined whether the recording area is in a recording state or an unrecorded state.
  • a part or all of the recording area is made of a recording material, and a sign of a real part of a dielectric constant of the recording material in a recording state with respect to a wavelength of the reproducing light,
  • the sign of the real part of the dielectric constant of the recording material in an unrecorded state is preferably different from each other.
  • the sign of the real part of the dielectric constant of the recording material in the recording state is different from the sign of the real part of the dielectric constant of the recording material in the unrecorded state with respect to the wavelength of the reproduction light.
  • the degree of plasmon resonance of one of the recording material in the recording state and the recording material in the unrecorded state becomes strong, and the modulation degree of reproduction can be further improved.
  • a part or all of the recording area is made of a recording material, and the real part of the relative dielectric constant of the recording material in a recording state with respect to the wavelength of the reproducing light,
  • the real part of the relative permittivity of the recording material in the recording state one is preferably ⁇ 5 or less and the other is preferably greater than ⁇ 5.
  • one of the real part of the relative dielectric constant of the recording material in the recording state and the real part of the relative dielectric constant of the recording material in the unrecorded state is ⁇ Since it is 5 or less and the other is greater than ⁇ 5, the degree of plasmon resonance of one of the recording material in the recorded state and the recording material in the unrecorded state becomes even stronger, and the modulation degree of reproduction is further improved. Can be made.
  • the real part of the dielectric constant is a real part of the dielectric constant of the recording material in a recorded state and a real part of the dielectric constant of the recording material in an unrecorded state.
  • the change in the reflected light amount or transmitted light amount of the smaller recording material is preferably larger than the change in the reflected light amount or transmitted light amount of the recording material having the larger real part of the dielectric constant.
  • the reflection of the recording material having the smaller real part of the dielectric constant is larger than the change in the amount of reflected light or the amount of transmitted light of the recording material with the larger real part of the dielectric constant, so that the modulation degree of reproduction becomes large and information can be reproduced well.
  • a part or all of the recording area is made of a recording material
  • the main component of the recording material is a phase change recording material
  • the recorded state and the unrecorded state are amorphous. It is preferable to correspond to either one of crystal and crystal.
  • the dielectric constant differs between crystal and amorphous, the degree of plasmon resonance of one of the recording material in the recorded state and the recording material in the unrecorded state becomes strong, and the modulation degree of reproduction Can be improved.
  • the wavelength ⁇ of the reproducing light preferably satisfies 0.35 ⁇ m ⁇ ⁇ ⁇ 0.45 ⁇ m.
  • This configuration is applicable to reproduction light that satisfies the wavelength ⁇ of 0.35 ⁇ m ⁇ ⁇ ⁇ 0.45 ⁇ m.
  • the plasmon resonance element has a flat portion arranged substantially perpendicular to the optical axis of the reproduction light, and the reproduction light is irradiated to the flat portion. preferable.
  • the reproduction light applied to the flat portion of the plasmon resonance element can be reflected as reflected light in the opposite direction at substantially the same angle, and the light utilization efficiency can be increased.
  • the light source is a polarization of the reproducing light that is polarized in a direction perpendicular to the arrangement surface of the recording layer on the optical axis of the reproducing light irradiated on the plasmon resonance element. It is preferable that the amplitude of the component is larger than the amplitude of the polarization component of the reproduction light polarized in other polarization directions.
  • the amplitude of the polarization component of the reproduction light that is polarized in the direction perpendicular to the arrangement surface of the recording layer is polarized in another polarization direction on the optical axis of the reproduction light irradiated to the plasmon resonance element.
  • the optical information reproducing apparatus may further include a polarization control optical element that converts a polarization state of the reproduction light emitted from the light source, and the polarization control optical element is perpendicular to an arrangement surface of the recording layer.
  • the amplitude of the polarization component of the reproduction light polarized in the direction is preferably larger than the amplitude of the polarization component of the reproduction light polarized in the other polarization direction.
  • the amplitude of the polarization component of the reproduction light polarized in the direction perpendicular to the recording layer arrangement surface is set larger than the amplitude of the polarization component of the reproduction light polarized in the other polarization direction.
  • the polarization control optical element preferably includes a wave plate. According to this configuration, the polarization direction can be easily changed by the wave plate.
  • the optical information reproducing apparatus preferably further includes an off-axis condensing lens that irradiates the plasmon resonance element with the reproduction light.
  • the optical information reproducing apparatus may further include a radial polarization generating element that is disposed in an optical path between the light source and the plasmon resonance element and includes radial polarization in the reproduction light condensed on the plasmon resonance element. It is preferable. According to this configuration, it is possible to irradiate the plasmon resonance element with reproduction light including radial polarization.
  • the plasmon resonance element is a conical prism in which a surface other than the bottom surface is coated with a metal film, and the conical prism has the resonance portion in the vicinity of the apex. preferable.
  • the propagation type surface plasmon propagates to the interface between the metal film coated on the surface other than the bottom surface and the conical prism. Then, near-field light is generated at the resonance part near the apex of the conical prism.
  • the enhancement of plasmon resonance between the resonance portion and the recording area changes depending on whether the recording area is in a recording state or an unrecorded state, the reflected light from the plasmon resonance element is detected, so that the recording area Is recorded or unrecorded, information recorded in the recording area can be reproduced satisfactorily.
  • the wavelength ⁇ of the reproducing light satisfies 0.35 ⁇ m ⁇ ⁇ ⁇ 0.45 ⁇ m
  • the main component of the plasmon resonance element is at least one of Au, Cu, Ti, Ni, and Ag. One is preferred.
  • At least one of Au, Cu, Ti, Ni, and Ag is used as the main component of the plasmon resonance element, and the sign of the real part of the dielectric constant of the recording area is negative, or When the real part of the relative dielectric constant is ⁇ 5 or less, the degree of plasmon resonance is significantly increased, and the modulation degree of reproduction can be improved.
  • An optical information reproducing method is an optical information reproducing method for reproducing information from an information recording medium including at least a substrate and a recording layer, and reproducing light emitted from a light source is emitted from the recording layer. Irradiating a plasmon resonance element that generates plasmon resonance between the recording region and the resonance unit; and A step of detecting reflected light or transmitted light from the plasmon resonance element by a photodetector, and determining whether the recording area is in a recorded state or an unrecorded state based on a detection signal from the photodetector. Then, the information recorded in the recording area is reproduced.
  • the reproduction light emitted from the light source is applied to the plasmon resonance element, the reflected light or the transmitted light from the plasmon resonance element is detected, and the recording area is in a recorded state and an unrecorded state based on the detection signal.
  • the information recorded in the recording area is reproduced.
  • the amount of reflected or transmitted light from the plasmon resonance element changes by changing the degree of plasmon resonance between the recording area and the resonance part of the plasmon resonance element according to the state of the recording area, Even when the size of the recording area is smaller than the diffraction limit of light, information can be reproduced satisfactorily.
  • the plasmon resonance element can be made larger than the recording area. Further, since the reflected light or transmitted light from the plasmon resonance element is detected by directly irradiating the plasmon resonance element with the reproduction light instead of the near-field light, the reflected light amount, the transmitted light amount, the change in the reflected light amount or the transmitted light amount The change in the amount of light can be made sufficiently large, and the degree of modulation of the reproduction signal can be improved.
  • An information recording medium includes at least a substrate and a recording layer, the recording area of the recording layer is arranged in an island shape, and the recording area is a fine particle partially or entirely made of a recording material. And the sign of the real part of the dielectric constant of the recording material in the recording state is different from the sign of the real part of the dielectric constant of the recording material in the unrecorded state with respect to the wavelength of the reproduction light.
  • the sign of the real part of the dielectric constant of the recording material in the recording state is different from the sign of the real part of the dielectric constant of the recording material in the unrecorded state with respect to the wavelength of the reproduction light.
  • the degree of plasmon resonance of one of the recording material in the recording state and the recording material in the unrecorded state is increased, and the modulation degree of reproduction can be further improved and information can be reproduced satisfactorily.
  • An information recording medium includes at least a substrate and a recording layer, the recording area of the recording layer is arranged in an island shape, and the recording area is a fine particle partially or entirely made of a recording material.
  • one of the real part of the relative dielectric constant of the recording material in the recording state and the real part of the relative dielectric constant of the recording material in the unrecorded state is ⁇ 5 or less, and the other is greater than ⁇ 5, so that the degree of plasmon resonance of one of the recording material in the recorded state and the recording material in the unrecorded state becomes stronger, and the modulation degree of reproduction is further improved.
  • Information can be reproduced well.
  • the tip portion of the fine particle has a sharp cross section or an arc-shaped cross section.
  • the tip portion of the fine particle has a sharp cross section or an arc-shaped cross section, the near-field light is easily collected or concentrated on the fine particle, and the degree of plasmon resonance can be enhanced.
  • a protective layer having a positive sign of the real part of the dielectric constant is further provided on the upper layer of the recording area.
  • the protective layer having a positive sign of the real part of the dielectric constant is disposed in the upper layer of the recording area, it is possible to improve the environmental resistance of the fine particles that are the recording area formed of the recording material. In addition, damage to the recording area due to contact with the resonance portion at the tip of the plasmon resonance element can be reduced.
  • the optical information reproducing apparatus even when the size of a recording area such as a recording mark on which information is recorded is smaller than the light diffraction limit, information can be satisfactorily obtained.
  • the optical information reproducing apparatus and optical information reproducing method for optically reproducing the information recorded on the information recording medium, and the information recording medium including at least the substrate and the recording layer are useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Head (AREA)

Abstract

 情報を記録している記録領域の大きさが光の回折限界より小さくても、良好に情報を再生することができる光学情報再生装置、光学情報再生方法及び情報記録媒体を提供する。光学情報再生装置は、再生光を出射する光源(14)と、記録層(2)の記録領域(4)に近接させて配置される共鳴部(22)を有し、共鳴部(22)は記録領域(4)と共鳴部(22)との間でプラズモン共鳴を生じさせるプラズモン共鳴素子(9)と、再生光が照射されたプラズモン共鳴素子(9)からの反射光又は透過光を検出する光検出器(17a)と、光検出器(17a)からの検出信号に基づいて記録領域(4)が記録状態及び未記録状態のいずれであるかを判断して、記録領域(4)に記録された情報を再生する再生部(24)とを備える。

Description

光学情報再生装置、光学情報再生方法及び情報記録媒体
 本発明は、情報記録媒体に記録された情報を光学的に再生する光学情報再生装置及び光学情報再生方法、並びに少なくとも基板及び記録層を含む情報記録媒体に関するものである。
 光学的な情報再生装置として、CD(コンパクトディスク)、DVD、BD(Blu-Rayディスク)等の光ディスク又は光カード等を情報記録媒体に用いた光メモリシステムが実用化されている。
 従来の光メモリシステムの再生原理を単純化して図10に示す。図10は、従来の光学情報記録再生装置の構成の一部と、情報記録媒体から情報を再生する様子とを示す説明図である。
 従来の光学情報記録再生装置では、光源(図示無し)からの再生光107が対物レンズ110により集光され、再生光107が、情報記録媒体103の基板101上に形成された記録膜102の、情報が記録された記録領域である記録マーク104に照射光105として照射される。そして、記録マーク104からの反射光106、108が検出されることにより、情報記録媒体103から情報が再生される。例えば、記録マーク104が記録状態であれば反射率が低くなり、未記録状態であれば反射率が高くなるようにしておけば、光学情報記録再生装置は、反射光106、108の光量を検出することにより、記録マーク104が記録状態か、未記録状態かを判断でき、情報記録媒体103の光学情報が再生可能となる。
 しかしながら、これまでの光メモリシステムでは、再生可能な記録マークのサイズ(記録マーク長)が、対物レンズのNA(開口数)と、再生光の波長で決まる回折限界と言われる光学限界サイズとで制限され、さらなる高密度化が困難であるという課題があった。
 近年、回折限界を打ち破るために、スポット径が回折限界よりも小さくできる近接場光を用いた光メモリが提案されている。特許文献1には、金属の微小構造からなる近接場光プローブを用いた光記録再生装置が記載されている。
 特許文献1の光記録再生装置では、近接場光プローブにより発生した近接場光により、相変化記録媒体の記録層を、結晶からアモルファスに相変化させることにより、記録マークを形成して記録が行われる。また、記録マークを形成した相変化記録媒体に近接場光が照射されて、相変化記録媒体から戻ってくる散乱光強度の変化を検出することにより再生が行われる。近接場光は、発生源から離れるほど急速に減衰する局在化する光(伝搬しない光)であるため、一般には取り出すことはできないが、記録マーク等の物体を近接させることにより、近接場光のごく一部を散乱光として取り出すことができる。すなわち、相変化記録媒体の記録マークに近接場光が照射された場合、その近接場光が記録マークの有無により散乱される割合が変化する。そのため、特許文献1の光記録再生装置では、記録マークからの散乱光の強度変化を検出することにより再生が行われる。
 しかしながら、特許文献1の光記録再生装置では、近接場光の大きさ程度(例えば、数10nm程度)の記録マークを形成して高密度記録はできるが、近接場光の大きさの記録マークを良好に再生することは困難であるという課題を本発明者らは検討の結果見いだした。
 本発明者らの考察によると、再生光(伝搬光)から近接場光への変換効率が低い(一般には、たかだか1%程度)ことに加えて、記録マークのサイズdが、回折限界より小さくなり、いわゆるレーリー散乱領域(波長λに対して、d≦~λ/10、例えば、λ=405nmのとき、d≦~40nm)の大きさになってくると、近接場光を記録マークのサイズdの大きさ程度に集光して、記録マークに照射できたとしても、サイズdが小さくなるほど、戻ってくる散乱光の光量は急激に低下してしまう。例えば、20nm程度の記録マークでは、戻ってくる散乱光の光量は、照射した近接場光の光量に対して、例えば、0.001%程度であり、再生光の光量に対しては、戻ってくる散乱光の光量は、たかだか、上記の値の1%程度の、つまり、せいぜい0.00001%程度であると本発明者らは光学計算により見積もった。
 その結果、記録マークの有無に対応して検出される散乱光の強度変化は、再生光量に対して例えば、0.00001%未満であり、小さすぎて良好な情報の再生は困難であるという課題があった。
特開2003-114184号公報
 本発明は、上記の問題を解決するためになされたもので、情報を記録している記録領域の大きさが光の回折限界より小さくても、良好に情報を再生することができる光学情報再生装置、光学情報再生方法及び情報記録媒体を提供することを目的とするものである。
 本発明の一局面に係る光学情報再生装置は、少なくとも基板及び記録層を含む情報記録媒体に記録された情報を再生する光学情報再生装置であって、再生光を出射する光源と、前記記録層の記録領域に近接させて配置される共鳴部を有し、前記共鳴部は前記記録領域と前記共鳴部との間でプラズモン共鳴を生じさせるプラズモン共鳴素子と、前記再生光が照射された前記プラズモン共鳴素子からの反射光又は透過光を検出する光検出器と、前記光検出器からの検出信号に基づいて前記記録領域が記録状態及び未記録状態のいずれであるかを判断して、前記記録領域に記録された情報を再生する再生部とを備える。
 この構成によれば、光源から出射された再生光が、プラズモン共鳴素子に照射され、プラズモン共鳴素子からの反射光又は透過光が検出され、検出信号に基づいて記録領域が記録状態及び未記録状態のいずれであるかが判断されて、記録領域に記録された情報が再生される。
 本発明によれば、記録領域とプラズモン共鳴素子の共鳴部との間のプラズモン共鳴度合いが記録領域の状態に応じて変化することによって、プラズモン共鳴素子からの反射光量又は透過光量が変化することを利用して、記録領域の大きさが光の回折限界より小さくても、良好に情報を再生することができる。
 また、プラズモン共鳴素子の大きさは空間的な制限を受けないため、プラズモン共鳴素子を記録領域よりも大きくすることができる。さらに、プラズモン共鳴素子に近接場光ではなく、再生光を直接照射してプラズモン共鳴素子からの反射光又は透過光が検出されるので、反射光量、透過光量、反射光量の光量変化又は透過光量の光量変化も十分大きくすることができ、再生信号の変調度を向上させることができる。
 本発明の目的、特徴及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。
本発明の実施の形態1における光学情報再生装置の構成を示す図である。 本発明の実施の形態1における光学情報再生装置のプラズモン共鳴素子と、情報記録媒体から情報を再生する様子とを示す説明図である。 (A)は、本発明の実施の形態1において、情報記録媒体の記録領域が記録状態であり、プラズモン共鳴度合いが大きい場合のプラズモン共鳴素子近傍の様子を示す図2のIII-III線による断面図であり、(B)は、本発明の実施の形態1において、情報記録媒体の記録領域が未記録状態であり、プラズモン共鳴度合いが小さい場合のプラズモン共鳴素子近傍の様子を示す図2のIII-III線による断面図である。 (A)は、円錐形状の記録領域を含む情報記録媒体の一例を示す図であり、(B)は、円柱の先端部分に半球状に丸くなった形状を有する記録領域を含む情報記録媒体の一例を示す図である。 本発明の実施の形態2における情報記録媒体の構成を示す断面図である。 本発明の実施の形態3における光学情報再生装置の構成を示す図である。 本発明の実施の形態3における光学情報再生装置のプラズモン共鳴素子と、情報記録媒体から情報を再生する様子とを示す説明図である。 (A)は、本発明の実施の形態3において、情報記録媒体の記録領域が記録状態であり、プラズモン共鳴度合いが大きい場合のプラズモン共鳴素子近傍の様子を示す図7のVIII-VIII線による断面図、(B)は、本発明の実施の形態3において、情報記録媒体の記録領域が未記録状態であり、プラズモン共鳴度合いが小さい場合のプラズモン共鳴素子近傍の様子を示す図7のVIII-VIII線による断面図である。 本発明の実施の形態4における光学情報再生装置の構成を示す図である。 従来の光学情報記録再生装置の構成の一部と、情報記録媒体から情報を再生する様子とを示す説明図である。
 以下本発明の実施の形態について、図面を参照しながら説明する。なお、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定する性格のものではない。
 (実施の形態1)
 まず、本発明の実施の形態1の光学情報再生装置、光学情報再生方法及び情報記録媒体について、図1、図2、図3(A)及び図3(B)を用いて詳細に説明する。
 図1は、本発明の実施の形態1における光学情報再生装置の構成を示す図である。図2は、本発明の実施の形態1における光学情報再生装置のプラズモン共鳴素子と、情報記録媒体から情報を再生する様子とを示す説明図である。図3(A)は、本発明の実施の形態1において、情報記録媒体の記録領域が記録状態であり、プラズモン共鳴度合いが大きい場合のプラズモン共鳴素子近傍の様子を示す図2のIII-III線による断面図である。図3(B)は、本発明の実施の形態1において、情報記録媒体の記録領域が未記録状態であり、プラズモン共鳴度合いが小さい場合のプラズモン共鳴素子近傍の様子を示す図2のIII-III線による断面図である。
 本実施の形態1の光学情報再生装置は、少なくとも基板1及び記録層2を含む情報記録媒体3に記録された情報を再生する光学情報再生装置であって、再生光を出射する光源14と、記録層2の記録領域4に近接させて配置される共鳴部22を有し、共鳴部22は記録領域4と共鳴部22との間でプラズモン共鳴を生じさせるプラズモン共鳴素子9と、再生光が照射されたプラズモン共鳴素子9からの反射光6(又は透過光)を検出する光検出器17aと、光検出器17aからの検出信号に基づいて記録領域4が記録状態及び未記録状態のいずれであるかを判断して、記録領域4に記録された情報を再生する再生部24とを備える光学情報再生装置である。
 本実施の形態1の光学情報再生方法は、少なくとも基板1及び記録層2を含む情報記録媒体3から情報を再生する光学情報再生方法であって、光源14から出射された再生光を、記録層2の記録領域4に近接させて配置される共鳴部22を有し、共鳴部22は記録領域4と共鳴部22との間でプラズモン共鳴を生じさせるプラズモン共鳴素子9に照射(照射光5)するステップと、再生光が照射されたプラズモン共鳴素子9からの反射光6(又は透過光)を光検出器17aにより検出するステップと、光検出器17aからの検出信号に基づいて記録領域4が記録状態及び未記録状態のいずれであるかを判断して、記録領域4に記録された情報を再生するステップとを含む。
 本実施の形態1における光学情報再生装置に関して詳細に説明する。図1に示す光学情報再生装置は、プラズモン共鳴素子9、対物レンズ10、コリメータレンズ11、光源14、ビームスプリッタ15、検出レンズ16、光検出器17a,17b、サーボ信号検出用光学素子19、再生部24及び駆動部25を備える。
 光源14は、再生光を出射する。プラズモン共鳴素子9は、共鳴部22を有している。共鳴部22は、記録層2の記録領域4と共鳴部22との間でプラズモン共鳴を生じさせる。共鳴部22は、記録領域4に近接するように配置される。光検出器17aは、再生光が照射されたプラズモン共鳴素子9からの反射光を検出する。再生部24は、光検出器17aからの検出信号に基づいて記録領域4が記録状態及び未記録状態のいずれであるかを判断して、記録領域4に記録された情報を再生する。
 図1に示すように、実施の形態1の光学情報再生装置は、再生用の光源14として半導体レーザ光源を備える。光源14から情報記録媒体3までの光路中には、コリメータレンズ11、ビームスプリッタ15、対物レンズ10及びプラズモン共鳴素子9が配置されている。ビームスプリッタ15から光検出器17a,17bまでの復路の光路中には、サーボ信号検出用光学素子19及び検出レンズ16が配置されている。
 情報記録媒体3は、少なくとも基板1及び記録層2を含む構成であり、基板1上に、記録層2として、情報が記録された複数の記録領域4を具備しており、1つの記録領域4は記録状態及び未記録状態のどちらかである。
 プラズモン共鳴素子9の先端領域の共鳴部22は、記録領域4との間の距離が、例えば、約100nm以内、好ましくは5~30nm程度になるように、記録領域4に近接させて配置されている。プラズモン共鳴素子9は、記録領域4が記録状態及び未記録状態の少なくともどちらか一方である場合に、共鳴部22とプラズモン共鳴が生じるような又はプラズモン共鳴の増強が生じるような位置に配置すれば良い。
 光源14から出射された再生光は、プラズモン共鳴素子9に照射される。本実施の形態1においては、光源14からY軸方向に出射された、Z軸方向の直線偏光(偏光方向8c)のレーザ光(再生光の出射光)12は、コリメータレンズ11により略平行光13(偏光方向8b)となり、ビームスプリッタ15を透過する。ビームスプリッタ15を透過したレーザ光は、対物レンズ10によって、先端の共鳴部22付近を中心に、共鳴部22に近い領域の記録領域4等も含むように、プラズモン共鳴素子9に、照射光5として集光される。なお、偏光方向8aは、照射光5の光軸上での偏光方向を示す。
 以上のように、再生光が、プラズモン共鳴素子9の共鳴部に近接する記録領域4にも照射される構成とすることにより、プラズモン共鳴がより強くなる。これにより、記録状態と未記録状態とでの反射光量の差が大きくなり、検出感度が良くなる。
 プラズモン共鳴素子9によって反射された反射光6は、逆方向に折り返し、対物レンズ10を通過する。対物レンズ10を通過した反射光6は、ビームスプリッタ15により光軸を-Z軸方向に曲げられ、サーボ信号検出用光学素子19に入射する。反射光6は、サーボ信号検出用光学素子19によって、少なくとも2つの光に分岐され、検出レンズ16により2種類の収束光18a,18bに分岐される。
 再生信号光となる収束光18aは、光検出器17aに入射する。光検出器17aは、記録領域4に記録された信号を検出する。再生部24は、光検出器17aからの検出信号に基づいて記録領域4が記録状態及び未記録状態のいずれであるかを判断して、記録領域4に記録された情報を再生する。収束光18bは、別の光検出器17bに入射する。光検出器17bは、サーボ信号を検出する。本実施の形態における光学情報再生装置は、プラズモン共鳴素子9及び対物レンズ10を一体に移動させる駆動部25を備えている。駆動部25は、光検出器17bからのサーボ信号に基づきプラズモン共鳴素子9を移動させることにより、プラズモン共鳴素子9と記録層2との間隔等を含めた微小な位置制御を行う。
 対物レンズ10は、いわゆるオフアキシス型の集光レンズである。光軸がY軸方向に平行である略平行光13が対物レンズ10に入射すると、光軸がYZ面でY軸からZ軸方向に角度θだけ傾いた出射光が集光される。オフアキシス型の対物レンズ10を用いることにより、対物レンズ10と情報記録媒体3との接触を防止し、プラズモン共鳴素子9の共鳴部22付近に斜め横方向から再生光を集光しやすくする効果がある。
 プラズモン共鳴素子9は、図2に示すように、Au等の金属から構成された先端が尖った三角柱形状を有している。プラズモン共鳴素子9は、先端にある共鳴部22を記録層2の記録領域4に近接させた状態で、ZX面に対して角度θだけ傾けて配置してある。
 なお、プラズモン共鳴素子9は上記に示した三角形状以外にも、プラズモン共鳴が起こりやすいように先端が尖った形状を有していれば良く、全体の形にこだわらない。
 プラズモン共鳴素子9は、平坦部を有することが望ましく、本実施の形態では、プラズモン共鳴素子9が有する三角形の平坦部が、照射光5の光軸に対して略垂直になるように、θ≒θとする。これにより、プラズモン共鳴素子9の平坦部への照射光5をほぼ同じ角度で逆向きに反射光6として反射することができ、光利用効率が大きくなり好ましい。また、プラズモン共鳴素子9の平坦部に、再生光である照射光5を照射し、反射光6を良好に取り出すために、例えば、平坦部の面積が100~数1000nm程度、もしくは数1000nmより大きな平坦部を有することが望ましい。
 照射光5の照射により、プラズモン共鳴素子9内に存在する電子が照射光5と相互に作用して、(表面)プラズモン共鳴を誘起させ、それに伴って先端領域の共鳴部22に近接場光7を発生させる。このとき、近接した記録領域4と共鳴部22が相互に作用して、一層強く増強されたプラズモン共鳴を発生させる条件が存在し、プラズモン共鳴が増強されたとき、プラズモン共鳴素子9からの反射光6の光量が変化することを、本発明者らは発見した。
 プラズモン共鳴素子9の共鳴部22と、記録状態の記録領域4又は未記録状態の記録領域4との間でのプラズモン共鳴の度合いに応じて、プラズモン共鳴素子9からの反射光量が変化する。例えば、プラズモン共鳴素子9の共鳴部22と、記録状態の記録領域4a又は未記録状態の記録領域4bとの間でのプラズモン共鳴の度合いの大きい方が、プラズモン共鳴素子9からの反射光量の変化が大きくなる。
 図3(A)及び図3(B)は、未記録状態の記録領域4bよりも記録状態の記録領域4aの方が、プラズモン共鳴の度合いが大きい例である。図3(A)は、記録状態である記録領域4a上にプラズモン共鳴素子9の共鳴部22が存在する場合を示している。図3(A)において、共鳴部22から記録領域4aに至るまで近接場光7aが発生し、プラズモン共鳴度合いが大きくなっている。その結果、反射光6aの光量が変化(図3(A)では低下)している。また、図3(B)は、未記録状態である記録領域4b上にプラズモン共鳴素子9の共鳴部22が存在する場合を示している。図3(B)において、共鳴部22近傍のみに近接場光7bが発生し、プラズモン共鳴度合いが小さくなっている。その結果、反射光6bの光量はほとんど変化していない。
 なお、プラズモン共鳴素子9と記録領域4とのプラズモン共鳴が増強すると、プラズモン共鳴素子9内で誘電損失(吸収)が増加すると考えられており、その結果、プラズモン共鳴素子9からの反射光量が変化するが、プラズモン共鳴素子9の設計によっては、プラズモン共鳴が増強すると、反射光量が小さくなる場合も、大きくなる場合もある。
 また、プラズモン共鳴素子9からの反射光又は透過光の偏光角等の偏光状態がプラズモン共鳴度合いによって変化する場合もある。この場合、検光子等の光学素子を組み合わせることによって、反射光又は透過光の光量変化に変えることができるため、検光子等の光学素子からの出射光を光検出器で検出することによって、同様に情報を再生することができる。
 記録領域4のサイズが、回折限界以下の大きさであっても、記録領域4が記録状態であるか未記録状態であるかで、プラズモン共鳴の度合いを変化させることができる。このため、反射光6が光検出器17aにより検出され、光検出器17aからの検出信号に基づいて記録領域4が記録状態及び未記録状態のいずれであるかが判断されることにより、記録領域4に記録された情報を再生することができる。なお、例えば、記録状態に対して“1”(又は“0”)が対応付けられ、未記録状態に対して“0”(又は“1”)が対応付けられており、“1”と“0”との組み合わせによって記録された情報が再生される。
 プラズモン共鳴及びプラズモン共鳴の増強には、照射光5の偏光方向が重要であり、電子が存在するプラズモン共鳴素子9の長手方向と、照射光5の偏光方向8aとが平行に近いほどプラズモン共鳴が良く生じることが知られている。そのため、図1の配置では、θ=θとすることが好ましい。なお、θ=0又はθ≠θのとき等のように、プラズモン共鳴素子9の長手方向に対する照射光5の偏光成分が存在するのなら、プラズモン共鳴が生じる。
 このとき、共鳴部22が、記録領域4と相互に作用してプラズモン共鳴を増強させるためには、光源14は、プラズモン共鳴素子9に照射された照射光5の光軸上において、記録層2の配置面(XY面)に対して垂直方向(Z軸方向)に偏光する再生光の偏光成分の振幅は、他の偏光方向(Y軸方向)に偏光する再生光の偏光成分の振幅よりも大きい特性を有するように配置されることが好ましい。例えば、対物レンズ10に入射するレーザ光の光軸とプラズモン共鳴素子9に入射するレーザ光の光軸との角度θが0°≦θ<45°を満たすように、かつZ軸方向に直線偏光を有する再生光をY軸方向に出射するように、光源14が配置される(図1)。
 本実施の形態1では、再生光が多少斜め成分を持つように(θ>0°)、例えば、角度θは10°~30°の範囲内としている。その結果、照射光5が共鳴部22に近い領域の記録領域4等も含むように斜めから照射できるため、プラズモン共鳴の増強には好ましい。
 また、光源14と対物レンズ10との間の光路中に、光源14から出射された出射光12又は13の偏光状態を変換する、例えば、波長板のような偏光制御光学素子を配置してもよい。偏光制御光学素子は、記録層2の配置面(XY面)に対して垂直方向(Z軸方向)に偏光する再生光の偏光成分の振幅を、他の偏光方向(Y軸方向)に偏光する再生光の偏光成分の振幅よりも大きくする。例えば、光源14からの出射光12の偏光方向がX軸方向であるとき、例えば、1/2波長板等の波長板を光源14と対物レンズ10との光路中に配置すると良い。
 記録領域4の一部又は全てが記録材料からなる。プラズモン共鳴を増強するには、記録領域4の記録材料が金属的な性質をもつことが望ましく、具体的には、記録材料の誘電率の実数部の符号がマイナスであることが望ましい。さらに、記録材料の比誘電率の実数部が-5以下になると、プラズモン共鳴の度合いが大きくなる。そのため、記録材料の比誘電率の実数部が-5以下であることが好ましい。例えば、実際の金属を例に説明すると、再生光が可視光の範囲内である場合、Auでは波長が0.54μm以上である場合に、Agでは波長が0.44μm以上である場合に、Cuでは波長が0.506μm以上である場合に、比誘電率の実数部が-5以下となり、プラズモン共鳴度合いが上記の範囲で強くなっており、他の記録材料も比誘電率の実数部の値によって共鳴度合いの目安を判断できる。
 例えば、記録領域4の記録材料が、記録状態及び未記録状態のどちらか一方では金属的な性質を示し、他方では非金属的な性質を示すなら、金属的な性質を示す記録材料の反射率の変化は、非金属的な性質を示す記録材料の反射率の変化よりも大きい。すなわち、記録状態である記録材料の誘電率の実数部と、未記録状態である記録材料の誘電率の実数部とのうち、誘電率の実数部が小さい方の記録材料の反射光量の変化は、誘電率の実数部が大きい方の記録材料の反射光量の変化よりも大きくなる。そのため、再生の変調度が大きくなり、良好な再生が期待できる。
 すなわち、記録層2の記録領域4の一部又は全てが記録材料からなり、再生光の波長に対して、記録状態である記録材料の誘電率の実数部の符号と、未記録状態である記録材料の誘電率の実数部の符号とが互いに異なるようにすれば良い。さらに、再生光の波長に対して、記録状態である記録材料の比誘電率の実数部と、未記録状態である記録材料の比誘電率の実数部とのうち、一方が-5以下であり、他方が-5より大きくするようにすれば良い。この場合、記録状態である記録材料と、未記録状態である記録材料とのうちの一方のプラズモン共鳴度合いが強くなるので、さらに再生の変調度が良くなるという効果がある。
 記録材料としては、相変化記録材料、酸化ビスマス又は酸化チタン等の無機材料、ジアリールエテン等のフォトクロミック材料、又は有機色素等が知られている。いずれの記録材料であっても、再生光の波長において上記の条件を満たせば、再生の変調度を大きくすることができる。
 本実施の形態1では、記録材料の主成分として、例えば、GeTeとSbTeとを2:1の割合で含むGeSbTeのようなGeTe-SbTe系のカルコゲナイド系相変化記録材料を用いており、記録状態が結晶に対応し、未記録状態がアモルファスに対応しているが、記録状態がアモルファスに対応し、未記録状態が結晶に対応しても良い。なお、主成分とは、記録領域4を構成する最も体積比の大きい材料の成分を指し、体積比で50%以上であれば、再生の変調度が大きくなるので好ましい。
 このように、記録領域4の一部又は全てが記録材料からなり、記録材料の主成分は相変化記録材料であり、記録状態及び未記録状態は、それぞれアモルファス及び結晶のどちらか一方に対応する。
 一般的に、相変化記録材料は結晶になると、組成により波長範囲が異なるが、ある波長領域で、金属的な性質を示す特徴がある。
 例えば、記録材料が、典型的な相変化材料であるGeSbTeである場合、光源14の半導体レーザ化に適した再生光の波長λは、例えば、0.35μm≦λ≦0.45μmを満たすことが好ましい。例えば、青紫色半導体レーザの再生光の波長λが0.41μmである場合、結晶である記録材料の比誘電率の実数部が-8.7となり、アモルファスである記録材料の比誘電率の実数部が0.57となる。この場合、結晶である記録材料の比誘電率の実数部は-5以下であり、アモルファスである記録材料の比誘電率の実数部は-5より大きいという条件を満たすため好ましい。
 また、同様に、光源14の半導体レーザ化に適した、0.6μm≦λ≦0.7μmを満たす赤色の再生光の波長λが例えば、0.65μmである場合、結晶である記録材料の比誘電率の実数部が-3.3となり、アモルファスである記録材料の比誘電率の実数部が12となる。また、光源14の半導体レーザ化に適した、0.73μm≦λ≦0.83μmを満たす赤外の再生光の波長λが例えば0.78μmである場合、結晶である記録材料の比誘電率の実数部が5.9となり、アモルファスである記録材料の比誘電率の実数部が17となる。
 従って、記録材料がGeSbTeである場合、赤色光から青色光の波長(0.35μm≦λ≦0.7μm)では、結晶とアモルファスとで誘電率の実数部の符号が互いに異なるため、好ましい。特に、青色光の波長(0.35μm≦λ≦0.45μm)では、結晶である記録材料の比誘電率の実数部は-5以下であり、アモルファスである記録材料の比誘電率の実数部は-5より大きいため、より好ましい。GeTeとSbTeとの成分比を22:1に変えたGe22SbTe25、又はその他の成分比で形成された記録材料でも同様の傾向を示し、青色光の波長での再生が好ましい。
 また、記録材料がGeTe-BiTe系のGe31BiTe34である場合、青色光の波長に対して、結晶である記録材料の比誘電率の実数部は-9.3となり、アモルファスである記録材料の比誘電率の実数部は3.9となり、赤色光の波長に対して、結晶である記録材料の比誘電率の実数部は-2.9となり、アモルファスである記録材料の比誘電率の実数部は14となり、赤外光の波長に対して、結晶である記録材料の比誘電率の実数部は15となり、アモルファスである記録材料の比誘電率の実数部は15となる。GeSbTeの場合と同様、Ge31BiTe34でも、赤色光から青色光の波長では、結晶とアモルファスとで誘電率の実数部の符号が互いに異なるため、好ましい。特に、青色光の波長では、比誘電率の実数部は、結晶である記録材料の比誘電率の実数部は-5以下であり、アモルファスである記録材料の比誘電率の実数部は-5より大きいため、より好ましいと言える。成分比を変えた他のGeTe-BiTe系の記録材料も同様の効果を示す。
 また、他の相変化材料である、Te60GeSn11Au25、AgInSb76Te16、GeTe、(Ge-Sn)Te、(Ge-Sn)Te-SbTe、(Ge-Sn)Te-BiTe、GeTe-(Sb-Bi)Te、(Ge-Sn)Te-(Sb-Bi)Te、GeTe-(Bi-In)Te、(Ge-Sn)Te-(Bi-In)Te、Sb-Ga、(Sb-Te)-Ga、Sb-Ge、(Sb-Te)-Ge、Sb-In、(Sb-Te)-In、Sb-Mn-Ge、Sb-Sn-Ge、Sb-Mn-Sn-Ge、及び(Sb-Te)-Ag-Inのいずれかを含む材料も、結晶になると、ある波長領域で、金属的な性質を示す特徴がある。そのため、比誘電率の実数部の値に注目して、上記好ましい条件を満たす波長の範囲で、上記のいずれかを含む材料を有効に用いることができる。
 また、プラズモン共鳴素子9の材料として、Auを例示したが、これに限定されず、使用する再生光の波長に合わせて、記録材料とプラズモン共鳴又はプラズモン共鳴の増強ができる他の材料を選んでもよい。
 赤色光から赤外光の波長では、一般的に、プラズモン共鳴素子9をほぼどの金属で構成しても、再生光を照射するだけで、比較的プラズモン共鳴が生じ易い。そのため、記録領域4が記録状態及び未記録状態のいずれかに変化しても、記録材料とのプラズモン共鳴の増強度の変化が比較的起こりにくい。その結果、再生の変調度は低下する傾向にある。
 しかしながら、本発明者らは、再生光の波長λが、0.35μm≦λ≦0.45μmを満たす青色の波長である時、プラズモン共鳴素子9は、Au、Cu、Ti、Ni及びAgのうち少なくとも1つを主成分とすることが、再生の変調度を向上させるため、好ましいことを見いだした。上記材料は、青色の波長の再生光を照射するだけでは、プラズモン共鳴度が小さいため、近接場光7の発生が小さい。しかしながら、記録領域4の誘電率の実数部の符号が負になる場合、又は記録領域4の比誘電率の実数部が-5以下になる場合、プラズモン共鳴素子9と記録領域4とが相互作用してプラズモン共鳴の度合いが大幅に大きくなるため、再生の変調度を向上させることが可能になることが分かった。
 情報記録媒体3の基板1としては、記録層2を形成する面の平坦性が高く、情報記録媒体3を回転させたときの安定性が高いことが好ましい。基板1の材料としては、例えば、ガラス基板、又はアルミニウム等の金属板が好ましく、さらには、ポリカーボネート、PMMA(ポリメタクリル酸メチル樹脂)、ノルボルネン樹脂(例えば、「アートン」(JSR株式会社製))、又はシクロオレフィン樹脂(例えば、「ゼオネックス」(日本ゼオン株式会社製))等の樹脂も用いることができる。
 記録層2は、薄膜形状であり、記録領域4は、記録マークとしての形態でも良い。しかし、本実施の形態では、図2に示すように、記録層2の記録領域4は、厚さがhであり、島状に配列され、一部又は全てが記録材料からなる微粒子を含んでいる。図2では、記録領域4aが記録状態の微粒子を示し、記録領域4bが未記録状態の微粒子を示しており、微粒子の配列周期は、X軸方向にΛx、Y軸方向にΛyである。1つの微粒子が、従来の記録マークに対応しており、記録情報を有している。図2では、全ての微粒子は、規則的に配列されているが、必ずしもその必要はなく、記録する情報によって配列間隔又は配列の仕方を変えても良い。また、配列間隔又は配列の仕方を種々変えることにより、微粒子の位置情報等を含めることが可能となる。
 記録層2が連続的につながっている薄膜形状の場合、記録材料に記録マーク等の記録領域4を形成する際に、記録材料中に熱が拡散してしまい、記録スポットを超える大きな記録マークが記録されてしまう。このような熱拡散によって記録マークの大きさの差が顕著になり始めるのは、記録マークが30nm以下となる場合である。
 したがって、記録層2の記録領域4は、島状に配列されるとともに、サイズが30nm以下となる微粒子構造にする。これにより、それぞれの微粒子間は分離されているため、記録の際の熱拡散の影響を避けて良好に30nm以下の記録領域4(微粒子)を有する情報記録媒体の作製が可能となる。
 しかしながら、記録材料が3nm程度まで小さな粒子になってしまうと、粒子に含まれる原子数が少なくなり、融点が低くなりすぎて記録材料への記録の保持が熱的な揺らぎによって不安定になってしまう。よって、記録領域4(微粒子)のサイズは3nm以上であることが好ましい。
 また、記録領域4である微粒子は、できるだけ微小化してサイズを小さくし、且つ、孤立した状態の微粒子同士をできるだけ近接して設けることが、記録の高密度化の面でより好ましい。ただし、微粒子同士の間隔が狭すぎると、各微粒子同士が接触し、微粒子の独立性(孤立状態)が担保できなくなる可能性がある。よって、これらの点を考慮して、微粒子同士の間隔を設計することが望ましい。
 なお、記録領域4である微粒子は、本実施の形態では、図2に示すような微細な凸形状に加工されたものを指し、図2に示した円柱形状以外にも、円錐、3角錐、4角以上の多角錐、3角柱、又は4角以上の多角柱のような形状でも良い。
 特に、図4(A)に示すように、円錐、3角錐又は4角以上の多角錐等の先端が尖った形状の微粒子、さらには、図4(B)に示すように、円柱、3角柱又は4角以上の多角柱であっても、先端が丸まったり尖ったりした形状の微粒子は、近接場光が集光又は集中しやすいため、好ましいことを、本発明者らは発見した。
 図4(A)は、円錐形状の記録領域を含む情報記録媒体の一例を示す図であり、図4(B)は、円柱の先端部分に半球状に丸くなった形状を有する記録領域を含む情報記録媒体の一例を示す図である。
 図4(A)において、情報記録媒体3aは、基板1及び記録層2を備え、記録層2は、円錐形状の記録領域4’を含む。また、記録領域4’は、記録状態の記録領域4a’と、未記録状態の記録領域4b’とを含む。記録領域4’である微粒子の先端部分は、尖った断面を有している。より具体的には、微粒子は、円錐形状である。
 また、図4(B)において、情報記録媒体3bは、基板1及び記録層2を備え、記録層2は、円柱の先端部分に半球状に丸くなった形状を有する記録領域4”を含む。また、記録領域4”は、記録状態の記録領域4a”と、未記録状態の記録領域4b”とを含む。記録領域4”である微粒子の先端部分は、円弧状の断面を有している。より具体的には、微粒子は、円柱の先端部分に半球が形成された形状である。なお、記録領域4”である微粒子は、円柱の先端部分に円錐が形成された形状であってもよく、角柱の先端部分に角錐が形成された形状であってもよい。
 なお、本実施の形態1においては、光源14から出射された再生光は、対物レンズ10によって、プラズモン共鳴素子9に照射されている。しかし、光源14から出射された再生光は、例えば、光導波路又は光ファイバーなどによって、プラズモン共鳴素子9に照射されても良い。
 また、記録領域(微粒子)4は、基板1から突出した部分の全てが記録材料で形成されていてもよく、また、基板1から突出した部分の先端部分のみが記録材料で形成されていてもよい。
 上記に説明した本実施の形態1の情報記録媒体3は、少なくとも基板1及び記録層2を備え、記録層2の記録領域4は、島状に配列され、記録領域4は、一部又は全てが記録材料からなる微粒子を含み、再生光の波長に対して、記録状態である記録材料の誘電率の実数部の符号と、未記録状態である記録材料の誘電率の実数部の符号とが異なることを特徴とした情報記録媒体である。
 また、本実施の形態1の情報記録媒体3は、少なくとも基板1及び記録層2を備え、記録層2の記録領域4は、島状に配列され、記録領域4は、一部又は全てが記録材料からなる微粒子を含み、再生光の波長に対して、記録状態である記録材料の比誘電率の実数部と、未記録状態である記録材料の比誘電率の実数部とのうち、一方が-5以下であり、他方が-5より大きいことを特徴とした情報記録媒体である。
 本実施の形態1の光学記録再生装置では、プラズモン共鳴素子9が、例えば、Auから構成され、平坦部の面積が2500nmであり、再生波長λが0.405μmであり、記録領域4がGeSbTeから構成された微粒子であり、微粒子の直径が20nmであり、記録層2の厚みhが100nmであり、共鳴部22と記録領域4との間隔が15nmである。このとき、記録領域4が結晶の場合の反射率は1.00%であり、記録領域4がアモルファスの場合の反射率は1.44%であり、反射率の変化量は0.44%となり、再生の変調度は31%となり、それぞれ良い値が得られた。なお、再生の変調度は、反射率の変化量を、結晶及びアモルファスのうちの大きい方の反射率で除算することにより(=0.44/1.44)、計算できる。
 また、プラズモン共鳴素子9の大きさは空間的な制限を受けないため、記録マーク等の記録領域よりもプラズモン共鳴素子9を大きくすることが可能である。本実施の形態1の光学記録再生装置は、プラズモン共鳴素子9に、近接場光ではなく、再生光を直接照射してプラズモン共鳴素子9からの反射光を検出するため、反射光量又は光量変化も十分大きくすることができる。
 (実施の形態2)
 次に、本発明の実施の形態2における情報記録媒体について説明する。図5は、本発明の実施の形態2における情報記録媒体3cの構成を示す断面図である。実施の形態1の情報記録媒体3と異なる点は、基板1上に形成された記録層2の記録領域4の上層に、誘電率の実数部の符号が正である保護層23を形成したことである。すなわち、情報記録媒体3cは、記録領域4の上層に、誘電率の実数部の符号が正であり、記録領域4を保護するための保護層23をさらに備える。保護層23を設けることにより、記録材料で形成された記録領域4である微粒子の耐環境性を向上させることができ、プラズモン共鳴素子9の先端部の共鳴部22との接触による記録領域4のダメージを低減することができる。また、保護層23の誘電率の実数部の符号が正であることにより、保護層23と共鳴部22との間に余計なプラズモン共鳴が生じることを防ぎ、その結果、保護層23からの悪影響による再生の変調度の低下を防ぐことができる。
 誘電率の実数部の符号が正である保護層23としては、例えば、ZrSiO、(ZrO25(SiO25(Cr50、SiCr、TiO、ZrO、HfO、ZnO、Nb、Ta、SiO、SnO、Al、Bi、Cr、Ga、In、Sc、Y、La、Gd、Dy、Yb、CaO、MgO、CeO、及びTeO等から選ばれる1又は複数の酸化物等の無機材料を用いることができる。
 また、保護層23としては、C-N、Ti-N、Zr-N、Nb-N、Ta-N、Si-N、Ge-N、Cr-N、Al-N、Ge-Si-N、及びGe-Cr-N等から選ばれる1又は複数の窒化物を用いることもできる。また、保護層23としては、ZnSなどの硫化物、SiCなどの炭化物、又はLaF、CeFもしくはMgFなどの弗化物を用いることもできる。また、保護層23は、上記材料から選ばれる1又は複数の材料の混合物を用いて形成しても構わない。さらに、保護層23は樹脂等の有機材料で構成しても良く、この場合、衝突時の衝撃を上記の無機材料よりも減らすことができる。また、保護層23は、有機材料と無機材料との混合材料で構成しても良い。
 また、保護層23の表面を光学的に平坦にすることにより、表面の凹凸が無くなるため、表面の凹凸に起因するプラズモン共鳴素子9との接触を低減することができる。
 (実施の形態3)
 次に、本発明の実施の形態3の光学情報再生装置について、図6、図7、図8(A)及び図8(B)を用いて、上記実施の形態1の光学情報再生装置と異なる点を中心に説明する。
 図6は、本発明の実施の形態3における光学情報再生装置の構成を示す図である。図7は、本発明の実施の形態3における光学情報再生装置のプラズモン共鳴素子と、情報記録媒体から情報を再生する様子とを示す説明図である。図8(A)は、本発明の実施の形態3において、情報記録媒体の記録領域が記録状態であり、プラズモン共鳴度合いが大きい場合のプラズモン共鳴素子近傍の様子を示す図7のVIII-VIII線による断面図である。図8(B)は、本発明の実施の形態3において、情報記録媒体の記録領域が未記録状態であり、プラズモン共鳴度合いが小さい場合のプラズモン共鳴素子近傍の様子を示す図7のVIII-VIII線による断面図である。
 実施の形態3の光学情報再生装置が、実施の形態1の光学情報再生装置と異なる点は、プラズモン共鳴素子9’の形状と対物レンズ10’の形状とである。さらには、実施の形態3における光学情報再生装置は、光源14とプラズモン共鳴素子9’との間の光路中のビームスプリッタ15と対物レンズ10’との光路間に、ラジアル偏光発生素子20と立ち上げミラー21とを備える。
 プラズモン共鳴素子9’は、底面以外の面に金属膜が被覆された円錐プリズムであり、円錐プリズムは、頂点近傍に共鳴部22’を有している。また、対物レンズ10’は、入射光の光軸と出射光の光軸とが一致する通常のインライン型のレンズである。
 ラジアル偏光発生素子20は、光源14とプラズモン共鳴素子9’との間の光路中に配置され、プラズモン共鳴素子9’に集光する再生光にラジアル偏光を含める。ラジアル偏光発生素子20が配置されることにより、対物レンズ10’によってプラズモン共鳴素子9’に集光される照射光5’にラジアル偏光を含めることができる。ラジアル偏光を含む照射光5’がプラズモン共鳴素子9’である円錐プリズムの底面に入射すると、側面にコートされた金属膜と円錐プリズムとの界面に伝搬型の表面プラズモンが伝搬し、先端の共鳴部22’に、偏光方向がZ軸方向である近接場光7’が発生する。
 従って、記録領域4が記録状態及び未記録状態のいずれであるかにより、共鳴部22’と記録領域4とのプラズモン共鳴の増強度が変わる。このため、プラズモン共鳴素子9’からの反射光6’を検出することにより、実施の形態1の光学情報再生装置と同様に、記録領域4が記録状態及び未記録状態のいずれであるかを判断して、記録領域4に記録された情報を再生することができる。
 図8(A)及び図8(B)は、未記録状態の記録領域4bよりも記録状態の記録領域4aの方が、プラズモン共鳴の度合いが大きい例である。図8(A)は、記録状態である記録領域4a上にプラズモン共鳴素子9’の共鳴部22’が存在する場合を示している。図8(A)において、共鳴部22’から記録領域4aに至るまで近接場光7a’が発生し、プラズモン共鳴度合いが大きくなっている。その結果、反射光6a’の光量が変化(図8(A)では低下)している。また、図8(B)は、未記録状態である記録領域4b上にプラズモン共鳴素子9’の共鳴部22’が存在する場合を示している。図8(B)において、共鳴部22’近傍のみに近接場光7b’が発生し、プラズモン共鳴度合いが小さくなっている。その結果、反射光6b’の光量はほとんど変化していない。
 従って、実施の形態3の光学情報再生装置では、通常のインライン型の対物レンズ10’を用いることによって、情報記録媒体3の基板1又は記録層2の形成面(XY面)に対して垂直に集光する光学系を用いることができる。このため、設計の自由度が大きくなり、光学系の配置が容易になる。また、対物レンズ10’も高NA化しやすくなり、その結果、共鳴部22’から発生する近接場光7’の強度を大きくすることができる。
 図8(A)及び図8(B)に示すように、プラズモン共鳴素子9’は、頂角が2θであり、例えば、ガラス又はプラスチック製の円錐プリズムに、例えば、Au又はAl等の金属膜がコートされている。プラズモン共鳴素子9’の形状は、いわゆるクレッチマン配置にすることにより、ラジアル偏光の照射光5’を効率よく表面プラズモンに変えることが可能である。例えば、再生波長λが0.405μmであるとき、角度θが43.4°であり、厚さtが16.3nmであるAlをプリズムにコートすることが好ましい。このとき、ほぼ100%の照射光5’を伝搬型表面プラズモンに変えることができる。
 また、例えば、2θ=8°にして頂角を小さくすると、いわゆる超集束というモ-ドが存在できるようになる。このとき、伝搬型表面プラズモンが、先端の共鳴部22’の方向に伝搬するに従い、伝搬型表面プラズモンの波長が短くなることが知られており、より微小な記録領域4とのプラズモン共鳴及びプラズモン共鳴の増強が可能となる。したがって、より微小な記録領域4に対する再生の変調度が良好であるため、高密度の情報記録媒体の再生という点で好ましい。
 (実施の形態4)
 次に、本発明の実施の形態4の光学情報再生装置について、図9を用いて、上記実施の形態1の光学情報再生装置と異なる点を中心に説明する。
 図9は、本発明の実施の形態4における光学情報再生装置の構成を示す図である。実施の形態1における光学情報再生装置では、プラズモン共鳴素子9からの反射光を検出しているが、実施の形態4における光学情報再生装置では、プラズモン共鳴素子9からの透過光を検出する。
 実施の形態4における光学情報再生装置は、プラズモン共鳴素子9、対物レンズ10、コリメータレンズ11、光源14、ビームスプリッタ15、検出レンズ16、光検出器17a’,17b、サーボ信号検出用光学素子19、再生部24及び駆動部25を備える。
 光検出器17a’は、プラズモン共鳴素子9の光入射側の面に対向する面に接して配置され、再生光が照射されたプラズモン共鳴素子9からの透過光18a’を検出する。再生部24は、光検出器17a’からの検出信号に基づいて記録領域4が記録状態及び未記録状態のいずれであるかを判断して、記録領域4に記録された情報を再生する。
 プラズモン共鳴素子9の共鳴部22と、記録状態の記録領域4又は未記録状態の記録領域4との間でのプラズモン共鳴の度合いに応じて、透過光量が変化する。例えば、プラズモン共鳴素子9の共鳴部22と、記録状態の記録領域4a又は未記録状態の記録領域4bとの間でのプラズモン共鳴の度合いの大きい方が、透過光量の変化が大きくなる。
 なお、プラズモン共鳴素子9と記録領域4とのプラズモン共鳴が増強すると、プラズモン共鳴素子9内で誘電損失(吸収)が増加すると考えられており、プラズモン共鳴素子9からの透過光量が、一般的には小さくなる。
 このように、透過光18a’が光検出器17a’により検出され、光検出器17a’からの検出信号に基づいて記録領域4が記録状態及び未記録状態のいずれであるかが判断されることにより、記録領域4に記録された情報を再生することができる。
 なお、実施の形態4において、透過光18a’を検出することにより、記録領域4に記録された情報を再生する構成以外は、実施の形態1の構成と同じであるので、詳細な説明は省略する。
 本実施の形態4の光学記録再生装置は、プラズモン共鳴素子9に、近接場光ではなく、再生光を直接照射してプラズモン共鳴素子9からの透過光を検出するため、透過光量又は光量変化も十分大きくすることができる。
 なお、本実施の形態4では、光検出器17a’は、プラズモン共鳴素子9の光入射側の面に対向する面に接して配置されているが、本発明は特にこれに限定されず、プラズモン共鳴素子9から離れた位置に光検出器17a’を設け、プラズモン共鳴素子9と光検出器17a’との間にプラズモン共鳴素子9を透過した光を光検出器17a’へ導くレンズを設けてもよい。
 以上、実施の形態1~4の光学情報再生装置、光学情報再生方法及び情報記録媒体について説明してきたが、これらの実施の形態に限定されるものではない。それぞれの実施の形態の光学情報再生装置、光学情報再生方法及び情報記録媒体の構成を組み合わせた光学情報再生装置、光学情報再生方法及び情報記録媒体も本発明に含まれ、同様の効果を奏することができる。
 なお、上記実施の形態1~4で用いた対物レンズ、コリメータレンズ及び検出レンズは便宜上名付けたものであり、一般にいうレンズと同じである。
 また、上記実施の形態1~4においては、情報記録媒体として光ディスクを例に挙げて説明したが、実施の形態1~4と同様の光学情報再生装置によって厚み又は記録密度などの複数の仕様の異なる媒体を再生することができるように設計されたカード状、ドラム状又はテープ状の製品に応用することも本発明の範囲に含まれる。
 なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている。
 本発明の一局面に係る光学情報再生装置は、少なくとも基板及び記録層を含む情報記録媒体に記録された情報を再生する光学情報再生装置であって、再生光を出射する光源と、前記記録層の記録領域に近接させて配置される共鳴部を有し、前記共鳴部は前記記録領域と前記共鳴部との間でプラズモン共鳴を生じさせるプラズモン共鳴素子と、前記再生光が照射された前記プラズモン共鳴素子からの反射光又は透過光を検出する光検出器と、前記光検出器からの検出信号に基づいて前記記録領域が記録状態及び未記録状態のいずれであるかを判断して、前記記録領域に記録された情報を再生する再生部とを備える。
 この構成によれば、光源から出射された再生光が、プラズモン共鳴素子に照射され、プラズモン共鳴素子からの反射光又は透過光が検出され、検出信号に基づいて記録領域が記録状態及び未記録状態のいずれであるかが判断されて、記録領域に記録された情報が再生される。
 したがって、記録領域とプラズモン共鳴素子の共鳴部との間のプラズモン共鳴度合いが記録領域の状態に応じて変化することによって、プラズモン共鳴素子からの反射光量又は透過光量が変化することを利用して、記録領域の大きさが光の回折限界より小さくても、良好に情報を再生することができる。
 また、プラズモン共鳴素子の大きさは空間的な制限を受けないため、プラズモン共鳴素子を記録領域よりも大きくすることができる。さらに、プラズモン共鳴素子に近接場光ではなく、再生光を直接照射してプラズモン共鳴素子からの反射光又は透過光が検出されるので、反射光量、透過光量、反射光量の光量変化又は透過光量の光量変化も十分大きくすることができ、再生信号の変調度を向上させることができる。
 また、上記の光学情報再生装置において、前記再生光は、前記共鳴部に近接する前記記録領域にも照射されることが好ましい。
 この構成によれば、再生光が、プラズモン共鳴素子の共鳴部に近接する記録領域4にも照射されるので、プラズモン共鳴がより強くなり、記録状態と未記録状態とでの反射光量又は透過光量の差が大きくなり、検出感度が良くなる。
 また、上記の光学情報再生装置において、前記プラズモン共鳴素子の共鳴部と、記録状態の前記記録領域又は未記録状態の前記記録領域との間でのプラズモン共鳴の度合いに応じて、前記プラズモン共鳴素子からの反射光量又は透過光量が変化することが好ましい。
 この構成によれば、プラズモン共鳴素子の共鳴部と、記録状態の記録領域又は未記録状態の記録領域との間でのプラズモン共鳴の度合いに応じて、プラズモン共鳴素子からの反射光量又は透過光量が変化するので、プラズモン共鳴素子からの反射光又は透過光を検出することにより、記録領域が記録状態及び未記録状態のいずれであるかを判断することができる。
 また、上記の光学情報再生装置において、前記記録領域の一部又は全てが記録材料からなり、前記再生光の波長に対して、記録状態である前記記録材料の誘電率の実数部の符号と、未記録状態である前記記録材料の誘電率の実数部の符号とが互いに異なることが好ましい。
 この構成によれば、再生光の波長に対して、記録状態である記録材料の誘電率の実数部の符号と、未記録状態である記録材料の誘電率の実数部の符号とが互いに異なるので、記録状態である記録材料と、未記録状態である記録材料とのうちの一方のプラズモン共鳴度合いが強くなり、さらに再生の変調度を向上させることができる。
 また、上記の光学情報再生装置において、前記記録領域の一部又は全てが記録材料からなり、前記再生光の波長に対して、記録状態である前記記録材料の比誘電率の実数部と、未記録状態である前記記録材料の比誘電率の実数部とのうち、一方が-5以下であり、他方が-5より大きいことが好ましい。
 この構成によれば、再生光の波長に対して、記録状態である記録材料の比誘電率の実数部と、未記録状態である記録材料の比誘電率の実数部とのうち、一方が-5以下であり、他方が-5より大きいので、記録状態である記録材料と、未記録状態である記録材料とのうちの一方のプラズモン共鳴度合いがより一層強くなり、さらに再生の変調度を向上させることができる。
 また、上記の光学情報再生装置において、記録状態である前記記録材料の誘電率の実数部と、未記録状態である前記記録材料の誘電率の実数部とのうち、前記誘電率の実数部が小さい方の前記記録材料の反射光量又は透過光量の変化は、前記誘電率の実数部が大きい方の前記記録材料の反射光量又は透過光量の変化よりも大きくなることが好ましい。
 この構成によれば、記録状態である記録材料の誘電率の実数部と、未記録状態である記録材料の誘電率の実数部とのうち、誘電率の実数部が小さい方の記録材料の反射光量又は透過光量の変化は、誘電率の実数部が大きい方の記録材料の反射光量又は透過光量の変化よりも大きくなるので、再生の変調度が大きくなり、良好に情報を再生することができる。
 また、上記の光学情報再生装置において、前記記録領域の一部又は全てが記録材料からなり、前記記録材料の主成分は相変化記録材料であり、前記記録状態及び前記未記録状態は、それぞれアモルファス及び結晶のどちらか一方に対応することが好ましい。
 この構成によれば、結晶とアモルファスとでは誘電率が互いに異なるため、記録状態である記録材料と、未記録状態である記録材料とのうちの一方のプラズモン共鳴度合いが強くなり、再生の変調度を向上させることができる。
 また、上記の光学情報再生装置において、前記再生光の波長λは、0.35μm≦λ≦0.45μmを満たすことが好ましい。
 この構成によれば、波長λが0.35μm≦λ≦0.45μmを満たす再生光に適用可能である。
 また、上記の光学情報再生装置において、前記プラズモン共鳴素子は、前記再生光の光軸に対して略垂直に配置される平坦部を有し、前記平坦部に前記再生光が照射されることが好ましい。
 この構成によれば、プラズモン共鳴素子が有する平坦部に照射される再生光をほぼ同じ角度で逆向きに反射光として反射することができ、光利用効率を大きくすることができる。
 また、上記の光学情報再生装置において、前記光源は、前記プラズモン共鳴素子に照射された前記再生光の光軸上において、前記記録層の配置面に対して垂直方向に偏光する前記再生光の偏光成分の振幅が、他の偏光方向に偏光する前記再生光の偏光成分の振幅よりも大きい特性を有することが好ましい。
 この構成によれば、プラズモン共鳴素子に照射された再生光の光軸上において、記録層の配置面に対して垂直方向に偏光する前記再生光の偏光成分の振幅を、他の偏光方向に偏光する再生光の偏光成分の振幅よりも大きくすることにより、記録領域と相互に作用してプラズモン共鳴素子の共鳴部のプラズモン共鳴を発生させることができる。
 また、上記の光学情報再生装置において、前記光源から出射された前記再生光の偏光状態を変換する偏光制御光学素子をさらに備え、前記偏光制御光学素子は、前記記録層の配置面に対して垂直方向に偏光する前記再生光の偏光成分の振幅を、他の偏光方向に偏光する前記再生光の偏光成分の振幅よりも大きくすることが好ましい。
 この構成によれば、記録層の配置面に対して垂直方向に偏光する再生光の偏光成分の振幅を、他の偏光方向に偏光する再生光の偏光成分の振幅よりも大きくすることにより、記録領域と相互に作用してプラズモン共鳴素子の共鳴部のプラズモン共鳴を生じさせることができる。
 また、上記の光学情報再生装置において、前記偏光制御光学素子は波長板を含むことが好ましい。この構成によれば、波長板により容易に偏光方向を変化させることができる。
 また、上記の光学情報再生装置において、前記再生光を前記プラズモン共鳴素子に照射するオフアキシス型の集光レンズをさらに備えることが好ましい。
 この構成によれば、オフアキシス型の集光レンズを用いることにより、集光レンズと情報記録媒体との接触を防止し、プラズモン共鳴素子の共鳴部付近に斜め横方向から再生光を集光させることができる。
 また、上記の光学情報再生装置において、前記光源と前記プラズモン共鳴素子との間の光路中に配置され、前記プラズモン共鳴素子に集光する前記再生光にラジアル偏光を含めるラジアル偏光発生素子をさらに備えることが好ましい。この構成によれば、ラジアル偏光を含む再生光をプラズモン共鳴素子に照射することができる。
 また、上記の光学情報再生装置において、前記プラズモン共鳴素子は、底面以外の面に金属膜が被覆された円錐プリズムであり、前記円錐プリズムは、頂点近傍に前記共鳴部を有していることが好ましい。
 この構成によれば、ラジアル偏光を含む再生光がプラズモン共鳴素子である円錐プリズムの底面に入射すると、底面以外の面に被覆された金属膜と円錐プリズムとの界面に伝搬型の表面プラズモンが伝搬し、円錐プリズムの頂点近傍の共鳴部に近接場光が発生する。
 したがって、記録領域が記録状態及び未記録状態のいずれであるかにより、共鳴部と記録領域とのプラズモン共鳴の増強度が変化するため、プラズモン共鳴素子からの反射光を検出することにより、記録領域が記録状態及び未記録状態のいずれであるかを判断して、記録領域に記録された情報を良好に再生することができる。
 また、上記の光学情報再生装置において、前記再生光の波長λは0.35μm≦λ≦0.45μmを満たし、前記プラズモン共鳴素子の主成分は、Au、Cu、Ti、Ni及びAgのうち少なくとも1つであることが好ましい。
 この構成によれば、プラズモン共鳴素子の主成分としてAu、Cu、Ti、Ni及びAgのうち少なくとも1つが用いられ、記録領域の誘電率の実数部の符号が負になる場合、又は記録領域の比誘電率の実数部が-5以下になる場合、プラズモン共鳴の度合いが大幅に大きくなるため、再生の変調度を向上させることができる。
 本発明の他の局面に係る光学情報再生方法は、少なくとも基板及び記録層を含む情報記録媒体から情報を再生する光学情報再生方法であって、光源から出射された再生光を、前記記録層の記録領域に近接させて配置される共鳴部を有し、前記共鳴部は前記記録領域と前記共鳴部との間でプラズモン共鳴を生じさせるプラズモン共鳴素子に照射するステップと、前記再生光が照射された前記プラズモン共鳴素子からの反射光又は透過光を光検出器により検出するステップと、前記光検出器からの検出信号に基づいて前記記録領域が記録状態及び未記録状態のいずれであるかを判断して、前記記録領域に記録された情報を再生する。
 この構成によれば、光源から出射された再生光が、プラズモン共鳴素子に照射され、プラズモン共鳴素子からの反射光又は透過光が検出され、検出信号に基づいて記録領域が記録状態及び未記録状態のいずれであるかが判断されて、記録領域に記録された情報が再生される。
 したがって、記録領域とプラズモン共鳴素子の共鳴部との間のプラズモン共鳴度合いが記録領域の状態に応じて変化することによって、プラズモン共鳴素子からの反射光量又は透過光量が変化することを利用して、記録領域の大きさが光の回折限界より小さくても、良好に情報を再生することができる。
 また、プラズモン共鳴素子の大きさは空間的な制限を受けないため、プラズモン共鳴素子を記録領域よりも大きくすることができる。さらに、プラズモン共鳴素子に近接場光ではなく、再生光を直接照射してプラズモン共鳴素子からの反射光又は透過光が検出されるので、反射光量、透過光量、反射光量の光量変化又は透過光量の光量変化も十分大きくすることができ、再生信号の変調度を向上させることができる。
 本発明の他の局面に係る情報記録媒体は、少なくとも基板及び記録層を備え、前記記録層の記録領域は、島状に配列され、前記記録領域は、一部又は全てが記録材料からなる微粒子を含み、再生光の波長に対して、記録状態である前記記録材料の誘電率の実数部の符号と、未記録状態である前記記録材料の誘電率の実数部の符号とが互いに異なる。
 この構成によれば、再生光の波長に対して、記録状態である記録材料の誘電率の実数部の符号と、未記録状態である記録材料の誘電率の実数部の符号とが互いに異なるので、記録状態である記録材料と、未記録状態である記録材料とのうちの一方のプラズモン共鳴度合いが強くなり、さらに再生の変調度を向上させることができ、良好に情報を再生することができる。
 本発明の他の局面に係る情報記録媒体は、少なくとも基板及び記録層を備え、前記記録層の記録領域は、島状に配列され、前記記録領域は、一部又は全てが記録材料からなる微粒子を含み、再生光の波長に対して、記録状態である前記記録材料の比誘電率の実数部と、未記録状態である前記記録材料の比誘電率の実数部とのうち、一方が-5以下であり、他方が-5より大きい。
 この構成によれば、再生光の波長に対して、記録状態である記録材料の比誘電率の実数部と、未記録状態である記録材料の比誘電率の実数部とのうち、一方が-5以下であり、他方が-5より大きいので、記録状態である記録材料と、未記録状態である記録材料とのうちの一方のプラズモン共鳴度合いが一層強くなり、さらに再生の変調度を向上させることができ、良好に情報を再生することができる。
 また、上記の情報記録媒体において、前記微粒子の先端部分は、尖った断面、又は円弧状の断面を有することが好ましい。
 この構成によれば、微粒子の先端部分が、尖った断面、又は円弧状の断面を有するので、微粒子に近接場光が集光又は集中しやすくなり、プラズモン共鳴度合いを増強させることができる。
 また、上記の情報記録媒体において、前記記録領域の上層に、誘電率の実数部の符号が正である保護層をさらに備えることが好ましい。
 この構成によれば、誘電率の実数部の符号が正である保護層が記録領域の上層に配置されるので、記録材料で形成された記録領域である微粒子の耐環境性を向上させることができ、プラズモン共鳴素子の先端部の共鳴部との接触による記録領域のダメージを低減することができる。
 なお、発明を実施するための形態の項においてなされた具体的な実施態様又は実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と特許請求事項との範囲内で、種々変更して実施することができるものである。
 本発明に係る光学情報再生装置、光学情報再生方法及び情報記録媒体によれば、情報を記録している記録マーク等の記録領域の大きさが、光の回折限界より小さくても、良好に情報を再生することができ、情報記録媒体に記録された情報を光学的に再生する光学情報再生装置及び光学情報再生方法、並びに少なくとも基板及び記録層を含む情報記録媒体に有用である。

Claims (21)

  1.  少なくとも基板及び記録層を含む情報記録媒体に記録された情報を再生する光学情報再生装置であって、
     再生光を出射する光源と、
     前記記録層の記録領域に近接させて配置される共鳴部を有し、前記共鳴部は前記記録領域と前記共鳴部との間でプラズモン共鳴を生じさせるプラズモン共鳴素子と、
     前記再生光が照射された前記プラズモン共鳴素子からの反射光又は透過光を検出する光検出器と、
     前記光検出器からの検出信号に基づいて前記記録領域が記録状態及び未記録状態のいずれであるかを判断して、前記記録領域に記録された情報を再生する再生部とを備える光学情報再生装置。
  2.  前記再生光は、前記共鳴部に近接する前記記録領域にも照射される請求項1に記載の光学情報再生装置。
  3.  前記プラズモン共鳴素子の共鳴部と、記録状態の前記記録領域又は未記録状態の前記記録領域との間でのプラズモン共鳴の度合いに応じて、前記プラズモン共鳴素子からの反射光量又は透過光量が変化する請求項1又は2記載の光学情報再生装置。
  4.  前記記録領域の一部又は全てが記録材料からなり、
     前記再生光の波長に対して、記録状態である前記記録材料の誘電率の実数部の符号と、未記録状態である前記記録材料の誘電率の実数部の符号とが互いに異なる請求項1~3のいずれかに記載の光学情報再生装置。
  5.  前記記録領域の一部又は全てが記録材料からなり、
     前記再生光の波長に対して、記録状態である前記記録材料の比誘電率の実数部と、未記録状態である前記記録材料の比誘電率の実数部とのうち、一方が-5以下であり、他方が-5より大きい請求項1~4のいずれかに記載の光学情報再生装置。
  6.  記録状態である前記記録材料の誘電率の実数部と、未記録状態である前記記録材料の誘電率の実数部とのうち、前記誘電率の実数部が小さい方の前記記録材料の反射光量の変化又は透過光量の変化は、前記誘電率の実数部が大きい方の前記記録材料の反射光量の変化又は透過光量の変化よりも大きくなる請求項4記載の光学情報再生装置。
  7.  前記記録領域の一部又は全てが記録材料からなり、
     前記記録材料の主成分は相変化記録材料であり、
     前記記録状態及び前記未記録状態は、それぞれアモルファス及び結晶のどちらか一方に対応する請求項1~6のいずれかに記載の光学情報再生装置。
  8.  前記再生光の波長λは、0.35μm≦λ≦0.45μmを満たす請求項1~7のいずれかに記載の光学情報再生装置。
  9.  前記プラズモン共鳴素子は、前記再生光の光軸に対して略垂直に配置される平坦部を有し、
     前記平坦部に前記再生光が照射される請求項1~8のいずれかに記載の光学情報再生装置。
  10.  前記光源は、前記プラズモン共鳴素子に照射された前記再生光の光軸上において、前記記録層の配置面に対して垂直方向に偏光する前記再生光の偏光成分の振幅が、他の偏光方向に偏光する前記再生光の偏光成分の振幅よりも大きい特性を有する請求項1~9のいずれかに記載の光学情報再生装置。
  11.  前記光源から出射された前記再生光の偏光状態を変換する偏光制御光学素子をさらに備え、
     前記偏光制御光学素子は、前記記録層の配置面に対して垂直方向に偏光する前記再生光の偏光成分の振幅を、他の偏光方向に偏光する前記再生光の偏光成分の振幅よりも大きくする請求項1~10のいずれかに記載の光学情報再生装置。
  12.  前記偏光制御光学素子は波長板を含む請求項11に記載の光学情報再生装置。
  13.  前記再生光を前記プラズモン共鳴素子に照射するオフアキシス型の集光レンズをさらに備える請求項1~12のいずれかに記載の光学情報再生装置。
  14.  前記光源と前記プラズモン共鳴素子との間の光路中に配置され、前記プラズモン共鳴素子に集光する前記再生光にラジアル偏光を含めるラジアル偏光発生素子をさらに備える請求項1~8のいずれかに記載の光学情報再生装置。
  15.  前記プラズモン共鳴素子は、底面以外の面に金属膜が被覆された円錐プリズムであり、
     前記円錐プリズムは、頂点近傍に前記共鳴部を有している請求項14記載の光学情報再生装置。
  16.  前記再生光の波長λは0.35μm≦λ≦0.45μmを満たし、
     前記プラズモン共鳴素子の主成分は、Au、Cu、Ti、Ni及びAgのうち少なくとも1つである請求項1~15のいずれかに記載の光学情報再生装置。
  17.  少なくとも基板及び記録層を含む情報記録媒体から情報を再生する光学情報再生方法であって、
     光源から出射された再生光を、前記記録層の記録領域に近接させて配置される共鳴部を有し、前記共鳴部は前記記録領域と前記共鳴部との間でプラズモン共鳴を生じさせるプラズモン共鳴素子に照射するステップと、
     前記再生光が照射された前記プラズモン共鳴素子からの反射光又は透過光を光検出器により検出するステップと、
     前記光検出器からの検出信号に基づいて前記記録領域が記録状態及び未記録状態のいずれであるかを判断して、前記記録領域に記録された情報を再生するステップとを含む光学情報再生方法。
  18.  少なくとも基板及び記録層を備え、
     前記記録層の記録領域は、島状に配列され、
     前記記録領域は、一部又は全てが記録材料からなる微粒子を含み、
     再生光の波長に対して、記録状態である前記記録材料の誘電率の実数部の符号と、未記録状態である前記記録材料の誘電率の実数部の符号とが互いに異なる情報記録媒体。
  19.  少なくとも基板及び記録層を備え、
     前記記録層の記録領域は、島状に配列され、
     前記記録領域は、一部又は全てが記録材料からなる微粒子を含み、
     再生光の波長に対して、記録状態である前記記録材料の比誘電率の実数部と、未記録状態である前記記録材料の比誘電率の実数部とのうち、一方が-5以下であり、他方が-5より大きい情報記録媒体。
  20.  前記微粒子の先端部分は、尖った断面、又は円弧状の断面を有する請求項18又は19記載の情報記録媒体。
  21.  前記記録領域の上層に、誘電率の実数部の符号が正である保護層をさらに備える請求項18~20のいずれかに記載の情報記録媒体。
PCT/JP2011/004615 2010-08-23 2011-08-18 光学情報再生装置、光学情報再生方法及び情報記録媒体 WO2012026096A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012530525A JP5793717B2 (ja) 2010-08-23 2011-08-18 光学情報再生装置、光学情報再生方法及び情報記録媒体
CN201180040641.4A CN103081011B (zh) 2010-08-23 2011-08-18 光学信息再生装置、光学信息再生方法及信息记录介质
US13/816,046 US8837265B2 (en) 2010-08-23 2011-08-18 Optical information reproduction device, optical information reproduction method, and information recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010186378 2010-08-23
JP2010-186378 2010-08-23

Publications (1)

Publication Number Publication Date
WO2012026096A1 true WO2012026096A1 (ja) 2012-03-01

Family

ID=45723118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004615 WO2012026096A1 (ja) 2010-08-23 2011-08-18 光学情報再生装置、光学情報再生方法及び情報記録媒体

Country Status (4)

Country Link
US (1) US8837265B2 (ja)
JP (1) JP5793717B2 (ja)
CN (1) CN103081011B (ja)
WO (1) WO2012026096A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3304193B1 (en) * 2015-06-04 2019-08-07 Karlsruher Institut für Technologie Devices, in particular optical or electro-optical devices with quantized operation
JP2017152993A (ja) * 2016-02-25 2017-08-31 富士通株式会社 光多重装置
GB201802661D0 (en) 2018-02-19 2018-04-04 Univ Oxford Innovation Ltd Labelling scheme and apparatus
CN114853447B (zh) * 2021-02-04 2023-09-26 光洋应用材料科技股份有限公司 铟锆硅氧化物靶材及其制法及铟锆硅氧化物薄膜
CN114966970B (zh) * 2021-02-22 2024-04-12 中国计量大学 基于锗锑碲纳米柱阵列动态可调的透射型波片及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06139620A (ja) * 1992-10-23 1994-05-20 Matsushita Electric Ind Co Ltd 記録再生媒体と記録再生装置
JPH09282724A (ja) * 1996-04-17 1997-10-31 Hitachi Ltd 記憶装置
JP2001255254A (ja) * 2000-03-13 2001-09-21 Hitachi Ltd 近接場光プローブおよびそれを用いた近接場光学顕微鏡および光記録/再生装置
JP2003217172A (ja) * 2002-01-21 2003-07-31 Ricoh Co Ltd 記録媒体と光プローブ及び情報記録再生装置
JP2005108335A (ja) * 2003-09-30 2005-04-21 Toshiba Corp 磁気記録媒体
WO2008035522A1 (en) * 2006-09-22 2008-03-27 National Institute Of Advanced Industrial Science And Technology Optical recording medium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3906521A1 (de) * 1989-03-02 1990-09-13 Basf Ag Verfahren zum auslesen von informationen, die in duennen polymerschichten gespeichert sind
JP3135389B2 (ja) * 1992-10-23 2001-02-13 松下電器産業株式会社 情報再生方法、情報記録再生方法、情報再生装置、記録媒体及び光ヘッド
JP3519623B2 (ja) * 1998-03-13 2004-04-19 株式会社東芝 記録媒体およびその製造方法
JP4032689B2 (ja) 2001-10-04 2008-01-16 株式会社日立製作所 近接場光を用いた測定装置/記録再生装置
JP4591796B2 (ja) * 2008-07-11 2010-12-01 ソニー株式会社 光情報記録媒体、光情報再生方法、光情報再生装置、光情報記録方法及び光情報記録装置
US8238202B2 (en) * 2010-12-16 2012-08-07 Headway Technologies, Inc. Directional waveguide coupler for ABS reflected light

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06139620A (ja) * 1992-10-23 1994-05-20 Matsushita Electric Ind Co Ltd 記録再生媒体と記録再生装置
JPH09282724A (ja) * 1996-04-17 1997-10-31 Hitachi Ltd 記憶装置
JP2001255254A (ja) * 2000-03-13 2001-09-21 Hitachi Ltd 近接場光プローブおよびそれを用いた近接場光学顕微鏡および光記録/再生装置
JP2003217172A (ja) * 2002-01-21 2003-07-31 Ricoh Co Ltd 記録媒体と光プローブ及び情報記録再生装置
JP2005108335A (ja) * 2003-09-30 2005-04-21 Toshiba Corp 磁気記録媒体
WO2008035522A1 (en) * 2006-09-22 2008-03-27 National Institute Of Advanced Industrial Science And Technology Optical recording medium

Also Published As

Publication number Publication date
US8837265B2 (en) 2014-09-16
US20130135982A1 (en) 2013-05-30
CN103081011A (zh) 2013-05-01
CN103081011B (zh) 2015-09-30
JP5793717B2 (ja) 2015-10-14
JPWO2012026096A1 (ja) 2013-10-28

Similar Documents

Publication Publication Date Title
US7596072B2 (en) Optical recording using a waveguide structure and a phase change medium
JP5793717B2 (ja) 光学情報再生装置、光学情報再生方法及び情報記録媒体
JP6075288B2 (ja) 情報記録媒体、情報装置、及び情報記録媒体の製造方法
JP2004213000A (ja) 光学素子、それを用いた光ヘッドおよび光記録再生装置
WO2011010447A1 (ja) 情報記録媒体、光学情報記録再生装置、光学情報記録再生方法及び情報記録媒体の製造方法
EP1724769B1 (en) Optical recording medium as well as optical recording and reproduction method
JP4290650B2 (ja) 情報記録媒体およびその製造方法、並びに光学情報記録再生装置
US7312445B2 (en) Pyramid-shaped near field probe using surface plasmon wave
JP5145359B2 (ja) 超解像近接場効果を与えるマスク層を備える光学記憶媒体、および各製造方法
JPWO2003052756A1 (ja) 光情報再生方法、光ヘッド装置、および光情報処理装置
KR100966533B1 (ko) 고밀도 정보 저장 매체
JP5994198B2 (ja) 光情報装置、光ディスクドライブ装置、光情報記録装置、光情報再生装置、ギャップ制御方法及び光ピックアップ
JP2006048807A (ja) 光メモリ装置
JP2006073123A (ja) 近接場光スライダ及び近接場光記録再生装置
JP2011210306A (ja) 光ヘッド及び光記録再生装置
JP4265941B2 (ja) 光学ヘッド装置および光情報記録再生装置
JP2013161488A (ja) 光学情報記録再生装置、光学情報記録再生方法、及び光学情報記録再生装置の製造方法
JP2002133720A (ja) 光記録媒体
JP2013218775A (ja) 近接場光発生素子、情報記録媒体、光学情報記録再生装置、及び光学情報記録再生方法
JP2008257861A (ja) 光情報記録媒体とその再生方法
JP2008257860A (ja) 光情報記録媒体とその再生方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180040641.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819572

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2012530525

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13816046

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11819572

Country of ref document: EP

Kind code of ref document: A1