WO2012023473A1 - ダイヤモンド多結晶体およびその製造方法 - Google Patents
ダイヤモンド多結晶体およびその製造方法 Download PDFInfo
- Publication number
- WO2012023473A1 WO2012023473A1 PCT/JP2011/068279 JP2011068279W WO2012023473A1 WO 2012023473 A1 WO2012023473 A1 WO 2012023473A1 JP 2011068279 W JP2011068279 W JP 2011068279W WO 2012023473 A1 WO2012023473 A1 WO 2012023473A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- diamond
- polycrystalline diamond
- polycrystalline
- hexagonal
- cubic
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/25—Diamond
- C01B32/28—After-treatment, e.g. purification, irradiation, separation or recovery
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J3/00—Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
- B01J3/06—Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
- B01J3/062—Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B53/00—Devices or means for dressing or conditioning abrasive surfaces
- B24B53/12—Dressing tools; Holders therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D3/00—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/25—Diamond
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/25—Diamond
- C01B32/26—Preparation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/52—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
- C04B35/528—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2203/00—Processes utilising sub- or super atmospheric pressure
- B01J2203/06—High pressure synthesis
- B01J2203/0605—Composition of the material to be processed
- B01J2203/061—Graphite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2203/00—Processes utilising sub- or super atmospheric pressure
- B01J2203/06—High pressure synthesis
- B01J2203/065—Composition of the material produced
- B01J2203/0655—Diamond
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2203/00—Processes utilising sub- or super atmospheric pressure
- B01J2203/06—High pressure synthesis
- B01J2203/0675—Structural or physico-chemical features of the materials processed
- B01J2203/068—Crystal growth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2203/00—Processes utilising sub- or super atmospheric pressure
- B01J2203/06—High pressure synthesis
- B01J2203/0675—Structural or physico-chemical features of the materials processed
- B01J2203/0685—Crystal sintering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2226/00—Materials of tools or workpieces not comprising a metal
- B23B2226/31—Diamond
- B23B2226/315—Diamond polycrystalline [PCD]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23C—MILLING
- B23C2226/00—Materials of tools or workpieces not comprising a metal
- B23C2226/31—Diamond
- B23C2226/315—Diamond polycrystalline [PCD]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
- C04B2235/425—Graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
- C04B2235/427—Diamond
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
- C04B2235/762—Cubic symmetry, e.g. beta-SiC
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/963—Surface properties, e.g. surface roughness
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
- Y10T428/2495—Thickness [relative or absolute]
- Y10T428/24967—Absolute thicknesses specified
- Y10T428/24975—No layer or component greater than 5 mils thick
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/263—Coating layer not in excess of 5 mils thick or equivalent
- Y10T428/264—Up to 3 mils
- Y10T428/265—1 mil or less
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/02—Other than completely through work thickness
- Y10T83/0207—Other than completely through work thickness or through work presented
- Y10T83/0215—Including use of rotary scoring blade
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/02—Other than completely through work thickness
- Y10T83/0333—Scoring
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/02—Other than completely through work thickness
- Y10T83/0333—Scoring
- Y10T83/0385—Rotary scoring blade
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/929—Tool or tool with support
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/929—Tool or tool with support
- Y10T83/9372—Rotatable type
Definitions
- the present invention relates to a polycrystalline diamond and a method for producing the same, and in particular, a high-hardness and high-strength diamond polycrystalline used suitably for tools such as cutting tools, dressers, dies, drill bits, and the like, and a method for producing the same.
- a high-hardness and high-strength diamond polycrystalline used suitably for tools such as cutting tools, dressers, dies, drill bits, and the like, and a method for producing the same.
- tools such as cutting tools, dressers, dies, drill bits, and the like
- Metals, carbonates such as CaCO 3 are used, and ceramics such as SiC are used as a binder for bonding raw materials.
- the above-mentioned polycrystalline diamond has a high pressure and high temperature at which diamond is thermodynamically stable (generally, the pressure is about 5 to 8 GPa and the temperature is 1300 to 2200). It can be obtained by sintering under the condition of about ° C.
- the used sintering aid is contained in the polycrystalline diamond.
- Such a sintering aid has a considerable influence on mechanical properties such as hardness and strength and heat resistance of the polycrystalline diamond.
- the material has insufficient mechanical properties.
- non-diamond carbon materials such as graphite, glassy carbon, and amorphous carbon can be directly converted into diamond under a high pressure and high temperature without using a sintering aid.
- a single-phase polycrystalline diamond can be obtained by direct conversion from non-diamond phase to diamond phase and sintering.
- Non-Patent Document 1 M. Wakatsuki, K. Ichinose, T. Aoki, Japan. J. Appl. Phys., 11 (1972) pp578-590
- Non-patent document 2 S. Naka, K. Horii, Y. Takeda, T. Hanawa, Nature 259 (1976) p38 (Non-patent document 3), 14 GPa using graphite as a raw material It is disclosed that a diamond polycrystal can be obtained by direct conversion under high pressure and high temperature of ⁇ 18 GPa and 3000 K or higher.
- Non-Patent Document 5 Discloses a method for obtaining a dense and high-purity diamond polycrystal by direct conversion sintering by indirect heating at an ultrahigh pressure and high temperature of 12 GPa or more and 2200 ° C. or more using a high-purity and highly crystalline graphite as a starting material. Yes.
- the diamond obtained by this method has a very high hardness, but has a problem that it is not stable due to insufficient practical properties such as wear resistance, fracture resistance, and crack propagation resistance.
- Naturally produced diamond polycrystals are also known, and some are used as drill bits, but due to the large variation in materials and the small amount of output, they are not very used industrially. It has not been.
- single crystal diamond is used.
- it due to dimensional and price constraints, it is limited to ultra-precision tools and precision wear-resistant tools, and there are limitations on applications and usage conditions due to the cleavage of single crystal diamond and the anisotropy of mechanical properties.
- the present invention has been made in order to solve the above-described problems of the prior art, and has a high hardness and a high strength that are suitably used as tools such as cutting tools, dressers, dies, and excavating bits.
- An object is to provide a polycrystalline body and a method for producing the same.
- the present invention provides a polycrystalline diamond containing cubic diamond and hexagonal diamond and having a ratio of hexagonal diamond to cubic diamond within a predetermined range, wherein the ratio of hexagonal diamond to cubic diamond is predetermined. It was completed by finding it to have a higher hardness and higher strength compared to a polycrystalline diamond outside the range.
- the present invention includes cubic diamond and hexagonal diamond, and the ratio of the X-ray diffraction peak intensity of (100) plane of hexagonal diamond to the X-ray diffraction peak intensity of (111) plane of cubic diamond.
- a non-diamond-like carbon material having a graphitization degree of a predetermined value or less is added with both a sintering aid and a binder under conditions of pressure and temperature at which diamond is thermodynamically stable. It was completed by finding that a diamond polycrystal having the h / c ratio in the above predetermined range is produced when directly sintered without any sintering.
- the present invention comprises a step of preparing a non-diamond-like carbon material having a graphitization degree of 0.58 or less, and a non-diamond-like carbon material is sintered under conditions of pressure and temperature at which diamond is thermodynamically stable.
- a method for producing a polycrystalline diamond comprising: a step of directly converting into cubic diamond and hexagonal diamond and sintering without adding any binder or binder.
- a polycrystalline diamond having high hardness and high strength which is suitably used as a cutting tool, a tool such as a dresser and a die, and a drill bit, and a method for producing the same are provided.
- the polycrystalline diamond according to an embodiment of the present invention includes cubic diamond (hereinafter referred to as c-diamond) and hexagonal diamond (hereinafter referred to as h-diamond), and includes (111) c-diamond.
- the ratio of the X-ray diffraction peak intensity of the (100) plane of h-diamond to the X-ray diffraction peak intensity of the plane (hereinafter referred to as h / c ratio) is 0.01% or more.
- the polycrystalline diamond according to the present embodiment having an h / c ratio of 0.01% or more does not include h-diamond (ie, the h / c ratio is 0%), or the h / c ratio is h / c ratio.
- the hardness and strength are higher, and specifically, strength, folding force, wear resistance and the like are higher.
- c-diamond refers to diamond having a cubic crystal structure
- h-diamond refers to diamond having a hexagonal crystal structure.
- c-diamond and h-diamond are distinguished by the pattern of diffraction peaks obtained by X-ray diffraction. That is, in the X-ray diffraction of the polycrystalline diamond containing c-diamond and h-diamond, a mixed pattern of the c-diamond diffraction peak pattern and the h-diamond diffraction peak pattern is obtained.
- the ratio of h-diamond to c-diamond is the ratio of the X-ray diffraction peak intensity of the (100) plane of h-diamond to the X-ray diffraction peak intensity of the (111) plane of c-diamond. Expressed by c ratio.
- the method for producing a polycrystalline diamond according to another embodiment of the present invention comprises a step of preparing a non-diamond-like carbon material having a degree of graphitization of 0.58 or less, and the non-diamond-like carbon material is thermodynamically processed by diamond. And converting directly to cubic diamond and hexagonal diamond and sintering without adding any sintering aid or binder under conditions of stable pressure and temperature.
- c-diamond (cubic diamond) and h-diamond (hexagonal diamond) are included, and the h / c ratio (related to the (111) plane of c-diamond).
- Hardness and strength specifically, strength, bending strength, wear resistance
- the method for producing a polycrystalline diamond according to the present embodiment first includes a step of preparing a non-diamond-like carbon material having a graphitization degree of 0.58 or less.
- the non-diamond-like carbon material prepared in this preparation step is not particularly limited as long as it has a graphitization degree of 0.58 or less and is not a diamond, and is a graphite having a low graphitization degree such as finely pulverized graphite.
- it may be an amorphous carbon material such as amorphous carbon or glassy carbon, or a mixture thereof.
- the graphitization degree P of the non-diamond-like carbon material is obtained as follows.
- the X-ray diffraction of the non-diamond carbon material, a surface spacing d 002 of (002) plane of the non-diamond carbon material graphite as measured by the following equation (1), d 002 3.440-0.086 ⁇ (1-p 2 ) (1)
- the non-diamond-like carbon material preferably does not contain an iron group element metal as an impurity from the viewpoint of suppressing the growth of crystal grains. Further, from the viewpoint of suppressing the growth of crystal grains and promoting the conversion to diamond, those having a low content of impurities such as hydrogen (H) and oxygen (O) are preferable.
- the non-diamond-like carbon material is then subjected to the sintering aid and the binder under conditions of pressure and temperature at which diamond is thermodynamically stable.
- a step of directly converting to cubic diamond and hexagonal diamond and sintering is provided.
- the non-diamond-like carbon material By placing the above non-diamond-like carbon material under conditions of pressure and temperature at which the diamond is thermodynamically stable without the addition of any sintering aid or binder, the non-diamond-like carbon material is directly Thus, it is converted into c-diamond and h-diamond and sintered to obtain a polycrystalline diamond with high hardness and high strength having an h / c ratio of 0.01% or more.
- the sintering aid refers to a catalyst that promotes the sintering of the raw material, and examples thereof include iron group element metals such as Co, Ni, and Fe, and carbonates such as CaCO 3 .
- a binder means the material which couple
- the pressure and temperature conditions under which diamond is thermodynamically stable are the pressure and temperature conditions under which the diamond phase is a thermodynamically stable phase in a carbon-based material.
- the conditions under which the sintering can be performed without addition of the pressure are conditions in which the pressure is 12 GPa or more and the temperature is 2000 ° C. to 2600 ° C., preferably the pressure is 16 GPa or more and the temperature is 2200 ° C. to 2300 ° C. Is the condition.
- the high-pressure and high-temperature generator used in the method for producing a polycrystalline diamond according to the present embodiment is not particularly limited as long as the diamond phase is a thermodynamically stable pressure and temperature condition.
- a belt type or a multi-anvil type is preferable.
- the container for storing the non-diamond-like carbon material as a raw material is not particularly limited as long as it is a high-pressure and high-temperature resistant material, and for example, Ta is preferably used.
- each of the plurality of non-diamond carbon materials is subjected to a pressure of 16 GPa and a temperature of 2200 ° C. without adding any sintering aid or binder using a high-pressure and high-temperature generator.
- the diamond was subjected to high pressure and high temperature treatment under conditions of thermodynamically stable pressure and temperature.
- the obtained plurality of diamond polycrystals were evaluated for hardness, bending strength, and wear resistance, respectively.
- the hardness is a Knoop hardness measured using a Knoop hardness meter under a condition of applying a load of 4.9 N for 10 seconds.
- the bending strength was measured with a three-point bending strength tester.
- Abrasion resistance was measured by using a diamond grinder under the condition of a load of 3 kg / mm 2 , and indicated as a relative value when the value of Example 1 was 1.0.
- the higher the relative value the higher the wear resistance.
- the polycrystalline diamond having an h / c ratio of 0.01% or more is a polycrystalline diamond having an h / c ratio of less than 0.01% (Comparative Example 1). It was found that all of hardness, bending strength, and wear resistance were higher than those of (2), and the strength characteristics and wear resistance were excellent.
- the polycrystalline diamond (Examples 1, 3 and 6) having an h / c ratio of 0.01% or more has high bending strength and hardness even at high temperatures, and the rate of decrease with each temperature increase is The h / c ratio is smaller than that of the polycrystalline diamond (Comparative Examples 1 and 2) having a ratio of less than 0.01%.
- the bending strength in the temperature range of 800 ° C. or more and 1200 ° C. or less of the former (Examples 1, 3, 6) does not decrease by 10% or more from the value of room temperature (25 ° C.), and the hardness at 800 ° C. is Compared to the room temperature (25 ° C.) value, it does not decrease by 20% or more.
- the bending strength in 1200 degreeC of Example 1, 3, 6 is higher than the bending force in room temperature (25 degreeC).
- Example 7 The diamond polycrystals obtained in Examples 1 to 6 and Comparative Examples 1 and 2 were brazed to a metal shank, and scribe tools with 4 points at the tip (tetragonal planar shape) were produced. .
- scribe tools with 4 points at the tip (tetragonal planar shape) were produced.
- 200 scribe grooves having a length of 50 mm were formed on a sapphire substrate with a load of 20 g. Thereafter, the amount of wear of the polycrystalline diamond at the tip portion of each scribe tool was observed with an electron microscope, and as a result, compared with the scribe tool made of the polycrystalline diamond of Comparative Examples 1 and 2, Examples 1 to 6
- the scribing tools made of polycrystalline diamond were all reduced to 0.80 times or less.
- Example 8 Each diamond polycrystal obtained in Examples 1 to 6 and Comparative Examples 1 and 2 was embedded in a metal shank, and a single-point (conical) dresser was produced. Each of the prepared dressers was abraded using a WA (white alumina) grindstone under the conditions of a wet grindstone peripheral speed of 30 m / sec and a cutting depth of 0.05 mm. Thereafter, the amount of wear of each dresser was measured with a height gauge, and the dresser made of the polycrystalline diamond of Examples 1 to 6 was compared with the dresser made of the polycrystalline diamond of Comparative Examples 1 and 2. , Both were less than 0.85 times.
- WA white alumina
- Example 9 The diamond polycrystalline bodies obtained in Examples 1 to 6 and Comparative Examples 1 and 2 were embedded in a round metal frame to produce dies having a hole diameter of ⁇ 20 ⁇ m. Using each of the produced dies, Cu wire was drawn at a linear speed of 500 m / min. At this time, the drawing time until the die diameter was worn down to ⁇ 20.2 ⁇ m was larger than that of the polycrystalline diamond of Comparative Examples 1 and 2, compared with the diamond polycrystalline die of Examples 1 to 6. , Both were 1.12 times longer.
- Example 10 The diamond polycrystals obtained in Examples 1 to 6 and Comparative Examples 1 and 2 were embedded in a round metal frame, the orifice hole diameter was 200 ⁇ m, the orifice height was 5 mm, and the arithmetic average roughness of the orifice hole surface was An orifice having a Ra of 290 nm was produced. Using each of the produced orifices, a water jet nozzle having a water discharge pressure of 200 MPa was formed, and the cutting performance of a 10 mm thick stainless steel plate was evaluated. The time until the diameter of the orifice was expanded to 300 ⁇ m was 1 for the diamond polycrystalline orifices of Examples 1 to 6, compared to the diamond polycrystalline orifices of Comparative Examples 1 and 2. It was 15 times longer.
- Example 11 Each diamond polycrystalline body obtained in Examples 1 to 6 and Comparative Examples 1 and 2 is brazed to a carbide base metal, and the cutting tool has a tip angle of 90 ° and a tip radius (R) of 100 nm.
- R tip radius
- a grooved plate having a depth of 5 ⁇ m and a pitch of 5 ⁇ m was applied to a metal plate having a thickness of 20 ⁇ m on a copper plate having a thickness of 30 mm.
- the time taken for the tip of the cutting tool to wear by 1 ⁇ m is longer than that of the polycrystalline diamond cutting tool of Comparative Examples 1 and 2, compared with the cutting tool made of the polycrystalline diamond of Examples 1 to 6. In all cases, the length was 1.30 times longer.
- Example 12 Each diamond polycrystal obtained in Examples 1 to 6 and Comparative Examples 1 and 2 was brazed to a carbide shank to produce a drill having a diameter of 1 mm and a blade length of 3 mm. Using each of the produced drills, a hole was made in a cemented carbide (WC-Co) plate having a thickness of 1.0 mm under conditions of a drill rotation speed of 4000 rotations / minute and a feed of 2 ⁇ m / time. The number of holes that could be drilled before the drill was worn or broken was higher in the diamond polycrystalline drills of Examples 1 to 6 than in the diamond polycrystalline drills of Comparative Examples 1 and 2. In both cases, the number increased to 1.20 times or more.
- WC-Co cemented carbide
- Example 13 Each diamond polycrystal obtained in Examples 1 to 6 and Comparative Examples 1 and 2 was brazed to a cemented carbide shank to produce a disk-type grinding tool having a diameter of 3 mm and a cutting edge angle of 60 ° C. Cutting edge wear when V-grooves were formed on the surface of cemented carbide (WC-Co) for 2 hours under the conditions of 4000 rpm / min and 2 ⁇ m depth of cut using each of the prepared grinding tools. The amount was investigated. Compared with the grinding tool made of the polycrystalline diamond of Comparative Examples 1 and 2, the abrasion amount of the cutting edge of the grinding tool made of the polycrystalline diamond of Examples 1 to 6 was 0.7 times or less.
- Example 14 Each of the polycrystalline diamonds obtained in Examples 1 to 6 and Comparative Examples 1 and 2 was attached to a metal frame to produce an electric discharge machining electrode guide. An electrode wire having a wire diameter of 70 ⁇ m was fed at a speed of 10 m / min, and the wear amount of the guide hole after 100 hours was investigated. Compared with the diamond polycrystalline drills of Comparative Examples 1 and 2, the diamond polycrystalline drills of Examples 1 to 6 all had a wear amount of 0.8 times or less.
- Example 15 A scribe wheel having a diameter of 3.5 and a thickness of 0.6 mm was produced from each of the polycrystalline diamonds obtained in Examples 1 to 6 and Comparative Examples 1 and 2. A scribing test was conducted using a ceramic substrate at a feed rate of 100 mm / second and a pressing load of 2.5 kg using each of the produced scribe wheels, and the amount of wear for 50 hours was investigated. Compared with the diamond polycrystal scribe wheels of Comparative Examples 1 and 2, the diamond polycrystal scribe wheels of Examples 1 to 6 all had less wear and less than 0.75 times.
- the polycrystalline diamond according to the present invention (Examples 1 to 6) has much higher hardness than the conventional polycrystalline diamond (Comparative Examples 1 and 2). Because of its strength and wear resistance, it is very useful as a material for scribe tools, dressers, dies, orifices, cutting tools, drilling and end mills, cutting tools, grinding tools, electrode guides, scribe wheels, etc. I found out.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Carbon And Carbon Compounds (AREA)
- Polishing Bodies And Polishing Tools (AREA)
- Drilling Tools (AREA)
Abstract
Description
本発明の一実施形態であるダイヤモンド多結晶体は、立方晶ダイヤモンド(以下、c-ダイヤモンドという)と、六方晶ダイヤモンド(以下、h-ダイヤモンドという)とを、含み、c-ダイヤモンドの(111)面に関するX線回折ピーク強度に対するh-ダイヤモンドの(100)面のX線回折ピーク強度の比率(以下、h/c比率という)が0.01%以上である。
本発明の他の実施形態であるダイヤモンド多結晶体の製造方法は、グラファイト化度が0.58以下の非ダイヤモンド状炭素材料を準備する工程と、この非ダイヤモンド状炭素材料を、ダイヤモンドが熱力学的に安定な圧力および温度の条件下で、焼結助剤および結合剤のいずれも添加することなく、直接的に立方晶ダイヤモンドおよび六方晶ダイヤモンドに変換させるとともに焼結させる工程と、を備える。
本実施形態のダイヤモンド多結晶体の製造方法は、まず、グラファイト化度が0.58以下の非ダイヤモンド状炭素材料を準備する工程を備える。本準備工程において準備される非ダイヤモンド状炭素材料は、グラファイト化度が0.58以下でありダイヤモンドでない炭素材料であれば特に制限はなく、微粉砕したグラファイトなどのグラファイト化度の低いグラファイトであっても、アモルファスカーボン、グラッシーカーボンなどの非結晶質炭素材料であっても、それらの混合物であってもよい。
d002=3.440-0.086×(1-p2) ・・・(1)
非ダイヤモンド状炭素材料の乱層構造部の比率pが算出される。こうして得られた乱層構造部の比率pから、以下の(2)式により、
P=1-p ・・・(2)
グラファイト化度Pが算出される。
本実施形態のダイヤモンド多結晶体の製造方法は、次いで、上記の非ダイヤモンド状炭素材料を、ダイヤモンドが熱力学的に安定な圧力および温度の条件下で、焼結助剤および結合剤のいずれも添加することなく、直接的に立方晶ダイヤモンドおよび六方晶ダイヤモンドに変換させるとともに焼結させる工程を備える。
非ダイヤモンド状炭素材料として、表1に示すように、グラファイト化度および粒径が異なる複数のグラファイト粉末を準備した。
上記実施例1~6および比較例1~2で得られたそれぞれのダイヤモンド多結晶体を金属製のシャンクにロウ付けして、先端が4ポイント(4角形平面状)のスクライブツールをそれぞれ製作した。作製されたそれぞれのスクライブツールを用いて、サファイヤ基板に負荷20gで長さ50mmのスクライブ溝を200本形成した。その後、それぞれのスクライブツールの先端部分のダイヤモンド多結晶体の摩耗量は、電子顕微鏡により観察したところ、比較例1~2のダイヤモンド多結晶体製のスクライブツールに比べて、実施例1~6のダイヤモンド多結晶体製のスクライブツールは、いずれも0.80倍以下に少なくなった。
上記実施例1~6および比較例1~2で得られたそれぞれのダイヤモンド多結晶体を金属製のシャンクに埋め込み、先端がシングルポイント(円錐状)のドレッサーを製作した。作製されたそれぞれのドレッサーを、WA(ホワイトアルミナ)砥石を用いて、湿式で、砥石周速が30m/sec、切り込み量が0.05mmの条件で、磨耗させた。その後、それぞれのドレッサーの磨耗量は、高さゲージ計により測定したところ、比較例1~2のダイヤモンド多結晶体製のドレッサーに比べて、実施例1~6のダイヤモンド多結晶体製のドレッサーは、いずれも0.85倍以下に少なくなった。
上記実施例1~6および比較例1~2で得られたそれぞれのダイヤモンド多結晶体を丸型金属製枠に埋め込み、孔径がφ20μmのダイスを作製した。作製されたそれぞれのダイスを用いて、線速500m/分でCu線の線引を行なった。このとき、ダイス径がφ20.2μmまで摩耗するまでの線引時間は、比較例1~2のダイヤモンド多結晶体製のダイスに比べて、実施例1~6のダイヤモンド多結晶体製のダイスは、いずれも1.12倍以上に長くなった。
上記実施例1~6および比較例1~2で得られたそれぞれのダイヤモンド多結晶体を丸型の金属製枠に埋め込み、オリフィス孔径がφ200μm、オリフィス高さが5mm、オリフィス孔面の算術平均粗さRaが290nmのオリフィスを作製した。作製されたそれぞれのオリフィスを用いて、水の吐出圧力が200MPaのウオータージェットノズルを形成して、厚さ10mmのステンレス板の切断性能を評価した。オリフィス径がφ300μmに拡がるまでの切断できた時間は、比較例1~2のダイヤモンド多結晶体製のオリフィスに比べて、実施例1~6のダイヤモンド多結晶体製のオリフィスは、いずれも1.15倍以上に長くなった。
上記実施例1~6および比較例1~2で得られたそれぞれのダイヤモンド多結晶体を超硬の台金にロウ付けして、先端角度が90°で先端アール(R)が100nmの切削工具を製作した。作製されたそれぞれの切削工具を用いて、厚さ30mmの銅板に厚さ20μmのニッケルメッキした金属板を、深さ5μmで5μmピッチの溝加工を施した。このとき、切削工具の先端が1μm摩耗するまでの時間は、比較例1~2のダイヤモンド多結晶体製の切削工具に比べて、実施例1~6のダイヤモンド多結晶体製の切削工具は、いずれも1.30倍以上に長くなった。
上記実施例1~6および比較例1~2で得られたそれぞれのダイヤモンド多結晶体を超硬のシャンクにロウ付けして、直径φ1mm、刃長3mmのドリルを作製した。作製されたそれぞれのドリルを用いて、ドリル回転数4000回転/分、送り2μm/回の条件で、厚さ1.0mmの超硬合金(WC-Co)製板に孔をあけた。ドリルが磨耗または破損するまでにあけることができた孔の数は、比較例1~2のダイヤモンド多結晶体製のドリルに比べて、実施例1~6のダイヤモンド多結晶体製のドリルは、いずれも1.20倍以上に多くなった。
上記実施例1~6および比較例1~2で得られたそれぞれのダイヤモンド多結晶体を超硬のシャンクにロウ付けして、直径φ3mm、刃先角度60℃の円板型研削工具を作製した。作製したそれぞれの研削工具を用いて、回転数4000回転数/分、切り込み2μmの条件で、加工時間2時間、超硬合金(WC-Co)の表面にV溝を形成した時の、刃先摩耗量を調査した。比較例1~2のダイヤモンド多結晶体製の研削工具に比べて、実施例1~6のダイヤモンド多結晶体製の研削工具の刃先摩耗量は、いずれも0.7倍以下と少なかった。
上記実施例1~6および比較例1~2で得られたそれぞれのダイヤモンド多結晶体を金属製の枠に取り付け、放電加工用電極ガイドを作製した。線径70μmの電極ワイヤーを10m/分の速度でワイヤーを送り、100時間後のガイド孔部の摩耗量を調査した。比較例1~2のダイヤモンド多結晶体製のドリルに比べて、実施例1~6のダイヤモンド多結晶体製のドリルは、いずれも0.8倍以下と摩耗量は少なかった。
上記実施例1~6および比較例1~2で得られたそれぞれのダイヤモンド多結晶体で直径φ3.5、厚さ0.6mmのスクライブホイールを作製した。作製したそれぞれのスクライブホイールを用いて、送り速度100mm/秒、押し付け荷重2.5kgで、セラミックス基板を用いてスクライブテストを実施し、50時間の摩耗量を調査した。比較例1~2のダイヤモンド多結晶体製のスクライブホイールに比べて、実施例1~6のダイヤモンド多結晶体製のスクライブホイールは、いずれも0.75倍以下と摩耗量は少なかった。
Claims (14)
- 立方晶ダイヤモンドと、六方晶ダイヤモンドとを、含み、
前記立方晶ダイヤモンドの(111)面に関するX線回折ピーク強度に対する前記六方晶ダイヤモンドの(100)面のX線回折ピーク強度の比率が0.01%以上であるダイヤモンド多結晶体。 - 800℃以上1200℃以下の温度域における抗折力が、室温での抗折力の90%以上であることを特徴とする、請求項1に記載のダイヤモンド多結晶体。
- 1000℃以上1200℃以下の温度域における抗折力が、室温での抗折力より高いことを特徴とする請求項2記載のダイヤモンド多結晶体。
- 800℃における硬度が、室温での硬度の80%以上であることを特徴とする、請求項1記載のダイヤモンド多結晶体。
- 請求項1~4のいずれかに記載のダイヤモンド多結晶体で構成される先端部を備え、前記先端部が3あるいは4ポイントで構成されるスクライブツール。
- 請求項1~4のいずれかに記載のダイヤモンド多結晶体で構成されるホイールを備えた、スクライブホイール。
- 請求項1~4のいずれかに記載のダイヤモンド多結晶体で構成される先端部を備えたドレッサー。
- 請求項1~4のいずれかに記載のダイヤモンド多結晶体を備えた線引ダイス。
- 請求項1~4のいずれかに記載のダイヤモンド多結晶体で構成されるオリフィスを備えたノズル。
- 請求項1~4のいずれかに記載のダイヤモンド多結晶体で構成される刃先を備えた研削工具。
- 請求項1~4のいずれかに記載のダイヤモンド多結晶体で構成される切刃を備えた切削工具。
- 請求項1~4のいずれかに記載のダイヤモンド多結晶体で構成される切刃を備えた回転切削工具。
- 請求項1~4のいずれかに記載のダイヤモンド多結晶体で構成されるワイヤーガイド。
- グラファイト化度が0.58以下の非ダイヤモンド状炭素材料を準備する工程と、
前記非ダイヤモンド状炭素材料を、ダイヤモンドが熱力学的に安定な圧力および温度の条件下で、焼結助剤および結合剤のいずれも添加することなく、直接的に立方晶ダイヤモンドおよび六方晶ダイヤモンドに変換させるとともに焼結させる工程と、を備えるダイヤモンド多結晶体の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180005940.4A CN102712478B (zh) | 2010-08-19 | 2011-08-10 | 多晶金刚石及其制造方法 |
JP2012529575A JP5720686B2 (ja) | 2010-08-19 | 2011-08-10 | ダイヤモンド多結晶体およびその製造方法 |
KR1020127018148A KR101196089B1 (ko) | 2010-08-19 | 2011-08-10 | 다이아몬드 다결정체 및 그 제조 방법 |
EP11818115.5A EP2607307B1 (en) | 2010-08-19 | 2011-08-10 | Process for production of polycrystalline diamond |
ES11818115.5T ES2689682T3 (es) | 2010-08-19 | 2011-08-10 | Proceso para producción de diamante policristalino |
US13/517,921 US8784767B2 (en) | 2010-08-19 | 2011-08-10 | Polycrystalline diamond and method of manufacturing the same |
EP18177709.5A EP3401040A1 (en) | 2010-08-19 | 2011-08-10 | Polycrystalline diamond and method of manufacturing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-184187 | 2010-08-19 | ||
JP2010184187 | 2010-08-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012023473A1 true WO2012023473A1 (ja) | 2012-02-23 |
WO2012023473A9 WO2012023473A9 (ja) | 2012-07-19 |
Family
ID=45605127
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/068279 WO2012023473A1 (ja) | 2010-08-19 | 2011-08-10 | ダイヤモンド多結晶体およびその製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US8784767B2 (ja) |
EP (2) | EP3401040A1 (ja) |
JP (1) | JP5720686B2 (ja) |
KR (1) | KR101196089B1 (ja) |
CN (1) | CN102712478B (ja) |
DE (2) | DE202011111029U1 (ja) |
ES (1) | ES2689682T3 (ja) |
WO (1) | WO2012023473A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014027470A1 (ja) * | 2012-08-16 | 2014-02-20 | 国立大学法人愛媛大学 | 六方晶ダイヤモンド単相バルク焼結体およびその製造方法 |
JP2014091661A (ja) * | 2012-11-06 | 2014-05-19 | Sumitomo Electric Ind Ltd | ダイヤモンド多結晶体およびその製造方法 |
WO2015025757A1 (ja) * | 2013-08-23 | 2015-02-26 | 住友電気工業株式会社 | ダイヤモンド多結晶体およびその製造方法、ならびに工具 |
JPWO2017073293A1 (ja) * | 2015-10-30 | 2018-08-16 | 住友電気工業株式会社 | 複合多結晶体 |
JP6421904B1 (ja) * | 2018-07-20 | 2018-11-14 | 住友電気工業株式会社 | ダイヤモンド多結晶体及びそれを備えた工具 |
JP6421905B1 (ja) * | 2018-07-20 | 2018-11-14 | 住友電気工業株式会社 | ダイヤモンド多結晶体及びそれを備えた工具 |
WO2019077888A1 (ja) * | 2017-10-20 | 2019-04-25 | 住友電気工業株式会社 | 合成単結晶ダイヤモンド、工具、及び、合成単結晶ダイヤモンドの製造方法 |
WO2019098172A1 (ja) * | 2017-11-17 | 2019-05-23 | 住友電気工業株式会社 | ダイヤモンド多結晶体及びその製造方法 |
WO2020070776A1 (ja) | 2018-10-01 | 2020-04-09 | 住友電気工業株式会社 | ダイヤモンド多結晶体、ダイヤモンド多結晶体を備える工具及びダイヤモンド多結晶体の製造方法 |
JPWO2021054019A1 (ja) * | 2019-09-18 | 2021-03-25 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103042282B (zh) * | 2012-12-24 | 2015-04-15 | 镇江大有硬质材料有限公司 | 一种金刚石钻刀钎焊方法 |
US9504158B2 (en) * | 2014-04-22 | 2016-11-22 | Facebook, Inc. | Metal-free monolithic epitaxial graphene-on-diamond PWB |
DE102015208491B4 (de) * | 2014-05-08 | 2019-03-14 | Sumitomo Electric Industries, Ltd. | Polykristalliner Diamantkörper, Schneidwerkzeug, verschleißfestes Werkzeug, Schleifwerkzeug und Verfahren zum Herstellen eines polykristallinen Diamantkörpers |
JP6458559B2 (ja) * | 2015-03-06 | 2019-01-30 | 住友電気工業株式会社 | ダイヤモンド多結晶体、切削工具、耐摩工具、および研削工具 |
CN108348970B (zh) * | 2015-10-30 | 2020-12-25 | 住友电气工业株式会社 | 耐磨工具 |
CN109195730B (zh) * | 2016-06-28 | 2021-12-21 | 史密斯国际有限公司 | 多晶金刚石结构 |
EP3766634B1 (en) * | 2018-03-16 | 2024-08-07 | Orbray Co., Ltd. | Diamond crystal polishing method and diamond crystal |
EP3769880A4 (en) * | 2018-03-19 | 2021-07-14 | Sumitomo Electric Industries, Ltd. | SURFACE-COATED CUTTING TOOL |
CN113493202B (zh) * | 2020-04-03 | 2022-10-14 | 燕山大学 | 金刚石复相材料及其制备方法 |
JP7033824B1 (ja) * | 2021-06-28 | 2022-03-11 | 株式会社ディスコ | 単結晶ダイヤモンドの製造方法および単結晶ダイヤモンド |
CN118437230B (zh) * | 2024-07-08 | 2024-09-24 | 吉林大学 | 一种六方金刚石和立方-六方异质结构的制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007055819A (ja) * | 2005-08-22 | 2007-03-08 | Sumitomo Electric Ind Ltd | 高硬度ダイヤモンド多結晶体及びその製造方法 |
JP2009007248A (ja) * | 2008-08-15 | 2009-01-15 | Sumitomo Electric Ind Ltd | ダイヤモンド多結晶体 |
JP2009067610A (ja) * | 2007-09-11 | 2009-04-02 | Sumitomo Electric Ind Ltd | 高硬度ダイヤモンド多結晶体およびその製造方法 |
JP2009067609A (ja) * | 2007-09-11 | 2009-04-02 | Sumitomo Electric Ind Ltd | 高純度ダイヤモンド多結晶体およびその製造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1115648A (en) | 1964-08-11 | 1968-05-29 | Du Pont | Synthetic diamonds |
CA928193A (en) * | 1965-11-24 | 1973-06-12 | R. Cowan George | Synthetic hexagonal diamond and method for its preparation |
US3488153A (en) * | 1966-12-01 | 1970-01-06 | Gen Electric | Non-catalytically produced cubic and hexagonal diamond |
JP4203900B2 (ja) * | 2002-10-11 | 2009-01-07 | 住友電気工業株式会社 | ダイヤモンド多結晶体およびその製造方法 |
US20050210755A1 (en) * | 2003-09-05 | 2005-09-29 | Cho Hyun S | Doubled-sided and multi-layered PCBN and PCD abrasive articles |
US7402716B2 (en) * | 2003-12-31 | 2008-07-22 | Chevron U.S.A. Inc. | Hybrid cubic/hexagonal diamondoids |
CA2549283A1 (en) * | 2004-11-05 | 2006-05-11 | Sumitomo Electric Industries, Ltd. | Single-crystal diamond |
WO2007011019A1 (ja) * | 2005-07-21 | 2007-01-25 | Sumitomo Electric Industries, Ltd. | 高硬度ダイヤモンド多結晶体及びその製造方法 |
US8216702B2 (en) * | 2008-06-13 | 2012-07-10 | Seco Tools Ab | Coated cutting tool for metal cutting applications generating high temperatures |
-
2011
- 2011-08-10 KR KR1020127018148A patent/KR101196089B1/ko active IP Right Grant
- 2011-08-10 EP EP18177709.5A patent/EP3401040A1/en active Pending
- 2011-08-10 DE DE202011111029.3U patent/DE202011111029U1/de not_active Expired - Lifetime
- 2011-08-10 JP JP2012529575A patent/JP5720686B2/ja active Active
- 2011-08-10 WO PCT/JP2011/068279 patent/WO2012023473A1/ja active Application Filing
- 2011-08-10 US US13/517,921 patent/US8784767B2/en active Active
- 2011-08-10 ES ES11818115.5T patent/ES2689682T3/es active Active
- 2011-08-10 EP EP11818115.5A patent/EP2607307B1/en active Active
- 2011-08-10 CN CN201180005940.4A patent/CN102712478B/zh active Active
- 2011-08-10 DE DE202011111028.5U patent/DE202011111028U1/de not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007055819A (ja) * | 2005-08-22 | 2007-03-08 | Sumitomo Electric Ind Ltd | 高硬度ダイヤモンド多結晶体及びその製造方法 |
JP2009067610A (ja) * | 2007-09-11 | 2009-04-02 | Sumitomo Electric Ind Ltd | 高硬度ダイヤモンド多結晶体およびその製造方法 |
JP2009067609A (ja) * | 2007-09-11 | 2009-04-02 | Sumitomo Electric Ind Ltd | 高純度ダイヤモンド多結晶体およびその製造方法 |
JP2009007248A (ja) * | 2008-08-15 | 2009-01-15 | Sumitomo Electric Ind Ltd | ダイヤモンド多結晶体 |
Non-Patent Citations (5)
Title |
---|
F. P. BUNDY, J. CHEM. PHYS., vol. 38, 1963, pages 631 - 643 |
M. WAKATSUKI; K. ICHINOSE; T. AOKI, J. APPL. PHYS., vol. 11, 1972, pages 578 - 590 |
S. NAKA; K. HORII; Y. TAKEDA; T. HANAWA, NATURE, vol. 259, 1976, pages 38 |
SUMIYA; IRIFUNE, SEI TECHNICAL REVIEW, vol. 165, 2004, pages 68 |
T. IRIFUNE; H. SUMIYA, NEW DIAMOND AND FRONTIER CARBON TECHNOLOGY, vol. 14, 2004, pages 313 |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2014027470A1 (ja) * | 2012-08-16 | 2016-07-25 | 国立大学法人愛媛大学 | 六方晶ダイヤモンド単相バルク焼結体およびその製造方法 |
WO2014027470A1 (ja) * | 2012-08-16 | 2014-02-20 | 国立大学法人愛媛大学 | 六方晶ダイヤモンド単相バルク焼結体およびその製造方法 |
US10167569B2 (en) | 2012-08-16 | 2019-01-01 | National University Corporation Ehime University | Hexagonal diamond bulk sintered body and its manufacturing method |
JP2014091661A (ja) * | 2012-11-06 | 2014-05-19 | Sumitomo Electric Ind Ltd | ダイヤモンド多結晶体およびその製造方法 |
WO2015025757A1 (ja) * | 2013-08-23 | 2015-02-26 | 住友電気工業株式会社 | ダイヤモンド多結晶体およびその製造方法、ならびに工具 |
JPWO2017073293A1 (ja) * | 2015-10-30 | 2018-08-16 | 住友電気工業株式会社 | 複合多結晶体 |
WO2019077888A1 (ja) * | 2017-10-20 | 2019-04-25 | 住友電気工業株式会社 | 合成単結晶ダイヤモンド、工具、及び、合成単結晶ダイヤモンドの製造方法 |
WO2019098172A1 (ja) * | 2017-11-17 | 2019-05-23 | 住友電気工業株式会社 | ダイヤモンド多結晶体及びその製造方法 |
US11787699B2 (en) | 2017-11-17 | 2023-10-17 | Sumitomo Electric Industries, Ltd. | Diamond polycrystal and method of producing the same |
WO2020017040A1 (ja) * | 2018-07-20 | 2020-01-23 | 住友電気工業株式会社 | ダイヤモンド多結晶体及びそれを備えた工具 |
KR102552459B1 (ko) | 2018-07-20 | 2023-07-06 | 스미토모덴키고교가부시키가이샤 | 다이아몬드 다결정체 및 그것을 구비한 공구 |
WO2020017039A1 (ja) * | 2018-07-20 | 2020-01-23 | 住友電気工業株式会社 | ダイヤモンド多結晶体及びそれを備えた工具 |
CN110933945A (zh) * | 2018-07-20 | 2020-03-27 | 住友电气工业株式会社 | 金刚石多晶体及包含该金刚石多晶体的工具 |
JP6421905B1 (ja) * | 2018-07-20 | 2018-11-14 | 住友電気工業株式会社 | ダイヤモンド多結晶体及びそれを備えた工具 |
KR20210031594A (ko) * | 2018-07-20 | 2021-03-22 | 스미토모덴키고교가부시키가이샤 | 다이아몬드 다결정체 및 그것을 구비한 공구 |
KR20210031806A (ko) * | 2018-07-20 | 2021-03-23 | 스미토모덴키고교가부시키가이샤 | 다이아몬드 다결정체 및 그것을 구비한 공구 |
JP6421904B1 (ja) * | 2018-07-20 | 2018-11-14 | 住友電気工業株式会社 | ダイヤモンド多結晶体及びそれを備えた工具 |
CN110933945B (zh) * | 2018-07-20 | 2022-05-24 | 住友电气工业株式会社 | 金刚石多晶体及包含该金刚石多晶体的工具 |
KR102552453B1 (ko) | 2018-07-20 | 2023-07-05 | 스미토모덴키고교가부시키가이샤 | 다이아몬드 다결정체 및 그것을 구비한 공구 |
WO2020070776A1 (ja) | 2018-10-01 | 2020-04-09 | 住友電気工業株式会社 | ダイヤモンド多結晶体、ダイヤモンド多結晶体を備える工具及びダイヤモンド多結晶体の製造方法 |
US11814293B2 (en) | 2018-10-01 | 2023-11-14 | Sumitomo Electric Industries, Ltd. | Diamond polycrystal, tool including diamond polycrystal, and method of producing diamond polycrystal |
JPWO2021054019A1 (ja) * | 2019-09-18 | 2021-03-25 | ||
JP7444523B2 (ja) | 2019-09-18 | 2024-03-06 | 住友電工ハードメタル株式会社 | ダイヤモンド切削工具 |
Also Published As
Publication number | Publication date |
---|---|
WO2012023473A9 (ja) | 2012-07-19 |
KR20120088882A (ko) | 2012-08-08 |
US8784767B2 (en) | 2014-07-22 |
JPWO2012023473A1 (ja) | 2013-10-28 |
EP3401040A1 (en) | 2018-11-14 |
EP2607307B1 (en) | 2018-07-25 |
KR101196089B1 (ko) | 2012-11-01 |
EP2607307A4 (en) | 2014-06-18 |
CN102712478B (zh) | 2016-06-08 |
EP2607307A1 (en) | 2013-06-26 |
ES2689682T3 (es) | 2018-11-15 |
US20120258035A1 (en) | 2012-10-11 |
DE202011111028U1 (de) | 2018-07-03 |
DE202011111029U1 (de) | 2018-07-03 |
CN102712478A (zh) | 2012-10-03 |
JP5720686B2 (ja) | 2015-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5720686B2 (ja) | ダイヤモンド多結晶体およびその製造方法 | |
CN107207364B (zh) | 立方氮化硼多晶体、切削工具、耐磨工具、研磨工具、和立方氮化硼多晶体的制造方法 | |
CN112340727B (zh) | 金刚石多晶体、切削工具、耐磨工具、以及磨削工具 | |
JP5197383B2 (ja) | 切削工具 | |
EP2752398B1 (en) | Cubic boron nitride complex polycrystalline substance, method for manufacturing same, cutting tool, wire-drawing die, and grinding tool | |
JP4203900B2 (ja) | ダイヤモンド多結晶体およびその製造方法 | |
JP6387897B2 (ja) | ダイヤモンド多結晶体、切削工具、耐摩工具、および研削工具 | |
JP2015202981A (ja) | 立方晶窒化ホウ素複合焼結体およびその製造方法、ならびに切削工具、耐摩工具および研削工具 | |
KR102552459B1 (ko) | 다이아몬드 다결정체 및 그것을 구비한 공구 | |
JP6007732B2 (ja) | ダイヤモンド多結晶体およびその製造方法 | |
JP2009007248A (ja) | ダイヤモンド多結晶体 | |
TWI690488B (zh) | 鑽石多晶體及具備其之工具 | |
JP6015325B2 (ja) | ダイヤモンド多結晶体およびその製造方法、ならびに工具 | |
WO2020070776A1 (ja) | ダイヤモンド多結晶体、ダイヤモンド多結晶体を備える工具及びダイヤモンド多結晶体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180005940.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11818115 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13517921 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011818115 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20127018148 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012529575 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |