WO2012022019A1 - 一种颜色可调的荧光粉及其制备方法 - Google Patents

一种颜色可调的荧光粉及其制备方法 Download PDF

Info

Publication number
WO2012022019A1
WO2012022019A1 PCT/CN2010/076012 CN2010076012W WO2012022019A1 WO 2012022019 A1 WO2012022019 A1 WO 2012022019A1 CN 2010076012 W CN2010076012 W CN 2010076012W WO 2012022019 A1 WO2012022019 A1 WO 2012022019A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
color
phosphor
adjustable
molar ratio
Prior art date
Application number
PCT/CN2010/076012
Other languages
English (en)
French (fr)
Inventor
周明杰
吕婷
王烨文
马文波
Original Assignee
海洋王照明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45604674&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012022019(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 海洋王照明科技股份有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to PCT/CN2010/076012 priority Critical patent/WO2012022019A1/zh
Priority to JP2013524327A priority patent/JP2013537579A/ja
Priority to EP10856017.8A priority patent/EP2607450A4/en
Priority to US13/812,646 priority patent/US20130126786A1/en
Priority to CN201080067335.5A priority patent/CN102933689B/zh
Publication of WO2012022019A1 publication Critical patent/WO2012022019A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7792Aluminates

Definitions

  • the invention belongs to the field of optoelectronics and illumination technology, and particularly relates to a color adjustable phosphor and a preparation method thereof
  • the fluorescent materials used are mostly zinc oxide and rare earth ion-activated oxides and sulfur oxide powders.
  • the luminance is high and has a certain conductivity, but in the large beam electron beam. It is easy to decompose under bombardment and reduce the luminous efficiency of the phosphor; the oxide phosphor has good stability, but its luminous efficiency is not high enough under low-pressure electron beam bombardment, and the materials are non-conductive insulators, and the performance needs to be improved and improved.
  • high-quality illumination and display devices also require the color of the phosphor to be adjustable. Therefore, how to achieve the adjustable color of the phosphor while maintaining the high luminance of the phosphor has always been material science. Important aspects of research in the field of optoelectronics and lighting technology.
  • a phosphor having high luminance and adjustable color is provided.
  • the precursor solution is aged, calcined, cooled, and ground to obtain a color-adjustable phosphor.
  • the above-mentioned phosphor is introduced into the conductive material ZnAlO, so that the electrons accumulated on the surface of the phosphor can be effectively derived, so that the prepared phosphor has a secondary luminance of the cathode ray, which improves the disadvantage of the conductivity of the existing phosphor.
  • the phosphor color can be adjusted by adjusting the proportion of the conductive material having the luminescent property and changing the cathode ray excitation voltage.
  • FIG. 1 is a flow chart showing a method of preparing a color-adjustable phosphor according to an embodiment of the present invention
  • Figure 2 is a spectrum (a) of a phosphor prepared in Example 6 of the present invention at a cathode ray of 7 kV and a spectrum (b) at a cathode ray of 5 kV;
  • Example 3 is a color coordinate of a Y 1.90 Eu 0.10 O 3 •0.05Zn 0.97 Al 0.03 O phosphor prepared in Example 6 of the present invention under excitation of a cathode ray of 5 kV;
  • Example 4 is a color coordinate of a Y 1.90 Eu 0.10 O 3 •0.05Zn 0.97 Al 0.03 O phosphor prepared in Example 6 of the present invention under excitation of a cathode ray of 7 kV;
  • FIG. 5 is a spectrum diagram of a Y 1.90 Eu 0.10 O 3 phosphor doped with different ratios of Zn 0.97 Al 0.03 O prepared by the embodiment 5 and the embodiment 6, under the excitation of a cathode ray of 7 kV, wherein c is Y 1.90 Eu Spectrogram of 0.10 O 3 •0.03Zn 0.97 Al 0.03 O phosphor, d is the spectrum of Y 1.90 Eu 0.10 O 3 •0.05Zn 0.97 Al 0.03 O phosphor;
  • Example 6 is a color coordinate of a Y 1.90 Eu 0.10 O 3 •0.03Zn 0.97 Al 0.03 O phosphor prepared in Example 5 of the present invention under a cathode ray excitation of 7 kV;
  • Figure 7 is a color coordinate of a Y 1.90 Eu 0.10 O3•0.05Zn 0.97 Al 0.03 O phosphor prepared in Example 6 of the present invention under a cathode ray excitation of 7 kV.
  • the conductive function of the phosphor is Zn (1-m) Al m O, which is a compound semiconductor, which enables the electrons collected on the surface of the phosphor to be efficiently derived, so that the prepared phosphor is excited by the cathode ray. The brightness of the light is increased.
  • FIG. 1 illustrates a flow of a color-adjustable phosphor preparation method according to an embodiment of the present invention.
  • the preparation method includes the following steps:
  • the Zn 2+ and Al 3+ solutions can be prepared by using the corresponding soluble salts such as acetate, nitrate, hydrochloride and sulfate. Specifically, an appropriate amount of the reactant is weighed and dissolved in a container with deionized water. The total concentration of Zn 2+ and Al 3+ in the solution is 0.1 to 2.00 mol/L, and the molar amount of Zn 2+ and Al 3+ The ratio is 99.9: 0.1 to 95:5.
  • Y 3+ , Eu 3+ , Gd 3+ solution (I solution) or Eu 3+ , Gd 3+ solution (II solution) or Y 3+ , Eu 3+ solution (III solution) may be selected from the respective nitrates or It can be prepared by using soluble salts such as hydrochloride and rare earth oxides or oxalates as raw materials.
  • the preparation method of the soluble salt is similar to the Zn 2+ and Al 3+ solutions, and the rare earth oxide or oxalate is used as the raw material.
  • the specific step is to use a suitable amount of rare earth oxide or oxalate under heating and stirring at 15oC to 100oC.
  • Step S02 is specifically: measuring an appropriate amount of the prepared I solution or II solution or III solution, adding the configured Zn 2+ , Al 3 + solution, maintaining the molar amount of Zn 2+ , Al 3 + and the I solution or II solution Or the ratio of the molar amount of the solution III is (0.01 to 0.20): 1, and then adding the mixed solution of the alcohol and water containing the complexing agent, and disposing the 0.1-1.00 mol/L I solution doped with Zn 2+ and Al 3+ Or 40 mL of an aqueous solution of II solution or III solution, wherein the volume ratio of water to ethanol is 1: (1 ⁇ 7), while maintaining the molar ratio of citric acid to metal ions in the raw material is (1 ⁇ 5): 1, and then A surfactant is added to the solution so that the concentration of the surfactant is 0.05 to 0.20 g/mL.
  • the configured Zn 2+ , Al 3+ -containing I solution or II solution or III solution alcohol aqueous solution is stirred in a 40-70 o C water bath for 2-6 hours, and then aged in a 60-100 o C oven. 40 ⁇ 60 h, I solution or II solution or III solution colloid which is doped with Zn 2+ and Al 3+ ions.
  • the complexing agent used is preferably analytically pure citric acid; the surfactant is preferably at least one of analytically pure polyethylene glycol 6000, polyethylene glycol 8000, polyethylene glycol 10000, and polyethylene glycol 20000.
  • Step S03 is specifically: the prepared Zn 2+ , Al 3+ -containing I solution or II solution or III solution is aged in a 100-200 o C oven for 48-96 h, dried, and then The dried product is placed in a corundum crucible and calcined at 800-1300 o C for 0.5-6 h in an air atmosphere, cooled and ground.
  • the preparation method of the color-adjustable phosphor adopts a sol-gel method, and the product can be obtained only by temperature control and addition of each reactant in a proper ratio. Therefore, the color-adjustable preparation method has simple process and low equipment requirement. The preparation cycle is short.
  • compositions of the color-adjustable phosphors and their preparation methods, as well as their properties, etc., are exemplified below by various embodiments.
  • the colloid was placed in an oven at 100 o C dried 48 h, and then incubated for 2 h at 800 o C in a muffle furnace cooling after grinding, to obtain the formula Y 1.98 Eu 0.02 O 3 • 0.1Zn 0.999 Al 0.001 O Phosphors.
  • the prepared colloid was dried in a 200 o C oven for 50 h, then kept in a 1000 o C muffle furnace for 3 h, cooled and ground to obtain a chemical formula of Y 1.98 Eu 0.02 O 3 • 0.01 Zn 0.98 Al 0.02 O. Phosphors.
  • the prepared colloid was dried in a 150 o C oven for 96 h, then incubated in a 1300 o C muffle furnace for 0.5 h, cooled and ground to obtain a chemical formula of Y 1.96 Eu 0.04 O 3 • 0.1 Zn 0.97 Al 0.03 O. Phosphors.
  • the colloid was placed in an oven at 100 o C dried 96 h, and then incubated for 6 h in a muffle furnace 800 o C, cooled polished, to obtain the formula Y 1.98 Eu 0.02 O 3 • 0.05Zn 0.97 Al 0.03 O Phosphors.
  • the prepared colloid was dried in a 100 o C oven for 56 h, then incubated in a 1000 o C muffle furnace for 2 h, cooled and ground to obtain a chemical formula of Y 1.90 Eu 0.10 O 3 • 0.03 Zn 0.97 Al 0.03 O Phosphors.
  • the prepared colloid was dried in a 100 o C oven for 56 h, then incubated in a 1000 o C muffle furnace for 2 h, cooled and ground to obtain a chemical formula of Y 1.90 Eu 0.10 O 3 •0.05Zn 0.97 Al 0.03 O Phosphors.
  • the prepared colloid was dried in a 120 o C oven for 48 h, then incubated in a 1000 o C muffle furnace for 2 h, cooled and ground to obtain a chemical formula of Y 1.90 Eu 0.10 O 3 • 0.2 Zn 0.999 Al 0.001 O. Phosphor.
  • the colloid was placed in an oven at 130 o C dried 59 h, and then incubated for 2 h at 1100 o C in a muffle furnace cooled grinding, chemically prepared for Gd 1.88 Eu 0.12 O 3 • 0.08Zn 0.97 Al 0.03 O phosphor.
  • the prepared colloid was dried in a 130 o C oven for 59 h, then incubated in a 1200 o C muffle furnace for 2 h, cooled and ground to obtain a chemical formula of Gd 1.96 Eu 0.04 O 3 • 0.06 Zn 0.95 Al 0.05 O. Phosphors.
  • the prepared colloid was dried in a 130 o C oven for 59 h, then incubated in a 1200 o C muffle furnace for 2 h, cooled and ground to obtain a chemical formula of Gd 1.9 Eu 0.1 O 3 •0.05Zn 0.999 Al 0.001 O. Phosphors.
  • the colloid was placed in an oven at 100 o C dried 50 h, and then incubated for 2 h at 800 o C in a muffle furnace cooling after grinding, to obtain the formula Gd 1.9 Eu 0.1 O 3 • 0.01Zn 0.999 Al 0.001 O Phosphors.
  • the prepared colloid was dried in a 100 o C oven for 48 h, then incubated in a 1200 o C muffle furnace for 2 h, cooled and ground to obtain a chemical formula of Gd 1.84Eu 0.16 O 3 •0.1Zn 0.97 Al 0.03 O. Phosphors.
  • the prepared colloid was dried in a 150 o C oven for 75 h, then incubated in a 1200 o C muffle furnace for 2 h, cooled and ground to obtain a chemical formula of Y0.36Gd 1.6 Eu 0.04 O 3 • 0.15 Zn 0.95 Al 0.05 O phosphor.
  • the prepared colloid was dried in a 120 o C oven for 48 h, then incubated in a 1000 o C muffle furnace for 2 h, cooled and ground to obtain a chemical formula of Y0.18Gd 1.8 Eu 0.02 O 3 •0.05Zn 0.98 Al. 0.02 O phosphor.
  • Yttrium oxalate Weigh 30.2000 g, 29.6370 g of gadolinium oxalate and europium oxalate 1.7201 g was stirred at 60 o C was dissolved in 27 mL of hydrochloric acid under conditions, coupled with deionized water to 100 mL, formulated at a concentration of 1 mol / L of Y 3+ And a Gd 3+ , Eu 3+ aqueous solution, wherein the molar ratio of Y 3+ , Gd 3+ , and Eu 3+ is 50:45:5.
  • the prepared colloid was dried in a 120 o C oven for 48 h, then incubated in a 1000 o C muffle furnace for 2 h, cooled and ground to obtain a chemical formula of Y1Gd 0.9 Eu 0.1 O 3 • 0.12 Zn 0.999 Al 0.001 O. Phosphors.
  • the prepared colloid was dried in a 120 o C oven for 48 h, then incubated in a 1300 o C muffle furnace for 2 h, cooled and ground to obtain a chemical formula of Y1.7 Gd 0.2 Eu 0.1 O 3 • 0.1 Zn 0.98. Al 0.02 O phosphor.
  • Example 6 the spectrum of the Y 1.90 Eu 0.10 O 3 •0.05Zn 0.97 Al 0.03 O phosphor prepared in the above Example 6 under the excitation of a cathode ray is shown, and a in FIG. 2 is implemented.
  • the spectrum of the sample prepared in Example 6 at 7 kV, and b is the spectrum of the sample prepared in Example 6 at 5 kV, and the spectrum was analyzed by Shimadzu RF-5301PC spectrometer.
  • 3 is a color coordinate of a Y 1.90 Eu 0.10 O 3 •0.05Zn 0.97 Al 0.03 O phosphor prepared in Example 6 of the present invention under excitation of a cathode ray of 5 kV, and FIG.
  • Fig. 4 is a Y 1.90 Eu 0.10 O prepared in Example 6 of the present invention.
  • FIG. 5 is a spectrum diagram of a Y 1.90 Eu 0.10 O3 phosphor doped with different ratios of Zn 0.97 Al 0.03 O prepared by the embodiment 5 and the embodiment 6, under the excitation of a cathode ray of 7 kV, wherein c is Y 1.90 Eu 0.10
  • the emission spectrum of O 3 •0.03Zn 0.97 Al 0.03 O phosphor, d is the emission spectrum of Y 1.90 Eu 0.10 O 3 •0.05Zn 0.97 Al 0.03 O phosphor, which is analyzed by Shimadzu RF-5301PC spectrometer. .
  • FIG. 6 is a color coordinate of a Y 1.90 Eu 0.10 O 3 •0.03Zn 0.97 Al 0.03 O phosphor prepared in Example 5 of the present invention under excitation of a cathode ray of 7 kV
  • FIG. 7 is a Y 1.90 Eu prepared in Example 6 of the present invention.
  • the powder can be adjusted in color.
  • the sol-gel method is used to control the ratio of the reaction raw materials, and a color-adjustable phosphor with excellent luminescence properties is prepared.
  • the preparation process is simple, the cost is low, and the production and application prospects are broad.

Description

一种颜色可调的荧光粉及其制备方法 技术领域
本发明属于光电子和照明技术领域,具体涉及一种颜色可调的荧光粉及其制备方法
背景技术
随着高品质显示与照明器件在工作与生活中越来越广泛的发展和应用,高效率与长使用寿命的荧光粉成为照明与显示器件中的重要组成部分,荧光粉的性能成为影响器件质量的直接因素,尤其是在场发射器件中,电子容易在荧光粉表面富集,降低电子束的轰击能力,从而降低器件的亮度,因此,荧光粉的导电性能成为制约照明与显示器件性能的一个非常重要的因素。
目前所采用的荧光材料多为硫化锌和稀土离子激活的氧化物、硫氧化物粉体,对于硫化物荧光粉来说,发光亮度较高,具有一定的导电性,但在大束流电子束的轰击下容易发生分解,减低荧光粉的发光效率;氧化物荧光粉稳定性好,但其在低压电子束轰击下发光效率不够高,而且材料均为不导电的绝缘体,性能有待于改进和提高。与此同时,高质量的照明与显示器件也对荧光粉的颜色可调提出了要求,因此,如何在实现荧光粉高发光亮度的前提下,同时实现荧光粉发光颜色的可调一直是材料学、光电子学及照明技术领域中研究的重要内容。
技术问题
有鉴于此,提供一种发光亮度高、颜色可调的荧光粉。
以及,提供一种颜色可调的荧光粉的制备方法。
技术解决方案
一种颜色可调的荧光粉,其化学通式为(YaGdbEuc)2O3•xZn(1-m)AlmO,其中,0≤a≤0.99,0≤b≤0.99,0.01≤c≤0.08,且a + b + c = 1,a、b不同时为0,x为Zn(1-m)AlmO与(YaGdbEuc)2O3的摩尔数比,0.01≤x≤0.20,0.001≤m≤0.05。
以及,一种颜色可调的荧光粉的制备方法,其包括如下步骤:
配制Zn2+、Al3+溶液,以及按照化学通式(YaGdbEuc)2O3中的相应元素摩尔比,配制Y3+、Eu3+、Gd3+溶液或Eu3+、Gd3+溶液或Y3+、Eu3+溶液;
按照化学通式(YaGdbEuc)2O3•xZn(1-m)AlmO中的相应摩尔比例,取上述各溶液,其中0≤a≤0.99,0≤b≤0.99,0.01≤c≤0.08,且a + b + c = 1,a、b不同时为0,x为Zn(1-m)AlmO与(YaGdbEuc)2O3的摩尔数比,0.01≤x≤0.20,0.001≤m≤0.05,加入含有络合剂的醇水混合溶液、表面活性剂,得前驱体溶液;
将所述前驱体溶液陈化,再进行煅烧处理,冷却后研磨,制得颜色可调的荧光粉。
有益效果
上述荧光粉引入导电物质ZnAlO,使得聚集在荧光粉表面的电子能够有效导出,使得所制备的荧光粉在阴极射线继发性的发光亮度提高,改善了现有荧光粉导电性能不高的劣势,而且通过调整具有发光性能的导电材料的加入比例以及改变阴极射线激发电压能够实现荧光粉发光颜色可调。
附图说明
图1是本发明实施例的颜色可调的荧光粉的制备方法的流程图;
图2是本发明实施例6所制备荧光粉在阴极射线7kV下的光谱图(a)以及在阴极射线5kV下的光谱图(b);
图3是本发明实施例6制备的Y1.90Eu0.10O3•0.05Zn0.97Al0.03O荧光粉在阴极射线5kV激发下的色坐标;
图4是本发明实施例6制备的Y1.90Eu0.10O3•0.05Zn0.97Al0.03O荧光粉在阴极射线7kV激发下的色坐标;
图5是本发明实施例5及实施例6所制备的掺入不同比例Zn0.97Al0.03O的Y1.90Eu0.10O3荧光粉在阴极射线7kV激发下的光谱图,其中,c为Y1.90Eu0.10O3•0.03Zn0.97Al0.03O荧光粉的光谱图,d为Y1.90Eu0.10O3•0.05Zn0.97Al0.03O荧光粉的光谱图;
图6是本发明实施例5所制备的Y1.90Eu0.10O3•0.03Zn0.97Al0.03O荧光粉在阴极射线7kV激发下的色坐标;
图7是本发明实施例6所制备的Y1.90Eu0.10O3•0.05Zn0.97Al0.03O荧光粉在阴极射线7kV激发下的色坐标。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
一种颜色可调的荧光粉,其化学通式为(YaGdbEuc)2O3•xZn(1-m)AlmO,其中,0≤a≤0.99,0≤b≤0.99,0.01≤c≤0.08,且a + b + c = 1,a、b不同时为0,x为Zn(1-m)AlmO与(YaGdbEuc)2O3的摩尔数比,0.01≤x≤0.20,0.001≤m≤0.05。
荧光粉 (YaGdbEuc)2O3•xZn(1-m)AlmO中Zn(1-m)AlmO所占的比例不同,在400~600 nm处的Zn(1-m)AlmO荧光发射峰与在600~625nm处稀土荧光发射峰之比会有相应改变,从而实现配比不同带来的荧光粉颜色可调。与此同时,由于Zn(1-m)AlmO和稀土的荧光发光机理不同。当激发电压的变化时,两个发光峰强度的变化也会不同,从而激发电压不同能够实现荧光粉的颜色可调。
荧光粉中起到导电作用的是Zn(1-m)AlmO,其为一种化合物半导体,能够使得聚集在荧光粉表面的电子能够有效导出,使得所制备的荧光粉在阴极射线激发下的发光亮度提高。
请参阅图1,说明本发明实施例的颜色可调的荧光粉制备方法的流程,该制备方法包括如下步骤:
S01:配制Zn2+、Al3+溶液,以及按照化学通式(YaGdbEuc)2O3中的相应元素摩尔比,配制Y3+、Eu3+、Gd3+溶液或Eu3+、Gd3+溶液或Y3+、Eu3+溶液;
S02:按照化学通式(YaGdbEuc)2O3•xZn(1-m)AlmO中的相应摩尔比例,取上述各溶液,其中0≤a≤0.99,0≤b≤0.99,0.01≤c≤0.08,且a + b + c = 1,a、b不同时为0,x为Zn(1-m)AlmO与(YaGdbEuc)2O3的摩尔数比,0.01≤x≤0.20,0.001≤m≤0.05,加入含有络合剂的醇水混合溶液、表面活性剂,得前驱体溶液;
S03:对所述前驱体溶液陈化,再进行煅烧处理,冷却后研磨,制得颜色可调的荧光粉。
步骤S01中,Zn2+、Al3+溶液可以选用其相应的醋酸盐、硝酸盐、盐酸盐和硫酸盐等可溶性盐配制。具体为,称取适量的反应物,用去离子水溶解于容器中,溶液中Zn2+和Al3+的总浓度为0.1~2.00 mol/L,且Zn2+和Al3+的摩尔量之比为99.9:0.1~95:5。Y3+、Eu3+、Gd3+溶液(I溶液)或Eu3+、Gd3+溶液(II溶液)或Y3+、Eu3+溶液(III溶液)可选用各自对应的硝酸盐或者盐酸盐等可溶性盐配制,也可以选用稀土氧化物或草酸盐作为原料配制。选用可溶性盐的配制方法与Zn2+、Al3+溶液类似,选用稀土氧化物或者草酸盐作为原料,具体步骤为,在15oC~100oC加热搅拌下,将适量稀土氧化物或者草酸盐用分析纯盐酸(36~37%,11.7 mol/L)或者分析纯硝酸(65~68%,14.4~15.2 mol/L)溶解于容器中,再加入去离子水配制成需要的浓度。
步骤S02具体为,量取适量所配制的I溶液或II溶液或III溶液,加入所配置的Zn2+、Al3+溶液,保持Zn2+、Al3+的摩尔量与I溶液或II溶液或III溶液的摩尔量之比为(0.01~0.20):1,再加入含有络合剂的醇水混合溶液,配置成0.1~1.00 mol/L的掺入Zn2+、Al3+的I溶液或II溶液或III溶液的醇水溶液40 mL,其中水与乙醇的体积比为1:(1~7),同时保持柠檬酸与原料中金属离子的摩尔比为(1~5):1,再在溶液中加入表面活性剂,使表面活性剂的浓度为0.05~0.20 g/mL。将所配置的掺入Zn2+、Al3+的I溶液或II溶液或III溶液醇水溶液在40~70oC水浴中搅拌2~6 h后,置于60~100oC烘箱中陈化40~60 h,得到掺入Zn2+、Al3+离子的I溶液或II溶液或III溶液胶体。其中,所用络合剂优选为分析纯的柠檬酸;表面活性剂优选为分析纯的聚乙二醇6000、聚乙二醇8000、聚乙二醇10000、聚乙二醇20000中至少一种。
步骤S03具体为,将所制备的掺入Zn2+、Al3+的I溶液或II溶液或III溶液置于100~200oC烘箱中陈化48~96 h,进行烘干处理,再将烘干后的产物置于刚玉坩埚中,在空气气氛中于800~1300oC煅烧处理0.5~6 h,冷却、研磨。
该颜色可调的荧光粉的制备方法采用溶胶-凝胶法,只需控温以及按合适比例添加各反应物即能得到产物,因此,该颜色可调的制备方法工艺简单、设备要求低、制备周期短。
以下通过多个实施例来举例说明颜色可调的荧光粉的不同组成及其制备方法,以及其性能等方面。
实施例1
称取21.9281 g Zn(CH3COO)2•2H2O,0.0375 g Al(NO3)3•9H2O溶于100 mL去离子水中,配制成1 mol/L的Zn2+、Al3+水溶液,其中,Zn2+与 Al3+的摩尔比为99.9:0.1。
称取37.9180 g Y(NO3)3•6H2O和0.4441 g Eu(NO3)3•6H2O溶于去离子水中,配置浓度为1 mol/L的Y3+、Eu3+水溶液,其中,Eu3+与Y3+的摩尔比为1:99。
量取4 mL浓度为1mol/L的Y3+、Eu3+水溶液,加入1 mL去离子水和35 mL无水乙醇后,再加入0.4 mL所制备的Zn2+、Al3+水溶液,3.3817 g柠檬酸和2 g聚乙二醇10000,于60oC水浴条件下搅拌4 h,得到掺入Zn2+、Al3+的Y3+、Eu3+前驱体溶液,然后将前驱体溶液置于90oC烘箱中陈化40 h,得到均匀的掺入Zn2+、Al3+的Y3+、Eu3+胶体。
将所制备的胶体置于100oC烘箱中干燥48 h,然后在800oC马弗炉中保温2 h,冷却后研磨,制得化学式为Y1.98Eu0.02O3•0.1Zn0.999Al0.001O的荧光粉。
实施例2
称取43.0220 g Zn(CH3COO)2•2H2O,1.1502 g ZnSO4•7H2O溶于100 mL去离子水中,配制成2 mol/L的Zn2+、Al3+水溶液,其中,Zn2+与Al3+的摩尔比为98:2。
称取76.5254 g Y(NO3)3•6H2O和0. 8920 g Eu(NO3)3•6H2O溶于去离子水中,配制浓度为2 mol/L的Y3+、Eu3+水溶液,其中,Eu3+与Y3+的摩尔比为1:99。
量取20 mL浓度为2.00 mol/L的Y3+、Eu3+水溶液,加入20 mL无水乙醇、0.2 mL所制备的Zn2+、Al3+水溶液,7.7625 g柠檬酸和8 g聚乙二醇10000,于50oC水浴条件下搅拌6 h,得到掺入Zn2+、Al3+的Y3+、Eu3+前驱体溶液,然后将前驱体溶液于60oC烘箱中陈化60 h,得到掺入Zn2+、Al3+的Y3+、Eu3+的胶体。
将所制备的胶体置于200oC烘箱中干燥50 h,然后在1000oC马弗炉中保温3 h,冷却后研磨,制得化学式为Y1.98Eu0.02O3•0.01Zn0.98Al0.02O的荧光粉。
实施例3
称取10.5769 g ZnCl2,0.9003 g Al(NO3)3•9H2O溶于100 mL去离子水中,配制成0.8 mol/L的Zn2+、Al3+水溶液,其中,Zn2+与Al3+摩尔比为97:3。
称取18.7675 g Y(NO3)3•6H2O和0.4461 g Eu(NO3)3•6H2O溶于去离子水中,配制浓度为0.5 mol/L的Y3+、Eu3+水溶液,其中,Eu3+与Y3+的摩尔比为1:49。
量取8 mL浓度为0.50 mol/L的Y3+、Eu3+水溶液,加入32 mL无水乙醇、0.5 mL所制备的Zn2+、Al3+水溶液,4.2271 g柠檬酸和4 g聚乙二醇8000,于40oC水浴条件下搅拌6 h,得到掺入Zn2+、Al3+的Y3+、Eu3+前驱体溶液,然后将前驱体溶液于90oC烘箱中陈化60 h,得到掺入Zn2+、Al3+的Y3+、Eu3+胶体。
将所制备的胶体置于150oC烘箱中干燥96 h,然后在1300oC马弗炉中保温0.5 h,冷却后研磨,制得化学式为Y1.96Eu0.04O3•0.1Zn0.97Al0.03O的荧光粉。
实施例4
称取22.3147 g ZnSO4•7H2O,0.5794 g AlCl3•6H2O溶于100 mL去离子水中,配制成0.8mol/L的Zn2+、Al3+水溶液,其中,Zn2+与Al3+的摩尔比为97:3。
称取37.9180 g Y(NO3)3•6H2O和0.4441 g Eu(NO3)3•6H2O溶于去离子水中,配制浓度为1 mol/L的Y3+、Eu3+水溶液,其中,Eu3+与Y3+的摩尔比为1:99。
量取20 mL浓度为1.00 mol/L的Y3+、Eu3+水溶液,加入20 mL无水乙醇、1.25 mL所制备的Zn2+、Al3+水溶液,4.0349 g柠檬酸和5 g聚乙二醇20000,于60oC水浴条件下搅拌4 h,得到掺入Zn2+、Al3+的Y3+、Eu3+前驱体溶液,然后将前驱体溶液于80oC烘箱中陈化56 h,得到掺入Zn2+、Al3+的Y3+、Eu3+胶体。
将所制备的胶体置于100oC烘箱中干燥96 h,然后在800oC马弗炉中保温6 h,冷却后研磨,制得化学式为Y1.98Eu0.02O3•0.05Zn0.97Al0.03O的荧光粉。
实施例5
称取22.3147 g ZnSO4•7H2O,0.5794g AlCl3•6H2O溶于100 mL去离子水中,配制成0.8mol/L的Zn2+、Al3+水溶液,其中,Zn2+与Al3+的摩尔比为97:3。
称取28.6899 g草酸钇和1.7201 g草酸铕在15oC搅拌条件下溶于20 mL硝酸中,再加去离子水至100 mL,配制浓度为1 mol/L的Y3+、Eu3+水溶液,其中,Eu3+与Y3+的摩尔比为1:19。
量取20 mL浓度为1.00 mol/L的Y3+、Eu3+水溶液,加入20 mL无水乙醇、0.75 mL所制备的Zn2+、Al3+水溶液,7.9162 g柠檬酸和4 g聚乙二醇10000,于70oC水浴条件下搅拌4 h,得到掺入Zn2+、Al3+的Y3+、Eu3+前驱体溶液,然后将前驱体溶液于60oC烘箱中陈化60 h,得到掺入Zn2+、Al3+的Y3+、Eu3+胶体。
将所制备的胶体置于100oC烘箱中干燥56 h,然后在1000oC马弗炉中保温2 h,冷却后研磨,制得化学式为Y1.90Eu0.10O3•0.03Zn0.97Al0.03O的荧光粉。
实施例6
称取22.3147 g ZnSO4•7H2O,0.5794g AlCl3•6H2O溶于100 mL去离子水中,配制成0.8mol/L的Zn2+、Al3+水溶液,其中,Zn2+与Al3+的摩尔比为97:3。
称取28.6899 g草酸钇和1.7201 g草酸铕在15oC搅拌条件下溶于20 mL硝酸中,再加去离子水至100 mL,配制浓度为1 mol/L的Y3+、Eu3+水溶液,其中,Eu3+与Y3+的摩尔比为1:19。
量取20 mL浓度为1.00 mol/L的Y3+、Eu3+水溶液,加入20 mL无水乙醇、1.25 mL所制备的Zn2+、Al3+水溶液,7.9162 g柠檬酸和4 g聚乙二醇10000,于70oC水浴条件下搅拌4 h,得到掺入Zn2+、Al3+的Y3+、Eu3+前驱体溶液,然后将前驱体溶液于60oC烘箱中陈化60 h,得到掺入Zn2+、Al3+的Y3+、Eu3+胶体。
将所制备的胶体置于100oC烘箱中干燥56 h,然后在1000oC马弗炉中保温2 h,冷却后研磨,制得化学式为Y1.90Eu0.10O3•0.05Zn0.97Al0.03O的荧光粉。
实施例7
称取21.9281 g Zn(CH3COO)2•2H2O,0.0375 g Al(NO3)3•9H2O溶于100 mL去离子水中,配制成1 mol/L的Zn2+、Al3+水溶液,其中,Zn2+与Al3+的摩尔比为99.9:0.1。
称取10.7260 g Y2O3和0.8798 g Eu2O3,在60oC搅拌条件下溶于27 mL盐酸中,再加去离子水至100 mL,配制浓度为1 mol/L的Y3+、Eu3+水溶液,其中,Eu3+与Y3+的摩尔比为1:19。
量取8 mL浓度为1.00 mol/L的Y3+、Eu3+水溶液,加入32 mL无水乙醇、1.6 mL所制备的Zn2+、Al3+水溶液,7.3781 g柠檬酸和7 g聚乙二醇6000,于60oC水浴条件下搅拌4 h,得到掺入Zn2+、Al3+的Y3+、Eu3+前驱体溶液,然后将前驱体溶液于70oC烘箱中陈化60 h,得到掺入Zn2+、Al3+的Y3+、Eu3+胶体。
将所制备的胶体置于120oC烘箱中干燥48 h,然后在1000oC马弗炉中保温2h,冷却后研磨,制得化学式为Y1.90Eu0.10O3•0.2Zn0.999Al0.001O的荧光粉。
实施例8
称取2.8857 g Zn(NO3)2•6H2O,0.0724 g AlCl3•6H2O溶于100 mL去离子水中,配制成0.1 mol/L的Zn2+、Al3+水溶液,其中Zn2+与Al3+的摩尔比为97:3。
称取42.4281 g Gd(NO3)3•6H2O和2.6760 g Eu(NO3)3•6H2O溶于去离子水中,配制浓度为0.1 mol/L的Gd3+、Eu3+水溶液1 L,其中Eu3+与Gd3+的摩尔比为3:47。
量取20 mL浓度为0.1 mol/L的Gd3+、Eu3+水溶液,加入20 mL无水乙醇、1.6 mL所制备的Zn2+、Al3+水溶液,2.0751 g柠檬酸和5 g聚乙二醇10000,于70oC水浴条件下搅拌2 h,得到掺入Zn2+、Al3+的Gd3+、Eu3+前驱体溶液,然后将前驱体溶液置于90oC烘箱中陈化40 h,得到掺入Zn2+、Al3+的Gd3+、Eu3+胶体。
将所制备的胶体置于130oC烘箱中干燥59 h,然后在1100oC马弗炉中保温2 h,冷却后研磨,制得化学是为Gd1.88Eu0.12O3•0.08Zn0.97Al0.03O的荧光粉。
实施例9
称取14.1308g Zn(NO3)2•6H2O,0.9378g Al(NO3)3•9H2O溶于100 mL去离子水中,配制成0.5mol/L的Zn2+、Al3+水溶液,其中,Zn2+与Al3+的摩尔比为95:5。
称取22.1166g Gd (NO3)3•6H2O和0.4461Eu(NO3)3•6H2O溶于去离子水中,配制浓度为0.5mol/L的Gd3+、Eu3+水溶液,其中,Eu3+与Gd3+的摩尔比为1:49。
量取10mL浓度为0.5mol/L的Gd3+、Eu3+水溶液,加入8 mL去离子水及 22 mL无水乙醇、再加入0. 6 mL所制备的Zn2+、Al3+水溶液,3.0550 g柠檬酸和4 g聚乙二醇10000,于50oC水浴条件下搅拌6 h,得到掺入Zn2+、Al3+的Gd3+、Eu3+前驱体溶液,然后将前驱体溶液于100oC烘箱中陈化40 h,得到掺入Zn2+、Al3+的Gd3+、Eu3+胶体。
将所制备的胶体置于130oC烘箱中干燥59 h,然后在1200oC马弗炉中保温2 h,冷却后研磨,制得化学式为Gd1.96Eu0.04O3•0.06Zn0.95Al0.05O的荧光粉。
实施例10
称取21.9281 g Zn(CH3COO)2•2H2O,0.0375 g Al(NO3)3•9H2O溶于100 mL去离子水中,配制成1 mol/L的Zn2+、Al3+水溶液,其中,Zn2+与Al3+的摩尔比为99.9:0.1。
称取62.5670 g草酸钆和1.7201 g草酸铕在60oC搅拌条件下溶于20 mL硝酸中,再加去离子水至100mL,配制浓度为1mol/L的Gd3+、Eu3+水溶液,其中,Eu3+与Gd3+的摩尔比为1:19。
量取8 mL浓度为1mol/L的Gd3+、Eu3+水溶液,加入32 mL无水乙醇、0.4 mL所制备的Zn2+、Al3+水溶液,3.2280 g柠檬酸和4 g聚乙二醇10000,于70oC水浴条件下搅拌6h,得到掺入Zn2+、Al3+的Gd3+、Eu3+前驱体溶液,然后将前驱体溶液于90oC烘箱中陈化60 h,得到掺入Zn2+、Al3+的Gd3+、Eu3+胶体。
将所制备的胶体置于130oC烘箱中干燥59 h,然后在1200oC马弗炉中保温2 h,冷却后研磨,制得化学式为Gd1.9Eu0.1O3•0.05Zn0.999Al0.001O的荧光粉。
实施例11
称取21.9281 g Zn(CH3COO)2•2H2O,0.0375 g Al(NO3)3•9H2O溶于100 mL去离子水中,配制成1 mol/L的Zn2+、Al3+水溶液,其中,Zn2+与Al3+的摩尔比为99.9:0.1。
称取34.4375g Y2O3和0.8798 g Eu2O3在40oC搅拌条件下溶于20 mL硝酸中,再加去离子水至100 mL,配制浓度为1mol/L的Gd3+、Eu3+水溶液,其中, Eu3+ 与Gd3+的摩尔比为1:19。
量取20 mL浓度为1.00 mol/L的Gd3+、Eu3+水溶液,加入20 mL无水乙醇、0. 2 mL所制备的Zn2+、Al3+水溶液,11.7590 g柠檬酸和4 g聚乙二醇10000,于60oC水浴条件下搅拌4 h,得到掺入Zn2+、Al3+的Gd3+、Eu3+前驱体溶液,然后将前驱体溶液于80oC烘箱中陈化56h,得到掺入Zn2+、Al3+的Gd3+、Eu3+胶体。
将所制备的胶体置于100oC烘箱中干燥50 h,然后在800oC马弗炉中保温2 h,冷却后研磨,制得化学式为Gd1.9Eu0.1O3•0.01Zn0.999Al0.001O的荧光粉。
实施例12
称取2.8857 g Zn(NO3)2•6H2O,0.0724 g AlCl3•6H2O溶于100 mL去离子水中,配制成0.1 mol/L的Zn2+、Al3+水溶液,其中Zn2+与Al3+的摩尔比为97:3。
称取34.1964 g GdCl3和2.8154 g EuCl3 在15oC搅拌条件下溶于去离子水中,配制浓度为0.1 mol/L的Gd3+、Eu3+水溶液1 L,其中,Eu3+与Gd3+的摩尔比为2:23。
量取20 mL浓度为0.1 mol/L的Gd3+、Eu3+水溶液,加入20 mL无水乙醇、2 mL所制备的Zn2+、Al3+水溶液,0.8454 g柠檬酸和4 g聚乙二醇10000,于60oC水浴条件下搅拌4 h,得到掺入Zn2+、Al3+的Gd3+、Eu3+前驱体溶液,然后将前驱体溶液于60oC烘箱中陈化60 h,得到掺入Zn2+、Al3+的Gd3+、Eu3+胶体。
将所制备的胶体置于100oC烘箱中干燥48 h,然后在1200oC马弗炉中保温2 h,冷却后研磨,制得化学式为Gd 1.84Eu0.16O3•0.1Zn0.97Al0.03O的荧光粉。
实施例13
称取14.1308 g Zn(NO3)2•6H2O,0.9378 g Al(NO3)3•9H2O溶于100 mL去离子水中,配制成0.5 mol/L的Zn2+、Al3+水溶液,其中,Zn2+与Al3+的摩尔比为95:5。
称取3.4471 g Y(NO3)3•6H2O、18.0544 g Gd(NO3)3•6H2O和0.4461 g Eu(NO3)3•6H2O溶于去离子水中,配制浓度为0.5 mol/L的Y3+、Gd3+、Eu3+水溶液,其中,Y3+、Gd3+、Eu3+的摩尔比为18:80:2。
量取10 mL浓度为0.5 mol/L的Y3+、Gd3+、Eu3+水溶液,加入5 mL 去离子水、25 mL无水乙醇、1.5mL所制备的Zn2+、Al3+水溶液,2.2096g柠檬酸和4g聚乙二醇10000,于60℃水浴条件下搅拌4h,得到掺入Zn2+、Al3+的Y3+、Gd3+、Eu3+前驱体溶液,然后将前驱体溶液于70oC烘箱中陈化60 h,得到掺入Zn2+、Al3+的Y3+、Gd3+、Eu3+的胶体。
将所制备的胶体置于150oC烘箱中干燥75 h,然后在1200oC马弗炉中保温2h,冷却后研磨,制得化学式为Y0.36Gd1.6Eu0.04O3•0.15Zn0.95Al0.05O的荧光粉。
实施例14
称取43.0220 g Zn(CH3COO)2•2H2O,1.1502 g Al2(SO4)3溶于100 mL去离子水中,配制成2 mol/L的Zn2+、Al3+水溶液,其中,Zn2+与Al3+的摩尔比为98:2。
称取3.4471 g Y(NO3)3•6H2O、40.6224 g Gd(NO3)3•6H2O和0.4441 g Eu(NO3)3•6H2O溶于去离子水中,配制浓度为1 mol/L的Y3+、Gd3+、Eu3+水溶液,其中,Y3+、Gd3+、Eu3+的摩尔比为9:90:1。
量取8 mL浓度为1.00 mol/L的Y3+、Gd3+、Eu3+水溶液,加入32 mL无水乙醇、0.2 mL所制备的 Zn2+、Al3+水溶液,3.2280 g柠檬酸和4 g聚乙二醇10000,于60oC水浴条件下搅拌4 h,得到掺入Zn2+、Al3+的Y3+、Gd3+、Eu3+前驱体溶液,然后将前驱体溶液于70oC烘箱中陈化60 h,得到掺入Zn2+、Al3+的Y3+、Gd3+、Eu3+的胶体。
将所制备的胶体置于120oC烘箱中干燥48 h,然后在1000oC马弗炉中保温2 h,冷却后研磨,制得化学式为Y0.18Gd1.8Eu0.02O3•0.05Zn0.98Al0.02O的荧光粉。
实施例15
称取21.9281g Zn(CH3COO)2•2H2O,0.0375 g Al(NO3)3•9H2O溶于100 mL去离子水中,配制成1 mol/L的Zn2+、Al3+水溶液100 mL,其中,Zn2+与Al3+的摩尔比为99.9:0.1。
称取30.2000 g草酸钇、29.6370 g草酸钆和1.7201 g草酸铕在60oC搅拌条件下溶于27 mL盐酸中,再加去离子水至100 mL,配制浓度为1 mol/L的Y3+、Gd3+、Eu3+水溶液,其中,Y3+、Gd3+、Eu3+的摩尔比为50:45:5。
量取4 mL浓度为1.00 mol/L的Y3+、Gd3+、Eu3+水溶液,加入6 mL去离子水、30 mL无水乙醇、0.48 mL所制备的 Zn2+、Al3+水溶液,2.5824 g柠檬酸和4 g聚乙二醇10000,于60oC水浴条件下搅拌4 h,得到掺入Zn2+、Al3+的Y3+、Gd3+、Eu3+前驱体溶液,然后将前驱体溶液于70oC烘箱中陈化60 h,得到掺入Zn2+、Al3+的Y3+、Gd3+、Eu3+的胶体。
将所制备的胶体置于120oC烘箱中干燥48 h,然后在1000oC马弗炉中保温2 h,冷却后研磨,制得化学式为Y1Gd0.9Eu0.1O3•0.12Zn0.999Al0.001O的荧光粉。
实施例16
称取43.0220 g Zn(CH3COO)2•2H2O,1.1502 g Al2(SO4)3溶于100 mL去离子水中,配制成2 mol/L的Zn2+、Al3+水溶液,其中,Zn2+与Al3+的摩尔比为98:2。
称取19.1939 g Y2O3、3.6250 g Gd2O3和0.8798 g Eu2O3在60oC搅拌条件下溶于27 mL盐酸中,再加去离子水至100mL,配制浓度为1mol/L的Y3+、Gd3+、Eu3+水溶液100mL,其中,Y3+、Gd3+、Eu3+的摩尔比为85:10:5。
量取10 mL浓度为1.00 mol/L的Y3+、Gd3+、Eu3+水溶液,加入10 mL去离子水、20 mL无水乙醇、0.2 mL所制备的 Zn2+、Al3+水溶液,3.9965 g柠檬酸和4 g聚乙二醇10000,于60oC水浴条件下搅拌4 h,得到掺入Zn2+、Al3+的Y3+、Gd3+、Eu3+前驱体溶液,然后将前驱体溶液于70oC烘箱中陈化60 h,得到掺入Zn2+、Al3+的Y3+、Gd3+、Eu3+的胶体。
将所制备的胶体置于120oC烘箱中干燥48 h,然后在1300oC马弗炉中保温2 h,冷却后研磨,制得化学式为Y1.7 Gd0.2Eu0.1O3•0.1Zn0.98Al0.02O的荧光粉。
以实施例6为例,请参阅图2,显示上述实施例6制备的Y1.90Eu0.10O3•0.05Zn0.97Al0.03O荧光粉在阴极射线激发下的光谱图,图2中的a为实施例6所制备样品在7kV下的光谱图,b为实施例6所制备样品在5kV下的光谱图,该光谱图是采用岛津RF-5301PC光谱仪分析得出。图3是本发明实施例6制备的Y1.90Eu0.10O3•0.05Zn0.97Al0.03O荧光粉在阴极射线5kV激发下的色坐标,图4是本发明实施例6制备的Y1.90Eu0.10O3•0.05Zn0.97Al0.03O荧光粉在阴极射线7kV激发下的色坐标,由图3及图4可看出,所制备的荧光粉在不同电压的阴极射线激发下可实现颜色可调。图3的色坐标为:X=0.3406,Y=0.4074,图4的色坐标为:X=0.3357,Y=0.4136。
图5是本发明实施例5及实施例6所制备的掺入不同比例Zn0.97Al0.03O的Y1.90Eu0.10O3荧光粉在阴极射线7kV激发下的光谱图,其中,c为Y1.90Eu0.10O3•0.03Zn0.97Al0.03O荧光粉的发射光谱,d为Y1.90Eu0.10O3•0.05Zn0.97Al0.03O荧光粉的发射光谱,该光谱图是采用岛津RF-5301PC光谱仪分析得出。从图中可以看出,由于ZnAlO能够使得聚集在荧光粉表面的电子能够有效导出,使得所制备的荧光粉在阴极射线激发下的发光亮度提高。图6是本发明实施例5所制备的Y1.90Eu0.10O3•0.03Zn0.97Al0.03O荧光粉在阴极射线7kV激发下的色坐标,图7是本发明实施例6所制备的Y1.90Eu0.10O3•0.05Zn0.97Al0.03O荧光粉在阴极射线7kV激发下的色坐标,由图6及图7可看出,所制备的掺入不同比例Zn(1-m)AlmO的荧光粉可实现发光颜色可调。其中,图6的色坐标为:X=0.5189,Y=0.3781,图7的色坐标为:X=0.3357,Y=0.4136。
由实施例及比较例结果可看出,在颜色可调的荧光粉的制备方法中,采用溶胶-凝胶方法,控制反应原料的配比,制备了发光性能优异的颜色可调的荧光粉,此制备工艺简单、成本低,具有广阔的生产应用前景。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种颜色可调的荧光粉,其特征在于,其化学通式为(YaGdbEuc)2O3•xZn(1-m)AlmO,其中,0≤a≤0.99,0≤b≤0.99,0.01≤c≤0.08,且a + b + c = 1,a、b不同时为0,x为Zn(1-m)AlmO与(YaGdbEuc)2O3的摩尔数比,0.01≤x≤0.20,0.001≤m≤0.05。
  2. 一种颜色可调的荧光粉的制备方法,其包括如下步骤:
    配制Zn2+、Al3+溶液,以及按照化学通式(YaGdbEuc)2O3中的相应元素摩尔比,配制Y3+、Eu3+、Gd3+溶液或Eu3+、Gd3+溶液或Y3+、Eu3+溶液;
    按照化学通式(YaGdbEuc)2O3•xZn(1-m)AlmO中的相应元素摩尔比例,取上述各溶液,其中0≤a≤0.99,0≤b≤0.99,0.01≤c≤0.08,且a + b + c = 1,a、b不同时为0,x为Zn(1-m)AlmO与(YaGdbEuc)2O3的摩尔数比,0.01≤x≤0.20,0.001≤m≤0.05,加入含有络合剂的醇水混合溶液、表面活性剂,得前驱体溶液;
    将所述前驱体溶液陈化,再进行煅烧处理,冷却后研磨,制得所述颜色可调的荧光粉。
  3. 如权利要求2所述的颜色可调的荧光粉的制备方法,其特征在于,所述Zn2+ 、Al3+溶液分别用可溶性锌盐和铝盐配制,所述可溶性锌盐和铝盐为其对应醋酸盐、硝酸盐、盐酸盐和硫酸盐中的至少一种。
  4. 如权利要求2所述的颜色可调的荧光粉的制备方法,其特征在于,所述Y3+、Eu3+、Gd3+溶液或Eu3+、Gd3+溶液或Y3+、Eu3+溶液用其相应的可溶性盐配制,所述可溶性盐为硝酸盐、盐酸盐中的至少一种。
  5. 如权利要求2所述的颜色可调的荧光粉的制备方法,其特征在于,所述Y3+、Eu3+、Gd3+溶液或Eu3+、Gd3+溶液或Y3+、Eu3+溶液的配制步骤为:以稀土氧化物或草酸盐作为原料,在15oC~100oC搅拌下,将稀土氧化物或者草酸盐用盐酸或者硝酸溶解。
  6. 如权利要求2所述的颜色可调的荧光粉的制备方法,其特征在于,所述络合剂为柠檬酸。
  7. 如权利要求2所述的颜色可调的荧光粉的制备方法,其特征在于,所述醇水混合液为乙醇和水的混合液,水和乙醇的体积比为1:1~7。
  8. 如权利要求2所述的颜色可调的荧光粉的制备方法,其特征在于,所述表面活性剂为聚乙二醇6000、聚乙二醇8000、聚乙二醇10000、聚乙二醇20000中的至少一种。
  9. 如权利要求2所述的颜色可调的荧光粉的制备方法,其特征在于,所述陈化为将前驱体溶液置于100~200oC烘箱中陈化48~96 h。
  10. 如权利要求2所述的颜色可调的荧光粉的制备方法,其特征在于,所述煅烧处理为在800~1300oC加热0.5~6 h。
PCT/CN2010/076012 2010-08-16 2010-08-16 一种颜色可调的荧光粉及其制备方法 WO2012022019A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2010/076012 WO2012022019A1 (zh) 2010-08-16 2010-08-16 一种颜色可调的荧光粉及其制备方法
JP2013524327A JP2013537579A (ja) 2010-08-16 2010-08-16 カラー調整可能な蛍光粉及びその製造方法
EP10856017.8A EP2607450A4 (en) 2010-08-16 2010-08-16 Color-adjustable luminescent powder and preparation method thereof
US13/812,646 US20130126786A1 (en) 2010-08-16 2010-08-16 Color Adjustable Luminescent Powder and Preparation Method Thereof
CN201080067335.5A CN102933689B (zh) 2010-08-16 2010-08-16 一种颜色可调的荧光粉及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/076012 WO2012022019A1 (zh) 2010-08-16 2010-08-16 一种颜色可调的荧光粉及其制备方法

Publications (1)

Publication Number Publication Date
WO2012022019A1 true WO2012022019A1 (zh) 2012-02-23

Family

ID=45604674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/076012 WO2012022019A1 (zh) 2010-08-16 2010-08-16 一种颜色可调的荧光粉及其制备方法

Country Status (5)

Country Link
US (1) US20130126786A1 (zh)
EP (1) EP2607450A4 (zh)
JP (1) JP2013537579A (zh)
CN (1) CN102933689B (zh)
WO (1) WO2012022019A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115491525A (zh) * 2022-08-31 2022-12-20 中南大学 一种废抛光粉增值化回收的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105623654B (zh) * 2016-02-17 2017-06-27 吉林师范大学 一种发状Eu3+、Sm3+共掺杂ZnO及其制备方法和稀土离子缺陷光学调控方法
CN113800534A (zh) * 2021-09-30 2021-12-17 畅的新材料科技(上海)有限公司 一种多稀土掺杂硼化物的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07179852A (ja) * 1993-12-22 1995-07-18 Toshiba Corp 蛍光体および蛍光ランプ
CN101367539A (zh) * 2008-09-19 2009-02-18 沈阳化工学院 溶胶凝胶法制备纳米发光粉体
CN101619215A (zh) * 2009-07-31 2010-01-06 中国地质大学(武汉) 一种紫外、蓝光激发的红色荧光粉及其制备方法
CN101691487A (zh) * 2008-02-01 2010-04-07 三星Sdi株式会社 红色荧光粉和包括其的显示装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3250722A (en) * 1961-11-06 1966-05-10 Du Pont Luminescent solid solutions of europium compounds with at least one other rare earthcompound
BE793365A (fr) * 1971-12-27 1973-06-27 Philips Nv Procede permettant de preparer un oxyde d'yttrium et/ou de lanthane et/ou des lanthanides
JPS54106085A (en) * 1978-02-07 1979-08-20 Nec Corp Luminous material
JPS5586877A (en) * 1978-12-22 1980-07-01 Nec Corp Light-emitting material
CN1037188C (zh) * 1992-07-31 1998-01-28 化成光学仪器株式会社 附加有颜料的蓝光荧光剂
KR100265859B1 (ko) * 1996-12-21 2000-09-15 정선종 전계방출 디스플레이용 발광입자
JP2005075863A (ja) * 2003-08-28 2005-03-24 Ulvac Japan Ltd 導電性ナノ粒子蛍光体及びその合成方法
JP2007177156A (ja) * 2005-12-28 2007-07-12 Ulvac Japan Ltd 蛍光体及びその作製方法、並びに発光素子
JP2008266612A (ja) * 2007-03-26 2008-11-06 Semiconductor Energy Lab Co Ltd 蛍光体材料及びその作製方法
CN101525537B (zh) * 2009-04-03 2013-01-16 西安理工大学 一种Dy激活的单基质白光荧光粉及其制备方法
CN102212366B (zh) * 2010-04-12 2013-03-27 海洋王照明科技股份有限公司 氧化物荧光粉及其制备方法
CN102812105B (zh) * 2010-05-25 2014-11-05 海洋王照明科技股份有限公司 场发射用的荧光材料及其制备方法
CN102812106B (zh) * 2010-05-31 2014-11-05 海洋王照明科技股份有限公司 含有导电氧化物的掺杂稀土元素的氧化钇发光薄膜及其制备方法
CN102268257B (zh) * 2010-06-03 2013-10-09 海洋王照明科技股份有限公司 一种荧光材料及其制备方法
US8976321B2 (en) * 2012-05-24 2015-03-10 Shenzhen China Star Optoelectronics Technology Co., Ltd. Fluorescent powder mixture, manufacturing method for the same, and corresponding liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07179852A (ja) * 1993-12-22 1995-07-18 Toshiba Corp 蛍光体および蛍光ランプ
CN101691487A (zh) * 2008-02-01 2010-04-07 三星Sdi株式会社 红色荧光粉和包括其的显示装置
CN101367539A (zh) * 2008-09-19 2009-02-18 沈阳化工学院 溶胶凝胶法制备纳米发光粉体
CN101619215A (zh) * 2009-07-31 2010-01-06 中国地质大学(武汉) 一种紫外、蓝光激发的红色荧光粉及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2607450A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115491525A (zh) * 2022-08-31 2022-12-20 中南大学 一种废抛光粉增值化回收的方法
CN115491525B (zh) * 2022-08-31 2023-10-24 中南大学 一种废抛光粉增值化回收的方法

Also Published As

Publication number Publication date
EP2607450A1 (en) 2013-06-26
CN102933689A (zh) 2013-02-13
US20130126786A1 (en) 2013-05-23
EP2607450A4 (en) 2017-01-25
CN102933689B (zh) 2014-01-29
JP2013537579A (ja) 2013-10-03

Similar Documents

Publication Publication Date Title
Zhou et al. Morphology control and luminescence properties of YAG: Eu phosphors prepared by spray pyrolysis
CN101899308B (zh) 掺杂金属纳米粒子的稀土铝酸镧发光材料及其制备方法
WO2012134043A2 (ko) 산질화물계 형광체
KR20170100413A (ko) 질소 함유 발광 입자 및 그 제조방법, 질소 함유 발광체와 발광장치
WO2012022019A1 (zh) 一种颜色可调的荧光粉及其制备方法
CN1712490A (zh) 一种pdp用稀土红色发光材料及其制备方法
CN114686225A (zh) 一种近红外荧光粉及其制备方法和应用
CN110467351A (zh) 一种硼硅酸盐稀土发光微晶玻璃及其制备方法和应用
WO2011150547A1 (zh) 含有导电氧化物的掺杂稀土元素的氧化钇发光薄膜及其制备方法
WO2012000179A1 (zh) 含有金属颗粒的硅酸锌锰发光材料及其制备方法
WO2011147083A1 (zh) 场发射用的荧光材料及其制备方法
CN102666783A (zh) 硼酸盐发光材料及其制造方法
WO2014134854A1 (zh) 一种稀土掺杂硅酸盐发光玻璃及其制备方法
WO2012009844A1 (zh) 硅酸盐发光材料及其制备方法
WO2011103721A1 (zh) 掺铽的硼酸钆盐基绿色发光材料及其制备方法
US9416308B2 (en) Core-shell structured silicate luminescent material and preparation method therefor
WO2011130926A1 (zh) 含有金属粒子的稀土离子掺杂镓酸镧盐发光材料及其制备方法
WO2012065575A1 (zh) 一种低铕含量红色荧光粉的制备方法
CN108949173B (zh) 一种青色硅酸盐超长余辉发光材料及其制备方法
CN1397624A (zh) 钇铝石榴石型荧光粉及其制法与应用
WO2011134148A1 (zh) 硅酸盐发光材料及其制备方法
WO2012009845A1 (zh) 一种发光材料及其制备方法
WO2020015422A1 (zh) 半导体发光用的氮化物荧光粉及其制备方法和发光装置
WO2010099667A1 (zh) 氧化锌基绿色发光材料及其制备方法
EP2404977B1 (en) Preparation of luminescent oxide materials activated by trivalent thulium

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080067335.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856017

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13812646

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010856017

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013524327

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE