WO2012022012A1 - 储油活塞环 - Google Patents

储油活塞环 Download PDF

Info

Publication number
WO2012022012A1
WO2012022012A1 PCT/CN2010/001269 CN2010001269W WO2012022012A1 WO 2012022012 A1 WO2012022012 A1 WO 2012022012A1 CN 2010001269 W CN2010001269 W CN 2010001269W WO 2012022012 A1 WO2012022012 A1 WO 2012022012A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston ring
ring
oil
wedge
oil storage
Prior art date
Application number
PCT/CN2010/001269
Other languages
English (en)
French (fr)
Inventor
杨增利
Original Assignee
Yang Zengli
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yang Zengli filed Critical Yang Zengli
Priority to EP10856011.1A priority Critical patent/EP2607675B1/en
Priority to PCT/CN2010/001269 priority patent/WO2012022012A1/zh
Priority to US13/817,974 priority patent/US8827277B2/en
Priority to CN201080068480.5A priority patent/CN103180592B/zh
Priority to EA201300247A priority patent/EA025890B1/ru
Publication of WO2012022012A1 publication Critical patent/WO2012022012A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/12Details
    • F16J9/20Rings with special cross-section; Oil-scraping rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F5/00Piston rings, e.g. associated with piston crown
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/12Details
    • F16J9/14Joint-closures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/12Details
    • F16J9/14Joint-closures
    • F16J9/16Joint-closures obtained by stacking of rings

Definitions

  • the present invention relates to a piston ring for an internal combustion engine, and more particularly to an oil storage piston ring. Background technique
  • Conventional piston rings are mostly single-piece open structures, and leakage is inevitable at the openings. And the higher the working pressure, the greater the leakage, and as the wear increases, the leakage increases. Therefore, the conventional single-piece open piston ring always operates in a leak state, and a lot of power is lost due to the leakage of the opening, thereby reducing the efficiency.
  • a multi-channel piston ring is used to generate a labyrinth seal to reduce leakage.
  • Labyrinth seals reduce leakage but do not avoid leaks.
  • the multi-channel piston ring needs to process a plurality of ring grooves, and the increase in the number of ring grooves inevitably reduces the structural strength of the piston.
  • the gap between the upper plane of the piston ring and the piston ring groove is referred to as the upper side gap
  • the gap between the lower plane of the piston ring and the piston ring groove is referred to as a lower side gap
  • the piston ring groove and the piston ring are
  • the gap between the opposite side of the working surface (the surface in contact with the cylinder wall) is called the backlash.
  • the leakage of the conventional single-piece open piston ring and the two-piece combined piston ring mainly passes through three channels.
  • First Leakage Channel The opening of a conventional single-piece open piston ring directly connects the high-pressure zone and the low-pressure zone to form an obvious direct leak path. The leakage of the leaky channel depends on the size of the opening, and the amount of leakage increases with the increase of wear.
  • the second leakage channel when the two-piece combination piston ring is subjected to the working pressure, the opening of the upper piston ring and the upper side gap of the upper piston ring communicate the high-pressure zone with the common backlash of the two-piece piston ring, and the backlash is shared. It communicates with the opening of the lower piston ring, and the opening of the lower piston ring directly communicates with the low pressure zone, thus forming an indirect leakage channel.
  • the leakage of the leakage channel depends on the size of the opening, and the leakage amount wears. Increased by the increase.
  • the third leakage channel The leakage of the working surface of the piston ring, the working surface is kept sealed by the lubricating oil, and the lubrication of the uppermost ring of the multi-pass ring is the worst, so the sealing is the worst.
  • the leakage begins when the working pressure exceeds the sealing capacity of the working surface.
  • the leakage amount of the leakage passage depends on the thickness of the working surface and the lubrication condition, and the leakage amount is increased with the increase of the pressure.
  • the combination of the two-piece piston rings cannot be completely sealed.
  • the two-piece combination piston ring only solves the leakage problem of the first leakage passage, but cannot solve the leakage problem of the second leakage passage and the third leakage passage. .
  • the two-piece combined piston ring is to install two piston rings in the original piston ring groove. Therefore, each piston ring is only 1/2 of the thickness of the original piston ring, which inevitably reduces the structural strength.
  • the structural strength reduction will directly affect the reliability. If the total thickness of the combination of the two-piece piston rings is increased, the lubrication of the upper piston ring is further deteriorated, and the sealing effect cannot be ensured without sufficient lubrication. Therefore, sufficient lubrication is an important condition for ensuring the sealing effect.
  • the piston ring produces a pumping phenomenon in the piston ring groove.
  • the piston ring reciprocates with the piston, the upper side gap.
  • the lubricating oil completes the lubrication and cleaning tasks, it enters the combustion chamber, and carbon is formed due to the incomplete combustion of the lubricating oil.
  • the lubrication and cleaning action of the lubricating oil is beneficial, and the formation of carbon deposits is harmful.
  • a conventional piston has a plurality of piston ring grooves in a limited space to cooperate with a plurality of piston rings to achieve sealing. This not only complicates the processing procedure of the conventional piston, but also reduces the strength of the piston. In addition, a plurality of piston rings are required to achieve the sealing, which results in complicated processing, reduced reliability, and increased cost of the conventional piston and piston ring. Summary of the invention
  • One object of the present invention is to provide an oil storage piston ring that is capable of achieving sufficient lubrication in an application, thereby effectively preventing leakage of the working surface.
  • Another object of the present invention is to provide an oil storage piston ring that is capable of forming an effective seal at the opening of the piston ring.
  • an oil storage piston ring including an upper wedge ring (a ring close to a top dead center) and a lower wedge ring which are engaged with each other, the upper wedge ring and The lower wedge rings are each provided with an opening, the upper wedge ring having a first working surface in contact with the cylinder wall, the lower wedge ring having a second working surface in contact with the cylinder wall, the first working surface and the second working At least one working face of the face is provided with at least one oil reservoir.
  • the oil storage tank When the piston descends (rich stage), some of the lubricating oil is stored in the oil storage tank. When the piston is ascending (the lean phase), the lubricating oil in the oil storage tank can be used for lubrication of the working surface, thus enhancing the working of the piston ring. The lubricating effect of the surface, especially the lubrication condition near the top dead center. It can be seen that the oil storage tank plays a vital role in improving the lubricity and sealing of the piston ring.
  • the working surface of the upper wedge ring is provided with an oil reservoir, and the upper plane of the upper wedge ring is provided with a set connected to the oil reservoir Oil tank.
  • Lubricating oil to be pumped into the combustion chamber is collected by the sump for lubrication of the working face, which reduces the consumption of lubricating oil to prevent the lubricating oil from entering the combustion chamber and generating carbon deposits.
  • the center line of the oil reservoir is parallel to the upper plane of the upper wedge ring.
  • an oil storage tank is respectively disposed on a middle portion of the first working surface and a middle portion of the second working surface, and if the piston ring has a sufficient thickness, the first working surface and the second working surface are evenly arranged Two or three oil storage tanks. Better lubrication can be achieved by setting two or three oil reservoirs.
  • the oil sump has a substantially trapezoidal cross section, the bottom of the trapezoid is a straight line or a circular arc, the depth of the oil sump is preferably 0.5 mm to 2 mm, and the opening width of the oil sump is preferably 0.4 mm.
  • the slope of the side wall of the oil sump is preferably 2° to 10°.
  • the amount of oil storage can be adjusted by changing the width and depth of the oil reservoir. If the sump width is increased, the initial lubricant consumption per stroke will increase, and the lubricant may be depleted in the later stages, eventually losing lubrication. If the depth of the oil reservoir is increased and the width is reduced, the lubricant is evenly consumed and can be sufficiently lubricated in the lean phase. However, the oil storage tank should not be too deep, otherwise the dirt in the lubricating oil is not easily discharged and deposits. Therefore, the cross section of the oil storage tank is designed to be trapezoidal to facilitate the discharge of dirt.
  • the oil storage piston ring of the present invention must design the width, depth and inclination of the oil reservoir according to the stroke of the piston. For longer strokes, the depth of the oil reservoir should be increased to ensure sufficient lubrication near the top dead center.
  • the bottom of the oil collecting groove has 4 to 16 communicating holes communicating with the oil reservoir, and the communicating holes are evenly distributed in the oil collecting groove, and the diameter of the communicating hole is preferably 0.5 mm to 1.5 mm.
  • the oil collecting groove has a U-shaped cross section, the oil collecting groove preferably has a depth of 0.5 mm to 2 mm, and the oil collecting groove has a width of preferably 0.8 mm to 3 mm.
  • the upper surface of the upper wedge ring of the present invention has an oil sump which functions to collect lubricating oil for the lubrication and cleaning tasks in order to reduce the consumption of lubricating oil and prevent the pumping into the combustion chamber to form carbon deposits.
  • the bottom of the oil collecting tank has a communication hole communicating with the oil storage tank, and the lubricating oil collected by the oil collecting groove is supplied to the oil storage tank through the communication hole for lubrication of the working surface, thereby further improving the lubricating effect of the working surface of the piston ring.
  • the total thickness of the combination of the upper wedge ring and the lower wedge ring is 2 mm to 50 mm.
  • the oil storage piston ring of the present invention designs the total thickness of the combined two-piece piston ring according to the working pressure, and the total thickness of the upper wedge ring combined with the lower wedge ring is larger than the thickness of the conventional piston ring, and the increased thickness can be Improve the sealing of the working face of the piston ring while increasing the structural strength.
  • the openings of the upper wedge ring and the lower wedge ring each include an inner lap portion and an outer lap portion
  • the inner lap portion includes An inner protrusion, an outer four recess, and a first joint connecting the inner protrusion and the outer four trap
  • the outer overlap includes an outer protrusion, an inner ffl, and the outer protrusion and the inner ffl a second engaging portion, the first engaging portion being engaged with the second engaging portion, having a first gap between an inner protrusion of the inner overlapping portion and an inner quadrant of the outer overlapping portion
  • a second between the outer four recesses of the inner overlapping portion and the outer convex portion of the outer overlapping portion a gap
  • the first gap and the second gap are each preferably 0.5 mm to 3 mm in an expanded state, and the inner and outer ridges of the inner lap and the outer lap are viewed from a plan view
  • the outer and inner depressions are preferably circular arc shaped.
  • the gap for expansion and contraction is set so that the seal can still be achieved when the temperature changes.
  • the inner protrusion and the outer ffl of the inner lap and the outer protrusion and the inner ffl of the outer lap are preferably arc-shaped, and the circular arc shape prevents stress concentration and facilitates processing.
  • the first engaging portion and the second engaging portion are circular arcs concentric with the piston ring, and the arc lengths of the first engaging portion and the second engaging portion are preferably 5 Mm to 50 mm.
  • the joint surface of the inner lap portion and the outer lap portion is a tightly fitting sealing surface and is a concentric circle of the piston ring.
  • the piston ring When the piston ring is thermally expanded or worn, it can expand and contract freely along the joint surface (concentric circle) and always maintain a tight fit seal, thus effectively solving the leakage problem of the piston ring opening. If it is only a curved overlap or a stepped overlap, there is no guarantee that the seal will be tightly fitted for a long period of time.
  • the wedge surface of the upper wedge ring is engaged with the wedge surface of the lower wedge ring, the slope of the wedge surface of the upper wedge ring with respect to the upper plane of the upper wedge ring and the wedge shape of the lower wedge ring
  • the slope of the face relative to the lower plane of the lower wedge ring is 0.02° to 0.5°.
  • the slope of the wedge face of the two-piece wedge ring of the present invention should not be too large.
  • the sliding pressure is proportional to the slope of the wedge face and the piston speed. If the slope is large and the speed is high, the relative sliding pressure is large. Too large a slope (eg, greater than 0.5°) causes severe wear on the cylinder wall corresponding to the thick end. Therefore, the smaller the slope of the wedge surface, the better the minimum slope is 0.02°.
  • the slope of the wedge surface of the invention is closely related to the engine speed.
  • the high speed internal combustion engine is applied to a piston ring with a small wedge surface.
  • the low speed internal combustion engine is applied to a piston ring with a slightly inclined slope. Therefore, the slope ⁇ of the wedge surface must be based on Speed design.
  • the angle between the center of the opening of the upper wedge ring and the center of the piston ring and the line connecting the thickest end and the thinnest end of the upper wedge ring is 10 from the top view of the piston ring.
  • the angle between the center of the opening of the lower wedge ring and the center of the piston ring and the line connecting the thickest end and the thinnest end of the lower wedge ring is 10° to 30°.
  • the joint surface of the invention is kept in close contact with the outer lap by the tension of the inner lap portion, and the working surface of the piston ring should be synchronously worn in theory, if the outer lap portion wears more than the inner lap joint In the part, the close-fitting surface will have a gap and cannot guarantee a close fit. In order to keep the inner lap portion and the outer lap portion in a tightly fitted sealed state, it is desirable that the inner lap portion is slightly worn more than the outer lap portion.
  • the wear of the thin end portion of the wedge ring is greater than the wear of the thick end portion of the wedge ring.
  • the center of the wedge ring opening and the thickest end of the wedge surface and the plane where the thinnest end is located are offset by a certain angle, and the portion where the wear is desired is large (
  • the portion of the wedge ring adjacent to the outer ffl of the inner lap is disposed at the center of symmetry of the wedge ring such that the inner lap wears slightly more than the outer lap.
  • the first engaging portion of the inner lap portion abuts against the outer lap portion so as to be intimately worn, so that the tightly sealed state can be maintained at all times.
  • the present invention shifts the center of the opening of the wedge ring from the center of symmetry of the wedge ring, which is an important measure for ensuring long-term close fitting and sealing of the present invention.
  • the present invention designs the center of the opening of the wedge ring to be offset from the center of symmetry of the wedge ring according to the inclination of the wedge surface. If the slope of the wedge surface is large, the angle between the center of the opening of the wedge ring and the center of symmetry of the wedge ring is small.
  • a piston having only one piston ring groove provided therein, the piston ring groove for providing an oil storage piston ring as described above.
  • the oil storage piston ring of the present invention can be applied to a piston type internal combustion engine and a compressor.
  • the piston and the piston ring of the invention can directly replace the conventional piston and the single-piece multi-channel piston ring, and have the advantages of good lubricity, strong sealing property and high reliability.
  • a compressor with an extremely high working pressure can also use two oil storage piston rings.
  • the present invention provides an oil storage piston ring that increases the combined total thickness of the two-piece piston ring, so that the structural strength is enhanced, and thus one to three paths are provided on the working surface of each wedge ring.
  • the upper wedge ring is also provided with an oil collecting groove and a communication hole, so that the lubricity, sealing property and reliability of the piston ring are greatly improved. Therefore, the present invention can directly replace the conventional single-piece multi-channel piston ring with only one oil storage piston ring.
  • the oil storage piston ring of the present invention complements the two wedge faces to form a sealed state in which the openings are opposite each other.
  • the first leakage channel is closed in combination, and the second leakage channel is closed by the tension of the overlapping portion in the wedge ring, and the third leakage channel is closed by increasing the total thickness of the combination of the two-piece piston rings.
  • Figure 1 is a front elevational view of an oil storage piston ring in accordance with a first embodiment of the present invention.
  • FIG. 2 is a top plan view of an oil storage piston ring in accordance with a first embodiment of the present invention.
  • Fig. 3 is a schematic view showing the assembly of an oil storage piston ring to a piston according to a first embodiment of the present invention.
  • Figure 4 is a front elevational view of an oil storage piston ring in accordance with a second embodiment of the present invention.
  • Figure 5 is a plan view of an oil storage piston ring in accordance with a second embodiment of the present invention.
  • FIG. 6 is a partial cross-sectional view showing the assembly of an oil storage piston ring to a piston in accordance with a second embodiment of the present invention.
  • the reference numerals used in the drawings are as follows:
  • 100 oil storage piston ring; 100a: upper wedge ring; 100b: lower wedge ring; 101: first working face; 102: second working face; 103: upper plane; 104: lower plane; 105: oil reservoir; Oil groove; 107: wedge-shaped surface of upper wedge ring; 108: wedge-shaped surface of lower wedge ring; 110: inner lap joint; 110a: inner projection; 110b: first joint portion; 110c: outer recess; 111: first gap 120: outer lap; 120a: inner recess; 120b: second joint; 120c: outer protrusion; 112: second gap;
  • 200 oil storage piston ring
  • 200a upper wedge ring
  • 200b lower wedge ring
  • 201 first working face
  • 202 second working face
  • 203 upper plane
  • 204 lower plane
  • 205 oil storage tank
  • 208 the wedge surface of the lower wedge ring;
  • an oil storage piston ring 100 includes an upper wedge ring 100a and a lower wedge ring 100b which are joined to each other.
  • the upper wedge ring 100a is provided with an opening and has a first working surface 101 in contact with the cylinder wall.
  • the lower wedge ring 100b is provided with an opening and has a second working surface 102 that is in contact with the cylinder wall.
  • An oil reservoir 105 is disposed in the first working surface 101, and an oil reservoir 106 is disposed in the second working surface 102.
  • the upper wedge ring 100a has an upper plane 103 that contacts the piston ring groove when in use, and the lower wedge ring 100b has a lower plane 104 that contacts the piston ring groove when in use.
  • the upper wedge ring 100a also has a tapered surface 107 that engages the wedge face 108 of the lower wedge ring 100b to engage the upper wedge ring 100a and the lower wedge ring 100b.
  • the centerline of the sump 105 is parallel to the upper plane 103 of the upper wedge ring 100a.
  • the centerline of the sump 106 is parallel to the lower plane 104 of the lower wedge ring 100b.
  • the upper plane 103 of the upper wedge ring 100a is parallel to the lower plane 104 of the lower wedge ring 100b.
  • FIG. 2 is a top plan view of an oil storage piston ring in accordance with a first embodiment of the present invention. As shown in Fig. 2, the opening of the upper wedge ring 100a and the opening of the lower wedge ring 100b are offset from each other.
  • the opening of the upper wedge ring 100a includes an inner lap 110 and an outer lap 120
  • the inner lap 110 includes an inner protrusion 110a, an outer recess 110c, and a first joint 110b connecting the inner protrusion 110a and the outer recess 110c.
  • the outer lap 120 includes an inner recess 120a, an outer projection 120c, and a second engaging portion 120b connecting the inner recess 120a and the outer projection 120c.
  • the first engaging portion 110b is engaged with the second engaging portion 120b to form a seal.
  • the inner projection 110a and the outer ffl trap 110c of the inner lap portion 110 are preferably circularly curved, and the outer projection 120c and the inner recess 120a of the outer lap portion 120 are preferably circular arc shapes.
  • the first engaging portion 110b and the second engaging portion 120b are arcs concentric with the center 0 of the piston ring. Since the diameters of the various piston rings may be large or small, the minimum diameter may be 40 mm, and the maximum diameter may be 600 mm, so the arc lengths of the first joint portion 110b and the second joint portion 120b may preferably be set at 5 mm to Within the range of 50 mm.
  • first gap 111 between the inner protrusion 110a of the inner lap 110 and the inner sag 120a of the outer lap 120.
  • the outer IS recess 110c of the inner lap 110 and the outer protrusion 120c of the outer lap 120 There is a second gap 112 between them.
  • the first gap 111 and the second gap 112 are gaps for expansion and contraction, and the gaps are 0.5 111111 to 3 111111 at the highest temperature (expanded state).
  • first engaging portion 110b and the second engaging portion 120b are designed as circular arcs concentric with the center 0 of the piston ring, and between the inner projection 110a and the inner recess 120a and between the outer recess 110c and the outer projection 120c, respectively
  • a gap is provided so that the piston ring can freely expand and contract along the joint surface when it is thermally expanded or worn, and is always kept in a tightly fitted sealed state.
  • the stroke of various pistons may be long or short, up to 3000 mm and the shortest may be 50 mm.
  • the total thickness H of the combination of the upper wedge ring 100a and the lower wedge ring 100b is 2 mm to 50 mm.
  • the total thickness H of the upper and lower wedge rings is designed according to the working pressure.
  • the total thickness H after combining the upper and lower wedge rings is designed to be 1.5 to 4 times that of the original conventional single-piece open piston ring.
  • the oil storage piston ring of the present embodiment since the total thickness H after the combination of the upper and lower wedge rings increases the structural strength, if the total thickness after the combination reaches twice the original piston ring, since the elastic force is too large, it is required. Appropriately reduce the width 0 of the piston ring.
  • the cross section of the oil storage tanks 105, 106 is substantially trapezoidal, the depth of the oil storage tanks 105, 106 is set to 0.5 mm to 2 mm, and the opening width of the oil storage tanks 105, 106 is set to 0.4 mm to 1.8 mm, The slope of the side walls of the oil grooves 105, 106 is set to be 2 to 10 degrees.
  • the bottom edge of the trapezoid may be a straight line or an arc.
  • the slope ⁇ of the wedge-shaped surface 107 of the upper wedge-shaped ring 100a with respect to the upper flat surface 103 of the upper wedge-shaped ring 100a is set in the range of 0.02° to 0.5°.
  • the slope ⁇ of the wedge face 108 of the lower wedge ring 100b relative to the lower plane 104 of the lower wedge ring 100b is also set in the range of 0.02° to 0.5°.
  • the line connecting the center S of the opening of the upper wedge ring 100a and the center 0 of the piston ring 100 is between the line connecting the thickest end P of the upper wedge ring 100a and the thinnest end Q.
  • the angle ⁇ 0 is set in the range of 10° to 30°.
  • the angle between the line N of the opening of the lower wedge ring 100b and the center 0 of the piston ring and the line connecting the thickest end Q and the thinnest end P of the lower wedge ring 100b is set at 10° to 30°. Within the range of °.
  • Fig. 3 is a schematic view showing the assembly of an oil storage piston ring to a piston according to a first embodiment of the present invention.
  • a piston ring 100 according to a first embodiment of the present invention is disposed on a piston 600.
  • An oil ring 500 is also provided at the piston 600.
  • Piston ring 100 is located above oil ring 500.
  • the root According to the first embodiment of the present invention, a good sealing effect can be achieved by using only one piston ring.
  • the second embodiment of the present invention is a modification of the first embodiment, and features similar to those of the first embodiment are denoted by the same reference numerals, and the corresponding description will be omitted.
  • the piston ring creates a pumping phenomenon in the piston ring groove.
  • the second embodiment of the present invention is designed.
  • Figure 4 is a front elevational view of an oil storage piston ring in accordance with a second embodiment of the present invention.
  • the oil storage piston ring 200 according to the second embodiment of the present invention includes an upper wedge ring 200a and a lower wedge ring 200b which are engaged with each other.
  • the upper wedge ring 200a is provided with an opening and has a first working surface 201 in contact with the cylinder wall.
  • the lower wedge ring 200b is provided with an opening and has a second working surface 202 in contact with the cylinder wall.
  • Two oil storage tanks 205 are disposed on the first working surface 201, and two oil storage tanks are disposed on the second working surface 202.
  • the upper wedge ring 200a has an upper plane 203 that contacts the piston ring groove when in use, and the lower wedge ring 200b has a lower plane 204 that contacts the piston ring groove when in use.
  • the upper wedge ring 200a also has a wedge face
  • Figure 5 is a plan view of an oil storage piston ring in accordance with a second embodiment of the present invention.
  • the oil collecting groove 216 provided in the upper plane 203 of the upper wedge ring 200a has a circular shape, and eight communication holes 217 are evenly arranged at the bottom of the oil collecting groove 216.
  • FIG. 6 is a partial cross-sectional view of the oil storage piston ring assembled to the piston in accordance with a second embodiment of the present invention.
  • two oil reservoirs 205 are provided in the upper wedge ring 200a, and an oil collecting groove 216 is disposed in the upper plane 203 of the upper wedge ring 200a.
  • the communication hole 217 communicates the oil collecting groove 216 with the oil reservoir 205 provided on the upper side of the upper wedge ring 200a.
  • the upper side gap 215 and the lower side gap 213 are alternately closed, so that the lubricating oil is pumped from the lower side gap 213 in the direction of the arrow into the backlash 214, and then from the backlash 214. Enter the upper backlash 215.
  • the lubricating oil is collected by the oil collecting groove 216 and introduced into the upper oil reservoir 205 through the communication hole 217.
  • the oil collection tank 216 collects the lubricating oil that has completed the lubrication and cleaning tasks, and is used to lubricate the working surface of the piston ring to prevent the lubricating oil from entering the combustion chamber to form carbon deposits.
  • the number of the communication holes may be 4 to 16.
  • the communication holes 217 are evenly distributed in the oil collecting groove 216, and the lubricating oil is introduced from the oil collecting groove 216 into the oil reservoir 205.
  • These communication holes 217 preferably have a diameter of 0.5 mm to 1.5 mm.
  • the oil collecting groove 216 has a substantially U-shaped cross section, the oil collecting groove 216 may have a depth of 0.5 mm to 2 mm, and the oil collecting groove 216 may have a width of 0.8 mm to 3 mm.
  • Table 1 shows the gasoline engine with a pressure of 1.5 Mpa at the top dead center of the piston. The maximum speed is
  • Table 2 shows the diesel engine with a pressure of 3 Mpa at the top dead center of the piston. The maximum speed is
  • Table 3 shows the diesel engine with a pressure of 3.5 Mpa at the top dead center of the piston, with a maximum speed of 2500 r/min.
  • the conventional design of the piston ring type includes the upper and lower wedge ring oil storage piston ring single piece open piston ring piston ring number 1 3
  • the arc length of the first and second joints is 30mm
  • the first and second gaps after expansion are 1.5 mm
  • the life of the piston ring can be extended by more than 1 time.
  • the cylinder pressure gauge indicates an increase in pressure of 0.2 Mpa.
  • Table 4 shows a gasoline engine with a pressure of 2.4 Mpa at the top dead center of the piston. The maximum speed is 4000 r/min.
  • the conventional design of the piston ring type of the present invention includes an oil storage piston ring of the upper and lower wedge rings. Number of ring piston rings 1 3
  • Shape and size set one; trapezoid; depth is 0.8 mm, open
  • the width of the mouth is 1.2 mm and the slope of the side wall is 5°
  • the arc length of the first and second joints is 15mm
  • the first and second gaps after expansion are 0.5 mm
  • the life of the piston ring can be extended by more than 1 time.
  • the cylinder pressure gauge indicates that the pressure is increased by 0.15 MPa.
  • the present invention requires the inclination of the wedge faces of the two wedge rings to be ⁇ , but does not require that the openings of the two wedge rings must be maintained at 180°, allowing the openings of the two rings to have relative deviations, allowing for greater or less than 180°;
  • the aim is to relax processing freedom and reduce scrap rates.
  • the present invention must ensure the total thickness of the two wedge-shaped rings after design combination, but does not require the thickness of the two rings to be completely uniform, allowing one of the sheets to be slightly thinner and the other to be slightly thicker, allowing each sheet to have a thickness deviation.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Description

储油活塞环 技术领域
本发明涉及一种内燃机用活塞环, 特别是一种储油活塞环。 背景技术
传统活塞环大多为单片开口式结构, 其开口处不可避免会发生泄漏。 并且 工作压力越高, 泄漏量就越大, 而且随着磨损的增加, 泄漏就在不断加剧。 因 此,传统单片开口式活塞环一直都是在泄漏状态下工作的, 因开口泄漏而损失 掉许多功率, 因而使效率降低。
为了解决传统开口式活塞环的泄漏问题, 通常釆用多道活塞环, 靠多道活 塞环产生迷宫式密封效果以期减少泄漏。迷宫式密封可减缓泄漏,但不能避免 泄漏。 而且多道活塞环就需要加工多道环槽, 因环槽数量的增多必然会使活塞 的结构强度降低。
传统活塞大多具有两至三道活塞环和一道油环。 在活塞的运行过程中, 润 滑油是靠曲轴的运动而溅射到气缸壁对活塞环进行润滑。但是随着活塞环道数 的增加,磨擦损耗就不断增加。 而每增加一道活塞环就使上一道环的润滑情况 进一步恶化。 最上道环所承受的压力最高, 而润滑条件却最差, 尤其在上止点 附近已处于干摩擦状态, 得不到充分润滑是造成工作面泄漏和磨损的主要原 因。
针对传统的单片开口式活塞环的泄漏问题,相继出现了多种形式的双片组 合活塞环, 如中国专利 200410040819.7、 94221414.5和 200710078397.6分别 公开了一种组合式活塞环,其技术方案均是在原活塞环槽内放置上、 下两片活 塞环, 使两片活塞环的开口错开, 以此达到相互密封地目的。 但是, 双片组合 活塞环靠双片组合希望达到完全密封, 而实际上并没有达到预期的效果。
通常, 将活塞环的上平面与活塞环槽之间的间隙称为上侧隙, 将活塞环的 下平面与活塞环槽之间的间隙称为下侧隙, 将活塞环槽与活塞环的工作面(与 气缸壁接触的面)相反的一侧之间的间隙称背隙。传统单片开口式活塞环和双 片组合式活塞环的泄漏主要通过 3个通道。 第 1泄漏通道: 传统单片开口式活塞环的开口直接连通高压区和低压区, 形成显而易见的直接泄漏通道,该泄漏通道的泄漏量取决于开口的大小, 泄漏 量随磨损的增加而加剧。
第 2泄漏通道: 双片组合活塞环在承受工作压力时, 其中上片活塞环的开 口、上片活塞环的上侧隙将高压区与双片活塞环的共有背隙连通, 共有背隙又 与下片活塞环的开口连通, 而下片活塞环的开口又直接与低压区相连通, 因此 就形成了一个间接的泄漏通道,该泄漏通道的泄漏量取决于开口的大小, 泄漏 量随磨损的增加而加剧。
第 3泄漏通道: 活塞环的工作面的泄漏, 工作面是靠润滑油保持密封, 多 道环的最上道环润滑情况最差, 因此, 密封性最差。 当工作压力超过工作面的 封闭能力便开始泄漏, 该泄漏通道的泄漏量取决于工作面的厚度及润滑情况, 泄漏量随压力的增加而加剧。
综上可见, 仅仅靠双片活塞环的组合并不能做到完全密封, 双片组合活塞 环只是解决了第 1泄漏通道的泄漏问题,但不能解决第 2泄漏通道和第 3泄漏 通道的泄漏问题。
双片组合式活塞环是将两片活塞环安装在原活塞环槽内, 因此, 每片活塞 环仅为原活塞环厚度的 1/2 , 必然使结构强度降低。 活塞环工作在高温、 高压、 高速条件下, 结构强度的降低将直接影响可靠性。如果增加双片活塞环的组合 后的总厚度会使上片活塞环润滑情况进一步恶化,得不到充分润滑就不能保证 密封效果, 因此, 充分润滑是保证密封效果的重要条件。
另外,活塞环在活塞环槽内会产生泵油现象。在活塞环随活塞往复运动时, 上侧隙。在润滑油完成润滑和清洗任务后进入燃烧室, 因润滑油不能完全燃烧 而形成积碳。 在这一过程中, 润滑油的润滑作用和清洗作用是有益的, 形成积 碳是有害的。
此外, 传统的活塞上在有限的空间加工多道活塞环槽, 以便与多道活塞环 配合, 从而实现密封。 这不仅使得传统活塞的加工程序复杂, 而且会降低活塞 的强度, 另外还需要多个活塞环才能实现密封, 这导致传统活塞和活塞环的加 工复杂、 可靠性降低、 成本增加。 发明内容
本发明的一个目的是提供一种储油活塞环,其能够在应用中获得充分的润 滑, 进而能够有效地防止工作面泄漏。
本发明的另一目的是提供一种储油活塞环,其能够在活塞环的开口处形成 有效的密封。
本发明的再一目的是提供一种储油活塞环,其能够有效地防止润滑油进入 燃烧室形成积碳。
本发明的又一目的是提供一种活塞,其只需要一道储油活塞环即可达到良 好的密封效果。
为了达到上述目的, 根据本发明的第一方案, 提供了一种储油活塞环, 其 包括相互接合的上楔形环(离上止点近的环)和下楔形环, 所述上楔形环和下 楔形环均设置有开口, 所述上楔形环具有与气缸壁接触的第一工作面,所述下 楔形环具有与气缸壁接触的第二工作面,所述第一工作面和第二工作面中至少 一个工作面设置有至少一道储油槽。
通过上述技术方案, 能够有效解决活塞环的润滑问题和泄漏问题。
当活塞下行时 (富油阶段), 有部分润滑油被储存在储油槽内, 当活塞上 行时(贫油阶段), 储油槽内的润滑油可用于工作面的润滑, 因而增强了活塞 环工作面的润滑效果, 尤其改善了上止点附近的润滑状况。 由此可见, 储油槽 为提高活塞环的润滑性和密封性起到了至关重要的作用。
进一步, 根据本发明的另一方案, 在第一方案的基础上, 所述上楔形环的 工作面设置有储油槽,并且所述上楔形环的上平面设置有与所述储油槽连通的 集油槽。
通过集油槽收集将要泵入燃烧室的润滑油来用于工作面润滑,可减少润滑 油消耗, 以防止润滑油进入燃烧室而产生积碳。
优选地, 所述储油槽的中心线与所述上楔形环的上平面平行。
优选地,在第一工作面的中部和第二工作面的中部上分别设置有一道储油 槽, 如果活塞环有足够的厚度, 则可在第一工作面和第二工作面上各均匀布置 有两道或三道储油槽。通过设置两道或三道储油槽,能够达到更好的润滑效果。 优选地, 所述储油槽的截面为大致梯形, 所述梯形的底边为直线或圆弧, 所述储油槽的深度优选为 0.5 mm至 2 mm, 所述储油槽的开口宽度优选为 0.4 mm至 1.8 mm, 所述储油槽的侧壁的斜度优选为 2°至 10°。
通过改变储油槽的宽度和深度可调节储油量的多少。 如果增加储油槽宽 度, 则每个行程的初期润滑油消耗增大, 到后期润滑油就可能消耗殆尽, 最终 失去润滑。 如果增加储油槽深度、 减小宽度, 则润滑油消耗均匀, 到贫油阶段 也能得到充分润滑。但储油槽不能太深, 否则润滑油中的污垢不易排出而产生 沉积, 因此, 储油槽截面设计为梯形, 以利于污垢排出。
另外, 本发明的储油活塞环须根据活塞行程来设计储油槽的宽度、 深度和 斜度, 如用于较长行程须增加储油槽深度, 以保证上止点附近得到充分润滑。
优选地, 所述集油槽的底部具有与储油槽连通的 4至 16个连通孔, 这些 连通孔在集油槽内均匀分布, 所述连通孔的直径优选为 0.5 mm至 1.5 mm。
优选地, 所述集油槽的截面为 U形, 所述集油槽的深度优选为 0.5 mm至 2 mm, 所述集油槽的宽度优选为 0.8 mm至 3 mm。
本发明的上楔形环的上平面具有集油槽,所述集油槽的作用是收集完成润 滑和清洗任务的润滑油, 目的是减少润滑油消耗防止泵入燃烧室生成积碳。所 述的集油槽底部有连通孔与储油槽连通,集油槽收集的润滑油靠连通孔供给储 油槽, 用于工作面的润滑, 从而进一步提高活塞环工作面的润滑效果。
优选地, 所述上楔形环与所述下楔形环的组合后的总厚度为 2mm 至 50mm„
本发明的储油活塞环根据工作压力而设计双片活塞环组合后的总厚度,所 述上楔形环与所述下楔形环组合后的总厚度比传统活塞环的厚度大,增加的厚 度可提高活塞环工作面的密封性, 同时增加结构强度。
进一步, 根据本发明的再一方案, 在第一方案的基础上, 所述上楔形环和 所述下楔形环的开口各自包括内搭接部和外搭接部, 所述内搭接部包括内凸 起、外四陷以及连接所述内凸起和外四陷的第一接合部; 所述外搭接部包括外 凸起、 内 ffl陷和连接所述外凸起和内 ffl陷的第二接合部,所述第一接合部与所 述第二接合部接合,在所述内搭接部的内凸起和所述外搭接部的内四陷之间具 有第一间隙;在所述内搭接部的外四陷和所述外搭接部的外凸起之间具有第二 间隙; 所述第一间隙和第二间隙优选各自在膨胀状态时为 0.5 mm至 3 mm, 并且从俯视图看,所述内搭接部的内凸起和外四陷以及所述外搭接部的外凸起 和内凹陷优选为圆弧形。
在所述内搭接部的内凸起和所述外搭接部的内四陷之间,以及在所述外搭 接部的外凸起和所述内搭接部的外 ffl陷之间设置用于膨胀和收缩的间隙,使得 在温度变化时仍能够实现密封。
所述内搭接部的内凸起和外 ffl陷以及所述外搭接部的外凸起和内 ffl陷优 选为圆弧形, 圆弧形可防止应力集中并且便于加工。
优选地, 从俯视图看, 所述第一接合部和所述第二接合部为与所述活塞环 同心的圆弧,所述第一接合部和所述第二接合部的弧长优选为 5 mm至 50 mm。
所述内搭接部和所述外搭接部的接合面为紧密贴合的密封面,并且是活塞 环的同心圆。 当活塞环受热膨胀或产生磨损后可沿接合面(同心圆) 自由膨胀 和收缩, 并始终保持紧密贴合密封状态, 从而有效地解决活塞环开口的泄漏问 题。 如果仅仅是弧形搭接或阶梯形搭接则无法保证长期紧密贴合密封状态。
优选地, 所述上楔形环的楔形面与所述下楔形环的楔形面接合, 所述上楔 形环的楔形面相对于所述上楔形环的上平面的斜度及所述下楔形环的楔形面 相对于所述下楔形环的下平面的斜度均为 0.02°至 0.5°。
本发明的双片楔形环的楔形面的斜度不能太大。在活塞高速运动时两个楔 形面的作用可产生很强的相对滑动趋势, 滑动压力与楔形面的斜度、 活塞速度 成正比, 斜度大、 速度高则相对滑动压力就大, 若楔形面的斜度太大(如大于 0.5° )就会在厚端所对应的气缸壁造成严重磨损, 因此, 楔形面斜度越小越好, 最小斜度为 0.02°。
本发明楔形面的斜度与内燃机转速密切相关,高速内燃机适用楔形面的斜 度小的活塞环, 低速内燃机适用楔形面的斜度稍大的活塞环, 因此, 楔形面的 斜度 α须根据转速设计。
优选地, 从活塞环的俯视图看,所述上楔形环的开口中心和活塞环中心的 连线与所述上楔形环的最厚端和最薄端的连线之间的夹角为 10。至 30。, 所述 下楔形环的开口中心和活塞环中心的连线与所述下楔形环的最厚端和最薄端 的连线之间的夹角为 10°至 30°。 本发明的接合面是靠内搭接部的张力作用和外搭接部保持紧密贴合密封 状态, 活塞环的工作面在理论上应同步磨损, 若一旦出现外搭接部磨损大于内 搭接部, 所述的紧密贴合面就会出现间隙而不能保证紧密贴合。为了让内搭接 部和外搭接部始终保持紧密贴合密封状态,就希望内搭接部的磨损略大于外搭 接部的磨损。
楔形环的薄端部位的磨损大于楔形环的厚端部位的磨损。 本发明根据"较 薄部位磨损大的原理", 将楔形环开口中心与楔形面的最厚端与最薄端所在的 平面(楔形环的对称中心)错开一定角度, 将希望磨损大的部位(楔形环的与 内搭接部的外 ffl陷相邻的部位)设置在楔形环的对称中心处,使内搭接部的磨 损略大于外搭接部。 当处于对称中心处的内搭接部的最薄端部位磨损后, 内搭 接部的第一接合部抵住外搭接部使之同步磨损, 因此, 可始终保持紧密贴合密 封状态。本发明将楔形环开口中心与楔形环的对称中心错开一定角度,是本发 明保证长期紧密贴合密封的重要措施。
另外,本发明根据楔形面的斜度来设计楔形环开口中心与楔形环的对称中 心错开一定角度,如楔形面的斜度大则楔形环开口中心与楔形环的对称中心的 错开的角度小。
另外, 根据本发明的又一方案, 提供了一种活塞, 所述活塞上仅设置有一 道活塞环槽, 所述活塞环槽用于设置如上所述的储油活塞环。
釆用本发明的储油活塞环, 可以在活塞上只加工一道活塞环槽。 釆用一道 储油活塞环即可达到 好的密封效果。
本发明的储油活塞环可以应用于活塞式内燃机和压缩机。本发明的活塞和 活塞环可直接取代传统活塞及单片多道活塞环, 具有润滑性好、 密封性强、 可 靠性高的优点。 如用于工作压力超高的压缩机也可釆用两道储油活塞环。
可以看出,本发明提供了一种增加了双片活塞环的组合后的总厚度的储油 活塞环,使得结构强度得到增强, 并且因此在每片楔形环的工作面上设置一道 至三道储油槽。 而且上楔形环还设置有集油槽和连通孔, 使活塞环的润滑性、 密封性、 可靠性大幅度提高。 因此, 本发明只须一道储油活塞环即可直接取代 传统单片多道活塞环。
本发明的储油活塞环靠两个楔形面互补形成开口相背的密封状态。靠双片 组合封闭第 1泄漏通道,靠楔形环内搭接部的张力作用形成紧密贴合密封状态 封闭第 2泄漏通道,靠增加双片活塞环组合后的总厚度提高工作面密封性封闭 第 3泄漏通道, 靠储油槽保证工作面润滑效果和密封效果, 靠集油槽收集将要 泵入燃烧室的润滑油用于工作面的润滑, 可以有效地防止积碳的产生。 因此, 本发明只须一道储油活塞环即可达到良好的密封效果,可直接取代传统单片多 道活塞环。 附图说明
图 1为根据本发明第一实施例的储油活塞环的主视图。
图 2为根据本发明第一实施例的储油活塞环的俯视图。
图 3为根据本发明第一实施例的储油活塞环装配到活塞上的示意图。
图 4为根据本发明第二实施例的储油活塞环的主视图。
图 5为根据本发明第二实施例的储油活塞环的俯视图。
图 6为根据本发明第二实施例的储油活塞环装配到活塞上的局部剖视图。 其中, 附图中使用的附图标记说明如下:
100: 储油活塞环; 100a: 上楔形环; 100b: 下楔形环; 101 : 第一工作面; 102: 第二工作面; 103 : 上平面; 104: 下平面; 105: 储油槽; 106储油槽; 107: 上楔形环的楔形面; 108: 下楔形环的楔形面; 110: 内搭接部; 110a: 内凸起; 110b: 第一接合部; 110c: 外凹陷; 111 : 第一间隙; 120: 外搭接部; 120a: 内凹陷; 120b: 第二接合部; 120c: 外凸起; 112: 第二间隙;
200: 储油活塞环; 200a: 上楔形环; 200b: 下楔形环; 201 : 第一工作面; 202: 第二工作面; 203 : 上平面; 204: 下平面; 205: 储油槽; 206储油槽; 207上楔形环的楔形面; 208: 下楔形环的楔形面;
213: 下侧隙; 214: 背隙; 215上侧隙; 216: 集油槽; 217: 连通孔; 500: 油环; 600: 活塞; H: 上楔形环和下楔形环组合后的总厚度; D: 活塞环的宽 度; α楔形面的斜度; β。: 夹角; β1 : 夹角; 0: 活塞环的中心, Ρ: 上楔形环 100a的最厚端; Q: 上楔形环 100a的最薄端; S: 上楔形环 100a的开口中心; N: 下楔形环 100a的开口中心。 具体实施方式
下面结合附图对本发明进行示例性描述。
图 1至图 3为根据本发明第一实施例的示意图。图 1为根据本发明第一实 施例的储油活塞环的主视图。 如图 1所示,根据本发明储油活塞环 100包括相 互接合的上楔形环 100a和下楔形环 100b。 上楔形环 100a设置有开口, 并且 具有与气缸壁接触的第一工作面 101。 下楔形环 100b设置有开口, 并且具有 与气缸壁接触的第二工作面 102。 在第一工作面 101设置有一道储油槽 105 , 在第二工作面 102设置有一道储油槽 106。 上楔形环 100a具有上平面 103 , 应 用时与活塞环槽接触, 并且下楔形环 100b具有下平面 104, 应用时与活塞环 槽接触。 上楔形环 100a还具有楔形面 107, 其与下楔形环 100b所具有的楔形 面 108相互接合, 而使上楔形环 100a和下楔形环 100b接合在一起。
在图 1所示的实施例中, 储油槽 105的中心线与上楔形环 100a的上平面 103平行。 储油槽 106的中心线与下楔形环 100b的下平面 104平行。 并且, 上楔形环 100a的上平面 103与下楔形环 100b的下平面 104平行。
图 2为根据本发明第一实施例的储油活塞环的俯视图。如图 2所示, 上楔 形环 100a的开口与下楔形环 100b的开口相互错开。
上楔形环 100a的开口包括内搭接部 110和外搭接部 120, 内搭接部 110 包括内凸起 110a、 外凹陷 110c以及连接内凸起 110a和外凹陷 110c的第一接 合部 110b。 外搭接部 120包括内凹陷 120a, 外凸起 120c和连接内凹陷 120a 和外凸起 120c的第二接合部 120b。 第一接合部 110b与第二接合部 120b接合 而形成密封。
另外, 如图 2所示, 内搭接部 110的内凸起 110a和外 ffl陷 110c优选为圆 弧形, 并且外搭接部 120的外凸起 120c和内凹陷 120a优选为圆弧形。
另外, 如图 2所示, 第一接合部 110b和第二接合部 120b为与所述活塞环 的中心 0 同心的圆弧。 因各种活塞环的直径可能很大或很小, 最小直径可为 40 mm, 最大直径可为 600 mm, 故第一接合部 110b和第二接合部 120b的弧 长可以优选设置在 5 mm至 50 mm的范围内。
在内搭接部 110的内凸起 110a和外搭接部 120的内 IS陷 120a之间具有第 一间隙 111。 在内搭接部 110的外 IS陷 110c和外搭接部 120的外凸起 120c之 间具有第二间隙 112。第一间隙 111和第二间隙 112为用于膨胀和收缩的间隙, 所述间隙在最高温度时 (膨胀状态) 为 0.5 111111至3 111111。 由于将第一接合部 110b和第二接合部 120b设计为与活塞环的中心 0同心的圆弧,并且在内凸起 110a和内凹陷 120a之间以及外凹陷 110c和外凸起 120c之间分别设置有间隙, 所以, 当活塞环受热膨胀或产生磨损后可沿接合面自由膨胀和收缩, 并始终保 持紧密贴合的密封状态。
另外, 因各种活塞的行程可能很长或很短, 最长可达到 3000mm, 最短可 为 50mm。 在根据本发明第一实施例的活塞环, 其中上楔形环 100a与下楔形 环 100b的组合后的总厚度 H为 2mm至 50mm。上下楔形环组合后的总厚度 H 是根据工作压力而设计的, 将上下楔形环组合后的总厚度 H设计为原传统单 片开口式活塞环的 1.5至 4倍。
根据本实施例的储油活塞环, 因为上下楔形环组合后的总厚度 H的增加 使结构强度增加, 所以如组合后的总厚度达到原活塞环的 2倍以上, 由于弹力 过大, 则需要适当减小活塞环的宽度0。
在本实施例中, 储油槽 105、 106的截面设计为大致梯形, 储油槽 105、 106的深度设置为 0.5 mm至 2 mm,储油槽 105、 106的开口宽度设置为 0.4 mm 至 1.8 mm, 储油槽 105、 106的侧壁的斜度设置为 2°至 10°。 所述梯形的底边 可以为直线, 也可以为圆弧。
在本实施例中,上楔形环 100a的楔形面 107相对于上楔形环 100a的上平 面 103的斜度 α设置在 0.02°至 0.5°的范围内。 下楔形环 100b的楔形面 108相 对于下楔形环 100b的下平面 104的斜度 α也设置在 0.02°至 0.5°的范围内。
在本实施例中, 如图 2所示, 上楔形环 100a的开口中心 S和活塞环 100 的中心 0的连线与上楔形环 100a的最厚端 P和最薄端 Q的连线之间的夹角 β0 设置在 10°至 30°的范围内。并且, 下楔形环 100b的开口中心 N和活塞环的中 心 0的连线与所述下楔形环 100b的最厚端 Q和最薄端 P的连线之间的夹角 设置在 10°至 30°的范围内。
图 3为根据本发明第一实施例的储油活塞环装配到活塞上的示意图。如图 3所示, 根据本发明第一实施例的活塞环 100设置在活塞 600上。 在活塞 600 还设置有油环 500。 活塞环 100位于油环 500的上方。 从图 3中可以看出, 根 据本发明第一实施例, 只釆用一道活塞环就可以达到良好的密封效果。
下面, 结合图 4至 6描述根据本发明第二实施例。本发明第二实施例是对 第一实施例的改进, 故与第一实施例相似的特征釆用相似的附图标记, 并且省 略相应的描述。
如在背景技术中所描述的, 活塞环在活塞环槽内会产生泵油现象。为了解 决润滑油因泵油现象而进入燃烧室, 最终形成积碳的问题, 而设计了本发明第 二实施例。
图 4为根据本发明第二实施例的储油活塞环的主视图。如图 4所示,根据 本发明第二实施例的储油活塞环 200包括相互接合的上楔形环 200a和下楔形 环 200b。上楔形环 200a设置有开口,并且具有与气缸壁接触的第一工作面 201。 下楔形环 200b设置有开口, 并且具有与气缸壁接触的第二工作面 202。 在第 一工作面 201 设置有两道储油槽 205 , 在第二工作面 202设置有两道储油槽
206。 上楔形环 200a具有上平面 203 , 应用时与活塞环槽接触, 并且下楔形环 200b具有下平面 204, 应用时与活塞环槽接触。 上楔形环 200a还具有楔形面
207, 其与下楔形环 200b所具有的楔形面 208相互接合, 而使上楔形环 200a 和下楔形环 200b接合在一起。
图 5为根据本发明第二实施例的储油活塞环的俯视图。如图 5所示, 上楔 形环 200a的上平面 203设置的集油槽 216呈圆形, 并在集油槽 216的底部均 匀布置有 8个连通孔 217。
下面参考图 6, 图 6为根据本发明第二实施例的储油活塞环装配到活塞上 的局部剖视图。 如图 6所示, 在上楔形环 200a设置有两道储油槽 205 , 并且 上楔形环 200a的上平面 203设置有集油槽 216。 连通孔 217将集油槽 216与 设置在上楔形环 200a的上侧的储油槽 205连通。 另外, 如图 6所示, 在活塞 往复运动时, 上侧隙 215和下侧隙 213交替闭合, 因此, 润滑油从下侧隙 213 沿箭头方向泵入背隙 214, 再从背隙 214泵入上侧隙 215中。 当上侧隙 215闭 合时, 润滑油被集油槽 216收集, 并经过连通孔 217导入上侧的储油槽 205 中。集油槽 216收集已完成润滑和清洗任务的润滑油,用于对活塞环的工作面 进行润滑, 防止润滑油进入燃烧室而形成积碳。 根据本发明第二实施例具有 8个连通孔, 连通孔的数量也可以是 4至 16 个,这些连通孔 217在集油槽 216内均匀分布, 将润滑油从集油槽 216导入储 油槽 205。 这些连通孔 217的直径优选为 0.5 mm至 1.5 mm。
如图 6所示, 集油槽 216的截面为大致的 U形, 集油槽 216的深度可以 为 0.5 mm至 2 mm, 集油槽 216的宽度可以为 0.8 mm至 3 mm。
以上对本发明进行了示例性描述,下面描述的是本发明与传统技术的对比 实验例, 通过这些实验例可以清楚地看出本发明的有益效果。 表 1为针对活塞在上止点时压强为 1.5 Mpa的汽油机, 最高转速为
8000r/min。
1
Figure imgf000013_0001
上, 气缸压力表指示压力增加 0.1
Mpa
表 2为针对活塞在上止点时压强为 3 Mpa的柴油机, 最高转速为
3600r/minc
表 2
Figure imgf000014_0001
表 3为针对活塞在上止点时压强为 3.5 Mpa的柴油机, 最高转速为 2500r/min。 本发明 传统设计 活塞环类型 包括上下楔形环的储油活塞环 单片开口式活 塞环 活塞环的数量 1 3
油环数 1 1
活塞环的直径 300 mm 300 mm 活塞环的厚度 16 mm 4 mm 活塞环的宽度 6.2 mm 7 mm 储油槽数量、 位置、 形 四道; 上楔形环和下楔形环各设置两 无
状及大小 道; 梯形; 深度为 1.5 mm, 开口宽度
为 1.2 mm, 侧壁的斜度为 10°
集油槽数量、 形状及大 一个; 俯视图为圆形, 截面为 U形, 无
小 深度为 1.5 mm宽度为 2 mm
连通孔数量、 大小及布 12个; 直径为 1.4 mm; 在集油槽内 无
置方式 均布
其它参数 α=0.5°
βο=βι =10°
第一、 第二接合部的弧长均为 30mm
膨胀后的第一、第二间隙均为 1.5 mm
效果 活塞环的使用寿命可延长 1倍以上,
气缸压力表指示压力增加 0.2 Mpa 表 4为针对活塞在上止点时压强为 2.4 Mpa的汽油机, 最高转速为 4000r/min。
表 4
本发明 传统设计 活塞环类型 包括上下楔形环的储油活塞环 单片开口式活 塞环 活塞环的数量 1 3
油环数 1 1
活塞环的直径 86 mm 86 mm 活塞环的厚度 8.4 mm 2.8 mm 活塞环的宽度 4.2 mm 5 mm
储油槽数量、 位置、 形 三道; 上楔形环设置两道, 下楔形环 无
状及大小 设置一道; 梯形; 深度为 0.8 mm, 开
口宽度为 1.2 mm, 侧壁的斜度为 5°
集油槽数量、 形状及大 一个; 俯视图为圆形, 截面为 U形, 无
小 深度为 0.8 mm宽度为 1.2 mm
连通孔数量、 大小及布 10个; 直径为 1.2 mm; 在集油槽内 无
置方式 均布
其它参数 α=0.3°
βο=βι =25°
第一、 第二接合部的弧长均为 15mm
膨胀后的第一、第二间隙均为 0.5 mm
效果 活塞环的使用寿命可延长 1倍以上,
气缸压力表指示压力增加 0.15 Mpa 以上仅仅是对本发明的示意性示例进行了介绍, 应该了解, 在不脱离本发 明的构思内可以对本发明进行各种变化。
例如, 本发明要求两片楔形环的楔形面的斜度 α—致, 但不要求两片楔形 环的开口必须保持 180°,允许两片环的开口有相对偏差,容许大于或小于 180°; 目的是放宽加工自由度, 减少废品率。
再比如, 本发明必须保证两片楔形环的设计组合后的总厚度 Η, 但不要求 两片环的厚度完全一致,允许其中一片稍薄另一片稍厚,容许各片有厚度偏差,

Claims

权利 要 求
1、 一种储油活塞环, 包括相互接合的上楔形环 (100a, 200a) 和下楔形 环 ( 100b, 200b), 所述上楔形环 (100a, 200a) 和下楔形环 ( 100b, 200b) 均设置有开口, 所述上楔形环(100a, 200a)具有与气缸壁接触的第一工作面
( 101, 201 ), 所述下楔形环 (100b, 200b)具有与气缸壁接触的第二工作面 ( 102, 202), 其特征是: 所述第一工作面 (101, 201 )和第二工作面 (102, 202) 中至少一个工作面设置有至少一道储油槽 ( 105, 106, 205, 206)。
2、 根据权利要求 1所述的储油活塞环, 其特征是: 所述上楔形环(200a) 设置有储油槽 (205 ), 并且所述上楔形环 (200a) 的上平面 (203 )设置有与 所述储油槽 (205 )连通的集油槽 (216)。
3、根据权利要求 1或 2所述的储油活塞环,其特征是: 所述储油槽( 105, 106, 205, 206)的中心线与所述上楔形环( 100a, 200a)的上平面( 103, 203 ) 平行。
4、 根据权利要求 1至 3中任一项所述的储油活塞环, 其特征是: 在所述 第一工作面(101, 201 )的中部和所述第二工作面( 102, 202) 的中部上分别 设置有一道储油槽( 105, 106, 205, 206), 或者所述第一工作面(101, 201 ) 和所述第二工作面 ( 102, 202)各均匀布置有两道或三道储油槽 ( 105, 106, 205, 206)。
5、 根据权利要求 1至 4中任一项所述的储油活塞环, 其特征是: 所述储 油槽( 105, 106, 205, 206) 的截面为大致梯形, 所述梯形的底边为直线或圆 弧, 所述储油槽的深度为 0.5 mm至 2 mm, 所述储油槽的开口宽度为 0.4 mm 至 1.8mm, 所述储油槽的侧壁的斜度为 2°至 10°。
6、 根据权利要求 2至 5中任一项所述的储油活塞环, 其特征是: 所述集 油槽(216)的底部具有与所述储油槽(205 )连通的 4至 16个连通孔(217), 这些连通孔 (217)在集油槽 (216) 内均匀分布, 所述连通孔 (217) 的直径 为 0.5 mm至 1.5 mm。
7、 根据权利要求 2至 6中任一项所述的储油活塞环, 其特征是: 所述集 油槽 (216) 的截面为 U形, 所述集油槽 (216) 的深度为 0.5 mm至 2 mm, 所述集油槽 (216) 的宽度为 0.8111111至3111111。
8、 根据权利要求 1至 6中任一项所述的储油活塞环, 其特征是: 所述上 楔形环 (100a, 200a) 与所述下楔形环 ( 100b, 200b) 组合后的总厚度 (H)为 2mm至 50mm。
9、 根据权利要求 1至 8中任一项所述的储油活塞环, 其特征是: 所述上 楔形环(100a, 200a)和所述下楔形环(100b, 200b) 的开口各包括内搭接部
( 110) 和外搭接部 ( 120), 所述内搭接部 ( 110)包括内凸起( 110a)、 外凹 陷( 110c)以及连接所述内凸起( 110a)和外凹陷( 110c)的第一接合部( 110b ); 所述外搭接部 (120)包括外凸起(120c)、 内凹陷 (120a)和连接所述外凸起
( 120c) 和内凹陷 (120a) 的第二接合部 (120b); 所述第一接合部 (110b) 与所述第二接合部 (120b)接合, 在所述内搭接部 (110) 的内凸起(110a) 和所述外搭接部 (120) 的内凹陷 (120a)之间具有第一间隙 (111 ); 在所述 内搭接部 (110) 的外凹陷 (110c)和所述外搭接部 (120) 的外凸起(120c) 之间具有第二间隙 (112)。
10、 根据权利要求 9所述的储油活塞环, 其特征是: 从俯视图看, 所述内 搭接部 (110) 的内凸起(110a) 和外凹陷 (110c) 以及所述外搭接部 (120) 的外凸起(120c) 和内凹陷 (120a)均为圆弧形。
11、 根据权利要求 9或 10所述的储油活塞环, 其特征是: 从俯视图看, 所述第一接合部(110b)和所述第二接合部(120b)为与所述活塞环同心的圆 弧。
12、 根据权利要求 11 所述的储油活塞环, 其特征是: 所述第一接合部 ( 110b)和所述第二接合部( 120b ) 的弧长为 5 mm至 50 mm, 所述第一间隙
( 111 )和第二间隙 (112)各自在膨胀状态时为 0.5111111至3 111111。
13、 根据权利要求 1至 12中任一项所述的储油活塞环, 其特征是: 所述 上楔形环( 100a, 200a)的楔形面( 107, 207)与所述下楔形环( 100b, 200b) 的楔形面 ( 108, 208 )接合; 所述上楔形环 (100a, 200a) 的楔形面 (107, 207)相对于所述上楔形环 (100a, 200a) 的上平面 ( 103, 203 ) 的斜度(α) 及所述下楔形环( 100b, 200b)的楔形面( 108, 208)相对于所述下楔形环( 100b, 200b) 的下平面 ( 104, 204) 的斜度 (α)均为 0.02。至 0.5。。
14、 根据权利要求 1至 13中任一项所述的储油活塞环, 其特征是: 从活 塞环的俯视图看, 所述上楔形环(100a, 200a)的开口中心和活塞环中心的连 线与所述上楔形环 (100a, 200a) 的最厚端和最薄端的连线之间的夹角 ( β0 ) 为 10°至 30°; 所述下楔形环 (100b, 200b) 的开口中心和活塞环中心的连线 与所述下楔形环(100b, 200b) 的最厚端和最薄端的连线之间的夹角 (β 为 10。至 30。。
15、 一种活塞, 其特征是: 所述活塞仅设置有一道活塞环槽, 所述活塞环 槽用于设置如权利要求 1至 14中任一项所述的储油活塞环。
PCT/CN2010/001269 2010-08-20 2010-08-20 储油活塞环 WO2012022012A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10856011.1A EP2607675B1 (en) 2010-08-20 2010-08-20 Oil-reserving piston ring
PCT/CN2010/001269 WO2012022012A1 (zh) 2010-08-20 2010-08-20 储油活塞环
US13/817,974 US8827277B2 (en) 2010-08-20 2010-08-20 Oil-reserving piston ring
CN201080068480.5A CN103180592B (zh) 2010-08-20 2010-08-20 储油活塞环
EA201300247A EA025890B1 (ru) 2010-08-20 2010-08-20 Маслоудерживающее поршневое кольцо

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/001269 WO2012022012A1 (zh) 2010-08-20 2010-08-20 储油活塞环

Publications (1)

Publication Number Publication Date
WO2012022012A1 true WO2012022012A1 (zh) 2012-02-23

Family

ID=45604672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001269 WO2012022012A1 (zh) 2010-08-20 2010-08-20 储油活塞环

Country Status (5)

Country Link
US (1) US8827277B2 (zh)
EP (1) EP2607675B1 (zh)
CN (1) CN103180592B (zh)
EA (1) EA025890B1 (zh)
WO (1) WO2012022012A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012002443A1 (de) * 2012-02-08 2013-08-08 Mahle International Gmbh Kolbenring für einen Verbrennungsmotor
CN105179377A (zh) * 2015-09-21 2015-12-23 济南大学 一种具有防变形且储漏油的液压缸活塞密封装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105041504A (zh) * 2015-07-07 2015-11-11 上海理工大学 微织构自润滑油环
CN105114199A (zh) * 2015-08-31 2015-12-02 邓永辉 一种结构改良型活塞环
DE102017113354A1 (de) * 2017-06-19 2018-12-20 Federal-Mogul Burscheid Gmbh Ölabstreifkolbenring
CN108895054A (zh) * 2018-07-27 2018-11-27 深圳市博瓦克气动技术有限公司 一种气缸
AU2020214547A1 (en) * 2019-01-29 2021-09-16 Hoerbiger Wien Gmbh Packaging ring with relief opening
CN113400252B (zh) * 2021-06-18 2024-05-28 广西玉柴机器股份有限公司 一种高效率的活塞环装配系统
US11543191B1 (en) 2021-12-14 2023-01-03 Norwich Technologies, Inc. Thermal energy storage system with parallel connected vessels
US11519504B1 (en) * 2021-12-14 2022-12-06 Norwich Technologies, Inc. Piston ring for floating piston in a thermal energy storage system
US11578693B1 (en) 2021-12-14 2023-02-14 Norwich Technologies, Inc. Thermal energy storage system including a vessel having hot and cold liquid portions separated by floating piston
US11493281B1 (en) 2021-12-14 2022-11-08 Norwich Technologies, Inc. Floating separator piston for a thermal energy storage system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2260173Y (zh) * 1996-02-14 1997-08-20 王保东 一种带有自动润滑及调隙装置的活塞组件
US7044473B1 (en) * 1999-06-08 2006-05-16 Zhihong Zhu Piston and piston ring assembly
CN200940521Y (zh) * 2006-05-18 2007-08-29 刘洪文 单槽双环内外搭口活塞气环

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1426694A (en) * 1922-08-22 Oilpeoof piston ring
FR523008A (fr) * 1919-06-25 1921-08-11 Henri Hebrard Perfectionnement aux segments de piston pour moteurs à explosions
US1481701A (en) * 1919-11-25 1924-01-22 John B Fecht Piston ring
US1443473A (en) * 1919-12-17 1923-01-30 Paul J Huhn Piston and packing
US2160379A (en) * 1937-03-23 1939-05-30 James J Carroll Piston ring
US2580124A (en) * 1948-02-19 1951-12-25 Hastings Mfg Co Piston ring
US2640746A (en) * 1952-02-29 1953-06-02 Hastings Mfg Co Piston ring
US4192051A (en) * 1976-04-08 1980-03-11 Alfred Bergeron Method for manufacturing fully sealed piston ring
CN1005041B (zh) * 1985-12-14 1989-08-23 延边建筑总公司 单槽活塞环
CN2227741Y (zh) 1994-09-19 1996-05-22 张奎宏 双层斜面活塞环
CN1757897A (zh) 2004-10-08 2006-04-12 孔凡鲁 一种组合式活塞环
CN2906092Y (zh) * 2005-12-08 2007-05-30 郝安阶 密封型活塞环
CN101037975A (zh) 2007-04-17 2007-09-19 何俊明 带有新型定位装置的组合式活塞环及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2260173Y (zh) * 1996-02-14 1997-08-20 王保东 一种带有自动润滑及调隙装置的活塞组件
US7044473B1 (en) * 1999-06-08 2006-05-16 Zhihong Zhu Piston and piston ring assembly
CN200940521Y (zh) * 2006-05-18 2007-08-29 刘洪文 单槽双环内外搭口活塞气环

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012002443A1 (de) * 2012-02-08 2013-08-08 Mahle International Gmbh Kolbenring für einen Verbrennungsmotor
US9279499B2 (en) 2012-02-08 2016-03-08 Mahle International Gmbh Piston ring for an internal combustion engine
CN105179377A (zh) * 2015-09-21 2015-12-23 济南大学 一种具有防变形且储漏油的液压缸活塞密封装置

Also Published As

Publication number Publication date
US20130147124A1 (en) 2013-06-13
US8827277B2 (en) 2014-09-09
CN103180592B (zh) 2015-12-16
EA201300247A1 (ru) 2013-08-30
EA025890B1 (ru) 2017-02-28
EP2607675A1 (en) 2013-06-26
EP2607675A4 (en) 2015-02-11
EP2607675B1 (en) 2017-05-10
CN103180592A (zh) 2013-06-26

Similar Documents

Publication Publication Date Title
WO2012022012A1 (zh) 储油活塞环
EP3270012B1 (en) Side rail
JP5977339B2 (ja) 高ベルト負荷を有するエンジン用の主軸受
US20120186561A1 (en) Oil retention in the bore/piston interfaces of ported cylinders in opposed-piston engines
KR20090035413A (ko) 왕복운동 기관의 피스톤 링
RU2447306C1 (ru) Поршневое уплотнение двигателя внутреннего сгорания
US20180274675A1 (en) Piston ring with varying apex lines
US20150292620A1 (en) Piston ring with varying apex lines
US10197160B2 (en) Oil ring
CN212338147U (zh) 一种具有金属复合材料的高性能活塞环
CN216142820U (zh) 一种活塞及活塞环组合结构
RU2719250C2 (ru) Поршневое кольцо
JP5164659B2 (ja) 組合せオイルリング
JP2009030558A (ja) ピストンリング及び内燃機関用ピストン
WO2020133710A1 (zh) 组合式油环及活塞式发动机
CN112727628A (zh) 一种活塞及活塞环组合结构
WO2011094906A1 (zh) 末端非对称互补闭合式耐磨损活塞环
CN214464579U (zh) 一种活塞结构
RU10812U1 (ru) Компрессионное кольцо поршня
CN212318175U (zh) 一种弹性内衬活塞环
CN216198799U (zh) 一种用于大排量空压机的活塞
CN217501818U (zh) 一种适用于氢气内燃机的活塞环组
CN211202141U (zh) 活塞环组件
JPH0134689Y2 (zh)
CN209053711U (zh) 一种新型风冷柴油机活塞环组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13817974

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010856011

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010856011

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 201300247

Country of ref document: EA