WO2012020998A2 - Procédé de préparation d'oxyde de lithium-titane, oxyde de lithium-titane préparé par celui-ci, et piles rechargeables au lithium comprenant l'oxyde de lithium-titane - Google Patents

Procédé de préparation d'oxyde de lithium-titane, oxyde de lithium-titane préparé par celui-ci, et piles rechargeables au lithium comprenant l'oxyde de lithium-titane Download PDF

Info

Publication number
WO2012020998A2
WO2012020998A2 PCT/KR2011/005878 KR2011005878W WO2012020998A2 WO 2012020998 A2 WO2012020998 A2 WO 2012020998A2 KR 2011005878 W KR2011005878 W KR 2011005878W WO 2012020998 A2 WO2012020998 A2 WO 2012020998A2
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
lithium titanium
lithium
present
prepared
Prior art date
Application number
PCT/KR2011/005878
Other languages
English (en)
Korean (ko)
Other versions
WO2012020998A3 (fr
Inventor
홍지준
변기택
김효원
Original Assignee
주식회사 루트제이제이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 루트제이제이 filed Critical 주식회사 루트제이제이
Publication of WO2012020998A2 publication Critical patent/WO2012020998A2/fr
Publication of WO2012020998A3 publication Critical patent/WO2012020998A3/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium titanium oxide manufacturing method, a lithium titanium oxide produced thereby and a lithium secondary battery comprising the same, more specifically in a more economical manner, can be produced in a large capacity lithium titanium oxide having excellent characteristics It relates to a lithium titanium oxide manufacturing method, a lithium titanium oxide produced thereby and a lithium secondary battery comprising the same.
  • lithium secondary batteries using lithium and nonaqueous electrolytes due to the high possibility of realizing small, lightweight and high energy density batteries.
  • a transition metal oxide such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 is used as a cathode material of a lithium secondary battery, and lithium metal or carbon is used as an anode material.
  • a lithium secondary battery is comprised using the organic solvent which contains lithium ion as electrolyte between two electrodes.
  • lithium secondary battery using metal lithium as a negative electrode tends to generate dendrite crystals when charging and discharging is repeated, and there is a high risk of short circuit.
  • Lithium secondary batteries that use a nonaqueous solvent containing lithium ions as an electrolyte have been put to practical use.
  • the carbon-based material has a large irreversible capacity, there is a problem in that initial charge and discharge efficiency is low and the capacity is reduced.
  • lithium may be deposited on the surface of carbon during overcharging, thereby causing a problem in safety.
  • lithium titanium oxide (Li 4 Ti 5 O 12 , LTO) material which has recently been spotlighted as a negative electrode material of a lithium ion battery, has an operating voltage of 1.3 to 1.6 V, which is higher than that of a conventional carbon-based negative electrode material and has a reversible capacity.
  • LTO lithium titanium oxide
  • the theoretical density of the carbon material is about 2 g / cm 3 , but Li 4 Ti 5 O 12 has a theoretical density of 3.5 g / cm 3, which is similar to the carbon material.
  • a method of manufacturing the LTO material is a method in which a lithium source and a titanium source are mixed at a temperature of 500 to 1200 ° C., and then calcined in one baking furnace by a predetermined time batch method.
  • Korean Patent Laid-Open Publication No. 10-2008-0023831 includes the steps of appropriately mixing a source material of lithium (Li) and a source material of titanium (Ti); b) adding and mixing a substance containing at least one element selected from the group consisting of B, Sn, S, Be, Ge, and Zn to the mixture; And c) calcining the mixture to synthesize Li 4 Ti 5 O 12.
  • the prior art also discloses a heat treatment process of a batch method in the same manner as the conventional general method in the heat treatment method.
  • such a batch method has a limitation in the production capacity, and in order to process a large capacity, the size of the firing furnace eventually increases, so there is a limitation in the production capacity.
  • the problem to be solved by the present invention is to provide a lithium titanium oxide manufacturing method capable of producing a large amount of lithium titanium oxide of excellent characteristics in a more economical manner, thereby providing a lithium titanium oxide and a lithium secondary battery comprising the same will be.
  • the present invention comprises the steps of mixing the raw material for the production of lithium titanium oxide; Drying the mixture; And it provides a method for producing lithium titanium oxide comprising the step of firing when the dried mixture is moved.
  • the mixing, drying and firing is carried out continuously, the movement of the dried mixture in the firing step may be carried out by gravity.
  • the raw material is at least one lithium source selected from the group consisting of Li 2 CO 3 , LiOH, LiF, Li 2 SO 4 , LiNO 3 , LiCl and TiO 2 , TiCl 4 , TiOCl 2 , TiOSO 4 , TiO (OH) 2 and at least one titanium source selected from the group consisting of, wherein the mixing of the raw material may be performed by an in-line mixer.
  • the present invention provides a lithium titanium oxide prepared by the above-described method, and also provides a lithium secondary battery comprising the lithium titanium oxide as an electrode material.
  • the method for producing lithium titanium oxide is made by reaction, drying, and heat treatment in the process of being moved, and thus, it is possible to produce a large capacity lithium titanium oxide in a more economical manner as compared with the conventional batch method. Furthermore, the lithium titanium oxide produced by such a continuous reaction method exhibits excellent electrode characteristics compared to the lithium titanium oxide produced by a batch reaction method as an electrode material.
  • 1 is a step diagram of a method for producing lithium titanium oxide according to an embodiment of the present invention.
  • 3 is a particle image for the comparative material.
  • lithium titanium oxide having a heat treatment method in which raw materials (lithium source, titanium source) are moved ( LTO) manufacturing method unlike the prior art in which raw materials are mixed in a fixed reactor and then fired for a predetermined time in another fixed kiln, lithium titanium oxide having a heat treatment method in which raw materials (lithium source, titanium source) are moved ( LTO) manufacturing method.
  • LTO lithium titanium oxide having a heat treatment method in which raw materials (lithium source, titanium source) are moved
  • 1 is a step diagram of the LTO manufacturing process according to an embodiment of the present invention.
  • a lithium source and a titanium source are mixed.
  • a separate additive for powder growth may be added and mixed with the lithium source and the titanium source, but the scope of the present invention is not limited thereto.
  • the lithium source may be, for example, at least one selected from the group consisting of Li 2 CO 3 , LiOH, LiF, Li 2 SO 4 , LiNO 3 , LiCl, but the scope of the present invention is limited thereto.
  • the titanium source may be, for example, TiO 2 , TiCl 4 , TiOCl 2 , TiOSO 4 , TiO (OH) 2 , but the scope of the present invention is not limited thereto.
  • the raw material according to the present invention is moved through the tube, it can be mixed by the in-line mixer provided in the moving path.
  • the mixed raw material moves through the pipe, and drying is performed in the process of being moved.
  • the mixing and / or drying steps can also proceed in a batch manner until the firing step, at least as long as the firing step is a continuous mode, all of which are within the scope of the present invention.
  • the dried mixture (raw material of lithium titanium oxide) is continuously moved through the pipe, and dried, and the dried material is subjected to a continuous kiln again.
  • Continuous firing furnace of the present invention is a form that can be moved at the same time the material fired in the interior firing.
  • the kiln is in the form of rotating in a cylindrical shape, the kiln is inclined at a predetermined angle.
  • the material inside the kiln is moved by gravity, and at the same time, the high temperature heat treatment proceeds. That is, the material inside the kiln is continuously moved by gravity, and is exposed to the heat at the top of the kiln, and the firing proceeds.
  • the inventors of the present invention improve the productivity by solving the problem of lowering the productivity by cooling in the moving process, especially when moving / firing at the same time, and also obtain the lithium titanium oxide calcined in crystalline form in terms of physical properties.
  • the electrode material also has excellent characteristics, which will be described in more detail with reference to the following experimental examples.
  • a lithium titanium oxide manufacturing method was prepared as shown in FIG. 1. That is, 1 kg of TiO 2 powder having a primary particle size of about 150 nm and 0.5 kg of LiOH.H 2 O were mixed and dried. Then, the dried material was heat treated at 700 ° C. for 18 hours through a continuous kiln mixed with moving raw materials continuously as described above to obtain LTO powder.
  • a commercial LTO powder prepared by firing in a stationary state for comparison was purchased.
  • the particle shape of the negative electrode active material prepared in the above example was observed, which is shown in FIG. 2.
  • the average particle size of the negative electrode active material is 200 to 300 nm and the particles grow in a crystalline form.
  • the comparative example fired in the stationary state is relatively weak in the crystal state. This difference in crystal phase also has a significant effect on the physical properties of the electrode material, which will be described in detail below.
  • the particle size analysis of the material was performed using a laser diffraction particle size distribution meter. From the results of the cumulative particle size distribution, the particle sizes at the points where the cumulative volumes reached 10%, 50%, and 90% were confirmed to be d10, d50, and d90, respectively. The results are shown in Table 1 below. As shown in Table 1, the particle size of the LTO prepared in Examples 1 and 2 appears to be large, indicating that the crystallization is further made. From the results in Test Example 4, it can be seen that the specific particle size and crystallization of the titration should be made as the specific amounts of Examples 1 and 2 were larger.
  • Example 1 Comparative Example 1 SSA [m2 / g] 60.6 68.2 69.8 d10 [ ⁇ m] 0.12 0.13 0.05 d50 [ ⁇ m] 0.24 0.26 0.15 d90 [ ⁇ m] 0.34 0.35 0.20 pH 11.94 11.88 11.67
  • the tap density was calculated by tapping 50 g of material into the cylinder, measuring the volume after 2000 taps, and calculating the tap density. The results are shown in Table 2.
  • the negative electrode active material (lithium titanium oxide): conductive agent: binder in the weight ratio of 85: 9: 3
  • the positive electrode active material lithium nickel manganese cobalt oxide: the conductive agent, the binder in 92: 4.5: 3.5
  • a 2030 type coin cell was prepared, and 1M-LiPF6 dissolved in EC-DEC (volume ratio 1: 1) was used as an electrolyte. Charge was cut off at 2.7V and discharge 1.5V, and it was charged and discharged at 0.1C. The results are shown in Table 2.
  • Example 1 Example 2 0.5C 100.0 100.0 100.0 1.0C 97.7 97.2 97.9 2.0C 94.1 94.0 95.3 5.0C 88.2 89.2 91.1 8.0C 82.4 85.5 88.2 10.0C 77.4 82.9 85.5 12.0C 71.2 78.3 83.2
  • the present invention relates to a lithium titanium oxide manufacturing method capable of producing a large amount of lithium titanium oxide having excellent characteristics in an economical manner, to a lithium titanium oxide produced thereby and a lithium secondary battery comprising the same, which is used in the battery business There is a possibility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

La présente invention concerne un procédé de préparation d'oxyde de lithium-titane, l'oxyde de lithium-titane préparé par celui-ci et une pile rechargeable au lithium comprenant l'oxyde de lithium-titane. Le procédé de préparation de l'oxyde de lithium-titane selon la présente invention comprend les étapes suivantes : le mélange des matières premières pour préparer l'oxyde de lithium-titane ; le séchage du mélange ; et le transfert et le frittage du mélange séché. Le procédé de préparation de l'oxyde de lithium-titane selon la présente invention implique la réalisation de la réaction, du séchage et des processus de traitement thermique tout en transférant le mélange et donc, permet la préparation d'un grand volume d'oxyde de lithium-titane de manière économiquement plus avantageuse par comparaison aux procédés discontinus classiques. De plus, l'oxyde de lithium-titane préparé par la réaction consécutive de la présente invention peut présenter de meilleures caractéristiques d'électrode comme matériau d'électrode par comparaison à l'oxyde de lithium-titane préparé par un procédé de réaction discontinue.
PCT/KR2011/005878 2010-08-11 2011-08-11 Procédé de préparation d'oxyde de lithium-titane, oxyde de lithium-titane préparé par celui-ci, et piles rechargeables au lithium comprenant l'oxyde de lithium-titane WO2012020998A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0077375 2010-08-11
KR20100077375 2010-08-11

Publications (2)

Publication Number Publication Date
WO2012020998A2 true WO2012020998A2 (fr) 2012-02-16
WO2012020998A3 WO2012020998A3 (fr) 2012-05-10

Family

ID=45568054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/005878 WO2012020998A2 (fr) 2010-08-11 2011-08-11 Procédé de préparation d'oxyde de lithium-titane, oxyde de lithium-titane préparé par celui-ci, et piles rechargeables au lithium comprenant l'oxyde de lithium-titane

Country Status (2)

Country Link
KR (1) KR101285171B1 (fr)
WO (1) WO2012020998A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117381A (zh) * 2013-01-25 2013-05-22 合肥国轩高科动力能源股份公司 一种低能耗固相法制备纳米钛酸锂材料的方法
CN103326008A (zh) * 2013-05-21 2013-09-25 合肥国轩高科动力能源股份公司 一种压块烧结合成钛酸锂负极材料的方法
CN106159250A (zh) * 2016-08-15 2016-11-23 四川兴能新材料有限公司 一种偏钛酸为钛源的钛酸锂电极材料及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102643446B1 (ko) * 2021-09-30 2024-03-07 조영기 양극재 연속생산방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000302547A (ja) * 1999-02-16 2000-10-31 Toho Titanium Co Ltd チタン酸リチウムの製造方法およびリチウムイオン電池ならびにその負極。
KR20050036354A (ko) * 2003-10-16 2005-04-20 김중호 금속산화물 및 착색산화물을 이용한 흑색 벽돌 및보도블럭 제조방법
KR20080023831A (ko) * 2006-09-12 2008-03-17 주식회사 엘지화학 리튬티탄산화물 분말, 그 제조방법, 이를 포함하는 전극,및 이차전지
WO2010082761A2 (fr) * 2009-01-13 2010-07-22 한양대학교 산학협력단 Procédé de fabrication de dioxyde de titane cristallin, procédé de fabrication d'un matériau actif pour électrode négative, matériau actif pour électrode négative, et pile auxiliaire au lithium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8895190B2 (en) * 2006-02-17 2014-11-25 Lg Chem, Ltd. Preparation method of lithium-metal composite oxides

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000302547A (ja) * 1999-02-16 2000-10-31 Toho Titanium Co Ltd チタン酸リチウムの製造方法およびリチウムイオン電池ならびにその負極。
KR20050036354A (ko) * 2003-10-16 2005-04-20 김중호 금속산화물 및 착색산화물을 이용한 흑색 벽돌 및보도블럭 제조방법
KR20080023831A (ko) * 2006-09-12 2008-03-17 주식회사 엘지화학 리튬티탄산화물 분말, 그 제조방법, 이를 포함하는 전극,및 이차전지
WO2010082761A2 (fr) * 2009-01-13 2010-07-22 한양대학교 산학협력단 Procédé de fabrication de dioxyde de titane cristallin, procédé de fabrication d'un matériau actif pour électrode négative, matériau actif pour électrode négative, et pile auxiliaire au lithium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117381A (zh) * 2013-01-25 2013-05-22 合肥国轩高科动力能源股份公司 一种低能耗固相法制备纳米钛酸锂材料的方法
CN103326008A (zh) * 2013-05-21 2013-09-25 合肥国轩高科动力能源股份公司 一种压块烧结合成钛酸锂负极材料的方法
CN106159250A (zh) * 2016-08-15 2016-11-23 四川兴能新材料有限公司 一种偏钛酸为钛源的钛酸锂电极材料及其制备方法

Also Published As

Publication number Publication date
KR20120022622A (ko) 2012-03-12
KR101285171B1 (ko) 2013-07-11
WO2012020998A3 (fr) 2012-05-10

Similar Documents

Publication Publication Date Title
JP6170161B2 (ja) リチウム遷移金属複合粒子、この製造方法、及びこれを含む正極活物質
KR100772829B1 (ko) 입도 의존 조성을 갖는 전극 활물질 분말과 그 제조방법
WO2011096522A1 (fr) Matériau actif d'électrode positive pour une batterie lithium ion, électrode positive pour batterie lithium ion et batterie lithium ion
WO2011096525A1 (fr) Matériau actif d'électrode positive pour une batterie lithium ion, électrode positive pour batterie lithium ion et batterie lithium ion
KR20120046612A (ko) 리튬 이차전지용 양극 활물질 및 이의 제조방법
KR20000061755A (ko) 리튬 이차 전지용 양극 활물질 및 그 제조 방법
US8563174B2 (en) Secondary battery material and synthesis method
WO2020013667A1 (fr) Batterie secondaire au lithium comprenant une solution d'électrolyte inorganique
KR20170139462A (ko) 소듐 이차전지용 양극활물질, 및 이의 제조 방법
EP3224887A1 (fr) Matériaux d'anode pour batteries sodium-ion et procédés de fabrication de ceux-ci
WO2014092330A1 (fr) Electrode pour batterie secondaire au lithium, batterie secondaire au lithium utilisant celle-ci et procédé de fabrication de celle-ci
KR101959761B1 (ko) 양극 활물질의 제조방법, 및 이에 의해 제조된 리튬 이차전지용 양극 활물질
WO2012020998A2 (fr) Procédé de préparation d'oxyde de lithium-titane, oxyde de lithium-titane préparé par celui-ci, et piles rechargeables au lithium comprenant l'oxyde de lithium-titane
JP2012230810A (ja) チタン酸リチウム、非水電解質電池用電極、及び非水電解質電池
WO2014081269A1 (fr) Précurseur de matériau actif d'électrode recouvert de métal, et son procédé de préparation
WO2020197197A1 (fr) Particules de matériau actif cathodique pour batterie au sulfure entièrement solide
CN112993226A (zh) 一种氧化物玻璃正极材料、其制备方法及应用
US10790508B2 (en) Cobalt-stabilized lithium metal oxide electrodes for lithium batteries
WO2022014858A1 (fr) Matériau actif d'électrode positive pour batterie secondaire au lithium
WO2013002559A2 (fr) Matériau actif de cathode, batterie secondaire au lithium contenant le matériau actif de cathode et procédé d'activation électrochimique d'une batterie secondaire au lithium
WO2013157734A1 (fr) Matière de cathode pour batterie secondaire au lithium non aqueux employant de l'hydroxyde de colbalt sphérique
JP2018088380A (ja) リチウムイオン二次電池用の電極活物質、およびそれを用いたリチウムイオン二次電池
WO2020055210A1 (fr) Matériau actif de cathode, son procédé de préparation et batterie rechargeable au lithium le comprenant
WO2014077445A1 (fr) Oxyde composite composé de lithium et du manganèse pour lequel la taille de l'angle vertical de la particule primaire est ajustée, et procédé permettant de préparer ce dernier
JP2004186149A (ja) Liイオン二次電池用正極材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11816614

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11816614

Country of ref document: EP

Kind code of ref document: A2