WO2012020825A1 - 水の電磁場処理方法および電磁場処理装置 - Google Patents

水の電磁場処理方法および電磁場処理装置 Download PDF

Info

Publication number
WO2012020825A1
WO2012020825A1 PCT/JP2011/068377 JP2011068377W WO2012020825A1 WO 2012020825 A1 WO2012020825 A1 WO 2012020825A1 JP 2011068377 W JP2011068377 W JP 2011068377W WO 2012020825 A1 WO2012020825 A1 WO 2012020825A1
Authority
WO
WIPO (PCT)
Prior art keywords
khz
magnetic field
water
alternating
electromagnetic field
Prior art date
Application number
PCT/JP2011/068377
Other languages
English (en)
French (fr)
Inventor
志賀誠記
Original Assignee
株式会社志賀機能水研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社志賀機能水研究所 filed Critical 株式会社志賀機能水研究所
Priority to CN201180036526.XA priority Critical patent/CN103025666B/zh
Priority to JP2012528713A priority patent/JP5844259B2/ja
Publication of WO2012020825A1 publication Critical patent/WO2012020825A1/ja
Priority to US13/765,248 priority patent/US20130146464A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/487Treatment of water, waste water, or sewage with magnetic or electric fields using high frequency electromagnetic fields, e.g. pulsed electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/484Treatment of water, waste water, or sewage with magnetic or electric fields using electromagnets
    • C02F1/485Treatment of water, waste water, or sewage with magnetic or electric fields using electromagnets located on the outer wall of the treatment device, i.e. not in contact with the liquid to be treated, e.g. detachable
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/48Devices for applying magnetic or electric fields
    • C02F2201/483Devices for applying magnetic or electric fields using coils

Definitions

  • Patent Document 1 describes applying an induction electromagnetic field to water by winding a coil around a water pipe and passing a current of a specific frequency through the coil.
  • the purpose is to stably improve the solvent characteristics of water.
  • the electromagnetic field treatment method for water Applying an alternating magnetic field generated by applying an alternating current to the coil to water, and applying an alternating electric field generated by applying an alternating voltage synchronized with the alternating magnetic field to the electrode to water,
  • the alternating current wave of the alternating current is a rectangular wave,
  • the AC voltage at the rise time of the AC magnetic field is high level and the AC voltage at the fall time of the AC magnetic field is low level, or the AC voltage at the rise time of the AC magnetic field is low level and the fall time of the AC magnetic field
  • Water solvent properties can be improved.
  • Embodiment 1 (Electromagnetic field treatment)
  • the first electromagnetic field treatment apparatus includes a pipe 101 through which water passes, a positive electrode 102 on a pipe surface 101 through which water passes, a first insulating material 103 that covers at least the positive electrode, and a pipe 101 or first pipe through which water passes.
  • a negative electrode 104 provided on the surface of one insulating material 103, a second insulating material 105 covering at least the negative electrode 104, and a coil 106 wound around a tube around which the second insulating material 105 is wound.
  • the circuit 111, the positive electrode 102, the negative electrode 104, and the circuit 112 connected to the coil 106 are provided at least.
  • the circuits 111 and 112 may be either a circuit configured on one substrate or a circuit configured on another substrate.
  • the circuits 111 and 112 may be either a built-in power supply type or an external power supply type.
  • a pipe made of a dielectric material such as a vinyl chloride pipe (vinyl chloride pipe), a polyethylene pipe, or an FRP pipe
  • the positive electrode 102 and the negative electrode 104 may be any material that is generally used as a conductive material or an electrode material.
  • the coil 106 may be a material generally used as a coil material.
  • the first and second insulating materials may be insulators that cover the electrodes, respectively.
  • a material generally used as an insulating material such as an insulating tape or a heat shrinkable tube can be used.
  • the external circuit 111 and the power source 112 may be configured to apply a specific AC wave to the electrodes 102 and 104 and the coil 106.
  • a component constituted by a discrete, IC, or the like can be used.
  • the external circuit is designed to apply an alternating magnetic field and an alternating electric field synchronized with the alternating magnetic field to the inside of the pipe through which water passes.
  • the water contains a solution containing water in a part such as oil, for example, in addition to water containing impurities and water in which a solute is dissolved.
  • the electromagnetic field processing of the present invention may have a configuration other than the electromagnetic field processing apparatus 100 of FIG. Specifically, a configuration in which an alternating magnetic field is applied to water and an alternating electric field can be applied to the alternating magnetic field is exemplified. It is preferable that at least a part of the alternating magnetic field and the alternating electric field are orthogonal to each other so that the effect of the electromagnetic field treatment is improved.
  • Such an electromagnetic field processing method includes a step of applying an alternating magnetic field to water and applying an alternating electric field synchronized with the alternating magnetic field to water, the alternating current wave of the alternating current is a rectangular wave, and the rising time of the alternating magnetic field
  • the AC voltage at the AC magnetic field is at a high level and the AC voltage at the fall time of the AC magnetic field is at a low level, or the AC voltage at the rise time of the AC magnetic field is at a low level and the AC voltage at the fall time of the AC magnetic field is It is characterized by being at a high level.
  • Such an electromagnetic field processing apparatus includes a magnetic field application unit that applies an alternating magnetic field to water and an electric field application unit that applies an alternating electric field synchronized with the alternating magnetic field to water, and the alternating current wave of the alternating current is a rectangular wave.
  • the AC voltage at the rise time of the AC magnetic field is high level and the AC voltage at the fall time of the AC magnetic field is low level, or the AC voltage at the rise time of the AC magnetic field is low level and the AC magnetic field rises
  • the AC voltage during the fall time is high level.
  • the main magnetic flux is preferred as the AC magnetic field for water electromagnetic field treatment, but when performing electromagnetic field treatment on water contained in a metal container, the main magnetic flux applied from outside the container reaches the water contained in the container.
  • an alternating magnetic field may be applied by a leakage magnetic flux generated by an eddy current induced by passing a current through the coil. Since the magnetic field of the leakage magnetic flux is weaker than the magnetic field of the main magnetic flux, it is preferable to continuously perform electromagnetic field processing.
  • the second electromagnetic field processing device 200 shown in the conceptual diagram of FIG. 2 will be described.
  • the difference from the first electromagnetic field processing apparatus is that the positive electrode 202 and the negative electrode 204 use conductive adhesive tape, and the coil 206 uses a conductor coated with an insulating material. The material is omitted, and the coil is wound around the negative electrode.
  • an electromagnetic field processing apparatus having an equivalent circuit configuration is included in the electromagnetic field processing apparatus of the present embodiment.
  • an alternating voltage is applied to the electrodes 102 and 104 and an alternating current is passed through the coil 106.
  • An alternating magnetic field is generated by passing a current through the coil 106.
  • An AC voltage and an AC magnetic field satisfying all the conditions described below can stably change the solvent characteristics of water.
  • the AC wave of the AC current flowing through the coil is a rectangular wave,
  • the AC voltage at the rise time of the AC magnetic field is high level and the AC voltage at the fall time of the AC magnetic field is low level, or the AC voltage at the rise time of the AC magnetic field is low level and the AC magnetic field
  • the AC voltage at the fall time is high.
  • this spike-like voltage is about 0.01 to 0.1 V per coil winding, and the influence on the cluster is small, it is difficult to stably obtain the effect of the electromagnetic field treatment. Therefore, the inventors have found that an electromagnetic field treatment effect can be stably obtained by applying an electric field that compensates for this spike-like potential to water.
  • FIG. 4A An example of a waveform that satisfies the above two conditions is shown in FIG.
  • the coil 106 has a waveform of the magnetic flux density B when a current is passed.
  • the AC magnetic field and the AC voltage (AC electric field) have the same frequency
  • both waves are rectangular waves
  • the phases of both waves are shifted by 90 °
  • the duty ratio of the AC electric field is one third of the AC magnetic field. It is.
  • the AC voltage (AC electric field) has a frequency three times that of the AC magnetic field, both waves are rectangular waves, and the phases of both waves are shifted by 90 °.
  • the AC magnetic field and the AC voltage (AC electric field) have the same frequency, both waves are rectangular waves, the phases of both waves are shifted by 90 °, and the minimum voltage of the AC voltage (AC electric field) is 0V.
  • the AC magnetic field and the AC voltage (AC electric field) have the same frequency
  • both waves are rectangular waves
  • the phases of both waves are shifted by 90 °
  • the minimum value of the AC magnetic field (AC current) is 0G.
  • the AC magnetic field and the AC voltage (AC electric field) have the same frequency, the AC magnetic field is a rectangular wave, the AC voltage (AC electric field) is a sine wave, and the phases of both waves are shifted by 90 °.
  • the frequency of the alternating current (alternating magnetic field) and the alternating voltage may be different.
  • the induced electromotive force generated by the speed of change in the magnetic field of water affects the generation of electromagnetic water.
  • a rectangular wave is used as an alternating current wave of alternating current.
  • a voltage is applied from the outside for the purpose of compensating for this induced electromotive force.
  • a rectangular wave, a sine wave, or the like is used as the AC wave of the AC voltage.
  • the alternating current and the alternating voltage are rectangular waves, the duty ratio of each rectangular wave is not particularly limited.
  • the rise time and fall time mean the time during which the AC wave signal reaches 10% to 90% of the high level and the low level, respectively.
  • the frequency of the alternating current (alternating magnetic field) and the alternating voltage in this embodiment may be the same or different. However, the alternating magnetic field and the alternating current need to be synchronized with each other. When the frequency of the alternating current (alternating magnetic field) and the alternating voltage is the same, it is only necessary that the phase of each alternating wave is shifted and the above condition is satisfied. Examples of alternating current (alternating magnetic field) and alternating voltage frequency (different frequencies) that satisfy the above conditions include alternating current (alternating magnetic field) that is an odd multiple of the alternating voltage frequency and the same duty ratio for both frequencies. It is done.
  • the frequency of the alternating current (alternating magnetic field) and the alternating voltage of the present embodiment is, for example, 50 Hz to 1 MHz.
  • the frequency described in Japanese Patent Application Laid-Open No. 2008-006433 such as 4.725 kHz is preferable.
  • the solvent characteristics of water can be improved even at frequencies other than those described in Japanese Patent Laid-Open No. 2008-006433.
  • suitable frequencies described in Japanese Patent Application Laid-Open No. 2008-006433 are 151.5 Hz, 205.0 Hz, 222.5 Hz, 301.0 Hz, 345.0 Hz, 466.0 Hz, 484 Hz, 655 Hz, 954 Hz, 1. 29 kHz, 3.5 kHz, 4.73 kHz, 7.0 kHz, 9.47 kHz, 20.0 kHz, 27.0 kHz, 37.3 kHz, 50.4 kHz, 80.0 kHz, 108.0 kHz and the frequencies in the vicinity thereof.
  • 74.75 Hz which is about half of 151.5 Hz, and 102.5 Hz, which is half of 205.0 Hz, have been found to be preferable frequencies.
  • the frequency of the AC wave is a frequency within an error range of ⁇ 5% from these frequencies, more preferably within an error range of 2%, and more preferably within an error range of 1.5%.
  • the frequency of the AC group of the AC voltage is determined by the frequency of the AC current (AC magnetic field) and the above conditions. Therefore, the frequency of the alternating voltage is an odd multiple of the frequency of the alternating current of the above-mentioned frequencies. If there is a difference between the frequency of the AC voltage and the AC current, the AC magnetic field and the AC electric field are not synchronized with each other due to the frequency shift, which is not preferable. Therefore, the frequency of the alternating voltage is preferably an odd multiple of the same frequency as the alternating current frequency as much as possible.
  • the external circuit or the like of the embodiment may be configured to detect that the AC magnetic field and the AC electric field are out of synchronization and reset the operation to resynchronize.
  • a preferable method for measuring the frequency may be determined appropriately in accordance with the implementation conditions by performing measurement while shifting the frequency in the electromagnetic field processing of the present embodiment.
  • the frequency is 15 kHz or more so as to be compatible with various cooking appliances. Since the upper limit of the frequency depends on the frequency of the electromagnetic cooker itself, for example, 200 kHz or less or 100 kHz or less can be mentioned.
  • the peak current of the alternating current of the present embodiment can be, for example, several mA to several A can be passed through the coil.
  • the circuit waveform becomes distorted due to the limitations of the elements of the AC current generation circuit.
  • the induced voltage generated corresponding to the rate of change of the magnetic field decreases, so the amount of change in the solvent properties due to electromagnetic field treatment tends to be small. Absent.
  • the current value varies depending on the frequency of the coil and the current.
  • the solvent characteristics of water can be improved even with a magnetic flux density other than that described in JP-A-2008-006433.
  • Table 1 shows the frequencies described in Japanese Patent Laid-Open No. 2008-006433 and values of suitable AC magnetic flux density. And the current value for generating the magnetic field of the magnetic flux density in a table
  • the current value of the AC wave has a frequency within an error range of ⁇ 5% from these current values, more preferably within an error range of 2%, and more preferably within an error range of 1.5%.
  • a preferable method for measuring the frequency is to measure the current value while shifting the current value in the electromagnetic field processing of the present embodiment, and to determine it appropriately according to the implementation conditions.
  • AC voltage / AC field an AC voltage that satisfies the condition that the AC voltage at the rising time of the AC magnetic field is at a high level and the AC voltage at the falling time of the AC magnetic field is at a low level is used.
  • the peak voltage of the AC voltage in this embodiment is preferably larger than 50 mV. More preferably, it is 150 mV, and more preferably 1000 mV or more. If this voltage is 50 mV or less, the treatment is equivalent to the pulse-like induced voltage in the electromagnetic field treatment by only passing an alternating current through the coil, and the influence on the solvent characteristics of water is very small.
  • the electromagnetic field treatment can be efficiently performed by increasing the voltage of the AC voltage.
  • Water for performing the electromagnetic field treatment of the present embodiment is not particularly limited, such as tap water and mineral water. If water is liquid, temperature will not be specifically limited, either.
  • the electromagnetic field treatment of this embodiment can be installed at any location, such as near the main tap of a water pipe or near a faucet.
  • the change in the solvent property of water was measured using the solvent property evaluation apparatus 300 in FIG.
  • the inside of the experimental tank 310 is divided into three storage chambers 312, 313, and 314 by partition plates 311A and B.
  • the storage chamber 312 and the storage chamber 313 are connected by a 7 mm water passage hole 319.
  • tap water having a pH value of about 7 through an ion exchange resin and having a room temperature (about 20 ° C.) is used, and this ion exchange water is in the middle of a pipe 101 (201) through which water passes.
  • the storage chambers 312, 313, and 314 are circulated in this order by a provided pump 315.
  • the electromagnetic field processing apparatus 100 (200) is connected to the downstream side of the pump 315.
  • hardly soluble calcium phosphate or magnesium phosphate 316 is placed in powder form at the bottom of the storage chamber 312, and a water collection pipe 317 communicates with the storage chamber 314 via a valve 318.
  • the water that has been processed by the electromagnetic field processing apparatus 100 (200) and has flowed into the storage chamber 312 is stored in the storage chamber 312.
  • Calcium phosphate or magnesium phosphate powder is disposed in the storage chamber 312, is gradually dissolved by the water stored in the storage chamber 312, and flows into the storage chamber 313 through the water passage hole 319.
  • the water that has flowed into the storage chamber 314 passes through the electromagnetic field treatment apparatus 100 (200) by the pump 315 and flows again into the storage chamber 312.
  • the evaluation is performed using the solvent characteristic evaluation apparatus 300.
  • the evaluation apparatus is not particularly limited as long as the influence on water by the electromagnetic field treatment can be measured.
  • Example 1 the solvent property evaluation apparatus 300 in FIG. 5 was implemented using an electromagnetic field processing apparatus having the same form as in FIG.
  • a conductive copper foil adhesive tape 102 having a width of 24 mm, a length of 90 mm, and a thickness of 0.09 mm is disposed along a length direction of the PVC pipe 101 on a PVC pipe 101 having an outer diameter of 17 mm and an inner diameter of 15 mm, and the conductive copper foil is bonded.
  • the vinyl tape 103 is wound so that the tape 102 is at least covered, and the conductive copper foil adhesive tape 102 is fixed and insulated.
  • a conductive copper foil adhesive tape 104 having a length of 100 mm and a thickness of 0.09 mm is provided so that the conductive copper foil adhesive tape 102 is covered at least on the surface of the vinyl chloride tube 101 around which the vinyl tape 103 is wound.
  • a VSF wire core wire: stranded wire, 3 mm
  • a VSF wire having a thickness of 4.2 mm is wound around the PVC pipe 101 around which the conductive copper foil adhesive tape 104 is wound to form a coil 106. Wrap the VSF line so that there is no gap. After winding the coil, the coil was fixed with vinyl tape. And the coil was connected to the alternating current circuit and the electrode was connected to the alternating voltage circuit.
  • the frequency of the alternating voltage and the alternating magnetic field was the same, and a pulse generating circuit whose phase was shifted by 90 ° as shown in FIG.
  • An AC current of 1592.5 mA (63.7 mA ⁇ 25) was passed through the coil from 4.5 kHz to 5.0 kHz, and an AC voltage of ⁇ 5 V having the same frequency as the AC current was applied to the electrode.
  • the circuit was adjusted so that the rise and fall times of the rectangular wave of the AC magnetic field were 0.1 ⁇ sec or less.
  • tap water at 20 ° C. was passed through an electromagnetic field treatment device at a flow rate of 3 m / sec and a flow rate of 24 l / min. After the electromagnetic field treatment, the solubility of calcium phosphate was measured.
  • Example 1 is the same as Example 1 except that the AC electric field is not applied using the electromagnetic field treatment apparatus of Example 1.
  • Example 1 As a result of Reference Example 1, the solubility of magnesium phosphate was 0.027 mmol / l.
  • the results of Example 1 and Comparative Example 1 are shown in the graph of FIG.
  • Example 2 The frequency is fixed at 102 kHz, the alternating current is changed from 4.7 to 5.8 mA, and the solubility of calcium phosphate (A), the solubility of magnesium phosphate (B), and the amount of change in pH of electromagnetically treated water (C) are measured. Except for the above, this is the same as Example 1.
  • Example 2 The result of Example 2 is shown in the graph of FIG. From the graph of FIG. 7, even if it was other than specific magnetic flux density, the effect concerning the solvent characteristic of water by applying an alternating electric field and an alternating magnetic field was confirmed. Although omitted as examples, the same tendency of pH change and improvement in solvent characteristics was confirmed even in other alternating current value bands. ⁇ pH is a negative value (the same applies to the following examples and comparative examples).
  • Example 3 This is an example for the purpose of confirming how the solvent characteristics change as the energy of water increases by electromagnetic field treatment.
  • the frequency is fixed at 3.492 kHz, and the alternating current is 230 mA or 1.16 A so that the magnetic flux density of the coil is 653.0 mG (130.6 ⁇ 5) or 3265 mG (130.6 ⁇ 25).
  • Example 3 is the same as Example 3 except that no AC electric field is applied.
  • Example 4 This is an example for the purpose of confirming how the solvent characteristics change as the energy of water increases by electromagnetic field treatment.
  • the frequency of the alternating magnetic field of the coil is 3.492 kHz or 4.725 kHz, and electromagnetic treatment is performed with the rectangular waves of FIGS. 4A and 4B.
  • the magnetic flux density of the coil is 653 mG when the frequency is 3.492 kHz. Thus, it is 941 mG at 4.725 kHz, and is the same as Example 1 except that the change in pH and the solubility of calcium phosphate were measured.
  • Example 4-1 has the waveform of FIG. 4A
  • Example 4-2 has the waveform of FIG. 4B.
  • Comparative Example 3 Except that the rectangular wave of FIGS. 8A to 8C or the alternating electric field of FIG. 4A is not applied and the electromagnetic treatment is performed only with the alternating magnetic field (B-1), it is the same as the fourth embodiment. .
  • Comparative Example 3-1 has only an alternating magnetic field
  • Comparative Example 3-2 has the waveform of FIG. 8A
  • Comparative Example 3-3 has the waveform of FIG. 8B
  • Comparative Example 3-4 has the waveform of FIG. C) is a waveform. 8 does not satisfy the condition that the alternating voltage at the rising time of the alternating magnetic field is at a high level and the alternating voltage at the falling time of the alternating magnetic field is at a low level.
  • Example 4 The results of Example 4 and Comparative Example 3 are shown in Table 4 (AC magnetic field frequency 3.492 kHz) and Table 5 (AC magnetic field frequency 4.725 kHz).
  • Example 5 (Comparative Example 4) Except what was implemented on the conditions of Table 6, on the implementation conditions similar to Example 1, the solubility of calcium phosphate, the solubility of magnesium phosphate, and the pH variation of electromagnetic field treated water were measured.
  • Example 6 An alternating current of 100 mA was passed through the coil from 97 Hz to 108 Hz, and an electromagnetic field treatment was performed on water in the same manner as in Example 1. The solubility of calcium phosphate (A) and the amount of change in pH of the electromagnetic field treated water (B) were measured.
  • Example 6 is the same as Example 6 except that the AC electric field was not applied and the solubility (C) of calcium phosphate was measured.
  • Example 6 and Comparative Example 5 are shown in the graph of FIG.
  • the amount of change in solubility was smaller than in the treatment of Example.
  • the water processed in the comparative example 5 lose
  • Examples 7 and 8, Comparative Examples 6 and 7 2 g linseed oil was added to 100 ml of water subjected to electromagnetic field treatment under the conditions shown in Table 8 to tap water having a water temperature of 29 ° C., and boiled for 1 hour and 40 minutes. After boiling, the oil was recovered by dehydration. The recovered oil was dissolved in a solvent of ethanol and diethyl ether and titrated with a potassium hydroxide standard solution to measure the acid value of the treated oil. The measurement results of the acid value are shown in FIGS. In addition, the winding thickness of the coil used the VSF wire of 2.2 mm, and the winding number was 454 times per meter. The acid value of the linseed oil before heating used in the examples was 0.07, and the acid value after heat treatment was 0.45.
  • the acid value of the example was lower at any frequency than the acid value of the comparative example.
  • the electromagnetic field treatment rather than only the magnetic field treatment suppresses oil oxidation due to heating.
  • the effect of a magnetic field process or an electromagnetic field process will decrease, and it will approach the value of control. This is expected to be applied to electromagnetic cooking utensils, etc., so that an electromagnetic field treatment is performed on the oil itself containing a small amount of water, thereby suppressing the oxidation of the oil and extending the oil exchange cycle.
  • Example 9 (Examples 9 and 10, Comparative Example 8.9) Sodium hexadecyl sulfate was dissolved in ion-exchanged water having a water temperature of 29 ° C. and subjected to electromagnetic field treatment under the conditions shown in Table 9 so as to be 1.2 ⁇ 10 ⁇ 4 mol / l.
  • the surface tension was measured by measuring the height of the capillary rising with a 1.2 mm capillary.
  • the winding thickness of the coil used the VSF wire of 2.2 mm, and the winding number was 454 times per meter. Water rises 22 mm for a 1.2 mm inner diameter capillary, which corresponds to 72.5 dyn / cm.
  • FIGS. The results of measuring the surface tension of water subjected to electromagnetic field treatment or magnetic field treatment based on the surface tension of water are shown in FIGS.
  • the surface tension when sodium hexadecyl sulfate of the same concentration was dissolved in water that was not electromagnetically treated was 57.5 dyn / cm (control).
  • the surface tension of the example was lower than that of the comparative example at any frequency.
  • the decrease in surface tension was remarkable at a particularly favorable frequency by performing the electromagnetic field treatment rather than the magnetic field treatment alone.
  • the effect of a magnetic field process or an electromagnetic field process will decrease, and it will approach the value of control.
  • a slight decrease in surface tension due to electromagnetic field treatment was confirmed by adding a small amount of surfactant.
  • Electromagnetic field processing apparatus 101 ... Pipe

Abstract

【課題】 水の溶媒特性を安定的に改善することを目的とする。 【解決手段】 実施形態の電磁場処理装置は水を通す管101に配置された装置であり、管表面に備えられた正電極102と、さらに、少なくとも正電極を覆う第1の絶縁材103と、塩ビ管101又は第1の絶縁材103表面に備えられた負電極104と、少なくとも負電極104に巻き付けられたコイル106と、外部回路111とを少なくとも備えている。

Description

水の電磁場処理方法および電磁場処理装置
 水の電磁場処理にかかる。
 水に電磁場処理を行い、水の機能改善を狙うことが知られている(特許文献1等)。特許文献1には、水道管にコイルを巻いて特定周波数の電流をコイルに流すことで、誘導電磁場を水に印加することなどが記載されている。
 しかしながら、誘導電磁場を水に印加するだけでは、水の温度等によって、電磁場処理効果が少ない場合も多く、電磁気処理効果の安定性に欠けるという欠点がある。
特開2008-290053号公報
 水の溶媒特性を安定的に改善することを目的とする。
 水の電磁場処理方法において、
 コイルに交流電流を流して発生させた交流磁場を水に印加し、電極に前記交流磁場に同期する交流電圧を印加して発生させた交流電場を水に印加する工程を備え、
 前記交流電流の交流波が矩形波であり、
 交流磁場の立ち上がり時間における交流電圧はハイレベルであり且つ交流磁場の立ち下がり時間における交流電圧はローレベルである、又は、交流磁場の立ち上がり時間における交流電圧はローレベルであり且つ交流磁場の立ち下がり時間における交流電圧はハイレベルであることを特徴とする水の電磁場処理方法である。
 水の溶媒特性を改善することができる。
実施形態の電磁場処理装置の一例である。 実施形態の電磁場処理装置の一例である。 実施形態の交流磁場と交流磁場によって発生する誘導起電力を示す波形である。 実施形態の交流磁場、交流電圧(電場)の波形の例である。 溶媒特性評価装置の一例である。 実施例1,比較例1の結果を示すグラフである。 実施例2、参考例1の結果を示すグラフである。 比較例の交流磁場、交流電場の波形の例である。 実施例6と比較例5の結果を示すグラフである。 実施例7と比較例6の結果を示すグラフである。 実施例8と比較例7の結果を示すグラフである。 実施例9と比較例8の結果を示すグラフである。 実施例10と比較例9の結果を示すグラフである。
実施の形態1
(電磁場処理)
 本実施形態において、図1の概念図に示した第1の電磁場処理装置100を用いて、水に電磁場処理することについて説明する。
 第1の電磁場処理装置は、水を通す管101と、水を通す管表面101に正電極102を備え、さらに、少なくとも正電極を覆う第1の絶縁材103と、水を通す管101又は第1の絶縁材103表面に備えられた負電極104と、少なくとも負電極104を覆う第2の絶縁材105と、第2の絶縁材105が巻き付けられた管に巻き付けられたコイル106に接続された回路111と、正電極102及び負電極104とコイル106に接続された回路112と、を少なくとも備えている。
 回路111と112は一つの基板上に構成された回路でも、別の基板に構成された回路のどちらでも構わない。また、回路111,112は電源内蔵型、外部電源型のどちらでも構わない。
 水を通す管101は、例えば、塩化ビニルの管(塩ビ管)、ポリエチレン管、FRP管などの誘電体を材料とするものを用いることができる。
 正電極102と負電極104は、導電材料或いは電極材料として一般的に用いられている材料であればよい。
 コイル106は、コイルの材料として一般的に用いられている材料であればよい。
 第1、第2の絶縁材は、それぞれ電極を覆う絶縁物であればよい。絶縁材は、絶縁テープ、熱収縮チューブなど絶縁材料として一般的に用いられている物を用いることができる。
 外部回路111と電源112は、電極102,104とコイル106に特定の交流波を印加する構成であればよい。外部回路はディスクリート、ICなどによって構成された物を用いることができる。
 なお、外部回路は、水を通す管の内部に交流磁場と、交流磁場に同期する交流電場を印加するように設計されている。
 なお、水には、不純物を含む水や溶質を溶かした水の他に、例えば油のような一部に水を含む溶液が含まれる。
 本発明の電磁場処理は図1の電磁場処理装置100以外の構成であってもよい。具体的には、水に対して交流磁場を印加し、交流磁場に対して交流電場を印加することが可能な構成が挙げられる。交流磁場と交流電場の少なくとも一部が直交することで、電磁場処理による効果が向上することが好ましい。
 このような電磁場処理方法は、交流磁場を水に印加し、前記交流磁場に同期する交流電場を水に印加する工程を備え、前記交流電流の交流波が矩形波であり、交流磁場の立ち上がり時間における交流電圧はハイレベルであり且つ交流磁場の立ち下がり時間における交流電圧はローレベルである、又は、交流磁場の立ち上がり時間における交流電圧はローレベルであり且つ交流磁場の立ち下がり時間における交流電圧はハイレベルであることを特徴とする。
 このような電磁場処理装置は、交流磁場を水に印加する磁場印加部と、前記交流磁場に同期する交流電場を水に印加する電場印加部を備え、前記交流電流の交流波が矩形波であり、交流磁場の立ち上がり時間における交流電圧はハイレベルであり且つ交流磁場の立ち下がり時間における交流電圧はローレベルである、又は、交流磁場の立ち上がり時間における交流電圧はローレベルであり且つ交流磁場の立ち下がり時間における交流電圧はハイレベルであることを特徴とする。
 水の電磁場処理の交流磁場は主磁束が好ましいが、金属製の容器に含まれる水に対して電磁場処理を行う際に、容器外から印加する磁場の主磁束は容器内に含まれる水に到達しないが、コイルに電流を流すことによって誘導される渦電流によって生じる漏れ磁束によって交流磁場を印加してもよい。漏れ磁束の磁場は主磁束の磁場と比べて弱いため、継続的に電磁場処理を行うことが好ましい。
 次に、図2の概念図に示した第2の電磁場処理装置200について説明する。第1の電磁場処理装置との違いは、正電極202と負電極204は導電性接着テープを用いており、コイル206には絶縁材で皮膜された導体を使用しているため、第2の絶縁材を省略し、負電極にコイルが巻きつけられたことである。
 第2の電磁場処理装置の他にも、同等の回路構成となる形態の電磁場処理装置が本実施の形態の電磁場処理装置に含まれる。
 次に特定の交流パルスについて説明する。
 本実施形態において、電極102,104に交流電圧を印加し、コイル106に交流電流を流す。コイル106に電流を流すことによって交流磁場を発生させる。そして、交流電圧と交流磁場は以下に説明する条件を全て満たすものが、水の溶媒特性を安定的に変えることが可能である。
 コイルに流す交流電流の交流波は矩形波であること、
 交流磁場の立ち上がり時間における交流電圧はハイレベルであり且つ交流磁場の立ち下がり時間における交流電圧はローレベルであることである、又は、交流磁場の立ち上がり時間における交流電圧はローレベルであり且つ交流磁場の立ち下がり時間における交流電圧はハイレベルである。
 交流磁場と交流電圧の波形のハイレベルとローレベルがなぜ上記の関係を満たす必要があるかについて図3の交流磁場と交流磁場によって発生する誘導起電力を示す波形を基に説明する。破線は、仮想線である。コイルに交流電流を流して図3上部の磁場を発生させると、誘導起電力により、図3下部のスパイク状の電位がコイルの円周方向に発生する。このスパイク状の電位が発生する時間は、コイルに流す電流の立ち上がり時間に依存する。このスパイク状の電圧は管内部等の電磁場処理対象の水の中にも発生する。このスパイク状の電位によって、水のクラスターに影響を及ぼすものと発明者は考えている。しかし、このスパイク状の電圧はコイル1巻きあたり約0.01~0.1Vであるため、クラスターへの影響が小さいため安定的に電磁場処理の効果を得ることは難しい。そこで、このスパイク状の電位を補うような電場を水に印加することで、安定的に電磁場処理の効果が得られることを発明者は見いだした。
 上記、二つの条件を満たす、波形の例を図4に示す。なお、コイル106側は電流を流した際の、磁束密度Bの波形である。
 図4(A)は、交流磁場と交流電圧(交流電場)は同じ周波数で、両波は矩形波で、両波の位相は90°ずれている。
 図4(B)は、交流磁場と交流電圧(交流電場)は同じ周波数で、両波は矩形波で、両波の位相は90°ずれ、交流電場のデューティー比が交流磁場の3分の1である。
 図4(C)は、交流電圧(交流電場)は交流磁場の3倍の周波数で、両波は矩形波で、両波の位相は90°ずれている。
 図4(D)は、交流磁場と交流電圧(交流電場)は同じ周波数で、両波は矩形波で、両波の位相は90°ずれ、交流電圧(交流電場)の最小電圧は0Vである。
 図4(E)は、交流磁場と交流電圧(交流電場)は同じ周波数で、両波は矩形波で、両波の位相は90°ずれ、交流磁場(交流電流)の最小値は0Gである。
 図4(F)は、交流磁場と交流電圧(交流電場)は同じ周波数で、交流磁場は矩形波で、交流電圧(交流電場)は正弦波で、両波の位相は90°ずれている。
 また、交流電流(交流磁場)と交流電圧の周波数は異なっていても良い。コイルに電流を流した際に、水の磁場の変化のスピードによって発生する誘導起電力が電磁気水の生成に影響を及ぼす。この誘導起電力は大きい方が電磁気水の生成に好ましいため、交流電流の交流波には矩形波を用いる。この誘導起電力を補う目的で外部から電圧を印加する。交流電圧の交流波は矩形波や正弦波などを用いる。交流電流と交流電圧が矩形波の場合は、それぞれの矩形波のデューティー比は特に限定されない。なお、立ち上がり及び立ち下がり時間は、交流波信号がハイレベル及びローレベルのそれぞれの10%から90%に至る間の時間を意味する。
(交流電流・交流磁場)
 本実施形態の交流電流(交流磁場)と交流電圧の周波数は同じであってもよいし、異なっていてもよい。ただし、交流磁場と交流電流は互いに同期することを要する。交流電流(交流磁場)と交流電圧の周波数が同じである場合は、それぞれの交流波の位相がずれて、上記条件を満たしていればよい。上記条件を満たす交流電流(交流磁場)と交流電圧の周波数の例(異なる周波数)として、交流電流(交流磁場)が交流電圧の周波数の奇数倍で、両周波数のデューディー比が同じものが挙げられる。
 本実施形態の交流電流(交流磁場)と交流電圧の周波数は例えば、50Hz以上1MHz以下が挙げられる。その中でも、例えば4.725kHzなどの特開2008-006433号公報に記載された周波数が好ましい。ただし、本実施形態の電磁場処理では、特開平2008-006433号公報に記載された以外の周波数であっても、水の溶媒特性を向上させることができる。
 なお、特開2008-006433号公報に記載された好適な周波数は、151.5Hz,205.0Hz,222.5Hz,301.0Hz,345.0Hz,466.0Hz,484Hz,655Hz,954Hz,1.29kHz、3.5kHz、4.73kHz、7.0kHz、9.47kHz、20.0kHz、27.0kHz、37.3kHz、50.4kHz、80.0kHz、108.0kHzとその近傍の周波数である。これ以外にも、151.5Hzの約半分の74.75Hzや、205.0Hzの半分の102.5Hzも好ましい周波数であることが分かっている。電磁場処理において交流波の周波数は、これらの周波数から±5%の誤差範囲内、より好ましくは2%の誤差範囲内、より好ましくは1.5%の誤差範囲内の周波数である。
 交流電圧(交流電場)の交流派の周波数は、交流電流(交流磁場)の周波数と上述の条件によって定められる。従って、交流電圧の周波数は、上記に挙げた周波数の交流電流の周波数の奇数倍である。交流電圧と交流電流の周波数のズレがあると、次第に周波数のずれによって交流磁場と交流電場が同期しなくなることで電磁場処理の効果が低下するため好ましくない。そこで、交流電圧の周波数は、可能な限り交流電流の周波数と同一の周波数の奇数倍であることが好ましい。なお、実施形態の外部回路等に、交流磁場と交流電場が同期しなくなったことを検知し、動作をリセットするなどして再同期する構成が備えられていてもよい。
 本実施形態の電磁場処理による効果は周波数によっても異なるが、±5%範囲内でその顕著な効果を確認することができる。上記以外で、好ましい周波数の測定方法は本実施形態の電磁場処理において、周波数をずらしながら測定し、実施条件に応じて、適宜決定すればよい。
 また、電磁場処理を電磁調理器具において行う場合は、種々の調理器具に対応可能なように、上記周波数の内、15kHz以上であることが好ましい。周波数の上限は、電磁調理器具そのものの周波数に依存するため、例えば200kHz以下や100kHz以下が挙げられる。
 本実施形態の交流電流のピーク電流は、例えば、数mAから数Aまでのものをコイルに流すことができる。但し、大電流を流すと交流電流発生回路の素子の制約から、回路の波形がなまる。波形がなまると磁場の変化率に対応して発生する誘起電圧が減少するので電磁場処理による溶媒特性の変化量が小さくなる傾向があるため、必ずしも電流が多ければ多いほど好適な条件というわけではない。
 特開2008-006433号公報に記載された様に、周波数に対して好ましい磁界密度がある。周波数が4.73kHzの場合は、特開2008-006433号公報に記載された様に188.2mG磁界が発生するように電流を流すことが好ましい。好ましい磁界密度を得るための、電流値はコイルと電流の周波数によって異なる。本実施形態では、特開2008-006433号公報に記載された以外の磁束密度であっても、水の溶媒特性を向上させることができる。
 特開2008-006433号公報に記載された周波数と好適な交流磁束密度の値を下記表1に示す。そして、表中の磁束密度の磁場を発生させるための電流値を併せて記載する。なお、電流値は下記式1から計算し、コイルの巻き数は1mあたり454回(コイル配線材の径2.2mm)、222回(コイル配線材の径4.2mm)とした。
B=4π×10-7×N×I (Wb/m)  …(式1)
(Nは1mあたりのコイルの巻き数)
 電磁場処理において交流波の電流値は、これらの電流値から±5%の誤差範囲内、より好ましくは2%の誤差範囲内、より好ましくは1.5%の誤差範囲内の周波数である。本実施形態の電磁場処理による効果は周波数によっても異なるが、±5%範囲内でその顕著な効果を確認することができる。好ましい周波数の測定方法は本実施形態の電磁場処理において、電流値をずらしながら測定し、実施条件に応じて、適宜決定すればよい。
Figure JPOXMLDOC01-appb-T000001
(交流電圧・交流電場)
 交流磁場の立ち上がり時間における交流電圧はハイレベルであり、かつ、交流磁場の立ち下がり時間における交流電圧はローレベルである条件を満たすような交流電圧を本実施の形態では用いる。
 本実施形態の交流電圧のピーク電圧は50mVより大きいことが好ましい。より好ましくは150mVであり、さらに好ましくは1000mV以上である。この電圧が50mV以下であると、コイルに交流電流を流すのみによる電磁場処理におけるパルス状の誘起電圧と同等の処理となって、水の溶媒特性に与える影響が非常に少なくなる。
 水を通す管101、201の径が大きい場合は、交流電圧の電圧を大きくすることで、効率良く電磁場処理ができる。
(電磁場処理水)
 本実施形態の電磁場処理を行う水は、水道水、ミネラルウォーターなど特に限定されない。水は液体であれば、温度も特に限定されない。
 本実施形態の電磁場処理は、水道管の元栓付近、蛇口付近など、いずれの場所であっても設置することができる。
(溶媒特性の評価方法)
 水の溶媒特性の変化は図5の溶媒特性評価装置300を用いて測定した。
 この実験装置においては、実験槽310内が間仕切り板311A,Bにより3つの貯留室312,313,314に分けられている。貯留室312と貯留室313は7mmの通水孔319で繋がっている。ここで、被処理水としてはイオン交換樹脂を通したpH値が略7の室温(略20℃)の水道水が用いられ、このイオン交換水が、水を通す管101(201)の途中に設けられたポンプ315により上記貯留室312,313,314の順に循環するようになっている。ここで、ポンプ315の下流側に電磁場処理装置100(200)接続されている。また、貯留室312の底部に、難溶性のリン酸カルシウム又はリン酸マグネシウム316が粉体にして置かれ、貯留室314には採水管317がバルブ318を介して連通している。
 電磁場処理装置100(200)で処理され、貯留室312に流れてきた水は、貯留室312に貯まる。貯留室312にはリン酸カルシウム又はリン酸マグネシウムの粉体が配置されており、貯留室312に貯まった水によって徐々に溶解され、通水孔319を通って、貯留室313に流れる。貯留室313に流れた水が一定量貯まると、間仕切り板311Bの上から貯留室314に水が流れる。貯留室314に流れた水はポンプ315によって、電磁場処理装置100(200)を通り、再び貯留室312に流れる。
 なお、本実施の形態では溶媒特性評価装置300を用いて評価したが、電磁場処理による水への影響を測定できる構成であれば、評価装置は特に限定されない。
 電磁場処理による溶媒特性の変化は、3lの水を用いて、このような工程を2時間行った後に評価した。
 リン酸カルシウム又はリン酸マグネシウムの溶解度は、図5のバルブ318を開け、採水管317から水を100ml採水し、硝酸銀を用いた滴定によって、その溶解度を測定した。
 また、同じく2時間後に、電磁場処理装置100(200)の前後にpH測定器を設置し、電磁場処理装置100(200)の前後でのpHの差を測定した。
 水の溶媒特性を変える理由として以下の理論が考えられる。水は水分子が水素結合によってクラスターを形成して存在している。ここで、本実施形態の電磁場処理を行うことで、このクラスターに回転エネルギーを付与する。ここで、特別な条件の電磁場を付与しないと、クラスターに有効な回転エネルギーを付与することが難しいと考えている。エネルギーが多くなったクラスターは、その近傍の水分子を分子レベルで撹拌することでその水の温度よりも高温の水の様な溶媒特性を備えるため、汚れを落とす性質に優れた水になると考えている。
 以下、実施例により、発明を具体的に説明する。なお、通常の水に対するリン酸カルシウムの溶解度は0.027mmol/lであり、リン酸マグネシウムの溶解度は0.013mmol/lである。
(実施例1)
 実施例1では図2と同様の形態の電磁場処理装置を用いて図5の溶媒特性評価装置300で実施した。外形17mm、内径15mmの塩ビ管101に、幅24mm、長さ90mm、厚さ0.09mmの導電性銅箔接着テープ102を塩ビ管101の長さ方向に沿って配し、導電性銅箔接着テープ102が少なくとも覆われるように、ビニールテープ103を巻き付けて、導電性銅箔接着テープ102を固定し絶縁する。ビニールテープ103を巻き付けた塩ビ管101のビニールテープ103巻き付けた面に、導電性銅箔接着テープ102が少なくとも覆われるように、長さ100mm、厚さ0.09mmの導電性銅箔接着テープ104を巻き付ける。導電性銅箔接着テープ104を巻き付けた塩ビ管101に太さ4.2mmのVSF線(芯線:より線、3mm)を巻き付けてコイル106とする。VSF線は隙間が空かないように巻き付ける。コイルを巻き付けた後に、ビニールテープによってコイルを固定した。そして、コイルを交流電流回路に、電極を交流電圧回路に接続した。
 交流電圧と交流磁場の周波数は同じで、図4の(A)のような位相が90°ずれるパルス発生回路を用いた。コイルに4.5kHzから5.0kHzまで1592.5mA(63.7mA×25)の交流電流を流し、電極に交流電流と同じ周波数の±5Vの交流電圧を印加した。交流磁場の矩形波の立ち上がり及び立ち下がり時間は0.1μsec以下になるように回路を調整した。
 水は、20℃の水道水を用い、流速3m/sec、流量24l/minで、電磁場処理装置に通した。
 電磁場処理後、リン酸カルシウムの溶解度を測定した。
(比較例1)
 実施例1の電磁場処理装置を用いて、交流電場を印加しないこと以外は実施例1と同様である。
(参考例1)
 実施例1で用いた水道水に対して電磁場処理をせずに、水道水に対するリン酸カルシウムの溶解度を測定した。
 参考例1の結果は、リン酸マグネシウムの溶解度が0.027mmol/lであった。
 実施例1,比較例1の結果を図6のグラフに示す。
 図6のグラフから、特定の周波数以外であっても、交流電場による水の溶媒特性にかかる効果を確認した。
 実施例としては省略したが、他の周波数であっても、交流電場及び交流磁場を印加することによる効果を確認した。
(実施例2)
 周波数を102kHzに固定し、交流電流を4.7から5.8mAまで変化させ、リン酸カルシウムの溶解度(A)と、リン酸マグネシウムの溶解度(B)と電磁場処理水のpH変化量(C)を測定したこと以外は実施例1と同様である。
 実施例2の結果を図7のグラフに示す。
 図7のグラフから、特定の磁束密度以外であっても、交流電場及び交流磁場を印加することによる水の溶媒特性にかかる効果を確認した。
 実施例としては省略したが、他の交流電流値帯であっても、同様のpH変化及び溶媒特性向上の傾向を確認した。
 なお、ΔpHはいずれも負の値である(以下の実施例、比較例において同じ)。
(実施例3)
 電磁場処理により、水のエネルギーが増えることで、どのように溶媒特性が変化するか確認することを目的とする実施例である。
 周波数を3.492kHzに固定し、コイルの磁束密度が653.0mG(130.6×5)、又は、3265mG(130.6×25)になるように、交流電流を230mA、又は、1.16A流し、20℃~50℃の水に電磁場処理し、pHの変化とリン酸カルシウムの溶解度を測定したこと以外は実施例1と同様である。
(比較例2)
 交流電場を印加しないこと以外は実施例3と同様である。
 実施例3、比較例2の結果を表2、3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2、3の結果から、実施例の電磁場処理では高温の水に対してもpHの変化量が大きく、溶媒特性の向上の効果が高かった。一方、比較例の電磁場処理では温度が上がるにつれて、急激にリン酸カルシウムの溶解度が下がり、40℃以上では、未処理のリン酸カルシウムの溶解度と同じ値になった。
 実施例としては省略したが、他の交流電流値や他の周波数であっても、同様のpH変化及び溶媒特性向上の傾向を確認した。この変化の理由は、実施例の電磁場処理により水のエネルギーが高くなることにより、水分子の衝突回数が増えてH水素イオンの濃度が増えることや水に塩基性の化合物等が溶解する量が増えること等が考えられる。一方、磁場のみによる処理では、水のエネルギーの増加量が小さいため、pHの変化量が小さかった。
(実施例4)
 電磁場処理により、水のエネルギーが増えることで、どのように溶媒特性が変化するか確認することを目的とする実施例である。
 コイルの交流磁場の周波数は3.492kHz、又は4.725kHzであり、図4の(A)と(B)の矩形波で電磁気処理し、コイルの磁束密度は周波数が3.492kHzの時は653mGで、4.725kHzの時は941mGで、pHの変化とリン酸カルシウムの溶解度を測定したこと以外は実施例1と同様である。
 実施例4-1が図4(A)の波形で、実施例4-2が図4(B)の波形である。
(比較例3)
 図8の(A)から(C)の矩形波、又は図4の(A)の交流電場を印加せず交流磁場(B-1)のみで電磁気処理したこと以外は実施例4と同様である。
 比較例3-1が交流磁場のみで、比較例3-2が図8(A)の波形で、比較例3-3が図8(B)の波形で、比較例3-4が図8(C)の波形である。
 図8の波形の交流波の組み合わせは、いずれも、交流磁場の立ち上がり時間における交流電圧はハイレベルであり、かつ、交流磁場の立ち下がり時間における交流電圧はローレベルであるという条件を満たさない。
 実施例4,比較例3の結果を表4(交流磁場周波数3.492kHz)、表5(交流磁場周波数4.725kHz)に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表4,5の結果、上記二つの矩形波の条件を満たすもののみ、溶媒特性を向上する効果があった。この変化の理由は、実施例の電磁場処理により水のエネルギーが高くなることにより、水分子の衝突回数が増えて水素イオンHの濃度が増えることや水に塩基性の化合物等が溶解する量が増えること等が考えられる。一方、磁場のみによる処理では、水のエネルギーの増加量が小さいため、pHの変化量が小さかった。
(実施例5)(比較例4)
 表6の条件で実施したこと以外は実施例1と同様の実施条件で、リン酸カルシウムの溶解度とリン酸マグネシウムの溶解度と電磁場処理水のpH変化量を測定した。
Figure JPOXMLDOC01-appb-T000006
 実施例5,比較例4の結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7の結果から、交流電圧が50mV以下では電磁場処理による効果がほとんど無かった。
(実施例6)
 コイルに97Hzから108Hzまで100mAの交流電流を流して、実施例1と同様に水に電磁場処理を行い、リン酸カルシウムの溶解度(A)と電磁場処理水のpH変化量(B)を測定した。
(比較例5)
 交流電場を印加せず、リン酸カルシウムの溶解度(C)を測定したこと以外は実施例6と同様である。
 実施例6と比較例5の結果を図9のグラフに示す。
 比較例5の処理では実施例の処理に比べ、溶解度の変化量が小さかった。そして、比較例5において処理した水は、その水の温度を30度以上にすると、処理による効果が消失した。
 図9のグラフから、102Hz以外の周波数においても、交流磁場のみを印加する処理よりも、交流電場及び交流磁場を印加する処理の方が、水の溶媒特性にかかる効果が大きいことを確認した。
(実施例7、8、比較例6、7)
 水温29℃の水道水に、表8の条件で電磁場処理を施した水100mlに対して、2gのアマニ油を加え、1時間40分沸騰させた。沸騰処理後、脱水して油分を回収した。回収した油分をエタノール及びジエチルエーテルの溶媒に溶かし、水酸化カリウム標準溶液で滴定して処理した油の酸価値を測定した。酸価値の測定結果を図10、11に示す。なお、コイルの巻き線太さは2.2mmのVSF線を使用し、その巻き数は1mあたり454回とした。実施例において用いた加熱前のアマニ油の酸価値は0.07であり、加熱処理後の酸価値0.45であった。
Figure JPOXMLDOC01-appb-T000008
 実施例の酸価値は比較例の酸価値と比べていずれの周波数においても酸価値が低かった。つまり、磁場処理だけよりも、電磁場処理をすることで、加熱による油の酸化を抑えることがわかった。なお、良好な周波数からずれると、磁場処理や電磁場処理の効果が減少しコントロールの値に近づく。これは、電磁調理器具等に利用することで、微量に水を含む油そのものに電磁場処理を行い、油の酸化を抑え、油の交換サイクルを長くすることが期待される。
(実施例9,10、比較例8.9)
 水温29℃のイオン交換水に、表9の条件で電磁場処理を施した水に対して、ヘキサデシル硫酸ナトリウムを1.2×10-4mol/lになるように溶解し、1時間後内径が1.2mmの毛細管で毛細管を昇る高さを測定して表面張力を測定した。なお、コイルの巻き線太さは2.2mmのVSF線を使用し、その巻き数は1mあたり454回とした。水は1.2mm内径の毛細管であれば22mm昇り、これは72.5dyn/cmに相当する。水の表面張力を基準に電磁場処理又は磁場処理した水の表面張力を測定した結果を図12、13に示す。なお、電磁気処理していない水に同じ濃度のヘキサデシル硫酸ナトリウムを溶解した時の表面張力は57.5dyn/cmであった(コントロール)。
Figure JPOXMLDOC01-appb-T000009
 実施例の表面張力は比較例の表面張力と比べていずれの周波数においても表面張力が低かった。つまり、磁場処理だけよりも、電磁場処理をすることで、表面張力の低下が特に良好な周波数において顕著であった。なお、良好な周波数からずれると、磁場処理や電磁場処理の効果が減少しコントロールの値に近づく。界面活性剤をわずかに加えるだけで、電磁場処理による大幅な表面張力の低下が確認された。
 これは水溶媒の水素結合力が実施形態の電磁場処理によって低下することを示す。水素結合力の低下は、炭酸カルシウムや炭酸マグネシウムなどが水分子と結合して固形物となる時の水和固形物の強度に影響すると考えられる。
  100…電磁場処理装置
  101…水を通す管、塩ビ管
  102…正電極
  103…第1の絶縁材
  104…負電極
  105…第2の絶縁材
  106…コイル
  111…回路
  112…回路
  200…電磁場処理装置
  201…水を通す管、塩ビ管
  202…正電極
  203…第1の絶縁材
  204…負電極
  206…コイル
  211…回路
  212…回路
  310…実験槽
  311A,B…間仕切り板
  312…貯留室
  313…貯留室
  314…貯留室
  315…ポンプ
  316…リン酸カルシウム又はリン酸マグネシウム
  317…採水管
  318…バルブ
  319…通水孔
 

Claims (13)

  1.  水の電磁場処理方法において、
     コイルに交流電流を流して発生させた交流磁場を水に印加し、電極に前記交流磁場に同期する交流電圧を印加して発生させた交流電場を水に印加する工程を備え、
     前記交流電流の交流波が矩形波であり、
     前記交流磁場の交流波の立ち上がり時間における前記交流電圧はハイレベルであり且つ前記交流磁場の交流波の立ち下がり時間における前記交流電圧はローレベルである、又は、交流磁場の立ち上がり時間における交流電圧はローレベルであり且つ交流磁場の立ち下がり時間における交流電圧はハイレベルであることを特徴とする水の電磁場処理方法。
  2.  水を通す管と、
     前記管表面に備えられた正電極と、
     少なくとも前記正電極を覆う第1の絶縁材と、
     前記管又は前記第1の絶縁材表面に備えられた負電極と、
     少なくとも前記負電極に巻き付けられたコイルと、
     前記正電極及び前記負電極と、前記コイルに接続された外部回路とを少なくとも備え、
     前記外部回路は前記管の内部に、交流磁場と、前記交流磁場に同期する交流電場を印加するように設計されていることを特徴とする水の電磁場処理装置。
  3.  前記水を通す管は誘電体の管であることを特徴とする請求項2に記載の水の電磁場処理装置。
  4.  前記交流電流の交流波の周波数は74.75Hz、102.5Hz、151.5Hz,205.0Hz,222.5Hz,301.0Hz,345.0Hz,466.0Hz,484Hz,655Hz,954Hz,1.29kHz、3.5kHz、4.73kHz、7.0kHz、9.47kHz、20.0kHz、27.0kHz、37.3kHz、50.4kHz、80.0kHz、108.0kHzの周波数群のいずれか、又は、これらの周波数のうちいずれかの値の周波数の±5%以内であることを特徴とする請求項1の水の電磁場処理方法。
  5.  前記交流磁場の交流の周波数は74.75Hz、102.5Hz、151.5Hz,205.0Hz,222.5Hz,301.0Hz,345.0Hz,466.0Hz,484Hz,655Hz,954Hz,1.29kHz、3.5kHz、4.73kHz、7.0kHz、9.47kHz、20.0kHz、27.0kHz、37.3kHz、50.4kHz、80.0kHz、108.0kHzの周波数群のいずれか、又は、これらの周波数のうちいずれかの値の周波数の±5%以内であることを特徴とする請求項2の電磁場処理装置。
  6.  交流磁場を水に印加する磁場印加部と、
     前記交流磁場に同期する交流電場を水に印加する電場印加部を備え、
     前記交流電流の交流波が矩形波であり、
     交流磁場の立ち上がり時間における交流電圧はハイレベルであり且つ交流磁場の立ち下がり時間における交流電圧はローレベルである、又は、交流磁場の立ち上がり時間における交流電圧はローレベルであり且つ交流磁場の立ち下がり時間における交流電圧はハイレベルであることを特徴とする電磁場処理装置。
  7.  前記交流電流の交流波の周波数は74.75Hz、102.5Hz、151.5Hz,205.0Hz,222.5Hz,301.0Hz,345.0Hz,466.0Hz,484Hz,655Hz,954Hz,1.29kHz、3.5kHz、4.73kHz、7.0kHz、9.47kHz、20.0kHz、27.0kHz、37.3kHz、50.4kHz、80.0kHz、108.0kHzの周波数群のいずれか、又は、これらの周波数のうちいずれかの値の周波数の±5%以内であることを特徴とする請求項6の電磁場処理装置。
  8.  前記交流磁場と前記交流電場は直交することを特徴とする請求項1に記載の電磁場処理方法。
  9.  前記交流磁場と前記交流電場は直交することを特徴とする請求項2に記載の電磁場処理装置。
  10.  前記交流磁場と前記交流電場は直交することを特徴とする請求項6に記載の電磁場処理装置。
  11.  前記交流電場の周波数は、前記交流磁場の奇数倍であることを特徴とする請求項1に記載の電磁場処理方法。
  12.  前記交流電場の周波数は、前記交流磁場の奇数倍であることを特徴とする請求項2に記載の電磁場処理装置。
  13.  前記交流電場の周波数は、前記交流磁場の奇数倍であることを特徴とする請求項8に記載の電磁場処理装置。
PCT/JP2011/068377 2010-08-13 2011-08-11 水の電磁場処理方法および電磁場処理装置 WO2012020825A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180036526.XA CN103025666B (zh) 2010-08-13 2011-08-11 水的电磁场处理方法以及电磁场处理装置
JP2012528713A JP5844259B2 (ja) 2010-08-13 2011-08-11 水の電磁場処理方法
US13/765,248 US20130146464A1 (en) 2010-08-13 2013-02-12 Electromagnetic field treatment method for water, electromagnetic field treatment device for water, and electromagnetic field treatment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-181446 2010-08-13
JP2010181446 2010-08-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/765,248 Continuation-In-Part US20130146464A1 (en) 2010-08-13 2013-02-12 Electromagnetic field treatment method for water, electromagnetic field treatment device for water, and electromagnetic field treatment device

Publications (1)

Publication Number Publication Date
WO2012020825A1 true WO2012020825A1 (ja) 2012-02-16

Family

ID=45567785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068377 WO2012020825A1 (ja) 2010-08-13 2011-08-11 水の電磁場処理方法および電磁場処理装置

Country Status (4)

Country Link
US (1) US20130146464A1 (ja)
JP (1) JP5844259B2 (ja)
CN (1) CN103025666B (ja)
WO (1) WO2012020825A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104692500A (zh) * 2015-02-14 2015-06-10 波思环球(北京)科技有限公司 一种提高水活性的装置及方法
JP2018501959A (ja) * 2015-01-16 2018-01-25 ベーシック・ウォーター・ソリューションズ・エルエルシーBasic Water Solutions, Llc 水を調整するためのシステムと方法
WO2018029815A1 (ja) * 2016-08-10 2018-02-15 株式会社エビス総研 消火液剤およびその消火液剤を充填した消火用具

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9708205B2 (en) 2013-01-31 2017-07-18 Reverse Ionizer Systems, Llc Devices for the treatment of liquids using plasma discharges and related methods
US9481587B2 (en) * 2013-01-31 2016-11-01 Reverse Ionizer Systems, Llc Treating liquids with electromagnetic fields
US10781116B2 (en) 2013-01-31 2020-09-22 Reverse Ionizer Systems, Llc Devices, systems and methods for treatment of liquids with electromagnetic fields
US9481588B2 (en) * 2013-01-31 2016-11-01 Reverse Ionizer Systems, Llc Treating liquids with electromagnetic fields
CN104098162A (zh) * 2013-04-15 2014-10-15 刘华鑫 电磁水处理装置
AU2014203279B2 (en) * 2013-06-19 2019-01-24 Hydrosmart A Liquid Treatment Device
CN105304298B (zh) * 2015-09-14 2017-07-21 江南大学 一种多级感应式连续流磁电加工装置及其应用
CN105268388B (zh) * 2015-09-14 2017-08-25 江南大学 一种循环式磁电感应反应系统及其应用
US11661358B2 (en) 2016-07-06 2023-05-30 Reverse Ionizer Systems, Llc Systems and methods for desalinating water
CN106673149B (zh) * 2017-02-17 2020-09-04 辛业薇 一种高效小分子团水制取装置
US10692619B2 (en) 2018-01-03 2020-06-23 Reverse Ionizer Systems, Llc Methods and devices for treating radionuclides in a liquid
US10183881B1 (en) 2018-03-20 2019-01-22 Reverse Ionizer Systems, Llc Systems and methods for treating industrial feedwater
US11634344B2 (en) * 2021-09-10 2023-04-25 Go Green Global Technologies Corp Apparatus and method for treating substances using asymmetric-vector electrical fields

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001038362A (ja) * 1999-07-30 2001-02-13 Ska Kk 電磁界処理装置
JP2002536175A (ja) * 1999-02-15 2002-10-29 デ・バート・ドールマン,ヤン・ピーター 電場内で流体を処理するシステム
JP2004223342A (ja) * 2003-01-21 2004-08-12 Japan Science & Technology Agency 水分子及び生命の活性化磁界発生方法及び装置
JP2005288436A (ja) * 2004-03-09 2005-10-20 Techno Lab:Kk 被処理流体の変調電磁場処理装置と方法
JP2008006433A (ja) * 2006-05-29 2008-01-17 Seiki Shiga 水の電磁場処理方法および電磁場処理装置
JP2008526479A (ja) * 2005-01-07 2008-07-24 アクア−サイエンシズ・プロプライエタリー・リミテッド スケールの除去装置および方法
JP2008238153A (ja) * 2007-03-28 2008-10-09 Sadaji Hongo 流体への磁場照射装置
JP2008290053A (ja) * 2007-05-28 2008-12-04 Shiga Kinosui Kenkyusho:Kk 水の電磁場処理方法および電磁場処理装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1978509A (en) * 1929-05-15 1934-10-30 Petroleum Rectifying Co California Process for magnetic separation of emulsions
US4107008A (en) * 1975-06-16 1978-08-15 Beeston Company Limited Electrolysis method for producing hydrogen and oxygen
US4865747A (en) * 1988-01-27 1989-09-12 Aqua-D Corp. Electromagnetic fluid treating device and method
JPH05309393A (ja) * 1992-05-08 1993-11-22 Gastar Corp 電極式水処理装置
JP2607326Y2 (ja) * 1993-12-31 2001-07-09 株式会社ガスター 電極式水改質装置
JP3602886B2 (ja) * 1995-05-08 2004-12-15 株式会社ガスター 溶液濃縮度検出機能付電極式水処理装置
JP3834345B2 (ja) * 1995-06-08 2006-10-18 株式会社ガスター 電極式水処理装置
US5670041A (en) * 1995-10-17 1997-09-23 Electronic De-Scaling 2000,Inc. Reduced corrosion electronic descaling technology
JP3674676B2 (ja) * 2000-03-17 2005-07-20 エスケーエイ株式会社 流体流路の錆び、スケール、その他の成分付着防止及び/又は除去方法と装置
JP4089949B2 (ja) * 2002-05-13 2008-05-28 株式会社計測研究所 スケール除去方法およびスケール除去装置
US6746613B2 (en) * 2002-11-04 2004-06-08 Steris Inc. Pulsed electric field system for treatment of a fluid medium
GB2421449B (en) * 2004-12-21 2009-06-03 Daniel Stefanini Fluid treatment method and apparatus
JP4116002B2 (ja) * 2005-02-09 2008-07-09 エスケーエイ株式会社 被処理水の机上試験方法と流体流路を構成する壁面の錆び、スケール、その他の成分の付着防止及び/又は除去方法
JP4625884B2 (ja) * 2005-06-27 2011-02-02 株式会社デンソー スケール析出抑制装置および方法
US20090242407A1 (en) * 2006-05-29 2009-10-01 Shiga Functional Water Laboratory Corporation Electromagnetic field treatment method and electromagnetic field treatment equipment of water
CN1903407A (zh) * 2006-06-27 2007-01-31 钟茗 同步交变电磁场式液体离子泵
JP2009207958A (ja) * 2008-02-29 2009-09-17 B Ii Denshi Kogyo Kk 電磁処理装置
JP4877529B2 (ja) * 2008-04-24 2012-02-15 有限会社共栄電子研究所 電磁場処理装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002536175A (ja) * 1999-02-15 2002-10-29 デ・バート・ドールマン,ヤン・ピーター 電場内で流体を処理するシステム
JP2001038362A (ja) * 1999-07-30 2001-02-13 Ska Kk 電磁界処理装置
JP2004223342A (ja) * 2003-01-21 2004-08-12 Japan Science & Technology Agency 水分子及び生命の活性化磁界発生方法及び装置
JP2005288436A (ja) * 2004-03-09 2005-10-20 Techno Lab:Kk 被処理流体の変調電磁場処理装置と方法
JP2008526479A (ja) * 2005-01-07 2008-07-24 アクア−サイエンシズ・プロプライエタリー・リミテッド スケールの除去装置および方法
JP2008006433A (ja) * 2006-05-29 2008-01-17 Seiki Shiga 水の電磁場処理方法および電磁場処理装置
JP2008238153A (ja) * 2007-03-28 2008-10-09 Sadaji Hongo 流体への磁場照射装置
JP2008290053A (ja) * 2007-05-28 2008-12-04 Shiga Kinosui Kenkyusho:Kk 水の電磁場処理方法および電磁場処理装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018501959A (ja) * 2015-01-16 2018-01-25 ベーシック・ウォーター・ソリューションズ・エルエルシーBasic Water Solutions, Llc 水を調整するためのシステムと方法
CN104692500A (zh) * 2015-02-14 2015-06-10 波思环球(北京)科技有限公司 一种提高水活性的装置及方法
WO2018029815A1 (ja) * 2016-08-10 2018-02-15 株式会社エビス総研 消火液剤およびその消火液剤を充填した消火用具
US10946228B2 (en) 2016-08-10 2021-03-16 Ff Technologies Inc. Fire-extinguishing liquid agent and fire-extinguishing equipment loaded with said fire-extinguishing liquid agent

Also Published As

Publication number Publication date
JPWO2012020825A1 (ja) 2013-10-28
CN103025666B (zh) 2014-08-27
US20130146464A1 (en) 2013-06-13
CN103025666A (zh) 2013-04-03
JP5844259B2 (ja) 2016-01-13

Similar Documents

Publication Publication Date Title
JP5844259B2 (ja) 水の電磁場処理方法
CN101785073B (zh) 电力传送装置、电力传送装置的送电装置和受电装置、以及电力传送装置的操作方法
US20240067541A1 (en) Apparatuses and methods for treating biofilm and legionella in cooling tower systems
US20110198118A1 (en) Magnet wire
JP5162712B2 (ja) 電線の製造方法及び電線の設計方法
JPH01501923A (ja) 生物学的液体と組織の磁気誘導による処理
CN106277368B (zh) 一种管道水处理设备及处理方法以及电路
CN107078680B (zh) 电力转换装置以及压缩机驱动装置
JP2007160267A (ja) 特殊反応方法と特殊反応装置
TWI753977B (zh) 一種用於電子組件基礎元件之非磁性線圈架
RU2444864C2 (ru) Способ и устройство индукционного нагрева жидкостей (варианты)
WO2020253176A1 (zh) 一种容器及液量检测装置
CN202379813U (zh) 自来水水垢消除器
JP5930455B2 (ja) コアロス測定装置の試料台、コアロス測定装置
WO2015121897A1 (ja) 食用油の酸化防止方法
WO2012160752A1 (ja) 変圧器およびアーク放電加工装置
CN102491538A (zh) 自来水水垢消除器
JP2009140708A (ja) 誘導加熱装置および誘導加熱装置に使用される加熱容器
JP2011060978A (ja) コイルの巻回方法、構造、およびこのコイルを用いて形成された装置並びに部品。
CN209496710U (zh) 一种电抗器及电力设备
CN103058395A (zh) 一种能够方便施加电磁场强度的在线水处理装置
CN207458739U (zh) 一种新型特制变压器
RU2272788C1 (ru) Устройство для магнитной обработки жидкости
WO2013051102A1 (ja) インダクタ用線材およびインダクタ
JPH10328656A (ja) 配管の防錆防藻減菌装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180036526.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11816488

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012528713

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11816488

Country of ref document: EP

Kind code of ref document: A1