WO2020253176A1 - 一种容器及液量检测装置 - Google Patents

一种容器及液量检测装置 Download PDF

Info

Publication number
WO2020253176A1
WO2020253176A1 PCT/CN2019/126309 CN2019126309W WO2020253176A1 WO 2020253176 A1 WO2020253176 A1 WO 2020253176A1 CN 2019126309 W CN2019126309 W CN 2019126309W WO 2020253176 A1 WO2020253176 A1 WO 2020253176A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
probe
voltage
container body
circuit
Prior art date
Application number
PCT/CN2019/126309
Other languages
English (en)
French (fr)
Inventor
陈嘉琪
杨昆
陈育新
张秋俊
方召军
巨姗
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2020253176A1 publication Critical patent/WO2020253176A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/266Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors measuring circuits therefor

Definitions

  • the present disclosure relates to the field of liquid volume detection, in particular to a container and a liquid volume detection device.
  • the related technology usually adopts the method of distributing the detection points in the kettle at equal intervals to detect the amount of water. This method prevents the water in the kettle and the probe from being continuously contacted, so that the amount of water in the kettle cannot be continuously detected, resulting in detection accuracy. not tall.
  • the present disclosure provides a container and a liquid volume detection device, which can realize continuous detection of the liquid content in the container and improve the detection accuracy.
  • the present disclosure provides a container including a container body and a probe arranged on the container body;
  • the probe is arranged in the container body, and one end of the probe is engaged with the top of the container body, and the other end of the probe opposite to the one end is along the depth direction of the container body , Extending toward the bottom of the container body, and the distance from the end surface of the other end to the top is greater than the diameter of the liquid molecule and less than or equal to the depth of the container.
  • the shape of the probe is a cone structure.
  • liquid volume detection device including:
  • a voltage detection circuit the first connection end of the detection circuit is connected to the end where the probe is joined to the top of the container body, and the second connection end of the detection circuit is connected to the bottom of the container body for Inputting a first voltage to the probe, and outputting a second voltage after the first voltage is converted by the probe and the container body;
  • the liquid volume detector is connected to the output terminal of the voltage detection circuit, and is used to obtain the second voltage from the voltage detection circuit and determine the content of the liquid in the container according to the second voltage.
  • the voltage detection circuit includes: a driving circuit and an interface circuit
  • the output terminal of the driving circuit is connected to the probe via the first connection part of the interface circuit, and is used to input the first voltage to the probe;
  • the first connection part of the interface circuit is also used to connect to the liquid level detector, and is used to output the second voltage to the liquid level detector;
  • the second connection part of the interface circuit is connected to the container for grounding protection
  • a first capacitor is provided between the driving circuit and the first connecting portion.
  • the container body is grounded.
  • the container body is grounded via a second capacitor.
  • a bleeder circuit connected in parallel with the second capacitor is provided between the container body and the ground;
  • the bleeder circuit is used to bleed the voltage value of the second capacitor.
  • the bleeder discharge route is formed by a third capacitor and a resistor in series.
  • the driving circuit is a triangular wave driving circuit.
  • the first connecting portion is connected to the liquid level detector via a voltage follower circuit.
  • the container provided by the embodiment of the present disclosure includes a container body and a probe arranged on the container body; wherein, the probe is arranged in the container body, and one end of the probe is connected to the container body.
  • the top is joined, the other end of the probe opposite to the one end extends along the depth direction of the container body to the bottom of the container body, and the distance from the end surface of the other end to the top is greater than that of liquid molecules
  • the diameter is less than or equal to the depth of the container.
  • FIG. 1 is a schematic diagram of a container structure provided by some embodiments of the present disclosure
  • FIG. 2 is a schematic diagram of circuit connection of a liquid volume detection device provided by some embodiments of the disclosure
  • FIG. 3 is a circuit diagram of a voltage detection circuit provided by still other embodiments of the disclosure.
  • FIG. 4 is a waveform diagram of a triangle wave provided by still other embodiments of the disclosure.
  • FIG. 5 is a diagram of the relationship between the liquid volume and the second voltage provided by still other embodiments of the disclosure.
  • an embodiment of the present disclosure provides a container, as shown in FIG. 1, the container includes: a container body 2 and a probe 1 arranged on the container body;
  • the probe 1 is arranged in the container body 2, and one end of the probe 1 is joined to the top of the container body 2, and the other end of the probe 1 opposite to the one end is along the
  • the depth direction of the container body 2 extends toward the bottom of the container body 2, and the distance from the end surface of the other end to the top is greater than the diameter of the liquid molecule and less than or equal to the depth of the container.
  • the container body 2 refers to an appliance that can contain liquid and can heat the liquid.
  • the container body may be an electric kettle.
  • the probe 1 can be fixed to the container by bolt connection, welding or other connection methods.
  • the probe 1 can be assembled and shipped together with the container, or it can be separately installed in the container afterwards.
  • the length of the probe 1 in order to enable the liquid in the container to continuously contact the probe 1, the length of the probe 1 should be set to be the same as the depth of the container body 2 or close to the height of the container. In some embodiments, The height of the container can be 15cm, then the length of the probe 1 can be set between 13-15cm;
  • the other end of the probe 1 is spaced apart from the bottom of the container body 2 by a distance L.
  • L can be 10mm.
  • the shape of the probe is a conical structure.
  • the shape of the probe is set to a cone.
  • the contact area between the upper and lower ends of the cone probe and the liquid changes relatively greatly, and the capacitance value also changes relatively greatly.
  • the voltage value is also relatively large, and it is easier to observe the relationship between the liquid volume and the output voltage of the probe.
  • the shape of the probe may also be cylindrical or other regular shapes, or some irregularities.
  • the shape, such as wave shape, arc shape, etc., the shape of the probe is different, then the capacitance value between the probe and the container body will be different, for example, if it is tapered, then the capacitance value changes linearly with the amount of water , Then according to Ohm’s law, the voltage value output by the probe also changes linearly with the amount of water.
  • the capacitance value between the probe and the container body is a broken line
  • the voltage value output by the probe is The water volume is also in the shape of a broken line. Just check and calibrate the relationship between the reactance of the probe and the liquid volume according to the shape of the probe.
  • the container provided by the embodiment of the present disclosure includes a container body 2 and a probe 1 arranged on the container body; wherein, the probe 1 is arranged in the container body 2, and one end of the probe 1 is The top of the container body 2 is joined, the other end of the probe 1 opposite to the one end extends along the depth direction of the container body 2 toward the bottom of the container body 2, and the end surface of the other end reaches The distance of the top is greater than the diameter of the liquid molecule and is less than or equal to the depth of the container.
  • This enables the probe to form a conductor with a certain reactance value through the liquid in the container and the container, and based on Ohm’s law, as the continuity of the liquid increases, some electrical parameters of the conductor can change accordingly. Therefore, continuous detection of the liquid content in the container can be realized, thereby greatly improving the detection accuracy.
  • some other embodiments of the present disclosure provide a liquid volume detection device.
  • liquid volume referred to in the present disclosure refers to the liquid level value of the liquid, and the liquid level value is used to indicate the size of the liquid volume.
  • the first connection end of the detection circuit is connected to the end of the probe 1 and the top of the container body 2, and the second connection end of the detection circuit is connected to the container body 2
  • the bottom part is used to input a first voltage to the probe 1 and output a second voltage after the first voltage is converted by the probe 1 and the container body 2;
  • the voltage detection circuit 3 includes: a drive circuit 302 and an interface circuit 301,
  • the output terminal of the driving circuit 302 is connected to the probe 1 via the first connection portion of the interface circuit 301, and is used to input the first voltage to the probe 1;
  • the first connection part of the interface circuit 301 is also used to connect the liquid level detector 4, and is used to output the second voltage to the liquid level detector 4;
  • the second connection part of the interface circuit 301 is connected to the container for grounding protection
  • a first capacitor C4 is provided between the driving circuit 302 and the first connecting portion.
  • one end of the first capacitor C4 is connected to the first connection part, and the first capacitor C4 is used to isolate the DC signal from passing the AC signal;
  • a resistor R7 is connected to the other end of the first capacitor C4, and the resistor R7 is a current-limiting resistor, which is used to limit the size of the current and prevent the current passing to the first connecting portion from being too large, which plays a role of current-limiting protection.
  • the container body 2 is grounded to prevent leakage of electricity due to damage to the insulating layer outside the container, which plays a protective role and improves safety.
  • the container body 2 is grounded via the second capacitor C5.
  • the bottom of the container body can be grounded, of course, the sidewalls can also be grounded, and there is no limitation here, as long as it meets safety requirements.
  • the second capacitor C5 is used to isolate the ground to provide safety isolation
  • a bleeder circuit connected in parallel with the second capacitor C5 is provided between the container body 2 and the ground;
  • the bleeder circuit is used to bleed the voltage value of the second capacitor C5.
  • the bleeder is formed by a third capacitor C6 and a resistor R16 in series.
  • the third capacitor C6 and the resistor R16 are connected in parallel with the second capacitor C5 after being connected in series to discharge the residual voltage value of the second capacitor C5.
  • the driving circuit 302 is a triangular wave driving circuit.
  • the triangular wave driving circuit inputs a square wave and outputs a triangular wave.
  • the driving circuit 302 is used to drive the probe 1 to work and provide a third One voltage.
  • the triangular wave drive circuit includes a first operational amplifier U1-A and some peripheral circuits.
  • the positive input terminal VIN of the first operational amplifier U1-A inputs a square wave signal with a certain frequency f and a certain amplitude V.
  • the output terminal VOUT1 of the operational amplifier U1-A outputs a triangular wave.
  • the signal diagram of the triangular wave is shown in FIG. 4, and the output terminal VOUT1 of the first operational amplifier U1-A is connected to the resistor R7.
  • the output current of the driving circuit 302 should be less than 3A.
  • a current loop is formed between the anode, water and cathode.
  • anions such as OH-, CI-, HCO-, CO2-
  • excess negative charge on the cathode will attract cations such as H+, Ca2+, Mg2+ and other heavy metal ions (such as Cu2+) to the vicinity of the cathode.
  • H+ ions Due to the reduction of H+ ions to H2 near the cathode, H+ ions are relatively poor, the OH concentration increases, and the local pH value increases.
  • the HCO3- that moves to the vicinity of the cathode with water will dissociate into CO32- due to the increase in pH value, and further form CaCO3 or MgCO3 precipitation with Ca2+ and Mg2+, and deposit on the surface of the cathode to form a milky white precipitate.
  • the probe 1 is the cathode, and the bottom of the container is the anode.
  • the output current can be adjusted by adjusting the amplitude V and frequency f of the input square wave.
  • the first connection part is connected to the liquid level detector 4 via a voltage follower circuit 303.
  • the voltage follower circuit 303 has an anti-interference effect and can greatly reduce the interference signal in the second voltage.
  • the voltage follower circuit 303 includes a second operational amplifier U2-A and peripheral circuits.
  • the second operational amplifier U2-A and the peripheral circuit form an in-phase amplifier circuit.
  • the output voltage of the voltage follower circuit 303 changes with the input voltage. In the above embodiment, if the water level is lower than the distance L, at this time, the liquid is not in contact with the probe.
  • the input voltage of the voltage follower circuit 303 is the working voltage VCC, and the output voltage is also VCC, then it can be judged that the water level is too low at this time, so the water quantity detection circuit is powered off, and the heating liquid is stopped at the same time to prevent it from drying out.
  • the liquid level detector 4 is connected to the output terminal of the voltage detection circuit 3, and is used to obtain the output voltage from the voltage detection circuit 3 and determine the content of the liquid in the container according to the output voltage.
  • the liquid level detector 4 includes at least a processing unit and a storage unit.
  • the processing unit is used to receive the second voltage signal sent by the voltage detection circuit 3, and based on the output voltage signal and the liquid level stored in the storage unit in advance. The relationship between determines the liquid volume, and a display module can also be provided.
  • the display module is used to display the liquid volume in the container, and the liquid volume is sent to the display module for display.
  • the processing unit Can use 80C52 single chip microcomputer chip.
  • the display module can be a liquid crystal display.
  • the voltage detection circuit 3, the liquid level detector 4, and the display module can be installed in one detection unit.
  • the display module is installed on the surface of the detection box in an embedded manner to facilitate the user to view the liquid volume value intuitively, and then the detection box and the shell of the container are fixed on the surface of the container by means of bonding, and then the signal The wires are respectively connected to the probe 1 and the container body 2;
  • the display module may also be a display interface or APP in the terminal.
  • the data of the volume detector 4 is sent wirelessly to a terminal device such as a mobile phone to display the liquid volume, all of which are possible.
  • the detection principle of the liquid volume detector 4 is as follows:
  • a detection tool such as a special capacitance detector can be used to detect the capacitance value between the liquid level and the probe 1, and the detected capacitance value can be transmitted to the liquid level detector 4 by the special capacitance detector.
  • RL1 and RL2 are respectively the line impedance of the signal line between the probe 1 and the interface terminal CN1 and the line impedance of the signal line between the bottom of the container and the interface terminal CN1;
  • f is the driving frequency of the operating voltage VCC.
  • Vout2 Vout1*(R7+R)/(R7+R6+R)*(1+R11/R12) , Calculate the second voltage Vout2;
  • the probe is inserted into the container with the upper width and the lower width of the tapered structure, as the liquid increases, the contact area between the liquid and the probe 1 increases, and the contact reactance R formed by the probe 1 through the liquid and the container becomes lower, and Vout2 also The lower the value is, that is, R is related to Vout2. If the probe is inserted into the container in reverse, the more the contact area between the liquid and probe 1, the higher the contact reactance R between probe 1 and the container through the liquid, and Vout2 is also Just higher.
  • the probe is inserted into the container with a tapered structure with a wide top and a narrow bottom.
  • the second voltage is linearly related to the liquid volume, as shown in the figure As shown in 5, if other container structures and water quality are required, the graph needs to be recalibrated and drawn, so that the amount of liquid water in the container can be detected in real time.

Abstract

一种容器及液量检测装置,容器包括容器本体(2)以及设置于容器本体(2)上的探针(1);其中,探针(1)设置于容器本体(2)内,且探针(1)的一端与容器本体(2)的顶部接合,探针(1)上与一端相对设置的另一端沿容器本体(2)的深度方向,向容器本体(2)的底部延伸,另一端的端面至顶部的距离大于液体分子的直径,且小于或等于容器的深度。能够实现容器内液体含量的连续检测,进而大大提高了检测精度。

Description

一种容器及液量检测装置
相关申请
本公开要求2019年6月21日申请的,申请号为201910544468.X,名称为“一种容器及液量检测装置”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本公开涉及液量检测领域,尤其涉及一种容器及液量检测装置。
背景技术
目前,对于一些盛放液体的容器,如电水壶,为了方便人们能够实时了解容器内的液量,需要对液量进行检测。
但是,相关技术通常采用在水壶内等间距分布检测点的方式来进行水量检测,这种方法使得水壶内的水与探针之间不能连续接触,从而不能连续检测水壶内的水量,导致检测精度不高。
发明内容
基于此,本公开提供了一种容器及液量检测装置,可以实现容器内液体含量的连续检测,提高了检测精度。
第一方面,本公开提供了一种容器,所述容器包括容器本体以及设置于所述容器本体上的探针;
其中,所述探针设置于容器本体内,且所述探针的一端与所述容器本体的顶部接合,所述探针上与所述一端相对设置的另一端沿所述容器本体的深度方向,向所述容器本体的底部延伸,所述另一端的端面至所述顶部的距离大于液体分子的直径,且小于或等于所述容器的深度。
在其中一些实施例中,所述探针的形状为锥形结构。
第二方面,本公开提供了一种液量检测装置,包括:
上述容器;
电压检测电路,所述检测电路的第一连接端连接于所述探针与所述容器本体的顶部接合的一端,所述检测电路的第二连接端连接于所述容器本体的底部,用于向所述探针输入 第一电压,并且,输出所述第一电压经所述探针和所述容器本体转换后的第二电压;
液量检测器,连接于所述电压检测电路的输出端,用于从所述电压检测电路获取所述第二电压,并根据所述第二电压确定所述容器中液体的含量。
在其中一些实施例中,所述电压检测电路包括:驱动电路以及接口电路,
所述驱动电路的输出端经由所述接口电路的第一连接部连接所述探针,用于向所述探针输入所述第一电压;
所述接口电路的第一连接部还用于连接所述液量检测器,用于向所述液量检测器输出所述第二电压;
所述接口电路的第二连接部连接所述容器,用于接地保护;
所述驱动电路与所述第一连接部之间设置有第一电容。
在其中一些实施例中,所述容器本体接地。
在其中一些实施例中,所述容器本体经由第二电容接地。
在其中一些实施例中,在所述容器本体与接地之间设置有与所述第二电容并联的泄放电路;
其中,所述泄放电路用于泄放所述第二电容的电压值。
在其中一些实施例中,所述泄放电路由第三电容与电阻串联而成。
在其中一些实施例中,所述驱动电路为三角波驱动电路。
在其中一些实施例中,所述第一连接部经由电压跟随电路连接于所述液量检测器。
公开本公开实施例提供的该容器,包括容器本体以及设置于所述容器本体上的探针;其中,所述探针设置于容器本体内,且所述探针的一端与所述容器本体的顶部接合,所述探针上与所述一端相对设置的另一端沿所述容器本体的深度方向,向所述容器本体的底部延伸,所述另一端的端面至所述顶部的距离大于液体分子的直径,且小于或等于所述容器的深度。由此能够使得探针经由容器内的液体与容器构成具有一定电抗值的导体,并且,基于欧姆定律,随着液体连续性的增多,该导体的一些电学参数能够随之发生相应的连续变化,因此,能够实现容器内液体含量的连续检测,进而大大提高了检测精度。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1为本公开一些实施例提供的一种容器结构示意图;
图2为本公开一些实施例提供的液量检测装置的电路连接示意图;
图3为本公开又一些实施例提供的电压检测电路的电路图;
图4为本公开又一些实施例提供的三角波的波形图;
图5为本公开又一些实施例提供的液量与第二电压的关系图。
其中,1、探针;2、容器本体;3、电压检测电路;4、液量检测器;301、接口电路;302、驱动电路;303、电压跟随电路。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
由于相关技术中检测水量是通过等间距分布检测点的方式来进行液量检测的,这种方法不能保证液体与探针1一直接触,不能连续检测容器内的水量,导致检测精度不高。为此,本公开实施例提供的一种容器,如图1所示,所述容器包括:包括容器本体2以及设置于所述容器本体上的探针1;
其中,所述探针1设置于容器本体2内,且所述探针1的一端与所述容器本体2的顶部接合,所述探针1上与所述一端相对设置的另一端沿所述容器本体2的深度方向,向所述容器本体2的底部延伸,所述另一端的端面至所述顶部的距离大于液体分子的直径,且小于或等于所述容器的深度。
在本实施例中,容器本体2是指能够盛放液体,且能够加热液体的器具,在其中一些实施例中,所述容器本体可以为电加热水壶。
在本实施例中,探针1可以采用螺栓连接或者焊接或者其他连接方式与容器固定在一起,探针1可以是与容器一块组装好出厂的,也可以后续在容器内单独安装进去。
在本实施例中,为了使容器内的液体与探针1能够连续的接触,所以将探针1的长度要设置成容器本体2的深度一致或者接近容器的高度,在其中一些实施例中,容器的高度可以为15cm,那么探针1的长度可以设置成13-15cm之间;
在其中一些实施例中,将探针1的另一端与容器本体2的底部间隔设置,隔开一段距离L,在其中一些实施例中,L可以是10mm,通过这种设计,如果容器内的水位低于所述距离L时,那么此时电压检测电路3就会断电,停止检测,同时液量检测器4控制容器 内的加热机构停止加热,防止容器内的液体被烧干,大大提高了安全性;另一方面,将探针1的一端设置成与容器的顶部接合,这样的话能够增大液量检测范围,使得即使容器内的液体灌满了整个容器,也能够检测到液位。
在其中一些实施例中,探针的形状为锥形结构。
在本实施例中,优选地,将探针的形状设置为锥形,锥形探针上下两端与液体的接触面积变化比较大,那么电容值也就变化比较大,那么探针的两端的电压值也就差距比较大,比较容易观察液量与探针输出电压之间的关系。
需要说明的是,上述示例仅是本实施例的实施方式的详细说明,并不能用于限制本公开的保护范围,探针的形状也可以为圆柱形等其他规则形状,也可以为一些不规则形状,如波浪形,弧形等,探针的形状不同,那么探针与容器本体之间的电容值就会不同,例如,如果是锥形的,那么电容值随着水量是呈线性变化的,那么根据欧姆定律,探针输出的电压值也是随着水量呈线性变化的,如果是波浪形,那么探针与容器本体之间的电容值就是折线形的,那么探针输出的电压值与水量之间也是呈折线形的。只要根据探针的形状去检测、标定探针的电抗与液量之间的关系即可。
本公开实施例提供的该容器,包括容器本体2以及设置于所述容器本体上的探针1;其中,所述探针1设置于容器本体2内,且所述探针1的一端与所述容器本体2的顶部接合,所述探针1上与所述一端相对设置的另一端沿所述容器本体2的深度方向,向所述容器本体2的底部延伸,所述另一端的端面至所述顶部的距离大于液体分子的直径,且小于或等于所述容器的深度。由此能够使得探针经由容器内的液体与容器构成具有一定电抗值的导体,并且,基于欧姆定律,随着液体连续性的增多,该导体的一些电学参数能够随之发生相应的连续变化,因此,能够实现容器内液体含量的连续检测,进而大大提高了检测精度。
在上述实施例基础上,为了配合所述容器进行液量检测,本公开的又一些实施例提供了一种液量检测装置,
需要说明的是,本公开所指的液量是指液体的液位值,用液位值来表示液量大小。包括:
上述容器;
电压检测电路3,所述检测电路的第一连接端连接于所述探针1与所述容器本体2的顶部接合的一端,所述检测电路的第二连接端连接于所述容器本体2的底部,用于向所述探针1输入第一电压,并且,输出所述第一电压经所述探针1和所述容器本体2转换后的第二电压;
在本实施例中,所述电压检测电路3包括:驱动电路302以及接口电路301,
所述驱动电路302的输出端经由所述接口电路301的第一连接部连接所述探针1,用于向所述探针1输入所述第一电压;
所述接口电路301的第一连接部还用于连接所述液量检测器4,用于向所述液量检测器4输出所述第二电压;
所述接口电路301的第二连接部连接所述容器,用于接地保护;
所述驱动电路302与所述第一连接部之间设置有第一电容C4。
在本实施例中,第一电容C4的一端连接到第一连接部,第一电容C4用于隔离直流信号通过交流信号;
第一电容C4的另一端连接有电阻R7,电阻R7是限流电阻,用于限制电流的大小,防止通到第一连接部的电流过大,起到了限流保护作用。
在其中一些实施例中,所述容器本体2接地,防止因为容器外部的绝缘层损坏而漏电,起到了保护作用,提高了安全性。
在其中一些实施例中,所述容器本体2经由第二电容C5接地。
在本实施例中,优选地,将容器本体的底部可以接地,当然也可以是侧壁接地,在此不作限制,只要符合安规需求即可。
在本实施例中,第二电容C5用于隔离大地,提供安全隔离;
在其中一些实施例中,在所述容器本体2与接地之间设置有与所述第二电容C5并联的泄放电路;
在本实施例中,所述泄放电路用于泄放所述第二电容C5的电压值。所述泄放电路由第三电容C6与电阻R16串联而成。
具体地,第三电容C6和电阻R16串联后与第二电容C5并联,用于泄放第二电容C5的残余电压值。
本公开的又一些实施例中,所述驱动电路302为三角波驱动电路,所述三角波驱动电路输入方波,输出三角波,驱动电路302是用来驱动探针1工作的,为探针1提供第一电压。
所述三角波驱动电路包括第一运算放大器U1-A以及一些外围电路,其中第一运算放大器U1-A的正向输入端VIN输入的是一定频率f和一定幅值V的方波信号,第一运算放大器U1-A的输出端VOUT1输出的是三角波,三角波的信号图如图4所示,第一运算放大器U1-A的输出端VOUT1连接所述电阻R7。
在本实施例中,为了延缓探针1与水长期接触后形成水垢,所述驱动电路302的输出 电流应小于3A。
其中,水垢形成原理如下:
根据电化学原理,阳极、水和阴极之间形成了电流回路。阳极上正电荷过剩,将吸引OH-、CI-、HCO-、CO2-等阴离子,阴极上负电荷过剩,将吸引H+、Ca2+、Mg2+及其他的重金属离子(如Cu2+)等阳离子到阴极附近。
阳极发生氧化反应:4OH--4e→2H2O+O2↑(溶液在阳极附近呈酸性)
阴极发生还原反应:2H2O+2e→2OH-+H2↑(溶液在阴极附近呈碱性)
阴极附近因H+离子还原成H2,造成H+离子相对贫乏,OH浓度增大,局部pH值升高。随水运动到阴极附近的HCO3-会因pH值升高而离解成CO32-,进一步与Ca2+、Mg2+生成CaCO3或MgCO3沉淀,沉积在阴极表面,形成乳白色沉淀。
根据电化学原理可知,当阳极和阴极间的循环电流小于3A时,基本不会发生腐蚀现象,电流越小,阳极氧化反应越弱,阳极附近酸性越弱。在本实施例中,探针1是阴极,容器底部是阳极。
所以为了延缓水垢的形成,要保证使流过探针1的电流小于3A在本实施例中的三角波驱动电路中通过调整输入方波的幅值V和频率f就能够调整输出的电流大小。
在其中一些实施例中,所述第一连接部经由电压跟随电路303连接于所述液量检测器4。
在本实施例中,电压跟随电路303具有抗干扰作用,能够大大减小第二电压中的干扰信号,如图3所示,电压跟随电路303包括第二运算放大器U2-A以及外围电路,第二运算放大器U2-A与外围电路组成一个同相放大电路,电压跟随电路303的输出电压是跟随输入电压变化的,在上述实施例中,如果水位低于距离L,此时,液体没有与探针1接触,那么电压跟随电路303的输入电压就是工作电压VCC,输出电压也就是VCC,那么就可以判断此时水位过低,因此水量检测电路断电,同时停止加热液体,防止烧干。
当水位大于距离L时,探针1与液体之间产生容抗,那么电压跟随电路303的输入电压就会降低,探针1的干扰信号经过电压跟随电路303后会大大降低,提高了液量检测电路的抗干扰性。
液量检测器4,连接于所述电压检测电路3的输出端,用于从所述电压检测电路3获取所述输出电压,并根据所述输出电压确定所述容器中液体的含量。
在本实施例中,液量检测器4至少包括处理单元和存储单元,处理单元用于接收电压检测电路3发送的第二电压信号,并根据预先存储在存储单元中的输出电压信号与液量之间的关系确定液量大小,并且,还可以设置显示模块,显示模块用于显示容器内的液体的 液量,将液量大小发送至显示模块进行显示,在其中一些实施例中,处理单元可以采用80C52单片机芯片。在其中一些实施例中,显示模块可以采用液晶显示屏。
另外,对于电压检测电路3、液量检测器4以及显示模块与容器之间的安装方式,在其中一些实施例中,可以将电压检测电路3、液量检测器4以及显示模块安装在一个检测盒内,其中显示模块以内嵌的方式安装在检测盒的表面,以方便用户直观的查看液量值,然后将检测盒与容器的外壳通过粘结等方式固定在容器的外壳表面,然后通过信号线分别与探针1和容器本体2连接;
也可以将电压检测电路3、液量检测器4与容器内原有的加热机构的控制电路安装在一块,然后将显示模块以内嵌的方式安装在容器的外表面,方便用户直观的查看容器内的液量。
需要说明的是,上述示例仅是对本公开的实施例做出的一些详细说明,并不能用于限制本公开的保护范围,例如显示模块也可以是终端中的某个显示界面或者APP,将液量检测器4的数据通过无线的方式发送到手机等终端设备上进行液量的显示,均是可以的。
在本实施例中,液量检测器4的检测原理如下:
首先获取液体与探针1之间的电容值;
具体地,可以通过专门的电容检测仪等检测工具来检测液位与探针1之间的电容值,并通过所述专门的电容检测仪将检测到的电容值传输给液量检测器4。
然后根据已知容抗计算公式RC=1/(2π*f*C),计算液体与探针1之间的容抗值RC7;
再根据所述探针1与容器之间的电抗值R与所述容抗值RC7之间的第一预设关系R=RL1+RL2+R3*RC7/(R3+RC7)+RC4+RC,计算所述探针1与容器之间的电抗值R。
其中,RL1和RL2分别为探针1到接口端子CN1之间的信号线上的线抗电阻和容器底部到接口端子CN1之间的信号线上的线抗电阻;
各容抗由下式所得:
RC3=1/(2π*f*C3)
RC4=1/(2π*f*C4)
RC5=1/(2π*f*C5)
其中,f为工作电压VCC的驱动频率。
再根据第二电压Vout2与第一电压Vout1以及所述电抗值R之间的第二预设关系Vout2=Vout1*(R7+R)/(R7+R6+R)*(1+R11/R12),计算所述第二电压Vout2;
如果探针按照锥形结构上宽下窄的插入容器内,随着液体增多,液体与探针1的接触面积越多,探针1通过液体与容器形成的接触电抗R就越低,Vout2也就越低,即R与Vout2 呈相关性,如果探针反过来插入容器,则液体与探针1的接触面积越多,探针1通过液体与容器的接触电抗值R就越高,Vout2也就越高。
最后根据提前通过大量的实验获得的第二电压与液量之间的关系,得到第二电压对应的液量。
在本实施例中,在其中一些实施例中,如果是纯水或者自然水,探针以锥形结构上宽下窄的插入容器内,第二电压与液量之间成线性相关,如图5所示,如果其他容器结构和水质,曲线图需要重新校准绘制,以此可以实时检测容器内液体水量的大小。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种容器,适于容纳液体,其特征在于,所述容器包括容器本体以及设置于所述容器本体上的探针;
    其中,所述探针设置于所述容器本体内,且所述探针的一端与所述容器本体的顶部接合,所述探针上与所述一端相对设置的另一端沿所述容器本体的深度方向,向所述容器本体的底部延伸,所述另一端的端面至所述顶部的距离大于液体分子的直径,且小于或等于所述容器的深度。
  2. 根据权利要求1所述的容器,其特征在于,所述探针的形状为锥形结构。
  3. 一种液量检测装置,其特征在于,包括:
    如权利要求1至2中任一项所述的容器;
    电压检测电路,所述检测电路的第一连接端连接于所述探针与所述容器本体的顶部接合的一端,所述检测电路的第二连接端连接于所述容器本体的底部,用于向所述探针输入第一电压,并且,输出所述第一电压经所述探针和所述容器本体转换后的第二电压;
    液量检测器,连接于所述电压检测电路的输出端,用于从所述电压检测电路获取第二电压,并根据所述第二电压确定所述容器中液体的含量。
  4. 根据权利要求3所述的液量检测装置,其特征在于,所述电压检测电路包括:驱动电路以及接口电路,
    所述驱动电路的输出端经由所述接口电路的第一连接部连接所述探针,用于向所述探针输入所述第一电压;
    所述接口电路的第一连接部还用于连接所述液量检测器,用于向所述液量检测器输出所述第二电压;
    所述接口电路的第二连接部连接所述容器,用于接地保护;
    所述驱动电路与所述第一连接部之间设置有第一电容(C4)。
  5. 根据权利要求4所述的液量检测装置,其特征在于,所述容器本体接地。
  6. 根据权利要求5所述的液量检测装置,其特征在于,所述容器本体经由第二电容(C5)接地。
  7. 根据权利要求6所述的液量检测装置,其特征在于,所述容器本体与接地之间设置有与所述第二电容(C5)并联的泄放电路;
    其中,所述泄放电路用于泄放所述第二电容(C5)的电压值。
  8. 根据权利要求7所述的液量检测装置,其特征在于,所述泄放电路由第三电容(C6) 与电阻(R16)串联而成。
  9. 根据权利要求4所述的液量检测装置,其特征在于,所述驱动电路为三角波驱动电路。
  10. 根据权利要求4所述的液量检测装置,其特征在于,所述第一连接部经由电压跟随电路连接于所述液量检测器。
PCT/CN2019/126309 2019-06-21 2019-12-18 一种容器及液量检测装置 WO2020253176A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910544468.X 2019-06-21
CN201910544468.XA CN110319904A (zh) 2019-06-21 2019-06-21 一种容器及液量检测装置

Publications (1)

Publication Number Publication Date
WO2020253176A1 true WO2020253176A1 (zh) 2020-12-24

Family

ID=68120026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126309 WO2020253176A1 (zh) 2019-06-21 2019-12-18 一种容器及液量检测装置

Country Status (2)

Country Link
CN (1) CN110319904A (zh)
WO (1) WO2020253176A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110319904A (zh) * 2019-06-21 2019-10-11 珠海格力电器股份有限公司 一种容器及液量检测装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120101951A (ko) * 2011-03-07 2012-09-17 삼성테크윈 주식회사 기기의 수위 센싱 시스템
CN106768173A (zh) * 2016-12-13 2017-05-31 广东技术师范学院 一种水位检测装置及方法
CN207610749U (zh) * 2017-11-20 2018-07-13 深圳市叮咚互联科技有限公司 液位测量装置及带容器的设备
CN109238401A (zh) * 2018-09-14 2019-01-18 杭州热博科技有限公司 液位检测装置及方法
CN109506737A (zh) * 2018-09-30 2019-03-22 珠海格力电器股份有限公司 一种液位测量方法、装置及设备、液位检测电路
CN109781209A (zh) * 2019-03-01 2019-05-21 杭州依美洛克医学科技有限公司 移液及液位检测电路
CN109870214A (zh) * 2019-03-19 2019-06-11 珠海格力电器股份有限公司 水量检测结构及家电设备
CN110319904A (zh) * 2019-06-21 2019-10-11 珠海格力电器股份有限公司 一种容器及液量检测装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120101951A (ko) * 2011-03-07 2012-09-17 삼성테크윈 주식회사 기기의 수위 센싱 시스템
CN106768173A (zh) * 2016-12-13 2017-05-31 广东技术师范学院 一种水位检测装置及方法
CN207610749U (zh) * 2017-11-20 2018-07-13 深圳市叮咚互联科技有限公司 液位测量装置及带容器的设备
CN109238401A (zh) * 2018-09-14 2019-01-18 杭州热博科技有限公司 液位检测装置及方法
CN109506737A (zh) * 2018-09-30 2019-03-22 珠海格力电器股份有限公司 一种液位测量方法、装置及设备、液位检测电路
CN109781209A (zh) * 2019-03-01 2019-05-21 杭州依美洛克医学科技有限公司 移液及液位检测电路
CN109870214A (zh) * 2019-03-19 2019-06-11 珠海格力电器股份有限公司 水量检测结构及家电设备
CN110319904A (zh) * 2019-06-21 2019-10-11 珠海格力电器股份有限公司 一种容器及液量检测装置

Also Published As

Publication number Publication date
CN110319904A (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
CN103025666B (zh) 水的电磁场处理方法以及电磁场处理装置
WO2020253176A1 (zh) 一种容器及液量检测装置
JPH01501923A (ja) 生物学的液体と組織の磁気誘導による処理
CN207148338U (zh) 管路沉积物检测装置和热泵系统
CN103018285B (zh) 一种非接触式电导气液两相流相含率测量装置及方法
CN109799436B (zh) 电磁线耐压测试方法及测试装置、导电液
CN111076789A (zh) 一种水位检测装置、水位检测方法及储水装置
JP2006281395A (ja) ワイヤカット放電加工機の加工液面検出装置
US9574928B2 (en) Liquid level sensing systems
CN103941099A (zh) 基于虚拟电感的电容耦合式非接触电导测量装置及其方法
CN209461698U (zh) 一种具有防水功能的智能插座外壳
CN204071751U (zh) 自动检测水位的咖啡机
CN210638780U (zh) 一种容器及液量检测装置
CN104459333B (zh) 工业型电容耦合式双电感结构非接触电导测量装置及方法
CN109870214A (zh) 水量检测结构及家电设备
CN202158936U (zh) 一种漏水检测装置
CN203923713U (zh) 一种洗衣机
CN108420309A (zh) 一种带水质检测的煮水容器及其工作方法
CN107300934A (zh) 一种基于电容量检测电水壶壶内的水量检测方法
CN103308597B (zh) 基于电涡流传感器的金属型材小孔检测方法及检测系统
CN202916369U (zh) 输电线路复合绝缘子带电检测仪
TW390983B (en) Sensor type liquid level control apparatus
CN206529627U (zh) 蒸汽熨衣设备及其蒸发器
CN201875877U (zh) 防干烧的自来水加热结构
JP2010213889A (ja) 洗濯液センサー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19934001

Country of ref document: EP

Kind code of ref document: A1