WO2012020676A1 - GaNベース半導体結晶成長用多結晶窒化アルミニウム基材およびそれを用いたGaNベース半導体の製造方法 - Google Patents

GaNベース半導体結晶成長用多結晶窒化アルミニウム基材およびそれを用いたGaNベース半導体の製造方法 Download PDF

Info

Publication number
WO2012020676A1
WO2012020676A1 PCT/JP2011/067749 JP2011067749W WO2012020676A1 WO 2012020676 A1 WO2012020676 A1 WO 2012020676A1 JP 2011067749 W JP2011067749 W JP 2011067749W WO 2012020676 A1 WO2012020676 A1 WO 2012020676A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum nitride
gan
base material
polycrystalline aluminum
based semiconductor
Prior art date
Application number
PCT/JP2011/067749
Other languages
English (en)
French (fr)
Inventor
公哉 宮下
小松 通泰
青木 克之
開 船木
Original Assignee
株式会社 東芝
東芝マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝マテリアル株式会社 filed Critical 株式会社 東芝
Priority to JP2012528650A priority Critical patent/JP6002038B2/ja
Priority to US13/806,320 priority patent/US20130157445A1/en
Publication of WO2012020676A1 publication Critical patent/WO2012020676A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/21Circular sheet or circular blank

Definitions

  • the present invention relates to a polycrystalline aluminum nitride base material for GaN-based semiconductor crystal growth and a method for producing a GaN-based semiconductor using the same.
  • gallium nitride (GaN) -based semiconductors such as GaN, InGaN, AlGaN, and InAlGaN are attracting attention and used as constituent layers.
  • the LED element has a structure in which thin layers such as a GaN base are stacked.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-111766
  • a multilayer structure of a GaN layer and a GaAlN layer is used. The yield of semiconductor elements is determined by how efficiently this thin semiconductor layer can be manufactured with a uniform thickness.
  • An epitaxial growth method is usually used to manufacture a gallium nitride (GaN) based semiconductor device.
  • GaN gallium nitride
  • As the epitaxial substrate sapphire and SiC substrates have been used so far, but there are problems such as high cost (sapphire and SiC) and warpage due to a difference in linear expansion coefficient between gallium nitride and the substrate material.
  • the linear expansion coefficient of GaN (a-plane) is 5.59 ⁇ 10 ⁇ 6 / K, whereas sapphire is about 7 to 8 ⁇ 10 ⁇ 6 / K and SiC is about 6.6 ⁇ 10 ⁇ 6 / K.
  • the difference in linear expansion coefficient was about 1 ⁇ 10 ⁇ 6 / K or more.
  • a GaN layer is epitaxially grown (epi-growth) on a sapphire substrate at a high temperature of about 1100 ° C. When exposed to such high temperatures, the problem of warpage due to the difference in linear expansion coefficient becomes large. In recent years, it has been desired to grow a GaN layer by enlarging a sapphire substrate in order to improve the number of semiconductor chips.
  • an object of the present invention is to obtain an inexpensive material for obtaining a gallium nitride base crystal with little warpage.
  • the polycrystalline aluminum nitride base material according to the present invention is a polycrystalline aluminum nitride base material as a substrate material for growing a GaN-based semiconductor, and has an average linear expansion coefficient of 4.9 ⁇ from 20 ° C. to 600 ° C. 10 ⁇ 6 / K or more and 6.1 ⁇ 10 ⁇ 6 / K or less, and the average linear expansion coefficient from 20 ° C. to 1100 ° C. is 5.5 ⁇ 10 ⁇ 6 / K or more and 6.6 ⁇ 10 ⁇ 6 / K or less. It is characterized by being.
  • the polycrystalline aluminum nitride base material is composed of an aluminum nitride crystal and a grain boundary phase, and the content of the aluminum nitride crystal is 56.2% or more and 93.9% or less in terms of volume fraction. It is preferable.
  • the grain boundary phase is at least one selected from the group consisting of Ca, Y, La, Ce, Nd, Pr, Eu, Gd, Dy, Ho, Er, Yb, and Lu. It is preferable to include a composite oxide with aluminum.
  • the grain boundary phase preferably contains titanium nitride (TiN).
  • the average particle diameter of the aluminum nitride crystal particles is 7 ⁇ m or less.
  • the thermal conductivity is 46 W / m ⁇ K or more.
  • the polycrystalline aluminum nitride base material preferably has a diameter of 50 mm or more.
  • the surface roughness (Ra) of the polycrystalline aluminum nitride base material is 0.2 ⁇ m or less and the thickness is 3 mm or less.
  • a method for manufacturing a GaN-based semiconductor according to another aspect of the present invention is characterized in that a GaN-based semiconductor crystal is grown using the polycrystalline aluminum nitride base material.
  • the GaN-based semiconductor is crystal-grown through the buffer layer.
  • the GaN-based semiconductor is selected from one selected from the group consisting of GaN, InGaN, AlGaN, and InAlGaN.
  • a polycrystalline aluminum nitride substrate whose linear thermal expansion coefficient from room temperature to 1100 ° C. is close to that of GaN can be provided.
  • the polycrystalline aluminum nitride substrate according to the present invention is a polycrystalline aluminum nitride base material as a substrate material for crystal growth of a GaN-based semiconductor, and has an average linear expansion coefficient of 4.9 ⁇ 10 4 from 20 ° C. to 600 ° C. -6 / K to 6.1 ⁇ 10 -6 / K and the average linear expansion coefficient from 20 ° C to 1100 ° C is 5.5 ⁇ 10 -6 / K to 6.6 ⁇ 10 -6 / K It is characterized by this.
  • a polycrystalline aluminum nitride substrate means a substrate obtained by sintering aluminum nitride powder.
  • the average linear expansion coefficient of the polycrystalline aluminum nitride substrate from 20 ° C. to 600 ° C. is from 4.9 ⁇ 10 ⁇ 6 / K to 6.1 ⁇ 10 ⁇ 6 / K, and from 20 ° C. to 1100 ° C.
  • the average linear expansion coefficient is 5.5 ⁇ 10 ⁇ 6 / K or more and 6.6 ⁇ 10 ⁇ 6 / K or less.
  • the linear expansion coefficient means a value indicating the amount of change in length with respect to temperature change.
  • the measuring method shall be performed by a method according to JIS R1618.
  • the unit is “/ K (Kelvin)”.
  • the average linear expansion coefficient from 20 ° C. to 600 ° C. is a value obtained by dividing the rate of increase (expansion coefficient) at 600 ° C. with respect to 20 ° C. by the temperature difference of 580 ° C. is there.
  • the linear expansion coefficient from 20 ° C. to 1100 ° C. is a value obtained by dividing the rate of increase (expansion coefficient) at 1100 ° C. with respect to 20 ° C. by 1080 ° C. which is a temperature difference.
  • the linear expansion coefficient of GaN (a-plane).
  • the linear expansion coefficient of GaN (a-plane) is 5.59 ⁇ 10 ⁇ 6 / K near room temperature, whereas sapphire is about 7 to 8 ⁇ 10 ⁇ 6 / K, and SiC is about 6.6 ⁇ .
  • the difference in linear expansion coefficient was 10 ⁇ 6 / K, and about 1.0 ⁇ 10 ⁇ 6 / K.
  • sapphire and SiC are single crystal bodies, the linear expansion coefficient as a material cannot be adjusted. In order to eliminate the difference in linear expansion coefficient without problems, it is necessary to reduce the GaN-based semiconductor, but the mass productivity of semiconductor elements (LEDs, semiconductor lasers, etc.) is poor, which increases the cost.
  • the polycrystalline aluminum nitride substrate according to the present invention has an average coefficient of linear expansion from 20 ° C. to 600 ° C. of 4.9 ⁇ 10 ⁇ 6 / K or more and 6.1 ⁇ 10 ⁇ 6 / K or less, and from 20 ° C. to 1100. Since the average coefficient of linear expansion up to 5.5 ° C. is not less than 5.5 ⁇ 10 ⁇ 6 / K and not more than 6.6 ⁇ 10 ⁇ 6 / K, the problem of warping can be reduced even if the GaN-based semiconductor is increased in diameter. The mass productivity of the element can be improved.
  • the polycrystalline aluminum nitride base material is preferably composed of an aluminum nitride crystal and a grain boundary phase, and the content of the aluminum nitride crystal is preferably 56.2% or more and 93.9% or less by volume fraction.
  • the polycrystalline body is obtained by solidifying and sintering aluminum nitride powder (AlN powder). In order to increase the sinterability, it is preferable to use a sintering aid.
  • An aluminum nitride crystal content of 56.2% or more and 93.9% or less means that the balance is a grain boundary phase. If the proportion of aluminum nitride crystals is less than 56.2% or exceeds 93.9%, it is difficult to obtain the intended linear expansion coefficient.
  • the porosity is preferably 1% by volume or less, and more preferably 0.5% by volume or less.
  • the substrate surface In order to grow a GaN layer on a polycrystalline aluminum nitride substrate, the substrate surface needs to be flat without voids due to pores. For this reason, the surface roughness Ra of the substrate is preferably 0.2 ⁇ m or less, and it is preferable that the substrate is mirror-finished so that Ra is 0.05 ⁇ m or less.
  • the grain boundary phase includes a composite oxide of aluminum and at least one selected from the group consisting of Ca, Y, La, Ce, Nd, Pr, Eu, Gd, Dy, Ho, Er, Yb, and Lu. It is preferable.
  • the grain boundary phase is a phase formed by changing the sintering aid during the sintering process. The presence of the grain boundary phase improves sinterability and facilitates control of the linear thermal expansion coefficient. Since these grain boundary phase components have a larger linear expansion coefficient than that of the aluminum nitride crystal, they are effective in adjusting the linear expansion coefficient of the aluminum nitride substrate. Whether or not it is a complex oxide can be analyzed by XRD.
  • At least one selected from the group consisting of Ca, Y, La, Ce, Nd, Pr, Eu, Gd, Dy, Ho, Er, Yb, and Lu, which are the first sintering aids, increases the sinterability. It is effective and is preferably added as an oxide. If these rare earth elements are used, normal pressure sintering is also possible.
  • the oxide of aluminum which is the second sintering aid may utilize impurity oxygen in the aluminum nitride powder, or may be a method in which aluminum oxide is added as a sintering aid. This is because the presence of aluminum oxide tends to form a composite oxide with the first sintering aid.
  • these composite oxides are materials that can easily adjust the linear expansion coefficient and are stable even at a high temperature around 1100 ° C.
  • the first sintering aid at least one selected from the group consisting of Ca, Y, La, Ce, Nd, Pr, Eu, Gd, Dy, Ho, Er, Yb, and Lu is used in terms of oxide. It is preferable to contain ⁇ 30% by mass. Further, it is preferable that aluminum is contained in an amount of 1 to 23% by mass in terms of oxide as the second sintering aid.
  • TiN titanium nitride
  • the rare earth element as the first sintering aid is expensive, by replacing a part thereof with TiN, it is possible to reduce the cost while controlling the linear expansion coefficient. Further, by using in combination with the first sintering aid, it is possible to produce at normal pressure sintering.
  • the average particle size of the aluminum nitride crystal particles is preferably 7 ⁇ m or less.
  • a grain boundary phase having a larger linear expansion coefficient than the aluminum nitride crystal particles is present at the grain boundaries between the aluminum nitride crystal particles. If the aluminum nitride crystal particles are too large, the abundance ratio between the aluminum nitride crystal particles and the grain boundary phase becomes non-uniform, which may cause a partial variation in the linear expansion coefficient. If the particle size is relatively small with an average particle size of 7 ⁇ m or less, partial variations can be reduced.
  • the lower limit of the average particle diameter is not particularly limited, but is preferably 1 ⁇ m or more.
  • the average particle size is less than 1 ⁇ m, raw material powder having a small particle size must be used, resulting in an increase in raw material cost. Further, by setting the average particle size to 7 ⁇ m or less, even if the aluminum nitride crystal particles fall off due to the polishing process, a flat surface is easily obtained without forming a large crater (degreasing trace). It is also important to obtain a flat surface for growing GaN-based crystals.
  • the polycrystalline aluminum nitride substrate preferably has a thermal conductivity of 46 W / m ⁇ K or more.
  • the thermal conductivity of the sapphire substrate is about 46 W / m ⁇ K.
  • the thermal conductivity of the sapphire substrate is about 46 W / m ⁇ K.
  • the upper limit of heat conductivity is not specifically limited, If many sintering aids are included, the heat conductivity will be 170 W / m * K or less.
  • the diameter L of the substrate can be as large as 100 mm or more.
  • the upper limit of a diameter is not specifically limited, In consideration of the ease of making, it is preferable that the diameter L is 300 mm or less.
  • the crystal growth surface may be square or rectangular.
  • the thickness of the substrate is preferably 3 mm or less.
  • the thermal expansion coefficient can be adjusted after the thickness is reduced to 3 mm or less.
  • the thickness W of the substrate is preferably 0.3 to 1.5 mm, more preferably 0.5 to 1.0 mm. If the substrate is thicker than 1.5 mm, the heat dissipation becomes worse. On the other hand, if it is thinner than 0.3 mm, the strength of the substrate becomes insufficient, and the handleability deteriorates.
  • FIG. 2 is a schematic cross-sectional view showing an example of a manufacturing process of a GaN-based semiconductor.
  • 1 is a polycrystalline aluminum nitride substrate
  • 2 is a GaN-based semiconductor layer
  • 3 is a buffer layer.
  • a buffer layer is formed on the polycrystalline aluminum nitride substrate 1.
  • the buffer layer is preferably made of the same material as the GaN-based semiconductor layer.
  • a GaN-based semiconductor is grown on the buffer layer.
  • the GaN-based semiconductor is preferably a kind selected from the group consisting of GaN, InGaN, AlGaN, and InAlGaN. Both are based on GaN, and the linear expansion coefficient of GaN (a-plane) is around 5.59 ⁇ 10 ⁇ 6 / K at room temperature.
  • a polycrystalline aluminum nitride substrate 1 is disposed on a susceptor (not shown), and TMG gas (trimethylgallium gas) is formed by metal organic chemical vapor deposition (MOCVD) at 500 to 600 ° C. ), Flowing ammonia gas to form a GaN buffer layer.
  • MOCVD metal organic chemical vapor deposition
  • the film thickness of the GaN layer is increased (crystal growth) at 1000 to 1100 ° C. Since the MOCVD method is performed at a high temperature of 500 to 1100 ° C., it is effective to control the linear expansion coefficient in this temperature range. In particular, the expansion or contraction of the substrate in the cooling process from a high temperature of 1100 ° C. to 600 ° C. affects the warpage. In the polycrystalline aluminum nitride substrate according to the present invention, the linear expansion coefficient is approximated to that of a GaN-based semiconductor, so that the problem of warpage can be greatly suppressed.
  • the GaN-based semiconductor can be grown in a large range (area), a large number of light emitting elements can be obtained at a time, so that mass productivity is improved.
  • various layers such as a GaN base semiconductor layer and an insulating layer are formed or etched. Further, if a polycrystalline aluminum nitride substrate is unnecessary when manufacturing a light emitting element, it may be removed.
  • a polycrystalline aluminum nitride substrate having a grain boundary phase is easy to remove with an alkaline solution or the like. It can also be scraped off.
  • the thickness of the polycrystalline aluminum nitride substrate is preferably 3 mm or less.
  • the method for producing the polycrystalline aluminum nitride substrate according to the present invention is not particularly limited, but the following method can be mentioned as a method for producing with good yield.
  • aluminum nitride powder is prepared as a raw material powder.
  • the aluminum nitride powder preferably has an average particle size of 0.6 to 2 ⁇ m. If the average particle size is less than 0.6 ⁇ m, the particle size is too fine and the price of the aluminum nitride powder may increase. On the other hand, if it exceeds 2 ⁇ m, the average particle size of the sintered aluminum nitride crystal is likely to exceed 7 ⁇ m. More preferably, aluminum nitride powder having an average particle size of 1.0 to 1.5 ⁇ m is used.
  • the oxygen content in the aluminum nitride powder is preferably 0.6 to 2% by mass.
  • a first sintering aid (Ca, Y, La, Ce, Nd, Pr, Eu, Gd, Dy, Ho, Er, Yb, and Lu is selected.
  • a necessary amount of a single type of oxide), a second sintering aid (aluminum oxide), and a third sintering aid (TiN) are prepared and mixed with the aluminum nitride powder.
  • the average particle size of the sintering aid is preferably 0.6 to 2 ⁇ m, which is about the same as that of the aluminum nitride powder.
  • the amount of the sintering aid added is preferably mixed so that the volume fraction of aluminum nitride crystals is in the range of 56.2% to 93.9%. If the average particle size of the sintering aid powder is set to the same level as that of the aluminum nitride powder, the volume fraction can be easily adjusted.
  • an aluminum nitride powder, a sintering aid powder, a binder, a solvent, a dispersion material, and the like are mixed to prepare a raw material slurry.
  • a molded body is produced using the prepared raw material slurry.
  • the method for producing the molded body include sheet molding using a doctor blade method and press molding in which granulated powder produced from a slurry is molded with a mold. If it is a doctor blade method, it will be easy to produce the large molded object 50 mm or more in diameter, and also 100 mm or more.
  • a molded object is a sheet form, if necessary, a molded object may be processed and a disk shaped molded object may be produced.
  • the sintering temperature is preferably 1600-1900 ° C.
  • the first sintering aid is used as the sintering aid, it can be sintered by a normal pressure sintering method.
  • the first sintering aid is not used, it is preferable to use a pressure sintering method such as hot pressing.
  • the sintering atmosphere is preferably an inert atmosphere.
  • Mirror processing is performed on the GaN-based semiconductor forming surface of the sintered body thus obtained.
  • the surface processing is performed using a diamond grindstone so that the surface roughness Ra is 0.2 ⁇ m or less, preferably 0.05 ⁇ m or less. Moreover, you may perform the process which arranges the shape of a side surface or a back surface as needed.
  • Example 1 Aluminum nitride powder (average particle size 1 ⁇ m, oxygen content 1.0 mass%), yttria (Y 2 O 3 ) powder (average particle size 1 ⁇ m) and alumina (Al 2 O 3 ) powder (average particle size 1 ⁇ m)
  • the raw material powder was prepared by mixing at the ratio shown in Table 1.
  • the mixing amount in the table is a mixture of yttria, which is the first sintering aid, alumina, which is the second sintering aid, and aluminum nitride powder, so as to be 100 parts by weight. is there.
  • raw material powder was added to a solvent such as toluene or ethanol, and a dispersant was further added. Thereafter, an organic binder and a plasticizer were added and further mixed, and a green sheet having a thickness of 1.2 mm was formed by a doctor blade method. The green sheet was cut into a length of 170 mm ⁇ width of 170 mm, degreased, and sintered in nitrogen at 1700 ° C. for 5 hours to prepare a polycrystalline aluminum nitride substrate of Sample 1. Similar operations were repeated to produce polycrystalline aluminum nitride substrates of Samples 2-8.
  • a solvent such as toluene or ethanol
  • a dispersant was further added.
  • an organic binder and a plasticizer were added and further mixed, and a green sheet having a thickness of 1.2 mm was formed by a doctor blade method.
  • the green sheet was cut into a length of 170 mm ⁇ width of 170 mm, degreased, and sintered in nitrogen at
  • the linear thermal expansion coefficient of each sample was measured.
  • the linear expansion coefficient was measured according to JIS R1618.
  • the temperature from 20 to 1300 ° C. was measured at about 0.1 ° C. to 0.3 ° C. intervals.
  • the constituent phase of the grain boundary phase was analyzed by XRD.
  • the thermal conductivity was measured by a laser flash method.
  • the average particle size of the aluminum nitride crystal particles was measured.
  • the average particle diameter of the aluminum nitride crystal particles was measured by a line intercept method by taking an enlarged photograph (100 ⁇ m ⁇ 100 ⁇ m) of a cross section of an arbitrary part of the sample. The results are shown in Table 1.
  • Samples 2 to 7 are examples, and Sample 1 and Sample 8 are comparative examples.
  • a composite oxide such as a YAG phase (Y 3 Al 5 O 12 ) or a YAP phase (YAlO 3 ) was detected in the grain boundary phase.
  • the composite oxide was specified by XRD.
  • Example 2 Next, the same experiment as in Example 1 was performed using Gd 2 O 3 (samples 9 to 14) as the first sintering aid and alumina as the second sintering aid.
  • the average particle size of the aluminum nitride powder (impurity oxygen content 1.2 mass%), the first sintering aid, and the second sintering aid were all those having an average particle size of 1.2 ⁇ m.
  • the sintering temperature was in the range of 1700-1800 ° C., and all were sintered in a nitrogen atmosphere.
  • the same measurement as in Example 1 was performed on each obtained sample. The results are shown in Table 2.
  • Samples 10 to 13 are examples, and Sample 9 and Sample 14 are comparative examples.
  • a complex oxide such as Ga 3 Al 5 O 12 or GaAlO 3 was detected in the grain boundary phase. It can be seen that the linear expansion coefficient can be controlled even if the first sintering aid is changed to Gd 2 O 3 .
  • Example 3 Next, the same experiment as in Example 1 was performed using Dy 2 O 3 (samples 15 to 20) as the first sintering aid and alumina as the second sintering aid.
  • the average particle size of the aluminum nitride powder (impurity oxygen content 1.2 mass%), the first sintering aid, and the second sintering aid were all those having an average particle size of 1.2 ⁇ m.
  • the sintering temperature was in the range of 1700-1800 ° C., and all were sintered in a nitrogen atmosphere.
  • the same measurement as in Example 1 was performed on each obtained sample. The results are shown in Table 3.
  • Samples 16 to 19 are examples, and Sample 15 and Sample 20 are comparative examples.
  • a composite oxide such as Dy 3 Al 5 O 12 or DyAlO 3 was detected in the grain boundary phase. It can be seen that the linear expansion coefficient can be controlled even if the first sintering aid is changed to Dy 2 O 3 .
  • the composite oxide was specified by XRD.
  • Example 4 Ho 2 O 3 (sample 21), Er 2 O 3 (sample 22), Yb 2 O 3 (sample 23) were used as the first sintering aid, and alumina was used as the second sintering aid. . Further, the addition amount was adjusted so that the volume fraction of the AlN sintered body was 80%. The average particle size of the aluminum nitride powder (impurity oxygen content 1.2 mass%), the first sintering aid, and the second sintering aid were all those having an average particle size of 1.2 ⁇ m. The sintering temperature was in the range of 1700-1800 ° C., and all were sintered in a nitrogen atmosphere. Measurements similar to those in Examples 1 to 3 were performed on the obtained samples. The results are shown in Table 4.
  • Aluminum nitride powder impurity oxygen content 0.8 mass%), the first sintering aid, the second sintering aid, and the third sintering aid were used with an average particle size of 1 ⁇ m.
  • the sintering temperature was 1720 ° C. The results are shown in Table 5.
  • Example 6 The polycrystalline aluminum nitride substrates of Samples 1 to 25 were processed into a disk shape having a diameter of 2 inches (50.8 mm), a thickness of 1 mm, and a surface roughness Ra of 0.01 ⁇ m. A GaN semiconductor crystal was grown using each sample.
  • a sample (polycrystalline aluminum nitride substrate) is placed on a susceptor in an MOCVD apparatus, and TMG gas (trimethylgallium gas) and ammonia gas are flown at 500 to 600 ° C. by metal organic vapor phase epitaxy (MOCVD method).
  • a buffer layer was formed.
  • the film thickness of the GaN layer was increased at 1000 to 1100 ° C. (crystal growth was performed).
  • the buffer layer was 0.02 ⁇ m, and the final GaN layer thickness was 3 ⁇ m.
  • the GaN layer was provided on the surface of the polycrystalline aluminum nitride substrate (diameter 2 inches).
  • the average linear expansion coefficient at 20 ° C. to 600 ° C. is 4.9 ⁇ 10 ⁇ 6 / K or more and 6.1 ⁇ 10 ⁇ 6 / K or less, and 20 ° C. to 1100 It can be seen that it is important that the average linear expansion coefficient up to ° C. is 5.5 ⁇ 10 ⁇ 6 / K or more and 6.6 ⁇ 10 ⁇ 6 / K or less.
  • samples of the examples (Samples 2 to 7, 10 to 13, 16 to 19, and 21 to 25) have a high heat conductivity of 46 W / m / K or more, and thus have good heat dissipation. It is thought that it is effective in the effect which can suppress a malfunction. As a result, light emitting elements such as LEDs and semiconductor lasers can be efficiently manufactured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Ceramic Products (AREA)
  • Led Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 GaNと線膨張係数が近似した多結晶窒化アルミニウム基板を提供する。GaNベース半導体を結晶成長させるための基板材料としての多結晶窒化アルミニウム基材であって、20℃から600℃までの平均線膨張係数が4.9×10-6/K以上6.1×10-6/K以下、20℃から1100℃までの平均線膨張係数が5.5×10-6/K以上6.6×10-6/K以下であることを特徴とする。

Description

GaNベース半導体結晶成長用多結晶窒化アルミニウム基材およびそれを用いたGaNベース半導体の製造方法
 本発明は、GaNベース半導体結晶成長用多結晶窒化アルミニウム基材およびそれを用いたGaNベース半導体の製造方法に関する。
 環境問題や省エネルギーの観点から新たな光源としてのLED(発光ダイオード)や半導体レーザ等の光半導体デバイスやワイドバンドギャップ半導体を用いたパワーデバイスの開発が推し進められている。
 これらのデバイスに使用される半導体としては、その構成層としてGaN、InGaN、AlGaN、InAlGaNなどの窒化ガリウム(GaN)ベース半導体が注目され、使われている。例えば、LED素子においてはGaNベースなどの薄い層を何層にも積層した構造となっている。例えば、特開2004-111766号公報(特許文献1)では、GaN層とGaAlN層の多層構造が用いられている。この薄い半導体層をいかに効率よくかつ均一な厚さで製造できるかによって半導体素子の歩留まりが決まっていく。
 窒化ガリウム(GaN)ベースの半導体デバイスの製造には、通常、エピタキシャル成長法を用いる。エピタキシャル基板としては、これまでサファイアやSiC基板が使用されていたが、コストの高さ(サファイア、SiC)や、窒化ガリウムと基板材との線膨張係数の差による反り等の問題があった。
 GaN(a面)の線膨張係数は5.59×10-6/Kであるのに対し、サファイアは約7~8×10-6/K、SiCは約6.6×10-6/K、であり、線膨張係数の差は、約1×10-6/K以上であった。例えば、特許文献1の[0051]段落では、約1100℃の高温下でサファイア基板上にGaN層をエピタキシャル成長(エピ成長)させている。これだけの高温下に晒されると線膨張係数の差による反りの問題は大きくなる。また、近年は半導体チップの取り数向上のためにサファイア基板を大きくしてGaN層を成長させることが望まれている。
特開2004-111766号公報
 GaN(窒化ガリウム)ベース結晶とエピタキシャル基板との線膨張係数の差のために、エピタキシャル成長後に反りが発生し、最悪の場合は割れるという問題があった。そのため、反りのないGaNエピタキシャル基板の成長法が望まれていた。しかしながら、未だ満足な方法は開発されていない状況である。また、製造コスト削減のためにエピタキシャル基板のコスト低減を図る必要があった。したがって、本発明の目的は、反りの少ない窒化ガリウムベース結晶を得るための安価な材料を得ることである。
 本発明による多結晶窒化アルミニウム基材は、GaNベース半導体を粒成長させるための基板材料としての多結晶窒化アルミニウム基材であって、20℃から600℃までの平均線膨張係数が4.9×10-6/K以上6.1×10-6/K以下、20℃から1100℃までの平均線膨張係数が5.5×10-6/K以上6.6×10-6/K以下であることを特徴とするものである。
 また、本発明の態様によれば、多結晶窒化アルミニウム基材は、窒化アルミニウム結晶と粒界相からなり、窒化アルミニウム結晶の含有量が体積分立で56.2%以上93.9%以下であることが好ましい。
 また、本発明の態様によれば、粒界相は、Ca、Y、La、Ce、Nd、Pr,Eu、Gd,Dy,Ho,Er、Yb,およびLuからなる群から選ばれる少なくとも一種とアルミニウムとの複合酸化物を含むことが好ましい。
 また、本発明の態様によれば、粒界相は、窒化チタン(TiN)を含むことが好ましい。
 また、本発明の態様によれば、窒化アルミニウム結晶粒子の平均粒径が7μm以下であることが好ましい。
 また、本発明の態様によれば、熱伝導率が46W/m・K以上であることが好ましい。
 また、本発明の態様によれば、多結晶窒化アルミニウム基材の直径が50mm以上であることが好ましい。
 また、本発明の態様によれば、多結晶窒化アルミニウム基材の表面粗さ(Ra)が、0.2μm以下、厚さが3mm以下であることが好ましい。
 また、本発明の別の態様によるGaNベース半導体の製造方法は、上記多結晶窒化アルミニウム基材を用いてGaNベース半導体結晶を成長させることを特徴とするものである。
 また、本発明の態様によれば、GaNベース半導体をバッファー層を介して結晶成長させることが好ましい。
 また、本発明の態様によれば、GaNベース半導体が、GaN、InGaN、AlGaN、およびInAlGaNからなる群から選択される一種から選ばれることが好ましい。
 本発明によれば、常温から1100℃までの線熱膨張係数がGaNに近似した多結晶窒化アルミニウム基板を提供できる。また、これを使ったGaNベース半導体を歩留まり良く得ることを可能とするものである。
本発明によるGaNベース半導体結晶成長用多結晶窒化アルミニウム基材の一例を示す図。 本発明によるGaNベース半導体の製造方法の一例を示す図。
 本発明による多結晶窒化アルミニウム基板は、GaNベース半導体を結晶成長させるための基板材料としての多結晶窒化アルミニウム基材であって、20℃から600℃までの平均線膨張係数が4.9×10-6/K以上6.1×10-6/K以下、20℃から1100℃までの平均線膨張係数が5.5×10-6/K以上6.6×10-6/K以下であることを特徴とするものである。
 多結晶窒化アルミニウム基板とは、窒化アルミニウム粉末を焼結により固めた基板を意味する。本発明は、多結晶窒化アルミニウム基板の20℃から600℃までの平均線膨張係数が4.9×10-6/K以上6.1×10-6/K以下、20℃から1100℃までの平均線膨張係数が5.5×10-6/K以上6.6×10-6/K以下であることを特徴とするものである。
 線膨張係数とは、温度変化に対し長さの変化量を示した値を意味する。測定方法は、JIS R1618に準じた方法より行うものとする。また、単位は「/K(ケルビン)」が使われている。本発明では、例えば20℃から600℃の平均線膨張係数は20℃を基準としたときの600℃に於ける長さの増加率(膨張率)を温度差である580℃で除した値である。また、20℃から1100℃の線膨張係数は、20℃を基準としたときの1100℃に於ける長さの増加率(膨張率)を温度差である1080℃で除した値である。
 一般的に、エピタキシャル成長において考慮しなければならないのは、主にGaN(a面)の線膨張係数である。GaN(a面)の線膨張係数は常温近傍に於いて5.59×10-6/Kであるのに対し、サファイアは約7~8×10-6/K、SiCは約6.6×10-6/K、であり約1.0×10-6/Kの線膨張係数の差があった。また、サファイアやSiCは単結晶体であることから、材質としての線膨張係数の調整ができない。線膨張係数の差を問題なくするには、GaNベース半導体を小さくする必要があるが半導体素子(LED、半導体レーザなど)の量産性が悪く、コストアップの要因となる。
 それに対し、本発明による多結晶窒化アルミニウム基板は、20℃から600℃までの平均線膨張係数が4.9×10-6/K以上6.1×10-6/K以下、20℃から1100℃までの平均線膨張係数が5.5×10-6/K以上6.6×10-6/K以下であるため、GaNベース半導体を大口径化しても反りの問題を低減できるので、半導体素子の量産性を向上させることができる。
 多結晶窒化アルミニウム基材は、窒化アルミニウム結晶と粒界相からなり、窒化アルミニウム結晶の含有量が体積分率で56.2%以上93.9%以下であることが好ましい。多結晶体は窒化アルミニウム粉末(AlN粉末)を固めて焼結したものである。焼結性を上げるために焼結助剤を用いることが好ましい。窒化アルミニウム結晶の含有量が体積分率56.2%以上93.9%以下とは、残部が粒界相であることを意味する。窒化アルミニウム結晶の割合が56.2%未満であったり、93.9%を超えると、目的とする線膨張係数が得られ難い。なお、気孔率は1体積%以下、さらには0.5体積%以下であることが好ましい。多結晶窒化アルミニウム基板上にGaN層を成長させるため、基板表面は気孔による凹凸がなく平坦であることが必要である。そのため、基板の表面粗さRaは0.2μm以下であることが好ましく、Raが0.05μm以下となるような鏡面加工を基板に施すことが好ましい。
 また、粒界相は、Ca、Y、La、Ce、Nd、Pr,Eu、Gd,Dy,Ho,Er、Yb,およびLuからなる群から選ばれる少なくとも一種とアルミニウムとの複合酸化物を含むことが好ましい。粒界相は、焼結工程中に焼結助剤が変化してできる相である。その粒界相があることにより焼結性が向上すると共に線熱膨張係数の制御が行い易い。これら粒界相成分は、窒化アルミニウム結晶よりも線膨張係数が大きいので、窒化アルミニウム基板の線膨張係数の調整には効果的である。複合酸化物になっているか否かはXRDにて分析可能である。
 第一の焼結助剤であるCa、Y、La、Ce、Nd、Pr,Eu、Gd,Dy,Ho,Er、Yb,およびLuからなる群から選ばれる少なくとも一種は、焼結性を上げる効果があり、酸化物として添加することが好ましい。これら希土類元素を用いれば常圧焼結も可能である。また、第二の焼結助剤であるアルミニウムの酸化物は、窒化アルミニウム粉末中の不純物酸素を活用してもよいし、焼結助剤として酸化アルミニウムを添加する方式でもよい。酸化アルミニウムの存在は、第一の焼結助剤と複合酸化物を形成し易いためである。また、これら複合酸化物は線膨張係数を調整し易く、かつ1100℃付近での高温下でも安定な材料である。第一の焼結助剤として、Ca、Y、La、Ce、Nd、Pr,Eu、Gd,Dy,Ho,Er、Yb,およびLuからなる群から選ばれる少なくとも一種を、酸化物換算で4~30質量%含むことが好ましい。また、第二の焼結助剤としてアルミニウムを、酸化物換算で1~23質量%含むことが好ましい。
 また、線膨張係数の調整には、第三の焼結助剤として、TiN(窒化チタン)を5~25質量%添加することも効果的である。第一の焼結助剤である上記の希土類元素は高価であるから、その一部をTiNに置き換えることにより、線膨張係数を制御した上でコストダウンを可能とすることができる。また、第一の焼結助剤と併用することにより常圧焼結での製造を可能とする。
 なお、粒界相成分として第一の焼結助剤を用いずに、TiNのみで線膨張係数を調整することも可能である。ただし、第一の焼結助剤を用いないことから焼結性が悪いため、ホットプレスなどの加圧焼結により焼結することが好ましい。
 また、窒化アルミニウム結晶粒子の平均粒径は7μm以下であることが好ましい。線熱膨張係数の制御には、窒化アルミニウム結晶粒子同士の粒界に窒化アルミニウム結晶粒子より線膨張係数の大きな粒界相が存在することが効果的である。窒化アルミニウム結晶粒子があまり大きいと、窒化アルミニウム結晶粒子と粒界相との存在割合が不均一になり、線膨張係数の部分的なバラツキを生じる恐れがある。平均粒径7μm以下の比較的小さな粒径であれば部分的なバラツキを低減できる。なお、平均粒径の下限値は特に限定されるものではないが、1μm以上が好ましい。平均粒径が1μm未満では原料粉末を粒径の小さなものを使わなければならず、原料コストの増加を招く。また、平均粒径を7μm以下とすることにより、研磨加工により窒化アルミニウム結晶粒子が脱落したとしても大きなクレータ(脱粒痕)にならず平坦面を得やすい。GaNベースの結晶を成長させるには平坦面を得ることも重要である。
 また、多結晶窒化アルミニウム基板は、熱伝導率が46W/m・K以上であることが好ましい。熱伝導率が高いとGaNベース半導体を結晶成長工程中の放熱性が上がり、膨張による反りの発生を抑制できる。例えば、サファイア基板の熱伝導率は約46W/m・K程度である。熱伝導率の高い窒化アルミニウム結晶粒子を主相とすることにより、それ以上の熱伝導率を実現することができる。なお、熱伝導率の上限は特に限定されるものではないが、焼結助剤を多く含んでいると、その熱伝導率は170W/m・K以下となる。
 以上のような多結晶窒化アルミニウム基板であれば、高温下における反りの問題を抑制できるので、基板の直径Lが100mm以上と大型にすることも可能である。なお、直径の上限は特に限定されるものではないが、作り易さを考慮すれば、直径Lが300mm以下であることが好ましい。なお、図1では円盤状で示したが、結晶成長面が四角形、長方形であってもよい。
 また、基板の厚さは3mm以下であることが好ましい。本発明による基板であれば、厚さを3mm以下と薄くした上で熱膨張係数の調整が可能となる。
 またさらに、基板の厚さWは、0.3~1.5mm、さらには0.5~1.0mmであることが好ましい。基板が1.5mmを超えて厚いと放熱性が悪くなる。一方、0.3mmより薄いと基板の強度が不十分になり取扱い性が低下する。
 このような多結晶窒化アルミニウム基板は、GaNベース半導体を結晶成長させるための基板材料として有効である。以下、上記した多結晶窒化アルミニウム基板を用いてGaNベース半導体を製造する方法について説明する。図2は、GaNベース半導体の製造工程の一例を示した概略断面図である。図中、1は多結晶窒化アルミニウム基材、2はGaNベース半導体層、3はバッファー層である。まず、多結晶窒化アルミニウム基板1上にバッファー層を形成する。バッファー層は、GaNベース半導体層と同じ材質であることが好ましい。次に、バッファー層の上にGaNベース半導体を結晶成長させていく。
 GaNベース半導体は、GaN、InGaN、AlGaN、およびInAlGaNからなる群から選択される一種であることが好ましい。いずれもGaNをベースとするものであり、GaN(a面)の線膨張係数は常温で5.59×10-6/K近傍のものである。GaNベース半導体の結晶成長工程は、サセプタ(図示しない)上に多結晶窒化アルミニウム基板1を配置し、500~600℃にて有機金属気相成長法(MOCVD法)により、TMGガス(トリメチルガリウムガス)、アンモニアガスを流し、GaNバッファー層を形成する。次に、1000~1100℃にてGaN層の膜厚を厚くさせる(結晶成長させる)。MOCVD法は500~1100℃の高温下で行われるものであるから、この温度範囲での線膨張係数の制御が有効なのである。特に、1100℃の高温から600℃までの冷却工程における基板の膨張または収縮が反りに影響を与える。本発明による多結晶窒化アルミニウム基板では、線膨張係数をGaNベース半導体に近似させてあるので反りの問題を大幅に抑制できる。このため、多結晶窒化アルミニウム基板を直径50mm以上と大型化しても反りの問題を抑制できる。その結果、GaNベース半導体を大きな範囲(面積)で成長させることができるので、発光素子を一度に多数個取りできるため量産性が向上する。なお、LEDや半導体レーザなどの発光素子を製造する場合には、GaNベース半導体層や絶縁層など各種層の形成やエッチングなどを行って製造していくことは言うまでもない。また、発光素子を製造する際に多結晶窒化アルミニウム基板が不要な場合は除去してもかまわない。粒界相を具備する多結晶窒化アルミニウム基板であれば、アルカリ溶液などにより除去し易い。また、削り取ることも可能である。また、基板除去工程の量産性を考慮すると、多結晶窒化アルミニウム基板の厚さは3mm以下であることが好ましい。
 次に、本発明による多結晶窒化アルミニウム基板の製造方法について説明する。本発明による多結晶窒化アルミニウム基板は、その製造方法は特に限定されるものではないが、歩留まり良く製造する方法として次の方法が挙げられる。
 まず、原料粉末として窒化アルミニウム粉末を用意する。窒化アルミニウム粉末は平均粒径0.6~2μmであることが好ましい。平均粒径0.6μm未満では粒径が細かすぎて窒化アルミニウム粉末の価格が高くなる恐れがある。また、2μmを超えると焼結後の窒化アルミニウム結晶の平均粒径が7μmを超える可能性が高い。より、好ましくは平均粒径1.0~1.5μmの窒化アルミニウム粉末を使うことである。また、窒化アルミニウム粉末中の酸素含有量は0.6~2質量%のものが好ましい。
 次に、焼結助剤として、第一の焼結助剤(Ca、Y、La、Ce、Nd、Pr,Eu、Gd,Dy,Ho,Er、Yb,およびLuからなる群から選ばれる少なくとも一種からなる酸化物)、第二の焼結助剤(アルミニウムの酸化物)、第三の焼結助剤(TiN)を必要量調製し、窒化アルミニウム粉末と混合する。焼結助剤の平均粒径は、窒化アルミニウム粉末と同程度の0.6~2μmであることが好ましい。焼結助剤の添加量は、窒化アルミニウム結晶の体積分率で56.2%以上93.9%以下の範囲になるように混合することが好ましい。焼結助剤粉末の平均粒径を、窒化アルミニウム粉末と同程度にしておけば、体積分率の調製も行い易い。
 次に、窒化アルミニウム粉末、焼結助剤粉末、バインダ、溶剤、および分散材等を混合し、原料スラリーを調製する。
 続いて、調製した原料スラリーを使って成形体を作製する。成形体の作製方法は、ドクターブレード法を使ったシート成形や、スラリーから作製した造粒粉を金型にて成形したプレス成形が挙げられる。ドクターブレード法であれば、直径50mm以上、さらには100mm以上の大型の成形体を作製し易い。また、成形体がシート状の場合、必要であれば成形体を加工して円盤状の成形体を作製してもよい。
 次に、成形体の焼結工程を実施する。焼結温度は、1600~1900℃で行うことが好ましい。焼結助剤として第一の焼結助剤を用いている場合は常圧焼結法で焼結できる。第一の焼結助剤を用いない場合は、ホットプレスなどの加圧焼結法を用いることが好ましい。また、焼結雰囲気は不活性雰囲気中が好ましい。
 このようにして得られた焼結体のGaNベース半導体形成面に、鏡面加工を施す。表面加工は、ダイヤモンド砥石を用いて、表面粗さRa0.2μm以下、好ましくは0.05μm以下となるように研磨していく。また、必要に応じ、側面や裏面の形状を整える加工を行ってもよい。
 以下、実施例により本発明をより詳細に説明するが、本発明がこれら実施例に限定して解釈されるものではない。
実施例1
 窒化アルミニウム粉末(平均粒径1μm、酸素含有量1.0質量%)とイットリア(Y)粉末(平均粒径1μm)とアルミナ(Al)粉末(平均粒径1μm)とを、表1に示した割合で混合して原料粉末を調製した。なお、表中の混合量は、第一の焼結助剤であるイットリア、第二の焼結助剤であるアルミナ、および窒化アルミニウム粉末を混合して100重量部となるように混合したものである。
 混合には、トルエン、エタノール等の溶剤に原料粉を添加し、更に分散剤を添加した。その後、有機バインダと可塑剤とを添加してさらに混合を行い、ドクターブレード法にて厚さ1.2mmのグリーンシートを成形した。このグリーンシートを縦170mm×横170mmに裁断した後、脱脂し、1700℃×5時間で窒素中にて焼結し、試料1の多結晶窒化アルミニウム基板を作製した。また、同様の作業を繰り返して、試料2~8の多結晶窒化アルミニウム基板を作製した。
 各試料の線熱膨張係数を測定した。線膨張係数の測定はJIS R1618に準じて行った。20~1300℃までを約0.1℃から0.3℃間隔にて測定したが、代表値として100℃間隔の値を表示した。次に、粒界相の構成相をXRDにて分析した。また、熱伝導率はレーザフラッシュ法により測定した。また、窒化アルミニウム結晶粒子の平均粒径を測定した。窒化アルミニウム結晶粒子の平均粒径は、試料の任意の部分の断面の拡大写真(100μm×100μm)を撮り、線インターセプト法により測定した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1において、試料2~7が実施例、試料1および試料8が比較例になる。各試料は粒界相にYAG相(YAl12)またはYAP相(YAlO)といった複合酸化物が検出された。なお、複合酸化物の特定は、XRDにより行った。
実施例2
 次に、第一の焼結助剤としてGd(試料9~14)を第二の焼結助剤としてアルミナを使用して実施例1と同様の実験を行った。なお、窒化アルミニウム粉末(不純物酸素量1.2質量%)、第一の焼結助剤および第二の焼結助剤の平均粒径はいずれも平均粒径1.2μmのものを用いた。焼結温度は1700~1800℃の範囲であり、いずれも窒素雰囲気中で焼結した。得られた各試料に対し、実施例1と同様の測定を行った。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2において、試料10~13が実施例、試料9および試料14が比較例になる。各試料は粒界相にGaAl12またはGaAlOといった複合酸化物が検出された。第一の焼結助剤をGdに変更しても、線膨張係数の制御は可能であることが分かる。
実施例3
 次に、第一の焼結助剤としてDy(試料15~20)を第二の焼結助剤としてアルミナを使用して実施例1と同様の実験を行った。なお、窒化アルミニウム粉末(不純物酸素量1.2質量%)、第一の焼結助剤および第二の焼結助剤の平均粒径はいずれも平均粒径1.2μmのものを用いた。焼結温度は1700~1800℃の範囲であり、いずれも窒素雰囲気中で焼結した。得られた各試料に対し、実施例1と同様の測定を行った。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3において、試料16~19が実施例、試料15および試料20が比較例になる。各試料は粒界相にDyAl12またはDyAlOといった複合酸化物が検出された。第一の焼結助剤をDyに変更しても、線膨張係数の制御は可能であることが分かる。なお、複合酸化物の特定は、XRDにより行った。
実施例4
 次に、第一の焼結助剤としてHo(試料21),Er(試料22)、Yb(試料23)、第二の焼結助剤としてアルミナを使用した。また、添加量はAlN焼結体の体積分率が80%になるような添加量に調整した。なお、窒化アルミニウム粉末(不純物酸素量1.2質量%)、第一の焼結助剤および第二の焼結助剤の平均粒径はいずれも平均粒径1.2μmのものを用いた。焼結温度は1700~1800℃の範囲であり、いずれも窒素雰囲気中で焼結した。得られた各試料に対し、実施例1~3と同様の測定を行った。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4から、実施例1~3以外の焼結助剤に変更しても線膨張係数の制御は可能であることが分かる。
実施例5
 次に、第一の焼結助剤としてイットリア、第二の焼結助剤としてアルミナ、第三の焼結助剤として窒化チタン(TiN)(線膨張係数=9.4×10-6/K)を使用して多結晶窒化アルミニウム基板を作製した。窒化アルミニウム粉末(不純物酸素量0.8質量%)、第一の焼結助剤、第二の焼結助剤および第三の焼結助剤ともに平均粒径1μmのものを用いた。また、焼結温度は1720℃で行った。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5から、TiNを用いても線膨張係数の制御が可能であることが分かる。
実施例6
 試料1~25の多結晶窒化アルミニウム基板を加工して、直径2インチ(50.8mm)×厚さ1mm、表面粗さRa0.01μmの円盤状に加工した。各試料を用いてGaN半導体を結晶成長させた。
 MOCVD装置内のサセプタ上に試料(多結晶窒化アルミニウム基板)を配置し、500~600℃にて有機金属気相成長法(MOCVD法)により、TMGガス(トリメチルガリウムガス)、アンモニアガスを流しGaNバッファー層を形成した。次に、1000~1100℃にてGaN層の膜厚を厚くさせた(結晶成長させた)。バッファー層は0.02μm、最終的なGaN層の厚さは3μmとした。また、GaN層は多結晶窒化アルミニウム基板表面(直径2インチ)に設けた。
 得られたGaNベース半導体の反りの有無を測定した。反りの不具合がなかったもの(次工程に使えるもの)を「○」、反りによって不良となったもの(次工程に使えないもの)を「×」で示した。その結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 反りの少ないGaN単結晶を得るためには、20℃から600℃に於ける平均線膨張係数が4.9×10-6/K以上6.1×10-6/K以下、 20℃から1100℃までの平均線膨張係数が5.5×10-6/K以上6.6×10-6/K以下であることが重要であることが分かる。
 また、実施例の試料(試料2~7、10~13、16~19、21~25)は、熱伝導率も46W/m/K以上と高いことから放熱性が良く、この点も反りの不具合を抑制できる効果に有効であると考えられる。この結果、LEDや半導体レーザなどの発光素子を効率よく製造することができる。
 1…多結晶窒化アルミニウム基材
 2…GaNベース半導体層
 3…バッファー層
 L…多結晶窒化アルミニウム基材の直径
 W…多結晶窒化アルミニウム基材の厚さ

Claims (11)

  1.  GaNベース半導体を結晶成長させるための基板材料としての多結晶窒化アルミニウム基材であって、20℃から600℃までの平均線膨張係数が4.9×10-6/K以上6.1×10-6/K以下、20℃から1100℃までの平均線膨張係数が5.5×10-6/K以上6.6×10-6/K以下であることを特徴とする、多結晶窒化アルミニウム基材。
  2.  多結晶窒化アルミニウム基材は窒化アルミニウム結晶と粒界相からなり、窒化アルミニウム結晶の含有量が、体積分率で56.2%以上93.9%以下である、請求項1に記載の多結晶窒化アルミニウム基材。
  3.  粒界相は、Ca、Y、La、Ce、Nd、Pr,Eu、Gd,Dy,Ho,Er、Yb,Luからなる群から選ばれる少なくとも一種とアルミニウムとの複合酸化物を含む、請求項1または2に記載の多結晶窒化アルミニウム基材。
  4.  粒界相は窒化チタン(TiN)を含む、請求項1~3のいずれか1項に記載の多結晶窒化アルミニウム基材。
  5.  窒化アルミニウム結晶粒子の平均粒径が7μm以下である、請求項1~4のいずれか1項に記載の多結晶窒化アルミニウム基材。
  6.  熱伝導率が46W/m・K以上である、請求項1~5のいずれか1項に記載の多結晶窒化アルミニウム基材。
  7.  直径が50mm以上である、請求項1~6のいずれか1項に記載の多結晶窒化アルミニウム基材。
  8.  表面粗さ(Ra)が0.2μm以下であり、厚さが3mm以下である、請求項1~7のいずれか1項に記載の多結晶窒化アルミニウム基材。
  9.  GaNベース半導体を製造する方法であって、請求項1~8のいずれか1項に記載の多結晶窒化アルミニウム基材を用いてGaNベース半導体結晶を成長させることを含むことを特徴とする、GaNベース半導体の製造方法。
  10.  GaNベース半導体をバッファー層を介して結晶成長させる、請求項9記載のGaNベース半導体の製造方法。
  11.  GaNベース半導体が、GaN、InGaN、AlGaN、およびInAlGaNからなる群から選択される一種からなる、請求項9または10に記載のGaNベース半導体の製造方法。
PCT/JP2011/067749 2010-08-10 2011-08-03 GaNベース半導体結晶成長用多結晶窒化アルミニウム基材およびそれを用いたGaNベース半導体の製造方法 WO2012020676A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012528650A JP6002038B2 (ja) 2010-08-10 2011-08-03 GaNベース半導体結晶成長用多結晶窒化アルミニウム基材およびそれを用いたGaNベース半導体の製造方法
US13/806,320 US20130157445A1 (en) 2010-08-10 2011-08-03 POLYCRYSTALLINE ALUMINUM NITRIDE BASE MATERIAL FOR CRYSTAL GROWTH OF GaN-BASE SEMICONDUCTOR AND METHOD FOR MANUFACTURING GaN-BASE SEMICONDUCTOR USING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010179833 2010-08-10
JP2010-179833 2010-08-10

Publications (1)

Publication Number Publication Date
WO2012020676A1 true WO2012020676A1 (ja) 2012-02-16

Family

ID=45567645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067749 WO2012020676A1 (ja) 2010-08-10 2011-08-03 GaNベース半導体結晶成長用多結晶窒化アルミニウム基材およびそれを用いたGaNベース半導体の製造方法

Country Status (3)

Country Link
US (1) US20130157445A1 (ja)
JP (1) JP6002038B2 (ja)
WO (1) WO2012020676A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013212963A (ja) * 2012-04-03 2013-10-17 Sumitomo Electric Ind Ltd AlN系膜の製造方法およびそれに用いられる複合基板
WO2014004079A1 (en) * 2012-06-29 2014-01-03 Corning Incorporated Glass-ceramic substrates for semiconductor processing
WO2015146978A1 (ja) * 2014-03-25 2015-10-01 住友電気工業株式会社 複合基板およびそれを用いた半導体ウエハの製造方法
JP2016046459A (ja) * 2014-08-26 2016-04-04 住友電気工業株式会社 電界効果型トランジスタおよびその製造方法
JP2018080103A (ja) * 2010-12-14 2018-05-24 ヘクサテック,インコーポレイテッド 多結晶質窒化アルミニウム焼結体の熱膨張処理、および半導体製造へのその応用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016058693A (ja) * 2014-09-12 2016-04-21 株式会社東芝 半導体装置、半導体ウェーハ、及び、半導体装置の製造方法
JP6662160B2 (ja) * 2016-04-07 2020-03-11 住友電気工業株式会社 多結晶セラミック基板、接合層付き多結晶セラミック基板および積層基板
US10355120B2 (en) 2017-01-18 2019-07-16 QROMIS, Inc. Gallium nitride epitaxial structures for power devices
US10759712B2 (en) * 2017-11-09 2020-09-01 Canon Kabushiki Kaisha Powder for additive modeling, structure, semiconductor production device component, and semiconductor production device
US11319254B2 (en) * 2018-09-19 2022-05-03 Maruwa Co., Ltd. Aluminum nitride sintered body and method for producing same
DE102021124366A1 (de) * 2021-09-21 2023-03-23 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur herstellung eines wachstumssubstrats, wachstumssubstrat, und verfahren zur herstellung einer vielzahl optoelektronischer halbleiterchips

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284578A (ja) * 2001-03-27 2002-10-03 Ngk Insulators Ltd 焼結体、抵抗体、半導体製造装置用部材、板状部材および積層体
JP2003165798A (ja) * 2001-11-28 2003-06-10 Hitachi Cable Ltd 窒化ガリウム単結晶基板の製造方法、窒化ガリウム単結晶のエピタキシャル成長自立基板、及びその上に形成したデバイス素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001114563A (ja) * 1999-10-14 2001-04-24 Tokai Konetsu Kogyo Co Ltd セラミック抵抗体及びその製造方法
JPWO2004005216A1 (ja) * 2002-07-09 2005-11-04 宮原 健一郎 薄膜形成用基板、薄膜基板、光導波路、発光素子、及び発光素子搭載用基板
JP2004224610A (ja) * 2003-01-21 2004-08-12 Toshiba Ceramics Co Ltd 低発塵性窒化アルミニウム
JP2006056731A (ja) * 2004-08-18 2006-03-02 Taiheiyo Cement Corp 窒化アルミニウム焼結体およびそれを用いた静電チャック
WO2006116030A2 (en) * 2005-04-21 2006-11-02 Aonex Technologies, Inc. Bonded intermediate substrate and method of making same
JP2010138012A (ja) * 2008-12-10 2010-06-24 Meijo Univ 単結晶窒化アルミニウム板状体の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284578A (ja) * 2001-03-27 2002-10-03 Ngk Insulators Ltd 焼結体、抵抗体、半導体製造装置用部材、板状部材および積層体
JP2003165798A (ja) * 2001-11-28 2003-06-10 Hitachi Cable Ltd 窒化ガリウム単結晶基板の製造方法、窒化ガリウム単結晶のエピタキシャル成長自立基板、及びその上に形成したデバイス素子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"CeramTec North America Corporation Material Selection Guide", CERAMTEC NORTH AMERICA CORPORATION, 2003, Retrieved from the Internet <URL:http://www.eyundns.net/ceramtec/templates/default/pdf/materilals_catalog.pdf> [retrieved on 20110829] *
T. PINNINGTON ET AL.: "InGaN/GaN multi-quantum well and LED growth on wafer-bonded sapphire- on-polycrystalline A1N substrates by metalorganic chemical vapor deposition", JOURNAL OF CRYSTAL GROWTH, vol. 310, 1 May 2008 (2008-05-01), pages 2514 - 2519, XP022620138, doi:10.1016/j.jcrysgro.2008.01.022 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018080103A (ja) * 2010-12-14 2018-05-24 ヘクサテック,インコーポレイテッド 多結晶質窒化アルミニウム焼結体の熱膨張処理、および半導体製造へのその応用
JP2013212963A (ja) * 2012-04-03 2013-10-17 Sumitomo Electric Ind Ltd AlN系膜の製造方法およびそれに用いられる複合基板
WO2014004079A1 (en) * 2012-06-29 2014-01-03 Corning Incorporated Glass-ceramic substrates for semiconductor processing
CN104703939A (zh) * 2012-06-29 2015-06-10 康宁股份有限公司 用于半导体加工的玻璃陶瓷基材
WO2015146978A1 (ja) * 2014-03-25 2015-10-01 住友電気工業株式会社 複合基板およびそれを用いた半導体ウエハの製造方法
JP2015182928A (ja) * 2014-03-25 2015-10-22 住友電気工業株式会社 複合基板およびそれを用いた半導体ウエハの製造方法
JP2016046459A (ja) * 2014-08-26 2016-04-04 住友電気工業株式会社 電界効果型トランジスタおよびその製造方法

Also Published As

Publication number Publication date
JP6002038B2 (ja) 2016-10-05
US20130157445A1 (en) 2013-06-20
JPWO2012020676A1 (ja) 2013-10-28

Similar Documents

Publication Publication Date Title
JP6002038B2 (ja) GaNベース半導体結晶成長用多結晶窒化アルミニウム基材およびそれを用いたGaNベース半導体の製造方法
KR102132313B1 (ko) 다결정 질화갈륨 자립 기판 및 그것을 이용한 발광 소자
EP2551892B1 (en) METHOD FOR PRODUCING GaN FILM
JP6253704B2 (ja) GaNベース半導体の製造方法
CN108025979B (zh) 外延生长用取向氧化铝基板
US20210408242A1 (en) Semiconductor film
JP5585570B2 (ja) ムライトを主成分とする焼結体
CN108137411B (zh) 外延生长用取向氧化铝基板
KR20140047607A (ko) AlN 기판 및 그 제조 방법
JP6784870B1 (ja) 半導体膜
JP6562842B2 (ja) 複合基板、発光素子及びそれらの製造方法
JP6339069B2 (ja) 窒化ガリウム結晶の育成方法、複合基板、発光素子の製造方法および結晶育成装置
WO2020195355A1 (ja) 下地基板
JP6331553B2 (ja) 複合基板およびそれを用いた半導体ウエハの製造方法
TWI390609B (zh) AlN-based member for compound semiconductor gas-phase growth device and method for producing compound semiconductor using the same
JP7260869B2 (ja) 多結晶アルミナ基板及び積層体
JP7108783B2 (ja) 半導体膜
JP2018127388A (ja) 多結晶導電体及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11816342

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012528650

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13806320

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11816342

Country of ref document: EP

Kind code of ref document: A1