WO2012017588A1 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2012017588A1
WO2012017588A1 PCT/JP2011/003131 JP2011003131W WO2012017588A1 WO 2012017588 A1 WO2012017588 A1 WO 2012017588A1 JP 2011003131 W JP2011003131 W JP 2011003131W WO 2012017588 A1 WO2012017588 A1 WO 2012017588A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor
semiconductor layer
substrate
electrode
Prior art date
Application number
PCT/JP2011/003131
Other languages
English (en)
French (fr)
Inventor
鶴見 直大
中澤 敏志
亮 梶谷
義治 按田
上田 哲三
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2011800385723A priority Critical patent/CN103053015A/zh
Publication of WO2012017588A1 publication Critical patent/WO2012017588A1/ja
Priority to US13/759,100 priority patent/US20130146946A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/4175Source or drain electrodes for field effect devices for lateral devices where the connection to the source or drain region is done through at least one part of the semiconductor substrate thickness, e.g. with connecting sink or with via-hole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66431Unipolar field-effect transistors with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Definitions

  • the technology described in this specification relates to a field effect semiconductor device made of a III-V nitride semiconductor.
  • Group III-V nitride semiconductors ie, gallium nitride (GaN), aluminum nitride (AlN), and indium nitride (InN), etc., have a general formula of Al x Ga 1-xy In y N (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1) are applied to short-wavelength optical elements by utilizing a wide band gap and a direct transition type band structure which are physical characteristics of the mixed crystal. In addition to this, application to an electronic device is also being considered from the characteristics of a high breakdown electric field and a saturated electron velocity.
  • a two-dimensional electron gas (hereinafter, 2DEG) appearing at the interface between an Al x Ga 1-x N layer (where 0 ⁇ x ⁇ 1) and a GaN layer epitaxially grown sequentially on a semi-insulating substrate.
  • 2DEG two-dimensional electron gas
  • HFETs Hetero-junction field effect transistors
  • this HFET in addition to the supply of electrons from the carrier supply layer (N-type AlGaN Schottky layer), there is charge supply due to the polarization effect of spontaneous polarization and piezoelectric polarization. Its electron density exceeds 10 13 cm ⁇ 2, and is about an order of magnitude higher than that of an AlGaAs / GaAs HFET.
  • an HFET using a group III-V nitride semiconductor can be expected to have a higher drain current density than a GaAs HFET, and an element having a maximum drain current exceeding 1 A / mm has been reported (Non-Patent Document). 1). Furthermore, the III-V nitride semiconductor has a wide band gap (for example, the band gap of GaN is 3.4 eV) and thus exhibits high breakdown voltage characteristics. In an HFET using a III-V nitride semiconductor, the gate-drain electrode is Can be set to 100 V or higher (see Non-Patent Document 1).
  • an electronic device centering on an HFET using a group III-V nitride semiconductor is a high-frequency element and has a smaller design dimension than the conventional one. Applications are being studied as devices that can handle high power.
  • FIG. 5 is a cross-sectional view showing the structure of a conventional FET having a via hole structure.
  • a conventional FET is formed on a channel layer 3 made of a group III-V nitride semiconductor formed on a high resistance substrate 1 made of silicon (Si), and on the channel layer 3. And a Schottky layer 5 made of a group III-V nitride semiconductor.
  • a Schottky electrode 7 and ohmic source electrodes 11 and drain electrodes 13 located on both sides thereof are formed on the Schottky layer 5.
  • a via hole 25 is selectively formed in a part of the high resistance substrate 1, the buffer layer, the channel layer 3, and the Schottky layer 5 located below the source electrode 11, and in the via hole 25, A plug 9 connected to the back electrode 15 is embedded.
  • the source electrode 11 of the FET is connected to the ground power supply via the plug 9 and the back electrode 15.
  • Non-Patent Document 2 Conventional FETs have been reported to improve the linear gain by about 2 dB because the source inductance can be reduced compared to a FET having a source electrode grounded by a wire (see Non-Patent Document 2).
  • an object of the present invention is to reduce a decrease in output due to heat in a semiconductor device having a group III-V nitride semiconductor.
  • FIG. 6 is a diagram showing a comparison of outputs of a conventional semiconductor device when driven in each of a normal mode and a pulse mode. From the results shown in the figure, it can be seen that output reduction is suppressed in the case of pulse driving. This is presumably because the increase in the substrate temperature is reduced in the pulse drive compared to the normal drive.
  • FIG. 7 is a diagram showing a temperature distribution in the semiconductor device during operation.
  • the dark color portion that is, the high temperature portion is the active region (mainly the region between the source and drain), and heat is generated in the active region.
  • the inventors of the present application have come up with the present invention as a result of independent studies.
  • a semiconductor device is provided on a substrate, a first semiconductor layer provided on or above the upper surface of the substrate, and made of a group III-V nitride semiconductor, and on the first semiconductor layer.
  • a second semiconductor layer made of a III-V nitride semiconductor, a back electrode provided on the back surface of the substrate and connected to the ground, and provided on the second semiconductor layer spaced apart from each other A source electrode and a drain electrode; and a gate electrode provided on the second semiconductor layer at a position between the source electrode and the drain electrode and in Schottky contact with the second semiconductor layer;
  • a plug that penetrates through the two semiconductor layers and the first semiconductor layer, reaches at least the substrate, and electrically connects the source electrode and the back electrode.
  • the source electrode is connected to the back electrode and the ground via the plug, not via the wiring above the second semiconductor layer, the source electrode is compared with the case where the source electrode is grounded via the wiring. Inductance can be reduced.
  • a method of manufacturing a semiconductor device includes a substrate, a first semiconductor layer provided on or above the upper surface of the substrate and made of a group III-V nitride semiconductor, and the first semiconductor layer.
  • a source electrode and a drain electrode, and a gate electrode provided on the second semiconductor layer at a position between the source electrode and the drain electrode and in Schottky contact with the second semiconductor layer;
  • a plug that penetrates the second semiconductor layer and the first semiconductor layer, reaches at least the substrate, and electrically connects the source electrode and the back electrode.
  • the semiconductor device according to an example of the present invention it is possible to reduce a decrease in output due to heat as compared with a conventional semiconductor device.
  • FIG. 1A and 1B are a cross-sectional view and a layout view schematically showing the structure of a heterojunction field effect transistor (HFET) according to the first embodiment of the present invention, respectively.
  • d) is an enlarged cross-sectional view showing an example of a connection portion between the source electrode and the plug.
  • FIG. 2 is a cross-sectional view schematically showing the structure of the HFET according to the second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing the structure of the HFET according to the third embodiment of the present invention.
  • 4A and 4B are cross-sectional views schematically showing the structure of the HFET according to the fourth embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing the structure of a conventional FET having a via hole structure.
  • FIG. 6 is a diagram showing a comparison of outputs of a conventional semiconductor device when driven in each of a normal mode and a pulse mode.
  • FIG. 7 is a diagram showing a temperature distribution in the semiconductor device during operation.
  • FIG. 1A and 1B are a cross-sectional view and a layout view schematically showing the structure of a heterojunction field effect transistor (HFET) according to the first embodiment of the present invention, respectively.
  • d) is an enlarged cross-sectional view showing an example of a connection portion between the source electrode and the plug.
  • FIG. 1A shows a cross section in the horizontal direction passing through the plug 109 in FIG.
  • the HFET of this embodiment is provided with a high resistance substrate 101 made of, for example, silicon (Si) and a high resistance aluminum gallium nitride (high resistance substrate 101).
  • a buffer layer 102 made of Al x Ga 1-x N (0 ⁇ x ⁇ 1), and a channel layer (first semiconductor layer) 103 provided on the buffer layer 102 and made of undoped gallium nitride (GaN);
  • a Schottky layer (second semiconductor layer) 104 made of N-type aluminum gallium nitride (Al y Ga 1-y N (0 ⁇ y ⁇ 1)) and provided on the channel layer 103.
  • the thickness of the high resistance substrate 101 is, for example, 500 ⁇ m
  • the thickness of the buffer layer 102 is, for example, 500 nm
  • the thickness of the channel layer 103 is, for example, 1000 nm
  • the thickness of the Schottky layer 104 is, for example, 25 nm.
  • the buffer layer 102 is formed to alleviate lattice mismatch between the high-resistance substrate 101, the channel layer 103, and the Schottky layer 104. Further, in the channel layer 103 heterojunction with the Schottky layer 104, a channel made of 2DEG is formed in the vicinity of the interface with the Schottky layer 104. Note that “the substrate and the buffer layer are“ high resistance ”” means that almost no current flows during the normal operation of the HFET, and the so-called semi-insulating layer is also called a high resistance layer.
  • a first insulating film 105 made of silicon nitride (SiN) having a thickness of 100 nm is provided on the Schottky layer 104, and openings 121, 122, and 123 are provided in the first insulating film 105 so as to be separated from each other. ing.
  • a source electrode 132 is provided on the Schottky layer 104 and a part of the first insulating film 105 in the opening 121. Note that the source electrode 132 may be partially embedded in the via hole 150. For example, as shown in FIG. 1C, a part of the source electrode 132 may be embedded in a portion of the via hole 150 formed in the Schottky layer 104, or as shown in FIG. The source electrode 132 may not be embedded in the via hole 150. The same applies to the HFETs shown in FIGS. 2, 3, 4A, and 4B described later. In more detail, the source electrode 132 and the plug 109 in the via hole 150 may be connected via a metal such as gold (Au).
  • the source electrode 132 is formed of a laminate of, for example, titanium (Ti) and aluminum (Al) so as to exhibit ohmic properties with respect to the Schottky layer 104 made of N-type Al y Ga 1-y N.
  • the thickness of the portion of the source electrode 132 provided on the Schottky layer 104 from the upper surface of the Schottky layer 104 is, for example, 200 nm.
  • a gate electrode 136 is provided on the Schottky layer 104 and a part of the first insulating film 105 in the opening 122.
  • the thickness of the portion of the gate electrode 136 provided on the Schottky layer 104 is, for example, 400 nm.
  • the gate electrode 108 is made of a laminate of, for example, nickel (Ni) and gold (Au) so as to exhibit Schottky properties with respect to the Schottky layer 104.
  • a drain electrode 134 is provided on the Schottky layer 104 and a part of the first insulating film 105 in the opening 123. Similarly to the source electrode 132, the drain electrode 134 is formed of, for example, a laminate of Ti and Al in order to make ohmic contact with the Schottky layer 104. The thickness of the portion of the drain electrode 134 provided on the Schottky layer 104 is, for example, 200 nm.
  • a back electrode 111 having a thickness of about 200 nm, for example, made of chromium (Cr) / gold (Au) is provided.
  • the source electrode 132 and the back electrode 111 are connected by a plug 109 that penetrates the Schottky layer 104, the channel layer 103, the buffer layer 102, and the high-resistance substrate 101. Further, the back electrode 111 is connected to a ground wiring.
  • the plug 109 is constituted by a laminated body of Cr and Au, for example. As shown in FIG. 1B, a plurality of plugs 109 may be provided for one source electrode 132.
  • a second insulating film 130 made of, for example, SiN and having a thickness of 500 nm is provided.
  • a source wiring 120 connected to the source electrode 132 via a contact plug a gate wiring (not shown) connected to the gate electrode 136 via a contact plug, and a contact plug are provided.
  • a drain wiring 124 connected to the drain electrode 134 is provided.
  • the gate wiring, the source wiring 120, and the drain wiring 124 are all arranged so as not to be connected to each other. Further, in the case where the gate wiring, the source wiring 120, and the drain wiring 124 are provided in two or more wiring layers, it is preferable that the wirings do not cross each other in order to reduce parasitic capacitance.
  • a third insulating film 140 having a thickness of 400 nm is provided on the second insulating film 130.
  • a current flows between the source electrode 132 and the drain electrode 134 through the interface between the channel layer 103 and the Schottky layer 104 where 2DEG is generated. Further, the amount of current flowing between the source and the drain is controlled by applying a voltage to the gate electrode 136.
  • the source electrode 132 is connected to the back electrode 111 and the ground wiring via the plug 109 without via the wiring on the second insulating film 130, the source electrode 132 is grounded via the wiring.
  • the source wiring length can be shortened compared to the case where the source inductance is reduced, and the source inductance is reduced. For this reason, the linear gain can be improved.
  • the plug 109 is provided immediately below the source electrode 132, heat generated during operation is transmitted to the back electrode 111 through the plug 109 and efficiently radiated. As described above, since the plug 109 is provided in a region where heat is generated during operation, it is possible to effectively dissipate heat. Therefore, in the HFET of this embodiment, the output reduction is greatly suppressed compared to the conventional HFET. It has been.
  • the plug 109 penetrates the high-resistance substrate 101.
  • the plug 109 is in contact with the substrate, and the substrate needs to penetrate the substrate. There is no.
  • the high-resistance substrate 101 made of Si a conductive substrate, a semi-insulating substrate such as a GaN substrate, or an insulating substrate such as a sapphire substrate may be used.
  • the buffer layer is not always necessary.
  • the back electrode 111 made of metal is formed on the back surface of the high-resistance substrate 101 by a chemical vapor deposition (CVD) method or the like.
  • a buffer layer 102 made of a group III-V nitride semiconductor such as Al x Ga 1-x N (0 ⁇ x ⁇ 1) is formed on the high resistance substrate 101 by a metal-organic CVD (MOCVD) method or the like.
  • MOCVD metal-organic CVD
  • a channel layer 103 made of a group III-V nitride semiconductor and a Schottky layer 104 made of a group III-V nitride semiconductor such as N-type Al y Ga 1-y N (0 ⁇ y ⁇ 1) are sequentially formed.
  • openings 121, 122, and 123 are formed by lithography and etching. Thereafter, the source electrode 132 is formed on the Schottky layer 104 in the opening 121, and the drain electrode 134 is formed on the Schottky layer 104 in the opening 123. Next, a gate electrode 136 is formed on the Schottky layer 104 in the opening 122.
  • FIG. 2 is a cross-sectional view schematically showing the structure of the HFET according to the second embodiment of the present invention.
  • the HFET of this embodiment is different from the HFET according to the first embodiment in that a high resistance region 212 is provided in a portion of the Schottky layer 104 where the via hole 150 below the opening 121 is formed.
  • the configuration other than the high resistance region 212 is the same as that of the HFET according to the first embodiment.
  • the HFET of this embodiment includes a high resistance substrate 101, a buffer layer 102 provided on the high resistance substrate 101, a channel layer 103 provided on the buffer layer 102, a channel And a Schottky layer 104 provided on the layer 103.
  • a first insulating film 105 in which openings 121, 122, and 123 are provided apart from each other is formed.
  • a source electrode 132 is provided on the Schottky layer 104 and a part of the first insulating film 105 in the opening 121.
  • a gate electrode 136 is provided on the Schottky layer 104 and a part of the first insulating film 105 in the opening 122.
  • a drain electrode 134 is provided on the Schottky layer 104 and a part of the first insulating film 105 in the opening 123.
  • a back surface electrode 111 is provided on the back surface of the high resistance substrate 101.
  • the source electrode 132 and the back electrode 111 are connected by a plug 109 that penetrates the Schottky layer 104, the channel layer 103, the buffer layer 102, and the high-resistance substrate 101.
  • the second insulating film 130 is provided on the first insulating film 105, the gate electrode 136, the source electrode 132, and the drain electrode 134.
  • a source wiring 120 connected to the source electrode 132 via a contact plug a gate wiring (not shown) connected to the gate electrode 136 via a contact plug, and a contact plug are provided.
  • a drain wiring 124 connected to the drain electrode 134 is provided.
  • At least a part of the portion (the vicinity of the region where the contact hole is formed) in contact with the plug 109 in the Schottky layer 104 is a high resistance region 212 having higher resistance than the other portions.
  • the high resistance region 212 is formed by injecting ions such as boron (B) into the Schottky layer 104 and forming the via hole 150 after forming the opening 121 in the method of manufacturing the HFET described in the first embodiment.
  • ions such as boron (B)
  • the Schottky layer 104 is subjected to dry etching.
  • the source electrode 132 is connected to the back electrode 111 and the ground wiring via the plug 109 without via the wiring on the second insulating film 130, the source electrode 132 is grounded via the wiring. Compared to the case where the source inductance is reduced.
  • the plug 109 is provided immediately below the source electrode 132, heat generated during operation is transmitted to the back electrode 111 through the plug 109 and efficiently radiated. As described above, since the plug 109 is provided in the region where heat is generated during operation, it is possible to effectively dissipate heat. Therefore, in the HFET of this embodiment, the output decrease is significantly suppressed compared to the conventional HFET. It has been. Furthermore, since the high resistance region 212 is provided around the portion of the plug 109 that penetrates the Schottky layer 104, an increase in leakage current through the semiconductor layer is suppressed.
  • FIG. 3 is a cross-sectional view schematically showing the structure of the HFET according to the third embodiment of the present invention.
  • the HFET of this embodiment is different from the HFET according to the first embodiment in that a warp mitigating layer 312 that cancels the warpage of the substrate is provided on the source wiring 120 and the drain wiring 124.
  • the configuration other than the warp mitigation layer 312 is the same as that of the HFET according to the first embodiment.
  • the HFET of this embodiment includes a high-resistance substrate 101, a buffer layer 102 provided on the high-resistance substrate 101, a channel layer 103 provided on the buffer layer 102, a channel And a Schottky layer 104 provided on the layer 103.
  • a first insulating film 105 in which openings 121, 122, and 123 are provided apart from each other is formed.
  • a source electrode 132 is provided on the Schottky layer 104 and a part of the first insulating film 105 in the opening 121.
  • a gate electrode 136 is provided on the Schottky layer 104 and a part of the first insulating film 105 in the opening 122.
  • a drain electrode 134 is provided on the Schottky layer in the opening 123 and on a part of the first insulating film 105.
  • a back surface electrode 111 is provided on the back surface of the high resistance substrate 101.
  • the source electrode 132 and the back electrode 111 are connected by a plug 109 that penetrates the Schottky layer 104, the channel layer 103, the buffer layer 102, and the high resistance substrate 101.
  • the second insulating film 130 is provided on the first insulating film 105, the gate electrode 136, the source electrode 132, and the drain electrode 134.
  • a source wiring 120 connected to the source electrode 132 through a contact plug, a gate wiring (not shown) connected to the gate electrode 136 through a contact plug, and a contact plug are provided on the second insulating film 130.
  • a drain wiring 124 connected to the drain electrode 134 is provided.
  • the gate wiring, the source wiring 120, and the drain wiring 124 are all arranged so as not to be connected to each other.
  • a warp mitigating layer 312 made of a material having a large stress that cancels the warp of the substrate is provided on the source wiring 120 and the drain wiring 124.
  • the warp mitigating layer 312 has a stress that is at least greater than that of the high resistance substrate 101, the channel layer 103, the Schottky layer 104, and the like, and it is only necessary to apply a stress in a direction that relaxes the warp of the high resistance substrate 101.
  • the number, thickness, and area of the warp mitigating layer 312 may be adjusted as appropriate, and are not particularly limited.
  • the constituent material of the warp relaxation layer 312 is, for example, WSi.
  • the back surface of the high-resistance substrate 101 may warp in the direction facing the inside.
  • the warp mitigation layer 312 since the warp mitigation layer 312 is provided, the warpage of the substrate is effectively reduced.
  • the HFET of this embodiment is used for other electronic devices and the like. High connection reliability can be ensured.
  • FIG. 4A and 4B are cross-sectional views schematically showing the structure of the HFET according to the fourth embodiment of the present invention.
  • the HFET of this embodiment is different from the HFET according to the first embodiment in that it includes an air bridge 412 provided on the drain wiring 124.
  • the configuration other than the air bridge 412 is the same as that of the HFET according to the first embodiment.
  • the air bridge 412 is actually extended from the drain wiring 124 as shown in FIG. 4B, but the air bridge 412 is not shown in order to avoid complexity.
  • the HFET of this embodiment includes a high-resistance substrate 101, a buffer layer 102 provided on the high-resistance substrate 101, a channel layer 103 provided on the buffer layer 102, a channel And a Schottky layer 104 provided on the layer 103.
  • a first insulating film 105 in which openings 121, 122, and 123 are provided apart from each other is formed.
  • a source electrode 132 is provided on the Schottky layer 104 and a part of the first insulating film 105 in the opening 121.
  • a gate electrode 136 is provided on the Schottky layer 104 and a part of the first insulating film 105 in the opening 122.
  • a drain electrode 134 is provided on the Schottky layer in the opening 123 and on a part of the first insulating film 105.
  • a back surface electrode 111 is provided on the back surface of the high resistance substrate 101.
  • the source electrode 132 and the back electrode 111 are connected by a plug 109 that penetrates the Schottky layer 104, the channel layer 103, the buffer layer 102, and the high-resistance substrate 101.
  • the second insulating film 130 is provided on the first insulating film 105, the gate electrode 136, the source electrode 132, and the drain electrode 134.
  • a source wiring 120 connected to the source electrode 132 via a contact plug, a gate wiring (not shown) connected to the gate electrode 136 via a contact plug, and a contact plug are provided on the second insulating film 130.
  • a drain wiring 124 connected to the drain electrode 134 is provided.
  • the gate wiring, the source wiring 120, and the drain wiring 124 are all arranged so as not to be connected to each other.
  • the HFET of this embodiment is provided with an air bridge 412 made of a conductor that extends from the drain wiring 124 to the drain wiring 124 that is distant from the drain wiring 124.
  • the plurality of drain wirings 124 are connected to each other by the air bridge 412.
  • the air bridge 412 is hollow, and the air bridge 412 straddles the source wiring 120 without being connected to the source wiring 120.
  • the drain wirings 124 are connected to each other via the air bridge 412, the heat dissipation is further improved. For this reason, the output fall by the heat
  • bridging 412 and drain wiring may be connected through the normal contact and metal wiring.
  • the HFET of the present invention has excellent high frequency characteristics and can be used for various electronic devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 半導体装置は、基板101上に設けられ、III-V族窒化物半導体からなるバッファ層102と、バッファ層102上に設けられ、III-V族窒化物半導体からなる第1の半導体層103と、第1の半導体層103上に設けられ、III-V族窒化物半導体からなる第2の半導体層104と、基板101の裏面上に設けられ、接地に接続された裏面電極111と、第2の半導体層104上に互いに離間して設けられたソース電極132及びドレイン電極134と、第2の半導体層104上に設けられたゲート電極136とと、第2の半導体層104、第1の半導体層103、及びバッファ層102を貫通し、少なくとも基板101に達し、ソース電極132と裏面電極111とを電気的に接続させるプラグ109とを備えている。

Description

半導体装置及びその製造方法
 本明細書に記載された技術は、III-V族窒化物半導体からなる電界効果型の半導体装置に関する。
 III-V族窒化物半導体、すなわち窒化ガリウム(GaN)、窒化アルミニウム(AlN)及び窒化インジウム(InN)等の、一般式がAlGa1-x-yInN(但し、0≦x≦1、0≦y≦1、0≦x+y≦1)で表わされる混晶物は、その物理的特徴である広いバンドギャップと直接遷移型のバンド構造とを利用して短波長光学素子へ応用することのみならず、高い破壊電界と飽和電子速度という特徴から電子デバイスへ応用することも検討されている。
 特に、半絶縁性基板の上に順次エピタキシャル成長したAlGa1-xN層(但し、0<x≦1)とGaN層との界面に現れる二次元電子ガス(Two Dimensional Electron Gas:以下、2DEGと呼ぶ)を利用するヘテロ接合電界効果トランジスタ(Hetero-junction Field Effect Transistor:以下、HFETと呼ぶ)は、高出力デバイスや高周波デバイスとして開発が進められている。このHFETでは、キャリア供給層(N型AlGaNショットキー層)からの電子の供給に加え、自発分極及びピエゾ分極の分極効果による電荷の供給がある。その電子密度は1013cm-2を超え、AlGaAs/GaAs系HFETと比べて1桁程度も大きい。
 このように、III-V族窒化物半導体を用いたHFETでは、GaAs系HFETと比べて高いドレイン電流密度を期待でき、最大ドレイン電流が1A/mmを超える素子が報告されている(非特許文献1参照)。さらに、III-V族窒化物半導体は広いバンドギャップ(例えばGaNのバンドギャップは3.4eV)を有するため高い耐圧特性を示し、III-V族窒化物半導体を用いたHFETではゲート-ドレイン電極間の耐圧を100V以上とすることが可能である(非特許文献1参照)。このように、高耐圧且つ高電流密度を示す電気的特性を期待できることから、III-V族窒化物半導体を用いたHFETを中心とする電子デバイスは、高周波素子として、また従来よりも小さい設計寸法で大電力を扱える素子として応用が検討されている。
 しかしながら、III-V族窒化物半導体からなる電子デバイスは、高周波、高出力又は大電力素子として有望とされるが、その実現のためには様々な工夫が必要である。このような高周波特性、高出力特性及び大電力特性を持つ素子を実現するための工夫の1つとして、ビアホール構造を用いる技術が知られている(非特許文献1参照)。
 以下、このような従来のビアホール構造を用いたFETについて図5を参照しながら説明する。図5は、ビアホール構造を有する従来のFETの構造を示す断面図である。
 図5に示ように、従来のFETは、シリコン(Si)からなる高抵抗基板1の上に形成されたIII-V族窒化物半導体からなるチャネル層3と、チャネル層3の上に形成され、III-V族窒化物半導体からなるショットキー層5とを備えている。
 ショットキー層5の上には、ショットキー電極7と、その両側方に位置するオーミック性のソース電極11及びドレイン電極13とが形成されている。高抵抗基板1、バッファ層、チャネル層3、及びショットキー層5におけるソース電極11の下に位置する部分の一部にはビアホール25が選択的に形成されており、このビアホール25内には、裏面電極15へと接続するプラグ9が埋め込まれている。FETのソース電極11は、プラグ9及び裏面電極15を介して接地電源と接続されている。
 従来のFETでは、ソース電極がワイヤにより接地される構成のFETと比べてソースインダクタンスを低減できるため、線形利得で約2dBの改善が見られることが報告されている(非特許文献2参照)。
安藤祐二、岡本康宏、宮本広信、中山達峰、井上隆、葛原正明著「高耐圧AlGaN/GaNヘテロ接合FETの評価」信学技報、ED2002-214, CPM2002-105(2002-10), pp.29-34 福田益美、平地康剛著「GaAs電界効果トランジスタの基礎」電子情報通信学会、1992年、p.214
 しかしながら、ビアホールを用いる従来の半導体装置では、次のような不具合が生じていた。安価なSi基板を用いた半導体装置においては、熱伝導性がSiC基板に比べて劣っているために、SiC基板を用いた半導体素子に比べて出力が低下してしまう。
 前記課題に鑑み、本発明は、III-V族窒化物半導体を有する半導体装置において、熱による出力低下を低減することを目的とする。
 図6は、通常モードとパルスモードのそれぞれで駆動した場合の従来の半導体装置の出力の比較を示す図である。同図に示す結果から、パルス駆動の場合には出力の低下が抑えられていることが分かる。これは、パルス駆動では通常駆動に比べて基板温度の上昇が低減されるためと考えられる。
 また、図7は、動作時の半導体装置内の温度分布を示す図である。同図において、色の濃い部分、すなわち温度の高い部分は活性領域(主にソース-ドレイン間の領域)であり、熱は活性領域内で発生することが分かる。以上のことを鑑みて、本願発明者らは独自に検討を重ねた結果、本願発明に想到するに至った。
 本発明の一例に係る半導体装置は、基板と、前記基板の上面上または上方に設けられ、III-V族窒化物半導体からなる第1の半導体層と、前記第1の半導体層上に設けられ、III-V族窒化物半導体からなる第2の半導体層と、前記基板の裏面上に設けられ、接地に接続された裏面電極と、前記第2の半導体層上に互いに離間して設けられたソース電極及びドレイン電極と、前記第2の半導体層上であって、前記ソース電極とドレイン電極との間の位置に設けられ、前記第2の半導体層とショットキー接触するゲート電極と、前記第2の半導体層及び前記第1の半導体層を貫通し、少なくとも前記基板に達し、前記ソース電極と前記裏面電極とを電気的に接続させるプラグとを備えている。
 この構成によれば、ソース電極が第2の半導体層上方の配線を介さずにプラグを介して裏面電極及び接地に接続されるので、ソース電極が配線を介して接地される場合に比べてソースインダクタンスを低減することができる。
 また、ソース電極とドレイン電極との間では動作時に熱が発生するところ、ソース電極下にプラグが設けられているので、プラグを介して熱が裏面電極へと伝達され、動作時の温度上昇を緩和することができる。このため、上記構成の半導体装置では、従来の半導体装置に比べて出力の低下を抑えることが可能となる。
 本発明の一例に係る半導体装置の製造方法は、基板と、前記基板の上面上または上方に設けられ、III-V族窒化物半導体からなる第1の半導体層と、前記第1の半導体層上に設けられ、III-V族窒化物半導体からなる第2の半導体層と、前記基板の裏面上に設けられ、接地に接続された裏面電極と、前記第2の半導体層上に互いに離間して設けられたソース電極及びドレイン電極と、前記第2の半導体層上であって、前記ソース電極とドレイン電極との間の位置に設けられ、前記第2の半導体層とショットキー接触するゲート電極と、前記第2の半導体層及び前記第1の半導体層を貫通し、少なくとも前記基板に達し、前記ソース電極と前記裏面電極とを電気的に接続させるプラグとを備えている。
 この方法によれば、プラグを介して動作時に生じる熱を裏面電極へと放熱しやすい構造を作製することができる。また、ソースインダクタンスが低減された半導体装置を製造することができる。
 本発明の一例に係る半導体装置では、従来の半導体装置に比べて熱による出力低下を低減することが可能となっている。
図1(a)、(b)は、それぞれ本発明の第1の実施形態に係るヘテロ接合電界効果トランジスタ(HFET)の構造を模式的に示す断面図及びレイアウト図であり、(c)、(d)は、それぞれソース電極とプラグとの接続部分の例を示す拡大断面図である。 図2は、本発明の第2の実施形態に係るHFETの構造を模式的に示す断面図である。 図3は、本発明の第3の実施形態に係るHFETの構造を模式的に示す断面図である。 図4(a)、(b)は、本発明の第4の実施形態に係るHFETの構造を模式的に示す断面図である。 図5は、ビアホール構造を有する従来のFETの構造を示す断面図である。 図6は、通常モードとパルスモードのそれぞれで駆動した場合の従来の半導体装置の出力の比較を示す図である。 図7は、動作時の半導体装置内の温度分布を示す図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。
  (第1の実施形態)
 図1(a)、(b)は、それぞれ本発明の第1の実施形態に係るヘテロ接合電界効果トランジスタ(HFET)の構造を模式的に示す断面図及びレイアウト図であり、(c)、(d)は、それぞれソース電極とプラグとの接続部分の例を示す拡大断面図である。図1(a)は、図1(b)においてプラグ109を通る横方向の断面を示している。
 図1(a)、(b)に示すように、本実施形態のHFETは、例えばシリコン(Si)からなる高抵抗基板101と、高抵抗基板101上に設けられ、高抵抗の窒化アルミニウムガリウム(AlGa1-xN(0<x≦1))からなるバッファ層102と、バッファ層102上に設けられ、アンドープの窒化ガリウム(GaN)からなるチャネル層(第1の半導体層)103と、チャネル層103上に設けられ、N型の窒化アルミニウムガリウム(AlGa1-yN(0<y≦1))からなるショットキー層(第2の半導体層)104とを備えている。
 高抵抗基板101の厚さは例えば500μmであり、バッファ層102の膜厚は例えば500nmであり、チャネル層103の膜厚は例えば1000nmであり、ショットキー層104の膜厚は例えば25nmである。
 バッファ層102は、高抵抗基板101とチャネル層103及びショットキー層104との格子不整合を緩和するために形成されている。また、ショットキー層104とヘテロ接合するチャネル層103において、ショットキー層104との界面近傍には、2DEGからなるチャネルが形成される。なお、基板及びバッファ層が「高抵抗」である、とは、HFETの通常動作時にほとんど電流が流れないという意味であり、いわゆる半絶縁性層も高抵抗層と呼ぶ。
 ショットキー層104の上には、窒化珪素(SiN)からなる厚さ100nmの第1絶縁膜105が設けられ、第1絶縁膜105には、開口121、122、123が互いに離間して設けられている。
 開口121内におけるショットキー層104上及び第1絶縁膜105の一部上には、ソース電極132が設けられている。なお、ソース電極132は一部ビアホール150内に埋め込まれる場合がある。例えば、図1(c)に示すように、ソース電極132の一部がビアホール150のうちショットキー層104に形成された部分に埋め込まれていてもよいし、図1(d)に示すように、ソース電極132がビアホール150内に埋め込まれていなくてもよい。これは、後に説明する図2、図3、図4(a)、(b)に示すHFETについても同様である。なお、より詳細には、ソース電極132とビアホール150内のプラグ109とは、金(Au)等の金属を介して接続されていてもよい。
 N型のAlGa1-yNからなるショットキー層104に対してオーミック性を示すように、ソース電極132は例えばチタン(Ti)とアルミニウム(Al)との積層体で構成される。ソース電極132のうちショットキー層104上に設けられた部分の、ショットキー層104の上面からの膜厚は例えば200nmである。
 開口122内におけるショットキー層104上及び第1絶縁膜105の一部上には、ゲート電極136が設けられている。ゲート電極136のうちショットキー層104上に設けられた部分の膜厚は例えば400nmである。ショットキー層104に対してショットキー性を示すように、ゲート電極108は例えばニッケル(Ni)と金(Au)との積層体からなる。
 開口123内におけるショットキー層104上及び第1絶縁膜105の一部上には、ドレイン電極134が設けられている。ドレイン電極134はソース電極132と同様にショットキー層104とオーミック接触するために、例えばTiとAlとの積層体で構成される。ドレイン電極134のうちショットキー層104上に設けられた部分の膜厚は例えば200nmである。
 高抵抗基板101の裏面上にはクロム(Cr)/金(Au)などからなる厚さが例えば200nm程度の裏面電極111が設けられている。ソース電極132と裏面電極111とは、ショットキー層104、チャネル層103、バッファ層102及び高抵抗基板101を貫通するプラグ109によって接続されている。また、裏面電極111は接地配線に接続される。プラグ109は、例えばCrとAuとの積層体によって構成される。図1(b)に示すように、プラグ109は1つのソース電極132に対して複数個設けられていてもよい。
 第1絶縁膜105上、ゲート電極136上、ソース電極132上、及びドレイン電極134上には、例えばSiNからなる厚さ500nmの第2絶縁膜130が設けられている。第2絶縁膜130上には、コンタクトプラグを介してソース電極132に接続されたソース配線120と、コンタクトプラグを介してゲート電極136に接続されたゲート配線(図示せず)と、コンタクトプラグを介してドレイン電極134に接続されたドレイン配線124とが設けられている。ゲート配線、ソース配線120、及びドレイン配線124はいずれも互いに接続しないように配置されている。また、ゲート配線、ソース配線120、及びドレイン配線124が2層以上の配線層内に設けられる場合には、寄生容量の低減を図るため、各配線は互いに交差しないことが好ましい。
 第2絶縁膜130上には、例えば膜厚が400nmの第3絶縁膜140が設けられている。
 本実施形態のHFETでは、2DEGが生じるチャネル層103とショットキー層104との界面を通ってソース電極132とドレイン電極134の間に電流が流れる。また、ゲート電極136に電圧が印加されることで、ソース-ドレイン間を流れる電流量が制御される。
 本実施形態のHFETでは、ソース電極132が第2絶縁膜130上の配線を介することなくプラグ109を介して裏面電極111及び接地配線に接続されているので、ソース電極132が配線を介して接地される場合に比べてソース配線長を短くすることができ、ソースインダクタンスが低減されている。このため、線形利得を向上させることができる。また、プラグ109がソース電極132の直下に設けられているので、動作時に生じた熱はプラグ109を介して裏面電極111に伝達され、効率的に放熱される。このように、動作時に熱が発生する領域にプラグ109を設けることで、効果的に放熱することが可能となるので、本実施形態のHFETでは、従来のHFETに比べて出力低下が大幅に抑えられている。
 なお、本実施形態のHFETではプラグ109が高抵抗基板101を貫通しているが、導電性の基板を用いる場合には、プラグ109が基板に接していればよく、基板を貫通している必要はない。
 また、Siからなる高抵抗基板101に代えて導電性基板やGaN基板等の半絶縁性の基板、サファイア基板などの絶縁性基板を用いてもよい。GaN基板を用いる場合には、バッファ層は必ずしも必要ない。
 本実施形態のHFETを製造する際には、高抵抗基板101の裏面上にchemical vapor deposition(CVD)法等により金属からなる裏面電極111を形成する。次に、高抵抗基板101上にmetal-organicCVD(MOCVD)法等によりAlGa1-xN(0<x≦1)等のIII-V族窒化物半導体からなるバッファ層102、GaN等のIII-V族窒化物半導体からなるチャネル層103、N型のAlGa1-yN(0<y≦1)等のIII-V族窒化物半導体からなるショットキー層104を順次形成する。
 次いで、ショットキー層104上にSiN等からなる第1絶縁膜を形成した後にリソグラフィ及びエッチングにより開口121、122、123を形成する。その後、開口121内におけるショットキー層104上にソース電極132を形成するとともに、開口123内におけるショットキー層104上にドレイン電極134を形成する。次いで、開口122内におけるショットキー層104上にゲート電極136を形成する。
 次に、ソース電極132の一部及びソース電極132下に位置するショットキー層104、チャネル層103、バッファ層102及び高抵抗基板101を除去して裏面電極111に達するビアホール150を形成する。次いで、ビアホール150内にプラグ109を形成する。
 次いで、第1絶縁膜105上に第2絶縁膜130を形成した後、第2絶縁膜130上に、ソース電極132に接続されたソース配線120、ドレイン電極134に接続されたドレイン配線124、ゲート電極136に接続されたゲート配線をそれぞれ形成する。
  (第2の実施形態)
 図2は、本発明の第2の実施形態に係るHFETの構造を模式的に示す断面図である。本実施形態のHFETは、ショットキー層104のうち開口121下方のビアホール150が形成された部分に高抵抗領域212が設けられている点が第1の実施形態に係るHFETと異なっている。高抵抗領域212以外の構成は、第1の実施形態に係るHFETと同様である。
 すなわち、図2に示すように、本実施形態のHFETは、高抵抗基板101と、高抵抗基板101上に設けられたバッファ層102と、バッファ層102上に設けられたチャネル層103と、チャネル層103上に設けられたショットキー層104とを備えている。
 ショットキー層104の上には、開口121、122、123が互いに離間して設けられた第1絶縁膜105が形成されている。
 開口121内におけるショットキー層104上及び第1絶縁膜105の一部上には、ソース電極132が設けられている。開口122内におけるショットキー層104上及び第1絶縁膜105の一部上には、ゲート電極136が設けられている。開口123内におけるショットキー層104上及び第1絶縁膜105の一部上には、ドレイン電極134が設けられている。
 高抵抗基板101の裏面上には裏面電極111が設けられている。ソース電極132と裏面電極111とは、ショットキー層104、チャネル層103、バッファ層102及び高抵抗基板101を貫通するプラグ109によって接続されている。
 第1絶縁膜105上、ゲート電極136上、ソース電極132上、及びドレイン電極134上には、第2絶縁膜130が設けられている。第2絶縁膜130上には、コンタクトプラグを介してソース電極132に接続されたソース配線120と、コンタクトプラグを介してゲート電極136に接続されたゲート配線(図示せず)と、コンタクトプラグを介してドレイン電極134に接続されたドレイン配線124とが設けられている。ゲート配線、ソース配線120、及びドレイン配線124が2層以上の配線層内に配置されている場合、これらの配線は、いずれも互いに交差しないように配置されている。
 また、ショットキー層104のうち、プラグ109と接する部分(コンタクトホールが形成された領域の近傍部分)の少なくとも一部は、その他の部分よりも抵抗が高い高抵抗領域212となっている。
 この高抵抗領域212は、第1の実施形態で説明したHFETの製造方法において、開口121を形成後、ボロン(B)等のイオンをショットキー層104に注入することや、ビアホール150を形成するためのドライエッチングをショットキー層104に施すことにより形成される。
 本実施形態のHFETでは、ソース電極132が第2絶縁膜130上の配線を介することなくプラグ109を介して裏面電極111及び接地配線に接続されているので、ソース電極132が配線を介して接地される場合に比べてソースインダクタンスが低減されている。また、プラグ109がソース電極132の直下に設けられているので、動作時に生じた熱はプラグ109を介して裏面電極111に伝達され、効率的に放熱される。このように、動作時に熱が発生する領域にプラグ109を設けることで、効果的に放熱することが可能となるので、本実施形態のHFETでは、従来のHFETに比べて出力低下が大幅に抑えられている。さらに、プラグ109のうちショットキー層104を貫通する部分の周囲に高抵抗領域212が設けられているので、半導体層を介したリーク電流の増加が抑えらえている。
  (第3の実施形態)
 図3は、本発明の第3の実施形態に係るHFETの構造を模式的に示す断面図である。本実施形態のHFETは、ソース配線120及びドレイン配線124の上に基板の反りを相殺する反り緩和層312を備えている点が第1の実施形態に係るHFETと異なっている。反り緩和層312以外の構成は、第1の実施形態に係るHFETと同様である。
 すなわち、図3に示すように、本実施形態のHFETは、高抵抗基板101と、高抵抗基板101上に設けられたバッファ層102と、バッファ層102上に設けられたチャネル層103と、チャネル層103上に設けられたショットキー層104とを備えている。
 ショットキー層104の上には、開口121、122、123が互いに離間して設けられた第1絶縁膜105が形成されている。
 開口121内におけるショットキー層104上及び第1絶縁膜105の一部上には、ソース電極132が設けられている。開口122内におけるショットキー層104上及び第1絶縁膜105の一部上には、ゲート電極136が設けられている。開口123内におけるショットキー層上及び第1絶縁膜105の一部上には、ドレイン電極134が設けられている。
 高抵抗基板101の裏面上には裏面電極111が設けられている。ソース電極132と裏面電極111とは、ショットキー層104、チャネル層103、バッファ層102及び高抵抗基板101を貫通するプラグ109によって接続されている。
 第1絶縁膜105上、ゲート電極136上、ソース電極132上、及びドレイン電極134上には、第2絶縁膜130が設けられている。第2絶縁膜130上には、コンタクトプラグを介してソース電極132に接続されたソース配線120と、コンタクトプラグを介してゲート電極136に接続されたゲート配線(図示せず)と、コンタクトプラグを介してドレイン電極134に接続されたドレイン配線124とが設けられている。ゲート配線、ソース配線120、及びドレイン配線124はいずれも互いに接続しないように配置されている。
 さらに、本実施形態のHFETでは、ソース配線120上及びドレイン配線124上に、基板の反りを相殺する大きなストレスを有する材料からなる反り緩和層312が設けられている。反り緩和層312は、少なくとも高抵抗基板101やチャネル層103、ショットキー層104などよりも大きな応力を有しており、高抵抗基板101の反りを緩和する方向の応力を印加できればよい。反り緩和層312の数、膜厚、及び面積は適宜調整すればよく、特に限定はされない。反り緩和層312の構成材料は、例えばWSi等である。
 HFETにおいて、高抵抗基板101の裏面が内側を向く方向に反る場合がある。これに対し、本実施形態のHFETでは、反り緩和層312が設けられているので、基板の反りが効果的に低減されており、他の電子機器等に本実施形態のHFETを用いる場合等に高い接続信頼性を確保することができる。
  (第4の実施形態)
 図4(a)、(b)は、本発明の第4の実施形態に係るHFETの構造を模式的に示す断面図である。本実施形態のHFETは、ドレイン配線124上に設けられたエアーブリッジ412を備えている点が第1の実施形態に係るHFETと異なっている。エアーブリッジ412以外の構成は、第1の実施形態に係るHFETと同様である。なお、図4(a)において、実際には図4(b)に示すようにドレイン配線124よりエアーブリッジ412が伸びているが、煩雑さを避けるために該エアーブリッジ412を図示していない。
 すなわち、図4に示すように、本実施形態のHFETは、高抵抗基板101と、高抵抗基板101上に設けられたバッファ層102と、バッファ層102上に設けられたチャネル層103と、チャネル層103上に設けられたショットキー層104とを備えている。
 ショットキー層104の上には、開口121、122、123が互いに離間して設けられた第1絶縁膜105が形成されている。
 開口121内におけるショットキー層104上及び第1絶縁膜105の一部上には、ソース電極132が設けられている。開口122内におけるショットキー層104上及び第1絶縁膜105の一部上には、ゲート電極136が設けられている。開口123内におけるショットキー層上及び第1絶縁膜105の一部上には、ドレイン電極134が設けられている。
 高抵抗基板101の裏面上には裏面電極111が設けられている。ソース電極132と裏面電極111とは、ショットキー層104、チャネル層103、バッファ層102及び高抵抗基板101を貫通するプラグ109によって接続されている。
 第1絶縁膜105上、ゲート電極136上、ソース電極132上、及びドレイン電極134上には、第2絶縁膜130が設けられている。第2絶縁膜130上には、コンタクトプラグを介してソース電極132に接続されたソース配線120と、コンタクトプラグを介してゲート電極136に接続されたゲート配線(図示せず)と、コンタクトプラグを介してドレイン電極134に接続されたドレイン配線124とが設けられている。ゲート配線、ソース配線120、及びドレイン配線124はいずれも互いに接続しないように配置されている。
 さらに、本実施形態のHFETには、ドレイン配線124上からこれと離れたドレイン配線124上へと延び、導電体からなるエアーブリッジ412が設けられている。これにより、複数のドレイン配線124同士がエアーブリッジ412によって互いに接続されている。エアーブリッジ412の下は中空となっており、エアーブリッジ412はソース配線120に接続されることなくソース配線120上を跨いでいる。
 本実施形態のHFETによれば、ドレイン配線124同士がエアーブリッジ412を介して互いに接続されているので、放熱性がより向上している。このため、動作時に発生する熱による出力低下をより効果的に抑えることができる。
 なお、エアーブリッジ412に代えて通常のコンタクト及び金属配線を介してドレイン配線同士が接続されていてもよい。
 以上で説明した内容は実施形態の一例であって、各部材の形状、構成材料、膜厚等は発明の趣旨を逸脱しない範囲で適宜変更可能である。また、各実施形態で説明した構成を組み合わせてもよい。また、基板としてサファイアなどからなる絶縁基板を用いることもできる。
 本発明のHFETは、優れた高周波特性を有し、種々の電子機器に利用可能である。
101   高抵抗基板
102   バッファ層
103   チャネル層
104   ショットキー層
105   第1絶縁膜
108   ゲート電極
109   プラグ
111   裏面電極
120   ソース配線
121、122、123 開口
124   ドレイン配線
130   第2絶縁膜
132   ソース電極
134   ドレイン電極
136   ゲート電極
140   第3絶縁膜
150   ビアホール
212   高抵抗領域
312   反り緩和層
412   エアーブリッジ

Claims (11)

  1.  基板と、
     前記基板の上面上または上方に設けられ、III-V族窒化物半導体からなる第1の半導体層と、
     前記第1の半導体層上に設けられ、III-V族窒化物半導体からなる第2の半導体層と、
     前記基板の裏面上に設けられ、接地に接続された裏面電極と、
     前記第2の半導体層上に互いに離間して設けられたソース電極及びドレイン電極と、
     前記第2の半導体層上であって、前記ソース電極とドレイン電極との間の位置に設けられ、前記第2の半導体層とショットキー接触するゲート電極と、
     前記第2の半導体層及び前記第1の半導体層を貫通し、少なくとも前記基板に達し、前記ソース電極と前記裏面電極とを電気的に接続させるプラグとを備えている半導体装置。
  2.  請求項1に記載の半導体装置において、
     前記第1の半導体層はGaNからなり、
     前記第2の半導体層はN型のAlGa1-xN(0<x≦1)からなる半導体装置。
  3.  請求項1に記載の半導体装置において、
     前記第2の半導体層の上方に設けられ、前記ソース電極に接続されたソース配線と、
     前記第2の半導体層の上方に設けられ、前記ドレイン電極に接続されたドレイン配線と、
     前記第2の半導体層の上方に設けられ、前記ゲート電極に接続されたゲート配線とをさらに備え、
     前記ソース配線、前記ドレイン配線、及び前記ゲート配線は、互いに交差しないように配置されている半導体装置。
  4.  請求項1に記載の半導体装置において、
     前記第2の半導体層のうち前記プラグに接する部分は、前記第2の半導体層の他の部分よりも高抵抗である半導体装置。
  5.  請求項3に記載の半導体装置において、
     前記ソース配線上及び前記ドレイン配線上の少なくとも一方に、前記基板の反りを緩和する方向の応力を前記ソース配線または前記ドレイン配線に印加する反り緩和層をさらに備えている半導体装置。
  6.  請求項3に記載の半導体装置において、
     前記ドレイン配線は複数本配置されており、
     互いに離れて設けられた前記ドレイン配線同士を接続させるエアーブリッジをさらに備えている半導体装置。
  7.  請求項1に記載の半導体装置において、
     前記プラグは前記基板をさらに貫通している半導体装置。
  8.  請求項1に記載の半導体装置において、
     前記基板は導電性であり、前記プラグは前記基板の一部にまで達している半導体装置。
  9.  請求項1~8のうちいずれか1つに記載の半導体装置において、
     前記基板の上面上に設けられ、III-V族窒化物半導体からなるバッファ層をさらに備え、
     前記第1の半導体層は前記バッファ層の上に設けられており、
     前記プラグは前記バッファ層を貫通している半導体装置。
  10.  基板の裏面上に裏面電極を形成する工程と、
     前記基板の上面上または上方にIII-V族窒化物半導体からなる第1の半導体層を形成する工程と、
     前記第1の半導体層の上にIII-V族窒化物半導体からなる第2の半導体層を形成する工程と、
     前記第2の半導体層上の互いに離れた位置にソース電極及びドレイン電極を形成する工程と、
     前記第2の半導体層上にゲート電極を形成する工程と、
     前記ソース電極に接続されるとともに、前記第1の半導体層及び前記第2の半導体層を貫通し、少なくとも前記基板の一部に達するプラグを形成する工程とを備えている半導体装置の製造方法。
  11.  請求項10に記載の半導体装置の製造方法において、
     前記基板の上面上に、III-V族窒化物半導体からなるバッファ層を形成する工程をさらに備え、
     前記第1の半導体層は前記バッファ層上に形成され、
     前記プラグは前記バッファ層を貫通している半導体装置の製造方法。
PCT/JP2011/003131 2010-08-06 2011-06-02 半導体装置及びその製造方法 WO2012017588A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011800385723A CN103053015A (zh) 2010-08-06 2011-06-02 半导体装置及其制造方法
US13/759,100 US20130146946A1 (en) 2010-08-06 2013-02-05 Semiconductor device and method for fabricating same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-177105 2010-08-06
JP2010177105A JP2012038885A (ja) 2010-08-06 2010-08-06 半導体装置及びその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/759,100 Continuation US20130146946A1 (en) 2010-08-06 2013-02-05 Semiconductor device and method for fabricating same

Publications (1)

Publication Number Publication Date
WO2012017588A1 true WO2012017588A1 (ja) 2012-02-09

Family

ID=45559114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003131 WO2012017588A1 (ja) 2010-08-06 2011-06-02 半導体装置及びその製造方法

Country Status (4)

Country Link
US (1) US20130146946A1 (ja)
JP (1) JP2012038885A (ja)
CN (1) CN103053015A (ja)
WO (1) WO2012017588A1 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6245559B2 (ja) * 2012-10-11 2017-12-13 ローム株式会社 窒化物半導体装置およびその製造方法
KR101988893B1 (ko) 2012-12-12 2019-09-30 한국전자통신연구원 반도체 소자 및 이를 제조하는 방법
US9368584B2 (en) * 2013-07-09 2016-06-14 Vishay General Semiconductor Llc Gallium nitride power semiconductor device having a vertical structure
US10910491B2 (en) * 2013-09-10 2021-02-02 Delta Electronics, Inc. Semiconductor device having reduced capacitance between source and drain pads
US10833185B2 (en) 2013-09-10 2020-11-10 Delta Electronics, Inc. Heterojunction semiconductor device having source and drain pads with improved current crowding
US10236236B2 (en) * 2013-09-10 2019-03-19 Delta Electronics, Inc. Heterojunction semiconductor device for reducing parasitic capacitance
US10665709B2 (en) 2013-09-10 2020-05-26 Delta Electronics, Inc. Power semiconductor device integrated with ESD protection circuit under source pad, drain pad, and/or gate pad
TWI577022B (zh) * 2014-02-27 2017-04-01 台達電子工業股份有限公司 半導體裝置與應用其之半導體裝置封裝體
US9779988B2 (en) * 2013-12-20 2017-10-03 Nxp Usa, Inc. Semiconductor devices with inner via
KR101729653B1 (ko) 2013-12-30 2017-04-25 한국전자통신연구원 질화물 반도체 소자
CN104882478B (zh) * 2014-02-27 2018-02-09 台达电子工业股份有限公司 半导体装置与应用其的半导体装置封装体
WO2015182283A1 (ja) * 2014-05-26 2015-12-03 シャープ株式会社 窒化物系化合物半導体
JP2016063167A (ja) * 2014-09-19 2016-04-25 株式会社東芝 半導体装置
CN104409431B (zh) * 2014-10-24 2017-07-04 苏州能讯高能半导体有限公司 一种半导体器件
DE102016200825A1 (de) * 2016-01-21 2017-07-27 Robert Bosch Gmbh Vorrichtung und Verfahren zur Herstellung eines lateralen HEMTs
JP6584987B2 (ja) * 2016-03-23 2019-10-02 株式会社東芝 半導体装置
CN106910724B (zh) * 2016-04-05 2020-06-05 苏州捷芯威半导体有限公司 一种半导体器件
JP6877896B2 (ja) * 2016-06-21 2021-05-26 富士通株式会社 半導体装置及び半導体装置の製造方法
US10249725B2 (en) * 2016-08-15 2019-04-02 Delta Electronics, Inc. Transistor with a gate metal layer having varying width
DE102017103111A1 (de) * 2017-02-16 2018-08-16 Semikron Elektronik Gmbh & Co. Kg Halbleiterdiode und elektronische Schaltungsanordnung hiermit
JP6487021B2 (ja) * 2017-12-07 2019-03-20 株式会社東芝 半導体装置
JP7260224B2 (ja) 2019-01-18 2023-04-18 ローム株式会社 半導体装置
CN111490099B (zh) * 2019-01-25 2022-09-27 苏州能讯高能半导体有限公司 半导体器件和半导体器件制造方法
WO2022061181A1 (en) * 2020-09-21 2022-03-24 Transphorm Technology, Inc. Iii-nitride devices with through-via structures
KR20230061224A (ko) * 2021-10-28 2023-05-08 (주)웨이비스 트랜지스터 및 이의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0439968A (ja) * 1990-06-05 1992-02-10 Mitsubishi Electric Corp 半導体装置
JPH05102153A (ja) * 1991-06-18 1993-04-23 Miyazaki Oki Electric Co Ltd 半導体素子の配線形成方法
JP2000294568A (ja) * 1999-04-08 2000-10-20 Mitsubishi Electric Corp ミリ波帯半導体スイッチ回路
JP2004363563A (ja) * 2003-05-15 2004-12-24 Matsushita Electric Ind Co Ltd 半導体装置
JP2006216671A (ja) * 2005-02-02 2006-08-17 Toshiba Corp 窒素化合物半導体素子

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078743B2 (en) * 2003-05-15 2006-07-18 Matsushita Electric Industrial Co., Ltd. Field effect transistor semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0439968A (ja) * 1990-06-05 1992-02-10 Mitsubishi Electric Corp 半導体装置
JPH05102153A (ja) * 1991-06-18 1993-04-23 Miyazaki Oki Electric Co Ltd 半導体素子の配線形成方法
JP2000294568A (ja) * 1999-04-08 2000-10-20 Mitsubishi Electric Corp ミリ波帯半導体スイッチ回路
JP2004363563A (ja) * 2003-05-15 2004-12-24 Matsushita Electric Ind Co Ltd 半導体装置
JP2006216671A (ja) * 2005-02-02 2006-08-17 Toshiba Corp 窒素化合物半導体素子

Also Published As

Publication number Publication date
CN103053015A (zh) 2013-04-17
JP2012038885A (ja) 2012-02-23
US20130146946A1 (en) 2013-06-13

Similar Documents

Publication Publication Date Title
WO2012017588A1 (ja) 半導体装置及びその製造方法
US11699751B2 (en) Semiconductor device
JP5396784B2 (ja) 半導体装置及びその製造方法
KR101561519B1 (ko) 반도체장치 및 그 제조방법
JP6228167B2 (ja) ソース接続フィールドプレートを備えるワイドバンドギャップhemt
US9343542B2 (en) Method for fabricating enhancement mode transistor
US8405126B2 (en) Semiconductor device
US9536965B2 (en) Heat spreader on GaN semiconductor device
WO2010064362A1 (ja) 電界効果トランジスタ
US9589951B2 (en) High-electron-mobility transistor with protective diode
JP4550163B2 (ja) 半導体装置及びその製造方法
JP5577681B2 (ja) 半導体装置
JP6268366B2 (ja) 半導体装置
JP2006086398A (ja) 半導体装置及びその製造方法
JP2006173582A (ja) 電界効果トランジスタ及びその製造方法
JP5386987B2 (ja) 半導体装置
US20200381422A1 (en) Nitride semiconductor device
US10103239B1 (en) High electron mobility transistor structure
JP2012134493A (ja) インジウムガリウムナイトライド層を有する高電子移動度トランジスタ
KR20150065005A (ko) 노멀리 오프 고전자이동도 트랜지스터
JP6249146B1 (ja) 半導体装置
TWI662701B (zh) 高電子遷移率電晶體結構
US11728419B2 (en) High electron mobility transistor
WO2014174863A1 (ja) 電界効果トランジスタ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180038572.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11814228

Country of ref document: EP

Kind code of ref document: A1