WO2012014956A1 - 熱式流量計 - Google Patents
熱式流量計 Download PDFInfo
- Publication number
- WO2012014956A1 WO2012014956A1 PCT/JP2011/067198 JP2011067198W WO2012014956A1 WO 2012014956 A1 WO2012014956 A1 WO 2012014956A1 JP 2011067198 W JP2011067198 W JP 2011067198W WO 2012014956 A1 WO2012014956 A1 WO 2012014956A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heating
- temperature
- heating resistor
- resistor
- temperature sensor
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/68—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
- G01F1/684—Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
- G01F1/688—Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
- G01F1/69—Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
- G01F1/692—Thin-film arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/68—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
- G01F1/684—Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
- G01F1/6842—Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/68—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
- G01F1/696—Circuits therefor, e.g. constant-current flow meters
- G01F1/698—Feedback or rebalancing circuits, e.g. self heated constant temperature flowmeters
- G01F1/699—Feedback or rebalancing circuits, e.g. self heated constant temperature flowmeters by control of a separate heating or cooling element
Definitions
- the present invention relates to a thermal type flow meter for measuring a flow rate by installing a heating resistor in a fluid to be measured, and more particularly to a thermal type flow meter suitable for measuring an intake air flow rate and an exhaust gas flow rate of an internal combustion engine of an automobile. .
- a sensor element of a thermal flow meter on a semiconductor substrate such as silicon (Si) using a micromachine technique.
- a cavity is formed by removing a part of a semiconductor substrate in a rectangular shape, and a heating resistor is formed on an electrical insulating film of several microns formed in the cavity.
- a temperature sensor temperature sensitive resistor
- the temperature difference method that detects the flow rate from the temperature difference between the upstream and downstream of the heating resistor can also distinguish between forward and reverse flow. Is possible. Since the size of the heating resistor is as small as several hundred microns and is formed in a thin film shape, the heat capacity is small and high-speed response and low power consumption are possible.
- Patent Document 1 A conventional technique for reducing the power consumption of a sensor element is disclosed in Patent Document 1.
- Patent Document 1 describes a technique for maintaining sensitivity and reducing power consumption by reducing the length of a heating resistor.
- a technique of arranging the sensor element in a sub-passage that takes in a part of the air flow is often used in order to reduce the contamination of the sensor element.
- the sub-passage in which the sensor element is arranged is bent in various shapes in order to protect the sensor element from oil and dust. Therefore, the direction of air flowing over the sensor element changes depending on the air flow rate. When the air flow direction changes, an error occurs in the flow rate detected by the sensor element.
- the heating resistor becomes smaller, the uniformity of the temperature distribution around the heating resistor is deteriorated, and there is a problem that the detection sensitivity of the sensor element is changed even if a minute change in the air flow direction is made and the measurement error is increased.
- the temperature distribution generated by the heat generation of the heating resistor has been considered, but the temperature due to self-heating of the temperature sensitive resistor provided to detect the temperature of the heating resistor and control the heating of the heating resistor. Distribution uniformity was not considered.
- an object of the present invention is to be mounted on an internal combustion engine such as an automobile, to reduce a change in detection sensitivity of the sensor element due to a minute change in the flow direction of air flow and a flow measurement error, and to reduce heat consumption with high power consumption and high accuracy. It is to provide a flow rate sensor.
- a thermal flow meter of the present invention includes a sub-passage having an opening for taking in a fluid to be measured, and a sensor element that is disposed in the sub-passage and measures the flow rate of the fluid to be measured.
- the sensor element includes a semiconductor substrate, a cavity formed in the semiconductor substrate, a heating resistor formed on the cavity via an electrical insulating film, and the heating resistor.
- a heating temperature sensor that detects the heating temperature of the heating resistor, and a drive circuit that controls the heating temperature of the heating resistor based on the temperature detected by the heating temperature sensor.
- the heating temperature sensor is a temperature resistor, and is disposed on the upstream side and the downstream side of the flow of the fluid to be measured with respect to the heating resistor, and on the upper and lower sides in the vertical direction of the flow of the fluid to be measured.
- the heating temperature sensor may be electrically connected in series on the cavity.
- the temperature rise due to self-heating due to the current flowing through the heating temperature sensor becomes a uniform temperature distribution around the heating resistor.
- a change in detection sensitivity of the sensor element due to a minute change in the flow direction of the air flow and a flow measurement error can be reduced, and a highly accurate thermal flow sensor with low power consumption can be provided.
- This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2010-171305, which is the basis of the priority of the present application.
- FIG. 7 is a diagram showing a temperature distribution on the YY ′ line of FIG. 6. It is the figure which simplified and showed the shape in FIG. It is a figure which shows the relationship between the length Ls of a heating resistor, and the change rate of heating temperature. It is a figure which shows the shape of the diaphragm part of the sensor element of this invention. It is a figure which shows the temperature distribution of the diaphragm part of the sensor element of this invention. It is a figure which shows the shape of the diaphragm part of the conventional sensor element. It is a figure which shows the temperature distribution of the diaphragm part of the conventional sensor element.
- FIG. 1 shows an embodiment in which a sensor element 1 and a drive / detection circuit for the sensor element 1 are mounted on an intake pipe of an internal combustion engine such as an automobile.
- a base member 19 is provided so as to protrude from the wall surface of the intake pipe line 18.
- the base member 19 is formed with a sub-passage 21 that takes in part of the intake air 20 flowing through the intake pipe 18.
- the sub-passage 21 has an opening for introducing or discharging the intake air 20, and a throttle near the opening of the sub-passage 21 is provided with a gradually decreasing passage area.
- the sub-passage 21 has a curved portion in the passage route, and a portion where the intake air 20 introduced into the sub-passage 21 is folded back by this curved portion and an air flow flows in a direction opposite to the flow direction of the intake air 20.
- the flow path structure has The sensor element 1 is installed in a rectangular recess formed in this part. By forming the curved portion in the sub-passage 21, it is possible to prevent the airflow from flowing along the curved portion and the particles such as dust that have entered the sub-passage 21 are inertially separated and directly collide with the sensor element 1. The destruction of the sensor element 1 can be suppressed.
- the sub-passage 21 in the vicinity where the sensor element 1 is installed has a linear flow path.
- the base member 19 is provided with a circuit board 22 on which a drive / detection circuit for the sensor element 1 is mounted, and the sensor element 1 and the circuit board 22 are electrically connected by a gold wire bonding wire 23. Further, a terminal 24 for supplying power to the drive circuit and taking out an output signal is provided, and the circuit board 22 and the terminal 24 are electrically connected by an aluminum bonding wire 25.
- FIG. 2 is a plan view showing the sensor element 1.
- FIG. 3 is a sectional view taken along line XX ′ in FIG.
- the substrate 2 of the sensor element 1 is made of a material having good thermal conductivity such as silicon or ceramic.
- an electrical insulating film 3 a is formed on the substrate 2, and the cavity is formed by etching the substrate 2 from the back surface to form the diaphragm 4.
- a heating resistor 5 is formed on the surface near the center of the electrical insulating film 3a on the diaphragm 4.
- a heating temperature sensor 7 that detects the heating temperature of the heating resistor 5 is formed around the heating resistor 5 so as to surround the heating resistor 5. The temperature of the heating resistor 5 is detected by the heating temperature sensor 7, and the heating is controlled so as to be higher than the temperature of the air flow 6 by a certain temperature. Further, upstream temperature sensors 8 a and 8 b and downstream temperature sensors 9 a and 9 b are formed outside the heating temperature sensor 7.
- the upstream temperature sensors 8 a and 8 b are arranged upstream of the air flow 6 with respect to the heating resistor 5, and the downstream temperature sensors 9 a and 9 b are arranged downstream of the air flow 6 with respect to the heating resistor 5.
- the outermost surface of the sensor element 1 is covered with an electrical insulating film 3b.
- the electrical insulating film 3b serves as a protective film in addition to performing electrical insulation.
- temperature sensitive resistors 10, 11, 12 whose resistance value changes according to the temperature of the air flow 6 are arranged.
- the heating resistor 5, the heating temperature sensor 7, the upstream temperature sensors 8a and 8b, the downstream temperature sensors 9a and 9b, and the temperature sensitive resistors 10, 11, and 12 have a relatively resistance temperature coefficient whose resistance value varies depending on the temperature.
- Is made of a large material may be formed of a semiconductor material such as polycrystalline silicon or single crystal silicon doped with impurities, or a metal material such as platinum, molybdenum, tungsten, or nickel alloy.
- the electrical insulating films 3a and 3b are formed in a thin film shape with a thickness of about 2 microns from silicon dioxide (SiO 2 ) or silicon nitride (Si 3 N 4 ) so that a sufficient thermal insulation effect can be obtained.
- the heating resistor 5, the heating temperature sensor 7, the upstream temperature sensors 8a and 8b, and the downstream temperature sensors 9a and 9b are similar to the temperature sensitive resistors 10, 11, and 12, respectively. Is the body.
- each resistor constituting the heating resistor 5, the heating temperature sensor 7, the upstream temperature sensors 8a and 8b, the downstream temperature sensors 9a and 9b, and the temperature sensitive resistors 10, 11, and 12 is provided.
- An electrode pad portion 13 on which an electrode for connecting the body to the drive / detection circuit is formed is provided. Note that the electrode is formed of aluminum or the like.
- the thermal flow meter according to the embodiment of the present invention operates as follows.
- FIG. 3 shows a cross-sectional configuration on the line XX ′ in FIG. 2 and a temperature distribution on the line XX ′.
- the solid line of the temperature distribution 14 indicates the temperature distribution of the diaphragm 4 when there is no wind.
- the heating resistor 5 is heated so as to be higher than the temperature of the air flow 6 by ⁇ Th.
- the broken line of the temperature distribution 14 is the temperature distribution of the diaphragm 4 when the air flow 6 is generated.
- the upstream side of the heating resistor 5 is cooled by the air flow 6 to lower the temperature, and the downstream side passes through the heating resistor 5 and heated air flows to increase the temperature. Accordingly, the flow rate is measured by measuring the upstream / downstream temperature difference ⁇ Ts between the upstream temperature sensors 8a and 8b and the downstream temperature sensors 9a and 9b.
- FIG. 4 shows a drive / detection circuit for the sensor element 1.
- a series circuit composed of the heating temperature sensor 7 and the temperature sensitive resistor 10 whose resistance value varies depending on the temperature of the heating resistor 5 and a series circuit composed of the temperature sensitive resistor 11 and the temperature sensitive resistor 12 are connected in parallel.
- the bridge circuit is configured, and the reference voltage Vref is applied to each series circuit.
- the intermediate voltage of these series circuits is taken out and connected to the amplifier 15.
- the output of the amplifier 15 is connected to the base of the transistor 16.
- the collector of the transistor 16 is connected to the power supply VB, and the emitter is connected to the heating resistor 5 to constitute a feedback circuit.
- FIG. 5 shows an enlarged view of the diaphragm 4 of the sensor element 1.
- the heating temperature sensors 7 a to 7 e are arranged so as to surround the periphery of the heating resistor 5.
- the heating temperature sensor 7a is disposed on the upstream side of the air flow 6 with respect to the heating resistor 5 (hereinafter referred to as the left side of the drawing), and the heating temperature sensor 7b is disposed on the downstream side of the air flow 6 with respect to the heating resistor 5 (
- the heating temperature sensor 7c is arranged on the upper side in the vertical direction of the air flow, that is, the central axis side of the main passage 18 in FIG.
- the heating temperature sensors 7d and 7e are arranged on the lower side in the vertical direction of the air flow, that is, on the circuit board 22 side in FIG. 1 of the heating resistor 5 (hereinafter referred to as the lower side of the drawing). is doing.
- the heating temperature sensors 7a to 7e are electrically connected in series on the diaphragm 4.
- the heating temperature sensor 7 is formed by connecting the heating temperature sensors 7a to 7e in series.
- the heating resistor 5 is electrically connected to the wiring portions 30 i and 30 j, and a heating current is supplied from the outside of the diaphragm 4.
- the heating resistor 5 and the wiring portions 30i and 30j have a constricted portion at the connection portion.
- the recesses 38a and 38b are formed by the heating resistor 5 and the wiring portions 30i and 30j.
- One side surface of the recess 38a is a part of the heating resistor 5, and the other side surface is a wiring portion 30i.
- one side surface of the recess 38b is a part of the heating resistor 5, and the other side surface is the wiring portion 30j.
- the line width of the wiring 30i and 30j is narrower than the line width in the short direction of the heating resistor 5, and the wiring 30i and 30j
- the line width 30j is formed to be wide.
- the heating temperature sensors 7d and 7e are arranged along the shape of the throttle portion.
- the heating temperature sensors 7a to 7e can be disposed so as to surround the heating resistor 5, and the amount of self-heating due to the current flowing through the heating temperature sensors 7a to 7e is increased. Are substantially symmetric in the vertical direction and the horizontal direction.
- the heating resistor 5 is made into a small shape of 400 ⁇ m or less, even if the heating temperature sensors 7a to 7e around the heating resistor 5 are self-heated, the heating resistor 5 is uniform in the vertical and horizontal directions. A temperature distribution is obtained.
- the region of the heating resistor 5 is a main part of the heat generation on the diaphragm 4 and is electrically connected to a widened portion such as the wiring portions 30 i and 30 j shown in FIG. 5 or the heating resistor 5. Even if it is connected to the resistor, a resistor or the like in which the flowing current is remarkably reduced is not included.
- this is a region where the heat is mainly generated and the shape is U-shaped or M-shaped and is folded once or multiple times.
- the heating temperature sensor 7 is more effective if it surrounds the entire periphery of the heating resistor 5, but it is sufficient if the heating temperature sensor 7 is arranged almost evenly on the upper, lower, right and left sides of the heating resistor 5. Is obtained.
- FIG. 6 (a) shows the shape of the diaphragm 27a portion of the sensor element of the conventional thermal flow meter.
- the sensor element of FIG. 6A has a shape when low power consumption driving is not required. Therefore, the longitudinal direction of the heating resistor 26a can be increased.
- a heating temperature sensor 28a is similarly disposed in the vicinity of the heating resistor so as to be long in the longitudinal direction. The locations where the heating temperature sensor 28a is disposed are the left side, upper side, and right side of the heating resistor 26a, and are not disposed below the heating resistor 26a.
- FIG. 6B shows an isotherm representing the state of temperature distribution on the diaphragm when a voltage is applied to the heating temperature sensor 28a in the shape of the diaphragm 27a portion of FIG. 6A.
- the shaded portion indicates a higher temperature state.
- FIG. 6 (b) it can be seen that the heating temperature sensor 28a is disposed on the left side, the upper side, and the right side of the heating resistor 26a, so that the temperature rises due to self-heating. Since the heating temperature sensor 28a is not disposed on the lower side of the heating resistor 26a, the temperature rise is small.
- the air flow whose temperature has risen through the heating resistor 26a flows to the downstream temperature sensor 29b.
- the temperature where the air flow 32a and the air flow 32b pass is substantially the same.
- the temperature of the air flowing into the downstream temperature sensor 29b does not change regardless of the air flow 32a or the air flow 32b. This is because the heating resistor 26a is long in the vertical direction on the paper surface, and the portions of the upper and lower portions of the heating resistor having different temperature distributions are separated from the downstream temperature sensor 29b. Therefore, in the case of the conventional sensor element shape that does not require low power consumption, the sensitivity change does not occur in the flow rate detection, and the air flow can be measured satisfactorily.
- FIG. 7A shows the shape of the diaphragm 27b portion of the sensor element of the conventional thermal flow meter.
- the sensor element of FIG. 7A has a shape when low power consumption driving is required. Because of low power consumption, the heating resistor 26b is shorter than the heating resistor 26a in FIG. 6A in the longitudinal direction. In the vicinity of the heating resistor 26b, a heating temperature sensor 28b is similarly formed in the vicinity of the heating resistor in the short direction in the longitudinal direction. The locations where the heating temperature sensor 28b is disposed are the left side, upper side, and right side of the heating resistor 26b, and are not disposed below the heating resistor 26b.
- FIG. 1 shows the shape of the diaphragm 27b portion of the sensor element of the conventional thermal flow meter.
- the sensor element of FIG. 7A has a shape when low power consumption driving is required. Because of low power consumption, the heating resistor 26b is shorter than the heating resistor 26a in FIG. 6A in the longitudinal direction. In the vicinity of the heating resist
- FIG. 7B shows an isotherm representing a temperature distribution state on the diaphragm when a voltage is applied to the heating temperature sensor 28b in the shape of the diaphragm 27b portion of FIG. 7A.
- the dark shaded portion indicates a higher temperature state.
- the air flow whose temperature has risen through the heating resistor 26b flows to the downstream temperature sensor 29b.
- the temperature of the place where the air flow 32a and the air flow 32b pass is different.
- the temperature of the air flowing into the downstream temperature sensor 29b is high in the case of the air flow 32a, and is low in the case of the air flow 32b. Therefore, the temperature of the air flowing through the downstream temperature sensor 29b changes as the direction of the air flow changes. This is because the heating resistor 26a is short in the vertical direction on the paper surface, and the portion where the temperature distribution of the upper and lower portions of the heating resistor is different is close to the downstream temperature sensor 29b. Therefore, in the case of a conventional sensor element shape that requires low power consumption, a sensitivity change occurs in flow rate detection, and an error occurs in the measurement of airflow.
- FIG. 8 shows the temperature distribution on the YY 'line when the heating resistor 26a of FIG. 6A is driven. From the temperature distribution shown in FIG. 8, the temperature differs between the upper side and the lower side of the heating resistor. In this configuration, the heating temperature sensor 28a is disposed on the upper side of the heating resistor 26a, whereas the heating temperature sensor 28a is not disposed on the lower side of the heating resistor. Therefore, the temperature rise due to self-heating of the heating temperature sensor 28a differs between the upper side and the lower side of the heating resistor.
- ⁇ Tht is about 5 ° C. to 20 ° C. .
- FIG. 9 is a diagram schematically showing the region where the heating resistor 26a, the upstream temperature sensor 29a, and the downstream temperature sensor 29b in FIG. 6A are formed.
- a region 35 indicates a region where the heating resistor 26a in FIG. 6 is formed
- a region 36a indicates a region where the upstream temperature sensor 29a in FIG. 6 is formed
- a region 36b indicates an upstream in FIG.
- An area where the side temperature sensor 29b is formed is shown.
- an end portion 37a in FIG. 9 shows an end portion on the upper side of the heating resistor 26a in FIG. 6, and an end portion 37b shows an end portion on the left side (upstream side of the air flow) of the heating resistor 26a in FIG.
- FIG. 9 shows an end portion 37a in FIG. 9 shows an end portion on the upper side of the heating resistor 26a in FIG. 6, and an end portion 37b shows an end portion on the left side (upstream side of the air flow) of the heating resistor 26a in FIG.
- the end portion 37c is the right end (downstream side of the air flow) of the heating resistor 26a in FIG. 6, and the end portion 37d is the lower end of the heating resistor 26a in FIG. Further, the heating temperature sensor 28a in FIG. 6 is disposed at the end portions 37a, 37b, and 37c of the heating resistor, while the heating temperature sensor 28a is not disposed at the end portion 37d of the heating resistor. .
- FIG. 9 the temperature of the air flowing into the region 36a of the downstream temperature sensor when the airflow flowing through the sensor element is inclined by ⁇ degrees from the left and right direction of the heating resistor (32a in the figure) will be described.
- the vicinity of the end portion 37a of the heating resistor becomes higher by ⁇ Tht as shown in FIG. 8 than the other portions due to self-heating of the heating temperature sensor 28a. Therefore, the temperature of the air passing through the end portion 37a of the heating resistor is higher than that of other places by ⁇ Tht. Therefore, the air whose temperature is higher by ⁇ Tht flows into the region 36b of the downstream temperature sensor.
- ⁇ Ls Wh ⁇ tan ⁇ (1) It is.
- Wh is the width of the region 35 of the heating resistor, and is the length of the end portion 37a of the heating resistor shown in FIG.
- the part ⁇ Ls is higher than the part of the other downstream temperature sensor 36b by ⁇ Tht.
- Ls is the overall length of the area 36a of the upstream temperature sensor in the vertical direction on the paper surface. Further, the length of the heating resistor region 35 in the vertical direction of the drawing sheet is also Ls.
- FIG. 10 shows the change rate ⁇ Th ′ / ⁇ Th of the heating temperature of the heating resistor with respect to the change in the length Ls of the region 35 of the heating resistor.
- the flow rate detection by the inclination of the air flow is performed. It is possible to further reduce the error.
- FIG. 11 (a) shows the shape of the diaphragm 4 part of the sensor element of the thermal flow meter in the present invention.
- the sensor element in FIG. 11A has a shape when low power consumption driving is required. Therefore, the heating resistor 5 is shortened in the longitudinal direction.
- a heating temperature sensor 7 is similarly arranged in the vicinity of the heating resistor in the short direction in the longitudinal direction. The locations where the heating temperature sensor 7 is arranged are the left side, upper side, right side, and lower side of the heating resistor 5, and the heating temperature sensor 7 is arranged in almost all directions of the heating resistor 5.
- FIG. 11 (a) shows the shape of the diaphragm 4 part of the sensor element of the thermal flow meter in the present invention.
- the sensor element in FIG. 11A has a shape when low power consumption driving is required. Therefore, the heating resistor 5 is shortened in the longitudinal direction.
- a heating temperature sensor 7 is similarly arranged in the vicinity of the heating resistor in the short direction in the longitudinal direction.
- FIG. 11B shows an isotherm representing the state of temperature distribution on the diaphragm when a voltage is applied to the heating temperature sensor 7 in the shape of the diaphragm 4 portion of FIG.
- the shaded portion indicates a higher temperature state.
- the heating temperature sensor 7 is disposed on the left side, the upper side, the right side, and the lower side of the heating resistor 5, a temperature rise due to self-heating occurs. Since self-heating occurs in almost all directions of the heating resistor 5, the temperature distribution of the heating resistor 5 becomes substantially uniform.
- the airflow that has risen in temperature through the heating resistor 5 becomes the downstream temperature sensors 9a and 9b. Flowing into. On the heating resistor 5, the temperature at which the air flow 32a and the air flow 32b pass is substantially the same. As for the temperature of the air flowing into the downstream temperature sensors 9a and 9b, the temperature of the air flowing into the downstream temperature sensor 29b does not change regardless of the air flow 32a or the air flow 32b. This is because the temperature distribution on the heating resistor 5 is uniform, and the temperatures of the upper and lower portions of the heating resistor 5 are vertically symmetrical with respect to the center of the heating resistor 5, and the downstream temperature sensor. This is because the temperature distribution in the vicinity of 9a and 9b is almost uniform. Therefore, in the present invention, even when the longitudinal direction of the heating resistor 5 is shortened for low power consumption, the sensitivity change does not occur in the flow rate detection due to the change in the flow direction, and the air flow can be measured well. Is possible.
- FIG. 12A is a diagram showing the shape of the diaphragm 4 portion of the thermal flow meter when the wiring portions 33a and 33b of the heating temperature sensor 7 are formed with the same line width as the heating temperature sensor 7.
- FIG. 12B shows the temperature distribution on the diaphragm 4 when the wiring portions 33 a and 33 b of the heating temperature sensor 7 are formed with the same line width as the heating temperature sensor 7.
- the temperature distribution in FIG. 12B shows the temperature rise when a voltage is applied to the heating temperature sensor 7.
- the shaded portion indicates a higher temperature state.
- the wiring portions 33 a and 33 b are formed of the same material as that of the heating temperature sensor 7. Since the wiring portions 33a and 33b have a resistance of about several tens of ⁇ , self-heating occurs when a voltage is applied. Therefore, as shown in FIG. 12B, the temperature rises in the wiring portions 33a and 33b, and the temperature distribution around the heating resistor 5 becomes non-uniform.
- the heating temperature sensor 7 in FIG. 13 includes a heating temperature sensor 7a disposed on the left side of the heating resistor 5, a heating temperature sensor 7b disposed on the right side, a heating temperature sensor 7c disposed on the upper side, and a heating disposed on the lower side. It consists of temperature sensors 7d and 7e.
- the heating temperature sensor 7a is provided with four resistors, and these four resistors are connected in series so as to have a folded structure. The same applies to the heating temperature sensor 7b.
- the heating temperature sensors 7c, 7d, and 7e are provided with two resistors.
- the heating temperature sensors 7a and 7b are arranged with more resistors than the heating temperature sensors 7c, 7d, and 7e.
- the resistance value of the heating temperature sensor can be increased by providing many resistors and connecting them in series.
- the resistance value high By setting the resistance value high, the current flowing when a constant voltage is applied to the heating temperature sensor 7 can be reduced, and self-heating can be further suppressed.
- the ratio of the resistance values of the wiring portions 33a and 33b to the resistance value of the heating temperature sensor 7 is reduced, so that the heat generation of the wiring portions 33a and 33b can be reduced and the temperature distribution can be made more uniform than the resistance value.
- the heating resistor 5 is provided with wiring portions 30i and 30j for taking out electrodes.
- the line width is narrowed because it is necessary to provide as many regions as the heating temperature sensors 7d, 7e. For this reason, when the portion where the line widths of the wirings 30i and 30j become narrower becomes longer, the resistance becomes higher in this portion and the heat generation becomes larger. Therefore, the temperature distribution around the heating resistor 5 becomes non-uniform.
- the heating temperature sensors 7 d and 7 e are arranged so as to be sandwiched between the lower part of the heating resistor 5 and the wiring parts 30 i and 30 j located on the diaphragm 4.
- the line widths of the wirings 30i and 30j are made larger, and conversely, the resistance value is reduced, self-heating is reduced, and temperature rise due to current flowing in the wiring can be reduced.
- the uniformity of the temperature distribution around the heating resistor 5 is improved, the sensitivity change does not occur in the flow rate detection due to the change in the flow direction, and the air flow can be measured satisfactorily.
- FIGS. 14A to 14C show temperature states detected by the heating temperature sensor when the inclined air flows 32a and 32b flow in the conventional configuration.
- the conventional heating temperature sensor is arranged on the left side (upstream side of the air flow) of the heating resistor 26b and on the right side (downstream side of the air flow) of the drawing.
- the temperature of the heating resistor 26b is detected by the heating temperature sensor 7b and the heating temperature sensor 7c arranged on the upper side of the drawing.
- FIG. 14B shows a temperature distribution when the inclined air flow 32a flows in the conventional configuration.
- the air flow 32a flows from the upper left to the lower right of the page.
- FIG. 14C shows a temperature distribution when the inclined air flow 32b flows.
- the air flow 32b flows from the lower left to the upper right of the page.
- the heating temperature sensor 7a is located upstream of the heating resistor 26b, so the temperature decreases. Since the heating temperature sensors 7b and 7c are located downstream of the heating resistor 26b, the temperature rises conversely. Comparing FIG. 14B and FIG.
- both the temperature of the heating temperature sensor 7a is decreased, and the temperature of both of the heating temperature sensors 7b is increased.
- the temperature of the heating temperature sensor 7c decreases when the air flow is 32a, but increases when the air flow is 32b. Therefore, the temperature detected by the heating temperature sensor 7c changes depending on the inclination of the air flow. As a result, an error occurs in the temperature control of the heating resistor 26b, causing a flow rate detection error.
- FIGS. 15A to 15C show temperature states detected by the heating temperature sensor when the inclined air flows 32a and 32b flow in the configuration of the present invention.
- the heating temperature sensor in the configuration of the present invention includes a heating temperature sensor 7a disposed on the left side of the heating resistor 5 (upstream side of the air flow) and the right side of the paper surface (downstream side of the air flow).
- the temperature of the heating resistor 5 is detected by the heating temperature sensor 7b arranged at the top of the drawing, the heating temperature sensor 7c arranged at the upper side of the page, and the heating temperature sensors 7d and 7e arranged at the lower side of the page.
- FIG. 15B shows the temperature distribution when the inclined air flow 32a flows in the configuration of the present invention.
- the air flow 32a flows from the upper left to the lower right of the page.
- the heating temperature sensors 7a and 7c are located on the upstream side of the heating resistor 5, so that the temperature of the heating temperature sensors 7a and 7c decreases. Since the heating temperature sensors 7b, 7d, and 7e are located on the downstream side of the heating resistor 5, the temperature rises.
- FIG. 15C shows a temperature distribution when the inclined air flow 32b flows.
- the air flow 32b flows from the lower left to the upper right of the page.
- the heating temperature sensors 7 a, 7 d, and 7 e are positioned on the upstream side of the heating resistor 5, so that the temperature decreases.
- the temperature sensors 7b and 7c are located downstream of the heating resistor 26b, the temperature rises conversely. Comparing FIG. 15B and FIG. 15C, the temperature of the heating temperature sensor 7a both decreases, and the temperature of both of the heating temperature sensors 7b increases and is not affected by the flow gradient. The temperature of the heating temperature sensor 7b decreases when the air flow is 32a, but increases when the air flow is 32b. On the contrary, the heating temperature sensors 7d and 7e increase in temperature when the air flow is 32a, and decrease in temperature when the air flow 32b.
- the temperatures of the heating temperature sensor 7c and the heating temperature sensors 7d and 7e are reversed between the high temperature and the low temperature due to the inclination of the air flow, but the average temperature of the heating temperature sensors 7c, 7d and 7e is kept constant. Therefore, when the heating temperature sensors 7a to 7e are connected in series and considered as one heating temperature sensor 7, the temperature of the heating temperature sensor 7 becomes the average temperature of the heating temperature sensors 7a to 7e. Therefore, the temperature detected by the heating temperature sensor 7 (combination of 7a to 7e) is kept constant even when the air flow gradient occurs. Thereby, even if the inclination of the air flow occurs, the temperature control of the heating resistor 5 can be stabilized, and the flow rate detection accuracy can be improved.
- the configuration of the present invention generates heat regardless of only the temperature difference method for detecting the flow rate from the temperature difference between the upstream temperature sensors 8a and 8b and the downstream temperature sensors 9a and 9b as shown in FIG. Also in the direct heating method in which the voltage and current of the resistor 5 are measured and the flow rate is detected, the temperature control of the heating resistor 5 is stabilized and the flow rate measurement accuracy can be improved.
- a method for manufacturing the sensor element 1 according to the first embodiment will be described.
- a semiconductor substrate 2 such as single crystal silicon (Si) is used.
- Silicon dioxide (SiO 2 ) and silicon nitride (Si 3 N 4 ) are formed on the surface of the single crystal silicon (Si) substrate 2 serving as a base to form an electrical insulating film 3a having a predetermined thickness of about 1 ⁇ m by thermal oxidation or CVD.
- a polycrystalline silicon (Si) semiconductor thin film having a thickness of about 1 ⁇ m is laminated as a resistor by a CVD method or the like.
- the polycrystalline silicon (Si) semiconductor thin film is patterned by a method such as reactive ion etching, and predetermined resistors 5, 7, 8a, 8b, 9a, 9b, 10, 11, 12 and wiring portions 30a to 30n are obtained.
- electrically insulating film 3a of the electrical insulating film 3b as a protective film is formed by CVD or the like of silicon dioxide (SiO 2) and silicon nitride (Si 3 N 4) of about 1 micron thick.
- a terminal electrode serving as a terminal for connection to an external circuit is formed on the electrode pad portion 13 by removing the protective film 3b and using aluminum, gold, or the like.
- the wiring portions 30a to 30n for connecting each resistor and the terminal may have a multilayer structure of a polycrystalline silicon (Si) semiconductor thin film and aluminum, gold or the like.
- the cavity portion is formed by patterning an etching mask material in a predetermined shape on the back surface of the single crystal silicon (Si) semiconductor substrate 2 and performing anisotropic etching using an etchant such as potassium hydroxide (KOH).
- an etchant such as potassium hydroxide (KOH).
- KOH potassium hydroxide
- the sensor element 1 is completed through the above steps.
- the embodiments using the polycrystalline silicon (Si) semiconductor thin film as the resistor have been described.
- a metal material such as platinum, molybdenum, tungsten, or nickel alloy is used.
- the heating resistor is used. It is desirable to make it smaller. This is because, in the case of a metal material, the heat resistance is high, the heating temperature of the heating resistor 5 can be set to 150 ° C. to 300 ° C., and high sensitivity can be achieved.
- the present invention is more effective when a sensor element using a metal material as a resistor is driven with low power.
- heating resistor 5 is substantially M-shaped on the diaphragm 4, the same effect can be obtained with a substantially U-shaped or meandering (meandering) shape.
- FIG. 16 is a cross-sectional view showing the sensor element 34.
- FIG. 17 is a plan view on the diaphragm 4 in FIG.
- the substrate 2 of the sensor element 34 is made of a material having good thermal conductivity such as silicon or ceramic.
- an electrical insulating film 3 a is formed on the substrate 2, and the cavity is formed by etching the substrate 2 from the back surface to form the diaphragm 4.
- a heating resistor 5 is formed on the surface of the diaphragm 4 near the center of the electrical insulating film 3a, and the heating resistor 5 is covered with the electrical insulating film 3b.
- the electrical insulating film 3 b is formed so as to cover the heating resistor 5 and the diaphragm 4.
- a heating temperature sensor 7 that detects the heating temperature of the heating resistor 5 is formed on the electrical insulating film 3 b so as to surround the heating resistor 5.
- the temperature of the heating resistor 5 is detected by the heating temperature sensor 7, and the heating is controlled so as to be higher than the temperature of the air flow 6 by a certain temperature.
- upstream temperature sensors 8 a and 8 b and downstream temperature sensors 9 a and 9 b are formed on both sides of the heating temperature sensor 7.
- the upstream temperature sensors 8 a and 8 b are arranged upstream of the heating resistor 5 in the air flow 6, and the downstream temperature sensors 9 a and 9 b are arranged downstream of the heating resistor 5 in the air flow 6.
- the outermost surface of the sensor element 1 is covered with an electrical insulating film 3c.
- the electrical insulating film 3c serves as a protective film in addition to performing electrical insulation.
- the heating resistor 5, the heating temperature sensor 7, the upstream temperature sensors 8a and 8b, the downstream temperature sensors 9a and 9b, and the temperature sensitive resistors 10, 11, and 12 have a relatively resistance temperature coefficient whose resistance value varies depending on the temperature.
- Is made of a large material may be formed of a semiconductor material such as polycrystalline silicon or single crystal silicon doped with impurities, or a metal material such as platinum, molybdenum, tungsten, or nickel alloy.
- the electrical insulating films 3a and 3b are formed in a thin film shape with a thickness of about 2 microns from silicon dioxide (SiO 2 ) or silicon nitride (Si 3 N 4 ) so that a sufficient thermal insulation effect can be obtained.
- the heating resistor 5, the heating temperature sensor 7, the upstream temperature sensors 8a and 8b, and the downstream temperature sensors 9a and 9b are also temperature sensitive resistors similar to the temperature sensitive resistors 10, 11, and 12. .
- the heating resistor 5 is different from the first embodiment of FIG. 5 in that the heating resistor 5 and the heating temperature sensor 7 are provided in different layers. Thereby, as shown in FIG. 17, the heating resistor 5 can be completely surrounded by the heating temperature sensor 7. Further, since the wiring portions 30i and 30j of the heating resistor 5 are provided in a layer different from the heating temperature sensor 7, the wiring area can be increased and the resistance value can be reduced. As a result, the self-heating of the wiring portions 30i and 30j is reduced, the temperature distribution around the heating resistor 5 can be made more uniform, and the sensitivity change does not occur in the flow rate detection due to the change in the flow direction, which is good In addition, the air flow can be measured.
- the heating resistor 5 is formed in the lower layer and the heating temperature sensor is formed in the upper layer. Conversely, the heating temperature sensor is formed in the lower layer, and the heating resistor 5 is formed. Even if it is formed in the upper layer, the same effect can be obtained.
- the heating temperature sensor 7 of this embodiment includes a heating temperature sensor 7a disposed on the left side of the heating resistor 5, a heating temperature sensor 7b disposed on the right side, a heating temperature sensor 7c disposed on the upper side, and a heating disposed on the lower side.
- heating temperature sensors 7f and 7g are arranged inside the heating resistor 5. These heating temperature sensors 7a to 7g are electrically connected.
- the heating temperature sensors 7f and 7g are provided between a plurality of heating temperature sensors 7f and 7g provided with a folded structure of the heating resistor 5.
- the self-heating by the heating temperature sensor 7 becomes more uniform around and inside the heating resistor 5, and the temperature distribution on the heating resistor 5 becomes uniform. Therefore, the sensitivity change does not occur in the flow rate detection due to the change in the flow direction, and the air flow can be measured well.
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Volume Flow (AREA)
Abstract
本発明の課題は、高感度で信頼性の向上した熱式流量センサを提供することである。本発明のセンサ素子1は、半導体基板2と、半導体基板2に形成された空洞部4と、空洞部4上に電気絶縁膜を介して形成された発熱抵抗体5と、発熱抵抗体5の加熱温度を検出する加熱温度センサ7と、加熱温度センサ7により検出された温度により発熱抵抗体5の加熱温度を制御する駆動回路22を備えている。そして、加熱温度センサ7は、温度によって抵抗値が変化する感温抵抗体であり、発熱抵抗体5に対して被計測流体の流れの上流側および下流側に配置し、かつ、被計測流体の流れの垂直方向の上部側と下部側に配置する。
Description
本発明は、被計測流体中に発熱抵抗体を設置し流量を測定する熱式流量計に係り、特に、自動車の内燃機関の吸入空気流量や排ガス流量の測定に好適な熱式流量計に関わる。
自動車などの内燃機関の吸入空気量を検出する空気流量計として、質量流量を直接測定できる熱式の空気流量計が主流になっている。
近年では、マイクロマシン技術を用いてシリコン(Si)などの半導体基板上に熱式流量計のセンサ素子を製造するものが提案されている。このような半導体タイプのセンサ素子は、半導体基板の一部を矩形状に除去した空洞部を形成し、この空洞部に形成した数ミクロンの電気絶縁膜上に発熱抵抗体を形成している。また、発熱抵抗体の近傍の上流,下流に温度センサ(感温抵抗体)を形成し、発熱抵抗体の上流,下流の温度差から流量を検出する温度差方式により、順流と逆流の判別も可能である。発熱抵抗体の大きさは数百ミクロンと微細であり、薄膜状に形成されることから、熱容量が小さく高速応答・低消費電力化が可能である。
センサ素子の低電力化を図った従来技術として、特許文献1に記載のものがある。特許文献1には、発熱抵抗体の長さを小さくすることにより、感度を維持し、低消費電力化する技術が記載されている。
自動車などの内燃機関に上記のような空気流量計を搭載するには、センサ素子の汚損を低減するために、空気流の一部を取り込む副通路内にセンサ素子を配置する技術が多く用いられる。センサ素子が配置される副通路は、オイルやダストなどからセンサ素子を保護するため、多様な形状で曲げられている。そのため、センサ素子上を流れる空気の方向が空気の流量により変化する。空気の流れ方向が変化すると、センサ素子が検出した流量に誤差が発生する。
さらに、発熱抵抗体が小型になると、発熱抵抗体の周辺の温度分布の均一性が悪化し、空気流量方向の微小な変化でもセンサ素子の検出感度が変化し測定誤差が大きくなる課題がある。従来は、発熱抵抗体の発熱により発生する温度分布に関しては考慮されていたが、発熱抵抗体の温度を検出し、発熱抵抗体を加熱制御するために設けた感温抵抗体の自己発熱による温度分布の均一性に関しては考慮されていなかった。
そこで、本発明の目的は、自動車などの内燃機関に搭載し、空気流の流れ方向の微小な変化によるセンサ素子の検出感度の変化や流量測定誤差を低減し、低消費電力で高精度な熱式流量センサを提供することにある。
上記目的を達成するために、本発明の熱式流量計は、被計測流体を取り込む開口部を有する副通路と、前記副通路内に配置され被計測流体の流量を計測するセンサ素子とを備えた熱式流量計において、前記センサ素子は、半導体基板と、前記半導体基板に形成された空洞部と、前記空洞部上に電気絶縁膜を介して形成された発熱抵抗体と、前記発熱抵抗体の加熱温度を検出する加熱温度センサと、前記加熱温度センサにより検出された温度により前記発熱抵抗体の加熱温度を制御する駆動回路を備え、前記加熱温度センサは、温度によって抵抗値が変化する感温抵抗体であり、前記発熱抵抗体に対して前記被計測流体の流れの上流側および下流側に配置し、かつ、前記被計測流体の流れの垂直方向の上部側と下部側に配置した。そして、前記加熱温度センサは、前記空洞部上で電気的に直列接続すると良い。
これにより、前記加熱温度センサに流れる電流による自己発熱による温度上昇が、発熱抵抗体周辺で均等な温度分布になる。
本発明によれば、空気流の流れ方向の微小な変化によるセンサ素子の検出感度の変化や流量測定誤差を低減し、低消費電力で高精度な熱式流量センサを提供できる。本明細書は、本願の優先権の基礎である日本国特許出願2010-171305号の明細書及び/または図面に記載されている内容を包含する。
以下、本発明に係る実施例について説明する。
本発明に係る第1の実施例について以下説明する。
図1に、自動車などの内燃機関の吸気管にセンサ素子1と、センサ素子1の駆動・検出回路を実装した実施例を示す。図1において、吸気管路18の壁面から突出するようにベース部材19を設ける。ベース部材19には、吸気管路18を流れる吸気20の一部を取り込む副通路21が形成されている。副通路21は、吸気20を導入あるいは排出する開口部を有しており、副通路21の開口部付近は通路面積が徐々に小さくなる絞りが設けられている。また、副通路21は通路経路に湾曲部を有しており、この湾曲部によって副通路21に導入された吸気20が折り返され、吸気20の流れ方向と逆方向に空気流が流れるような部位を有する流路構造となっている。この部位に形成した矩形状の凹部に、センサ素子1を設置する。副通路21に湾曲部を形成することで、この湾曲部に沿って空気流が流れ、副通路21内に侵入したダストなどの粒子が慣性分離され、センサ素子1に直接衝突することを防止でき、センサ素子1の破壊を抑制することができる。センサ素子1を設置する近傍の副通路21は流路を直線状としている。これは、センサ素子1に流れる空気流の流れ方向を一定に安定させる効果がある。しかし、センサ素子1が設置される直線状の流路の長さには限界があり、流速が上がることによって、流れの方向が変化する問題は残る。そのため、ダストの衝突防止と、空気流の流れ方向の安定化を両立させることが困難である。
ベース部材19には、センサ素子1の駆動・検出回路を搭載した回路基板22が設けられ、金線ボンディングワイヤー23によりセンサ素子1と回路基板22を電気的に接続する。さらに、駆動回路の電源供給,出力信号の取り出しのための端子24を設け、アルミボンディングワイヤー25により回路基板22と端子24を電気的に接続する。
本実施例による熱式流量計のセンサ素子1の構成を図2,図3により説明する。図2は、センサ素子1を示す平面図である。また図3は、図2におけるX-X′線に沿った断面図を示す。センサ素子1の基板2は、シリコンやセラミック等の熱伝導率の良い材料で構成される。そして、基板2上に電気絶縁膜3aを形成し、基板2を裏面からエッチングすることで空洞部を形成しダイアフラム4を形成する。
ダイアフラム4上の電気絶縁膜3aの中心付近の表面には発熱抵抗体5を形成する。発熱抵抗体5の周囲に発熱抵抗体5の加熱温度を検出する加熱温度センサ7が、発熱抵抗体5を取り巻くように形成される。発熱抵抗体5の温度を加熱温度センサ7で検出し、空気流6の温度に対して一定温度高くなるように加熱制御されている。さらに加熱温度センサ7の外側には上流側温度センサ8a,8b、下流側温度センサ9a,9bを形成する。上流側温度センサ8a,8bは発熱抵抗体5に対して空気流6の上流側,下流側温度センサ9a,9bは発熱抵抗体5に対して空気流6の下流側に配置する。センサ素子1の最表面は電気絶縁膜3bによって覆われ、電気絶縁膜3bは電気的絶縁を行うほか、保護膜として働く。ダイアフラム4の外部の電気絶縁膜3a上には、空気流6の温度に応じて抵抗値が変化する感温抵抗体10,11,12を配置する。
これらの発熱抵抗体5、加熱温度センサ7、上流側温度センサ8a,8b、下流側温度センサ9a,9b、感温抵抗体10,11,12は温度によって抵抗値が変化する比較的抵抗温度係数が大きい材料で形成する。例えば、不純物をドープした多結晶シリコンや単結晶シリコンなどの半導体材料、また白金,モリブデン,タングステン,ニッケル合金などの金属材料などで形成すると良い。また、電気絶縁膜3a,3bは二酸化ケイ素(SiO2)や窒化ケイ素(Si3N4)により約2ミクロン厚の薄膜状に形成し、熱絶縁効果が十分に得られる構造とする。
なお、上記のように、発熱抵抗体5、加熱温度センサ7、上流側温度センサ8a,8b、下流側温度センサ9a,9bも、感温抵抗体10,11,12と同様に、感温抵抗体である。
さらにセンサ素子1の端部には、発熱抵抗体5、加熱温度センサ7、上流側温度センサ8a,8b、下流側温度センサ9a,9b、感温抵抗体10,11,12を構成する各抵抗体を駆動・検出回路と接続するための電極が形成された電極パッド部13を設ける。なお、電極はアルミなどで形成する。
本発明の実施例である熱式流量計は、以下のように動作する。
図3は、図2におけるX-X′線上の断面構成と、X-X′線上の温度分布である。温度分布14の実線は無風時のダイアフラム4の温度分布を示す。発熱抵抗体5は、空気流6の温度よりもΔTh高くなるように加熱する。温度分布14の破線は、空気流6が発生したときのダイアフラム4の温度分布である。空気流6が発生することにより、発熱抵抗体5の上流側は空気流6により冷却され温度が下がり、下流側は発熱抵抗体5を通過し加熱された空気が流れることから温度が上がる。したがって、上流側温度センサ8a,8bと下流側温度センサ9a,9bとによって発熱抵抗体5の上下流の温度差ΔTsを測定することにより、流量が計測される。
次に、センサ素子1の駆動・検出回路について説明する。図4に、センサ素子1の駆動・検出回路を示す。発熱抵抗体5の温度によって抵抗値が変化する加熱温度センサ7と感温抵抗体10とからなる直列回路と、感温抵抗体11と感温抵抗体12とからなる直列回路とを並列に接続したブリッジ回路を構成し、各直列回路に基準電圧Vrefを印加する。これらの直列回路の中間電圧を取り出し、増幅器15に接続する。増幅器15の出力は、トランジスタ16のベースに接続する。トランジスタ16のコレクタは電源VBに接続し、エミッタは発熱抵抗体5に接続し、フィードバック回路を構成する。これにより、発熱抵抗体5の温度Thは空気流6の温度Taに対して一定温度ΔTh(=Th-Ta)高くなるように制御される。
そして、上流側温度センサ8aと下流側温度センサ9aとからなる直列回路と、下流側温度センサ9bと上流側温度センサ8bとからなる直列回路とを並列に接続したブリッジ回路を構成し、各直列回路に基準電圧Vrefを印加する。空気流により上流側温度センサ8a,8bと下流側温度センサ9a,9bとに温度差が発生すると、ブリッジ回路の抵抗バランスが変化して差電圧が発生する。この差電圧から増幅器17によって空気流量に応じた出力が得られる。
図5にセンサ素子1のダイアフラム4の拡大図を示す。図5において、加熱温度センサ7a~7eは、発熱抵抗体5の周囲を取り囲むように配置している。加熱温度センサ7aを発熱抵抗体5に対して空気流6の上流側(以下、紙面左側と称す。)に配置し、加熱温度センサ7bを発熱抵抗体5に対して空気流6の下流側(以下、紙面右側と称す。)に配置し、加熱温度センサ7cを空気流の垂直方向の上部側、すわなち、発熱抵抗体5の図1における主通路18の中心軸側(以下、紙面上側と称す。)に配置し、加熱温度センサ7d,7eを空気流の垂直方向の下部側、すなわち、発熱抵抗体5の図1における回路基板22側(以下、紙面下側と称す。)に配置している。上記の加熱温度センサ7a~7eは、ダイアフラム4上で電気的に直列接続される。上記の加熱温度センサ7a~7eを直列接続したものが加熱温度センサ7となる。発熱抵抗体5は、配線部30i,30jに電気的に接続され、ダイアフラム4の外側から、加熱電流が供給される。
発熱抵抗体5及び配線部30i,30jはその接続部に絞り部を有している。具体的には、発熱抵抗体5と配線部30i,30jによって凹部38a,38bが形成される。凹部38aの片側の側面は発熱抵抗体5の一部であり、他方の側面は配線部30iである。また、凹部38bの片側の側面は発熱抵抗体5の一部であり、他方の側面は配線部30jである。なお、発熱抵抗体5と配線部30i,30jとの接続部では、配線30i,30jの線幅は発熱抵抗体5の短手方向の線幅よりも狭く、ダイアフラム4の端部において配線30i,30jの線幅が広くなるように形成されている。
そして、凹部38aには、加熱温度センサ7dが嵌め込まれるように配置されており、凹部38bには、加熱温度センサ7eが嵌め込まれるように配置されている。すなわち、絞り部形状に沿って加熱温度センサ7d,7eを配置している。上記構成とすることにより、発熱抵抗体5の周囲を取り囲むように、加熱温度センサ7a~7eを配置することができ、加熱温度センサ7a~7eに流れる電流による、自己発熱量が発熱抵抗体5の紙面上下方向,紙面左右方向でほぼ対称となる。また、発熱抵抗体5を400μm以下のような小型形状とすることにより、発熱抵抗体5の周囲の加熱温度センサ7a~7eの自己発熱があっても発熱抵抗体5の上下左右方向に均一な温度分布が得られる。
ここで、発熱抵抗体5の領域は、ダイアフラム4上の発熱の主となる部分であり、図5に示した配線部30i,30jのような幅広になる部位や、発熱抵抗体5に電気的に接続されていたとしても、流れる電流が著しく小さくなる抵抗体等は含まれない。或いは、図5に示した発熱抵抗体5のように、発熱の主となり、形状がU字やM字になるような1回または複数回の折り返しがある領域である。加熱温度センサ7は、発熱抵抗体5の周囲のすべてを取り囲むと、より効果がられるが、発熱抵抗体5の上部,下部,右部,左部にほぼ均等に配置していれば十分な効果が得られる。
上記の構成とした場合に、熱式流量計のセンサ素子1へ流れ込む空気流が傾いたときの効果について、従来の構成と比較し説明する。
図6(a)は、従来の熱式流量計のセンサ素子のダイアフラム27a部の形状を示す。図6(a)のセンサ素子は、低消費電力駆動を必要としない場合の形状である。したがって発熱抵抗体26aは長手方向を大きくすることができる。発熱抵抗体26aの周辺には、加熱温度センサ28aを発熱抵抗体の近傍に同様に長手方向に長く配置している。加熱温度センサ28aを配置している箇所は、発熱抵抗体26aの紙面左側,上側,右側であり、発熱抵抗体26aの下側には配置していない。図6(b)は図6(a)のダイアフラム27a部の形状において、加熱温度センサ28aに電圧を加えたときのダイアフラム上の温度分布の状態を表す等温線を示している。なお、図6(b)において、網掛けが濃い部分はより高温状態であることを示す。図6(b)より、発熱抵抗体26aの左側と上側と右側は加熱温度センサ28aが配置されているため自己発熱による温度上昇が発生することがわかる。発熱抵抗体26aの下側は、加熱温度センサ28aが配置していないことから温度上昇が少ない。図6(b)の温度分布を持つ状態で、傾いた空気流32a,32bがダイアフラム部27aに流れ込んだ場合、発熱抵抗体26aを通過して温度上昇した空気流が下流側温度センサ29bに流れる。発熱抵抗体26a上において、空気流32aと空気流32bが通過する場所の温度はほぼ同一の温度である。下流側温度センサ29bに流れ込む空気の温度は、空気流32aや空気流32bのどちらの空気流が流れても、下流側温度センサ29bに流れる空気の温度は変化しない。これは、発熱抵抗体26aが紙面上下方向に長く、発熱抵抗体の上部や下部の温度分布が異なる部分が下流側温度センサ29bから離れているためである。したがって、従来の低消費電力を必要としないセンサ素子形状の場合は流量検出において感度変化は発生せず、良好に空気流の測定が可能であった。
図7(a)は従来の熱式流量計のセンサ素子のダイアフラム27b部の形状を示す。図7(a)のセンサ素子は、低消費電力駆動を必要とする場合の形状である。低消費電力のため発熱抵抗体26bは長手方向に対し図6(a)における発熱抵抗体26aよりも短く形成している。発熱抵抗体26bの周辺には、加熱温度センサ28bを発熱抵抗体の近傍に同様に長手方向に短く形成している。加熱温度センサ28bを配置している箇所は、発熱抵抗体26bの紙面左側,上側,右側であり、発熱抵抗体26bの下側に配置していない。図7(b)は図7(a)のダイアフラム27b部の形状において、加熱温度センサ28bに電圧を加えたときのダイアフラム上の温度分布の状態を表す等温線を示している。なお、図7(b)において、網掛けが濃い部分はより高温状態であることを示す。図7(b)より、発熱抵抗体26bの左側と上側と右側は加熱温度センサ28bが配置されているため自己発熱による温度上昇が発生する。発熱抵抗体26bの下側は、加熱温度センサ28bを配置していないことから温度上昇が少ない。図7(b)の温度分布を持つ状態で、傾いた空気流32a,32bがダイアフラム部27bに流れ込んだ場合、発熱抵抗体26bを通過して温度上昇した空気流が下流側温度センサ29bに流れる。発熱抵抗体26b上において、空気流32aと空気流32bとで通過する場所の温度が異なる。下流側温度センサ29bに流れ込む空気の温度は、空気流32aの場合、温度が高くなり、空気流32bの場合、温度が低くなる。したがって、空気流の方向が変化することによって下流側温度センサ29bに流れる空気の温度が変化する。これは、発熱抵抗体26aが紙面上下方向に短く、発熱抵抗体の上部や下部の温度分布が異なる部分が下流側温度センサ29bに近いためである。したがって、従来の低消費電力を必要とするセンサ素子形状の場合は流量検出において感度変化が発生し、空気流の測定に誤差が発生していた。
発熱抵抗体の長さにより、温度分布による測定誤差が変化することについて詳細に説明する。図8は、図6(a)の発熱抵抗体26aを駆動したときの、Y-Y′線上の温度分布を示す。図8に示した温度分布から、発熱抵抗体の紙面上側と下側とで温度が異なる。これは、発熱抵抗体26aの紙面上側には、加熱温度センサ28aを配置しているのに対し、発熱抵抗体の紙面下側には加熱温度センサ28aを配置していない。そのため、発熱抵抗体の紙面上側と下側とで、加熱温度センサ28aの自己発熱による温度上昇が異なる。ここで、発熱抵抗体の全体の平均温度をΔThとし、ΔThから、発熱抵抗体の上側の加熱温度センサ28bの自己発熱による温度上昇量をΔThtとすると、ΔThtはおよそ5℃~20℃程度ある。
図9は、図6(a)における発熱抵抗体26a,上流側温度センサ29a,下流側温度センサ29bが形成される領域を簡略化して示した図である。図9において領域35は、図6における発熱抵抗体26aが形成される領域を示し、領域36aは、図6における上流側温度センサ29aが形成される領域を示し、領域36bは、図6における上流側温度センサ29bが形成される領域を示している。また、図9における端部37aは図6における発熱抵抗体26aの紙面上側の端部を示し、端部37bは図6における発熱抵抗体26aの紙面左側(空気流の上流側)の端部を示し、端部37cは図6における発熱抵抗体26aの紙面右側(空気流の下流側)の端部を示し、端部37dは図6における発熱抵抗体26aの紙面下側の端部を示す。また、発熱抵抗体の端部37a,37b,37cには、図6における加熱温度センサ28aが配置されているが一方、発熱抵抗体の端部37dには、加熱温度センサ28aは配置されていない。
図9において、センサ素子に流れる空気流が発熱抵抗体の左右方向からθ度だけ傾いた場合(図中32a)の、下流側温度センサの領域36aに流れ込む空気の温度について説明する。発熱抵抗体の端部37aの近傍は、加熱温度センサ28aが自己発熱することにより他の部分に比べ、図8で示されるようにΔThtだけ高温になる。そのため、発熱抵抗体の端部37aを通過する空気の温度は他の場所に比べΔThtだけ高温になる。したがって、温度がΔTht高い空気が下流側温度センサの領域36bに流れ込む。下流側温度センサの領域36bにおいてΔTht高い空気が流れる領域は、図9のΔLsに示す部分である。ΔLsは、
ΔLs=Wh・tanθ (1)
である。ここでWhは、発熱抵抗体の領域35の幅であり、図9に示す発熱抵抗体の端部37aの長さである。前述したように、上記ΔLsの部分は他の下流側温度センサ36bの部分に比べΔTht高くなる。下流側温度センサの領域36bにおいて一部分(ΔLs)が高温(ΔTht)になると、下流側温度センサの領域36bの平均温度がΔTh′に上昇する。加熱温度センサの自己発熱が十分小さく下流側温度センサの領域36b全体がΔThである場合との比ΔTh′/ΔThは、
ΔTh′/ΔTh=1+ΔLsΔTht/(Ls ΔTh)
=1+Wh・ΔTht・tanθ/(Ls ΔTh) (2)
である。ここで、Lsは上流側温度センサの領域36aの紙面上下方向の全体の長さである。また、発熱抵抗体の領域35の紙面上下方向の長さもLsとしている。たとえば、Wh=200μm,Ls=900μm,ΔTh=100℃,ΔTht=20℃,θ=6度とすると、
ΔTh′/ΔTh=1.004 (3)
になり、平均温度が0.4%変化する。平均温度が0.4%変化すると、流量検出誤差に換算すると、およそ1.4%程度になる。
ΔLs=Wh・tanθ (1)
である。ここでWhは、発熱抵抗体の領域35の幅であり、図9に示す発熱抵抗体の端部37aの長さである。前述したように、上記ΔLsの部分は他の下流側温度センサ36bの部分に比べΔTht高くなる。下流側温度センサの領域36bにおいて一部分(ΔLs)が高温(ΔTht)になると、下流側温度センサの領域36bの平均温度がΔTh′に上昇する。加熱温度センサの自己発熱が十分小さく下流側温度センサの領域36b全体がΔThである場合との比ΔTh′/ΔThは、
ΔTh′/ΔTh=1+ΔLsΔTht/(Ls ΔTh)
=1+Wh・ΔTht・tanθ/(Ls ΔTh) (2)
である。ここで、Lsは上流側温度センサの領域36aの紙面上下方向の全体の長さである。また、発熱抵抗体の領域35の紙面上下方向の長さもLsとしている。たとえば、Wh=200μm,Ls=900μm,ΔTh=100℃,ΔTht=20℃,θ=6度とすると、
ΔTh′/ΔTh=1.004 (3)
になり、平均温度が0.4%変化する。平均温度が0.4%変化すると、流量検出誤差に換算すると、およそ1.4%程度になる。
上記条件で、発熱抵抗体の領域35の紙面上下方向の長さLsが短くなった場合について説明する。発熱抵抗体の領域35の紙面上下方向の長さと、下流側温度センサの領域36bの紙面上下方向の長さは同一として考える。図10に発熱抵抗体の領域35の長さLsの変化に対する発熱抵抗体の加熱温度の変化率ΔTh′/ΔThを示す。Lsが400μmとなるとΔTh′/ΔThが1%程度となり、さらにLsが短くなるとより温度変化率が増大してしまう。したがって、本発明は、このように発熱抵抗体の長さLsが400μm以下のように短く形成されるような低消費電力化を図った熱式流量計の場合に、空気流の傾きによる流量検出誤差の低減をより図ることが可能である。
図11(a)は、本発明における熱式流量計のセンサ素子のダイアフラム4部の形状を示す。図11(a)のセンサ素子は、低消費電力駆動を必要とする場合の形状である。したがって発熱抵抗体5は長手方向を短くしている。発熱抵抗体5の周辺には、加熱温度センサ7を発熱抵抗体の近傍に同様に長手方向に短く配置している。加熱温度センサ7を配置している箇所は、発熱抵抗体5の紙面左側,上側,右側,下側であり発熱抵抗体5のほぼ全方向に加熱温度センサ7を配置している。図11(b)は図11(a)のダイアフラム4部の形状において、加熱温度センサ7に電圧を加えたときのダイアフラム上の温度分布の状態を表す等温線を示している。なお、図11(b)において、網掛けが濃い部分はより高温状態であることを示す。図11(b)より、発熱抵抗体5の左側と上側と右側と下側は加熱温度センサ7が配置されているため自己発熱による温度上昇が発生する。発熱抵抗体5のほぼ全方向において、自己発熱が発生していることから、発熱抵抗体5の温度分布はほぼ均等になる。図11(b)の温度分布を持つ状態で、傾いた空気流32a,32bがダイアフラム4部に流れ込んだ場合、発熱抵抗体5を通過して温度上昇した空気流が下流側温度センサ9a,9bに流れる。発熱抵抗体5上において、空気流32aと空気流32bが通過する場所の温度はほぼ同一の温度である。下流側温度センサ9a,9bに流れ込む空気の温度は、空気流32aや空気流32bのどちらの空気流が流れても、下流側温度センサ29bに流れる空気の温度は変化しない。これは、発熱抵抗体5上の温度分布は均一であり、発熱抵抗体5の上部と下部の温度は、発熱抵抗体5の中心に対して、上下対称であるためであり、下流側温度センサ9a,9bの近傍の温度分布がほぼ均一となっているためである。したがって、本発明においては、低消費電力化のために発熱抵抗体5の長手方向を短くした場合においても、流れの方向の変化によって流量検出に感度変化は発生せず、良好に空気流の測定が可能である。
さらに、発熱抵抗体5周辺の温度分布を均一にするには、図5に示すように、加熱温度センサ7の電極を引き出すための配線部33a,33bの幅を大きくすると良い。たとえば、加熱温度センサ7の線幅が1~5マイクロメールで形成した場合、配線部33a,33bは10~50マイクロメートルとして、加熱温度センサ7よりも10倍程度線幅を大きく設定する。この効果について図12(a)及び図12(b)を用いて説明する。図12(a)は、加熱温度センサ7の配線部33a,33bを加熱温度センサ7と同一の線幅で形成した場合における、熱式流量計のダイアフラム4部の形状を示した図であり、図12(b)は、加熱温度センサ7の配線部33a,33bが加熱温度センサ7と同一の線幅で形成した場合の、ダイアフラム4上の温度分布を示す。図12(b)の温度分布は、加熱温度センサ7に電圧を加えたときの温度上昇分を示している。なお、図12(b)において、網掛けが濃い部分はより高温状態であることを示す。配線部33a,33bは加熱温度センサ7と同一の材料で形成している。配線部33a,33bは数十Ω程度の抵抗をもっているため、電圧を加えると自己発熱が発生する。そのため、図12(b)に示すように配線部33a,33bで温度上昇が発生し、発熱抵抗体5周辺の温度分布が不均一になってしまう。この状態で異なる方向の空気流32aと32bが流れると、異なる温度の上を流れた空気流が下流側温度センサ9a,9bに到達するため、下流側温度センサ9a,9bの温度が変化してしまう。そこで、配線部33a,33bの線幅を広くしておくことにより、配線部33a,33bの抵抗値を下げ、自己発熱を減少させることができる。これにより、図12に示した温度分布は、図11に示した温度分布により近づけることができ、流れの方向の変化によって流量検出に感度変化は発生せず、良好に空気流の測定が可能である。
さらに好ましい形状について図13を用いて説明する。図13における加熱温度センサ7は、発熱抵抗体5の左側に配置した加熱温度センサ7aと、右側に配置した加熱温度センサ7bと、上側に配置した加熱温度センサ7cと、下側に配置した加熱温度センサ7d,7eからなる。加熱温度センサ7aは、4本の抵抗体を併設して設け、これらの4本の抵抗体を折り返し構造となるように直列に連結している。加熱温度センサ7bに関しても同様である。加熱温度センサ7c,7d,7eは、2本の抵抗体を併設して設けている。加熱温度センサ7a,7bは、加熱温度センサ7c,7d,7eよりも多くの抵抗体を並べて配置している。このように、抵抗体を多く併設し直列に接続することにより加熱温度センサの抵抗値を高くすることができる。抵抗値を高く設定することにより、加熱温度センサ7に一定電圧を印加したときに流れる電流を低減することができ、自己発熱をより抑制することができる。さらに、加熱温度センサ7の抵抗値に対する配線部33a,33bの抵抗値の割合が小さくなり抵抗値よりも配線部33a,33bの発熱を低減し、温度分布をより均一にすることができる。
次に、加熱温度センサ7a,7bは、加熱温度センサ7c,7d,7eよりも多くの抵抗体を並べて配置すると良い理由について説明する。図13において発熱抵抗体5は電極を取り出すための配線部30i,30jを設けている。配線部30i,30jと発熱抵抗体5とが接続される絞り部分では、加熱温度センサ7d,7eを設けた本数分の領域を設けておく必要から、線幅を狭くしている。このため、配線30i,30jの線幅が狭くなる部分が長くなると、この部分において抵抗が高くなり発熱が大きくなる。したがって、発熱抵抗体5の周辺の温度分布が不均一となってしまう。このことから、加熱温度センサ7の抵抗値を上げながらも、自己発熱量を低減する場合は、加熱温度センサ7c,7d,7eよりも加熱温度センサ7a,7bに多くの抵抗体を並べて配置すると良い。また、発熱抵抗体5の配線30i,30jは、発熱抵抗体5の中心部から引き出し、ダイアフラム4の端部まで徐々に線幅が拡大するように形成する。すなわち加熱温度センサ7d,7eは、発熱抵抗体5の下部と、ダイアフラム4上に位置する配線部30i,30jに挟まれるように配置している。これにより配線30i,30jの線幅をより大きく形成し、逆に抵抗値は小さくなり自己発熱が低減し、配線に流れる電流による温度上昇を低減することができる。これにより、発熱抵抗体5の周辺の温度分布の均一性が向上し、流れの方向の変化によって流量検出に感度変化は発生せず、良好に空気流の測定が可能である。
さらに、本発明によると発熱抵抗体の温度検出精度が向上する効果が得られることについて説明する。図14(a)~(c)に、従来の構成において傾いた空気流32a,32bが流れたときの加熱温度センサが検出する温度状態を示す。従来の加熱温度センサは図14(a)に示すように、発熱抵抗体26bの紙面左側(空気流の上流側)に配置した加熱温度センサ7aと、紙面右側(空気流の下流側)に配置した加熱温度センサ7bと、紙面上側に配置した加熱温度センサ7cとによって発熱抵抗体26bの温度検出をしていた。図14(b)は、従来構成において、傾いた空気流32aが流れたときの温度分布を示す。空気流32aは紙面左上から右下に向かって流れる。空気流32aが流れると、加熱温度センサ7a,7cは、発熱抵抗体26bの上流側に位置するため加熱温度センサ7a,7cは温度が低下する。加熱温度センサ7bは、発熱抵抗体26bの下流側に位置するため温度が上昇する。図14(c)は、傾いた空気流32bが流れた時の温度分布を示す。空気流32bは紙面左下から右上に向かって流れる。空気流32bが流れると、加熱温度センサ7aは、発熱抵抗体26bの上流側に位置するため温度が低下する。加熱温度センサ7b,7cは、発熱抵抗体26bの下流側に位置するため逆に温度が上昇する。図14(b)と図14(c)で比較すると、加熱温度センサ7aは両者とも温度が低下し、加熱温度センサ7bは両者とも温度が上昇する。しかし、加熱温度センサ7cは空気流が32aの場合は温度が低下するが、空気流32bの場合は温度が上昇する。したがって、加熱温度センサ7cは空気流の傾きによって検出する温度が変化する。これにより、発熱抵抗体26bの温度制御に誤差が発生し、流量検出誤差の要因となる。
図15(a)~(c)に、本発明の構成において傾いた空気流32a,32bが流れたときの加熱温度センサが検出する温度状態を示す。本発明の構成における加熱温度センサは図15(a)に示すように、発熱抵抗体5の紙面左側(空気流の上流側)に配置した加熱温度センサ7aと、紙面右側(空気流の下流側)に配置した加熱温度センサ7bと、紙面上側に配置した加熱温度センサ7cと、紙面下側に配置した加熱温度センサ7d,7eによって発熱抵抗体5の温度検出をしている。図15(b)は、本発明の構成において、傾いた空気流32aが流れたときの温度分布を示す。空気流32aは紙面左上から右下に向かって流れる。空気流32aが流れると、加熱温度センサ7a,7cは、発熱抵抗体5の上流側に位置するため加熱温度センサ7a,7cは温度が低下する。加熱温度センサ7b,7d,7eは、発熱抵抗体5の下流側に位置することになるため温度が上昇する。図15(c)は、傾いた空気流32bが流れた時の温度分布を示す。空気流32bは紙面左下から右上に向かって流れる。空気流32bが流れると、加熱温度センサ7a,7d,7eは、発熱抵抗体5の上流側に位置するため温度が低下する。加熱温度センサ7b,7cは、発熱抵抗体26bの下流側に位置するため逆に温度が上昇する。図15(b)と図15(c)で比較すると、加熱温度センサ7aは両者とも温度が低下し、加熱温度センサ7bは両者とも温度が上昇し、流れの傾きの影響を受けない。加熱温度センサ7bは空気流が32aの場合は温度が低下するが、空気流32bの場合は温度が上昇する。逆に、加熱温度センサ7d,7eは空気流が32aの場合は温度が上昇し、空気流32bの場合は温度が低下する。加熱温度センサ7cと加熱温度センサ7d,7eの温度は、空気流の傾きによって高温と低温が反転するが、加熱温度センサ7c,7d,7eの平均温度は一定に保たれる。したがって、加熱温度センサ7a~7eを直列接続し、ひとつの加熱温度センサ7と考えると、この加熱温度センサ7の温度は、加熱温度センサ7a~7eの平均温度になる。したがって、加熱温度センサ7(7a~7eの合成)は、空気流の傾きが発生しても検出する温度は一定に保たれる。これにより、空気流の傾きが発生しても発熱抵抗体5の温度制御は安定させることができ、流量検出精度を向上することができる。
以上のことから、本発明構成は、図5に示したような上流側温度センサ8a,8bや、下流側温度センサ9a,9bの温度差から流量を検出する温度差方式のみによらず、発熱抵抗体5の電圧や電流を測定し流量を検出する直熱方式についても、発熱抵抗体5の温度制御が安定し、流量計測精度を向上することができる。
次に、第1実施例のセンサ素子1の製造方法に関して説明する。基板としては、単結晶ケイ素(Si)等の半導体基板2を用いる。ベースとなる単結晶ケイ素(Si)基板2の表面を、熱酸化あるいはCVD法等により所定の厚さ約1μmの電気絶縁膜3aとなる二酸化ケイ素(SiO2)と窒化ケイ素(Si3N4)を形成する。次に、抵抗体として、厚さ約1μmの多結晶ケイ素(Si)半導体薄膜をCVD法等により積層する。
次に、多結晶ケイ素(Si)半導体薄膜に不純物拡散を行い、所定の抵抗率となるように高濃度ドープ処理を行う。更に、公知のホトリソグラフィ技術によりレジストを所定の形状に形成した後反応性イオンエッチング等の方法により、多結晶ケイ素(Si)半導体薄膜をパターニングし、所定の抵抗体5,7,8a,8b,9a,9b,10,11,12と配線部30a~30nが得られる。
その後工程では、保護膜として電気絶縁膜3bを電気絶縁膜3aと同様に、二酸化ケイ素(SiO2)と窒化ケイ素(Si3N4)を約1ミクロン厚にCVD法等により形成する。
次に、外部回路との接続のための端子となる端子電極が電極パッド部13に保護膜3bを除去し、アルミニウム,金等で形成される。また、各抵抗体と端子を接続するための配線部30a~30nを、多結晶ケイ素(Si)半導体薄膜とアルミニウム,金等の多層膜構成としてもかまわない。
最終工程では、単結晶ケイ素(Si)半導体基板2の裏面にエッチングのマスク材を所定の形状にパターニングし、水酸化カリウム(KOH)等のエッチング液を用いて異方性エッチングすることにより空洞部を形成して、ダイアフラム4を形成する。
以上の工程により、センサ素子1が完成する。
上記各実施例では、抵抗体として多結晶ケイ素(Si)半導体薄膜を用いた実施例に関して説明したが、白金,モリブデン,タングステン,ニッケル合金等の金属材料を用いた場合でも同様の効果が得られる。金属材料を発熱抵抗体5、加熱温度センサ7、上流側温度センサ8a,8b、下流側温度センサ9a,9bとして用い、低消費電力,低電圧,低電流で駆動するには、発熱抵抗体をより小型に形成することが望ましい。この理由は、金属材料の場合は耐熱性が高く、発熱抵抗体5の加熱温度を150℃~300℃にすることができ、高感度化が図れる。一方で、加熱温度を上げると消費電力が増加する。そのため、発熱抵抗体を小型に形成することにより、消費電力の増加を低減することができる。しかしながら、発熱抵抗体を小型にすると、上述したように発熱抵抗体5の周辺の温度分布の均一性が課題となる。そこで、本発明を適用することにより、発熱抵抗体5の周囲の加熱温度センサの自己発熱があっても、発熱抵抗体5周辺の温度分布を均一にすることができ、流れの方向の変化によって流量検出に感度変化は発生せず、良好に空気流の測定が可能となる。したがって、金属材料を抵抗体として用いたセンサ素子を低電力で駆動する場合において、本発明はさらに有効である。
また、発熱抵抗体5として、ダイアフラム部4上に略M字状としたが、略U字状の形状でも、ミアンダ状(蛇行状)でも同様の効果が得られる。
また、上記各実施例では、発熱抵抗体5の上下流に配置した二対の測温抵抗体8a,8b,9a,9bについて説明したが、一対の測温抵抗体の構成でも同様の効果が得られる。
次に、本発明の第2の実施例について説明する。まず、本実施例による熱式流量計のセンサ素子34の構成を図16,図17により説明する。図16は、センサ素子34を示す断面図である。また図17は、図16におけるダイアフラム4上の平面図を示す。センサ素子34の基板2は、シリコンやセラミック等の熱伝導率の良い材料で構成される。そして、基板2上に電気絶縁膜3aを形成し、基板2を裏面からエッチングすることで空洞部を形成しダイアフラム4を形成する。
ダイアフラム4上の電気絶縁膜3aの中心付近の表面には発熱抵抗体5を形成し、発熱抵抗体5上を電気絶縁膜3bで覆う。電気絶縁膜3bは、発熱抵抗体5およびダイアフラム4上を覆うように形成する。電気絶縁膜3b上には、発熱抵抗体5の加熱温度を検出する加熱温度センサ7が、発熱抵抗体5を取り巻くように形成される。発熱抵抗体5の温度を加熱温度センサ7で検出し、空気流6の温度に対して一定温度高くなるように加熱制御されている。さらに加熱温度センサ7の両側には上流側温度センサ8a,8b、下流側温度センサ9a,9bを形成する。上流側温度センサ8a,8bは発熱抵抗体5よりも空気流6の上流側、下流側温度センサ9a,9bは発熱抵抗体5よりも空気流6の下流側に配置する。センサ素子1の最表面は電気絶縁膜3cによって覆われ、電気絶縁膜3cは電気的絶縁を行うほか、保護膜として働く。
これらの発熱抵抗体5、加熱温度センサ7、上流側温度センサ8a,8b、下流側温度センサ9a,9b、感温抵抗体10,11,12は温度によって抵抗値が変化する比較的抵抗温度係数が大きい材料で形成する。例えば、不純物をドープした多結晶シリコンや単結晶シリコンなどの半導体材料、また白金,モリブデン,タングステン,ニッケル合金などの金属材料などで形成すると良い。また、電気絶縁膜3a,3bは二酸化ケイ素(SiO2)や窒化ケイ素(Si3N4)により約2ミクロン厚の薄膜状に形成し、熱絶縁効果が十分に得られる構造とする。
上記のように、発熱抵抗体5、加熱温度センサ7、上流側温度センサ8a,8b、下流側温度センサ9a,9bも、感温抵抗体10,11,12と同様の感温抵抗体である。
図5の第1の実施例と異なるのは、発熱抵抗体5と加熱温度センサ7が別の層に設けられていることである。これにより、図17に示すように、発熱抵抗体5の周囲を加熱温度センサ7で完全に囲むことができる。また、発熱抵抗体5の配線部30i,30jに関しても、加熱温度センサ7とは別の層に設けているため、配線面積を広くし、抵抗値を下げることができる。これにより、配線部30i,30jの自己発熱が低減し、より発熱抵抗体5の周辺の温度分布を均一にすることができ、流れの方向の変化によって流量検出に感度変化は発生せず、良好に空気流の測定が可能となる。
本実施例では、発熱抵抗体5を下側の層に形成し、加熱温度センサを上側の層に形成したが、逆に加熱温度センサを下側の層に形成して、発熱抵抗体5を上側の層に形成しても同様な効果が得られる。
次に、本発明の第3の実施例について説明する。まず、本実施例による熱式流量計のセンサ素子34の構成を図18により説明する。本実施例において、第1の実施例と異なるのは、加熱温度センサ7の配置である。本実施の加熱温度センサ7は、発熱抵抗体5の左側に配置した加熱温度センサ7aと、右側に配置した加熱温度センサ7bと、上側に配置した加熱温度センサ7cと、下側に配置した加熱温度センサ7d,7eに加え、発熱抵抗体5の内側に加熱温度センサ7f,7gを配置している。これらの加熱温度センサ7a~7gは電気的に接続されている。加熱温度センサ7f,7gは、発熱抵抗体5の折り返し構造を備えて複数本併設された間に設けている。
上記構成により、発熱抵抗体5の周辺及び内部で、加熱温度センサ7による自己発熱が、より均等になり、発熱抵抗体5上の温度分布も均一になる。したがって、流れの方向の変化によって流量検出に感度変化は発生せず、良好に空気流の測定が可能である。
1,34 センサ素子
2 基板
3a,3b、3c 電気絶縁膜
4,27a,27b ダイアフラム
5,26a,26b 発熱抵抗体
6 空気流
7,7a,7b,7c,7d,7e,28a,28b 加熱温度センサ
8a,8b,29a,29c 上流側温度センサ
9a,9b 下流側温度センサ
10,11,12 感温抵抗体
13 電極パッド部
14 温度分布
15,17 増幅器
16 トランジスタ
18 吸気管路
19 ベース部材
20 吸気
21 副通路
22 回路基板
23 金線ボンディングワイヤー
24 端子
25 アルミボンディングワイヤー
29b,29d 従来の下流側温度センサ
30a~n,33a,33b 配線部
31 高温部
32a,32b 空気流の方向
35 発熱抵抗体の領域
36a 上流側温度センサの領域
36b 下流側温度センサの領域
37a,37b,37c,37d 発熱抵抗体の端部
38a,38b 凹部
2 基板
3a,3b、3c 電気絶縁膜
4,27a,27b ダイアフラム
5,26a,26b 発熱抵抗体
6 空気流
7,7a,7b,7c,7d,7e,28a,28b 加熱温度センサ
8a,8b,29a,29c 上流側温度センサ
9a,9b 下流側温度センサ
10,11,12 感温抵抗体
13 電極パッド部
14 温度分布
15,17 増幅器
16 トランジスタ
18 吸気管路
19 ベース部材
20 吸気
21 副通路
22 回路基板
23 金線ボンディングワイヤー
24 端子
25 アルミボンディングワイヤー
29b,29d 従来の下流側温度センサ
30a~n,33a,33b 配線部
31 高温部
32a,32b 空気流の方向
35 発熱抵抗体の領域
36a 上流側温度センサの領域
36b 下流側温度センサの領域
37a,37b,37c,37d 発熱抵抗体の端部
38a,38b 凹部
Claims (12)
- 被計測流体を取り込む開口部を有する副通路と、前記副通路内に配置され被計測流体の流量を計測するセンサ素子とを備えた熱式流量計において、
前記センサ素子は、半導体基板と、前記半導体基板に形成された空洞部と、前記空洞部上に電気絶縁膜を介して形成された発熱抵抗体と、前記発熱抵抗体の加熱温度を検出する加熱温度センサと、前記加熱温度センサにより検出された温度により前記発熱抵抗体の加熱温度を制御する駆動回路を備え、
前記加熱温度センサは、温度によって抵抗値が変化する感温抵抗体であり、前記発熱抵抗体に対して前記被計測流体の流れの上流側および下流側に配置し、かつ、前記被計測流体の流れの垂直方向の上部側と下部側に配置したことを特徴とする熱式流量計。 - 請求項1記載の熱式流量計において、
前記発熱抵抗体に対して前記被計測流体の流れ方向の上流側および下流側に位置する前記加熱温度センサは、折り返し形状を持つ複数本の抵抗パターンにより形成され、前記複数本の抵抗パターンは前記空洞部上の前記電気絶縁膜上で電気的に直列に接続されていることを特徴とする熱式流量計。 - 請求項2記載の熱式流量計において、
前記加熱温度センサの抵抗パターンは、前記発熱抵抗体に対して前記被計測流体の流れ方向の上流側および下流側に位置する部分の本数を、前記発熱抵抗体の上部側および下部側に位置する部分の本数よりも、多く設けたことを特徴とする熱式流量計。 - 請求項1記載の熱式流量計において、
前記発熱抵抗体の上部側または下部側から前記発熱抵抗体の電極を前記空洞部の外に取りだす配線を備え、
前記配線は、前記発熱抵抗体と接続される部位において前記配線の線幅が前記発熱抵抗体の短手方向の幅よりも狭く、前記空洞部の端部において前記発熱抵抗体と接続される部位の配線の線幅よりも広いことを特徴とする熱式流量計。 - 請求項4の熱式流量計において、
前記発熱抵抗体の下部側に位置する前記加熱温度センサは、前記発熱抵抗体と前記配線に挟まれるように配置したことを特徴とする熱式流量計。 - 被計測流体を取り込む開口部を有する副通路と、前記副通路内に配置され被計測流体の流量を計測するセンサ素子とを備えた熱式流量計において、
前記センサ素子は、半導体基板と、前記半導体基板に形成された空洞部と、前記空洞部上に電気絶縁膜を介して形成された発熱抵抗体と、前記発熱抵抗体の加熱温度を検出する加熱温度センサと、前記加熱温度センサにより検出された温度により前記発熱抵抗体の加熱温度を制御する駆動回路と、前記発熱抵抗体と電気的に接続される配線部と、を有し、
前記発熱抵抗体と前記配線部との接続部に絞り部が設けられており、
前記加熱温度センサは前記絞り部に沿って配置され、前記発熱抵抗体の周囲を囲むように設けられたことを特徴とする熱式流量計。 - 請求項6に記載の熱式流量計において、
前記絞り部は、前記発熱抵抗体と前記配線部によって形成された凹部であり、前記加熱温度センサは前記凹部に沿って配置されることを特徴とする熱式流量計。 - 請求項1または6に記載の熱式流量計において、
前記発熱抵抗体に対して前記被計測流体の流れの上流側に第1の感温抵抗体と第2の感温抵抗体を配置し、前記発熱抵抗体に対して前記被計測流体の流れの下流側に前記発熱抵抗体の右側に第3の感温抵抗体と第4の感温抵抗体を配置し、前記第1乃至第4の感温抵抗体の温度差に応じた抵抗変化に基づいて被計測流体の流量を測定する熱式流量計。 - 請求項1または6に記載の熱式流量計において、
前記発熱抵抗体の上面に電気絶縁膜を形成し、前記電気絶縁膜の表面に、前記加熱温度センサが形成されることを特徴とする熱式流量計。 - 請求項1または6に記載の熱式流量計において、
前記加熱温度センサを電気的に前記空洞部の外へ取りだす配線部を設け、前記配線部の空洞部上に位置する配線幅が、前記加熱温度センサの線幅よりも広く形成したことを特徴とする熱式流量計。 - 請求項1または6に記載の熱式流量計において、
前記発熱抵抗体のパターンは、複数の折り返し部を有するパターンで形成され、
前記加熱温度センサは、前記発熱抵抗体の折り返し部に沿って配置することを特徴とする熱式流量計。 - 請求項1または6に記載の熱式流量計において、
前記副通路は、開口部近傍に徐々に通路面積が小さくなる絞り形状部を備え、前記センサ素子が設置される近傍の副通路の流路が直線となる直線部を備え、前記絞り形状部と前記直線部との間に流路が湾曲する湾曲部を備えたことを特徴とする熱式流量計。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11812545.9A EP2600121B1 (en) | 2010-07-30 | 2011-07-28 | Thermal flow meter |
US13/813,094 US9188470B2 (en) | 2010-07-30 | 2011-07-28 | Thermal flow meter |
CN201180036158.9A CN103026181B (zh) | 2010-07-30 | 2011-07-28 | 热式流量计 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010171305A JP5315304B2 (ja) | 2010-07-30 | 2010-07-30 | 熱式流量計 |
JP2010-171305 | 2010-07-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012014956A1 true WO2012014956A1 (ja) | 2012-02-02 |
Family
ID=45530159
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/067198 WO2012014956A1 (ja) | 2010-07-30 | 2011-07-28 | 熱式流量計 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9188470B2 (ja) |
EP (1) | EP2600121B1 (ja) |
JP (1) | JP5315304B2 (ja) |
CN (1) | CN103026181B (ja) |
WO (1) | WO2012014956A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110274649A (zh) * | 2019-06-13 | 2019-09-24 | 武汉大学 | 一种基于mems技术的热温差型流量传感器及其制备方法 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5763575B2 (ja) * | 2012-03-19 | 2015-08-12 | 日立オートモティブシステムズ株式会社 | 流量センサおよびその製造方法 |
KR101772575B1 (ko) * | 2013-07-19 | 2017-08-30 | 한국전자통신연구원 | 저전력 구동을 위한 마이크로 반도체식 가스 센서 및 그 제조 방법 |
JP6106559B2 (ja) | 2013-09-02 | 2017-04-05 | 日立オートモティブシステムズ株式会社 | 熱式流量センサ |
JP6313464B2 (ja) * | 2014-09-30 | 2018-04-18 | 日立オートモティブシステムズ株式会社 | 熱式空気流量センサ |
US20180231410A1 (en) * | 2014-11-28 | 2018-08-16 | Hitachi Automotive Systems, Ltd. | Thermal-Type Flow Rate Sensor |
CN104482971B (zh) * | 2014-12-05 | 2019-05-24 | 北京控制工程研究所 | 一种基于mems技术的热式流量传感器 |
CN107923780B (zh) * | 2015-08-31 | 2021-06-18 | 日立汽车系统株式会社 | 空气流量计 |
JP6669957B2 (ja) * | 2015-09-30 | 2020-03-18 | ミツミ電機株式会社 | 流量センサ |
JP6819163B2 (ja) * | 2016-09-12 | 2021-01-27 | 株式会社デンソーウェーブ | 絶縁型信号伝達装置、電子機器 |
JP7030420B2 (ja) * | 2017-04-10 | 2022-03-07 | 日本特殊陶業株式会社 | 保持装置 |
JP2020085463A (ja) * | 2018-11-15 | 2020-06-04 | 株式会社デンソー | 流量計測装置 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1062220A (ja) * | 1996-08-26 | 1998-03-06 | Hitachi Ltd | 熱式空気流量計 |
JPH11148849A (ja) * | 1997-11-17 | 1999-06-02 | Mazda Motor Corp | 流体検出センサ |
JP2001027558A (ja) * | 1999-07-14 | 2001-01-30 | Mitsubishi Electric Corp | 感熱式流量センサ |
JP2002188947A (ja) * | 2000-12-20 | 2002-07-05 | Denso Corp | 流量測定装置 |
JP2007205986A (ja) * | 2006-02-03 | 2007-08-16 | Hitachi Ltd | 熱式流量センサ |
JP2008170382A (ja) * | 2007-01-15 | 2008-07-24 | Hitachi Ltd | 熱式流体流量センサ及びその製造方法 |
JP2008233012A (ja) | 2007-03-23 | 2008-10-02 | Hitachi Ltd | 熱式流量計 |
JP2010171305A (ja) | 2009-01-26 | 2010-08-05 | Panasonic Corp | 電解コンデンサ駆動用電解液およびそれを用いた電解コンデンサ |
JP2010223747A (ja) * | 2009-03-24 | 2010-10-07 | Hitachi Automotive Systems Ltd | 熱式流量計 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002188497A (ja) | 2000-12-21 | 2002-07-05 | Denso Corp | 電子制御ディーゼルエンジンの燃料噴射量制御装置 |
JP4177183B2 (ja) * | 2003-06-18 | 2008-11-05 | 株式会社日立製作所 | 熱式空気流量計 |
JP4881554B2 (ja) * | 2004-09-28 | 2012-02-22 | 日立オートモティブシステムズ株式会社 | 流量センサ |
JP4975972B2 (ja) * | 2005-03-15 | 2012-07-11 | 日立オートモティブシステムズ株式会社 | 物理量センサ |
JP4836864B2 (ja) * | 2007-05-16 | 2011-12-14 | 日立オートモティブシステムズ株式会社 | 熱式流量計 |
-
2010
- 2010-07-30 JP JP2010171305A patent/JP5315304B2/ja active Active
-
2011
- 2011-07-28 US US13/813,094 patent/US9188470B2/en active Active
- 2011-07-28 CN CN201180036158.9A patent/CN103026181B/zh active Active
- 2011-07-28 WO PCT/JP2011/067198 patent/WO2012014956A1/ja active Application Filing
- 2011-07-28 EP EP11812545.9A patent/EP2600121B1/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1062220A (ja) * | 1996-08-26 | 1998-03-06 | Hitachi Ltd | 熱式空気流量計 |
JPH11148849A (ja) * | 1997-11-17 | 1999-06-02 | Mazda Motor Corp | 流体検出センサ |
JP2001027558A (ja) * | 1999-07-14 | 2001-01-30 | Mitsubishi Electric Corp | 感熱式流量センサ |
JP2002188947A (ja) * | 2000-12-20 | 2002-07-05 | Denso Corp | 流量測定装置 |
JP2007205986A (ja) * | 2006-02-03 | 2007-08-16 | Hitachi Ltd | 熱式流量センサ |
JP2008170382A (ja) * | 2007-01-15 | 2008-07-24 | Hitachi Ltd | 熱式流体流量センサ及びその製造方法 |
JP2008233012A (ja) | 2007-03-23 | 2008-10-02 | Hitachi Ltd | 熱式流量計 |
JP2010171305A (ja) | 2009-01-26 | 2010-08-05 | Panasonic Corp | 電解コンデンサ駆動用電解液およびそれを用いた電解コンデンサ |
JP2010223747A (ja) * | 2009-03-24 | 2010-10-07 | Hitachi Automotive Systems Ltd | 熱式流量計 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2600121A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110274649A (zh) * | 2019-06-13 | 2019-09-24 | 武汉大学 | 一种基于mems技术的热温差型流量传感器及其制备方法 |
CN110274649B (zh) * | 2019-06-13 | 2020-09-01 | 武汉大学 | 一种基于mems技术的热温差型流量传感器及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103026181A (zh) | 2013-04-03 |
EP2600121A4 (en) | 2017-08-02 |
JP2012032247A (ja) | 2012-02-16 |
EP2600121A1 (en) | 2013-06-05 |
US9188470B2 (en) | 2015-11-17 |
CN103026181B (zh) | 2015-08-05 |
US20130199280A1 (en) | 2013-08-08 |
EP2600121B1 (en) | 2023-05-24 |
JP5315304B2 (ja) | 2013-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5315304B2 (ja) | 熱式流量計 | |
JP5683192B2 (ja) | 熱式流量センサ | |
JP4836864B2 (ja) | 熱式流量計 | |
JP5178598B2 (ja) | 熱式流量計 | |
JP5202007B2 (ja) | 熱式流体流量センサ | |
JP5055349B2 (ja) | 熱式ガスセンサ | |
US6557411B1 (en) | Heating element type mass air flow sensor, and internal combustion engine-control apparatus using the sensor | |
JP5857032B2 (ja) | 熱式流量計 | |
US11047822B2 (en) | Sensor device | |
JP4292026B2 (ja) | 熱式流量センサ | |
EP1870681B1 (en) | Thermal type flow rate measuring apparatus | |
US20020007673A1 (en) | Heat generation type flow sensor | |
JP5492834B2 (ja) | 熱式流量計 | |
JP6807005B2 (ja) | 流量センサ | |
JPH11258021A (ja) | 熱式空気流量センサ | |
JP2001021401A (ja) | 熱式空気流量計 | |
JP3766289B2 (ja) | フローセンサ | |
JP3766290B2 (ja) | フローセンサ | |
JP2005274515A (ja) | センサ及びその測定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180036158.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11812545 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011812545 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13813094 Country of ref document: US |