WO2012014844A1 - ポリチオフェン重合用触媒およびポリ(置換チオフェン)の製造方法 - Google Patents
ポリチオフェン重合用触媒およびポリ(置換チオフェン)の製造方法 Download PDFInfo
- Publication number
- WO2012014844A1 WO2012014844A1 PCT/JP2011/066857 JP2011066857W WO2012014844A1 WO 2012014844 A1 WO2012014844 A1 WO 2012014844A1 JP 2011066857 W JP2011066857 W JP 2011066857W WO 2012014844 A1 WO2012014844 A1 WO 2012014844A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ligand
- group
- neutral
- bis
- catalyst
- Prior art date
Links
- 0 *C1C=CSC1* Chemical compound *C1C=CSC1* 0.000 description 6
- LEWOVWSYVSROKB-UHFFFAOYSA-N CC(CC(c1ccccc1)c1ccccc1)(CC(c1ccccc1)c1ccccc1)CC(c1ccccc1)N Chemical compound CC(CC(c1ccccc1)c1ccccc1)(CC(c1ccccc1)c1ccccc1)CC(c1ccccc1)N LEWOVWSYVSROKB-UHFFFAOYSA-N 0.000 description 1
- AFRAWNTWFZIHML-UHFFFAOYSA-N FC(CC1)=CC=C1P(c(cc1)ccc1F)c(cc1)ccc1F Chemical compound FC(CC1)=CC=C1P(c(cc1)ccc1F)c(cc1)ccc1F AFRAWNTWFZIHML-UHFFFAOYSA-N 0.000 description 1
- PXYCJKZSCDFXLR-UHFFFAOYSA-N FC(c(cc1)ccc1P(c1ccc(C(F)(F)F)cc1)c1ccc(C(F)(F)F)cc1)(F)F Chemical compound FC(c(cc1)ccc1P(c1ccc(C(F)(F)F)cc1)c1ccc(C(F)(F)F)cc1)(F)F PXYCJKZSCDFXLR-UHFFFAOYSA-N 0.000 description 1
- PFJSTFLDUPQYQA-UHFFFAOYSA-N N#CCCCP(CCC#N)CCC#N Chemical compound N#CCCCP(CCC#N)CCC#N PFJSTFLDUPQYQA-UHFFFAOYSA-N 0.000 description 1
- KYDFRUPZLLIHQE-UHFFFAOYSA-N c(cc1)ccc1P(C(P(c1ccccc1)c1ccccc1)P(c1ccccc1)c1ccccc1)c1ccccc1 Chemical compound c(cc1)ccc1P(C(P(c1ccccc1)c1ccccc1)P(c1ccccc1)c1ccccc1)c1ccccc1 KYDFRUPZLLIHQE-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
- C08G61/122—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
- C08G61/123—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
- C08G61/126—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/26—Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
- B01J31/28—Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/14—Side-groups
- C08G2261/141—Side-chains having aliphatic units
- C08G2261/1412—Saturated aliphatic units
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/32—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
- C08G2261/322—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
- C08G2261/3223—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/40—Polymerisation processes
- C08G2261/41—Organometallic coupling reactions
- C08G2261/417—Organometallic coupling reactions magnesium-based, e.g. Grignard or McCullough reactions
Definitions
- the present invention relates to a polymerization catalyst that can be suitably used for polymerization of polythiophene, and a method for producing poly (substituted thiophene) using the catalyst.
- polythiophene Since polythiophene has a polymer structure in which ⁇ -conjugated systems are linked, it has electrical conductivity, is excellent in processability, and exhibits relatively high environmental stability and thermal stability. Therefore, polythiophene has recently been attracting attention as a material that can be used in applications such as electrical components such as organic thin film solar cells, organic thin film transistors, photoelectric conversion materials, organic EL materials, diodes, triodes, electro-optic displays, reflective films, and nonlinear optical materials. Collecting.
- polythiophenes poly (3-substituted thiophene) that has attracted attention as a particularly promising polythiophene has a substituent (solubilizing group in a solvent) such as a hexyl group at the 3-position of the thiophene ring.
- a substituent such as a hexyl group at the 3-position of the thiophene ring.
- poly (3-alkylthiophene) is known to self-assemble, which is believed to achieve high charge carrier mobility.
- the electrical component is formed from poly (3-substituted thiophene)
- the poly (3-substituted thiophene) has a certain molecular weight from the viewpoint of achieving a certain strength and conductivity. Need to be.
- 3-substituted thiophene which is a raw material for synthesizing poly (3-substituted thiophene), has an asymmetric structure. Therefore, when monomers are polymerized, 2,2 ′ (head-to-head), 5, Three types of linkages can occur: 5 ′ (tail-to-tail) or 2,5 ′ (head-to-tail) linkage. Among these, polymers with many 2,5 ′ (head-to-tail) linkages have high stereoregularity, and can take a polymer structure that is self-assembled and flat and closely packed. It is suitable for.
- poly (3-substituted thiophene) is greatly influenced by the synthesis method. Therefore, various methods for synthesizing poly (3-substituted thiophene) having the above-described constant molecular weight, narrow molecular weight distribution, and high stereoregularity have been proposed.
- Patent Document 1 describes a method for synthesizing poly (3-substituted thiophene) represented by the following chemical reaction formula.
- reactant 1 2,5-dibromo-3-hexylthiophene and cyclohexylmagnesium chloride are reacted (reactant obtained in the reaction is referred to as reactant 1)
- reactant 1 2-bromo-3-hexyl-5- (bromodincio) thiophene and its isomer 2- (bromogincio) )
- reactant 1 2-bromo-3-hexyl-5- (bromodincio) thiophene and its isomer 2- (bromogincio)
- Ni catalyst such as Ni (dppe) Cl 2 (1,2-bis (diphenylphosphinoethane) nickel chloride (II)
- poly (3-alkyl) thiophene having high stereoregularity can be obtained.
- Cy represents a cyclohexyl group.
- Patent Document 2 describes a method in which zinc chloride is changed to manganese chloride in the method described in Patent Document 1, but has the same problem as the method described in Patent Document 1.
- Non-Patent Document 1 describes a synthesis method of poly (3-substituted thiophene) represented by the following chemical reaction formula.
- the LDA used in Step 1 must be formed in advance by reacting n-butyllithium and diisopropylamine at ⁇ 40 ° C. for 40 minutes, whereas monomer (2-bromo-3-hexylthiophene) is used. ) Is added in step 1, it is necessary to lower the temperature to ⁇ 78 ° C. in order to selectively extract the 5-position proton at a high conversion rate and convert it to Li.
- step 2 MgBr 2 ⁇ OEt 2 is added at ⁇ 60 ° C., stirring is performed for 20 minutes, and stirring is further performed at ⁇ 40 ° C. for 15 minutes.
- step 3 Ni (dppp) Cl 2 (1,3-bis (diphenylphosphinopropane) nickel (II)) is added to the reaction solution at ⁇ 5 ° C., followed by stirring at room temperature for 12 to 18 hours. There is a need.
- Non-Patent Document 1 In the method described in Non-Patent Document 1, a multi-step process is necessary, and it is necessary to perform each process in a very low temperature range. When the method is applied to industrial production, There is a problem that the process is very difficult due to the cooling capacity of the management and mass production equipment.
- Patent Documents 3 and 4 describe a method for synthesizing poly (3-substituted thiophene) in which the above problems are improved.
- this method as shown in the following chemical reaction formula, the number of steps is small, the reaction time is about 3 hours, and the reaction temperature is not in the low temperature region but in the reflux temperature condition of THF. That is, the synthesis method is greatly improved from the viewpoint of industrial production.
- Patent Documents 3 and 4 do not clearly describe the molecular weight and stereoregularity, and the three-dimensional structure is obtained by reducing the molecular weight by shortening the reaction time and by increasing the reaction temperature. There is concern about a decrease in regularity.
- the yield of the target polymer is about 40 to 65%, and this yield is never good when assuming industrial production.
- methyl bromide and methyl iodide produced as reaction by-products in this reaction are substances that have been reported to be mutagenic. Therefore, when the method is applied to industrial production (mass production), there is a concern that the processing cost of the mutagenic substance is increased from the environmental aspect.
- Non-Patent Documents 2 and 3 describe a synthesis method of poly (3-substituted thiophene) represented by the following chemical reaction formula.
- NIS is N-iodosuccinimide
- Patent Document 5 and Non-Patent Document 4 describe a method for synthesizing poly (3-substituted thiophene) represented by the following chemical reaction formula.
- NBS is N-bromosuccinimide
- Patent Document 6 describes a reagent having the following general formula or an adduct with a solvent as a reagent for regioselectively introducing a functional group into an aromatic ring.
- R a , R b , R c and R d each independently represent a hydrogen atom, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group containing one or more heteroatoms, a straight chain R a and R b , or R c , branched or cyclic, substituted or unsubstituted alkyl groups, substituted or unsubstituted alkenyl groups, substituted or unsubstituted alkynyl groups, or silyl derivatives thereof.
- the present invention uses an inexpensive raw material, has a simple manufacturing process, does not need to control the reaction temperature particularly in a low temperature region, and has a yield equivalent to or higher than that of a conventional poly (substituted thiophene) manufacturing method. It is an object of the present invention to provide a catalyst capable of producing a poly (substituted thiophene) having excellent stereoregularity and molecular weight distribution equal to or better than that of the poly (substituted thiophene) produced by the method.
- the present invention provides a method for producing poly (substituted thiophene) using such a catalyst, using an inexpensive raw material, having an easy production process, and not requiring the reaction temperature to be controlled particularly in a low temperature region. It is also aimed to do.
- the present invention is a polythiophene polymerization catalyst comprising the following (1) and (2) and / or (3).
- a base obtained by reacting a primary or secondary amine with a Grignard reagent / alkali metal halide complex (2) a nickel catalyst (3) a palladium catalyst.
- the base (1) is preferably a compound represented by the following general formula (I).
- R 1 and R 2 are each independently a hydrogen atom, an aryl group having 6 to 12 carbon atoms, a 5- to 6-membered heteroaryl group, a linear or branched carbon atom having 1 to 10 carbon atoms.
- R 1 and R 2 may form a polymer structure or may be bonded together to form a ring structure, and at least one of R 1 and R 2 is not a hydrogen atom, X 1 and X 2 are each independently a halogen atom, M is an alkali metal atom.
- R 1 and R 2 are preferably each independently methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, t-butyl, pentyl, neopentyl.
- X 1 and X 2 are preferably each independently a chlorine atom, It is a bromine atom or an iodine atom, and M is preferably a lithium atom.
- the nickel catalyst (2) is preferably a bidentate neutral phosphine ligand, a monodentate neutral phosphine ligand, a neutral ⁇ ligand, a neutral amine ligand, a monovalent anionic ligand.
- a nickel complex having at least one ligand selected from the group consisting of a ligand and a divalent anionic ligand, and coordinated so that the valence of nickel is 0 or 2 More specifically, the bidentate neutral phosphine ligand is 1,2-bis (diphenylphosphino) ethane ligand, 1,3-bis (diphenylphosphino) propane ligand, 1,4-bis (diphenylphosphino) butane ligand or 1,1′-bis (diphenylphosphino) ferrocene ligand, wherein the monodentate neutral phosphine ligand is a tri-n-butylphosphine ligand.
- the palladium catalyst (3) is preferably a bidentate neutral phosphine ligand, a monodentate neutral phosphine ligand, a neutral ⁇ ligand, a monovalent anionic ligand, At least one coordination selected from the group consisting of an anionic ligand, a monodentate neutral amine ligand, a bidentate neutral amine ligand, a neutral nitrile ligand, and a neutral sulfinyl ligand
- monohalogenated substituted thiophene is polymerized in the presence of the polythiophene polymerization catalyst.
- a preferred production raw material in the production method of the present invention is monohalogenated 3-substituted thiophene.
- poly (3-substituted thiophene) is obtained by the production method of the present invention.
- the monohalogenated substituted thiophene and the base (1) are reacted, and then the active monomer produced by the reaction is converted into the nickel catalyst.
- Polymerization is carried out in the presence of (2) and / or the palladium catalyst (3).
- the monohalogenated substituted thiophene which is a raw material for producing the poly (substituted thiophene) of the present invention, is preferably a compound represented by the following general formula (II).
- R is a linear or branched alkyl group having 1 to 12 carbon atoms, a linear or branched alkoxy group having 1 to 12 carbon atoms, a linear or branched alkenyl group having 2 to 12 carbon atoms.
- X is a halogen atom.
- an inexpensive raw material is used, the production process is easy, there is no need to control the reaction temperature particularly in a low temperature region, and the poly (substituted thiophene) produced by the conventional poly (substituted thiophene) production method is used.
- a catalyst capable of producing a poly (substituted thiophene) having a stereoregularity and molecular weight distribution equivalent to or higher than that of (thiophene) in a yield equivalent to or higher than that of the conventional method.
- the present invention also provides a method for producing poly (substituted thiophene) using such a catalyst.
- FIG. 1 shows the 1 H-NMR spectrum of poly (3-hexylthiophene) obtained in Example 3.
- the primary or secondary amine is, in particular, Although not limited, it is a compound normally represented by the following general formula (A).
- R 1 and R 2 are each independently a hydrogen atom, an aryl group having 6 to 12 carbon atoms, a 5- to 6-membered heteroaryl group, a linear or branched carbon atom having 1 to 10 carbon atoms.
- at least one of R 1 and R 2 is not a hydrogen atom.
- R 1 and R 2 may form a polymer structure or may be bonded together to form a ring structure.
- substituent or atom that can be substituted for the aryl and the like include a halogen atom, preferably a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom; an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic Aromatic hydrocarbon group or heteroaromatic hydrocarbon group, particularly alkyl group, alkylene group, arylene group, alkylidene group, arylidene group, heteroarylene group and heteroarylene group; carboxylic acid and salt thereof; carboxylic acid halide; aliphatic Carboxylic acid ester, alicyclic carboxylic acid ester, aromatic carboxylic acid ester or heteroaromatic carboxylic acid ester; aldehyde group; aliphatic ketone group, alicyclic ketone group, aromatic ketone group or heteroaromatic ketone group; hydroxyl Alkyl and alkoxy groups; hydroxyphenyl and phenyl
- the substituent may be bonded to the aryl group or the like via a carbon atom, oxygen atom, nitrogen atom, sulfur atom or phosphorus atom.
- the primary or secondary amine described above can be easily synthesized by a known method, and is also commercially available at a low cost.
- the Grignard reagent / alkali metal halide complex is not particularly limited, and examples of the complex include compounds represented by the following general formula (B).
- R 3 is an aryl group having 6 to 12 carbon atoms, a 5- to 6-membered heteroaryl group, a linear or branched alkyl group having 1 to 10 carbon atoms, or a 3 to 6 carbon atoms.
- the aryl group, heteroaryl group, alkyl group, cycloalkyl group, alkenyl group, alkynyl group or silyl derivative thereof may be substituted.
- Examples of the substituent that can be substituted on the aryl group and the like are the same as those described above as the substituent that can be substituted on the aryl group and the like in the description of R 1 and R 2 .
- R 3 is preferably an isopropyl group or a sec-butyl group.
- X 1 and X 2 are each independently a halogen atom.
- M is an alkali metal atom.
- the Grignard reagent and alkali metal halide complex described above can be easily synthesized by a known method, and the trade name “isopropylmagnesium chloride ⁇ ⁇ lithium chloride complex solution (1.3M THF solution)” It is also commercially available from Sigma-Aldrich etc. at low cost.
- the base (1) which is a constituent component of the polythiophene polymerization catalyst of the present invention is obtained (the following chemical reaction formula) reference).
- the reaction can be usually performed at about ⁇ 40 to 50 ° C. in the presence of a solvent such as THF. Details of the reaction conditions are described in Patent Document 6, Angew. Chem. Int. 2007, 46, 7685 and the like. Furthermore, the base (1) itself is commercially available from Sigma-Aldrich Corporation under the trade name “2,2,6,6-tetramethylpiperidinylmagnesium chloride ⁇ ⁇ lithium chloride complex solution (1.0M THF / toluene)”. ing.
- Base (1) It is considered that the base (1) reacts with a monohalogenated substituted thiophene, which is a raw material for synthesizing polythiophene, and the acidic proton is eliminated from the thiophene ring to form an active monomer. And it is thought that this active monomer is polymerized by the action of a nickel catalyst (2) and / or a palladium catalyst (3) described later to obtain polythiophene.
- the base (1) is usually R 1 R 2 NMgX 1 -MX 2 represented by the above formula (I), but forms an excellent active monomer to obtain polythiophene with high stereoregularity and good yield.
- R 1 and R 2 are preferably each independently methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, t-butyl, pentyl, neopentyl, cyclobutyl, cyclopentyl.
- X 1 and X 2 are preferably each independently a chlorine atom, a bromine atom or an iodine atom, more preferably a chlorine atom, M is preferably a lithium atom.
- the polythiophene polymerization catalyst of the present invention may contain the above-described base (1) alone or in combination of two or more.
- the base (1) is usually 1.0 to 2.0 equivalents, preferably 1.2 to 1.5 equivalents, relative to 1 equivalent of monohalogenated substituted thiophene as a raw material for polythiophene synthesis in the polythiophene polymerization catalyst of the present invention. It is included so as to be equivalent.
- the content of the base (1) is within such a range, the active monomer can be efficiently formed from the monohalogenated substituted thiophene, and poly (substituted thiophene) can be produced with good yield.
- nickel catalyst (2) which is another component of the polythiophene polymerization catalyst of the present invention.
- the nickel catalyst (2) comprises a carbon moiety to which a halogen atom is bonded and a deprotonated carbon moiety between active monomers formed by the reaction of a monohalogenated substituted thiophene and a base (1). It is thought to promote CC coupling. Since CC coupling is performed by such a reaction mechanism, for example, when 2-halogenated 3-substituted thiophene is polymerized using the polythiophene polymerization catalyst of the present invention, 2,5 ′ (head- Tail) Connected and highly stereoregular poly (3-substituted thiophene) can be obtained.
- the nickel catalyst (2) is not particularly limited as long as it is a catalyst having such catalytic activity, but preferably a 1,2-bis (diphenylphosphino) ethane ligand, 1,3-diphenylphosphine.
- Bidentate neutral phosphine ligands such as finopropane ligand, 1,4-bis (diphenylphosphino) butane ligand and 1,1′-bis (diphenylphosphino) ferrocene ligand, tri-n -Monodentate neutral phosphine ligands such as butylphosphine ligand, tri-t-butylphosphine ligand and triphenylphosphine ligand, benzene ligand, cyclobutadiene ligand and cyclooctadiene ligand
- Neutral amine ligands such as neutral ⁇ ligand, ammonia ligand, pyridine ligand
- Monovalent anionic ligand or divalent anionic ligand such as phthalocyanine ligand, naphthalocyanine ligand and porphyrin, and the valence of nickel atom is 0 or 2 It is a nickel complex that is coordinated to be Specific examples of such a nickel catalyst (2) are shown below.
- the nickel catalyst (2) is more preferably NiCl 2 dppp (1,3-bis (diphenylphosphinopropane) nickel chloride (II)), NiCl 2 (PPh 3 ) 2 (bistriphenylphosphine nickel chloride (II)), NiCl 2 dppf (coordinated with nickel chloride (II) by dppf (see formula below)), NiClCpSIPr (see formula below), and NiCl 2 (PPh 3 ) iPr ([1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] triphenylphosphine nickel (II) dichloride; see the following formula) is preferably used.
- the nickel catalyst (2) described above may be used alone or in combination of two or more.
- the nickel catalyst (2) is usually 0.01 to 10 mol%, preferably 0.1 to 5 mol, relative to the monohalogenated substituted thiophene (100 mol%). %, And more preferably 0.1 to 1 mol%. Within such a range, it is possible to obtain polythiophene with high yield and high stereoregularity using the polythiophene polymerization catalyst.
- the nickel catalyst (2) described above can be easily synthesized by a known method, and is also commercially available at a low cost.
- the polythiophene polymerization catalyst of the present invention includes a nickel catalyst (2) and a compound serving as a ligand that gives a highly active nickel catalyst, such as a phosphine ligand, and the nickel in the polythiophene polymerization reaction system.
- a more highly active nickel catalyst (2) may be formed by causing a ligand exchange reaction between the catalyst (2) and the ligand compound.
- a bidentate neutral phosphine ligand that serves as the ligand described for the nickel catalyst Compounds and monodentate neutral phosphine ligand compounds. Specific examples thereof include the following compounds.
- the above-described ligand compounds that give highly active nickel catalysts may be used singly or in combination of two or more.
- the ligand compound can be synthesized by a known method, and is also commercially available at a low cost.
- the ligand compound described above is usually 5 to 200 mol%, preferably 50 to 150 mol% with respect to the nickel catalyst (2) (100 mol%) in the polythiophene polymerization catalyst of the present invention. include.
- the palladium catalyst (3) which is one of the components constituting the polythiophene polymerization catalyst of the present invention.
- a palladium catalyst (3) can be used instead of the nickel catalyst (2) or together with the nickel catalyst (2).
- the palladium catalyst (3) is a CC of the active monomer formed by the reaction of the monohalogenated substituted thiophene with the base (1) and the carbon moiety to which the halogen atom is bonded and the deprotonated carbon moiety. It is thought to promote coupling.
- CC coupling is performed by such a reaction mechanism, for example, when 2-halogenated 3-substituted thiophene is polymerized using the polythiophene polymerization catalyst of the present invention, 2,5 ′ (head- Tail) Connected and highly stereoregular poly (3-substituted thiophene) can be obtained.
- the palladium catalyst (3) is not particularly limited as long as it is a catalyst having such catalytic cycle ability, but preferably 1,2-bis (diphenylphosphino) ethane ligand, 1,3-bis ( Bidentate neutral phosphine ligands such as diphenylphosphino) propane ligand, 1,4-bis (diphenylphosphino) butane ligand and 1,1′-bis (diphenylphosphino) ferrocene ligand , Monodentate neutral phosphine ligands such as tri-n-butylphosphine ligand, tri-t-butylphosphine ligand and triphenylphosphine ligand; Neutral ⁇ ligands such as benzene ligands, cyclobutadiene ligands and cyclooctadiene ligands, Methyl ligand, phenyl ligand, hexamethylcycl
- the palladium catalyst (3) is more preferably (1,3-diisopropylimidazole-2-lidene) (3-chloropyridyl) chloride.
- Palladium (II) (PEPPSI TM -IPr catalyst) (see formula below).
- the palladium catalyst (3) described above may be used alone or in combination of two or more.
- the palladium catalyst (3) is usually 0.01 to 10 mol%, preferably 0.1 to 5 mol, relative to the monohalogenated substituted thiophene (100 mol%). %, And more preferably 0.1 to 1 mol%. Within such a range, it is possible to obtain polythiophene with high yield and high stereoregularity using the polythiophene polymerization catalyst.
- the palladium catalyst (3) can be easily synthesized by a known method, and is also commercially available at a low cost.
- the polythiophene polymerization catalyst of the present invention contains a compound that becomes a ligand that gives a highly active palladium catalyst, such as a phosphine ligand, together with the palladium catalyst (3), and in the polythiophene polymerization reaction system, A ligand exchange reaction may be caused between the palladium catalyst (3) and the ligand compound to form a higher activity palladium catalyst (3).
- a highly active palladium catalyst such as a phosphine ligand
- Examples of the compound serving as a ligand that gives such a highly active palladium catalyst (3) include a bidentate neutral phosphine ligand compound and a monodentate that form the ligand described for the palladium catalyst (3). And neutral phosphine ligand compounds. Specific examples thereof include the following compounds.
- the ligand compounds that give the highly active palladium catalyst (3) described above may be used singly or in combination of two or more.
- the ligand compound can be synthesized by a known method, and is also commercially available at a low cost.
- the ligand compound described above is usually 5 to 200 mol%, preferably 50 to 150 mol% with respect to the palladium catalyst (3) (100 mol%) in the polythiophene polymerization catalyst of the present invention. include.
- the nickel catalyst (2) and the palladium catalyst (3) described above are substantially equivalent in the present invention and can be used equally. That is, the polythiophene polymerization catalyst of the present invention may contain either one of the nickel catalyst (2) and the palladium catalyst (3), or may contain both. In the latter case, the content ratio of the nickel catalyst (2) and the palladium catalyst (3) is arbitrary, and the total amount is usually 0.01 to 10 mol% with respect to the monohalogenated substituted thiophene (100 mol%). , Preferably 0.1 to 1 mol%.
- the polythiophene polymerization catalyst of the present invention may contain, for example, the following optional components.
- the polythiophene polymerization catalyst may contain a solvent.
- the base (1), the nickel catalyst (2), and the palladium catalyst (3) are dissolved in the solvent. It is easy to disperse uniformly and the reaction efficiency is improved.
- the solvent examples include alcohol solvents, ether solvents, halogenated hydrocarbon solvents, aromatic solvents, nitrile solvents, and sulfoxide solvents. These solvents may be used alone or in combination of two or more.
- tetrahydrofuran (THF) which is an ether solvent is preferable from the viewpoint of achieving both the stability of the active monomer and the activity of the active monomer for the oxidative addition reaction on the catalyst.
- the polythiophene polymerization catalyst of the present invention may contain a halogen trapping agent for the purpose of accelerating the reaction by capturing the halogen of the raw material monomer (monohalogenated substituted thiophene).
- halogen trapping agent examples include tertiary amines such as triethylamine and pyridine, and alkali metal salts such as sodium carbonate, potassium carbonate and cesium carbonate.
- the halogen trapping agent may be used alone or in combination of two or more.
- the halogen trapping agent described above is usually contained in an amount of 10 to 200 mol%, preferably 50 to 100 mol%, based on the monohalogenated substituted thiophene (100 mol%) that is a raw material for polythiophene synthesis. .
- the polythiophene polymerization catalyst of the present invention is particularly suitable for producing highly stereoregular poly (3-substituted thiophene) using a monohalogenated 3-substituted thiophene having an asymmetric structure as a reaction raw material.
- This poly (3-substituted thiophene) is a compound that is considered to be particularly promising as a material for electrical parts among polythiophenes, as described in [Background Art].
- the method for producing poly (3-substituted thiophene) will be described as an example of the method for producing poly (substituted thiophene) of the present invention.
- the reaction raw material in the method for producing poly (substituted thiophene) of the present invention is a monohalogenated substituted thiophene.
- a monohalogenated substituted thiophene suitable as a reaction raw material is a monohalogenated 3-substituted thiophene capable of giving a poly (3-substituted thiophene), and particularly preferred is a 2-halogenated thiophene represented by the following general formula (II). Halogenated 3-substituted thiophenes are particularly suitable.
- R is a linear or branched alkyl group having 1 to 12 carbon atoms, a linear or branched alkoxy group having 1 to 12 carbon atoms, a linear or branched alkenyl group having 2 to 12 carbon atoms.
- X is a halogen atom.
- R is preferably a hexyl group and X is preferably a bromine atom.
- Such 2-halogenated 3-substituted thiophenes can be easily synthesized by known methods, and are also commercially available at low cost.
- 3-substituted thiophene (which is commercially available and readily available) is present in the presence of a solvent such as cyclopentyl methyl ether, diethyl ether, THF, dibutyl ether, acetic acid, formic acid, propionic acid, etc.
- a solvent such as cyclopentyl methyl ether, diethyl ether, THF, dibutyl ether, acetic acid, formic acid, propionic acid, etc.
- a method of obtaining a 2-halogenated 3-substituted thiophene by reacting with a halogenating agent such as N-halogenosuccinimide is mentioned below.
- a monohalogenated substituted thiophene preferably a 2-halogenated 3-substituted thiophene
- a base (1) that is a constituent of the polythiophene polymerization catalyst of the present invention.
- the base (1) is, for example, a compound represented by the above general formula (I), R 1 R 2 NH and a compound represented by the following formula (A) (ordinary Grignard reagent) And MX 2 or a compound represented by the following formula (B) is produced, and a methyl halide compound such as methyl bromide which is a mutagenic substance is not generated.
- the production method of poly (substituted thiophene) of the present invention is superior in terms of cost because it has less environmental burden than the conventional method and does not require the provision of equipment for treating mutagenic substances.
- the reaction temperature is usually 5 to 100 ° C., preferably 10 to 60 ° C., and it is not necessary to control the temperature in a low temperature region as in the method described in Non-Patent Document 1, and is not so high.
- the temperature can be easily controlled, and the reaction can be allowed to proceed gently.
- the reaction time is usually 0.5 to 72 hours, preferably 1 to 48 hours.
- the reaction is usually performed in a reaction solvent.
- the reaction solvent include alcohol solvents such as ethylene glycol, ether solvents such as cyclopentyl methyl ether and tetrahydrofuran (THF), chlorobenzene, dichlorobenzene, and the like.
- a halogenated hydrocarbon solvent, an aromatic solvent such as benzene and xylene, a nitrile solvent such as benzonitrile, and a sulfoxide solvent such as dimethyl sulfoxide and dibutyl sulfoxide can be used.
- tetrahydrofuran is preferable from the viewpoint of commercial availability and low environmental load as an effluent (waste liquid) in production on an industrial scale.
- the reaction solvent suppresses a significant decrease in the stirring efficiency of the polymerization solution accompanying the progress of the polymerization reaction described below (the reaction solvent can be used continuously as a polymerization solvent), and the progress of the polymerization.
- the concentration of the monohalogenated substituted thiophene in the reaction solvent is preferably 10 ⁇ from the viewpoint of not significantly impairing the collision frequency between the necessary reactants (monohalogenated substituted thiophene, active monomer and catalyst generated therefrom).
- the amount used is 3 M to 1 M, more preferably 10 ⁇ 2 M to 0.5 M.
- the total of the solvent and the reaction solvent as a whole is an amount such that the concentration of the monohalogenated substituted thiophene falls within the above range.
- a reaction solvent is used.
- the nickel catalyst (2) and / or the palladium catalyst (3) which are constituent components of the polythiophene polymerization catalyst of the present invention, are given to the reaction system in which the active monomer is formed (along with the above highly active catalyst).
- the CC coupling (polymerization) reaction between the active monomers is promoted, and a polymer is formed.
- the monomer is formed with a 2,5 ′ (head-to-tail) connection as described above.
- the 2-halogenated 3-substituted thiophene is first reacted with the base (1) as a reaction raw material, and then the nickel catalyst (2) in a separate step. And / or a palladium catalyst (3) (or a compound which becomes a ligand together with these) is added. Therefore, the polythiophene polymerization catalyst of the present invention comprises the base (1) and the nickel catalyst (2) and / or the palladium catalyst (3) (or the compounds that together with these become the above-mentioned ligands) individually. For example, it is prepared by dividing into separate containers.
- the polymerization reaction can be carried out at normal pressure.
- the reaction temperature is usually 5 to 100 ° C., preferably 10 to 60 ° C. That is, in conjunction with the above-described formation reaction of the active monomer, the poly (substituted thiophene) production method of the present invention does not need to control the temperature in a low temperature region, and is carried out over the entire process at a reaction temperature that is gentle and easy to control. can do.
- the reaction time of this polymerization reaction is usually 0.5 to 72 hours, preferably 1 to 48 hours.
- the polymerization reaction is generally performed in a polymerization solvent.
- the polymerization solvent is not particularly limited as long as it dissolves the reaction raw material (monohalogenated substituted thiophene) and does not react with the raw material or the catalyst component in the polythiophene polymerization catalyst of the present invention. Specific examples thereof are the same as those exemplified as the reaction solvent in the above-mentioned active monomer formation reaction. The same applies to the amount of reaction solvent used.
- end capping is preferably performed in order to remove the halogen atom remaining at the terminal and the active site.
- an aliphatic Grignard reagent, dialkyl Grignard reagent or reactive magnesium is added to convert the remaining halogen atoms and active sites into Grignard groups.
- an alkyl end group can be obtained, for example, by adding excess ⁇ -haloalkane.
- the Grignard reagent is generally represented by R p MgX q or the like (R p is an alkyl group, X q is a halogen atom), but R p is a hydroxyl or amine group or a protected form thereof.
- R p is an alkyl group, X q is a halogen atom
- R p is a hydroxyl or amine group or a protected form thereof.
- a reactive functional group such a reactive functional group can be introduced into the terminal of poly (3-substituted thiophene) to perform end capping. End capping can also be performed by using an organolithium reagent instead of the Grignard reagent and then adding ⁇ -haloalkane.
- End capping can be performed at any stage, such as before or after recovering the poly (3-substituted thiophene) from the polymerization reaction mixture, or before or after its purification.
- JP-T-2007-501300 a detailed method of end capping is disclosed in JP-T-2007-501300.
- Poly (substituted thiophene) The poly (substituted thiophene) production method of the present invention described above makes it possible to obtain poly (substituted thiophene) with high yield and high stereoregularity, particularly preferably poly (3-substituted thiophene).
- the yield is usually 50 to 100%, preferably 90 to 100%, which is superior to the conventional method for producing poly (3-substituted thiophene).
- the regioregularity is usually 85-100%, preferably very high, 95-100%.
- the stereoregularity can be calculated by 1 H-NMR spectrum measurement, and there are roughly two methods as the calculation method (evaluation method).
- One method is to use a signal derived from the proton at the 4-position of the thiophene ring in poly (3-substituted thiophene), and a thiophene ring derived from a stereoregular 2,5 ′ (head-to-tail) linkage.
- a signal corresponding to the proton at position 4 of (A) a signal corresponding to the proton at position 4 of the thiophene ring derived from the sterically disordered 2,2 ′ (head-to-head) linkage, and 5,
- the signal (C) corresponding to the proton at position 4 of the thiophene ring derived from the 5 ′ (tail-to-tail) linkage is used.
- Stereoregularity can be calculated by the integration ratio of the signal (A) and the signal (A + B + C) corresponding to the total proton at the 4-position of the thiophene ring in the polymer.
- the other method is limited to the case where the poly (3-substituted thiophene) has an ⁇ methylene group as a substituent at the 3-position of the thiophene ring, but uses a signal derived from the proton of the ⁇ methylene group.
- B ′ corresponding to the ⁇ -methylene proton of the 3-position substituent of the thiophene ring derived from the linkage, and ⁇ -methylene of the 3-position substituent of the thiophene ring derived from the 5,5 ′ (tail-tail) linkage
- a signal corresponding to a proton (C ′) is used.
- Stereoregularity can be calculated by the integration ratio between the signal (A ′) and the signal (A ′ + B ′ + C ′) corresponding to the total proton of ⁇ -methylene of the 3-position substituent of the thiophene ring in the polymer. .
- the number average molecular weight of the poly (substituted thiophene) produced by the method for producing poly (substituted thiophene) of the present invention is usually 3,000 to 1,000,000, preferably 6,000 to 500,000. Therefore, sufficient strength can be exhibited when an electronic component or the like is used.
- the number average molecular weight is a number average molecular weight in terms of standard polystyrene measured by GPC. The same applies to the weight average molecular weight.
- the number average molecular weight (and weight average molecular weight) of the poly (substituted thiophene) is changed by changing the type and amount of the nickel catalyst (2) and / or palladium catalyst (3) in the polythiophene polymerization catalyst of the present invention. Can be adjusted.
- the production rate of the polymerization initiation active species generated at the initial stage of polymerization varies.
- the rate of formation of polymerization-initiating active species depending on the type of catalyst depends on the difference in the three-dimensional structure of the ligands constituting the catalyst, the electronic structure such as electron accepting property and electron donating property, and the three-dimensional structure of the catalyst molecule and the central nickel. This is considered to be influenced by the difference in electron accepting and electron donating strengths of atoms or palladium atoms.
- the rate of formation of the polymerization-initiating active species varies depending on the selection of the ligand that constitutes the catalyst molecule, and is also unambiguously determined because it is influenced by the difference in the activity of the active monomer.
- the rate is high, the number of molecules that grow as a polymer increases, leading to lower molecular weight of each polymer, and when it is lower, it is considered to lead to higher molecular weight of the polymer.
- the production rate of the polymerization initiation active species is the same. Therefore, the molecular weight of the resulting polymer depends on the addition amount of the catalyst. Since the number of seeds increases, it leads to lower molecular weight of the polymer. On the other hand, when the added amount is small, it is considered that higher molecular weight is led.
- the molecular weight distribution of the poly (substituted thiophene) is usually from 1.0 to 5.0, preferably from 1.0 to 3.0.
- the poly (substituted thiophene) can be obtained by a conventional poly (3-substituted thiophene) production method. It has a narrow molecular weight distribution comparable to that of (3-substituted thiophene).
- the poly (substituted thiophene) obtained by the production method of the present invention particularly preferably poly (3-substituted thiophene) has excellent self-assembling properties comparable to those produced by the conventional method, Therefore, it exhibits excellent conductivity, and is used for electrical parts, specifically organic thin film solar cells, organic thin film transistors, photoelectric conversion materials, organic EL materials, diodes, triodes, electro-optic displays, reflective films, nonlinear optical materials, etc. Is preferred.
- the poly (substituted thiophene) is a sensitizer, stabilizer, inhibitor, chain-transfer agent, co-reactive monomer or oligomer, surface active compound, lubricant, wetting agent, dispersion.
- One or more other suitable ingredients may be included such as agents, hydrophobizing agents, adhesives, flow improvers, diluents, colorants, dyes, pigments, or dopants. These components can be added, for example, by dissolving poly (substituted thiophene) in a suitable organic solvent, then adding it to the resulting solution and then evaporating the organic solvent.
- the molecular weight distribution of poly depends on the feed rate of the active monomer obtained by deprotonation of the monohalogenated substituted thiophene and the oxidative addition and reduction in the nickel catalyst (2) and / or palladium catalyst (3). Can be controlled by detachment.
- the recovered polymer is further added with an organic solvent in which the polymer is dissolved, for the purpose of further removing the catalyst residue, or for the purpose of removing the low molecular weight substance, and Liquid separation is performed using an organic solvent having a low partition coefficient to water and water, the organic solvent layer is recovered, dehydrated, and then the solid obtained by distilling off the organic solvent is dried. Also good.
- the recovered polymer is subjected to Soxhlet extraction with a poor solvent for the polymer such as methanol and hexane, and after removing the extract, the Soxhlet extraction is performed with a good solvent that is soluble in the polymer.
- a poor solvent for the polymer such as methanol and hexane
- the recovered polymer is further purified by column chromatography using a solvent that can dissolve the polymer and that can be developed by TLC (thin layer chromatography) as a developing solvent. You may implement a process.
- Ni catalyst and / or Pd catalyst shown in Table 1 was converted into an active monomer (converted from 2-bromo-3-hexylthiophene to 100% active monomer by adding a small excess of base).
- the amount shown in Table 1 (0.5 to 1.0 mol%) was added and stirred. After reacting for the time shown in Table 1, 5 mL of water was added to complete the reaction.
- the reaction solution was poured into methanol (100 mL) to precipitate a polymer, filtered off under reduced pressure, dried and obtained as a dry solid.
- the obtained solid is dissolved in a minimum amount of chloroform, filtered through column chromatography (developing solvent chloroform), the solvent is distilled off from the obtained fraction, and vacuum drying is performed. Polymer solids were obtained at> 99%.
- the molecular weight (weight average molecular weight Mw and number average molecular weight Mn) of the obtained polymer was measured using chloroform as a developing solvent, TSKgel GMHHR-H and TSK-GEL G2500HHR made by Tosoh as a column, and a developing speed of 1 mL / Min, performed by GPC in terms of standard polystyrene.
- FIG. 1 shows the 1 H-NMR spectrum obtained by measuring the poly (3-hexylthiophene) obtained in Example 3 in a deuterated chloroform solvent.
- n-Hex represents an n-hexyl group.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Abstract
Description
(1)第1もしくは2級アミンと、グリニャール試薬・ハロゲン化アルカリ金属錯体とを反応させて得られる塩基
(2)ニッケル触媒
(3)パラジウム触媒。
前記アリール基、ヘテロアリール基、アルキル基、シクロアルキル基、アルケニル基、アルキニル基またはそのシリル誘導体は置換されていてもよく、
R1およびR2は、高分子構造を形成してもよく、また共に結合して環構造を形成してもよく、R1およびR2の少なくとも一方は水素原子ではなく、
X1およびX2はそれぞれ独立にハロゲン原子であり、
Mはアルカリ金属原子である。
以下、本発明のポリチオフェン重合用触媒の各構成成分(上記塩基(1)、ニッケル触媒(2)およびパラジウム触媒(3))について説明する。
(塩基(1)の合成方法)
本発明のポリチオフェン重合用触媒に含まれる、第1もしくは2級アミンと、グリニャール試薬・ハロゲン化アルカリ金属錯体とを反応させて得られる塩基(1)において、前記第1もしくは2級アミンは、特に限定されないが、通常下記一般式(A)で表される化合物である。
塩基(1)は、ポリチオフェンの合成原料たるモノハロゲン化置換チオフェンと反応し、その酸性プロトンをチオフェン環から脱離させ、活性モノマーを形成させると考えられる。そしてこの活性モノマーが、後述するニッケル触媒(2)および/またはパラジウム触媒(3)の作用により重合してポリチオフェンが得られると考えられる。
R1およびR2は、好ましくは、それぞれ独立にメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、ペンチル基、ネオペンチル基、シクロブチル基、シクロペンチル基、シクロペンタジエニル基、シクロヘキシル基、フェニル基、ビフェニル基、チオフェニル基、ピリジル基、またはこれらのシリル誘導体であり、あるいは共に結合して、環構造であるピペリジニル基、2,2,6,6-テトラメチルピペリジニル基、ピロリドニル基、ピロリル基、ピラゾリル基、イミダゾリル基、インドリル基、プリニル基またはカルバゾリル基を形成し、より好ましくは、共に結合して2,2,6,6-テトラメチルピペリジニル基を形成し、
X1およびX2は、好ましくは、それぞれ独立に塩素原子、臭素原子またはヨウ素原子であり、より好ましくは、共に塩素原子であり、
Mは、好ましくはリチウム原子である。
前記ニッケル触媒(2)は、モノハロゲン化置換チオフェンと塩基(1)との反応によって形成された活性モノマーどうしの、ハロゲン原子が結合している炭素部位と、脱プロトン化された炭素部位とのC-Cカップリングを促進するものと考えられる。このような反応機構によりC-Cカップリングがなされることから、本発明のポリチオフェン重合用触媒を使用して、例えば2-ハロゲン化3-置換チオフェンを重合すれば、2,5'(頭-尾)連結した、非常に立体規則性の高いポリ(3-置換チオフェン)を得ることができる。
本発明では、前記ニッケル触媒(2)のかわりに、またはニッケル触媒(2)とともに、パラジウム触媒(3)を使用することができる。パラジウム触媒(3)は、モノハロゲン化置換チオフェンと塩基(1)との反応によって形成された活性モノマーどうしの、ハロゲン原子が結合している炭素部位と、脱プロトン化された炭素部位とのC-Cカップリングを促進するものと考えられる。このような反応機構によりC-Cカップリングがなされることから、本発明のポリチオフェン重合用触媒を使用して、例えば2-ハロゲン化3-置換チオフェンを重合すれば、2,5'(頭-尾)連結した、非常に立体規則性の高いポリ(3-置換チオフェン)を得ることができる。
トリn-ブチルホスフィン配位子、トリt-ブチルホスフィン配位子およびトリフェニルホスフィン配位子等の単座の中性ホスフィン配位子、
ベンゼン配位子、シクロブタジエン配位子およびシクロオクタジエン配位子等の中性π配位子、
メチル配位子、フェニル配位子、ヘキサメチルシクロペンタジエニル配位子、ペンタメチルシクロペンタジエニル配位子、アリル配位子、シクロペンタジエニル配位子、アルコキシ(メトキシおよびフェノキシ等)配位子、フッ素配位子、塩素配位子、臭素配位子、ヨウ素配位子、カルボキシラート(酢酸およびプロピオン酸等)配位子、アセチルアセトナート配位子、トリフルオロメタンスルフォネート配位子、1,3-ビス(2,6-ジ-イソプロピルフェニル)-4,5-ジヒドロイミダゾ-ル-2-リデン配位子、1,3-ビス(2,6-ジ-イソプロピルフェニル)イミダゾ-ル-2-リデン配位子および1,3-ビス(2,4,6-トリメチルフェニル)イミダゾール-2-リデン配位子等の一価のアニオン性配位子、
フタロシアニン配位子、ナフタロシアニン配位子、ポルフィリン配位子等の二価のアニオン性配位子、
アンモニア配位子、ピリジン配位子および3-クロロピリジン配位子等の単座の中性アミン配位子、
N,N,N’,N’-テトラメチルエチレンジアミン配位子、1,10-フェナンソロリン配位子および2,2`-ビピリジル配位子等の2座の中性アミン配位子、
アセトニトリル配位子およびベンゾニトリル配位子等の中性ニトリル配位子、
あるいは1,2-ビス(フェニルスルフィニル)エタン配位子等の中性スルフィニル配位子を配位子とし、パラジウム原子の価数が0価もしくは2価となるように配位構成されているパラジウム錯体である。そのようなパラジウム触媒(3)の例を以下に示す。
本発明のポリチオフェン重合用触媒には、例えば、以下に示す任意成分が含まれていてもよい。
前記ポリチオフェン重合用触媒は溶媒を含有していてもよい。特に、ポリチオフェンの重合反応は一般的に重合溶媒中で行われるので、前記塩基(1)、ニッケル触媒(2)およびパラジウム触媒(3)は、溶媒に溶解した状態であると、前記重合溶媒中へ均一に分散しやすく、反応効率がよくなる。
さらに、本発明のポリチオフェン重合用触媒は、原料モノマー(モノハロゲン化置換チオフェン)のハロゲンを捕捉することにより、反応を促進させる目的で、ハロゲントラップ剤を含有していてもよい。
以上説明した本発明のポリチオフェン重合用触媒は、上記で説明したように、まず塩基(1)がモノハロゲン化置換チオフェンのプロトンを脱離させて活性モノマーを形成させ、そしてニッケル触媒(2)および/またはパラジウム触媒(3)が、これら活性モノマーのハロゲン結合部位および脱プロトン化部位のC-Cカップリング反応を促進し、ポリ(置換チオフェン)を形成させると考えられる。
本発明のポリ(置換チオフェン)の製造方法における反応原料は、モノハロゲン化置換チオフェンである。反応原料として好適なモノハロゲン化置換チオフェンは、ポリ(3-置換チオフェン)を与えることができるモノハロゲン化3-置換チオフェンであり、特に好適なのは、下記一般式(II)で表される2-ハロゲン化3-置換チオフェンが特に好適である。
(活性モノマーの形成)
まず、モノハロゲン化置換チオフェン、好ましくは2-ハロゲン化3-置換チオフェンを、本発明のポリチオフェン重合用触媒の構成成分である塩基(1)と反応させる。これにより、立体障害およびチオフェンを構成する硫黄原子の電子吸引性の関係から、前記チオフェンの5位のプロトンが引き抜かれ、活性モノマーが形成される。この際、塩基(1)が、例えば上記一般式(I)で表される化合物である場合には、R1R2NHと、下記式(A)で表される化合物(通常のグリニャール試薬)およびMX2または下記式(B)で表される化合物とが生じ、変異原性物質である臭化メチル等のハロゲン化メチル化合物は発生しない。
次に、活性モノマーが形成された反応系に、本発明のポリチオフェン重合用触媒の構成成分であるニッケル触媒(2)および/またはパラジウム触媒(3)(あるいはこれらとともに上記の高活性の触媒を与える配位子となる化合物)を添加することで、活性モノマーどうしのC-Cカップリング(重合)反応が促進され、ポリマーが形成される。この際に2,5'(頭-尾)連結でモノマーが形成されていくことは上述の通りである。
ポリマーの重合反応が終わった状態では、ポリマーの末端には、ハロゲン原子および脱プロトン化された活性部位が残存している。これらをこのまま残しておくと、電荷キャリアトラッピングが起こり、得られるポリ(置換チオフェン)の導電性が不充分となることがある。
以上の反応の終了後、反応溶液に水を投入して反応を停止させる。次に、過剰のメタノール等のポリマーに対する貧溶媒へ前記の反応溶液を投入することでポリマーを析出させる。これを濾別し、濾物を回収することによりポリマーが得られる。
以上説明した本発明のポリ(置換チオフェン)の製造方法により、収率よく、立体規則性の高いポリ(置換チオフェン)、特に好ましくはポリ(3-置換チオフェン)を得ることができる。
エンドキャッピングの説明で述べたように、本発明のポリ(置換チオフェン)の製造方法では、上記の活性モノマーの形成工程およびポリ(置換チオフェン)の形成工程の他に、例えば製造されたポリ(置換チオフェン)の精製工程を実施してもよい。具体的には、前述の精製工程の他、そののちに、さらに触媒残渣を除去する工程や、または低分子量体を除去する目的で、回収したポリマーをさらに、ポリマーが溶解する有機溶媒で、且つ水への分配係数が低い有機溶媒と、水とを用いて分液を行い、有機溶媒層を回収し、脱水した後、有機溶媒を留去して得られる固体を乾燥させる工程を実施してもよい。
<塩基(1)の調製>
窒素置換した50mLシュレンク管にiPrMgCl・LiCl錯体THF溶液(1.3M)を40mL(52mmol)投入し、室温(25℃)で攪拌を開始した。さらに、2,2,6,6-テトラメチルピペリジン10.6mL(62.4mmol)を20分間かけて前記溶液に滴下し、さらに室温で1時間攪拌を行い、塩基THF溶液(1.0M)を調製した。
500mLシュレンク管に3-ヘキシルチオフェン80g(475mmol)、THF450mLを投入した後、0℃に冷却し、攪拌を行った。さらに、得られた溶液にN-ブロモスクシンイミドを93g(523mmol)投入し、引き続き、3時間攪拌を行った。
窒素置換した20mLシュレンク管に、前記で調製した塩基を投入し、室温(25℃)下、攪拌を行った。さらに、2-ブロモ-3-ヘキシルチオフェンを、該チオフェン1当量に対する前記塩基の量が1.2当量となるだけの量、THFに溶解させ、30分間かけて塩基溶液への滴下を行った後(滴下後の反応溶液中の2-ブロモ-3-ヘキシルチオフェンの濃度を下記表1の「THF(M)」の列に示す)、引き続き1時間攪拌を行った。その後、表1に示すNi触媒および/またはPd触媒を、活性モノマー(2-ブロモ-3-ヘキシルチオフェンから少過剰の塩基の添加により、100%活性モノマーへと変換されたものとした)に対し下記表1に示す量(0.5~1.0mol%)投入して攪拌を行った。表1に示す時間反応させた後、水5mLを投入して反応終了とした。
上記P3HTの合成に使用する塩基の調製において、2,2,6,6-テトラメチルピペリジン10.6mL(62.4mmol)をピリジン(3級アミン)4.96g(62.4mmol)に代えて調製した塩基を用いて実施例3のP3HTの合成を行ったが、反応溶液の着色はみられず、反応後、メタノール(200mL)を投入したが、析出物は見られなかった。
上記P3HTの合成の実施例3のニッケル触媒NiCl2(dppp)を白金触媒Pt(Ph3P)412.4mg(0.5mol%)に代えて合成を行ったが、反応溶液の着色はみられず、反応後、メタノール(200mL)を投入したが、析出物は見られなかった。
上記P3HTの合成の実施例3のニッケル触媒NiCl2(dppp)を鉄触媒フェロセン1.9mg(0.5mol%)に代えて合成を行ったが、反応溶液の着色はみられず、反応後、メタノール(200mL)を投入したが、析出物は見られなかった。
上記P3HTの合成の実施例3のニッケル触媒NiCl2(dppp)をルテニウム触媒ルテノセン2.3mg(0.5mol%)に代えて合成を行ったが、反応溶液の着色はみられず、反応後、メタノール(200mL)を投入したが、析出物は見られなかった。
上記P3HTの合成の実施例3のニッケル触媒NiCl2(dppp)をチタン触媒チタノセンジクロリド2.5mg(0.5mol%)に代えて合成を行ったが、反応溶液の着色はみられず、反応後、メタノール(200mL)を投入したが、析出物は見られなかった。
Claims (17)
- 下記(1)と、(2)および/または(3)とを含むポリチオフェン重合用触媒:
(1)第1もしくは2級アミンと、グリニャール試薬・ハロゲン化アルカリ金属錯体とを反応させて得られる塩基
(2)ニッケル触媒
(3)パラジウム触媒。 - 前記塩基(1)が、下記一般式(I)で表される化合物であることを特徴とする請求項1に記載のポリチオフェン重合用触媒:
前記アリール基、ヘテロアリール基、アルキル基、シクロアルキル基、アルケニル基、アルキニル基またはそのシリル誘導体は置換されていてもよく、
R1およびR2は、高分子構造を形成してもよく、また共に結合して環構造を形成してもよく、R1およびR2の少なくとも一方は水素原子ではなく、
X1およびX2は、それぞれ独立にハロゲン原子であり、
Mはアルカリ金属原子である。)。 - 前記式(I)において、R1およびR2が、それぞれ独立にメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、ペンチル基、ネオペンチル基、シクロブチル基、シクロペンチル基、シクロペンタジエニル基、シクロヘキシル基、フェニル基、ビフェニル基、チオフェニル基、ピリジル基、またはこれらのシリル誘導体であり、
あるいは共に結合して、ピペリジニル基、2,2,6,6-テトラメチルピペリジニル基、ピロリドニル基、ピロリル基、ピラゾリル基、イミダゾリル基、インドリル基、プリニル基またはカルバゾリル基を形成し、
X1およびX2が、それぞれ独立に塩素原子、臭素原子またはヨウ素原子であり、
Mがリチウム原子であることを特徴とする請求項2に記載のポリチオフェン重合用触媒。 - 前記ニッケル触媒(2)が、2座の中性ホスフィン配位子、単座の中性ホスフィン配位子、中性π配位子、中性アミン配位子、一価のアニオン性配位子および二価のアニオン性配位子からなる群より選ばれる少なくとも1種の配位子を有し、ニッケルの価数が0価もしくは2価となるように配位構成されているニッケル錯体であることを特徴とする請求項1~3のいずれかに記載のポリチオフェン重合用触媒。
- 前記パラジウム触媒(3)が、2座の中性ホスフィン配位子、単座の中性ホスフィン配位子、中性π配位子、一価のアニオン性配位子、二価のアニオン性配位子、単座の中性アミン配位子、2座の中性アミン配位子、中性ニトリル配位子および中性スルフィニル配位子からなる群より選ばれる少なくとも1種の配位子を有し、パラジウムの価数が0価もしくは2価となるように配位構成されているパラジウム錯体であることを特徴とする請求項1~4のいずれかに記載のポリチオフェン重合用触媒。
- 前記ニッケル触媒(2)において、
前記2座の中性ホスフィン配位子が、1,2-ビス(ジフェニルホスフィノ)エタン配位子、1,3-ビス(ジフェニルホスフィノ)プロパン配位子、1,4-ビス(ジフェニルホスフィノ)ブタン配位子または1,1’-ビス(ジフェニルホスフィノ)フェロセン配位子であり、前記単座の中性ホスフィン配位子が、トリn-ブチルホスフィン配位子、トリt-ブチルホスフィン配位子またはトリフェニルホスフィン配位子であり、
前記中性π配位子が、ベンゼン配位子、シクロブタジエン配位子またはシクロオクタジエン配位子であり、
前記中性アミン配位子がアンモニア配位子、ピリジン配位子または3-クロロピリジン配位子であり、
前記一価のアニオン性配位子がヘキサメチルシクロペンタジエニル配位子、ペンタメチルシクロペンタジエニル配位子、シクロペンタジエニル配位子、フッ素配位子、塩素配位子、臭素配位子、ヨウ素配位子、カルボキシラート配位子、アセチルアセトナート配位子、トリフルオロメタンスルフォネート配位子または1,3-ビス(2,6-ジ-イソプロピルフェニル)-4,5-ジヒドロイミダゾ-ル-2-リデン配位子であり、
前記二価のアニオン性配位子がフタロシアニン配位子、ナフタロシアニン配位子またはポルフィリン配位子であることを特徴とする請求項4に記載のポリチオフェン重合用触媒。 - 前記パラジウム触媒(3)において、
前記2座の中性ホスフィン配位子が1,2-ビス(ジフェニルホスフィノ)エタン配位子、1,3-ビス(ジフェニルホスフィノ)プロパン配位子、1,4-ビス(ジフェニルホスフィノ)ブタン配位子または1,1’-ビス(ジフェニルホスフィノ)フェロセン配位子であり、
前記単座の中性ホスフィン配位子がトリn-ブチルホスフィン配位子、トリt-ブチルホスフィン配位子またはトリフェニルホスフィン配位子であり、
前記中性π配位子がベンゼン配位子、シクロブタジエン配位子またはシクロオクタジエン配位子であり、
前記一価のアニオン性配位子がメチル配位子、フェニル配位子、ヘキサメチルシクロペンタジエニル配位子、ペンタメチルシクロペンタジエニル配位子、アリル配位子、シクロペンタジエニル配位子、アルコキシ配位子、フッ素配位子、塩素配位子、臭素配位子、ヨウ素配位子、カルボキシラート配位子、アセチルアセトナート配位子、トリフルオロメタンスルフォネート配位子、1,3-ビス(2,6-ジ-イソプロピルフェニル)-4,5-ジヒドロイミダゾ-ル-2-リデン配位子、1,3-ビス(2,6-ジ-イソプロピルフェニル)イミダゾ-ル-2-リデン配位子または1,3-ビス(2,4,6-トリメチルフェニル)イミダゾール-2-リデン配位子であり、
前記二価のアニオン性配位子がフタロシアニン配位子、ナフタロシアニン配位子またはポルフィリン配位子であり、
前記単座の中性アミン配位子がアンモニア配位子、ピリジン配位子または3-クロロピリジン配位子であり、
前記2座の中性アミン配位子がN,N,N’,N’-テトラメチルエチレンジアミン配位子、1,10-フェナンソロリン配位子または2,2’-ビピリジル配位子であり、
前記中性ニトリル配位子がアセトニトリル配位子またはベンゾニトリル配位子であり、
前記中性スルフィニル配位子が1,2-ビス(フェニルスルフィニル)エタン配位子であることを特徴とする請求項5に記載のポリチオフェン重合用触媒。 - 下記(1)と、(2)および/または(3)とを含むポリチオフェン重合用触媒の存在下、モノハロゲン化置換チオフェンを重合することを特徴とする、ポリ(置換チオフェン)の製造方法:
(1)第1もしくは2級アミンと、グリニャール試薬・ハロゲン化アルカリ金属錯体とを反応させて得られる塩基
(2)ニッケル触媒
(3)パラジウム触媒。 - 前記塩基(1)が、下記一般式(I)で表される化合物であることを特徴とする請求項8に記載のポリ(置換チオフェン)の製造方法:
前記アリール、ヘテロアリール、アルキル、シクロアルキル、アルケニル、アルキニルまたはそのシリル誘導体は置換されていてもよく、
R1およびR2は、高分子構造を形成してもよく、また共に結合して環構造を形成してもよく、R1およびR2の少なくとも一方は水素原子ではなく、
X1およびX2はそれぞれ独立にハロゲン原子であり、
Mはアルカリ金属原子である。)。 - 前記モノハロゲン化置換チオフェンが、モノハロゲン化3-置換チオフェンであることを特徴とする請求項8または9に記載のポリ(置換チオフェン)の製造方法。
- モノハロゲン化置換チオフェンと前記塩基(1)とを反応させ、次いで当該反応により生成した活性モノマーを、前記ニッケル触媒(2)および/またはパラジウム触媒(3)の存在下に重合させることを特徴とする請求項8~10のいずれかに記載のポリ(置換チオフェン)の製造方法。
- 前記式(I)において、R1およびR2がそれぞれ独立にメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、ペンチル基、ネオペンチル基、シクロブチル基、シクロペンチル基、シクロペンタジエニル基、シクロヘキシル基、フェニル基、ビフェニル基、チオフェニル基、ピリジル基、またはこれらのシリル誘導体であり、
あるいは共に結合して、ピペリジニル基、2,2,6,6-テトラメチルピペリジニル基、ピロリドニル基、ピロリル基、ピラゾリル基、イミダゾリル基、インドリル基、プリニル基またはカルバゾリル基を形成する基または誘導体であり、
X1およびX2がそれぞれ独立に塩素原子、臭素原子またはヨウ素原子であり、
Mがリチウム原子であることを特徴とする請求項9~11のいずれかに記載のポリ(置換チオフェン)の製造方法。 - 前記ニッケル触媒(2)が、2座の中性ホスフィン配位子、単座の中性ホスフィン配位子、中性π配位子、中性アミン配位子、一価のアニオン性配位子および二価の中性配位子からなる群より選ばれる少なくとも1種の配位子を有し、ニッケルの価数が0価もしくは2価となるように配位構成されているニッケル錯体であることを特徴とする請求項8~13のいずれかに記載のポリ(置換チオフェン)の製造方法。
- 前記パラジウム触媒(3)が、2座の中性ホスフィン配位子、単座の中性ホスフィン配位子、中性π配位子、一価のアニオン性配位子、二価のアニオン性配位子、単座の中性アミン配位子、2座の中性アミン配位子、中性ニトリル配位子および中性スルフィニル配位子からなる群より選ばれる少なくとも1種の配位子を有し、パラジウムの価数が0価もしくは2価となるように配位構成されているパラジウム錯体であることを特徴とする請求項8~14のいずれかに記載のポリ(置換チオフェン)の製造方法。
- 前記ニッケル触媒(2)において、
前記2座の中性ホスフィン配位子が1,2-ビス(ジフェニルホスフィノ)エタン配位子、1,3-ビス(ジフェニルホスフィノ)プロパン配位子、1,4-ビス(ジフェニルホスフィノ)ブタン配位子または1,1’-ビス(ジフェニルホスフィノ)フェロセン配位子であり、
前記単座の中性ホスフィン配位子がトリn-ブチルホスフィン配位子、トリt-ブチルホスフィン配位子またはトリフェニルホスフィン配位子であり、
前記中性π配位子がベンゼン配位子、シクロブタジエン配位子またはシクロオクタジエン配位子であり、
前記中性アミン配位子がアンモニア配位子、ピリジン配位子または3-クロロピリジン配位子であり、
前記一価のアニオン性配位子がヘキサメチルシクロペンタジエニル配位子、ペンタメチルシクロペンタジエニル配位子、シクロペンタジエニル配位子、フッ素配位子、塩素配位子、臭素配位子、ヨウ素配位子、カルボキシラート配位子、アセチルアセトナート配位子、トリフルオロメタンスルフォネート配位子または1,3-ビス(2,6-ジ-イソプロピルフェニル)-4,5-ジヒドロイミダゾ-ル-2-リデン配位子であり、
前記二価のアニオン性配位子がフタロシアニン配位子、ナフタロシアニン配位子またはポルフィリン配位子であることを特徴とする請求項14に記載のポリ(置換チオフェン)の製造方法。 - 前記パラジウム触媒(3)において、
前記2座の中性ホスフィン配位子が1,2-ビス(ジフェニルホスフィノ)エタン配位子、1,3-ビス(ジフェニルホスフィノ)プロパン配位子、1,4-ビス(ジフェニルホスフィノ)ブタン配位子または1,1’-ビス(ジフェニルホスフィノ)フェロセン配位子であり、
前記単座の中性ホスフィン配位子がトリn-ブチルホスフィン配位子、トリt-ブチルホスフィン配位子またはトリフェニルホスフィン配位子であり、
前記中性π配位子がベンゼン配位子、シクロブタジエン配位子またはシクロオクタジエン配位子であり、
前記一価のアニオン性配位子がメチル配位子、フェニル配位子、ヘキサメチルシクロペンタジエニル配位子、ペンタメチルシクロペンタジエニル配位子、アリル配位子、シクロペンタジエニル配位子、アルコキシ配位子、フッ素配位子、塩素配位子、臭素配位子、ヨウ素配位子、カルボキシラート配位子、アセチルアセトナート配位子、トリフルオロメタンスルフォネート配位子、1,3-ビス(2,6-ジ-イソプロピルフェニル)―4,5-ジヒドロイミダゾ-ル-2-リデン配位子、1,3-ビス(2,6-ジ-イソプロピルフェニル)イミダゾ-ル-2-リデン配位子または1,3-ビス(2,4,6-トリメチルフェニル)イミダゾール-2-リデン配位子であり、
前記二価のアニオン性配位子がフタロシアニン配位子、ナフタロシアニン配位子またはポルフィリン配位子であり、
前記単座の中性アミン配位子がアンモニア配位子、ピリジン配位子または3-クロロピリジン配位子であり、
前記2座の中性アミン配位子がN,N,N’,N’-テトラメチルエチレンジアミン配位子、1,10-フェナンソロリン配位子または2,2’-ビピリジル配位子であり、
前記中性ニトリル配位子がアセトニトリル配位子またはベンゾニトリル配位子であり、
前記中性スルフィニル配位子が1,2-ビス(フェニルスルフィニル)エタン配位子であることを特徴とする請求項15に記載のポリ(置換チオフェン)の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011800367072A CN103025789A (zh) | 2010-07-26 | 2011-07-25 | 聚噻吩聚合用催化剂以及聚(取代噻吩)的制备方法 |
JP2012526491A JP5150007B2 (ja) | 2010-07-26 | 2011-07-25 | ポリチオフェン重合用触媒およびポリ(置換チオフェン)の製造方法 |
KR1020127022490A KR101452883B1 (ko) | 2010-07-26 | 2011-07-25 | 폴리티오펜 중합용 촉매 및 폴리(치환 티오펜)의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010167467 | 2010-07-26 | ||
JP2010-167467 | 2010-07-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012014844A1 true WO2012014844A1 (ja) | 2012-02-02 |
Family
ID=45530052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/066857 WO2012014844A1 (ja) | 2010-07-26 | 2011-07-25 | ポリチオフェン重合用触媒およびポリ(置換チオフェン)の製造方法 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5150007B2 (ja) |
KR (1) | KR101452883B1 (ja) |
CN (1) | CN103025789A (ja) |
TW (1) | TW201221217A (ja) |
WO (1) | WO2012014844A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012165194A1 (ja) * | 2011-05-27 | 2012-12-06 | 綜研化学株式会社 | 環状共役系ポリマーの製造方法および環状共役系ポリマー重合用触媒 |
KR20140124807A (ko) * | 2012-02-17 | 2014-10-27 | 바이엘 인텔렉쳐 프로퍼티 게엠베하 | 알칼리 토금속이 착화된 금속 비스아미드 |
KR20140127249A (ko) * | 2012-02-17 | 2014-11-03 | 바이엘 인텔렉쳐 프로퍼티 게엠베하 | 알칼리 토금속-착물화된 금속 아미드 |
US11114250B2 (en) | 2018-08-10 | 2021-09-07 | Avx Corporation | Solid electrolytic capacitor formed from conductive polymer particles |
US11183342B2 (en) | 2018-08-10 | 2021-11-23 | Avx Corporation | Solid electrolytic capacitor containing polyaniline |
US11462366B2 (en) | 2018-08-10 | 2022-10-04 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor containing an intrinsically conductive polymer |
US11631548B2 (en) | 2020-06-08 | 2023-04-18 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor containing a moisture barrier |
US11670461B2 (en) | 2019-09-18 | 2023-06-06 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor for use at high voltages |
US11776759B2 (en) | 2019-12-10 | 2023-10-03 | KYOCER AVX Components Corporation | Tantalum capacitor with increased stability |
US11823846B2 (en) | 2019-12-10 | 2023-11-21 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor containing a pre-coat and intrinsically conductive polymer |
US11955294B2 (en) | 2018-12-11 | 2024-04-09 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor containing an intrinsically conductive polymer |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105218790B (zh) * | 2015-10-27 | 2018-02-06 | 天津理工大学 | 一种高规整度头尾相接聚(3‑酰基取代噻吩)衍生物的制备方法 |
CN117088919B (zh) * | 2023-10-19 | 2024-01-30 | 链行走新材料科技(广州)有限公司 | 一种噻吩类单体聚合用催化剂及聚噻吩 |
CN117105990B (zh) * | 2023-10-19 | 2024-01-30 | 链行走新材料科技(广州)有限公司 | 一种催化制备聚噻吩用催化剂及p3ht材料 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01203426A (ja) * | 1988-02-09 | 1989-08-16 | Matsushita Electric Ind Co Ltd | 芳香族高分子化合物の製造方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5109109A (en) * | 1988-02-09 | 1992-04-28 | Matsushita Electric Industrial Co., Ltd. | Process for producing aromatic or heterocyclic polymer with metal halides |
-
2011
- 2011-07-25 JP JP2012526491A patent/JP5150007B2/ja not_active Expired - Fee Related
- 2011-07-25 WO PCT/JP2011/066857 patent/WO2012014844A1/ja active Application Filing
- 2011-07-25 CN CN2011800367072A patent/CN103025789A/zh active Pending
- 2011-07-25 KR KR1020127022490A patent/KR101452883B1/ko active IP Right Grant
- 2011-07-26 TW TW100126326A patent/TW201221217A/zh unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01203426A (ja) * | 1988-02-09 | 1989-08-16 | Matsushita Electric Ind Co Ltd | 芳香族高分子化合物の製造方法 |
Non-Patent Citations (6)
Title |
---|
CLOSOSKI, G.C. ET AL.: "Direct magnesiation of polyfunctionalized arenes and heteroarenes using (tmp)2Mg.2LiCI", ANGEWANDTE CHEMIE, INTERNATIONAL EDITION, vol. 46, no. 40, 2007, pages 7681 - 7684, XP002473098, DOI: doi:10.1002/anie.200701487 * |
KRASOVSKIY, A. ET AL.: "Mixed Mg/Li amides of the type R2NMgCl-LiCl as highly efficient bases for the regioselective generation of functionalized aryl and heteroaryl magnesium compounds", ANGEWANDTE CHEMIE, INTERNATIONAL EDITION, vol. 45, no. 18, 2006, pages 2958 - 2961, XP002432039, DOI: doi:10.1002/anie.200504024 * |
MELZIG, L. ET AL.: "2,3-Functionalization of furans, benzofurans and thiophenes via magnesiation and sulfoxide-magnesium exchange", CHEMICAL COMMUNICATIONS, 2009, CAMBRIDGE, UNITED KINGDOM, pages 3536 - 3538 * |
PILLER, F.M. ET AL.: "Regio- and Chemoselective Synthesis of Fully Substituted Thiophenes", ORGANIC LETTERS, vol. 11, no. 2, 2009, pages 445 - 448 * |
WANG, F. ET AL.: "Electroactive and Conducting Star-Branched Poly(3-hexylthiophene)s with a Conjugated Core", MACROMOLECULES, vol. 32, no. 13, 1999, pages 4272 - 4278, XP000830943, DOI: doi:10.1021/ma981781f * |
YU, J. ET AL.: "Solid-State Thermolytic and Catalytic Reactions in Functionalized Regioregular Polythiophenes", MACROMOLECULES, vol. 33, no. 14, 2000, pages 5073 - 5079, XP055074129, DOI: doi:10.1021/ma991853i * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012165194A1 (ja) * | 2011-05-27 | 2012-12-06 | 綜研化学株式会社 | 環状共役系ポリマーの製造方法および環状共役系ポリマー重合用触媒 |
US8957181B2 (en) | 2011-05-27 | 2015-02-17 | Soken Chemical & Engineering Co., Ltd. | Preparation process for cyclic conjugated polymer and polymerization catalyst for cyclic conjugated polymer |
KR20140124807A (ko) * | 2012-02-17 | 2014-10-27 | 바이엘 인텔렉쳐 프로퍼티 게엠베하 | 알칼리 토금속이 착화된 금속 비스아미드 |
KR20140127249A (ko) * | 2012-02-17 | 2014-11-03 | 바이엘 인텔렉쳐 프로퍼티 게엠베하 | 알칼리 토금속-착물화된 금속 아미드 |
JP2015506998A (ja) * | 2012-02-17 | 2015-03-05 | バイエル・インテレクチユアル・プロパテイー・ゲー・エム・ベー・ハー | アルカリ土類金属複合金属アミド |
KR102014305B1 (ko) | 2012-02-17 | 2019-08-26 | 바이엘 인텔렉쳐 프로퍼티 게엠베하 | 알칼리 토금속-착물화된 금속 아미드 |
KR102069089B1 (ko) | 2012-02-17 | 2020-01-22 | 바이엘 인텔렉쳐 프로퍼티 게엠베하 | 알칼리 토금속이 착화된 금속 비스아미드 |
US11183342B2 (en) | 2018-08-10 | 2021-11-23 | Avx Corporation | Solid electrolytic capacitor containing polyaniline |
US11114250B2 (en) | 2018-08-10 | 2021-09-07 | Avx Corporation | Solid electrolytic capacitor formed from conductive polymer particles |
US11462366B2 (en) | 2018-08-10 | 2022-10-04 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor containing an intrinsically conductive polymer |
US11756746B2 (en) | 2018-08-10 | 2023-09-12 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor containing an intrinsically conductive polymer |
US11791106B2 (en) | 2018-08-10 | 2023-10-17 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor containing polyaniline |
US11955294B2 (en) | 2018-12-11 | 2024-04-09 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor containing an intrinsically conductive polymer |
US11670461B2 (en) | 2019-09-18 | 2023-06-06 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor for use at high voltages |
US11776759B2 (en) | 2019-12-10 | 2023-10-03 | KYOCER AVX Components Corporation | Tantalum capacitor with increased stability |
US11823846B2 (en) | 2019-12-10 | 2023-11-21 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor containing a pre-coat and intrinsically conductive polymer |
US11631548B2 (en) | 2020-06-08 | 2023-04-18 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor containing a moisture barrier |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012014844A1 (ja) | 2013-09-12 |
KR101452883B1 (ko) | 2014-10-22 |
JP5150007B2 (ja) | 2013-02-20 |
TW201221217A (en) | 2012-06-01 |
KR20130100882A (ko) | 2013-09-12 |
CN103025789A (zh) | 2013-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5150007B2 (ja) | ポリチオフェン重合用触媒およびポリ(置換チオフェン)の製造方法 | |
EP1028136B1 (en) | A method of forming poly-(3-substituted) thiophenes | |
JP2012025887A (ja) | ポリ(3−置換チオフェン)の製造方法 | |
Wakioka et al. | Remarkable ligand effect of P (2-MeOC6H4) 3 on palladium-catalyzed direct arylation | |
TW200835773A (en) | Process for preparing thiophenes | |
KR20090020657A (ko) | 위치 규칙성 폴리(3-치환된-티오펜)의 제조 방법 | |
Qiu et al. | Recent new methodologies for acetylenic polymers with advanced functionalities | |
US7442759B2 (en) | Water-soluble polythiophene polymers | |
US20170267814A1 (en) | Controlled Radical Polymerization, and Catalysts Useful Therein | |
JP4712514B2 (ja) | ベンゾジチオフェン重合体 | |
TWI421272B (zh) | 製備噻吩寡聚物之方法 | |
EP2519554B1 (en) | Polyarylene polymers and processes for preparing | |
JP5651240B2 (ja) | 環状共役系ポリマーの製造方法および環状共役系ポリマー重合用触媒 | |
JP7150265B2 (ja) | 片末端修飾ポリチオフェンの製造方法 | |
US20150065722A1 (en) | Fused thiophene ditin monomers | |
Tahara et al. | Synthesis and characterization of polymers containing tin and transition metals in the main chain | |
US8168745B2 (en) | Process for the preparation of poly- and oligothiophenes on an industrial scale | |
JP5585916B2 (ja) | ポリチオフェン類の製造方法、及び新規なチオフェンモノマー | |
KR20090124613A (ko) | 클릭화학 반응을 이용한 폴리알킬티오펜의 말단 기능화방법 | |
EP1092729B1 (en) | Polymerization catalyst, novel transition metal compound, and polymerization method and copolymer using them | |
JP5733816B2 (ja) | 高分子膜及びガスバリア材 | |
JP2012077106A (ja) | 新規なチオフェンポリマー及びその製造方法 | |
Kobayashi et al. | Germylenes as monomers for polymer synthesis | |
Kang | synthesis of polypseudorotaxanes and polyrotaxanes via ring-opening olefin metathesis polymerization of [2] catenanes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180036707.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11812433 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012526491 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20127022490 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11812433 Country of ref document: EP Kind code of ref document: A1 |