JP5150007B2 - ポリチオフェン重合用触媒およびポリ(置換チオフェン)の製造方法 - Google Patents

ポリチオフェン重合用触媒およびポリ(置換チオフェン)の製造方法 Download PDF

Info

Publication number
JP5150007B2
JP5150007B2 JP2012526491A JP2012526491A JP5150007B2 JP 5150007 B2 JP5150007 B2 JP 5150007B2 JP 2012526491 A JP2012526491 A JP 2012526491A JP 2012526491 A JP2012526491 A JP 2012526491A JP 5150007 B2 JP5150007 B2 JP 5150007B2
Authority
JP
Japan
Prior art keywords
ligand
group
neutral
bis
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012526491A
Other languages
English (en)
Other versions
JPWO2012014844A1 (ja
Inventor
秀二 岡本
晃 目黒
敦紀 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Chemical and Engineering Co Ltd
Kobe University NUC
Original Assignee
Soken Chemical and Engineering Co Ltd
Kobe University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soken Chemical and Engineering Co Ltd, Kobe University NUC filed Critical Soken Chemical and Engineering Co Ltd
Priority to JP2012526491A priority Critical patent/JP5150007B2/ja
Application granted granted Critical
Publication of JP5150007B2 publication Critical patent/JP5150007B2/ja
Publication of JPWO2012014844A1 publication Critical patent/JPWO2012014844A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/417Organometallic coupling reactions magnesium-based, e.g. Grignard or McCullough reactions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

本発明は、ポリチオフェンの重合に好適に使用することのできる重合用触媒、および当該触媒を用いたポリ(置換チオフェン)の製造方法に関する。
ポリチオフェンは、π共役系が連結した高分子構造をとっているため、導電性を有しており、さらに加工性に優れ、比較的高い環境安定性および熱安定性を示す。そのためポリチオフェンは、近年電気部品、例えば有機薄膜太陽電池、有機薄膜トランジスタ、光電変換材料、有機EL材料、ダイオード、トリオード、電気光学的ディスプレイ、反射膜、非線形光学材料などの用途に使用しうる材料として注目を集めている。
ポリチオフェンの中でも特に有望なものとして注目を集めているのは、チオフェン環の3位にヘキシル基などの置換基(溶媒への可溶化基)を有するポリ(3−置換チオフェン)である。例えば、ポリ(3−アルキルチオフェン)は自己集積化することが知られており、これによって高い電荷キャリア移動度が達成されるものと考えられる。そして、ポリ(3−置換チオフェン)の分子量分布は、狭い方が、より高度に分子同士で自己集積できると考えられる。また、ポリ(3−置換チオフェン)から前記電気部品を形成した場合に、それが一定の強度や導電性を達成する観点からは、前記ポリ(3−置換チオフェン)は、ある程度の分子量を有している必要がある。
一方ポリ(3−置換チオフェン)の合成原料となる3−置換チオフェンは、非対称的な構造を有しているため、モノマーどうしが重合する際に、2,2'(頭−頭)、5,5'(尾−尾)または2,5'(頭−尾)連結という、3種類の連結が生じる可能性がある。これらのうち、2,5'(頭−尾)連結が多いポリマーは、立体規則性が高く、自己集合して平らで密に詰まった高分子構造をとることができるので、上記の電気部品用途に好適である。
このようなポリ(3−置換チオフェン)の構造は、その合成方法に大きく影響を受ける。そのため、前記の一定の分子量、狭い分子量分布や、高い立体規則性を有するポリ(3−置換チオフェン)の合成方法が、種々提案されている。
例えば、特許文献1には、以下の化学反応式に示すポリ(3−置換チオフェン)の合成方法が記載されている。
すなわち、2,5−ジブロモ−3−ヘキシルチオフェンと塩化シクロヘキシルマグネシウムを反応させている反応系中に(当該反応で得られる反応物を反応物1とする)、塩化亜鉛を添加することにより、反応性の高い''rieke亜鉛''を形成させ、さらにこれと反応物1とを反応させることにより、2−ブロモ−3−ヘキシル−5−(ブロモジンシオ)チオフェンとその異性体である2−(ブロモジンシオ)−3−ヘキシル−5−ブロモチオフェンとの混合物を形成させる。これにNi(dppe)Cl2(1,2−ビス(ジフェニルホスフィノエタン)塩化ニッケル(II))等のNi触媒を加えることにより、立体規則性の高いポリ(3−アルキル)チオフェンが得られる。
この反応では、高活性な''Rieke亜鉛''を調製する工程が必要になり、製造工程が煩雑化する。あるいは、予め調製したRieke亜鉛溶液をシグマアルドリッチ社などから試薬として購入可能であるが、Rieke亜鉛溶液は非常に高価である。どちらにしても、特許文献1に記載のポリ(3−置換チオフェン)の合成方法は、プロセスおよびコストの観点から、工業的なポリ(3−置換チオフェン)の製造には適していない。
Figure 0005150007
*上記化学反応式において、Cyはシクロヘキシル基を表す。
特許文献2には、特許文献1に記載の方法において、塩化亜鉛を塩化マンガンに変えた方法が記載されているが、特許文献1に記載の方法と同様の問題を有している。
非特許文献1には、下記化学反応式で示されるポリ(3−置換チオフェン)の合成方法が記載されている。
Figure 0005150007
この方法において、工程1で使用するLDAは予めn−ブチルリチウムとジイソプロピルアミンとを−40℃で40分反応させて形成させる必要があり、これに対し、モノマー(2−ブロモ−3−ヘキシルチオフェン)を工程1で加える際には、高い転化率で選択的に5位のプロトンを引き抜き、Li化させるために−78℃という低温にする必要がある。
その後、−40℃で反応液を40分間攪拌した後、工程2において−60℃でMgBr2・OEt2を加え、20分間攪拌を行い、さらに−40℃で15分の攪拌を行う。工程3では、−5℃で反応液にNi(dppp)Cl2(1,3−ビス(ジフェニルホスフィノプロパン)塩化ニッケル(II))を加えた後、室温で12〜18時間の攪拌を行う必要がある。
非特許文献1に記載の方法では、多段階の工程が必要であり、また各工程を非常に低い温度領域に制御したうえで行う必要があり、当該方法を工業的生産に適用した場合、工程管理及び量産設備の冷却能力上、非常に難易度が高いプロセスになってしまうという問題がある。
特許文献3および4には、上記問題点を改良したポリ(3−置換チオフェン)の合成方法が記載されている。その方法では、下記化学反応式に示すように、工程数が少なく、さらに反応時間は3時間程度となり、反応温度は上記の低温領域ではなく、THFの環流温度条件となっている。すなわち、工業的生産の観点から大幅に改善された合成方法となっている。
Figure 0005150007
しかしながら、これらの合成方法で得られたポリマーに関しては、特許文献3および4には分子量及び立体規則性の明確な記載はなく、反応時間の短縮化による分子量の低下及び反応温度の高温化による立体規則性の低下等が懸念される。また、目的物のポリマーの収率は40〜65%程度であり、工業的生産を想定した場合、この収率は決して良いとは言えない。さらに、この反応において反応副生成物として生成する臭化メチルおよびヨウ化メチルは、変異原性の報告がなされている物質である。そのため、当該方法を工業的生産(量産化)に適用した場合には、環境的側面から、前記変異原性物質の処理コストがかさむことも懸念される。
非特許文献2および3には、下記化学反応式で示されるポリ(3−置換チオフェン)の合成方法が記載されている。
Figure 0005150007
*上記化学反応式において、NISはN−ヨードスクシンイミドである。
しかし、この方法は、上記式で示されるように、重合に使用するモノマーの合成が多段階反応により行われるため、各プロセス(特にモノマーの合成段階の反応)における精製等が必要となる。そのため、当該方法をポリ(3−置換チオフェン)の工業的生産に適用した場合、プロセスが煩雑化することが懸念される。
特許文献5及び非特許文献4には、下記化学反応式で示される、ポリ(3−置換チオフェン)の合成方法が記載されている。
Figure 0005150007
*上記化学反応式において、NBSはN−ブロモスクシンイミドである。
しかし、この方法は上記非特許文献2および3に記載の方法と同様、重合に使用するモノマーの合成反応が多段階であるため、各プロセス(特にモノマーの合成段階の反応)における精製等が必要となり、工業的生産に適用した場合、プロセスが煩雑化することが懸念される。
なお、特許文献6には、芳香族環に位置選択的に官能基を導入するための試薬として、下記一般式の試薬または溶媒付き付加物としての前記試薬が記載されている。
Figure 0005150007
前記式中、Ra、Rb、RcおよびRdは、それぞれ独立して、水素原子、置換もしくは非置換アリール基または1つ以上のヘテロ原子を含む置換もしくは非置換ヘテロアリール基、直鎖、分枝鎖、または環式の、置換もしくは非置換アルキル基、置換もしくは非置換アルケニル基、置換もしくは非置換アルキニル基またはそれらのシリル誘導体のうちから選択され、RaおよびRb、またはRcおよびRdは、共に環構造または高分子構造の一部であり得、RaおよびRbの少なくとも一方、並びにRcおよびRdの少なくとも一方は水素原子以外であり、XおよびYは、それぞれ独立して、F;Cl;Br;I;CN;SCN;NCO;HalOn(式中、n=3または4であり、HalはCl、BrおよびIから選択される);NO3;BF4;PF6;H;一般式RxCO2のカルボキシラート;一般式ORxのアルコラート;一般式SRxのチオラート;RxP(O)O2;またはSCORx;またはSCSRx;OnSRx(式中、n=2または3);またはNOn(式中、n=2または3);およびそれらの誘導体のうちから選択され、前記式中、Rxは、置換もしくは非置換アリール基または1つ以上のヘテロ原子を含む置換もしくは非置換ヘテロアリール基、直鎖、分枝鎖または環式の、置換もしくは非置換アルキル基、置換もしくは非置換アルケニル基、置換もしくは非置換アルキニル基またはそれらの誘導体、または水素原子であり、mは0または1であり、z>0である。
特表2009−501838号公報 特表2009−540055号公報 特開2000−230040号公報 特開2008−81748号公報 特開2004−115695号公報 特表2009−523765号公報
Synthetic metals, 55-57, 1993, 1198-1203 J.Polym Sci Part A: Polym Chem, vol 43, 1454-1462, 2005. J.Polym Sci Part A: Polym Chem vol 46, 4556-4563, 2008. Macromolecules 2004, 37,1169-1171
以上説明したように、従来のポリ(置換チオフェン)の製造方法の多くでは、チオフェンの2位及び5位の両方にハロゲン原子などの置換基を導入しており、製造プロセスが煩雑である。
本発明は、安価な原料を使用し、製造工程が容易であり、特に低温領域に反応温度を制御する必要がなく、従来のポリ(置換チオフェン)の製造方法と同等以上の収率で、当該方法によって製造されるポリ(置換チオフェン)と同等以上の優れた立体規則性および分子量分布を有するポリ(置換チオフェン)を製造することを可能とする触媒を提供することを目的とする。
さらに本発明は、そのような触媒を使用した、安価な原料を使用し、製造工程が容易であり、特に低温領域に反応温度を制御する必要がない、ポリ(置換チオフェン)の製造方法を提供することをも目的としている。
本発明者らは上記課題を解決するために鋭意検討した結果、特定の塩基と、ニッケル触媒および/またはパラジウム触媒とを使用することで、上記課題を解決することができることを見出し、本発明を完成するに至った。
すなわち本発明は、下記(1)と、(2)および/または(3)とを含むポリチオフェン重合用触媒である。
(1)第1もしくは2級アミンと、グリニャール試薬・ハロゲン化アルカリ金属錯体とを反応させて得られる塩基
(2)ニッケル触媒
(3)パラジウム触媒。
前記塩基(1)は、好ましくは下記一般式(I)で表される化合物である。
Figure 0005150007
上記式において、R1およびR2はそれぞれ独立に、水素原子、あるいは炭素原子数6〜12のアリール基、5〜6員環のヘテロアリール基、直鎖もしくは分岐の炭素原子数1〜10のアルキル基、炭素原子数3〜6のシクロアルキル基、直鎖もしくは分岐の炭素原子数2〜10のアルケニル基、直鎖もしくは分岐の炭素原子数2〜10のアルキニル基またはそれらのシリル誘導体であり、
前記アリール基、ヘテロアリール基、アルキル基、シクロアルキル基、アルケニル基、アルキニル基またはそのシリル誘導体は置換されていてもよく、
1およびR2は、高分子構造を形成してもよく、また共に結合して環構造を形成してもよく、R1およびR2の少なくとも一方は水素原子ではなく、
1およびX2はそれぞれ独立にハロゲン原子であり、
Mはアルカリ金属原子である。
前記式(I)において、R1およびR2は、好ましくはそれぞれ独立にメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、t−ブチル基、ペンチル基、ネオペンチル基、シクロブチル基、シクロペンチル基、シクロペンタジエニル基、シクロヘキシル基、フェニル基、ビフェニル基、チオフェニル基、ピリジル基、またはこれらのシリル誘導体であり、あるいは共に結合して、ピペリジニル基、2,2,6,6−テトラメチルピペリジニル基、ピロリドニル基、ピロリル基、ピラゾリル基、イミダゾリル基、インドリル基、プリニル基またはカルバゾリル基を形成し、X1およびX2は、好ましくはそれぞれ独立に塩素原子、臭素原子またはヨウ素原子であり、Mは、好ましくはリチウム原子である。
前記ニッケル触媒(2)は、好ましくは、2座の中性ホスフィン配位子、単座の中性ホスフィン配位子、中性π配位子、中性アミン配位子、一価のアニオン性配位子および二価のアニオン性配位子からなる群より選ばれる少なくとも1種の配位子を有し、ニッケルの価数が0価もしくは2価となるように配位構成されているニッケル錯体であり、より具体的には、前記2座の中性ホスフィン配位子が1,2−ビス(ジフェニルホスフィノ)エタン配位子、1,3−ビス(ジフェニルホスフィノ)プロパン配位子、1,4−ビス(ジフェニルホスフィノ)ブタン配位子または1,1’−ビス(ジフェニルホスフィノ)フェロセン配位子であり、前記単座の中性ホスフィン配位子が、トリn−ブチルホスフィン配位子、トリt−ブチルホスフィン配位子またはトリフェニルホスフィン配位子であり、前記中性π配位子がベンゼン配位子、シクロブタジエン配位子またはシクロオクタジエン配位子であり、前記中性アミン配位子が、アンモニア配位子、ピリジン配位子または3−クロロピリジン配位子であり、前記一価のアニオン性配位子がヘキサメチルシクロペンタジエニル配位子、ペンタメチルシクロペンタジエニル配位子、シクロペンタジエニル配位子、フッ素配位子、塩素配位子、臭素配位子、ヨウ素配位子、カルボキシラート配位子、アセチルアセトナート配位子、トリフルオロメタンスルフォネート配位子または1,3−ビス(2,6−ジ−イソプロピルフェニル)−4,5−ジヒドロイミダゾ−ル−2−リデン配位子であり、前記二価のアニオン性配位子がフタロシアニン配位子、ナフタロシアニン配位子またはポルフィリン配位子であるニッケル錯体である。
また前記パラジウム触媒(3)は、好ましくは、2座の中性ホスフィン配位子、単座の中性ホスフィン配位子、中性π配位子、一価のアニオン性配位子、二価のアニオン性配位子、単座の中性アミン配位子、2座の中性アミン配位子、中性ニトリル配位子および中性スルフィニル配位子からなる群より選ばれる少なくとも1種の配位子を有し、パラジウムの価数が0価もしくは2価となるように配位構成されているパラジウム錯体であり、より具体的には、前記2座の中性ホスフィン配位子が、1,2−ビス(ジフェニルホスフィノ)エタン配位子、1,3−ビス(ジフェニルホスフィノ)プロパン配位子、1,4−ビス(ジフェニルホスフィノ)ブタン配位子または1,1’−ビス(ジフェニルホスフィノ)フェロセン配位子であり、前記単座の中性ホスフィン配位子がトリn−ブチルホスフィン配位子、トリt−ブチルホスフィン配位子またはトリフェニルホスフィン配位子であり、前記中性π配位子がベンゼン配位子、シクロブタジエン配位子またはシクロオクタジエン配位子であり、前記一価のアニオン性配位子が、メチル配位子、フェニル配位子、ヘキサメチルシクロペンタジエニル配位子、ペンタメチルシクロペンタジエニル配位子、アリル配位子、シクロペンタジエニル配位子、アルコキシ配位子、フッ素配位子、塩素配位子、臭素配位子、ヨウ素配位子、カルボキシラート配位子、アセチルアセトナート配位子、トリフルオロメタンスルフォネート配位子、1,3−ビス(2,6−ジ−イソプロピルフェニル)−4,5−ジヒドロイミダゾ−ル−2−リデン配位子、1,3−ビス(2,6−ジ−イソプロピルフェニル)イミダゾ−ル−2−リデン配位子または1,3−ビス(2,4,6−トリメチルフェニル)イミダゾール−2−リデン配位子であり、前記二価のアニオン性配位子がフタロシアニン配位子、ナフタロシアニン配位子またはポルフィリン配位子であり、前記単座の中性アミン配位子がアンモニア配位子、ピリジン配位子または3−クロロピリジン配位子であり、前記2座の中性アミン配位子がN,N,N’,N’−テトラメチルエチレンジアミン配位子、1,10−フェナンソロリン配位子または2,2’−ビピリジル配位子であり、前記中性ニトリル配位子が、アセトニトリル配位子またはベンゾニトリル配位子であり、前記中性スルフィニル配位子が1,2−ビス(フェニルスルフィニル)エタン配位子であるパラジウム触媒である。
本発明のポリ(置換チオフェン)の製造方法では、上記ポリチオフェン重合用触媒の存在下、モノハロゲン化置換チオフェンを重合させる。本発明の製造方法における好ましい製造原料はモノハロゲン化3−置換チオフェンであり、この場合、本発明の製造方法により、ポリ(3−置換チオフェン)が得られる。
なお、本発明のポリ(置換チオフェン)の製造方法においては、より正確には、モノハロゲン化置換チオフェンと前記塩基(1)とを反応させ、次いで当該反応により生成した活性モノマーを、前記ニッケル触媒(2)および/または前記パラジウム触媒(3)の存在下に重合させる。
また、本発明のポリ(置換チオフェン)の製造原料たる前記モノハロゲン化置換チオフェンは、好ましくは下記一般式(II)で表される化合物である。
Figure 0005150007
上記式において、Rは直鎖もしくは分岐の炭素原子数1〜12のアルキル基、直鎖もしくは分岐の炭素原子数1〜12のアルコキシ基、直鎖もしくは分岐の炭素原子数2〜12のアルケニル基、直鎖もしくは分岐の炭素原子数2〜12のアルキニル基、または炭素原子数3〜12のシクロアルキル基であり、Xはハロゲン原子である。
本発明によれば、安価な原料を使用し、製造工程が容易であり、特に低温領域に反応温度を制御する必要がなく、従来のポリ(置換チオフェン)の製造方法によって製造されるポリ(置換チオフェン)と同等以上の立体規則性および分子量分布を有するポリ(置換チオフェン)を、従来法と同等以上の収率で製造することを可能とする触媒が提供される。
また本発明によれば、そのような触媒を使用したポリ(置換チオフェン)の製造方法も提供される。
図1は、実施例3で得られたポリ(3−ヘキシルチオフェン)の1H−NMRスペクトルを示す。
[ポリチオフェン重合用触媒]
以下、本発明のポリチオフェン重合用触媒の各構成成分(上記塩基(1)、ニッケル触媒(2)およびパラジウム触媒(3))について説明する。
<(1)塩基>
(塩基(1)の合成方法)
本発明のポリチオフェン重合用触媒に含まれる、第1もしくは2級アミンと、グリニャール試薬・ハロゲン化アルカリ金属錯体とを反応させて得られる塩基(1)において、前記第1もしくは2級アミンは、特に限定されないが、通常下記一般式(A)で表される化合物である。
Figure 0005150007
前記式において、R1およびR2は、それぞれ独立に、水素原子、あるいは炭素原子数6〜12のアリール基、5〜6員環のヘテロアリール基、直鎖もしくは分岐の炭素原子数1〜10のアルキル基、炭素原子数3〜6のシクロアルキル基、直鎖もしくは分岐の炭素原子数2〜10のアルケニル基、直鎖もしくは分岐の炭素原子数2〜10のアルキニル基またはそれらのシリル誘導体であるが、R1およびR2の少なくとも一方は水素原子ではない。
前記アリール基、ヘテロアリール基、アルキル基、シクロアルキル基、アルケニル基、アルキニル基またはそのシリル誘導体は置換されていてもよい。またR1およびR2は、高分子構造を形成してもよく、また共に結合して環構造を形成してもよい。
また、前記アリール等に置換しうる置換基または原子の例としては、ハロゲン原子、好ましくは、フッ素原子、塩素原子、臭素原子およびヨウ素原子;脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基または複素芳香族炭化水素基、特にアルキル基、アルキレン基、アリーレン基、アルキリデン基、アリーリデン基、ヘテロアリーレン基およびヘテロアリーリデン基;そのカルボン酸および塩;カルボン酸ハロゲン化物;脂肪族カルボン酸エステル、脂環式カルボン酸エステル、芳香族カルボン酸エステルまたは複素芳香族カルボン酸エステル;アルデヒド基;脂肪族ケトン基、脂環式ケトン基、芳香族ケトン基または複素芳香族ケトン基;ヒドロキシルアルキル基およびアルコキシ基;ヒドロキシフェニル基およびフェノキシ基;脂肪族エーテル基、脂環式エーテル基、芳香族エーテル基または複素芳香族エーテル基;脂肪族ぺルオキシ基、脂環式ぺルオキシ基、芳香族ぺルオキシ基、複素芳香族ぺルオキシ基;ヒドロペルオキシ基(−OOH);脂肪族アミド基もしくはそのアミジン基、脂環式アミド基もしくはそのアミジン基、芳香族アミド基もしくはそのアミジン基、または複素芳香族アミド基もしくはそのアミジン基;ニトリル基;脂肪族アミノ基、脂環式アミノ基、芳香族アミノ基、複素芳香族アミノ基;脂肪族イミノ基、脂環式イミノ基、芳香族イミノ基、複素芳香族イミノ基;チオール基を含む脂肪族スルフィド基、脂環式スルフィド基、芳香族スルフィド基もしくは複素芳香族スルフィド基;そのスルホン酸および塩;チオールおよびチオラート;そのホスホン酸および塩;そのホスフィン酸および塩;その亜リン酸および塩;その亜ホスフィン酸および塩が挙げられるが、これらに限定されるものではない。
前記置換基は、炭素原子、酸素原子、窒素原子、硫黄原子またはリン原子を介して、前記アリール基等に結合されていてもよい。
以上説明した第1もしくは2級アミンは、公知の方法によって容易に合成が可能であるし、また安価に市販もされている。
また、上記塩基(1)において、グリニャール試薬・ハロゲン化アルカリ金属錯体は、特に限定されないが、当該錯体として例えば、下記一般式(B)で表される化合物が挙げられる。
Figure 0005150007
上記式において、R3は、炭素原子数6〜12のアリール基、5〜6員環のヘテロアリール基、直鎖もしくは分岐の炭素原子数1〜10のアルキル基、炭素原子数3〜6のシクロアルキル基、直鎖もしくは分岐の炭素原子数2〜10のアルケニル基、直鎖もしくは分岐の炭素原子数2〜10のアルキニル基またはそのシリル誘導体である。
前記アリール基、ヘテロアリール基、アルキル基、シクロアルキル基、アルケニル基、アルキニル基またはそのシリル誘導体は置換されていてもよい。これらアリール基等に置換しうる置換基は、上記R1およびR2の説明において、アリール基等に置換しうる置換基として挙げたものと同じものが挙げられる。
商業的な入手のしやすさの観点から、R3は好ましくは、イソプロピル基またはsec−ブチル基である。
また上記式(B)において、X1およびX2は、それぞれ独立にハロゲン原子である。
上記式(B)において、Mはアルカリ金属原子である。
以上説明したグリニャール試薬・ハロゲン化アルカリ金属錯体は、公知の方法で容易に合成することが可能であるし、また商品名「イソプロピルマグネシウムクロライド リチウムクロライド錯体溶液(1.3M THF溶液)」などとして、安価にシグマ−アルドリッチ社などから市販もされている。
たとえば、以上説明した第1もしくは2級アミンおよびグリニャール試薬・ハロゲン化アルカリ金属錯体を反応させることにより、本発明のポリチオフェン重合用触媒の構成成分である塩基(1)が得られる(下記化学反応式参照)。
Figure 0005150007
当該反応は、THFなどの溶媒の存在下、通常−40〜50℃程度で行うことができる。反応条件の詳細は、特許文献6およびAngew. Chem. Int. 2007, 46, 7685などに記載されている。さらに塩基(1)自体も、「2,2,6,6−テトラメチルピペリジニルマグネシウムクロライド リチウムクロライド錯体溶液(1.0M THF/トルエン)」などの商品名でシグマ−アルドリッチ社などから市販されている。
(塩基(1))
塩基(1)は、ポリチオフェンの合成原料たるモノハロゲン化置換チオフェンと反応し、その酸性プロトンをチオフェン環から脱離させ、活性モノマーを形成させると考えられる。そしてこの活性モノマーが、後述するニッケル触媒(2)および/またはパラジウム触媒(3)の作用により重合してポリチオフェンが得られると考えられる。
塩基(1)は、通常は上記式(I)で表されるR12NMgX1-MX2であるが、優れた活性モノマーを形成させ、高い立体規則性で、収率よくポリチオフェンを得る観点からは、前記式(I)において、
1およびR2は、好ましくは、それぞれ独立にメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、t−ブチル基、ペンチル基、ネオペンチル基、シクロブチル基、シクロペンチル基、シクロペンタジエニル基、シクロヘキシル基、フェニル基、ビフェニル基、チオフェニル基、ピリジル基、またはこれらのシリル誘導体であり、あるいは共に結合して、環構造であるピペリジニル基、2,2,6,6−テトラメチルピペリジニル基、ピロリドニル基、ピロリル基、ピラゾリル基、イミダゾリル基、インドリル基、プリニル基またはカルバゾリル基を形成し、より好ましくは、共に結合して2,2,6,6−テトラメチルピペリジニル基を形成し、
1およびX2は、好ましくは、それぞれ独立に塩素原子、臭素原子またはヨウ素原子であり、より好ましくは、共に塩素原子であり、
Mは、好ましくはリチウム原子である。
本発明のポリチオフェン重合用触媒には、以上説明した塩基(1)が1種単独で含まれていても、2種以上が含まれていてもよい。
また、塩基(1)は、本発明のポリチオフェン重合用触媒において、ポリチオフェン合成原料たるモノハロゲン化置換チオフェン1当量に対し、通常1.0〜2.0当量、好ましくは1.2〜1.5当量となるように含まれている。塩基(1)の含有量がこのような範囲であると、モノハロゲン化置換チオフェンから効率よく活性モノマーを形成させることができ、収率よくポリ(置換チオフェン)を製造することができる。
次に、本発明のポリチオフェン重合用触媒のもう一つの構成成分であるニッケル触媒(2)について説明する。
<(2)ニッケル触媒>
前記ニッケル触媒(2)は、モノハロゲン化置換チオフェンと塩基(1)との反応によって形成された活性モノマーどうしの、ハロゲン原子が結合している炭素部位と、脱プロトン化された炭素部位とのC−Cカップリングを促進するものと考えられる。このような反応機構によりC−Cカップリングがなされることから、本発明のポリチオフェン重合用触媒を使用して、例えば2−ハロゲン化3−置換チオフェンを重合すれば、2,5'(頭−尾)連結した、非常に立体規則性の高いポリ(3−置換チオフェン)を得ることができる。
前記ニッケル触媒(2)は、そのような触媒活性能を備えた触媒であれば特に制限されないが、好ましくは、1,2−ビス(ジフェニルホスフィノ)エタン配位子、1,3−ジフェニルホスフィノプロパン配位子、1,4−ビス(ジフェニルホスフィノ)ブタン配位子および1,1’−ビス(ジフェニルホスフィノ)フェロセン配位子等の2座の中性ホスフィン配位子、トリn−ブチルホスフィン配位子、トリt−ブチルホスフィン配位子およびトリフェニルホスフィン配位子等の単座の中性ホスフィン配位子、ベンゼン配位子、シクロブタジエン配位子およびシクロオクタジエン配位子等の中性π配位子、アンモニア配位子、ピリジン配位子および3−クロロピリジン配位子等の中性アミン配位子、ヘキサメチルシクロペンタジエニル配位子、ペンタメチルシクロペンタジエニル配位子、シクロペンタジエニル配位子、フッ素配位子、塩素配位子、臭素配位子、ヨウ素配位子、カルボキシラート配位子(酢酸およびプロピオン酸等)、アセチルアセトナート配位子、トリフルオロメタンスルフォネート配位子および1,3−ビス(2,6−ジ−イソプロピルフェニル)―4,5−ジヒドロイミダゾ−ル−2−リデン配位子等の一価のアニオン性配位子、あるいはフタロシアニン配位子、ナフタロシアニン配位子およびポルフィリン等の二価のアニオン性配位子を配位子とし、ニッケル原子の価数が0価もしくは2価となるように配位構成されているニッケル錯体である。そのようなニッケル触媒(2)の具体例を以下に示す。
Figure 0005150007
Figure 0005150007
Figure 0005150007
収率よく、立体規則性の高いポリチオフェンを得るという観点からは、ニッケル触媒(2)は、より好ましくはNiCl2dppp(1,3−ビス(ジフェニルホスフィノプロパン)塩化ニッケル(II))、NiCl2(PPh3)2(ビストリフェニルホスフィン塩化ニッケル(II))、NiCl2dppf(塩化ニッケル(II)にdppf(下記式参照)が配位したもの)、NiClCpSIPr(下記式参照)、およびNiCl2(PPh3)iPr([1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール−2−イリデン]トリフェニルホスフィンニッケル(II)ジクロリド;下記式参照)を用いることが好ましい。
Figure 0005150007
本発明のポリチオフェン重合用触媒において、以上説明したニッケル触媒(2)は、1種単独でも2種以上が含まれていてもよい。
また、本発明のポリチオフェン重合用触媒において、前記ニッケル触媒(2)は、モノハロゲン化置換チオフェン(100モル%)に対して、通常0.01〜10モル%、好ましくは0.1〜5モル%、さらに好ましくは0.1〜1モル%となるように含まれている。このような範囲であると、前記ポリチオフェン重合用触媒を使用して、収率よく、立体規則性の高いポリチオフェンを得ることができる。
以上説明したニッケル触媒(2)は、公知の方法によって容易に合成が可能であり、また安価に市販もされている。
さらに、本発明のポリチオフェン重合用触媒は、ニッケル触媒(2)とともに、ホスフィン配位子などの、高活性のニッケル触媒を与える配位子となる化合物を含み、ポリチオフェンの重合反応系中で前記ニッケル触媒(2)と配位子化合物との間で配位子交換反応を起こし、より高活性のニッケル触媒(2)を形成させてもよい。
このような、配位子交換反応を起こして高活性のニッケル触媒を形成する配位子化合物としては、ニッケル触媒(2)について説明した配位子となる、2座の中性ホスフィン配位子化合物および単座の中性ホスフィン配位子化合物が挙げられる。これらの具体例としては、以下に示す化合物が挙げられる。
Figure 0005150007
Figure 0005150007
Figure 0005150007
Figure 0005150007
以上説明した、高活性のニッケル触媒を与える配位子化合物は、1種単独で使用しても、2種以上を組み合わせて使用してもよい。前記配位子化合物は、公知の方法によって合成が可能であり、また安価に市販もされている。
また、以上説明した配位子化合物は、本発明のポリチオフェン重合用触媒において、ニッケル触媒(2)(100モル%)に対し、通常5〜200モル%、好ましくは50〜150モル%の割合で含まれている。
次に、本発明のポリチオフェン重合用触媒を構成する成分の一つである、パラジウム触媒(3)について説明する。
<(3)パラジウム触媒>
本発明では、前記ニッケル触媒(2)のかわりに、またはニッケル触媒(2)とともに、パラジウム触媒(3)を使用することができる。パラジウム触媒(3)は、モノハロゲン化置換チオフェンと塩基(1)との反応によって形成された活性モノマーどうしの、ハロゲン原子が結合している炭素部位と、脱プロトン化された炭素部位とのC-Cカップリングを促進するものと考えられる。このような反応機構によりC−Cカップリングがなされることから、本発明のポリチオフェン重合用触媒を使用して、例えば2−ハロゲン化3−置換チオフェンを重合すれば、2,5'(頭−尾)連結した、非常に立体規則性の高いポリ(3−置換チオフェン)を得ることができる。
前記パラジウム触媒(3)は、そのような触媒サイクル能を備えた触媒であれば特に制限されないが、好ましくは、1,2−ビス(ジフェニルホスフィノ)エタン配位子、1,3−ビス(ジフェニルホスフィノ)プロパン配位子、1,4−ビス(ジフェニルホスフィノ)ブタン配位子および1,1’−ビス(ジフェニルホスフィノ)フェロセン配位子等の2座の中性ホスフィン配位子、
トリn−ブチルホスフィン配位子、トリt−ブチルホスフィン配位子およびトリフェニルホスフィン配位子等の単座の中性ホスフィン配位子、
ベンゼン配位子、シクロブタジエン配位子およびシクロオクタジエン配位子等の中性π配位子、
メチル配位子、フェニル配位子、ヘキサメチルシクロペンタジエニル配位子、ペンタメチルシクロペンタジエニル配位子、アリル配位子、シクロペンタジエニル配位子、アルコキシ(メトキシおよびフェノキシ等)配位子、フッ素配位子、塩素配位子、臭素配位子、ヨウ素配位子、カルボキシラート(酢酸およびプロピオン酸等)配位子、アセチルアセトナート配位子、トリフルオロメタンスルフォネート配位子、1,3−ビス(2,6−ジ−イソプロピルフェニル)−4,5−ジヒドロイミダゾ−ル−2−リデン配位子、1,3−ビス(2,6−ジ−イソプロピルフェニル)イミダゾ−ル−2−リデン配位子および1,3−ビス(2,4,6−トリメチルフェニル)イミダゾール−2−リデン配位子等の一価のアニオン性配位子、
フタロシアニン配位子、ナフタロシアニン配位子、ポルフィリン配位子等の二価のアニオン性配位子、
アンモニア配位子、ピリジン配位子および3−クロロピリジン配位子等の単座の中性アミン配位子、
N,N,N’,N’−テトラメチルエチレンジアミン配位子、1,10−フェナンソロリン配位子および2,2`−ビピリジル配位子等の2座の中性アミン配位子、
アセトニトリル配位子およびベンゾニトリル配位子等の中性ニトリル配位子、
あるいは1,2−ビス(フェニルスルフィニル)エタン配位子等の中性スルフィニル配位子を配位子とし、パラジウム原子の価数が0価もしくは2価となるように配位構成されているパラジウム錯体である。そのようなパラジウム触媒(3)の例を以下に示す。
Figure 0005150007
Figure 0005150007
Figure 0005150007
Figure 0005150007
Figure 0005150007
Figure 0005150007
収率よく、立体規則性の高いポリ(置換チオフェン)を得るという観点からは、パラジウム触媒(3)は、より好ましくは(1,3−ジイソプロピルイミダゾール−2−リデン)(3−クロロピリジル)塩化パラジウム(II)(PEPPSITM-IPr触媒)(下記式参照)である。
Figure 0005150007
本発明のポリチオフェン重合用触媒において、以上説明したパラジウム触媒(3)は、1種単独でも2種以上が含まれていてもよい。
また、本発明のポリチオフェン重合用触媒において、前記パラジウム触媒(3)は、モノハロゲン化置換チオフェン(100モル%)に対して、通常0.01〜10モル%、好ましくは0.1〜5モル%、さらに好ましくは0.1〜1モル%となるように含まれている。このような範囲であると、前記ポリチオフェン重合用触媒を使用して、収率よく、立体規則性の高いポリチオフェンを得ることができる。
パラジウム触媒(3)は、公知の方法によって容易に合成が可能であり、また安価に市販もされている。
さらに、本発明のポリチオフェン重合用触媒は、パラジウム触媒(3)とともに、ホスフィン配位子などの、高活性のパラジウム触媒を与える配位子となる化合物を含み、ポリチオフェンの重合反応系中で、前記パラジウム触媒(3)と配位子化合物との間で配位子交換反応を起こし、より高活性のパラジウム触媒(3)を形成させてもよい。
このような高活性のパラジウム触媒(3)を与える配位子となる化合物としては、パラジウム触媒(3)について説明した配位子を形成する、2座の中性ホスフィン配位子化合物および単座の中性ホスフィン配位子化合物が挙げられる。これらの具体例としては、以下に示す化合物が挙げられる。
Figure 0005150007
Figure 0005150007
Figure 0005150007
Figure 0005150007
以上説明した、高活性のパラジウム触媒(3)を与える配位子化合物は、1種単独で使用しても、2種以上を組み合わせて使用してもよい。前記配位子化合物は、公知の方法によって合成が可能であり、また安価に市販もされている。
また、以上説明した配位子化合物は、本発明のポリチオフェン重合用触媒において、パラジウム触媒(3)(100モル%)に対し、通常5〜200モル%、好ましくは50〜150モル%の割合で含まれている。
以上説明したニッケル触媒(2)およびパラジウム触媒(3)は、本発明においてはほぼ等価であり、同等に使用することができる。すなわち、本発明のポリチオフェン重合用触媒は、ニッケル触媒(2)およびパラジウム触媒(3)のいずれか一方を含んでいてもよいし、両方を含んでいてもよい。後者の場合、ニッケル触媒(2)とパラジウム触媒(3)の含有割合は任意であり、その合計量が、モノハロゲン化置換チオフェン(100モル%)に対して、通常0.01〜10モル%、好ましくは0.1〜1モル%となるように含まれている。
<任意成分>
本発明のポリチオフェン重合用触媒には、例えば、以下に示す任意成分が含まれていてもよい。
(溶媒)
前記ポリチオフェン重合用触媒は溶媒を含有していてもよい。特に、ポリチオフェンの重合反応は一般的に重合溶媒中で行われるので、前記塩基(1)、ニッケル触媒(2)およびパラジウム触媒(3)は、溶媒に溶解した状態であると、前記重合溶媒中へ均一に分散しやすく、反応効率がよくなる。
前記溶媒としては、例えば、アルコール系溶媒、エーテル系溶媒、ハロゲン化炭化水素系溶媒、芳香族系溶媒、ニトリル系溶媒、スルホキシド系溶媒が挙げられる。これらの溶媒は、1種単独で使用しても2種以上を組み合わせて使用してもよい。これらのなかでも、溶媒としては、活性モノマーの安定性と、活性モノマーの触媒上への酸化的付加反応に対する活性とを両立する観点から、エーテル系溶媒であるテトラヒドロフラン(THF)が好ましい。
(ハロゲントラップ剤)
さらに、本発明のポリチオフェン重合用触媒は、原料モノマー(モノハロゲン化置換チオフェン)のハロゲンを捕捉することにより、反応を促進させる目的で、ハロゲントラップ剤を含有していてもよい。
前記ハロゲントラップ剤の例としては、トリエチルアミンおよびピリジン等の第三級アミン、炭酸ナトリウム、炭酸カリウムおよび炭酸セシウム等のアルカリ金属塩が挙げられる。
ハロゲントラップ剤は、1種単独で使用しても、2種以上を組み合わせて使用してもよい。
以上説明したハロゲントラップ剤は、ポリチオフェンの合成原料たるモノハロゲン化置換チオフェン(100モル%)に対し、通常10〜200モル%、好ましくは50〜100モル%となるような量で含まれている。
[ポリ(置換チオフェン)の製造方法]
以上説明した本発明のポリチオフェン重合用触媒は、上記で説明したように、まず塩基(1)がモノハロゲン化置換チオフェンのプロトンを脱離させて活性モノマーを形成させ、そしてニッケル触媒(2)および/またはパラジウム触媒(3)が、これら活性モノマーのハロゲン結合部位および脱プロトン化部位のC−Cカップリング反応を促進し、ポリ(置換チオフェン)を形成させると考えられる。
このような作用機構から、本発明のポリチオフェン重合用触媒は、非対称な構造のモノハロゲン化3−置換チオフェンを反応原料として、立体規則性の高いポリ(3−置換チオフェン)を製造するのに特に適している。そしてこのポリ(3−置換チオフェン)は、[背景技術]で説明したように、ポリチオフェンの中でも、電気部品用途の材料として特に有望であると考えられている化合物である。以下では、このポリ(3−置換チオフェン)の製造方法を、本発明のポリ(置換チオフェン)の製造方法の一例として挙げて説明する。
<反応原料>
本発明のポリ(置換チオフェン)の製造方法における反応原料は、モノハロゲン化置換チオフェンである。反応原料として好適なモノハロゲン化置換チオフェンは、ポリ(3−置換チオフェン)を与えることができるモノハロゲン化3−置換チオフェンであり、特に好適なのは、下記一般式(II)で表される2−ハロゲン化3−置換チオフェンが特に好適である。
Figure 0005150007
上記式において、Rは直鎖もしくは分岐の炭素原子数1〜12のアルキル基、直鎖もしくは分岐の炭素原子数1〜12のアルコキシ基、直鎖もしくは分岐の炭素原子数2〜12のアルケニル基、直鎖もしくは分岐の炭素原子数2〜12のアルキニル基、または炭素原子数3〜12のシクロアルキル基であり、Xはハロゲン原子である。
電気部品用途の材料として特に好適なポリ(3−置換チオフェン)を製造するという観点からは、Rはヘキシル基であることが好ましく、Xは臭素原子であることが好ましい。
このような2−ハロゲン化3−置換チオフェンは、公知の方法によって容易に合成することができ、また安価に市販もされている。前記方法の例として、3−置換チオフェン(これは市販されており、容易に入手可能である)を、シクロペンチルメチルエーテル、ジエチルエーテル、THF、ジブチルエーテル、酢酸、蟻酸、プロピオン酸等の溶媒の存在下、N−ハロゲノスクシンイミドなどのハロゲン化剤と反応させることによって、2−ハロゲン化3−置換チオフェンを得る方法が挙げられる。
本発明では、従来技術で使用されているような、チオフェンの3位以外に、2位及び5位の両方に置換基(主にハロゲン基)を有する、製造プロセスが煩雑であるまたは高価な原料ではなく、上記のような、合成が容易であり、安価であるモノハロゲン化置換チオフェン、特に好ましくは2−ハロゲン化3−置換チオフェンを使用するので、プロセス数及びアトムエコノミーの観点から、工業的に非常に有利である。
<反応>
(活性モノマーの形成)
まず、モノハロゲン化置換チオフェン、好ましくは2−ハロゲン化3−置換チオフェンを、本発明のポリチオフェン重合用触媒の構成成分である塩基(1)と反応させる。これにより、立体障害およびチオフェンを構成する硫黄原子の電子吸引性の関係から、前記チオフェンの5位のプロトンが引き抜かれ、活性モノマーが形成される。この際、塩基(1)が、例えば上記一般式(I)で表される化合物である場合には、R12NHと、下記式(A)で表される化合物(通常のグリニャール試薬)およびMX2または下記式(B)で表される化合物とが生じ、変異原性物質である臭化メチル等のハロゲン化メチル化合物は発生しない。
Figure 0005150007
そのため、本発明のポリ(置換チオフェン)の製造方法は、従来法よりも環境負荷が少なく、また変異原性物質を処理するための設備を設ける必要もなく、コストの観点から優れている。
この反応は、常圧において行うことができる。また反応温度は通常5〜100℃、好ましくは10〜60℃であり、非特許文献1に記載の方法のように、温度を低温領域に制御する必要もなく、またそれほど高くもないので、反応温度の制御が容易であり、穏やかに反応を進行させることができる。さらに、反応時間は通常0.5〜72時間であり、好ましくは1〜48時間である。
また、当該反応は、通常は反応溶媒中で行われ、前記反応溶媒としては、例えば、エチレングリコール等のアルコール系溶媒、シクロペンチルメチルエーテル、テトラヒドロフラン(THF)等のエーテル系溶媒、クロロベンゼン、ジクロロベンゼン等のハロゲン化炭化水素系溶媒、ベンゼン、キシレン等の芳香族系溶媒、ベンゾニトリル等のニトリル系溶媒、ジメチルスルホキシド、ジブチルスルホキシド等のスルホキシド系溶媒を使用することができる。これらの中でも、商業的な入手のしやすさ及び工業的スケールでの生産における排出物(廃液)としての低環境負荷の観点から、テトラヒドロフランが好ましい。
また前記反応溶媒は、次に説明する重合反応(当該反応溶媒は、重合溶媒として続けて使用することができる)の進行に伴う重合溶液の著しい攪拌効率の低下を抑制することと、重合進行に必要な反応剤(モノハロゲン化置換チオフェン、それから生じた活性モノマーおよび触媒)同士の衝突頻度を著しく損なわないことを両立する観点から、好ましくは反応溶媒中のモノハロゲン化置換チオフェンの濃度が10-3M〜1Mとなるような量、より好ましくは10-2M〜0.5Mとなるような量で使用される。なお、本発明のポリチオフェン重合用触媒が溶媒を含んでいる場合には、当該溶媒および前記反応溶媒の合計を全体として、モノハロゲン化置換チオフェンの濃度が前記の範囲となるような量で、前記反応溶媒が使用される。
(重合反応)
次に、活性モノマーが形成された反応系に、本発明のポリチオフェン重合用触媒の構成成分であるニッケル触媒(2)および/またはパラジウム触媒(3)(あるいはこれらとともに上記の高活性の触媒を与える配位子となる化合物)を添加することで、活性モノマーどうしのC−Cカップリング(重合)反応が促進され、ポリマーが形成される。この際に2,5'(頭−尾)連結でモノマーが形成されていくことは上述の通りである。
このように本発明のポリ(置換チオフェン)の製造方法では、特に好ましくは反応原料として2−ハロゲン化3−置換チオフェンをまず塩基(1)と反応させた後、別段階でニッケル触媒(2)および/またはパラジウム触媒(3)(あるいはこれらとともに上記の配位子となる化合物)を添加する。従って、本発明のポリチオフェン重合用触媒は、前記塩基(1)と、ニッケル触媒(2)および/またはパラジウム触媒(3)(あるいはこれらとともに上記の配位子となる化合物)とを、それぞれを個別に使用できるように、例えば個別の容器に分けるなどして調製される。
前記重合反応は、常圧で行うことができる。また反応温度は通常5〜100℃、好ましくは10〜60℃である。すなわち、上記の活性モノマーの形成反応と併せて、本発明のポリ(置換チオフェン)の製造方法は、温度を低温領域に制御する必要もなく、穏やかで制御が容易な反応温度で全工程にわたって実施することができる。さらに、この重合反応の反応時間は通常0.5〜72時間であり、好ましくは1〜48時間である。
さらに、前述の通り、一般的に前記重合反応は重合溶媒中で行われる。重合溶媒は、反応原料(モノハロゲン化置換チオフェン)を溶解し、また前記原料や本発明のポリチオフェン重合用触媒中の触媒成分と反応しないものであれば、特に限定されない。その具体例としては、上記の活性モノマーの形成反応における反応溶媒として挙げたものと同様のものを挙げることができる。反応溶媒の使用量についても同様である。
(エンドキャッピング)
ポリマーの重合反応が終わった状態では、ポリマーの末端には、ハロゲン原子および脱プロトン化された活性部位が残存している。これらをこのまま残しておくと、電荷キャリアトラッピングが起こり、得られるポリ(置換チオフェン)の導電性が不充分となることがある。
そこで、このような不都合をなくすため、前記末端に残存しているハロゲン原子および活性部位を取り除くため、エンドキャッピングをすることが好ましい。
具体的には、重合反応の終了時において、脂肪族グリニャール試薬、ジアルキルグリニャール試薬または反応性マグネシウムを添加して、残存しているハロゲン原子および活性部位をグリニャール基に転換する。続いて、例えば、過剰なω−ハロアルカンを添加することで、アルキル末端基を得ることができる。
また、グリニャール試薬は一般にRpMgXqなどで示されるが(Rpはアルキル基などであり、Xqはハロゲン原子である)、Rpがヒドロキシルもしくはアミン基またはこれらの保護された形態などの反応性官能基であれば、そのような反応性官能基をポリ(3−置換チオフェン)の末端に導入して、エンドキャッピングをすることができる。なお、グリニャール試薬の代わりに有機リチウム試薬を用い、その後ω−ハロアルカンを添加することにより、エンドキャッピングを行うこともできる。
エンドキャッピングは、重合反応混合物からポリ(3−置換チオフェン)を回収する前又は後、あるいはその精製の前又は後など、任意の段階で行うことができる。
その他、エンドキャッピングの詳細な方法は、特表2007−501300号公報に開示されている。
<精製工程>
以上の反応の終了後、反応溶液に水を投入して反応を停止させる。次に、過剰のメタノール等のポリマーに対する貧溶媒へ前記の反応溶液を投入することでポリマーを析出させる。これを濾別し、濾物を回収することによりポリマーが得られる。
<ポリ(置換チオフェン)>
以上説明した本発明のポリ(置換チオフェン)の製造方法により、収率よく、立体規則性の高いポリ(置換チオフェン)、特に好ましくはポリ(3−置換チオフェン)を得ることができる。
具体的には、前記収率は通常50〜100%であり、好ましくは90〜100%であり、従来のポリ(3−置換チオフェン)の製造方法よりも優れている。
立体規則性(regioregularity)は、通常85〜100%であり、好ましくは95〜100%と非常に高い。なお、立体規則性は、1H−NMRスペクトル測定による算出が可能であり、その算出方法(評価法)としては、大きく二つの方法が挙げられる。
一つの方法としては、ポリ(3−置換チオフェン)においてチオフェン環の4位のプロトンに由来するシグナルを利用する方法で、立体規則性の2,5'(頭−尾)連結に由来するチオフェン環の4位のプロトンに相当するシグナル(A)と、立体不規則性の2,2'(頭−頭)連結に由来するチオフェン環の4位のプロトンに相当するシグナル(B)、および5,5'(尾−尾)連結に由来するチオフェン環の4位のプロトンに相当するシグナル(C)とを使用する。前記シグナル(A)とポリマー中におけるチオフェン環の4位の総プロトンに相当するシグナル(A+B+C)との積分比によって、立体規則性を算定することができる。
もう一つの方法としては、ポリ(3−置換チオフェン)においてチオフェン環の3位の置換基にαメチレン基を有する場合に限られるが、αメチレン基のプロトンに由来するシグナルを利用する方法で、立体規則性の2,5'(頭−尾)連結に由来するチオフェン環の3位置換基のαメチレンプロトンに相当するシグナル(A’)と、立体不規則性の2,2’(頭−頭)連結に由来するチオフェン環の3位置換基のαメチレンプロトンに相当するシグナル(B')、および5,5'(尾−尾)連結に由来するチオフェン環の3位置換基のαメチレンプロトンに相当するシグナル(C’)とを使用する。前記シグナル(A’)とポリマー中におけるチオフェン環の3位置換基のαメチレンの総プロトンに相当するシグナル(A'+B'+C')との積分比によって、立体規則性を算定することができる。
また、本発明のポリ(置換チオフェン)の製造方法により製造されたポリ(置換チオフェン)の数平均分子量は、通常3,000〜1,000,000であり、好ましくは6,000〜500,000であり、電子部品等にした際に充分な強度を発揮できるものである。なお、本明細書において数平均分子量とは、GPCにより測定した標準ポリスチレン換算の数平均分子量である。重量平均分子量についても同様である。
前記ポリ(置換チオフェン)の数平均分子量(および重量平均分子量)は、本発明のポリチオフェン重合用触媒中のニッケル触媒(2)および/またはパラジウム触媒(3)の種類と使用量を変更することにより、調整することができる。
具体的には、以下の通りである。触媒の種類(化学構造の違い)により、重合初期に生成する重合開始活性種の生成率が変化する。触媒の種類による重合開始活性種の生成率は、触媒を構成する配位子の立体構造、電子受容性および電子供与性等の電子構造の違いにより、また触媒分子トータルでの立体構造と中心ニッケル原子もしくはパラジウム原子における電子受容性および電子供与性の強さの違いとにより影響を受けると考えられる。重合開始活性種の生成率は、触媒分子を構成する配位子の選定により変わり、さらに活性モノマーの活性の違いからも影響を受けるために一義的には決まらないが、重合開始活性種の生成率が高い場合は、ポリマーとして成長する分子の数が多くなるため、個々のポリマーの低分子量化に導かれ、低い場合は反対に前記ポリマーの高分子量化に導かれると考えられる。
同一の化学構造をもつ触媒を使用する場合は、重合開始活性種の生成率は同じであるため、得られるポリマーの分子量はその触媒添加量に依存し、添加量が多い場合は、重合開始活性種が多くなるため、前記ポリマーの低分子量化に導かれ、添加量が少ない場合は反対に高分子量化に導かれると考えられる。
前記ポリ(置換チオフェン)の分子量分布は、通常1.0〜5.0であり、好ましくは1.0〜3.0であり、従来のポリ(3−置換チオフェン)の製造方法により得られるポリ(3−置換チオフェン)と同等程度の狭い分子量分布を有している。それゆえ本発明の製造方法により得られるポリ(置換チオフェン)、特に好ましくはポリ(3−置換チオフェン)は、従来法により製造されるものと同程度の優れた自己集積性を有しており、そのため優れた導電性を示し、電気部品、具体的には有機薄膜太陽電池、有機薄膜トランジスタ、光電変換材料、有機EL材料、ダイオード、トリオード、電気光学的ディスプレイ、反射膜、非線形光学材料などの用途に好適である。
このような用途に用いる場合、前記ポリ(置換チオフェン)は、増感剤、安定化剤、阻害剤、鎖−転移剤、共−反応モノマーまたはオリゴマー、表面活性化合物、潤滑剤、湿潤剤、分散剤、疎水性化剤、接着剤、流れ改善剤、希釈剤、着色剤、染料、色素、またはドーパントのような、1つ以上のその他の適切な成分を含んでもよい。これらの成分は、たとえば、ポリ(置換チオフェン)を適切な有機溶媒中に溶解した後で、この得られた溶液中に添加し、次いで、前記有機溶媒を蒸発することによって添加され得る。
なお、ポリ(置換チオフェン)の分子量分布は、モノハロゲン化置換チオフェンを脱プロトン化して得られる活性モノマーの供給速度と、ニッケル触媒(2)および/またはパラジウム触媒(3)における酸化的付加および還元的脱離とにより調節することができる。
<任意工程>
エンドキャッピングの説明で述べたように、本発明のポリ(置換チオフェン)の製造方法では、上記の活性モノマーの形成工程およびポリ(置換チオフェン)の形成工程の他に、例えば製造されたポリ(置換チオフェン)の精製工程を実施してもよい。具体的には、前述の精製工程の他、そののちに、さらに触媒残渣を除去する工程や、または低分子量体を除去する目的で、回収したポリマーをさらに、ポリマーが溶解する有機溶媒で、且つ水への分配係数が低い有機溶媒と、水とを用いて分液を行い、有機溶媒層を回収し、脱水した後、有機溶媒を留去して得られる固体を乾燥させる工程を実施してもよい。
また、前記と同じ目的で、回収したポリマーをメタノール、ヘキサン等のポリマーに対する貧溶媒でソックスレー抽出を行い、抽出物を除去した後、ポリマーに対して溶解性を示す良溶媒でソックスレー抽出を行い、抽出液を回収し、乾燥させる工程を実施してもよい。
またさらに、上記と同じ目的で、回収したポリマーをさらに、ポリマーが溶解可能であり、且つTLC(薄層クロマトグラフィー)により展開可能な溶媒を展開溶媒に用いてカラムクロマトグラフィーを行って、精製する工程を実施してもよい。
以下実施例により本発明をより詳細に説明するが、本発明はこれらに限定されない。
[実施例1〜8]
<塩基(1)の調製>
窒素置換した50mLシュレンク管にiPrMgCl・LiCl錯体THF溶液(1.3M)を40mL(52mmol)投入し、室温(25℃)で攪拌を開始した。さらに、2,2,6,6−テトラメチルピペリジン10.6mL(62.4mmol)を20分間かけて前記溶液に滴下し、さらに室温で1時間攪拌を行い、塩基THF溶液(1.0M)を調製した。
<2−ブロモ−3−ヘキシルチオフェンの合成>
500mLシュレンク管に3−ヘキシルチオフェン80g(475mmol)、THF450mLを投入した後、0℃に冷却し、攪拌を行った。さらに、得られた溶液にN−ブロモスクシンイミドを93g(523mmol)投入し、引き続き、3時間攪拌を行った。
反応終了後、溶媒を留去した後、反応残渣を1Lフラスコへ移し、ヘキサン(300mL)、水(500mL)を投入し、分液を行い、ヘキサン層を分離し、水層を再度、ヘキサン抽出(150mL)した。合わせたヘキサン層を水(200mL)で2回洗浄した後、無水硫酸マグネシウムを用いて乾燥を行い、溶媒を留去して淡黄色オイルとして粗生成物を得た。さらに粗生成物を減圧蒸留(75℃、−0.4mmHg)し、無色透明オイルとして2−ブロモ−3−ヘキシルチオフェンを得た(130g、収率90%、GC−MS純度99%)。
<P3HT(ポリ3−ヘキシルチオフェン)の合成>
窒素置換した20mLシュレンク管に、前記で調製した塩基を投入し、室温(25℃)下、攪拌を行った。さらに、2−ブロモ−3−ヘキシルチオフェンを、該チオフェン1当量に対する前記塩基の量が1.2当量となるだけの量、THFに溶解させ、30分間かけて塩基溶液への滴下を行った後(滴下後の反応溶液中の2−ブロモ−3−ヘキシルチオフェンの濃度を下記表1の「THF(M)」の列に示す)、引き続き1時間攪拌を行った。その後、表1に示すNi触媒および/またはPd触媒を、活性モノマー(2−ブロモ−3−ヘキシルチオフェンから少過剰の塩基の添加により、100%活性モノマーへと変換されたものとした)に対し下記表1に示す量(0.5〜1.0mol%)投入して攪拌を行った。表1に示す時間反応させた後、水5mLを投入して反応終了とした。
反応溶液をメタノール(100mL)へ投入し、ポリマーを析出させ、減圧濾過により濾別し、乾燥した後、乾燥固体として得た。得られた固体を最小量のクロロホルムに溶解させ、カラムクロマトグラフィー(展開溶媒クロロホルム)により、濾過を行い、得られたフラクションから溶媒を留去し、真空乾燥することで、収率:80%〜>99%でポリマー固体を得た。
得られたポリマーの分子量(重量平均分子量Mwおよび数平均分子量Mn)の測定は、展開溶媒にクロロホルムを使用し、カラムに東ソー製TSKgel GMHHR-H とTSK-GEL G2500HHRを使用し、展開速度1mL/min、標準ポリスチレン換算でGPCにより行った。
得られたポリマーの立体規則性の評価は、1H−NMRスペクトルからポリ(3−置換チオフェン)において3位の置換基のαメチレン基のプロトンに由来するシグナルを利用する方法で行い、1H−NMRスペクトルの測定には日本電子製JNM−ECX500を使用した。
以上の重合反応を下記反応式にまとめる。また使用した触媒や反応温度、得られたポリマーの収率、評価結果等を下記表1にまとめる。さらに、実施例3で得られたポリ(3−ヘキシルチオフェン)の、重クロロホルム溶媒中で測定して得られた1H−NMRスペクトルを図1に示す。なお、下記反応式において、n−Hexはn−ヘキシル基を表す。
Figure 0005150007
Figure 0005150007
Figure 0005150007
<比較例1>
上記P3HTの合成に使用する塩基の調製において、2,2,6,6−テトラメチルピペリジン10.6mL(62.4mmol)をピリジン(3級アミン)4.96g(62.4mmol)に代えて調製した塩基を用いて実施例3のP3HTの合成を行ったが、反応溶液の着色はみられず、反応後、メタノール(200mL)を投入したが、析出物は見られなかった。
<比較例2>
上記P3HTの合成の実施例3のニッケル触媒NiCl2(dppp)を白金触媒Pt(Ph3P)412.4mg(0.5mol%)に代えて合成を行ったが、反応溶液の着色はみられず、反応後、メタノール(200mL)を投入したが、析出物は見られなかった。
<比較例3>
上記P3HTの合成の実施例3のニッケル触媒NiCl2(dppp)を鉄触媒フェロセン1.9mg(0.5mol%)に代えて合成を行ったが、反応溶液の着色はみられず、反応後、メタノール(200mL)を投入したが、析出物は見られなかった。
<比較例4>
上記P3HTの合成の実施例3のニッケル触媒NiCl2(dppp)をルテニウム触媒ルテノセン2.3mg(0.5mol%)に代えて合成を行ったが、反応溶液の着色はみられず、反応後、メタノール(200mL)を投入したが、析出物は見られなかった。
<比較例5>
上記P3HTの合成の実施例3のニッケル触媒NiCl2(dppp)をチタン触媒チタノセンジクロリド2.5mg(0.5mol%)に代えて合成を行ったが、反応溶液の着色はみられず、反応後、メタノール(200mL)を投入したが、析出物は見られなかった。

Claims (17)

  1. 下記(1)と、(2)および/または(3)とを含むポリチオフェン重合用触媒:
    (1)第1もしくは2級アミンと、グリニャール試薬・ハロゲン化アルカリ金属錯体とを反応させて得られる塩基
    (2)ニッケル触媒
    (3)パラジウム触媒。
  2. 前記塩基(1)が、下記一般式(I)で表される化合物であることを特徴とする請求項1に記載のポリチオフェン重合用触媒:
    Figure 0005150007
    (式(I)において、R1およびR2は、それぞれ独立に、水素原子、あるいは炭素原子数6〜12のアリール基、5〜6員環のヘテロアリール基、直鎖もしくは分岐の炭素原子数1〜10のアルキル基、炭素原子数3〜6のシクロアルキル基、直鎖もしくは分岐の炭素原子数2〜10のアルケニル基、直鎖もしくは分岐の炭素原子数2〜10のアルキニル基またはそれらのシリル誘導体であり、
    前記アリール基、ヘテロアリール基、アルキル基、シクロアルキル基、アルケニル基、アルキニル基またはそのシリル誘導体は置換されていてもよく、
    1およびR2は、高分子構造を形成してもよく、また共に結合して環構造を形成してもよく、R1およびR2の少なくとも一方は水素原子ではなく、
    1およびX2は、それぞれ独立にハロゲン原子であり、
    Mはアルカリ金属原子である。)。
  3. 前記式(I)において、R1およびR2が、それぞれ独立にメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、t−ブチル基、ペンチル基、ネオペンチル基、シクロブチル基、シクロペンチル基、シクロペンタジエニル基、シクロヘキシル基、フェニル基、ビフェニル基、チオフェニル基、ピリジル基、またはこれらのシリル誘導体であり、
    あるいは共に結合して、ピペリジニル基、2,2,6,6−テトラメチルピペリジニル基、ピロリドニル基、ピロリル基、ピラゾリル基、イミダゾリル基、インドリル基、プリニル基またはカルバゾリル基を形成し、
    1およびX2が、それぞれ独立に塩素原子、臭素原子またはヨウ素原子であり、
    Mがリチウム原子であることを特徴とする請求項2に記載のポリチオフェン重合用触媒。
  4. 前記ニッケル触媒(2)が、2座の中性ホスフィン配位子、単座の中性ホスフィン配位子、中性π配位子、中性アミン配位子、一価のアニオン性配位子および二価のアニオン性配位子からなる群より選ばれる少なくとも1種の配位子を有し、ニッケルの価数が0価もしくは2価となるように配位構成されているニッケル錯体であることを特徴とする請求項1〜3のいずれかに記載のポリチオフェン重合用触媒。
  5. 前記パラジウム触媒(3)が、2座の中性ホスフィン配位子、単座の中性ホスフィン配位子、中性π配位子、一価のアニオン性配位子、二価のアニオン性配位子、単座の中性アミン配位子、2座の中性アミン配位子、中性ニトリル配位子および中性スルフィニル配位子からなる群より選ばれる少なくとも1種の配位子を有し、パラジウムの価数が0価もしくは2価となるように配位構成されているパラジウム錯体であることを特徴とする請求項1〜4のいずれかに記載のポリチオフェン重合用触媒。
  6. 前記ニッケル触媒(2)において、
    前記2座の中性ホスフィン配位子が、1,2−ビス(ジフェニルホスフィノ)エタン配位子、1,3−ビス(ジフェニルホスフィノ)プロパン配位子、1,4−ビス(ジフェニルホスフィノ)ブタン配位子または1,1’−ビス(ジフェニルホスフィノ)フェロセン配位子であり、前記単座の中性ホスフィン配位子が、トリn−ブチルホスフィン配位子、トリt−ブチルホスフィン配位子またはトリフェニルホスフィン配位子であり、
    前記中性π配位子が、ベンゼン配位子、シクロブタジエン配位子またはシクロオクタジエン配位子であり、
    前記中性アミン配位子がアンモニア配位子、ピリジン配位子または3−クロロピリジン配位子であり、
    前記一価のアニオン性配位子がヘキサメチルシクロペンタジエニル配位子、ペンタメチルシクロペンタジエニル配位子、シクロペンタジエニル配位子、フッ素配位子、塩素配位子、臭素配位子、ヨウ素配位子、カルボキシラート配位子、アセチルアセトナート配位子、トリフルオロメタンスルフォネート配位子または1,3−ビス(2,6−ジ−イソプロピルフェニル)−4,5−ジヒドロイミダゾ−ル−2−リデン配位子であり、
    前記二価のアニオン性配位子がフタロシアニン配位子、ナフタロシアニン配位子またはポルフィリン配位子であることを特徴とする請求項4に記載のポリチオフェン重合用触媒。
  7. 前記パラジウム触媒(3)において、
    前記2座の中性ホスフィン配位子が1,2−ビス(ジフェニルホスフィノ)エタン配位子、1,3−ビス(ジフェニルホスフィノ)プロパン配位子、1,4−ビス(ジフェニルホスフィノ)ブタン配位子または1,1’−ビス(ジフェニルホスフィノ)フェロセン配位子であり、
    前記単座の中性ホスフィン配位子がトリn−ブチルホスフィン配位子、トリt−ブチルホスフィン配位子またはトリフェニルホスフィン配位子であり、
    前記中性π配位子がベンゼン配位子、シクロブタジエン配位子またはシクロオクタジエン配位子であり、
    前記一価のアニオン性配位子がメチル配位子、フェニル配位子、ヘキサメチルシクロペンタジエニル配位子、ペンタメチルシクロペンタジエニル配位子、アリル配位子、シクロペンタジエニル配位子、アルコキシ配位子、フッ素配位子、塩素配位子、臭素配位子、ヨウ素配位子、カルボキシラート配位子、アセチルアセトナート配位子、トリフルオロメタンスルフォネート配位子、1,3−ビス(2,6−ジ−イソプロピルフェニル)−4,5−ジヒドロイミダゾ−ル−2−リデン配位子、1,3−ビス(2,6−ジ−イソプロピルフェニル)イミダゾ−ル−2−リデン配位子または1,3−ビス(2,4,6−トリメチルフェニル)イミダゾール−2−リデン配位子であり、
    前記二価のアニオン性配位子がフタロシアニン配位子、ナフタロシアニン配位子またはポルフィリン配位子であり、
    前記単座の中性アミン配位子がアンモニア配位子、ピリジン配位子または3−クロロピリジン配位子であり、
    前記2座の中性アミン配位子がN,N,N’,N’−テトラメチルエチレンジアミン配位子、1,10−フェナンソロリン配位子または2,2’−ビピリジル配位子であり、
    前記中性ニトリル配位子がアセトニトリル配位子またはベンゾニトリル配位子であり、
    前記中性スルフィニル配位子が1,2−ビス(フェニルスルフィニル)エタン配位子であることを特徴とする請求項5に記載のポリチオフェン重合用触媒。
  8. 下記(1)と、(2)および/または(3)とを含むポリチオフェン重合用触媒の存在下、モノハロゲン化置換チオフェンを重合することを特徴とする、ポリ(置換チオフェン)の製造方法:
    (1)第1もしくは2級アミンと、グリニャール試薬・ハロゲン化アルカリ金属錯体とを反応させて得られる塩基
    (2)ニッケル触媒
    (3)パラジウム触媒。
  9. 前記塩基(1)が、下記一般式(I)で表される化合物であることを特徴とする請求項8に記載のポリ(置換チオフェン)の製造方法:
    Figure 0005150007
    (式(I)において、R1およびR2はそれぞれ独立に、水素原子、あるいは炭素原子数6〜12のアリール基、5〜6員環のヘテロアリール基、直鎖もしくは分岐の炭素原子数1〜10のアルキル基、炭素原子数3〜6のシクロアルキル基、直鎖もしくは分岐の炭素原子数2〜10のアルケニル基、直鎖もしくは分岐の炭素原子数2〜10のアルキニル基またはそれらのシリル誘導体であり、
    前記アリール、ヘテロアリール、アルキル、シクロアルキル、アルケニル、アルキニルまたはそのシリル誘導体は置換されていてもよく、
    1およびR2は、高分子構造を形成してもよく、また共に結合して環構造を形成してもよく、R1およびR2の少なくとも一方は水素原子ではなく、
    1およびX2はそれぞれ独立にハロゲン原子であり、
    Mはアルカリ金属原子である。)。
  10. 前記モノハロゲン化置換チオフェンが、モノハロゲン化3−置換チオフェンであることを特徴とする請求項8または9に記載のポリ(置換チオフェン)の製造方法。
  11. モノハロゲン化置換チオフェンと前記塩基(1)とを反応させ、次いで当該反応により生成した活性モノマーを、前記ニッケル触媒(2)および/またはパラジウム触媒(3)の存在下に重合させることを特徴とする請求項8〜10のいずれかに記載のポリ(置換チオフェン)の製造方法。
  12. 前記式(I)において、R1およびR2がそれぞれ独立にメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、t−ブチル基、ペンチル基、ネオペンチル基、シクロブチル基、シクロペンチル基、シクロペンタジエニル基、シクロヘキシル基、フェニル基、ビフェニル基、チオフェニル基、ピリジル基、またはこれらのシリル誘導体であり、
    あるいは共に結合して、ピペリジニル基、2,2,6,6−テトラメチルピペリジニル基、ピロリドニル基、ピロリル基、ピラゾリル基、イミダゾリル基、インドリル基、プリニル基またはカルバゾリル基を形成する基または誘導体であり、
    1およびX2がそれぞれ独立に塩素原子、臭素原子またはヨウ素原子であり、
    Mがリチウム原子であることを特徴とする請求項9〜11のいずれかに記載のポリ(置換チオフェン)の製造方法。
  13. 前記モノハロゲン化置換チオフェンが、下記一般式(II)で表されることを特徴とする請求項8〜12のいずれかに記載のポリ(置換チオフェン)の製造方法:
    Figure 0005150007
    (式(II)において、Rは直鎖もしくは分岐の炭素原子数1〜12のアルキル基、直鎖もしくは分岐の炭素原子数1〜12のアルコキシ基、直鎖もしくは分岐の炭素原子数2〜12のアルケニル基、直鎖もしくは分岐の炭素原子数2〜12のアルキニル基、または炭素原子数3〜12のシクロアルキル基であり、Xはハロゲン原子である。)。
  14. 前記ニッケル触媒(2)が、2座の中性ホスフィン配位子、単座の中性ホスフィン配位子、中性π配位子、中性アミン配位子、一価のアニオン性配位子および二価の中性配位子からなる群より選ばれる少なくとも1種の配位子を有し、ニッケルの価数が0価もしくは2価となるように配位構成されているニッケル錯体であることを特徴とする請求項8〜13のいずれかに記載のポリ(置換チオフェン)の製造方法。
  15. 前記パラジウム触媒(3)が、2座の中性ホスフィン配位子、単座の中性ホスフィン配位子、中性π配位子、一価のアニオン性配位子、二価のアニオン性配位子、単座の中性アミン配位子、2座の中性アミン配位子、中性ニトリル配位子および中性スルフィニル配位子からなる群より選ばれる少なくとも1種の配位子を有し、パラジウムの価数が0価もしくは2価となるように配位構成されているパラジウム錯体であることを特徴とする請求項8〜14のいずれかに記載のポリ(置換チオフェン)の製造方法。
  16. 前記ニッケル触媒(2)において、
    前記2座の中性ホスフィン配位子が1,2−ビス(ジフェニルホスフィノ)エタン配位子、1,3−ビス(ジフェニルホスフィノ)プロパン配位子、1,4−ビス(ジフェニルホスフィノ)ブタン配位子または1,1’−ビス(ジフェニルホスフィノ)フェロセン配位子であり、
    前記単座の中性ホスフィン配位子がトリn−ブチルホスフィン配位子、トリt−ブチルホスフィン配位子またはトリフェニルホスフィン配位子であり、
    前記中性π配位子がベンゼン配位子、シクロブタジエン配位子またはシクロオクタジエン配位子であり、
    前記中性アミン配位子がアンモニア配位子、ピリジン配位子または3−クロロピリジン配位子であり、
    前記一価のアニオン性配位子がヘキサメチルシクロペンタジエニル配位子、ペンタメチルシクロペンタジエニル配位子、シクロペンタジエニル配位子、フッ素配位子、塩素配位子、臭素配位子、ヨウ素配位子、カルボキシラート配位子、アセチルアセトナート配位子、トリフルオロメタンスルフォネート配位子または1,3−ビス(2,6−ジ−イソプロピルフェニル)−4,5−ジヒドロイミダゾ−ル−2−リデン配位子であり、
    前記二価のアニオン性配位子がフタロシアニン配位子、ナフタロシアニン配位子またはポルフィリン配位子であることを特徴とする請求項14に記載のポリ(置換チオフェン)の製造方法。
  17. 前記パラジウム触媒(3)において、
    前記2座の中性ホスフィン配位子が1,2−ビス(ジフェニルホスフィノ)エタン配位子、1,3−ビス(ジフェニルホスフィノ)プロパン配位子、1,4−ビス(ジフェニルホスフィノ)ブタン配位子または1,1’−ビス(ジフェニルホスフィノ)フェロセン配位子であり、
    前記単座の中性ホスフィン配位子がトリn−ブチルホスフィン配位子、トリt−ブチルホスフィン配位子またはトリフェニルホスフィン配位子であり、
    前記中性π配位子がベンゼン配位子、シクロブタジエン配位子またはシクロオクタジエン配位子であり、
    前記一価のアニオン性配位子がメチル配位子、フェニル配位子、ヘキサメチルシクロペンタジエニル配位子、ペンタメチルシクロペンタジエニル配位子、アリル配位子、シクロペンタジエニル配位子、アルコキシ配位子、フッ素配位子、塩素配位子、臭素配位子、ヨウ素配位子、カルボキシラート配位子、アセチルアセトナート配位子、トリフルオロメタンスルフォネート配位子、1,3−ビス(2,6−ジ−イソプロピルフェニル)―4,5−ジヒドロイミダゾ−ル−2−リデン配位子、1,3−ビス(2,6−ジ−イソプロピルフェニル)イミダゾ−ル−2−リデン配位子または1,3−ビス(2,4,6−トリメチルフェニル)イミダゾール−2−リデン配位子であり、
    前記二価のアニオン性配位子がフタロシアニン配位子、ナフタロシアニン配位子またはポルフィリン配位子であり、
    前記単座の中性アミン配位子がアンモニア配位子、ピリジン配位子または3−クロロピリジン配位子であり、
    前記2座の中性アミン配位子がN,N,N’,N’−テトラメチルエチレンジアミン配位子、1,10−フェナンソロリン配位子または2,2’−ビピリジル配位子であり、
    前記中性ニトリル配位子がアセトニトリル配位子またはベンゾニトリル配位子であり、
    前記中性スルフィニル配位子が1,2−ビス(フェニルスルフィニル)エタン配位子であることを特徴とする請求項15に記載のポリ(置換チオフェン)の製造方法。
JP2012526491A 2010-07-26 2011-07-25 ポリチオフェン重合用触媒およびポリ(置換チオフェン)の製造方法 Expired - Fee Related JP5150007B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012526491A JP5150007B2 (ja) 2010-07-26 2011-07-25 ポリチオフェン重合用触媒およびポリ(置換チオフェン)の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010167467 2010-07-26
JP2010167467 2010-07-26
JP2012526491A JP5150007B2 (ja) 2010-07-26 2011-07-25 ポリチオフェン重合用触媒およびポリ(置換チオフェン)の製造方法
PCT/JP2011/066857 WO2012014844A1 (ja) 2010-07-26 2011-07-25 ポリチオフェン重合用触媒およびポリ(置換チオフェン)の製造方法

Publications (2)

Publication Number Publication Date
JP5150007B2 true JP5150007B2 (ja) 2013-02-20
JPWO2012014844A1 JPWO2012014844A1 (ja) 2013-09-12

Family

ID=45530052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012526491A Expired - Fee Related JP5150007B2 (ja) 2010-07-26 2011-07-25 ポリチオフェン重合用触媒およびポリ(置換チオフェン)の製造方法

Country Status (5)

Country Link
JP (1) JP5150007B2 (ja)
KR (1) KR101452883B1 (ja)
CN (1) CN103025789A (ja)
TW (1) TW201221217A (ja)
WO (1) WO2012014844A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101537094B1 (ko) * 2011-05-27 2015-07-15 소켄 케미칼 앤드 엔지니어링 캄파니, 리미티드 환상 공역계 폴리머의 제조 방법 및 환상 공역계 폴리머 중합용 촉매
TWI577685B (zh) * 2012-02-17 2017-04-11 拜耳作物科學股份有限公司 經鹼土金屬錯合之金屬雙醯胺類
TWI551575B (zh) * 2012-02-17 2016-10-01 拜耳作物科學股份有限公司 鹼土金屬 - 錯合之金屬胺化物
CN105218790B (zh) * 2015-10-27 2018-02-06 天津理工大学 一种高规整度头尾相接聚(3‑酰基取代噻吩)衍生物的制备方法
WO2020033819A1 (en) 2018-08-10 2020-02-13 Avx Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
WO2020033817A1 (en) 2018-08-10 2020-02-13 Avx Corporation Solid electrolytic capacitor containing polyaniline
WO2020033820A1 (en) 2018-08-10 2020-02-13 Avx Corporation Solid electrolytic capacitor formed from conductive polymer particles
WO2020123577A1 (en) 2018-12-11 2020-06-18 Avx Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
DE112020004416T5 (de) 2019-09-18 2022-06-15 KYOCERA AVX Components Corporation Festelektrolytkondensator zur Verwendung bei hohen Spannungen
KR20220113704A (ko) 2019-12-10 2022-08-16 교세라 에이브이엑스 컴포넌츠 코포레이션 안정성이 증가된 탄탈 커패시터
KR20220113703A (ko) 2019-12-10 2022-08-16 교세라 에이브이엑스 컴포넌츠 코포레이션 프리코트 및 내재적으로 전도성인 폴리머를 포함하는 고체 전해 커패시터
US11631548B2 (en) 2020-06-08 2023-04-18 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a moisture barrier
CN117088919B (zh) * 2023-10-19 2024-01-30 链行走新材料科技(广州)有限公司 一种噻吩类单体聚合用催化剂及聚噻吩
CN117105990B (zh) * 2023-10-19 2024-01-30 链行走新材料科技(广州)有限公司 一种催化制备聚噻吩用催化剂及p3ht材料

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01203426A (ja) * 1988-02-09 1989-08-16 Matsushita Electric Ind Co Ltd 芳香族高分子化合物の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5109109A (en) * 1988-02-09 1992-04-28 Matsushita Electric Industrial Co., Ltd. Process for producing aromatic or heterocyclic polymer with metal halides

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01203426A (ja) * 1988-02-09 1989-08-16 Matsushita Electric Ind Co Ltd 芳香族高分子化合物の製造方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JPN6011054669; Melzig,L. et al: '2,3-Functionalization of furans, benzofurans and thiophenes via magnesiation and sulfoxide-magnesium' Chemical Communications(Cambridge, United Kingdom) No.24, 2009, p.3536-3538 *
JPN6011054670; Yu,J. et al: 'Solid-State Thermolytic and Catalytic Reactions in Functionalized Regioregular Polythiophenes' Macromolecules Vol.33, No.14, 2000, p.5073-5079 *
JPN6011054672; Wang,F. et al: 'Electroactive and Conducting Star-Branched Poly(3-hexylthiophene)s with a Conjugated Core' Macromolecules Vol.32, No.13, 1999, p.4272-4278 *
JPN6011054674; Clososki,G.C. et al: 'Direct magnesiation of polyfunctionalized arenes and heteroarenes using (tmp)2Mg?2LiCl' Angewandte Chemie, International Edition Vol.46, No.40, 2007, p.7681-7684 *
JPN6011054675; Krasovskiy,A. et al: 'Mixed Mg/Li amides of the type R2NMgCl・LiCl as highly efficient bases for the regioselective genera' Angewandte Chemie, International Edition Vol.45, No.18, 2006, p.2958-2961 *
JPN6011054677; PILLER,F.M. et al: 'Regio- and Chemoselective Synthesis of Fully Substituted Thiophenes' Organic Letters Vol.11, No.2, 2009, p.445-448 *

Also Published As

Publication number Publication date
TW201221217A (en) 2012-06-01
JPWO2012014844A1 (ja) 2013-09-12
CN103025789A (zh) 2013-04-03
KR101452883B1 (ko) 2014-10-22
KR20130100882A (ko) 2013-09-12
WO2012014844A1 (ja) 2012-02-02

Similar Documents

Publication Publication Date Title
JP5150007B2 (ja) ポリチオフェン重合用触媒およびポリ(置換チオフェン)の製造方法
EP1028136B1 (en) A method of forming poly-(3-substituted) thiophenes
JP2012025887A (ja) ポリ(3−置換チオフェン)の製造方法
Matson et al. Monotelechelic poly (oxa) norbornenes by ring-opening metathesis polymerization using direct end-capping and cross-metathesis
Wakioka et al. Remarkable ligand effect of P (2-MeOC6H4) 3 on palladium-catalyzed direct arylation
Zhou et al. Synthesis and Characterization of Bis (2, 2 ‘: 6 ‘, 2 ‘‘-terpyridine) ruthenium (II)-Connected Diblock Polymers via RAFT Polymerization
TW200835773A (en) Process for preparing thiophenes
KR20090020657A (ko) 위치 규칙성 폴리(3-치환된-티오펜)의 제조 방법
Qiu et al. Recent new methodologies for acetylenic polymers with advanced functionalities
JP4712514B2 (ja) ベンゾジチオフェン重合体
US20160152645A1 (en) Transition metal carbene complex and method of producing the same
US9644072B2 (en) Controlled radical polymerization, and catalysts useful therein
TWI421272B (zh) 製備噻吩寡聚物之方法
JP5651240B2 (ja) 環状共役系ポリマーの製造方法および環状共役系ポリマー重合用触媒
JP7150265B2 (ja) 片末端修飾ポリチオフェンの製造方法
US20150065722A1 (en) Fused thiophene ditin monomers
Tahara et al. Synthesis and characterization of polymers containing tin and transition metals in the main chain
JP5585916B2 (ja) ポリチオフェン類の製造方法、及び新規なチオフェンモノマー
US20100190954A1 (en) Process for the preparation of poly- and oligothiophenes on an industrial scale
KR20090124613A (ko) 클릭화학 반응을 이용한 폴리알킬티오펜의 말단 기능화방법
JP2012077106A (ja) 新規なチオフェンポリマー及びその製造方法
JP5733816B2 (ja) 高分子膜及びガスバリア材
Kobayashi et al. Germylenes as monomers for polymer synthesis
JP2015030789A (ja) ポリ(3−置換チオフェン)化合物並びにその合成中間体及びそれらの製造方法
WO2006095810A1 (ja) 光学活性らせんポリマーの製造方法および光学活性らせんポリマー重合開始剤

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121130

R150 Certificate of patent or registration of utility model

Ref document number: 5150007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees