WO2012009943A1 - 转子轴加工方法及转子轴加工设备 - Google Patents

转子轴加工方法及转子轴加工设备 Download PDF

Info

Publication number
WO2012009943A1
WO2012009943A1 PCT/CN2010/080560 CN2010080560W WO2012009943A1 WO 2012009943 A1 WO2012009943 A1 WO 2012009943A1 CN 2010080560 W CN2010080560 W CN 2010080560W WO 2012009943 A1 WO2012009943 A1 WO 2012009943A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor shaft
ribs
cutter
motor
slider
Prior art date
Application number
PCT/CN2010/080560
Other languages
English (en)
French (fr)
Inventor
糜震东
屠欣栋
李贤龙
Original Assignee
上海博泽电机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海博泽电机有限公司 filed Critical 上海博泽电机有限公司
Publication of WO2012009943A1 publication Critical patent/WO2012009943A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/12Forming profiles on internal or external surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J9/00Forging presses
    • B21J9/02Special design or construction
    • B21J9/06Swaging presses; Upsetting presses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/24Elements essential to such mechanisms, e.g. screws, nuts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/24Elements essential to such mechanisms, e.g. screws, nuts
    • F16H2025/2481Special features for facilitating the manufacturing of spindles, nuts, or sleeves of screw devices

Definitions

  • the invention relates to a shaft machining method, in particular to a method and a device for extruding a rotor shaft in a motor with a worm drive output.
  • Worm and worm gear drives are used in some low power motor applications.
  • the worm 950 is press-fitted onto the rotor shaft 932 .
  • the connecting end 9321 of the rotor shaft 932 is a component of the motor body 931 .
  • the worm 950 is fixed on the transmission end 9322 of the rotor shaft 932 and drives the rotor through the motor.
  • the shaft 932 is rotated, and at the same time, the power is transmitted from the worm wheel to the outside through the cooperation of the worm wheel (not shown) and the worm 950.
  • the rotor shaft 932 is machined by machining a plurality of ribs 940 on the drive end 9322 using a knurling process, and an axial through hole 951 is formed in the worm 950, and then through the axial through hole.
  • the interference fit between the 951 and the rib 940 connects the worm 950 to the rotor shaft 932; however, when the rotor shaft 932 is processed by the knurling process, the precision of the ribs is too difficult to control due to the excessive number of ribs processed. It will cause uneven force on the ribs when assembling with the worm, which will reduce the stability of the entire motor drive. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a new rotor shaft machining method, which realizes high-precision assembly of the worm by another machining method.
  • the present invention provides a rotor shaft machining method for machining a rotor shaft in a motor with a worm drive output, wherein the method comprises the following steps:
  • the extruded ribs are evenly distributed on the rotor shaft in the radial direction.
  • a further improvement of the present invention is that a resilient loose support is applied to the bottom of the motor to maintain the motor to achieve radial and axial expansion; Firstly, the motor is oscillated radially, the radial alignment of the rotor shaft with an axial centering unit is achieved, and the head of the rotor shaft is coupled to the axial centering unit;
  • the rotor shaft is axially pressed by the axial centering unit, thereby elastically deforming the support of the bottom of the motor, thereby adjusting the axial height of the rotor shaft.
  • a further improvement of the present invention is that the cutter is pushed by the driving unit to press the rotor shaft, and the pressing force is monitored by the pressure sensor during the pressing, and the pressing displacement is calculated when the pressing force reaches the set value until Stop the extrusion when the press-in displacement reaches the set value.
  • a further improvement of the present invention is that the set value of the pressing force is 200 nautical miles.
  • a further improvement of the present invention consists in providing a radial righting unit that moves in synchronism with the tool and radially correcting the rotor shaft before the tool begins to squeeze the rotor shaft.
  • a further improvement of the present invention is that the pressure value of the press-in end position is monitored by the pressure sensing, and the tool is replaced when the pressure value of the end position exceeds the set value.
  • the approach speed of the tool from the initial position to the press-in starting position is 100 to 300 mm/min
  • the tool advance speed from the press-in starting position to the press-in end position is 45. ⁇ 1 50 mm/min.
  • a further improvement of the present invention is that the rotor shaft is pressed from both sides by two cutters, wherein each cutter has two cutter heads;
  • the rotor shaft is then rotated 1 35 in the axial direction. (or 225.), the other four ribs are extruded, and the eight ribs are evenly distributed on the rotor shaft.
  • a further improvement of the invention consists in that after the first set of ribs have been extruded, the axial height of the rotor shaft is adjusted by the axial stiffening unit, and another set of ribs is machined offset by an axial distance.
  • a further improvement of the invention is that the tool has an angle of 92. - 94 °.
  • the present invention also provides a rotor shaft machining apparatus for machining a rotor shaft in a motor with a worm drive output, wherein the apparatus mainly comprises:
  • a base a rotating cylinder is disposed at a central position of the base, and a clamping cylinder is further fixed on an upper end of the rotating cylinder, and a hollow bearing is fixed on the base, and the bearing bag is fixed Covering the outside of the rotary cylinder and the clamping claw, a slider is respectively disposed on two sides of the top end of the support, and a pusher disk is erectably mounted on the base and sleeved on the outside of the support One end of the slider abuts against the inner side of the propulsion disc, and the slider and the contact surface of the inner side of the support abut each other with an inclined surface, the slider is away from the propulsion disc The other end is fixed with a fixing seat.
  • the fixing seat is provided with a cutter near one end of the rotor shaft, and a baffle is respectively disposed on the inner side of the support opposite to the two slider positions, and a baffle is pressed between the baffle and the sliding block. spring.
  • the central position of the base is recessed downward to form a concave surface, and a main hole is defined in a middle portion of the concave surface, and a plurality of auxiliary holes are formed around the main hole, and a bottom plate of the rotary cylinder is coupled with a bottom plate.
  • a main column and a plurality of sub-columns are respectively arranged on the bottom surface corresponding to the main hole and the sub-hole position.
  • the main column and the plurality of sub-columns respectively pass through the corresponding main hole and the auxiliary hole, and pass through the annular card part of the bottom end of the auxiliary guide column. It is disposed on the base, and a spring is sleeved on the main column, and one end of the spring abuts against the bottom surface of the bottom plate, and the other end abuts against the base, thereby achieving elastic connection.
  • a gap fit is formed between the main column and the sub-column and the main hole and the sub-hole.
  • a further improvement of the present invention is that an axial centering unit is disposed directly above the clamping jaw.
  • a radial centering unit is disposed on a side of the tool facing the tool.
  • a pressure sensor and a controller are further disposed on the slider.
  • a further improvement of the invention is that the tool has an angle of 92. - 94°.
  • FIG. 1 is a schematic view showing a worm connecting structure in the prior art
  • FIG. 2 is a perspective view of a processing apparatus according to a preferred embodiment of the present invention.
  • FIG 3 is a perspective perspective view of the processing apparatus shown in Figure 2;
  • FIG. 4 is a schematic view of a tool according to a preferred embodiment of the present invention.
  • Figure 5 is a schematic view showing the processing state of a preferred embodiment of the present invention.
  • Figure 6 is a partial enlarged view of Figure 5;
  • Figure 7 is a partially enlarged schematic view of a preferred embodiment of the present invention.
  • Figure 8 is a schematic view of a method of assembling a worm shaft according to a preferred embodiment of the present invention. detailed description
  • FIG. 2 and FIG. 3 which is a perspective view of a processing apparatus according to a preferred embodiment of the present invention. It can be seen from the figure that the processing apparatus used in the present invention mainly includes the following parts:
  • a tooling unit 10 includes a base 11.
  • a hollow support 12 is disposed above the base 11.
  • a baffle 13 is fixed at an upper edge of the inner wall of the support 12.
  • the rotary cylinder 14 is elastically loosely connected to the center of the base 11. Further, a clamping claw 15 is further connected to the upper end of the rotary cylinder 14.
  • the elastic loose connection is realized by the following structure: a central portion of the base 11 is recessed downward to form a concave surface 111, and a main hole 1111 is defined in a middle portion of the concave surface 111.
  • a plurality of sub-holes 1112 are defined around the main hole 1111.
  • the bottom end of the rotary cylinder 14 is coupled with a bottom plate 141.
  • the bottom surface of the bottom plate 141 is respectively provided with a main column 1111 and a plurality of sub-columns 1412 corresponding to the main hole 1111 and the sub-hole 1112.
  • the main column 1411 and the plurality of sub-columns 1412 respectively pass through the corresponding main hole 1111 and the sub-hole 1112, and are locked on the base 11 through the annular card portion 1413 at the bottom end of the sub-column 1412, and are sleeved on the main column 1411.
  • a spring 1414 is provided, one end of the spring 1414 abuts against the bottom surface of the bottom plate 141, and the other end abuts against the base 11, thereby achieving elastic connection; the main guide column 1411, the secondary guide 1412 with the main bore 1111, a hole 111 is formed between the secondary clearance fit of 0.05mm, thereby realizing loose connections;
  • a driving unit 20 includes a pushing plate 21, and a slope 211 is formed at an upper end of the inner wall of the pushing plate 21.
  • a slope 211 is formed at an upper end of the inner wall of the pushing plate 21.
  • two sliders 22 are provided, and the contact surface of the slider 22 with the inner wall of the pushing plate 21 is provided.
  • An axial centering unit 41 disposed directly above the clamping jaw 13, can be axially reciprocated by the motor, forming a groove 411 at its bottom end;
  • a radial righting unit 42 includes two righting blocks 421 and 422. As shown in FIG. 7, the righting block 421 is disposed on one side of the fixing seat 23 facing the cutter 24, and moves synchronously with the cutter 24, and the righting block 421 The bottom of the bottom is provided with a spring (the spring is disposed in the slider, not shown), and a radial elastic support is provided to the centralizing block 421 by the spring, and the head of the centralizing block 421 is set to be more than the head of the cutter 24.
  • one end of the rotor shaft 32 is vertically formed
  • the structure and connection of the tapered square 421 and the other righting block 424 are the same as those of the righting block 421, so the description will not be repeated; the rotor shaft can be squeezed at the cutter 24 by the mutual cooperation of the radial reinforcing blocks 421 and 424 provided on both sides. Radial righting of the rotor shaft 32 before 32;
  • the slider 22 is further provided with a pressure sensor 80 and a controller for detecting the pressing force of the cutter 24 on the rotor shaft 32 (the pressure sensor and the controller are both prior art and will not be described here).
  • Step 1 Install the motor 30 on the tooling unit 10;
  • the motor body 31 is clamped by the clamping air gripper 15, and the motor 30 is radially oscillated by the gap between the main guide post 141 1 and the sub-guide post 1412 and the main hole 111 1 and the sub-hole 1112 to realize the rotor shaft 32 and the shaft.
  • the axial centering unit 41 presses the rotor shaft 32 in the axial direction, thereby elastically deforming the spring 25 at the bottom of the motor 30, thereby adjusting the axial height of the rotor shaft 32; after installation, driving The pushing plate 21 is pushed upward to drive the slider 22 to move in the direction of the rotor shaft 32.
  • the radial righting unit 42 first contacts the sub-shaft 32, and the rotor shaft 32 is clamped by the two tapered grooves 421 to perform radial centering;
  • the rotor shaft 32 is extruded; as a preferred embodiment of the present invention, the pressing force is monitored by a pressure sensor during extrusion, and the pressing displacement is calculated when the pressing force reaches 200 N, and the pressing force reaches 200 N.
  • the cutter 24 is completely in contact with the rotor shaft 32, and the extrusion is stopped until the press-in displacement reaches the set value, so that the extrusion depth can be calculated more accurately; whereas the extrusion method in the prior art is close to the rotor from the cutter 24.
  • the shaft 32 starts to calculate the press-in displacement, there is a certain error between the cutter 241 and the cutter 242, and the surface of the rotor shaft 32 itself is also defective. Further reducing the machining accuracy of the ribs 50.
  • a first set of ribs 50 extending in the axial direction are respectively extruded by the cutter 24 at the driving end 321 of the rotor shaft 32 extending out of the body of the motor 30, respectively being ribs 51, ribs 52, a rib 53 and a rib 54 , wherein the four ribs 50 are radially evenly distributed on the rotor shaft 32;
  • the third step pushing the pusher disk 21 downward, the slider 22 follows the pusher disk 21 by the action of the spring 25, and then rotates the rotor shaft 32 by 1 35 ° (or 225 °) in the axial direction, and passes the shaft again. Adjusting the axial height of the rotor shaft 32 to the central unit 41, staggering an axial distance, repeating the above steps to process another set of four ribs 50, respectively rib 55, rib 56, rib 57, rib 58
  • the eight ribs 50 are evenly distributed on the rotor shaft 32 in the radial direction; due to the rotor shaft There is asymmetry in the machined surface of 32, and there is a certain error between the cutter 241 and the cutter 242.
  • the rotor shaft 32 When the rotor shaft 32 is rotated by another angle (for example, 45.), it is easy to further increase the error generated, and the rotor shaft 32 is along the edge.
  • the axial rotation of 135° (or 225°) allows the ribs 50 processed by the cutter 241 and the cutter 242 to be distributed on the two half shafts of the rotor shaft 32, thereby avoiding the distribution of the ribs 50 processed by each cutter 24.
  • the pressure value of the press-in end position is monitored by the pressure sensor 80, and when the cutter 24 presses the rotor shaft 32, the pressure value of the cutter 24 is under normal conditions.
  • the cutter 24 of the present invention has two cutter heads, respectively a cutter head 241 and a cutter head 242, the cutter The angle between the heads 241 and 242 is set to 92° to 94°.
  • the rib 52 is taken as an example.
  • the cutter head of the present invention presses the rotor shaft 32, the cutter head is depressed. The material is pushed to the two sides to form two ribs 521, 522, and the two ribs 521, 522 apply a pressing force to the cutter head to clamp the cutter head.
  • the present invention sets the angle to 92°. ⁇ 94.
  • the approach speed of the cutter 24 from the initial position to the press-in starting position is 100 ⁇ 300 mm / min, and the working speed of the cutter 24 from the initial position to the press-in end position is 45 ⁇ 150 mm / min o

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Automatic Assembly (AREA)

Description

转子轴加工方法及转子轴加工设备 技术领域
本发明涉及一种轴加工方法,尤指一种带蜗杆传动输出的电机中的转 子轴的挤压加工方法及设备。 背景技术
在一些小功率电机的应用中会使用到蜗杆蜗轮传动(如汽车用座椅电 机和摇窗电机) 。 如图 1所示, 蜗杆 950被压装于转子轴 932上, 转子轴 932的连接端 9321为电机本体 931的构成部件, 蜗杆 950固设于转子轴 932的传动端 9322上,通过电机带动转子轴 932转动,同时再经由蜗轮(图 中未显示) 与蜗杆 950的配合作用即可将动力由蜗轮向外传送。
在现有技术中, 转子轴 932的加工过程是在传动端 9322上采用滚花 工艺加工出若干根筋条 940 , 而在蜗杆 950内形成有轴向通孔 951 , 然后 通过该轴向通孔 951与筋条 940之间的过盈配合将蜗杆 950连接至转子轴 932上; 但是, 采用滚花工艺加工转子轴 932时由于加工出的筋条数目过 多,其精度往往难以控制,这样就会造成与蜗杆装配时各筋条的受力不均, 使整个电机传动的稳定性降低。 发明内容
因此本发明要解决的技术问题为提供一种新的转子轴加工方法,通过 另一种加工方式, 来实现蜗杆的高精度装配。
为解决上述技术问题, 本发明提供了一种转子轴加工方法, 用于加工 带蜗杆传动输出的电机中的转子轴, 其中, 该方法包含以下步骤:
a .将电机装设在工装单元上; 轴向延伸的筋条;
c .旋转所述转子轴,通过刀具在所述转子轴的传动端处挤压出另一组 沿轴向延伸的筋条;
其中, 所述挤压出的筋条沿径向均布于所述转子轴上。
本发明的进一步改进在于,在所述电机底部施加一弹性松动支撑从而 保持所述电机可以实现径向摆动与轴向伸缩; 首先径向摆动所述电机, 实现转子轴与一轴向扶正单元的径向对中, 并将所述转子轴的头部连接于所述轴向扶正单元;
通过所述轴向扶正单元沿轴向压迫所述转子轴,进而使所述电机底部 的支撑发生弹性形变, 从而调节所述转子轴的轴向高度。
本发明的进一步改进在于,通过一驱动单元推动所述刀具挤压所述转 子轴, 在挤压时通过压力传感器监测挤压力, 当挤压力达到设定值时开始 计算压入位移, 直至压入位移达到设定值时停止挤压。
本发明的进一步改进在于, 所述挤压力的设定值为 2 00牛。
本发明的进一步改进在于,设置一与所述刀具同步运动的径向扶正单 元, 在所述刀具开始挤压转子轴前对所述转子轴进行径向扶正。
本发明的进一步改进在于,通过所述压力传感监测压入终点位置的压 力值, 当所述终点位置的压力值超出设定值时, 更换所述刀具。
本发明的进一步改进在于,所述刀具自初始位置至压入起始位置的接 近速度为 1 00 ~ 300mm/m i n,所述刀具自压入起始位置至压入终点位置的工 进速度为 45 ~ 1 5 0mm/m i n。
本发明的进一步改进在于, 通过两刀具自两侧挤压所述转子轴, 其中 每一刀具具有两个刀头;
首先在所述转子轴上挤压出四根筋条,所述四根筋条径向均布于转子 轴上;
然后将转子轴沿轴向转动 1 35。 (或 225。 ) , 挤压出另外四根筋条, 所述八根筋条沿径向均布于转子轴上。
本发明的进一步改进在于, 在挤压出第一组筋条后, 通过所述轴向扶 正单元调节所述转子轴的轴向高度, 错开一段轴向距离加工另一组筋条。
本发明的进一步改进在于, 所述刀具的刀头夹角为 92。 - 94 ° 。 本发明还提供了一种转子轴加工设备,用于加工带蜗杆传动输出的电 机中的转子轴, 其中, 该装置主要包括:
一底座, 所述底座中心位置以弹性松动方式架设一旋转气缸, 所述旋 转气缸的上端进一步固接有一夹紧气爪, 所述底座上还固接有一中空的支 座, 所述支座包覆于所述旋转气缸与夹紧气爪外部, 在所述支座顶端的两 侧分别架设一滑块, 一推进盘以可升降方式架设于所述底座上且套设于所 述支座外侧, 所述滑块的一端分别抵靠于所述推进盘内侧, 且所述滑块与 支座内侧相互抵靠的接触面之间呈斜面配合, 所述滑块远离所述推进盘的 另一端固设有一固定座, 所述固定座靠近转子轴的一端设置有刀具, 所述 支座内侧相对两滑块位置分别设置有一挡板, 在所述挡板与滑块之间压设 有一弹簧。
本发明的进一步改进在于, 所述底座中心位置向下凹陷形成一凹面, 在凹面中部开设有一主孔, 绕主孔一周开设有若干个副孔, 旋转气缸的底 端结合有一底板, 在底板的底面对应主孔与副孔位置分别设置有一主导柱 与若干副导柱, 连接时主导柱与若干副导柱分别穿过对应的主孔与副孔, 并通过副导柱底端的环形卡部卡设于底座上, 在主导柱上套设有弹簧, 弹 簧一端抵靠于底板的底面, 另一端抵靠于底座, 由此实现弹性连接。
本发明的进一步改进在于, 所述主导柱、 副导柱与主孔、 副孔之间形 成有间隙配合。
本发明的进一步改进在于,所述夹紧气爪的正上方设置一轴向扶正单 元。
本发明的进一步改进在于,所述固定座上正对所述刀具的一侧设置一 径向扶正单元。
本发明的进一步改进在于,所述滑块上还设置有一压力传感器及控制 器。
本发明的进一步改进在于, 所述刀具的刀头夹角为 92。 - 94° 。 通过本发明的转子轴加工方法,可以避免因直接压蜗杆所导致的轴跳 加大的风险, 同时使转子轴上加工出来的筋条精度较好, 与蜗杆装配后各 筋条的受力均勾, 以保证装配后的蜗杆与轴保持良好的同心度, 从而提高 了转子轴的稳定性提高。 附图说明
图 1为现有技术中的蜗杆连接结构示意图;
图 2为本发明的一较佳实施例的加工设备立体示意图;
图 3为图 2所示的加工设备立体透视示意图;
图 4为本发明的一较佳实施例的刀具示意图;
图 5为本发明的一较佳实施例的加工状态示意图;
图 6为图 5的局部放大示意图;
图 7为本发明的一较佳实施例的局部放大示意图; 以及
图 8为本发明的一较佳实施例的蜗杆轴装配方法示意图。 具体实施方式
下面结合附图和具体实施例对本发明作进一步说明。
请参阅图 2及图 3所示,为本发明的一较佳实施例的加工设备立体示 意图, 从图中可以看出本发明所用到的加工设备主要包括以下部分:
一工装单元 10, 包括一底座 11, 底座 11的上方设置有一中空的支座 12, 支座 12内壁的上缘处固定有挡板 13, —旋转气缸 14 以弹性松动方式 连接于底座 11中心位置, 在旋转气缸 14的上端进一步连接有一夹紧气爪 15, 其中该弹性松动的连接方式通过以下结构实现: 底座 11中心位置向 下凹陷形成一凹面 111, 在凹面 111 中部开设有一主孔 1111, 绕主孔 1111 一周开设有若干个副孔 1112, 旋转气缸 14的底端结合有一底板 141, 在 底板 141的底面对应主孔 1111与副孔 1112位置分别设置有一主导柱 1411 与若干副导柱 1412,连接时主导柱 1411与若干副导柱 1412分别穿过对应 的主孔 1111与副孔 1112, 并通过副导柱 1412底端的环形卡部 1413卡设 于底座 11上, 在主导柱 1411上套设有弹簧 1414, 弹簧 1414一端抵靠于 底板 141的底面,另一端抵靠于底座 11,由此实现弹性连接;主导柱 1411、 副导柱 1412与主孔 1111、 副孔 111之间形成有 0.05mm的间隙配合, 由此 实现松动连接;
一驱动单元 20, 包括一推进盘 21, 推进盘 21 内壁的近上端处形成一 斜面 211; 在推进盘 21 内壁的两侧设置有两滑块 22, 滑块 22与推进盘 21 内壁的接触面一斜面 221,通过推进盘 21上斜面 211与滑块 22上斜面 221 的相互配合, 使滑块 22在推进盘 21的作用下可左右移动; 一固定座 23 固定在滑块 22上, 固定座 23靠近转子轴 32的一侧设置有刀具 24, 所述 滑块 22与上述挡板 13之间设置一弹簧 25; 滑块 22在加工之后, 通过弹 簧 25的作用使其跟随推进盘 21回程;
一轴向扶正单元 41, 设置于上述夹紧气爪 13的正上方, 可在电机的 驱动下作轴向的往复运动, 在其底端形成有一凹槽 411;
一径向扶正单元 42, 包括两扶正块 421、 422, 配合图 7所示, 扶正 块 421设置在固定座 23上正对所述刀具 24的一侧, 并与刀具 24同步运 动, 扶正块 421的底部设有弹簧(弹簧设于滑块内, 图中未画出) , 通过 弹簧对扶正块 421提供一径向的弹性支撑, 且扶正块 421的头部被设置为 较刀具 24头部更为接近转子轴 32,其靠近转子轴 32的一端竖向形成有一 锥形槽 421 , 另一扶正块 424的结构与连接与扶正块 421相同, 故不再重 复说明; 通过两侧设置的径向扶正块 421、 424的相互配合, 可在刀具 24 挤压转子轴 32之前对转子轴 32进行径向扶正;
所述滑块 22上还设置有一压力传感器 80及控制器, 用以检测刀具 24对转子轴 32的挤压力(压力传感器及控制器均为现有技术,在此不多作 叙述)。
结合图 2图 8示, 在加工转子轴 32时, 参照以下步骤:
第一步: 将电机 30装设在工装单元 10上;
首先通过夹紧气爪 15夹紧电机本体 31 , 利用主导柱 141 1、 副导柱 1412与主孔 111 1、 副孔 1112之间的间隙径向摆动所述电机 30 , 实现转子 轴 32与轴向扶正单元 41的径向对中, 并将所述转子轴 32的头部插入所 述轴向扶正单元 41底端的凹槽 411 中;
通过所述轴向扶正单元 41沿轴向压迫所述转子轴 32 , 进而使所述电 机 30底部的弹簧 25发生弹性形变, 从而调节所述转子轴 32的轴向高度; 装设完成后, 驱动推动盘 21向上推进, 带动滑块 22往转子轴 32的 方向移动, 径向扶正单元 42首先接触子轴 32 , 利用两锥形槽 421夹紧转 子轴 32 , 进行径向扶正; 进而推动刀具 24挤压所述转子轴 32 ; 作为本发 明的较佳实施方式, 在挤压时通过压力传感器监测挤压力, 当挤压力达到 200牛时开始计算压入位移,挤压力达到 200牛时, 可以视为刀具 24与转 子轴 32完全接触, 直至压入位移达到设定值时停止挤压, 可以更精确的 计算挤压深度; 而现有技术中的挤压方法为从刀具 24贴近转子轴 32时即 开始计算压入位移, 由于刀具 241及刀具 242之间存在一定的误差, 再加 上转子轴 32本身的被加工表面也存在一定的不对称, 进一步降低了加工 出筋条 50的精度。
第二步: 通过刀具 24在所述转子轴 32延伸出电机 30本体的传动端 321处挤压出一组沿轴向延伸的第一组筋条 50 , 分别为筋条 51、 筋条 52、 筋条 53、 筋条 54 , 所述四根筋条 50径向均布于转子轴 32上;
第三步: 将推进盘 21向下推进, 通过弹簧 25的作用使滑块 22跟随 推进盘 21回程, 然后将转子轴 32沿轴向转动 1 35 ° (或 225 ° ) , 再次 通过所述轴向扶正单元 41调节转子轴 32的轴向高度,错开一段轴向距离, 重复上述步骤加工出另一组四根筋条 50 , 分别为筋条 55 , 筋条 56 , 筋条 57 , 筋条 58 , 所述八根筋条 50沿径向均布于转子轴 32上; 由于转子轴 32的被加工表面存在不对称,以及刀具 241及刀具 242之间存在一定的误 差, 当转子轴 32转动其他角度 (例如 45。 ) 时, 容易进一步加大产生的 误差, 而将转子轴 32沿轴向转动 135° (或 225° ) 可以使刀具 241及刀 具 242加工出的筋条 50均勾分布在转子轴 32的两个半轴上, 避免了每个 刀具 24加工出的筋条 50分布在同一半轴上,从而提高加工出筋条的精度; 通过所述压力传感器 80监测压入终点位置的压力值,刀具 24挤压转 子轴 32时, 刀具 24在正常状态下, 其压力值处于一个稳定的范围内, 当 刀具 24磨损时, 压力值会逐渐变大, 故通过所述压力传感器 80监测压入 终点位置的压力值, 并当所述终点位置的压力值超出设定值时, 更换所述 刀具 24 , 以保证加工效率;
再次参阅图 4示, 为本发明的一较佳实施例的刀具示意图, 从图中可 以看出本发明所述刀具 24具有两个刀头, 分别为刀头 241及刀头 242, 所 述刀头 241、 242的夹角设置为 92° ~ 94° ; 配合图 6所示, 以筋条 52 为例进行说明, 当本发明的刀头挤压转子轴 32时, 刀头挤压位置下陷并 将料往两边推挤形成两个棱 521、 522, 而这两个棱 521、 522会对刀头施 加一压迫力从而夹住刀头,经过大量的实验后本发明将夹角设置为 92° ~ 94。 , 在该角度下刀头受到压迫力最小, 最易退刀。 所述刀具 24 自初始 位置至压入起始位置的接近速度为 100 ~ 300mm/min,所述刀具 24 自压入 起始位置至压入终点位置的工进速度为 45 ~ 150mm/mino

Claims

权利要求书
1. 一种转子轴加工方法, 用于加工带蜗杆传动输出的电机中的转子 轴, 其特征在于该方法包含以下步骤:
a.将电机装设在工装单元上; 轴向延伸的筋条;
c.旋转所述转子轴,通过刀具在所述转子轴的传动端处挤压出另一组 沿轴向延伸的筋条;
其中, 所述挤压出的筋条沿径向均布于所述转子轴上。
2. 如权利要求 1所述的方法, 其特征在于:
在所述电机底部施加一弹性松动支撑从而保持所述电机可以实现径 向摆动与轴向伸缩;
首先径向摆动所述电机, 实现转子轴与一轴向扶正单元的径向对中, 并将所述转子轴的头部连接于所述轴向扶正单元;
通过所述轴向扶正单元沿轴向压迫所述转子轴,进而使所述电机底部 的支撑发生弹性形变, 从而调节所述转子轴的轴向高度。
3. 如权利要求 1所述的方法, 其特征在于: 通过一驱动单元推动所 述刀具挤压所述转子轴, 在挤压时通过压力传感器监测挤压力, 当挤压力 达到设定值时开始计算压入位移, 直至压入位移达到设定值时停止挤压。
4. 如权利要求 3所述的方法, 其特征在于: 所述挤压力的设定值为 200牛。
5. 如权利要求 3或 4所述的方法, 其特征在于: 设置一与所述刀具 同步运动的径向扶正单元, 在所述刀具开始挤压转子轴前对所述转子轴进 行径向扶正。
6. 如权利要求 3或 4所述的方法, 其特征在于: 通过所述压力传感 监测压入终点位置的压力值, 当所述终点位置的压力值超出设定值时, 更 换所述刀具。
7. 如权利要求 3或 4所述的方法, 其特征在于: 所述刀具自初始位 置至压入起始位置的接近速度为 1 00 ~ 300mm/m i n,所述刀具自压入起始位 置至压入终点位置的工进速度为 45 ~ 1 5 0mm/m i n o
8. 如权利要求 1所述的方法, 其特征在于: 通过两刀具自两侧挤压 所述转子轴, 其中每一刀具具有两个刀头;
首先在所述转子轴上挤压出四根筋条,所述四根筋条径向均布于转子 轴上;
然后将转子轴沿轴向转动 1 35。 或 225。 , 挤压出另外四根筋条, 所 述八根筋条沿径向均布于转子轴上。
9. 如权利要求 8所述的方法, 其特征在于: 在挤压出第一组筋条后, 工另一组筋条。
1 0. 如权利要求 8或 9所述的方法, 其特征在于: 所述刀具的刀头夹 角为 92。 ~ 94。 。
1 1. 一种转子轴加工设备, 用于加工带蜗杆传动输出的电机中的转子 轴, 其特征在于该设备包括:
一底座, 所述底座中心位置以弹性松动方式架设一旋转气缸, 所述旋 转气缸的上端进一步固接有一夹紧气爪, 所述底座上还固接有一中空的支 座, 所述支座包覆于所述旋转气缸与夹紧气爪外部, 在所述支座顶端的两 侧分别架设一滑块, 一推进盘以可升降方式架设于所述底座上且套设于所 述支座外侧, 所述滑块的一端分别抵靠于所述推进盘内侧, 且所述滑块与 支座内侧相互抵靠的接触面之间呈斜面配合, 所述滑块远离所述推进盘的 另一端固设有一固定座, 所述固定座靠近转子轴的一端设置有刀具, 所述 支座内侧相对两滑块位置分别设置有一挡板, 在所述挡板与滑块之间压设 有一弹簧。
1 2. 如权利要求 1 1所述的转子轴加工设备, 其特征在于:
所述底座中心位置向下凹陷形成一凹面, 在凹面中部开设有一主孔, 绕主孔一周开设有若干个副孔, 旋转气缸的底端结合有一底板, 在底板的 底面对应主孔与副孔位置分别设置有一主导柱与若干副导柱, 连接时主导 柱与若干副导柱分别穿过对应的主孔与副孔, 并通过副导柱底端的环形卡 部卡设于底座上, 在主导柱上套设有弹簧, 弹簧一端抵靠于底板的底面, 另一端抵靠于底座, 由此实现弹性连接。
1 3. 如权利要求 1 2所述的转子轴加工设备, 其特征在于: 所述主导 柱、 副导柱与主孔、 副孔之间形成有间隙配合。
14. 如权利要求 1 1所述的转子轴加工设备, 其特征在于: 所述夹紧 气爪的正上方设置一轴向扶正单元。
15. 如权利要求 11所述的转子轴加工设备 其特征在于: 所述固定 座上正对所述刀具的一侧设置一径向扶正单元。
16. 如权利要求 11所述的转子轴加工设备 其特征在于: 所述滑块 上还设置有一压力传感器及控制器。
17. 如权利要求 11所述的转子轴加工设备 其特征在于: 所述刀具 的刀头夹角为 92° ~ 94° 。
1
PCT/CN2010/080560 2010-07-20 2010-12-31 转子轴加工方法及转子轴加工设备 WO2012009943A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010231791.0 2010-07-20
CN2010102317910A CN101917094B (zh) 2010-07-20 2010-07-20 转子轴加工方法

Publications (1)

Publication Number Publication Date
WO2012009943A1 true WO2012009943A1 (zh) 2012-01-26

Family

ID=43324518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/080560 WO2012009943A1 (zh) 2010-07-20 2010-12-31 转子轴加工方法及转子轴加工设备

Country Status (2)

Country Link
CN (1) CN101917094B (zh)
WO (1) WO2012009943A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101917094B (zh) * 2010-07-20 2013-01-02 上海博泽电机有限公司 转子轴加工方法
CN104269978B (zh) * 2014-09-12 2016-07-06 苏州石丸英合精密机械有限公司 电机转子自动装配机的长短轴调整机构
CN106571718A (zh) * 2015-10-10 2017-04-19 上海金陵电机股份有限公司 一种钢板电机转子冷压工艺
CN111725958B (zh) * 2020-07-28 2021-04-09 浙江沪龙科技股份有限公司 一种电机定子冲片叠片处理预紧装置
CN113414288A (zh) * 2021-06-23 2021-09-21 王军 一种木材加工中机械转子轴的初加工设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003026814A1 (de) * 2001-09-22 2003-04-03 Robert Bosch Gmbh Verfahren zum herstellen einer welle mit hülse sowie vorrichtung beinhaltend eine solche welle
CN101511650A (zh) * 2006-09-08 2009-08-19 罗伯特·博世有限公司 用于车辆的具有电动驱动装置的后雨刷
CN101697440A (zh) * 2009-10-30 2010-04-21 上海博泽电机有限公司 蜗杆的装配方法
CN101917094A (zh) * 2010-07-20 2010-12-15 上海博泽电机有限公司 转子轴加工方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4455496B2 (ja) * 2003-05-19 2010-04-21 アスモ株式会社 アーマチャシャフトの製造方法
JP2005186129A (ja) * 2003-12-26 2005-07-14 Asmo Co Ltd ウォーム付きシャフトの製造方法、ウォーム付きシャフト、回転子及び回転電機
CN201294425Y (zh) * 2008-11-13 2009-08-19 胜华波集团有限公司 电机电枢轴蜗杆结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003026814A1 (de) * 2001-09-22 2003-04-03 Robert Bosch Gmbh Verfahren zum herstellen einer welle mit hülse sowie vorrichtung beinhaltend eine solche welle
CN101511650A (zh) * 2006-09-08 2009-08-19 罗伯特·博世有限公司 用于车辆的具有电动驱动装置的后雨刷
CN101697440A (zh) * 2009-10-30 2010-04-21 上海博泽电机有限公司 蜗杆的装配方法
CN101917094A (zh) * 2010-07-20 2010-12-15 上海博泽电机有限公司 转子轴加工方法

Also Published As

Publication number Publication date
CN101917094A (zh) 2010-12-15
CN101917094B (zh) 2013-01-02

Similar Documents

Publication Publication Date Title
WO2012009943A1 (zh) 转子轴加工方法及转子轴加工设备
JP5095837B2 (ja) 回転テーブルのブレーキディスク
CN114473451B (zh) 一种电机定子与机座自动压装机
CN109226490B (zh) 一种具有冲片毛刺清理功能的自动叠装级进模
CN111659915A (zh) 一种用于电机壳加工的数控机床夹具
CN111822584B (zh) 利用齿轮进行精确定位的汽车零部件加工用打孔机
CN110860708B (zh) 一种可调式抗震镗削刀具
CN101332581A (zh) 风动打磨机
CN116372542A (zh) 全自动转子轴承压装机
CN201805322U (zh) 转子轴加工设备
CN215278320U (zh) 一种胶合镜片刮胶治具
CN215920186U (zh) 契合螺母片式胶合弹性胀套
CN114102192A (zh) 一种用于薄壁筒型零件的柔性装夹装置
CN210281392U (zh) 一种电机内筒铣削夹具
CN219521475U (zh) 一种刀具调节装置
CN219338691U (zh) 一种两侧导向带旋转带束鼓
CN213685184U (zh) 一种便于安装的机床齿轮
CN110842830A (zh) 一种客车转向轴安装的辅助工装
CN220660032U (zh) 一种槽型螺母割槽工装
WO2004076095A1 (ja) シャフトおよびシャフトの成形装置
CN210260516U (zh) 一种用于生产退热贴涂布机的收卷装置
CN220006055U (zh) 一种多轴加工装置
JP2004129500A (ja) ロータ及びその製造方法
CN217617780U (zh) 一种车削高尔夫球杆推板的转盘治具
CN216912822U (zh) 一种压装机构及组装设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10854973

Country of ref document: EP

Kind code of ref document: A1