WO2012008589A1 - ペントース及びセロオリゴ糖類存在下での乳酸菌によるl-乳酸の生産方法 - Google Patents

ペントース及びセロオリゴ糖類存在下での乳酸菌によるl-乳酸の生産方法 Download PDF

Info

Publication number
WO2012008589A1
WO2012008589A1 PCT/JP2011/066260 JP2011066260W WO2012008589A1 WO 2012008589 A1 WO2012008589 A1 WO 2012008589A1 JP 2011066260 W JP2011066260 W JP 2011066260W WO 2012008589 A1 WO2012008589 A1 WO 2012008589A1
Authority
WO
WIPO (PCT)
Prior art keywords
lactic acid
fermentation
concentration
xylose
glucose
Prior art date
Application number
PCT/JP2011/066260
Other languages
English (en)
French (fr)
Inventor
園元 謙二
威史 善籐
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to JP2012524617A priority Critical patent/JP5307295B2/ja
Priority to US13/810,426 priority patent/US9234219B2/en
Publication of WO2012008589A1 publication Critical patent/WO2012008589A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/56Lactic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • C12P7/625Polyesters of hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/46Streptococcus ; Enterococcus; Lactococcus

Definitions

  • the present invention relates to a method for efficiently producing high-purity L-lactic acid using lactic acid bacteria in the presence of pentose or cellooligosaccharide.
  • Polylactic acid is not only biodegradable but has recently been expected as a basic material in sustainable society because of its ability to produce biomass as a raw material.
  • the lactic acid monomer used as a raw material for polylactic acid is commercially produced by chemical synthesis or microbial fermentation. Chemical synthesis of lactic acid always results in a racemic mixture, but microbial fermentation can produce optically pure L- or D-lactic acid depending on the selected microorganism.
  • the optical purity of raw lactic acid has a great influence on the physical properties of polylactic acid.
  • Poly-L-lactic acid (PLLA) polymerized only in L form, and poly-D-lactic acid (PDLA) polymerized only in D form are poly-DL, which is a random polymer of D-lactic acid and L-lactic acid. -Higher crystallinity and higher heat resistance than lactic acid (poly-DL-lactic acid, PDLLA). Therefore, the fermentation production of lactic acid with high optical purity is emphasized.
  • biomass raw materials used for various fermentation production are mainly corn and sugarcane, but all use edible parts (starch, sucrose). If non-edible biomass materials such as non-edible crops, woody biomass, and rice straw can be applied to fermentation production, it would be desirable without competing with food and feed production.
  • cellulose and hemicellulose are the main fermentation raw materials (carbon sources), not starch.
  • carbon sources carbon sources
  • cellulose and hemicellulose cannot be directly used for lactic acid fermentation by lactic acid bacteria, and pretreatment (liquefaction or saccharification) is required for lactic acid fermentation.
  • the pretreatment methods can be broadly classified into physicochemical methods using acids and alkalis, and biochemical methods using microorganisms and enzymes.
  • cellulose if cellulose is to be decomposed into monosaccharides, it must be treated under relatively intense conditions, and fermentation inhibitors such as furfural are produced as a by-product.
  • fermentation inhibitors such as furfural are produced as a by-product.
  • treated under relatively mild conditions it becomes a processed product in which oligosaccharides derived from cellulose (cellooligosaccharides) are mixed, and cellooligosaccharides cannot be assimilated by most fermentation microorganisms. Arise.
  • Non-Patent Documents 4 to 7 when hemicellulose is hydrolyzed, xylose (C5 sugar) and its oligosaccharide (C5 oligosaccharide) are obtained, but when they are used for lactic acid fermentation, the molar yield of lactic acid is higher than when C6 sugar is used. The rate is usually halved (Non-Patent Documents 4 to 7).
  • Non-Patent Documents 4 to 10 there are several reports on hetero-lactic acid fermentation and D-lactic acid fermentation.
  • L-lactic acid which is a raw material for poly-L-lactic acid, for fermentation production in the presence of mixed sugars and cellooligosaccharides using non-edible biomass.
  • Biotechnol lett 32 1573-6776 Lactic acid fermentation from xylose: K. Tanaka, A. Komiyama, K. Sonomoto, A. Ishizaki, SJ Hall and PF Stanbury .: Two different pathways for D-xylose metabolism and the effect of xylose concentd L lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1, Appl. Microbiol.
  • Lactic acid production from cellulose by simultaneous saccharification and fermentation K. V. Venkatesh .: Simultaneous saccharification and fermentation of cellulose to lactic acid, Bioresour. Technol., 62, 91-98 (1997) Lactic acid bacteria that directly assimilate xylan: M. Ishikawa, K. Nakajima, Y. Itamiya, S. Furukawa, Y. Yamamoto and K. Yamasato .: Halolactibacillus halophilus gen. Nov., Sp. Nov.
  • Halolactibacilsp nov. halophilic and alkaliphilic marine lactic acid bacteria constituting a phylogenetic lineage in Bacillus rRNA group 1., Int. J. Syst. Evol. Microbiol., 55, 2427-2439 (2005)
  • oligosaccharides For L-lactic acid fermentation of non-edible biomass, oligosaccharides (C6 oligosaccharides, C5 oligosaccharides, etc.) and mixtures that can be obtained by enzymatically or physically / chemically treating cellulose or hemicellulose to enable simultaneous saccharification and fermentation It is desirable that a mixture of sugars (C6 sugar, C5 sugar, etc.) can be used as a raw material.
  • the present invention provides the following: [1] Culture of lactic acid bacteria capable of producing L-lactic acid in an environment (medium) derived from cellulose and / or hemicellulose and containing as a substrate any one selected from the group consisting of cellobiose, cellooligosaccharide, xylose, arabinose and glucose And a method for producing L-lactic acid, comprising a step of obtaining L-lactic acid. [2] The production method according to [1], wherein the lactic acid bacterium is a lactic acid bacterium belonging to Enterococcus mundtii .
  • [3] The production method according to [1] or [2], wherein the environment contains cellooligosaccharide as a substrate, and the cellooligosaccharide contains cellotriose and cellotetraose.
  • [4] Any one of [1] to [3], wherein the environment contains xylose as a substrate, further contains glucose and / or cellobiose as a substrate, and the concentration of xylose is 10 g / L to 150 g / L.
  • [5] The production method according to any one of [1] to [4], which is performed in an open system and / or a non-sterile environment.
  • [6] The production method according to [5], which is repeatedly performed in a batch system.
  • [7] The production method according to any one of [1] to [5], wherein the biomass material is a non-edible biomass material.
  • [8] A method for producing poly-L-lactic acid, comprising a step for producing L-lactic acid as defined in any one of [1] to [7], and a step of polymerizing L-lactic acid.
  • the fermentation was carried out in a batch fermentation in a 0.4 L jar fermenter containing 1 L of mMRS medium at 200 rpm, pH 7.0 and 43 ° C.
  • dry cell weight
  • lactic acid
  • cellobiose
  • glucose
  • Data points represent the mean and standard deviation of results from three independent experiments. If the error bar is not visible, its standard deviation is less than the size of the symbol.
  • dry cell weight
  • lactic acid
  • acetic acid
  • ethanol
  • cellobiose.
  • Data points represent the mean and standard deviation of results from three independent experiments. If the error bar is not visible, its standard deviation is less than the size of the symbol.
  • xylose concentration
  • lactic acid concentration
  • acetic acid concentration
  • formic acid concentration
  • ethanol concentration
  • dry cell weight
  • Data show the mean and standard deviation of results from three independent experiments. Where there is no error bar, the standard deviation is smaller than the symbol size.
  • P represents a phosphate group
  • FBP fructose 1,6-diphosphate
  • GAP represents glyceraldehyde 3-phosphate
  • DHAP represents dihydroxyacetone phosphate.
  • DCW Cell growth profile (DCW, g / L) of open repeated batch fermentation using Enterococcus mundtii QU25 for L-lactic acid production.
  • A Batch number 1 to 11 containing glucose
  • B Batch number 12 containing mixed glucose and xylose. The number above the arrow indicates the batch number. Standard error was calculated from duplicate measurements.
  • MRS A and B
  • mMRS C; oligotrophic medium with 5 g / L yeast extract instead of 10 g / L peptone / 8 g / L beef extract / 4 g / L yeast extract
  • Each initial glucose concentration was 100 g / L.
  • glucose (g / L); ⁇ , lactic acid (g / L); ⁇ ; DCW (g / L).
  • Oligotrophic MRS (A and B) (10 g / L peptone / 8 g / L beef extract / 4 g / L yeast extract instead of 5 g / L yeast extract (A) and 10 g / L yeast extract (B) (A) 8th batch culture, (B) 9th batch culture of open repeated batch fermentation using E. mundtii QU25 grown in complete MRS (C), And (C) the kinetics of the 10th batch culture.
  • Each initial glucose concentration was 130 g / L.
  • the present invention provides an efficient production method of high-purity L-lactic acid using lactic acid bacteria.
  • lactic acid bacteria in the present invention, unless otherwise specified, produces a large amount of lactic acid (fermented carbohydrate and 50% or more of the acid produced), and propagates well in a medium containing carbohydrate, Gram-positive It refers to a group of fungi that are not motile and do not produce spores.
  • the lactic acid bacteria referred to in the present invention are microorganisms belonging to the genus Enterococcus , microorganisms belonging to the genus Lactobacillus , microorganisms belonging to the genus Bifidobacterium , microorganisms belonging to the genus Lactococcus , and pediococcus. It includes microorganisms obtained from the genus ( Pediococcus ) and microorganisms belonging to the genus Leuconostoc .
  • Lactic acid bacteria suitable for use in the present invention can be obtained from a sample obtained from a natural source by screening as follows. A small sample is added to modified MRS medium (for example, MRS medium supplemented with cellobiose or glucose at a concentration of 2% / [wt / vol] each), and cultured under anaerobic conditions at 30 ° C for 3 days or 7 days. A portion of the culture is diluted stepwise and spread on a CM-cellobiose agar plate, and colonies are collected, diluted, and streak cultured as appropriate to obtain a single colony group. The isolated bacteria are tested for catalase by a conventional method, and those that are catalase negative are further selected using a CM-cellobiose agar medium, and those having a high yield and optical purity of lactic acid are selected.
  • modified MRS medium for example, MRS medium supplemented with cellobiose or glucose at a concentration of 2% / [wt / vol] each
  • a portion of the culture
  • lactic acid bacteria belonging to Enterococcus mundtii can be preferably used.
  • Enterococcus mundtii NITE BP-965 can be preferably used.
  • This strain was isolated from a fecal sample of sheep collected by the present inventors at Fukuoka City Zoo, Japan (No. 1-1 Minami Park, Chuo-ku, Fukuoka, Fukuoka Prefecture, Japan). Deposited as NITE BP-965 as of July 15, 2010 at the Japan Institute for Product Evaluation Technology Patent Microorganism Depositary Center (2-5-8 Kazusa Kamashizu, Kisarazu City, Chiba Prefecture 292-0818). In the present specification, this strain may be referred to as QU25.
  • This QU25 has the following properties for lactic acid fermentation: (1) L-lactic acid having an optical purity of 99.0 or higher (preferably 99.5% or higher, more preferably 99.75% or higher, and still more preferably 99.9% or higher) can be produced; and (2) 20 g / L of cellobiose can be produced. When the culture medium is contained and the pH is controlled at 7.0 and cultured at 43 ° C. for 20 hours or longer, 20 g / L L-lactic acid can be produced.
  • condition items for example, temperature, time
  • condition items for example, stirring speed, presence / absence / aeration of aeration
  • the substrate concentration refers to the substrate concentration of the medium at the start of the culture (sometimes referred to as the initial concentration), unless otherwise specified.
  • Lactic acid bacteria belonging to Enterococcus mundtii having the following properties: (1) L-lactic acid having an optical purity of 99.0 or higher (preferably 99.5% or higher, more preferably 99.75% or higher, and still more preferably 99.9% or higher) can be produced; and (2) 20 g / L of cellobiose can be produced. Medium containing 20 g / L of L-lactic acid when cultured for 20 hours or more at pH 7.0 and 43 ° C; [2] Lactic acid bacteria having the following bacteriological properties similar to QU25; 1. Form: Cocci. 2. Biochemical properties: Catalase negative. 3.Mobility: None 4. Oxygen demand: It is facultative anaerobic. 5. L-lactic acid is produced by homolactic fermentation using glucose as a substrate. 6. Has the following sugar utilization properties.
  • lactic acid fermentation in the present invention for example, pH, sugar concentration, optical purity
  • values relating to lactic acid fermentation in the present invention can be appropriately measured by conventional methods, but when the values differ depending on the measurement method, unless otherwise specified, It is the value measured by the method described in the Example section of this specification.
  • various fermentation parameters relating to lactic acid fermentation in the present invention are well known to those skilled in the art, but unless otherwise specified, refer to those defined in the Examples section of this specification.
  • QU25 and its equivalent microorganisms are 10 g of peptone, 8 g of beef extract, 4 g of yeast extract, 20 g of glucose, 1 g of Tween 80, 2 g of K 2 HPO 4 and 5 g of sodium acetate trihydrate in 1 L of distilled water.
  • MRS medium or its modified medium containing 2 g of diammonium hydrogen citrate, 0.2 g of MgSO 4 ⁇ H 2 O, 0.05 g of MnSO 4 ⁇ nH 2 O at appropriate concentrations of substrates such as glucose and cellobiose
  • the present invention may be described by taking the case of using QU25 as an example, but the description uses other suitable lactic acid bacteria including equivalent microorganisms of QU25 unless otherwise specified. It is also true if
  • [Effect of pH] QU25 can inhibit cell growth when the pH is controlled to 5.5 to 6.0 lower than when pH is controlled to 6.5 to 7.5.
  • the inability to grow at low pH may be due to low resistance to free acid (H + ).
  • H + free acid
  • sugar consumption proceeds very slowly and may not be completely consumed.
  • the maximum lactic acid production rate can increase with increasing pH and can be maximized around pH 7.5. By controlling the pH, a maximum lactic acid production rate several times higher than when not controlling can be obtained.
  • the pH of the environment is preferably 6.0 or more, more preferably 6.5 or more, and still more preferably 6.7 or more.
  • the upper limit of pH is preferably less than 7.5, more preferably less than 7.4, and even more preferably less than 7.3.
  • An example of an optimum pH is 7.0.
  • Such an environmental pH range may be preferable from the viewpoint of the optical purity of the produced lactic acid.
  • QU25 can maintain good biological activity over a wide temperature range of 30-45 ° C. with respect to lactic acid production and lactic acid yield. In particular, a maximum growth rate and a maximum lactic acid production rate can be exhibited at 40 to 44 ° C. At high temperatures above 45 ° C, QU25 may not show good cell growth or high lactic acid production.
  • the temperature is preferably 30 ° C. or higher, more preferably 35 ° C. or higher, and further preferably 40 ° C. or higher.
  • the upper limit of the temperature is preferably less than 45 ° C, and more preferably less than 44 ° C.
  • An example of the optimum temperature is 43 ° C.
  • QU25 can consume cellobiose at various concentrations in the same way as glucose. Regarding sugar consumption rate, glucose and cellobiose can be approximated.
  • L-lactic acid with high purity and high concentration can be produced in high yield using a sugar mixture of glucose and cellobiose.
  • the present invention is the first invention relating to the simultaneous use of glucose and cellobiose for lactic acid production by microorganisms.
  • the environmental glucose concentration and cellobiose concentration in the present invention can be appropriately designed by those skilled in the art so that the total amount of the substrate is within a range of 0.5 to 50% (weight) with respect to the medium.
  • the glucose concentration and cellobiose concentration during the initial period or throughout the culture period can be independently 5 g / L or more, preferably 20 g / L or more, preferably 50 g / L. It is more preferable to set it to L or more, and it is further more preferable to set it to 100 g / L or more.
  • the glucose concentration and the cellobiose concentration can be independently 400 g / L or less, 300 g / L or less, or 250 g / L or less. .
  • the environmental glucose concentration and cellobiose concentration can also be determined so that the glucose: cellobiose weight ratio is 1: 0.01-100, more specifically 1: 0.1-10.
  • the value when a value is indicated for the concentration or ratio of a component, the value is a value based on weight unless otherwise specified.
  • concentration or ratio in an environment is a value for the first time (at the time of a culture
  • the growth behavior of QU25 is similar to that at a lower concentration even when the cellobiose concentration in the environment is 150 g / L. It was. The fact that the growth behavior does not change even at high sugar concentrations suggests that there is little substrate inhibition on the growth of QU25. However, the lactic acid yield decreased with increasing cellobiose concentration. This is because the substrate concentration is generally reported to have no significant effect on yield and production, so the nutrient depletion required for product inhibition or lactic acid production, or their It is thought to be a combination. On the other hand, it is desirable from an economic aspect to use a high sugar concentration in lactic acid production.
  • the upper limit value of the cellobiose concentration in the present invention can be designed also from such a viewpoint. In the present invention, the upper limit of the environmental cellobiose concentration may be 100 g / L.
  • the fermentation yield of QU25 can vary depending on the xylose concentration. Specifically, when only xylose is used as a substrate, by-products are produced when xylose is at a relatively low concentration, and the yield of lactic acid may be low, but when xylose is at a relatively high concentration, Byproducts are hardly produced and lactic acid can be obtained in high yield. On the other hand, with respect to xylose, production rate and yield may decrease at higher concentrations. This is understood to be due to inhibition by high substrate concentrations. For reference, the expected xylose metabolic pathway in QU25 is shown in FIG.
  • the concentration of xylose in the present invention is preferably 20 g / L or more, and more preferably 40 g / L or more. In any case, it is preferably 150 g / L or less, more preferably 103 g / L or less (691 mM or less).
  • xylose is often consumed, and when xylose is used, lactic acid can be produced at a pH of 7.0 and around 43 ° C., as in the case of using glucose or cellobiose.
  • lactic acid can be produced using a mixture of glucose and xylose as a substrate.
  • the initial glucose concentration and xylose concentration can each be independently from 5 to 250 g / L.
  • the environmental glucose concentration and xylose concentration may be determined independently, and may be determined so that xylose is less than 1 part by weight, and more specifically less than 0.75 part by weight with respect to 1 part by weight of glucose. Good. With such a weight ratio, sugar can be consumed in the same way at any concentration.
  • lactic acid can be produced using a mixture of glucose, xylose and cellobiose as a substrate.
  • concentration in this case may be determined independently, such that xylose and cellobiose are each independently less than 1 part by weight, more specifically less than 0.75 part by weight per 1 part by weight of glucose. You may decide.
  • glucose and cellobiose can be consumed quickly first. The rapid consumption of cellobiose, which is also a potent cellulase inhibitor, is believed to be very advantageous in commercial lactic acid production from lignocellulosic biomass.
  • the concentration of xylose can be 5 g / L or more, preferably 10 g / L, more preferably 15 g / L. .
  • the upper limit value can be 150 g / L, and preferably 103 g / L.
  • QU25 can assimilate cellooligosaccharides, ie cellotriose (C6 trisaccharide), cellotetrarose (C6 tetrasaccharide) and cellopentose (C6 pentasaccharide).
  • cellotriose C6 trisaccharide
  • cellotetrarose C6 tetrasaccharide
  • cellopentose C6 pentasaccharide
  • l-lactic acid optical purity, 100%
  • the following effects can be expected: (1) Simplification of pretreatment process for non-edible biomass and cost reduction; (2) substantial improvement in l-lactic acid yield from non-edible biomass; (3) When an enzyme decomposition reaction is used in the pretreatment process, the necessity of considering an enzyme reaction inhibition by oligosaccharide is reduced.
  • Non-edible biomass is mainly composed of cellulose, hemicellulose, and lignin.
  • monosaccharides can be decomposed, but severe conditions are required. In this case, cost and labor are required, and monosaccharides may be further decomposed.
  • the treatment is performed under slightly mild conditions, a large amount of oligosaccharide is produced in addition to the monosaccharide.
  • xylooligosaccharides and cellooligosaccharides can be effectively assimilated.
  • Non-Patent Documents 8 and 9 mentioned above can be referred to.
  • glucose As a substrate for producing L-lactic acid, glucose is optimal from the viewpoint of efficiency (both speed and yield, and no by-product is produced).
  • non-edible biomass As a raw material, there can be no carbon source of glucose alone.
  • pentose such as xylose and arabinose, and those A mixture of oligosaccharides and the like becomes an actual carbon source. It is possible to deal with these carbon sources, and can produce L-lactic acid efficiently (both speed and yield, no by-product is produced), less substrate / product inhibition, less catabolite suppression, etc.
  • Lactic acid production according to the invention can be carried out as an open system or under non-sterile conditions.
  • “Open system” or “non-sterile” means that the medium used for production is not sterilized, and when lactic acid is produced in batch mode, the transfer from one batch culture to the next batch culture is performed under aseptic conditions. Including no need.
  • the lactic acid production according to the present invention can be carried out in a repeated batch system.
  • Open or non-sterile production systems can (i) avoid Maillard reactions during sterilization; (ii) reduce equipment requirements and energy consumption; and (iii) simplify processes and Since it is possible to save labor, it is preferable (Bioresource Technology 101 (2010) 6649-6498).
  • the present invention is the first to report the production of lactic acid in an open repeated batch using lactic acid bacteria, and according to the embodiment of the open repeated batch of the present invention, L-lactic acid having a high optical purity is converted to 14.1 g / L. It can be produced at a high production rate of / h.
  • biomass raw material means a bioorganic resource that is renewable and excluding fossil resources, unless otherwise specified.
  • biomass raw material any biomass raw material that can be used as a raw material for lactic acid fermentation can be used without being limited to the place of occurrence, the current use situation and the form.
  • biomass raw materials include sugar cane, rice, corn, sweet potato, rapeseed, peanuts, soybeans, bacas, leaf stems, rice straw, rice husk, rice husk, wheat straw, golf courses, large amounts of cut grass, remaining forest land, Thinned wood, oil palm trees, sawmill waste (for example, sawdust, sawdust, bark), construction waste (wood waste), waste paper, animal manure, slaughterhouse residue, aquatic processing residue, biomass organic sludge generated as waste, pulp Includes waste liquid, food processing residue, used cooking oil, food waste, sewage sludge, fish shellfish, kelp, phytoplankton.
  • Edible biomass also referred to as food biomass or food biomass
  • raw material refers to a biomass raw material that can be human or livestock food unless otherwise specified.
  • Edible biomass includes sugar cane, rice, corn, and sweet potatoes.
  • non-edible biomass means a biomass raw material other than edible unless otherwise specified. In the present invention, it is preferable to apply a non-edible biomass raw material.
  • L-lactic acid produced using the present invention can be used as a raw material for poly-L-lactic acid. Further, it can be used as a raw material for producing a stereocomplex of poly L-lactic acid and poly D-lactic acid. Such a stereocomplex can be a biodegradable plastic with high heat resistance.
  • Optically pure L-(+)-lactic acid is polymerized to become a highly crystalline polymer suitable for the production of fibers and alignment films, and is expected to be useful for the production of liquid crystals.
  • poly L-lactic acid is currently used for many medical purposes. For example, sutures, stents, dialysis media, and drug delivery devices. It is also being evaluated as a material for tissue engineering. Because it is biodegradable, it can also be used in the production of bioplastics and is useful in the manufacture of loose-fill packaging, compost bags, food packaging, and disposable tableware. Poly L-lactic acid therefore has potential as a resource recycling material suitable for use in future sustainable social systems.
  • lactic acid refers to L-lactic acid.
  • the cell density was analyzed by measuring the optical density (OD 562 ) of the cell suspension at a wavelength of 562 nm with a spectrophotometer (UV-1600 visible light spectrophotometer, Bio-spec, Shimadzu, Japan, Tokyo).
  • the dry cell weight was calculated from a pre-determined standard curve for OD 562 -vs dry weight.
  • PH was measured with a desktop pH meter (HM-25R).
  • the optical purity of lactic acid was measured with a BF-5 biosensor (Oji Scientific Instruments, Hyogo, Japan) according to the manufacturer's protocol.
  • (x) is OD 562
  • (t) is the sampling time (h).
  • Lactic acid yield based on the substrate consumed (Y, g / g) It was defined as the ratio of lactic acid produced (g / L) to consumed sugar (g / L).
  • Lactic acid production rate It was calculated as the ratio of the lactic acid concentration produced (g / L) to the fermentation time (h) (calculated during each sampling period).
  • mMRS medium Unless otherwise stated, mMRS medium was used. This contained (per liter): 10 g peptone (Difco, Detroit, MI), 8 g beef extract (Nacalai Tesque, Kyoto, Japan), 4 g yeast extract (Nacalai Tesque) ), 2 g K 2 HPO 4 (Nacalai Tesque), 5 g CH 3 COONa ⁇ 3H 2 O (Nacalai Tesque), 2 g triammonium citrate (Nacalai Tesque), 0.2 g MgSO 4 ⁇ 7H 2 O (Nacalai Tesque), 0.05 g MnSO 4 .4H 2 O (Nacalai Tesque), 1 ml Tween 80 (Nacalai Tesque). Except where indicated, it contained 10 g / L (1%) for refresh and pre-culture and 20 g / L for main fermentation. In some cases, D-cellobiose (Sigma), glucose, arabinose and the like were contained at
  • Flask culture 1 ml of glycerol stock culture is inoculated (10% [vol / vol] into a 15 ml screw cap tube containing 9 ml of mMRS-sugar (1% [wt / vol]) ) And incubated at 30 ° C. for 24 hours. A portion of the resulting culture is inoculated (10% [vol / vol]) in 100 ml mMRS-cellobiose (2% [wt / vol]) medium in a 200 ml flask at 72C for 72 hours. Cultured. The pH at the start of the culture was 6.5.
  • Jar fermenter culture 4 ml of the refreshed culture was transferred to a new growth medium in a 50 ml screw cap tube containing 36 ml of the same medium as in the case of flask culture.
  • the inoculum was incubated at 30 ° C. for 8 hours before inoculating the jar fermenter at (10% [vol / vol]).
  • Fermentation was conducted at a 0.4 liter scale (however, a sugar concentration of 150 g / s) using mMRS supplemented with various amounts of sugar in a 1 liter jar fermenter (Biott, Tokyo, Japan) at a stirring speed of 200 rpm. L culture was performed on a 0.2 L scale). The sugar solution was independently autoclaved and mixed with the remaining mMRS medium.
  • the assay was carried out with and without controlling the pH by adding 5 ⁇ M NaOH with a peristaltic pump connected to an automatic pH controller (PH C2201, Biott) during fermentation.
  • the pH was controlled at 5.5, 6.0, 6.5, 7.0 and 7.5, respectively.
  • the fermentation profile of this strain was measured after 24 hours growth at 30 ° C.
  • the assay was performed in pH-controlled fermentations set to 7.0 with automatic addition of 5 M NaOH at various temperatures controlled to 30, 37, 43, 45, 47 and 50 ° C, respectively. did. Fermentation was performed in mMRS-cellobiose (2.0% [wt / vol]).
  • the action of the sugar mixture was investigated by supplementing the fermentation medium with glucose / cellobiose in a ratio of 1: 1 at concentrations of 10, 15 and 20 ⁇ g / L, respectively.
  • the effect of the substrate concentration was examined using an mMRS medium having a cellobiose concentration of 50, 100 ⁇ g or 150 ⁇ g / L, or a glucose concentration of 150 ⁇ g / L. All fermentations were carried out under control (automatic addition of 10M or 15M NaOH) at 43 ° C and pH 7.0.
  • the yeast extract was supplemented with 1%, 0.25%, and 0.25% [wt / vol] at 8 hours, 60 hours, and 96 hours, respectively.
  • FIG. 2 shows the yield, optical purity and maximum production rate.
  • QU25 showed good biological activity over a wide temperature range of 30-45 ° C. with respect to lactic acid production and lactic acid yield.
  • the maximum lactic acid production rate increased with temperature from 2.54 g / L / h at 20 ° C to 3.44 g / L / h at 43 ° C.
  • the maximum growth rate increased to 0.675 h ⁇ 1 at 43 ° C. with increasing temperature.
  • the optimum temperature is considered to be 43 ° C.
  • FIG. 3 shows sugar consumption and lactic acid production when the glucose and cellobiose concentrations were 10 ⁇ g / L, respectively. QU25 consumed cellobiose in the same way as glucose and the fermentation was completed within 6 hours. The sugar consumption rate was approximately similar for glucose and cellobiose at 1.69 g / L / h and 1.53 g / L / h, respectively.
  • Figure 4 shows the profile when the cellobiose concentration is 150 g / L.
  • the profiles were generally similar at different substrate concentrations, except for the fermentation time which extended with substrate concentration.
  • there was a very short induction phase and then the cell growth rate was more or less the same in log phase.
  • the growth behavior suggests that there is no substrate inhibitory effect on the growth of QU25.
  • the cell growth curve went through a short stationary phase and then entered a death phase.
  • Example 2 Effect of xylose
  • Method As the medium the mMRS medium used in the above-mentioned Examples, supplemented with xylose as a sugar, was used. The xylose concentration was 10 g / L during refresh.
  • a jar fermenter (1 L volume was used) was used, and the final xylose concentration was 166 mM (25 g / L).
  • 334 mM (50.1 g / L) 480 mM (72.0 g / L) and 691 mM
  • the fermentation profile was examined at three levels of final xylose concentration of (103 g / L).
  • the culture conditions for QU25 were the same as in Example 1.
  • (2) Results A The results of the effects of pH control and temperature are shown in the table below.
  • the highest lactic acid production rate was observed at pH 7.0.
  • the pH was 7.0
  • the lactic acid production rate increased as the temperature increased in the range of 30 ° C to 43 ° C.
  • QU25 consumes xylose well, and from the viewpoint of xylose consumption, it was found that culture conditions at pH 7.0 and around 43 ° C are suitable.
  • Example 3 Examination of xylose concentration given to fermentation mode
  • Initial studies revealed that the xylose concentration had an effect on its fermentation characteristics, ie the proportion of products such as lactic acid, so the details were examined here.
  • (2) Results The results are shown in the table below.
  • Example 4 Utilization test of cellooligosaccharide
  • (1) Method As a medium cello-oligosaccharide (Cellotriose 4.23 g / L, Cellotetraose 2.67 g / L, or Cellopentose 3.64 g / L) was used as the sugar in the mMRS medium used in the above-mentioned Examples.
  • QU25 was cultured by inoculating 10% of the cultured culture in mMRS-cellobiose medium. Incubation was performed at 43 ° C. and initial pH 7.0 (uncontrolled).
  • (2) Results The results are shown in the table below.
  • Medium components is a system using a medium without a sugar source, ⁇ max is the maximum specific growth rate, and X max is the maximum cell mass.
  • L-lactic acid (optical purity, 100%) was produced in 100% yield.
  • QU-25 was shown to efficiently metabolize cellooligosaccharides and produce l-lactic acid.
  • Example 4 Utilization experiment of arabinose
  • the fermentation characteristics of arabinose, a pentose (C5 monosaccharide) similar to xylose, from the QU 25 strain was examined.
  • Example 5 Lactic acid production from sugar mixture
  • A. Glucose / xylose mixture Lactic acid fermentation from a 2: 1 glucose: xylose weight ratio mixture was studied. All fermentations were carried out under control (automatic addition of 10 M or 15 M NaOH) at 43 ° C. and pH 7.0.
  • FIG. 7 shows the culture results at an initial glucose concentration of 40 g / L.
  • Example 6 Non-sterile repeated fermentation with QU25
  • QU25 is a heat-resistant strain and can be used in non-sterile fermentation compared to other lactic acid bacteria.
  • the medium was not sterilized in all 12 doses. Cells were collected by centrifugation at the end of each batch (run / cycle) and inoculated 10% in the next batch (run), with the exception that in batch 6 the inoculation was 14%.
  • batches 7-10 nutritional requirements were studied by using 5, 10 and various glucose concentrations as mentioned in each run.
  • batch 11 a fed-batch was performed and a higher substrate concentration was used.
  • batch 12 mixed sugar fermentation was performed.
  • lactic acid productivity gradually increased as the cell density increased (FIG. 10). Lactic acid productivity increased significantly from 2.21 g / L / hour for the first batch to 14.1 g / L / hour for batch number 6. The lactic acid yield was approximately the same at ⁇ 80% (table above).
  • Batch 7 uses only 5 g / L yeast extract (instead of 4 g / L yeast extract + 10 g / L peptone + 8 g / L beef extract in mMRS medium) for nutrient conditions for lactic acid production and productivity Studied the effects of Interestingly, although the initial cell density was lower than the previous batch (ie, batches 4-6), slightly higher levels of lactic acid were produced with the same yield as the previous batch (FIG. 12).
  • lactic acid yield and production levels were improved by adding a higher concentration of substrate (batch 8) with the same medium as the previous batch (with only 5 g / L yeast extract). .
  • lactic acid productivity was significantly reduced by half (ie 10.61 g / L / h to 5.29 g / L / h) (table above and FIG. 13).
  • the fermentation mode was changed to fed-batch culture with cycle (run) number 11. 131.6 g / L lactic acid could be obtained from 144.5 g / L glucose with high productivity and yield of 7.74 g / L / h and 0.85 g / g, respectively (Fig. 14).
  • optical purity of lactic acid was kept high in all cultures ( ⁇ 99%) (table above).
  • the data in this example is the first report demonstrating the ability of repeated open batches using lactic acid bacteria for optically pure lactic acid production. Open repeated batches with QU25 were successfully performed for 12 cycles without any loss of fermentability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

 セルロース及び/又はヘミセルロース由来の、セロビオース、セロオリゴ糖類、キシロース、アラビノース、グルコースからなる群より選択されるいずれかを基質として含む環境(medium)で、L-乳酸を生産可能な乳酸菌を培養し、L-乳酸を得る工程を含む、L-乳酸の生産方法を提供する。好ましい態様において、乳酸菌として、エンテロコッカス・ムンヅティ(Enterococcus mundtii)NITE BP-965を用いる。

Description

ペントース及びセロオリゴ糖類存在下での乳酸菌によるL-乳酸の生産方法
 本発明は乳酸菌を用いて、ペントースやセロオリゴ糖存在下で、高純度のL-乳酸を効率よく生産する方法に関する。
 ポリ乳酸(PLA)は、生分解性のみならず、最近では、バイオマスを原料として製造できるという特性から、持続的な社会における基礎材料として期待されている。
 ポリ乳酸の原料となる乳酸モノマーは、商業的には化学合成又は微生物発酵により製造される。乳酸の化学合成は常にラセミ混合物をもたらすが、微生物発酵では、選択した微生物に応じて、光学的に純度の高いL-又はD-乳酸が生産できる。原料乳酸の光学純度は、ポリ乳酸の物理的特性に大きな影響を与える。L体のみを重合させたポリ-L-乳酸(PLLA)、D体のみを重合させたポリ-D-乳酸(PDLA)は、D-乳酸、L-乳酸のランダムな重合体であるポリ-DL-乳酸(poly-DL-lactic acid, PDLLA)より結晶性が高く、耐熱性も高い。そのため光学純度の高い乳酸の発酵生産が重視されている。
 一方、種々の発酵生産に用いられるバイオマス原料は、主としてトウモロコシやサトウキビであるが、いずれも食用部分(デンプン、ショ糖)を使用している。非食用作物や木質バイオマス、稲わら等の非食用バイオマス原料が発酵生産に適用できれば、食料・飼料生産と競合することもなく、望ましい。
 非食用バイオマスを利用する場合、デンプンではなく、セルロースやヘミセルロースが主な発酵原料(炭素源)となる。しかし、セルロースやヘミセルロースは、乳酸菌による乳酸発酵には直接的には利用できず、乳酸発酵に際しては、前処理(液化や糖化)が必要である。
 前処理方法は、酸・アルカリなどを用いる物理化学的な方法と、微生物や酵素を用いる生化学的な方法とに大別できる。しかしながら、前者に関しては、セルロースを単糖にまで分解しようとすれば比較的強烈な条件で処理しなければならず、その際にフルフラールなどの発酵阻害物質が副生する。一方、比較的穏和な条件で処理すると、セルロース由来のオリゴ糖(セロオリゴ糖)が混在した処理物となり、セロオリゴ糖はほとんどの発酵微生物が資化できないので、発酵収率が低くなるという不利益を生じる。後者の生化学的な方法では、セルロースを分解する酵素そのものの研究開発が進行中ではあるが、酵素により、セルロースをすべてを単糖にするには、多種・多量の酵素の使用と長い時間を要する。さらに、これらのセルロース分解酵素の製造コストは極めて高く、また加水分解生成物であるグルコース(C6糖)及びセロビオース(C6二糖)は、CBH及びBGLの強力な阻害物質でもある(非特許文献1~3)。
 他方、ヘミセルロースを加水分解すると、キシロース(C5糖)やそのオリゴ糖(C5オリゴ糖)が得られるが、それらを乳酸発酵に用いると、C6糖を用いた場合と比較して、乳酸のモル収率が通常半減する(非特許文献4~7)。
 非食用バイオマスからの乳酸生産に関しては、ヘテロ乳酸発酵、D-乳酸発酵については複数の報告がある(非特許文献4~10)。しかしながら、ポリL-乳酸の原料であるL-乳酸に関しては、非食用バイオマスを原料とした混合糖やセロオリゴ糖存在下での発酵生産のための実用的な方法はこれまでに見出されていない。
Romero-Garcia S, Hernandez-Bustos C, Merino E, Gosset G, Martinez A (2009) Homolactic fermentation from glucose and cellobiose using Bacillus subtilis. Microbial Cell Factories 8:23 doi:10.1186/1475-2859-8-23,http://www.microbialcellfactories.com/content/8/1/23 Okano K, Zhang Q, Yoshida S, Tanaka T, Ogino C, Fukuda H,Kondo A (2010) D-lactic acid production from cellooligosaccharides and s-glucan using L-LDH gene-deficient and endoglucanase-secreting Lactobacillus plantarum. Appl Microbiol Biotechnol 85:643-650 Joshi DS, MS Singhvi MS, Khire JM, Gokhale DV (2010) Strain improvement of Lactobacillus lactis for D-lactic acid production. Biotechnol lett 32:1573-6776 キシロースからの乳酸発酵:K. Tanaka, A. Komiyama, K. Sonomoto, A. Ishizaki, S.J. Hall and P.F. Stanbury.: Two different pathways for D-xylose metabolism and the effect of xylose concentration on the yield coefficient of L-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1, Appl. Microbiol. Biotechnol., 60(1-2), 160-167 (2002.10) キシロオリゴ糖からの乳酸発酵:Hitomi Ohara, Michiko Owaki & Kenji Sonomoto.: Xylooligosaccharide fermentation with Leuconostoc lactis, J. Biosci. Bioeng., 101(5), 415-420 (2006.5.25) キシロースからの乳酸発酵:Hitomi Ohara, Michiko Owaki & Kenji Sonomoto.: Calculation of metabolites from xylose in Lactococcus lactis, J. Biosci. Bioeng., 103(1), 92-94 (2007.1.25) キシロースからの乳酸発酵:Mugihito Oshiro, Hideaki Shinto, Yukihiro Tashiro, Noriko Miwa, Tatsuya Sekiguchi, Masahiro Okamoto, Ayaaki Ishizaki & Kenji Sonomoto.: Kinetic modeling and sensitivity analysis of xylose metabolism in Lactococcus lactis IO-1, J. Biosci. Bioeng., 108(5), 376-384 (2009.11.25) 同時糖化発酵によるセルロースからの乳酸生産:S. Abe and M. Takagi.: Simultaneous saccharification and fermentation of cellulose to lactic acid, Biotechnol. Bioeng., 37, 93-96 (1991) 同時糖化発酵によるセルロースからの乳酸生産:K. V. Venkatesh.: Simultaneous saccharification and fermentation of cellulose to lactic acid, Bioresour. Technol., 62, 91-98 (1997) キシランを直接資化する乳酸菌について:M. Ishikawa, K. Nakajima, Y. Itamiya, S. Furukawa, Y. Yamamoto and K. Yamasato.: Halolactibacillus halophilus gen. nov., sp. nov. and Halolactibacillus miurensis sp. nov., halophilic and alkaliphilic marine lactic acid bacteria constituting a phylogenetic lineage in Bacillus rRNA group 1., Int. J. Syst. Evol. Microbiol., 55, 2427-2439 (2005)
 非食用バイオマスのL-乳酸発酵に際しては、同時糖化・発酵ができるように、セルロースやヘミセルロースを酵素的又は物理・化学的に処理してできるオリゴ糖(C6オリゴ糖、C5オリゴ糖など)や混合糖(C6糖、C5糖など)からなる混合物を原料とできることが望ましい。
 本発明は以下を提供する:
[1] セルロース及び/又はヘミセルロース由来の、セロビオース、セロオリゴ糖類、キシロース、アラビノース、グルコースからなる群より選択されるいずれかを基質として含む環境(medium)で、L-乳酸を生産可能な乳酸菌を培養し、L-乳酸を得る工程を含む、L-乳酸の生産方法。
[2] 乳酸菌が、エンテロコッカス・ムンヅティ(Enterococcus mundtii)に属する乳酸菌である、[1]に記載の生産方法。
[3] 環境がセロオリゴ糖類を基質として含み、セロオリゴ糖類が、セロトリオース及びセロテトラオースを含む、[1]又は[2]に記載の生産方法。
[4] 環境がキシロースを基質として含み、さらにグルコース及び/又はセロビオースを基質として含み、キシロースの濃度が、10 g/L~150 g/Lである、[1]~[3]のいずれか一に記載の生産方法。
[5] 開放系、及び/又は非滅菌の環境で実施される、[1]~[4]のいずれか一に記載の生産方法。
[6] 回分式で繰り返し実施される、[5]に記載の生産方法。
[7] バイオマス原料が、非食用バイオマス原料である、[1]~[5]のいずれか一に記載の生産方法。
[8] [1]~[7]のいずれか一に定義されたL-乳酸の生産のための工程、及びL-乳酸を重合する工程を含む、ポリL-乳酸の生産方法。
QU25を改変MRS培地(pH制御したもの/制御しないもの)中で回分培養した際の、セロビオースを用いた細胞増殖(A)及び乳酸形成(B)のプロファイル。記号:(◇)、pH非制御;(■)、pHを5.5に設定;(▲)、pHを6.0に設定;(×)、pHを6.5に設定;(●)、pHを7.0に設定;(△)、pHを7.5に設定。 種々のpH値に設定したQU25によるセロビオースからのL-(+)-乳酸産生の収率、光学純度、及び最大生産率。白色バー、乳酸収率%;灰色バー、光学純度%;◆、最大乳酸生産速度。 QU25によるグルコース/セロビオース混合物からのL-乳酸生産のタイムコース。発酵は、200 rpm、pH 7.0及び43℃で、1LのmMRS培地を入れた0.4 L容のジャーファーメンター内において、回分発酵で実施された。記号:○, dry cell weight ●, lactic acid; □, cellobiose; ■, glucose。データ点は、3回の独立した実験からの結果の平均及び標準偏差を表わす。誤差バーが見えない場合、その標準偏差は記号のサイズ未満である。 セロビオース濃度150gを用いたQU25による発酵に際しての、乳酸生産、セロビオース利用、酢酸、エタノール、及び増殖のプロファイル。発酵は、200 rpm、pH 7.0及び43℃で、0.2 Lの培地を入れたジャーファーメンターで実施された。記号:○, dry cell weight ●, lactic acid; ■, acetic acid; ▲, ethanol; □, cellobiose。データ点は、3回の独立した実験からの結果の平均及び標準偏差を表わす。誤差バーが見えない場合、その標準偏差は記号のサイズ未満である。 QU25によるキシロースを用いた乳酸発酵のプロファイル。発酵は、1 Lの培地を用い、0.4 L容のジャーファーメンターを使用し、43℃、pH 7.0、200 rpmで実施した。キシロースの初濃度は334 mM (A)、480 mM (B)及び691 mM (C)であった。○はキシロース濃度、●は乳酸濃度、△は酢酸濃度、▲はギ酸濃度、□はエタノール濃度、■は乾燥菌体重量を表す。データは、3つの独立した実験からの結果の平均値と標準偏差を示す。エラーバーがない箇所はシンボルのサイズより標準偏差が小さい。 QU25における、予想されるキシロース代謝経路。重要な酵素、LDH及びPFLを下線で示した。発酵生産物、乳酸、ギ酸、酢酸及びエタノールを囲んだ。ピルビン酸からのギ酸、酢酸、及びエタノールのための経路を破線矢印で示した。Pはリン酸基、FBPはフルクトース1,6-二リン酸、 GAPはグリセルアルデヒド3-リン酸、DHAPはジヒドロキシアセトンリン酸を示す。 QU25によるグルコース-キシロース混合物を用いた乳酸生産。DCW; Dry Cell Weight。発酵は、200 rpm、pH 7.0、43℃で実施された。 QU25によるグルコース-キシロース-セロビオース混合物を用いた乳酸生産。DCW; Dry Cell Weight。発酵は、200 rpm、pH 7.0、43℃で実施された。 QU25による、グルコース-キシロース混合物を用いた乳酸生産、及びグルコース-キシロース-セロビオース混合物を用いた乳酸生産における副産物(酢酸、ギ酸、エタノール)のまとめ。 L-乳酸産生のためのEnterococcus mundtii QU25を用いた開放反復回分発酵の時間経過。(A)グルコースを含む回分番号1~11(B)混合グルコース及びキシロースを含む回分番号12。記号:▲、グルコース(g/L);△、キシロース(g/L);○、乳酸(g/L)。矢印の上の数字は回分番号を示す。2つ組測定より、標準誤差を計算した。 L-乳酸産生のためのEnterococcus mundtii QU25を用いた開放反復回分発酵の細胞増殖プロファイル(DCW、g/L)。(A)グルコースを含む回分番号1~11(B)混合グルコース及びキシロースを含む回分番号12。矢印の上の数字は回分番号を示す。2つ組測定より、標準誤差を計算した。 MRS(A及びB)、及びmMRS(C;10 g/Lペプトン/8 g/L牛肉エキス/4 g/L酵母エキスの代わりに5 g/L酵母エキスを入れた貧栄養培地)中で増殖させたE. mundtii QU25を用いた開放反復回分発酵の(A)1番目の回分培養、(B)6番目の回分培養、及び(C)7番目の回分培養、の動力学。それぞれの初発グルコース濃度は100 g/Lであった。記号:▲、グルコース(g/L);○、乳酸(g/L);●;DCW(g/L)。 貧栄養MRS(A及びB)(10 g/Lペプトン/8 g/L牛肉エキス/4 g/L酵母エキスの代わりに5 g/L酵母エキス(A)及び10 g/L酵母エキス(B)のみを入れた貧栄養培地)、及び完全MRS(C)中で増殖させたE. mundtii QU25を用いた開放反復回分発酵の(A)8番目の回分培養、(B)9番目の回分培養、及び(C)10番目の回分培養、の動力学。それぞれの初発グルコース濃度は130 g/Lであった。記号:▲、グルコース(g/L);○、乳酸(g/L);●;DCW(g/L)。 E. mundtii QU25を用いた開放反復回分発酵の(A)11番目の流加培養、及び(B)12番目の混合糖回分培養、の動力学。(A)初期グルコース濃度は100 g/Lであり、そして発酵開始4時間後にグルコース濃度が50 g/L増加するようにグルコースを供給した。(B)初期グルコース及びキシロースは、それぞれ、45及び37.5 g/Lであった。記号:▲、グルコース(g/L);△、キシロース、○、乳酸(g/L);●;DCW(g/L)。
 本発明により、乳酸菌を用いた高純度L-乳酸の効率的な生産方法が提供される。
 [乳酸菌]
 本発明で「乳酸菌」というときは、特に記載した場合を除き、多量に乳酸を生産(炭水化物を発酵し、生成する酸の50%以上)すると共に、炭水化物を含む培地によく繁殖し、グラム陽性で、運動性がなく、胞子をつくらない菌群をいう。本発明でいう乳酸菌は、エンテロコッカス(Enterococcus) 属に属する微生物、ラクトバシラス(Lactobacillus) 属に属する微生物、ビフィドバクテリウム(Bifidobacterium)属に属する微生物、ラクトコッカス (Lactococcus) 属に属する微生物、ペディオコッカス (Pediococcus)属に得する微生物、及びロイコノストック(Leuconostoc)属に属する微生物を含む。
 本発明に用いるのに適した乳酸菌は、天然源から得た試料から、次のようにスクリーニングすることにより、得ることができる。少量の試料を改変MRS培地(例えば、MRS培地に、セロビオース又はグルコースを各2% [wt/vol]濃度で添加したもの)に加え、30℃で3日又は 7日間、嫌気的条件で培養し、培養物の一部を段階的に希釈し、CM-セロビオース寒天プレートに広げ、コロニーの採取、希釈、画線培養を適宜行い、単一のコロニー群を得る。単離菌は、定法により、カタラーゼについて試験し、カタラーゼ陰性のものについて、CM-セロビオース寒天培地を用いてさらに選抜し、乳酸の収率及び光学純度が高いものを選択する。
 本発明には、エンテロコッカス・ムンヅティ(Enterococcus mundtii)に属する乳酸菌を好適に用いることができる。特に、Enterococcus mundtii NITE BP-965を好適に用いることができる。この菌株は、本発明者らが、日本国福岡市動物園(日本国福岡県福岡市中央区南公園1番1号)で集められた羊の糞試料から単離したものであり、独立行政法人 製品評価技術基盤機構 特許微生物寄託センター(〒292-0818 千葉県木更津市かずさ鎌足2-5-8)へ、2010年7月15日付で受託番号NITE BP-965として寄託されている。本明細書では、この菌株をQU25と称することがある。
 このQU25は、乳酸発酵に関し、下記の性質を有する:
(1)光学純度が99.0以上(好ましくは99.5%以上、より好ましくは99.75%以上、更に好ましくは99.9%以上)であるL-乳酸を生産可能であり;かつ
(2)20g/Lのセロビオースを含む培地で、pHを 7.0に制御し、43℃で20時間以上培養したときに、20g/LのL-乳酸を生産可能である。
 本発明で乳酸を「生産可能」というときは、特に記載した場合を除き、特定の範囲であることが規定された条件項目(例えば、温度、時間)については、その範囲で、また特定されていない条件項目(例えば、攪拌速度、通気の有無・程度)については発酵生産に適する条件とした場合に、その純度及び濃度で生産できることをいう。また基質濃度をいうときは、特に記載した場合を除き、培養開始時の培地の基質濃度(初発濃度ということもある。)をいう。
 本願は、QU25のみならず、それと均等な微生物、具体的には下記の微生物も、好適に用いることができる。
[1] 下記の性質を有するEnterococcus mundtiiに属する乳酸菌:
(1)光学純度が99.0以上(好ましくは99.5%以上、より好ましくは99.75%以上、更に好ましくは99.9%以上)であるL-乳酸を生産可能であり;かつ
(2)20g/Lのセロビオースを含む培地で、pH 7.0、43℃で20時間以上培養したときに、20g/LのL-乳酸を生産可能であるもの;
[2] QU25と同じ、下記の菌学的性質を有する、乳酸菌;
1.形態:球菌である。
2.生化学的性質:カタラーゼ陰性である。
3.運動性:なし
4.酸素要求性:通性嫌気性である。
5.グルコースを基質としてホモ乳酸発酵によりL-乳酸を産生する。
6.下記の糖資化性を有する。
Figure JPOXMLDOC01-appb-T000001
 なお本発明における乳酸発酵に関する各種の値(例えば、pH、糖濃度、光学純度)は、慣用な方法で適宜測定可能であるが、測定法により値が異なる場合は、特に記載した場合を除き、本明細書の実施例の項に記載した方法により測定した値である。また本発明における乳酸発酵に関する各種の発酵パラメータは、当業者にはよく知られているが、特に記載した場合を除き、本明細書の実施例の項に定義されたものを指す。
 QU25及びその均等微生物は、蒸留水1L中に、ペプトンを10g、牛肉エキスを8g、酵母エキスを4g、グルコースを20g、Tween80を1g、K2HPO4を2g、酢酸ナトリウム三水和物を5g、クエン酸水素二アンモニウムを2g、MgSO4・H2Oを0.2g、MnSO4・nH2Oを0.05g含むMRS培地(又はその改変培地)にグルコース、セロビオース等の基質を適切な濃度になるように添加したものを用いて良好に培養することができる。
 なお、本明細書においては、本発明をQU25を用いた場合を例に説明することがあるが、特に記載した場合を除き、その説明は、QU25の均等微生物を含む他の好適な乳酸菌を用いた場合にも当てはまる。
 [pHの影響]
 QU25は、pHを5.5~6.0に低く制御した場合、pH6.5~7.5にpH制御した場合に比較して、細胞増殖が阻害されうる。低いpHで増殖できないのは遊離酸(H)に対する抵抗性が低いことに起因すると思われる。pH 5.5~6.0では、糖消費はきわめて低速で進行し、完全に消費されない場合がある。最大乳酸生産速度は、pHが高いほど大きくなり得、pH7.5付近で最大となり得る。pH制御により、制御しない場合に比較して、数倍高い最大乳酸生産速度が得られうる。
 したがって、生産効率の観点からは、本発明においては、環境のpHは、6.0以上、より好ましくは6.5以上、さらに好ましくは6.7以上であることが好ましい。pHの上限値は、いずれの場合も、7.5未満であることが好ましく、7.4未満であることがより好ましく、7.3未満であることがさらに好ましい。至適なpHの一例は、7.0である。このような環境pHの範囲は、生成乳酸の光学純度の観点からも好ましいであろう。 
 [温度の影響]
 QU25は、乳酸産生及び乳酸収率に関して30~45℃の広い温度範囲にわたって良好な生物活性を保ちうる。特に、40~44℃において、最大増殖速度及び最大乳酸生産速度を発揮しうる。45℃を超える高い温度では、QU25は良好な細胞増殖も高い乳酸産生も示さない場合がある。
 したがって、効率的にL-乳酸を生産するとの観点からは、本発明においては、温度は、30℃以上、より好ましくは35℃以上、さらに好ましくは40℃以上であることが好ましい。温度の上限値は、いずれの場合も、45℃未満であることが好ましく、44℃未満であることがより好ましいであろう。至適な温度の一例は、43℃である。
 [基質(炭素源)の影響]
 本発明において、乳酸菌のための環境に含まれる成分に関し、「基質として」というときは、特に記載した場合を除き、その微生物が資化可能な量(濃度)で、その成分が含まれていることをいう。
 QU25は、様々な濃度のセロビオースをグルコースと同じように消費しうる。糖消費速度に関しては、グルコースとセロビオースとでは近似しうる。
 したがって、本発明によれば、グルコースとセロビオースの糖混合物を用いて、高純度、高濃度のL-乳酸を、高収率で生産することができる。
 リグノセルロースからの一般的な糖化プロセスでは、多種類の糖を含有する原料が得られる。そのため、リグノセルロース由来の糖化物原料を用いて生成物収率及び生産性を最大にするためには、混合糖を完全利用することができれば望ましい。一方、大部分の微生物がグルコースを他の糖より優先的に利用するため、混合糖を乳酸生産に用いる場合、糖類の逐次利用のために、生産性が低下することが多い。しかしながら本発明によれば、セロビオースを効率的に利用するだけでなく、セロビオースとグルコースを同時に消費することができ、これによりセルロース系材料から糖化により生成する糖類を、高効率・高速度で完全に利用することが期待できる。本発明は、微生物による乳酸生産のためのグルコースとセロビオースの同時利用に関する最初の発明である。
 本発明における環境のグルコース濃度、セロビオース濃度は、当業者であれば基質の総量が、培地に対して0.5~50%(重量)の範囲内で適宜設計することができる。典型的には、初発の、又は培養期間を通じてのグルコース濃度及びセロビオース濃度は、それぞれ独立して、5 g/L以上とすることができ、20 g/L以上とすることが好ましく、50 g/L以上とすることがよりに好ましく、100 g/L以上とすることがさらに好ましい。いずれの場合においても、グルコース濃度及びセロビオース濃度は、それぞれ独立して、400 g/ L以下とすることができ、300 g/L以下とすることもでき、250 g/L以下とすることもできる。
 環境のグルコース濃度及びセロビオース濃度はまた、グルコース:セロビオースの重量比が1:0.01~100、より特定すると1:0.1~10となるように決定することができる。
 なお本発明において、成分の濃度又は比について値を示す場合は、特に記載した場合を除き、その値は重量に基づく値である。また環境中の濃度又は比について示した値は、特に記載した場合を除き、初発(培養開始時)の、又は培養期間を通じての値である。
 本発明者らの検討によると、本明細書の実施例の条件では、QU25の増殖挙動は、環境のセロビオース濃度が150g/Lの場合であっても、より低濃度である場合と類似していた。増殖挙動が高糖濃度においても変わらないことは、QU25の増殖に対する基質阻害がほとんどないことを示唆している。しかしながら、乳酸収率に関しては、セロビオース濃度が上昇するのに伴って低下した。このことは、基質濃度は一般には収率及び生産量に対しては大きな作用をもたないと報告されていることから、生成物阻害若しくは乳酸生成のために必要な栄養素の枯渇、又はそれらの組み合わせによるものと考えられる。一方、乳酸生産において高い糖濃度を使用することは、経済的な側面からは望ましい。本発明におけるセロビオース濃度の上限値は、このような観点からも設計することができる。本発明においては、環境のセロビオースの濃度の上限を、100g/Lとしてもよい。
 本発明者らの検討によると、QU25はキシロースの濃度によって発酵収率が変化しうる。詳細には、キシロースのみを基質とする場合、キシロースが比較的低濃度の場合は、副産物が生成され、乳酸の収率は低くなる場合があるが、キシロースが比較的高濃度である場合は、副産物はほとんど生産されず、高収率で乳酸が得られうる。その一方で、キシロースに関しては、さらに高い濃度においては、生産速度や収率が減じる場合がある。これは高い基質濃度による阻害によるものだと理解される。参考のため、QU25における、予想されるキシロース代謝経路を図6に示した。
 したがって、このような観点からは、本発明におけるキシロースの濃度は、20 g/L以上であることが好ましく、40 g/L以上であることがより好ましい。いずれの場合においても、150 g/L以下であることが好ましく、103 g/L以下(691 mM以下)であることがより好ましい。
 本発明によれば、キシロースがよく消費され、またキシロースを用いる場合も、グルコースやセロビオースを用いる場合と同様、pH 7.0、43℃付近で乳酸を生産することができる。
 本発明によれば、グルコース及びキシロースの混合物を基質として、乳酸を生産することができる。混合物が用いられる場合、典型的には、初発のグルコース濃度及びキシロース濃度は、それぞれ独立して、5~250 g/Lとすることができる。また、環境のグルコース濃度及びキシロース濃度は、それぞれ独立して決定してもよく、グルコース1重量部に対し、キシロースが1重量部未満、より特定すると0.75重量部未満となるように決定してもよい。このような重量比であれは、いずれの濃度においても、同じように糖が消費されうる。
 本発明においては、グルコース、キシロース及びセロビオースの混合物を基質として、乳酸を生産することができる。この場合のそれぞれの濃度は、独立して決定してもよく、グルコース1重量部に対し、キシロース及びセロビオースが、それぞれ独立して、1重量部未満、より特定すると0.75重量部未満となるように決定してもよい。このような態様においては、まず、グルコース及びセロビオースが迅速に消費されうる。有力なセルラーゼインヒビターでもあるセロビオースの迅速な消費は、リグノセルロース系バイオマスからの商業的な乳酸生産において、非常に有利であると考えられる。
 上述したように、本発明においては、キシロースを、それのみを基質として比較的低い濃度で用いる場合に、少量の副産物が生成しうるが、グルコース、セロビオースと混合してキシロースを用いる場合には、副産物の生成が減少しうる。総じて、本発明において他の糖とともにキシロースを用いる場合、キシロースの濃度は、5 g/L以上とすることができ、10 g/Lとすることが好ましく、15 g/Lとすることがより好ましい。いずれの場合も、上限値は150 g/Lとすることができ、103 g/Lとすることが好ましい。
 QU25は、セロオリゴ糖類、すなわちセロトリオース(C6三糖)、セロテトラロース(C6四糖)及びセロペントース(C6五糖)を資化しうる。特に、セロトリオース及びセロテトラロースから、約100%の収率でl-乳酸(光学純度、100%)を生産することができる。
 したがって、本発明によれば、次の効果が期待できる:
(1)非食用バイオマスの前処理工程の簡便化・コストダウン;
(2)非食用バイオマスからのl-乳酸収率の実質的な向上;
(3)前処理工程に酵素分解反応を用いる場合、オリゴ糖による酵素反応阻害を考慮する必要性の低下。
 非食用バイオマスは、主としてセルロース、ヘミセルロース、リグニンより構成される。物理化学的に分解する場合、単糖までの分解は可能であるが、厳しい条件を必要とし、その場合はコスト・労力がかかる上、単糖がさらに分解してしまう恐れがある。一方、やや穏やかな条件で処理を行うこと、単糖以外に、大量のオリゴ糖が生じることとなる。本発明によれば、キシロオリゴ糖及びセロオリゴ糖が、有効に資化されうる。
 混合糖、キシロース、セロオリゴ糖に対する特性から、本発明は、バイオマス原料からの同時糖化発酵に適用可能であるといえる。特に、非食用バイオマスを用いた同時糖化発酵への適用が期待できる。同時糖化発酵については、前掲の非特許文献8及び9を参照することができる。
 L-乳酸を生産するための基質としては、効率(速度、収率の両方で。副産物は作らない。)の観点からは、グルコースが最適である。しかしながら、非食用バイオマスを原料とする場合、グルコース単独の炭素源はあり得ず、セルロースやヘミセルロースの前処理によってできてくるグルコースのようなヘキソースのほか、キシロースやアラビノースのようなペントース、さらにはそれらのオリゴ糖等の混合物が、現実の炭素源となる。それらの炭素源に対応可能であり、かつL-乳酸を効率よく(速度、収率の両方で、副産物は作らない。)生産でき、基質・生成物阻害が少なく、カタボライト抑制が少ない、等の種々の特性を備えた菌株があるとよい。本発明の好ましい態様においては、このような菌株としてQU25を用いることができる。
 [開放系培養]
 本発明による乳酸生産は、開放系として、又は非滅菌条件下で、実施することができる。「開放系」又は「非滅菌」は、生産のために用いる培地を滅菌しないこと、回分式で乳酸を生産する場合に、ある回分培養から次の回分培養への引き継ぎの無菌条件下での実施を要しないことを含む。
 本発明による乳酸生産は、反復回分式で、実施することができる。
 開放又は非滅菌生産系は(i)滅菌中のメイラード反応が回避可能であり;(ii)装置の必要性及びエネルギー消費を低下させることも可能であり;そして(iii)工程を単純化し、そして労力を省くことも可能であるため、好ましい(Bioresource Technology 101 (2010) 6494-6498)。
 さらに、反復回分(repeated batch)操作は、回分式と比較して、時間及び労力両方の点で節約につながる。これらには、発酵槽の洗浄及び滅菌に必要な時間がより少ないこと、シードを調製する時間が省略できること、増殖率が高いこと、そして初期の菌体接種体積が大きいため、本培養時間が短いことが含まれる。
 開放系及び反復回分操作を組み合わせることによって、さらにエネルギー効率が優れ、労力及び時間が節約された操作戦略を確立することも可能である。
 開放反復回分系は、乳酸菌に関しては報告されてきていない。開放反復回分系は、L-乳酸産生を、はるかにより取り扱いやすくそしてエネルギー効率の優れたものにすると考えられる。一方、この系に用いる株は頑強である必要があり、特に光学的に非常に純粋な乳酸を産生するとの観点からは、開放反復中の汚染の可能性増加に抵抗するものでなければならない。
 なお、現在まで、細菌による乳酸の開放発酵産生に関して公表された論文は1報のみである(前掲Bioresource Technology 101 (2010) 6494-6498)。この論文の著者らは、乳酸菌であるLactobacillus casiの株及び非乳酸菌であるBacillus属の株を用いている。しかし、彼らの報告においては、Bacillus属の株については、種々のデータ及び動力学パラメータが示されているが、96~98.4%の光学純度を除いては、Lactobacillus属の株に関するデータには言及されていない。本発明者らの見解としては、ここでの乳酸濃度は低く、そしてまた残存グルコース濃度が高いようであり(ほとんどの場合、約30~50 g/Lである)、また、発酵時間が長く(~37-47時間)、そして本発明者らのデータに比較して生産性が低い。
 本発明は、乳酸菌を用いた開放反復回分式の乳酸生産を初めて報告するものであり、また本発明の開放反復回分式の態様によれば、光学純度の高いL-乳酸を、14.1 g/L/hという高い生産速度で生産しうる。
 [バイオマス原料]
 本発明で「バイオマス(原料)」というときは、特に記載した場合を除き、再生可能な、生物由来の有機性資源で化石資源を除いたものをいう。本発明には、発生場所、現在の利用状況及び形態に制限されず、乳酸発酵のための原料として用いることができるあらゆるバイオマス原料を用いることができる。バイオマス原料の例は、さとうきび、米、とうもろこし、さつまいも、菜種、落花生、大豆、バカス、葉茎、稲わら、もみ殻、籾殻、麦わら、ゴルフ場などで大量に発生する刈芝、林地残材、間伐材、オイルパーム樹木、製材所の廃材(例えば、端材、おが屑、樹皮)、建設廃材(木屑)、古紙、畜糞尿、屠場残渣、水産加工残渣、廃棄物として発生するバイオマス有機汚泥、パルプ廃液、食品加工残渣、使用済み食用油、生ごみ、下水汚泥、魚貝類、昆布類、植物プランクトンが含まれる。
 本発明で「食用バイオマス(食糧バイオマス、食料バイオマスということもある。)(原料)」というときは、特に記載した場合を除き、ヒト又は家畜食糧とすることもできるバイオマス原料をいう。食用バイオマスは、さとうきび、米、とうもろこし、さつまいもを含む。
 本発明で「非食用バイオマス(原料)」というときは、特に記載した場合を除き、食用以外のバイオマス原料をいう。本発明には、非食用バイオマス原料を適用することが好ましい。
 [用途]
 本発明を用いて産生したL-乳酸は、ポリL-乳酸の原料として用いることができる。また、ポリL-乳酸とポリD-乳酸とのステレオコンプレックスを製造するための原料として用いることができる。このようなステレオコンプレックスは、耐熱性が高い生分解性プラスチックとなり得る。
 光学的に純粋なL-(+)-乳酸は、重合して繊維及び配向フィルムの製造に適した高結晶ポリマーになり、液晶の製造にも有用であると期待される。
 さらに、ポリL-乳酸は現在、多数の医療用途に用いられている。例えば、縫合糸、ステント、透析媒体、及び薬物送達デバイスである。それは組織工学のための材料としても評価されつつある。それは生分解性であるのでバイオプラスチックの製造にも使用でき、ルーズフィル(loose-fill)パッケージング、コンポストバッグ、食品パッケージング、及び使い捨て食器の製造に有用である。したがってポリL-乳酸は、将来の持続的な社会システムにおいて使用するのに適切な資源リサイクル材料としての可能性をもつ。
 なお、本発明はL-乳酸の生産に関するが、本明細書では便宜上、本発明による生産物を単に「乳酸」と表現している場合がある(例えば、「乳酸生産速度」という場合、等)。当業者であれば、文脈から、「乳酸」がL-乳酸を指すものであることは適宜理解できる。
 [分析法]
 実施例全体を通じて、特に記載した場合を除き、下記の方法又はそれと同等の分析方法を用いた。
 細胞密度は、波長562nmにおける細胞懸濁液の光学濃度(OD562)を分光光度計(UV-1600可視光線分光光度計、Bio-spec、島津、日本、東京)で測定することにより分析した。OD562-対-乾燥重量に関する予め決定した標準曲線から乾燥細胞重量を計算した。
 pHは、卓上pHメーター(HM-25R)で測定した。
 セロビオース及び発酵生成物は、SUGAR SH-1011カラム(Shodex、日本、東京)を備えたHPLC(US HPLC-1210、Jasco、日本、東京)の使用により測定した。1mlの試料培養物を卓上遠心機(Tomy、マイクロ遠心機、モデルMX-300)の使用により2000gで10分間、4℃において遠心した後、上清を超純水で希釈し、Dismic 13-HP045フィルター(Advantec、日本、東京)で濾過し、次いで下記の条件下でクロマトグラフに注入した:カラム温度50℃、移動相としての流速1.0ml/分の3mM HClO4、及び注入容量20μl。標準溶液から求めた検量曲線を用いて、残留糖類及び発酵生成物の濃度を計算した。
 乳酸の光学純度は、BF-5バイオセンサー(王子計測器、日本、兵庫)により製造業者のプロトコルに従って測定した。
 [発酵パラメーター]
 実施例で評価した発酵パラメーターは、特に記載した場合を除き、以下のものであった。
 (1)比増殖速度(μ)
 下記のように計算した。
Figure JPOXMLDOC01-appb-M000002
 ここで(x)はOD562であり、(t)はサンプリング時間(h)である。
 (2)消費された基質を基準とした乳酸の収率(Y,g/g)
  消費された糖(g/L)に対する生成した乳酸(g/L)の比率として定義した。
 (3)乳酸生産速度
 発酵時間(h)に対する生成した乳酸濃度(g/L)の比率として計算した(各サンプリング期間の間で計算)。
 (4)L-乳酸の純度
 下記のように評価した。
Figure JPOXMLDOC01-appb-M000003
 (5)発酵の全糖類取込み(qs)及び比乳酸生産率(qp
 次式により計算した。
Figure JPOXMLDOC01-appb-M000004
 ここで△s及び△pはそれぞれ、期間△tにわたる糖濃度及び乳酸濃度の変化であり;χavは△tにわたる細胞密度の平均である。
 [培地]
 特に記載した場合を除き、mMRS培地を用いた。これは、下記のものを含有していた(リットル当たり):10 gのペプトン(Difco、ミシガン州デトロイト)、8 gの牛肉エキス(Nacalai Tesque、日本、京都)、4 gの酵母エキス(Nacalai Tesque)、2 gのK2HPO4(Nacalai Tesque)、5 gのCH3COONa・3H2O(Nacalai Tesque)、2 gのクエン酸三アンモニウム(Nacalai Tesque)、0.2 gのMgSO4・7H2O(Nacalai Tesque)、0.05 gのMnSO4・4H2O(Nacalai Tesque)、1 mlのTween 80(Nacalai Tesque)。特に示した場合を除き、リフレッシュ及び前培養のためには10 g/L(1%)、主発酵のためには20 g/Lのグルコースを含んでいた。また、場合により、D-セロビオース(Sigma)、グルコース、アラビノース等を所定の濃度で含んでいた。
 [実施例1:培養条件の検討]
 (1)材料及び方法
 QU25をこの研究に用いた。
 A.フラスコ培養
 1 mlのグリセロール保存培養物を、15mlスクリューキャップ試験管に9 mlのmMRS-糖(1%[wt/vol])を入れた試験管に接種し(10%[vol/vol])、30℃で24時間インキュベートした。得られた培養物の一部を、200 ml容フラスコ中の100 mlのmMRS-セロビオース(2% [wt/vol])培地に接種し(10%[vol/vol])、30℃で72時間培養した。培養開始時のpHは6.5であった。
 B.ジャーファーメンター培養
 フラスコ培養の場合と同様にリフレッシュして得た培養物4 mlを、同じ培地36mlを入れた50 mlスクリューキャップ試験管中の新たな増殖培地へ移した。接種物を30℃で8時間インキュベートした後、(10%[vol/vol])でジャーファーメンターへ接種した。
 発酵は、200 rpmの撹拌速度で、1L容のジャーファーメンター(Biott、日本、東京)内において、種々の量の糖を補充したmMRSを用い、0.4 Lスケールで(ただし、糖濃度150 g/L培養では0.2 Lスケールで)実施した。糖溶液を独立してオートクレーブ処理し、そして残りのmMRS培地と混合した。
 各サンプリング時点で5 mlの培養物を無菌的に各ジャーから分離し、その後の分析のために-20℃で凍結した。乾燥細胞重量(dry cell weight)(DCW)、残留糖類及び発酵生成物をアッセイした。
 最適pHを調べるために、発酵中に自動pH制御装置(PH C2201、Biott)に接続した蠕動ポンプで5 M NaOHを添加することによりpHを制御し、及び制御せずに、アッセイを実施した。pHをそれぞれ5.5、6.0、6.5、7.0及び7.5に制御した。この菌株の発酵プロファイルを30℃で24時間の増殖後に測定した。
 乳酸生産に対する温度の作用を調べるために、それぞれ30、37、43、45、47及び50℃に制御した種々の温度で、5 M NaOHの自動添加により7.0に設定したpH制御発酵においてアッセイを実施した。発酵はmMRS-セロビオース(2.0%[wt/vol])中で実施した。
 糖混合物の作用を、発酵培地に比率1:1のグルコース/セロビオースをそれぞれ10、15及び20 g/Lの濃度で補充することにより調べた。基質濃度の作用を、セロビオース濃度50、100 g若しくは150 g/L、又はグルコース濃度150 g/LのmMRS培地を用いて調べた。発酵はいずれも、43℃、pH 7.0に制御下(10M又は15MのNaOHの自動添加)で実施した。糖濃度150 g/Lの培養では、酵母エキスを培養8時間、60時間、96時間の時点で、それぞれ1%、0.25%、0.25%[wt/vol]で補った。
 (2)結果
 A.タイムコース試験からの増殖及び乳酸産生プロファイル
 フラスコ培養によりタイムコース試験を実施して、pHを制御しない条件下でのQU25の増殖及び乳酸プロファイルを作成した。この回分発酵において、セロビオース消費の速度(容量当たり)はきわめて低速で起きた。DCW測定に基づくと、QU25は速やかに増殖し、約0.91 g/Lで水平になった(図1)。21時間後にpHが4.85に落ちた。L-(+)-乳酸の最大生産濃度は、60時間後、7.04 g/Lであった。副生産物の生成はなかった。
 B.pH制御条件下での乳酸発酵
 結果を下表に示した。
Figure JPOXMLDOC01-appb-T000005
 HPLC分析により、本発酵はホモ乳酸発酵であり、わずかな量の酢酸の生成があったほかは、他の副生産物のピークは見られなかった。図2に、収率、光学純度及び最大生産速度を示した。
 pHを5.5~6.0に低く制御した場合、pH6.5~7.5にpH制御した場合に比較して、細胞増殖が明らかに阻害された。pH 5.5~6.0では、セロビオース消費はきわめて低速で進行し、発酵の終了時まで枯渇しなかった。最大乳酸生産速度は、pHが高いほど大きく、pH 7.0で2.1 g/L/hと高い値が得られた。これはpH制御しない発酵で得られたものより4倍高い数値であった。表2に示した結果より、乳酸収率なども考慮した結果、最適pHは7であると考えられる。このpHではセロビオースの完全枯渇に要したのはわずか16~20時間であった。
 C.種々の温度下での乳酸発酵
 結果を下表に示した。
Figure JPOXMLDOC01-appb-T000006
 QU25は、乳酸産生及び乳酸収率に関して30~45℃の広い温度範囲にわたって良好な生物活性を示した。43℃において、20時間の培養ですべてのセルビオースが消費された。しかし、乳酸濃度は30~43℃でほぼ同じであったが、最大乳酸生産率は20℃での2.54 g/L/hから43℃での3.44 g/L/hまで、温度とともに上昇した。同様に、最大増殖速度も温度の上昇に伴って43℃での0.675 h-1まで上昇した。細胞増殖は、高い温度ではセロビオース基質が枯渇した直後に死滅期に入り、一方、より低い温度では長い定常期を示した。45℃を超える高い温度では、QU25は良好な細胞増殖も高い乳酸産生も示さなかった。したがって、最適温度は43℃であると考えられる。
 D.グルコース/セロビオース混合物からの乳酸発酵
 結果を下表に示した。
Figure JPOXMLDOC01-appb-T000007
 図3に、グルコース及びセロビオース濃度が各10 g/Lの場合の糖消費と乳酸生産を示した。QU25はセロビオースをグルコースと同じように消費し、発酵は6時間以内に終了た。糖消費速度は、グルコース及びセロビオースについてそれぞれ1.69 g/L/h及び1.53 g/L/hで、ほぼ類似していた。
 糖混合物に関して、高濃度の乳酸が高収率で生産された。これらのデータは、QU25が糖混合物を単一の炭素源と同じように同時利用することを示唆している。
 E.セロビオース濃度の影響
 結果を下表に示した。
Figure JPOXMLDOC01-appb-T000008
 図4にセロビオース濃度が150 g/Lである場合のプロファイルを示した。プロファイルは、基質濃度に伴って延長する発酵時間以外は、基質濃度が異なっても全般的に類似していた。興味深いことに、きわめて短い誘導期があり、その後、対数期においては細胞増殖速度は多かれ少なかれ同じであった。増殖挙動は、QU25の増殖に対する基質阻害作用がないことを示唆している。細胞増殖曲線は短い静止期を経過し、次いで死滅期に入った。
 50 g/Lのセロビオースについて、発酵は20時間でほぼ完了したが、100 g/Lを消費するにはさらに約50時間、150 g/Lを消費するには約76時間を要した。また、150 g/Lのグルコースについても150 g/Lのセロビオースとほぼ同様の発酵プロファイルを示した。
 以上から、乳酸発酵における基質阻害作用は無視しうると結論できる。
 [実施例2:キシロースの影響]
 (1)方法
 培地として、前述の実施例において使用したmMRS培地において、糖としてキシロースを補充したものを用いた。キシロース濃度は、リフレッシュの際は10 g/Lとした。また、pH制御及び温度の影響の検討の際には、ジャーファーメンター(1 L容のものを使用)を用い、最終キシロース濃度は166 mM(25 g/L)とした。また、334 mM (50.1 g/L) 、480 mM (72.0 g/L)及び691 mM (103 g/L)の3つのレベルの最終キシロース濃度で発酵プロファイルを検討した。QU25の培養条件は、実施例1に準じた。
 (2)結果
 A.pH制御及び温度の影響
 結果を下表に示した。
Figure JPOXMLDOC01-appb-T000009
 30℃では、pH 7.0で最も高い乳酸生産速度が観察された。pHを7.0とした場合には、30℃~43℃の範囲においては、温度が上昇するに従い、乳酸生産速度が高くなった。QU25は、キシロースをよく消費し、またキシロース消費の観点からも、pH 7.0、43℃付近での培養条件が適することが分かった。
 B.キシロース濃度の影響
 結果を下表及び図5に示した。
Figure JPOXMLDOC01-appb-T000010
 334 mM (50.1 g/L) (図5A)、480 mM (72.0 g/L) (図5B)及び691 mM (103 g/L) (図5C)の3つのレベルのキシロース濃度で発酵プロファイルを検討した。わずかな量の酢酸(≦ 17 mM)、ギ酸(≦13 mM)、及びエタノール(≦ 34 mM)の生成が観察されたに過ぎなかった。この現象はC5糖からの野生株を用いた乳酸発酵としてはきわめて珍しく、C5糖から高効率で乳酸が得られることを示している。
 キシロース濃度が691 mMでは、生産速度や収率が減じた(データ示さず)。これは高い基質濃度による阻害によるものだと理解された。高い糖濃度で発酵を行うことは、経済的な観点からは望ましいが、QU25による乳酸生産における現実的なキシロース濃度は、691 mMであると考えられた。
 [実施例3:発酵様式に与えるキシロース濃度の検討]
 当初の研究で、キシロース濃度がその発酵特性、すなわち乳酸などの生産物の割合に影響を与えていることが明らかとなっていたので、ここではその詳細を調べた。
 (1)方法
 最適発酵条件であるpH 7.0、43℃において、キシロース濃度を変え、QU 25の回分培養を行った。
 (2)結果
 結果を下表に示した。
Figure JPOXMLDOC01-appb-T000011
 QU 25は基質濃度によって発酵収率が変化することが明らかとなった。すなわち、キシロース低濃度下では、副産物が生成され、乳酸の収率は低くなるが、キシロース高濃度下では、酢酸やギ酸といった副産物はほとんど生産されず、乳酸の収率は高い値を示した。
 この結果より、 QU 25を用いて、キシロース高濃度仕込みから高濃度のl-乳酸を副産物をほとんど伴わずに高収率で生産することができることが明らかとなった。
 [実施例4:セロオリゴ糖の資化性試験]
 (1)方法
 培地として、前述の実施例において使用したmMRS培地において、糖としてセロオリゴ糖(Cellotriose 4.23 g/L、Cellotetraose 2.67 g/L、又は Cellopentose 3.64 g/L)を用いた。QU25は、mMRS-cellobiose培地で培養したものを、10%接種することにより培養を開始した。培養は、43 oC、初発 pH 7.0 (未制御)で行った。
 (2)結果
 結果を下表に示した。
Figure JPOXMLDOC01-appb-T000012
 Medium componentsは糖源なしの培地を用いた系、μmaxは最大比増殖速度、Xmaxは最大菌体量を表す。
 上表に示すように、セロトリオース(C6三糖)、セロテトラロース(C6四糖)及びセロペントース(C6五糖)を用いて資化性試験を行った結果、セロトリオース及びセロテトラロースから、約100%の収率でl-乳酸(光学純度、100%)を生産した。QU 25は、セロオリゴ糖を効率よく代謝し、l-乳酸を生産することが示された。
 [実施例4: アラビノースの資化性実験]
 QU 25株の、キシロースと同様のペントース(C5単糖)であるアラビノースの発酵特性について検討した。
 4-1.アラビノースから乳酸生産に及ぼすpHの影響
 (1)方法 
 培地として、mMRSにアラビノース(200 mM)を添加したものを用いた。培地に、mMRS-アラビノース培地で培養した増殖期にあるQU25を10%接種し、43 ℃で、培養開始時のpH 7.0でその後は制御せず、又はpH 6.0、6.5、7.0若しくは7.5に制御(10 M又は15 MのNaOHの自動添加による)して、培養した。
 (2)結果
 結果を下表に示した。
Figure JPOXMLDOC01-appb-T000013
 pHを制御せず、43 ℃で培養した結果、アラビノースを約46 mM資化して約72 mMの乳酸を生産した。乳酸収率は1.57 mol/molであった。この高い乳酸収率は、PP/解糖系経路を経由する最大理論収率(1.67 mol/mol)に近い結果となった。また、ギ酸、酢酸などの副産物が少ないことから、低コストで乳酸精製を行うことができると考えられる。
 pH 6.0で制御しながら培養すると、副産物が最も少なく、約193 mMの乳酸を生産した。このときの乳酸収率は、1.44 mol/molであった。最大菌体量は、pH 6.5から7.5までで得られた量より少なかった。一方、pH 6.5で培養した結果、乳酸生産量は、224 mMであり、最も高かったが、同時に高い濃度の副産物も生産された。さらに、pH 7.0以上での培養では、副産物の産生が多くなり、乳酸収率が大きく低下した。このような観点から、pH 6.0又は6.5に制御するとよいと考えられる。
 4-2.アラビノース濃度の検討
 (1)方法 
 4-1と同様、mMRS-アラビノース培地で培養した増殖期にあるQU25を10%接種し、43 ℃で、pHを6.5又は6.0に制御して培養した。培地のアラビノース濃度は、107.6、199.55、202.14、326、477.02、606.93 mMとした。
 (2)結果
 pHを6.5に制御した場合の結果を下表に示した。
Figure JPOXMLDOC01-appb-T000014
 pH 6.5で培養を行った結果、初発濃度606.9 mMのアラビノースから763 mMの乳酸を生産した。副産物を生産せず、乳酸の対アラビノース収率は1.29 mol/molであった。しかしながら、326 mM以下のアラビノース濃度では、副産物が生産された。主に、ギ酸が副生されたことから、PP/解糖系経路がアラビノースの主な代謝経路であることを示唆された。
 この結果から、QU 25株での代謝とその制御は同じペントースであるキシロースとアラビノースでは異なることが予想される。
 pH 6.0で培養を行った結果を下表に示した。
Figure JPOXMLDOC01-appb-T000015
 初発濃度329.4 mMのアラビノースから445.14 mMの乳酸を生産した。副産物を生産せず、1.39 mol/molの収率であった。しかし、より高いアラビノース濃度(>329 mM)では、基質阻害により、アラビノース消費と乳酸生産の両方に著しい減少が見られた。Table 2-5のpH 6.5での培養挙動と明らかに異なるものであり、6.0と6.5という僅かに異なるpH制御値によって大きく代謝が変化する興味深い発酵現象であった。
 [実施例5:糖混合物からの乳酸生産]
 A. グルコース/キシロース混合物
 グルコース:キシロースの重量比2:1の混合物からの乳酸発酵について検討した。発酵はいずれも、43℃、pH7.0に制御下(10 M又は15 MのNaOHの自動添加)で実施した。
 結果を下表に示した。また、初発グルコース濃度40 g/Lにおける培養結果を図7に示した。
Figure JPOXMLDOC01-appb-T000016
 QU 25は、いずれの濃度においても、同じように糖を消費した。副産物はなく、光学純度も高かった。
 B. グルコース/キシロース/セロビオース混合物
 本実施例のAと同様に、ただしさらにセロビオースを添加して、混合物からの乳酸発酵について検討した。
 結果を図8に示した。グルコース及びセロビオースが迅速に消費された。有力なセルラーゼインヒビターでもあるセロビオースの迅速な消費は、セルロースやヘミセルロースを多く含むバイオマスからの商業的な乳酸生産において、非常に有利であると考えられる。
 また、キシロースのみを炭素源として、低い濃度(<25 g/L)用いた場合には、少量の副産物の生成がみられたが、他の糖と混合して用いた場合には、副産物の生成が顕著に減少した(図9)。
 [実施例6: QU25による非滅菌反復発酵]
 本発明者らの検討によると、他の乳酸菌と比較して、QU25は熱耐性株であり、非滅菌発酵において使用可能であることが分かっている。
 本実施例では、QU25を用いて、非滅菌条件下で、反復回分発酵を試みた。
 (1)方法
 リフレッシュし、そして前培養(MRS-20 g/Lグルコース)したQU25を、43 ℃で、培養した。pHは7.0に制御した。中和には、1~7回分に関しては、10 N NaOH、8~12回分に関しては、15 N NaOHを用いた。
 12回分すべてで、培地を滅菌しなかった。各回分(実行/周期)終了時に遠心分離によって細胞を収集し、そして次の回分(実行)に10%接種したが、例外として、回分6では接種は14%とした。
 開放反復発酵を12周期行った。周期1~10、及び12は回分培養であり;周期11のみ流加培養とした。各回分の培養時間は、培養条件次第で多様であった。
 最初の5回の実行では、100 g/Lグルコースを含むmMRS培地を用いて、L-乳酸産生に対する回分反復の影響を調べた。回分6では、14%より高い細胞密度を用いて、最初の5回の回分で用いたのと同じ栄養が、より高い初期細胞密度の増殖を補助しうるかどうかを試験した。
 回分7~10では、5、10、及び各実行で言及するような多様なグルコース濃度を用いることによって、栄養必要条件を研究した。回分11では、流加回分を行って、より高い基質濃度を用いた。回分12では、混合糖発酵を行った。
Figure JPOXMLDOC01-appb-T000017
 (2)結果
 結果を下表に示した。
Figure JPOXMLDOC01-appb-T000018
 最初の6回分では、乳酸生産性は、細胞密度が増加するにつれて次第に増加した(図10)。乳酸生産性は、第一の回分の2.21 g/L/時間から、回分番号6の14.1 g/L/時間まで有意に増加した。乳酸収率は~80%でほぼ同じであった(上表)。
 回分7では、5 g/Lの酵母エキスのみ(mMRS培地の4 g/L酵母エキス+10 g/Lペプトン+8 g/L牛肉エキスの代わりに)を用いることによって、乳酸産生及び生産性に対する栄養条件の影響を研究した。興味深いことに、初期細胞密度が先の回分(すなわち回分4~6)より低いにもかかわらず、先の回分と同じ収率で、わずかにより高いレベルの乳酸が産生された(図12)。
 さらに興味深いことに、先の回分と同じ培地(5 g/Lの酵母エキスのみを添加)とともに、より高い濃度の基質を添加することによって(回分8)、乳酸収率及び産生レベルが改善された。対照的に、乳酸生産性は有意に半分まで減少した(すなわち10.61 g/L/h~5.29 g/L/h)(上表及び図13)。
 回分9において、同じ初期グルコース濃度(130 g/L)で、10g /Lの酵母エキス(5g/Lの代わりに)を用いた。乳酸濃度、収率、及び生産性がわずかに改善されることが見出された(上表)。
 窒素供給源として少量の酵母エキスのみ(5g/L)を用いた場合、発酵中に細胞密度が次第に減少する一方、MRS培地の4g/L酵母エキス+10g/Lペプトン+8g/L牛肉エキスでは、細胞密度が増加することがわかった(図11)。
 回分10において、130g/Lグルコースを含むMRSを用いた。すべての発酵パラメータが増加した(上表)。0.90 g/gの収率及び8.19 g/L/hの高い生産性で、114.7 g/Lの乳酸を得ることができた(図13)。
 発酵様式を周期(実行)番号11で流加培養に変更した。それぞれ、7.74 g/L/h及び0.85 g/gの高い生産性及び収率で、144.5 g/Lグルコースから131.6 g/Lの乳酸を得ることができた(図14)。
 最後に、当モル比で、混合糖(グルコース及びキシロース)を用いた。興味深いことに、乳酸は、0.82 g/gの高収率及び4.64 g/L/hの高生産性で、ホモ発酵的に産生された。
 乳酸の光学純度は、すべての培養区で高く維持された(≧99%)(上表)。
 本実施例のデータは、光学的に純粋な乳酸産生に関する、乳酸菌を用いた反復開放回分の能力を立証する最初の報告である。QU25を用いた開放反復回分は、発酵能のいかなる喪失も伴わずに、12周期に関して、成功裡に実行された。

Claims (8)

  1. セルロース及び/又はヘミセルロース由来の、セロビオース、セロオリゴ糖類、キシロース、アラビノース、グルコースからなる群より選択されるいずれかを基質として含む環境(medium)で、L-乳酸を生産可能な乳酸菌を培養し、L-乳酸を得る工程を含む、L-乳酸の生産方法。
  2. 乳酸菌が、エンテロコッカス・ムンヅティ(Enterococcus mundtii)に属する乳酸菌である、請求項1に記載の生産方法。
  3. 環境がセロオリゴ糖類を基質として含み、セロオリゴ糖類が、セロトリオース及びセロテトラオースを含む、請求項1又は2に記載の生産方法。
  4. 環境がキシロースを基質として含み、さらにグルコース及び/又はセロビオースを基質として含み、キシロースの濃度が、10 g/L~150 g/Lである、請求項1~3のいずれか1項に記載の生産方法。
  5. 開放系、及び/又は非滅菌の環境で実施される、請求項1~4のいずれか1項に記載の生産方法。
  6. 回分式で繰り返し実施される、請求項5に記載の生産方法。
  7.  バイオマス原料が、非食用バイオマス原料である、請求項1~5のいずれか1項に記載の生産方法。
  8.  請求項1~7のいずれか1項に定義されたL-乳酸の生産のための工程、及びL-乳酸を重合する工程を含む、ポリL-乳酸の生産方法。
PCT/JP2011/066260 2010-07-16 2011-07-15 ペントース及びセロオリゴ糖類存在下での乳酸菌によるl-乳酸の生産方法 WO2012008589A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012524617A JP5307295B2 (ja) 2010-07-16 2011-07-15 ペントース及びセロオリゴ糖類存在下での乳酸菌によるl−乳酸の生産方法
US13/810,426 US9234219B2 (en) 2010-07-16 2011-07-15 Method for producing L-lactic acid by lactic acid bacterium under presence of pentose and cellooligosaccharides

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010162227 2010-07-16
JP2010-162227 2010-07-16
JP2011020593 2011-02-02
JP2011-020593 2011-02-02

Publications (1)

Publication Number Publication Date
WO2012008589A1 true WO2012008589A1 (ja) 2012-01-19

Family

ID=45469579

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/066260 WO2012008589A1 (ja) 2010-07-16 2011-07-15 ペントース及びセロオリゴ糖類存在下での乳酸菌によるl-乳酸の生産方法
PCT/JP2011/066253 WO2012008585A1 (ja) 2010-07-16 2011-07-15 新規乳酸菌及びそれを用いたl-乳酸の生産方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066253 WO2012008585A1 (ja) 2010-07-16 2011-07-15 新規乳酸菌及びそれを用いたl-乳酸の生産方法

Country Status (3)

Country Link
US (2) US9234219B2 (ja)
JP (3) JP5307295B2 (ja)
WO (2) WO2012008589A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9234219B2 (en) 2010-07-16 2016-01-12 Kyushu University, National University Corporation Method for producing L-lactic acid by lactic acid bacterium under presence of pentose and cellooligosaccharides
CN102776248A (zh) * 2012-04-11 2012-11-14 苏州百趣食品有限公司 一种利用米根霉同步糖化发酵产乳酸的方法
JPWO2015068645A1 (ja) * 2013-11-05 2017-03-09 関西化学機械製作株式会社 乳酸の製造方法
ES2740359T3 (es) 2013-12-26 2020-02-05 Kawasaki Heavy Ind Ltd Procedimiento de producción de una solución sacarificada, que utiliza biomasa como materia prima, dispositivo de producción de una solución sacarificada
EP3314000B1 (en) * 2015-06-29 2021-02-17 PTT Global Chemical Public Company Limited Process for producing lactic acid or its salts from fermentation using thermotolerant bacillus bacteria
KR101686337B1 (ko) * 2015-07-10 2016-12-13 롯데케미칼 주식회사 글리세롤을 탄소원으로 젖산을 생산하는 미생물 및 이를 이용한 젖산 생산 방법
JP6935876B2 (ja) * 2016-06-06 2021-09-15 学校法人 芝浦工業大学 新規ペプチド及びその利用方法
JP7094581B2 (ja) 2020-10-26 2022-07-04 株式会社ウッドビルド 小屋裏空間通気制御装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09173090A (ja) * 1995-12-27 1997-07-08 Mercian Corp L(+)−乳酸の製造法及びその製造装置
JP2002186938A (ja) * 2000-12-20 2002-07-02 Tsukishima Kikai Co Ltd セルロース含有物の処理方法
JP2003164276A (ja) * 2001-11-30 2003-06-10 Yamaya Communications:Kk 新規なエンテロコッカス属乳酸菌及びその培養物
JP2003235529A (ja) * 2002-02-21 2003-08-26 Yamaya Communications:Kk 食品の保存方法
WO2005100543A1 (ja) * 2004-03-31 2005-10-27 Sankyo Lifetech Co., Ltd. L−乳酸の製造方法
JP2006042796A (ja) * 2004-07-09 2006-02-16 Masanori Sugiyama 発酵飲料及びその製造法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3841495B2 (ja) 1995-09-14 2006-11-01 サンエイ糖化株式会社 L−乳酸生産能及びtnf産生誘導活性を有する乳酸菌
JP2009195251A (ja) 2004-07-09 2009-09-03 Hiroshima Univ 発酵飲料及びその製造法
US9234219B2 (en) 2010-07-16 2016-01-12 Kyushu University, National University Corporation Method for producing L-lactic acid by lactic acid bacterium under presence of pentose and cellooligosaccharides

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09173090A (ja) * 1995-12-27 1997-07-08 Mercian Corp L(+)−乳酸の製造法及びその製造装置
JP2002186938A (ja) * 2000-12-20 2002-07-02 Tsukishima Kikai Co Ltd セルロース含有物の処理方法
JP2003164276A (ja) * 2001-11-30 2003-06-10 Yamaya Communications:Kk 新規なエンテロコッカス属乳酸菌及びその培養物
JP2003235529A (ja) * 2002-02-21 2003-08-26 Yamaya Communications:Kk 食品の保存方法
WO2005100543A1 (ja) * 2004-03-31 2005-10-27 Sankyo Lifetech Co., Ltd. L−乳酸の製造方法
JP2006042796A (ja) * 2004-07-09 2006-02-16 Masanori Sugiyama 発酵飲料及びその製造法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ABDEL-RAHMAN, M.A ET AL.: "Efficient Homofermentative L-(+)-Lactic acid Production from Xylose by a Novel Lactic Acid Bacterium, Enterococcus mundtii QU 25", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 77, no. 5, March 2011 (2011-03-01), pages 1892 - 1895 *
ABDEL-RAHMAN, M.A. ET AL.: "Effective (+)-Lactic Acid Production by Co-fermentation of Mixed Sugars", JOURNAL OF BIOTECHNOLOGY, vol. 150, no. SUP.1, November 2010 (2010-11-01), pages S347 - S348 *
ABDEL-RAHMAN, M.A. ET AL.: "Isolation and characterisation of lactic acid bacterium for effective fermentation of cellobiose into optically pure homo L-(+)-lactic acid, Appl. Microbiol", BIOTECHNOL, vol. 89, November 2010 (2010-11-01), pages 1039 - 1049 *
ABDEL-RAHMAN, M.A. ET AL.: "Isolation and Characterization of Novel Lactic Acid Bacterium for Efficient Production of L (+)- Lactic Acid from Xylose", JOURNAL OF BIOTECHNOLOGY, vol. 150, no. SUP.1, November 2010 (2010-11-01), pages S347 *

Also Published As

Publication number Publication date
JP5307295B2 (ja) 2013-10-02
US20130203134A1 (en) 2013-08-08
JPWO2012008589A1 (ja) 2013-09-09
WO2012008585A1 (ja) 2012-01-19
JP2013165719A (ja) 2013-08-29
US9234219B2 (en) 2016-01-12
US20130171705A1 (en) 2013-07-04
JP5986527B2 (ja) 2016-09-06
JPWO2012008585A1 (ja) 2013-09-09

Similar Documents

Publication Publication Date Title
JP5986527B2 (ja) ペントース及びセロオリゴ糖類存在下での乳酸菌によるl−乳酸の生産方法
Hu et al. High-titer lactic acid production from NaOH-pretreated corn stover by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile condition
Annamalai et al. Production of polyhydroxybutyrate from wheat bran hydrolysate using Ralstonia eutropha through microbial fermentation
Wang et al. Efficient production of pullulan using rice hull hydrolysate by adaptive laboratory evolution of Aureobasidium pullulans
Gao et al. L-lactic acid production by Bacillus subtilis MUR1
Yang et al. Valorisation of mixed bakery waste in non-sterilized fermentation for l-lactic acid production by an evolved Thermoanaerobacterium sp. strain
Wang et al. Exploring the potential of lactic acid production from lignocellulosic hydrolysates with various ratios of hexose versus pentose by Bacillus coagulans IPE22
Mladenović et al. Enhanced lactic acid production by adaptive evolution of Lactobacillus paracasei on agro-industrial substrate
Wang et al. Efficient L-lactic acid production from sweet sorghum bagasse by open simultaneous saccharification and fermentation
Aranda-Martinez et al. Ethanol production from chitosan by the nematophagous fungus Pochonia chlamydosporia and the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana
Mulyaningtyas et al. Effect of combined pretreatment of lignocellulose and the kinetics of its subsequent bioconversion by Aspergillus niger
Camesasca et al. Lactic acid production by Carnobacterium sp. isolated from a maritime Antarctic lake using eucalyptus enzymatic hydrolysate
Nwuche et al. Bioethanol production under multiple stress condition by a new acid and temperature tolerant Saccharomyces cerevisiae strain LC 269108 isolated from rotten fruits
TWI540208B (zh) 用於培養酵母菌細胞的種菌培養基及其用途
Marzo et al. Valorisation of fungal hydrolysates of exhausted sugar beet pulp for lactic acid production
Liu et al. One-pot fermentation for erythritol production from distillers grains by the co-cultivation of Yarrowia lipolytica and Trichoderma reesei
Liu et al. Improving xylose utilization of defatted rice bran for nisin production by overexpression of a xylose transcriptional regulator in Lactococcus lactis
US11085017B2 (en) Process for propagating a yeast capable to ferment glucose and xylose
Gómez-Gómez et al. Evaluation of biological production of lactic acid in a synthetic medium and in Aloe vera (L.) Burm. f. processing by-products
TWI719317B (zh) 用於生產乳酸的方法
JP5527723B2 (ja) 植物細胞壁成分から変換されたα−グルカンを保持する菌体の製造方法
Syadiah et al. Bioprocess engineering of bioethanol production based on sweet sorghum bagasse by co-culture technique using Trichodermareesei and Saccharomyces cerevisiae
WO2005100543A1 (ja) L−乳酸の製造方法
TW201817316A (zh) 製備含有丁酸及/或丁酸鹽之飼料原料的方法
JP5938160B2 (ja) 同時糖化発酵による有価物製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806919

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012524617

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13810426

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11806919

Country of ref document: EP

Kind code of ref document: A1