WO2012005408A1 - 선박 운항지시 최적화 구현을 위한 에너지 효율 최적화를 이용한 선박 연료 절감 시스템 및 그 방법과 그 방법에 의한 컴퓨터 프로그램을 저장한 기록매체 - Google Patents

선박 운항지시 최적화 구현을 위한 에너지 효율 최적화를 이용한 선박 연료 절감 시스템 및 그 방법과 그 방법에 의한 컴퓨터 프로그램을 저장한 기록매체 Download PDF

Info

Publication number
WO2012005408A1
WO2012005408A1 PCT/KR2010/005893 KR2010005893W WO2012005408A1 WO 2012005408 A1 WO2012005408 A1 WO 2012005408A1 KR 2010005893 W KR2010005893 W KR 2010005893W WO 2012005408 A1 WO2012005408 A1 WO 2012005408A1
Authority
WO
WIPO (PCT)
Prior art keywords
rpm
fuel
optimal
optimum
flight
Prior art date
Application number
PCT/KR2010/005893
Other languages
English (en)
French (fr)
Inventor
김재열
이서정
Original Assignee
(주)뉴월드마리타임
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)뉴월드마리타임 filed Critical (주)뉴월드마리타임
Priority to CN2010800679351A priority Critical patent/CN103124965A/zh
Priority to JP2013518209A priority patent/JP2013531580A/ja
Publication of WO2012005408A1 publication Critical patent/WO2012005408A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators

Definitions

  • the present invention relates to a ship fuel saving system using fuel efficiency optimization, and a method and a recording medium storing a computer program according to the method.
  • the present invention relates to a ship fuel saving system using energy efficiency optimization that reduces fuel consumption and minimizes CO 2 emissions by operating in an operating condition, and a recording medium storing computer programs therefor.
  • CO2 emissions are widely known as key factors for global warming, climate change and ocean acidification.
  • the amount of CO2 emitted to transport one ton of cargo a mile is the most overwhelming means of transportation in the world, even though ships are the most efficient means of transport, so about 3% of the total greenhouse gas emissions emitted by the industry I am.
  • the optimum route and engine mode are provided in consideration of the hull conditions and the method of providing the optimum route reflecting the weather conditions introduced in the market. There is a way.
  • the optimal route is designed based only on the weather conditions transmitted from the onshore weather information provider, and the present invention provides an optimal RPM considering all the weather conditions, the hull conditions, and the engine conditions. There are differences in the conditions under consideration and the information provided, and there are a number of cases introduced in Korea, but the effects of oil reduction are insignificant.
  • Korean Unexamined Patent Publication No. 1997-0071419 (hereinafter referred to as "prior art 1") relates to an optimum navigation system of a ship, and has a sound receiver mounted on the ship and transmitting a request signal and an acoustic receiver receiving a response signal.
  • a sound device, and the acoustic reactor is installed in the lower portion of the canyon for transmitting a response signal in response to the request signal.
  • Korean Registered Patent No. 0333258 (hereinafter referred to as "prior art 2”) relates to a web service method for safe ship operation and control of ships, and the ship's identification number, ship name, Generating ship data of ship length, ship width, ship type, position information, ship speed, navigation status, bow direction, head angle, ship travel direction; Periodically transmitting the ship data to an ASP system through a satellite; Processing the vessel management module built in the ASP system according to the vessel data user and storing the vessel in a DB; Accessing an ECS terminal for extracting vessel data stored in the vessel DB and a homepage on which a program showing an electronic chart on the web is installed on a control client terminal; The home page is a ship information is transferred to the ASP system using the data stored in the electronic chart DB to represent the vessel on the electronic chart; Clicking a plurality of vessels shown in the electronic chart on the homepage implemented in the web to obtain all the information on the vessel in real time.
  • the prior art 1 has the effect of predicting not only the center of the canyon in a straight canyon, but also the depth change of the canyon, the bend of the canyon, and the like, by using an acoustic signal. Although it is effective to receive real-time ship safety related information such as electronic chart and current weather environment, and the location information of ships can be serviced anywhere through the Internet, it is possible to collect the operational status of ships in real time and power each equipment. There is no description or mention at all of the technical features of the present invention for reducing fuel consumption by allowing the vehicle to operate under optimum operating conditions.
  • the technical problem to be achieved by the present invention is to obtain the weather information, navigation information, load information, engine information, etc. from various information devices of the vessel in real time to calculate the optimal RPM that can operate the most economically to the next destination to reduce energy consumption Reduce fuel consumption, but quickly change the optimal RPM in accordance with the change of operating conditions, calculate the fuel saving effect through the optimal operation objectively reflected in the next car, optimize the energy efficiency by integrated fuel oil reduction
  • the present invention provides a ship fuel saving system capable of automatically or semi-automatically performing the above process, a method thereof, and a recording medium storing a computer program according to the method.
  • the ship fuel saving system of the present invention the reference ship specification collection unit 10 for collecting the reference ship specifications; and the speed and fuel consumption rate while changing the operating conditions during the standard operation;
  • a reference flight data collection unit 20 which collects the measured reference flight data; and an optimum RPM calculation module generation unit 30 which receives the reference ship specification and the reference flight data to generate an optimal RPM calculation module;
  • An optimum RPM calculation unit 50 for calculating an optimal RPM by inputting a current schedule condition and operation condition to the optimum RPM calculation module received from the optimum RPM calculation module generation unit 30; and the optimal RPM calculation unit 50 RPM application unit 60 for applying to the engine of the vessel received from the optimal RPM;), including, the reference flight includes a factory trial run, maritime trial run, new construction N port, the latest M port, the N and M is official
  • the optimum RPM is the RPM that consumes the lowest fuel compared to the current schedule conditions and operating conditions, wherein the schedule conditions include a target distance, a target time, a variable
  • the optimum RPM [standard optimum speed-speed increase / decrease compared to operating conditions] ⁇ RPM conversion factor x weather compensation coefficient
  • the above standard operating conditions are operating conditions at the time of factory test run,
  • the target speed target distance / target time
  • variable target speed target distance / (target time + variable time)
  • the speed increase or decrease compared to the operating conditions is the speed that increases or decreases from the standard optimum speed when operating at the standard optimal RPM under the current operating conditions
  • the standard optimal RPM is RPM capable of operating at the standard optimum speed when the standard operating conditions
  • the RPM conversion coefficient is a coefficient that converts the speed of the [standard optimum speed-speed increase / loss relative to the operating condition] under the current operating conditions by multiplying the [standard optimum speed-speed increase / loss compared to the operating conditions].
  • the weather compensation coefficient net weather coefficient (normal weather degree-regular weather degree)-turbulent weather coefficient (warm weather degree-regular weather degree),
  • the regular phase accuracy is a value obtained by quantifying the degree of meteorological conditions of the standard operating conditions
  • the net weather degree is a value obtained by quantifying the net weather degree of current weather conditions
  • the turbulence is a numerical value of the turbulence of the current weather conditions
  • the net meteorological coefficient is obtained by multiplying the [normal meteorological coefficient (normal meteorological degree-regular meteorological degree)] by the [standard optimum speed-speed increase / decrease compared with the operating conditions] ⁇ RPM conversion coefficient to determine the RPM. Coefficient limiting not to exceed the limit RPM,
  • the upper limit RPM is the RPM of the point where the fuel consumption increase / speed increase increases when the RPM
  • the turbulence coefficient is obtained by multiplying the [turbulence phase coefficient (turbulence phase accuracy-regular phase accuracy)] by the [standard optimum speed-speed increase / decrease compared with the operating conditions] ⁇ RPM conversion coefficient to obtain the RPM. Coefficient limiting not to be below the limit RPM,
  • the upper limit air limit RPM is characterized in that the RPM of the fuel consumption reduction / speed reduction amount per mile in the current operating conditions when the RPM is reduced.
  • the ship fuel saving system of the present invention further includes an optimal RPM automatic change setting unit 43 for receiving a user's selection when automatically changing the optimum RPM,
  • the optimum RPM automatic change setting unit 43 transmits an optimal RPM generation command to the optimum RPM calculation unit 50 at the time of shifting, and receives the initial RPM from the user at the constant speed, and applies the RPM application unit 60.
  • Automatic change time setting unit 46 characterized in that it further comprises.
  • the ship fuel saving system of the present invention when receiving the user's optimal RPM change request, the manual RPM to manually change the optimal RPM generation command to the optimal RPM calculation unit 50 Setter 42; characterized in that it further comprises.
  • the optimum RPM calculation unit 50 of the ship fuel saving system of the present invention the schedule / operation to collect the current schedule conditions and operating conditions to be input to the optimum RPM calculation module Condition collection unit 52 and the optimal RPM generation command is received from the schedule / operating condition collection unit 52 receives the current schedule conditions and operating conditions to input the optimal RPM calculation module to calculate the optimal RPM An optimal RPM calculation module execution unit 54;
  • the ship fuel saving system of the present invention compared with the normal operation when the ship fuel saving system is not applied, and the fuel saving effect during the optimum operation to which the ship fuel saving system is applied.
  • It includes a fuel efficiency analysis unit 70 for analyzing, the fuel efficiency analysis unit 70, the fuel consumption data of the reference flight compared to the schedule conditions and the same schedule conditions, the same as the optimal flight, the general operation compared to the same schedule conditions
  • a fuel consumption data collection unit 72 for collecting fuel consumption data of the fuel consumption data of the optimum flight, the fuel consumption rate of the reference flight compared to the same schedule condition as the optimal flight,
  • a fuel consumption rate calculation unit 74 for calculating a fuel consumption rate; and the fuel of the normal operation in the fuel consumption rate calculation unit 74;
  • the fuel loss rate of the normal flight is calculated by receiving the mother rate and the fuel consumption rate of the reference flight, and the fuel consumption rate of the optimum flight is received from the fuel consumption rate calculation unit 74 by the fuel consumption rate of the optimal flight.
  • a fuel loss rate calculator 70 for analyzing
  • the RPM application unit 60 receives the optimal RPM from the optimum RPM calculation unit 50 and applies the RPM to the engine of the ship (S60); including, but the reference operation is a factory test run, It includes the sea trial operation, N port after the new construction, the recent M port, the N and M are the number of times arbitrarily designated by the official, the optimal RPM is the RPM that consumes the lowest fuel compared to the current schedule conditions and operating conditions,
  • the schedule condition includes a target distance, a target time, a variable time
  • the operation conditions include a hull condition, weather conditions, engine conditions,
  • the optimum RPM [standard optimum speed-speed increase / decrease compared to operating conditions] ⁇ RPM conversion factor x weather compensation coefficient
  • the above standard operating conditions are operating conditions at the time of factory test run,
  • the target speed target distance / target time
  • variable target speed target distance / (target time + variable time)
  • the speed increase or decrease compared to the operating conditions is the speed that increases or decreases from the standard optimum speed when operating at the standard optimal RPM under the current operating conditions
  • the standard optimal RPM is RPM capable of operating at the standard optimum speed when the standard operating conditions
  • the RPM conversion coefficient is a coefficient that converts the speed of the [standard optimum speed-speed increase / loss relative to the operating condition] under the current operating conditions by multiplying the [standard optimum speed-speed increase / loss compared to the operating conditions].
  • the weather compensation coefficient net weather coefficient (normal weather degree-regular weather degree)-turbulent weather coefficient (warm weather degree-regular weather degree),
  • the regular phase accuracy is a value obtained by quantifying the degree of meteorological conditions of the standard operating conditions
  • the net weather degree is a value obtained by quantifying the net weather degree of current weather conditions
  • the turbulence is a numerical value of the turbulence of the current weather conditions
  • the net meteorological coefficient is obtained by multiplying the [normal meteorological coefficient (normal meteorological degree-regular meteorological degree)] by the [standard optimum speed-speed increase / decrease compared with the operating conditions] ⁇ RPM conversion coefficient to determine the RPM. Coefficient limiting not to exceed the limit RPM,
  • the upper limit RPM is the RPM of the point where the fuel consumption increase / speed increase increases when the RPM
  • the turbulence coefficient is obtained by multiplying the [turbulence phase coefficient (turbulence phase accuracy-regular phase accuracy)] by the [standard optimum speed-speed increase / decrease compared with the operating conditions] ⁇ RPM conversion coefficient to obtain the RPM. Coefficient limiting not to be below the limit RPM,
  • the upper limit air limit RPM is characterized in that the RPM of the fuel consumption reduction / speed reduction amount per mile in the current operating conditions when the RPM is reduced.
  • the ship fuel saving method using the ship fuel saving system of the present invention (f) the optimum RPM change setting step (S40); further comprising, but automatically the optimal RPM When changing, the optimum RPM automatic change setting unit 43 transmits the optimum RPM generation command to the optimum RPM calculation unit 50 during the shift, and receives the initial RPM from the user during the constant shift, the RPM When the automatic shift / shift setting step (S46) to be delivered to the application unit 60 and the optimum RPM to automatically change, the optimum RPM automatic change setting unit 43 receives the change time interval, The optimum RPM automatic change time setting step (S44) for transmitting the optimal RPM generation command to the optimal RPM calculation unit 50 at every change time interval, the RPM application unit 60 delivers the initial RPM Take and apply it to the ship's engine Gong.
  • the ship fuel saving method using the ship fuel saving system of the present invention comprises the optimal RPM change setting step (S40), the step (f) is If the optimal manual RPM setting unit 42 receives the user's optimal RPM change request, the optimal RPM manual change setting step (S42) for transferring the optimal RPM generation command to the optimal RPM calculation unit 50; It features.
  • the step (d) of the ship fuel saving method using the ship fuel saving system of the present invention the optimum RPM calculation unit 50 is to be input to the optimum RPM calculation module A schedule / operation condition collection step (S52) of collecting the current schedule condition and operation condition; and the optimum RPM calculator 50 inputs the current schedule condition and operation condition to the optimum RPM calculation module to perform the optimal operation. It characterized in that it comprises a ;; optimal RPM calculation module execution step (S54) for calculating the RPM.
  • the ship fuel saving method using the ship fuel saving system of the present invention (g) when the normal operation without the ship fuel saving system and the ship fuel saving system Further comprising a fuel efficiency analysis step (S70) for comparing and analyzing the fuel savings effect during the applied optimal operation, the fuel efficiency analysis step (S70), the fuel efficiency analysis unit 70 is the ship fuel reduction system
  • the fuel efficiency analysis unit 70 consumes fuel for optimal operation to which the ship fuel saving system is applied as the fuel consumption data.
  • the fuel loss rate of the optimum flight fuel consumption rate of the optimal flight-fuel consumption rate of the standard flight
  • Fuel loss rate of the normal operation fuel consumption rate of the normal operation-fuel consumption rate of the standard operation
  • the fuel saving rate of the optimum flight the fuel loss rate of the normal flight-the fuel loss rate of the optimum flight.
  • the present invention it is possible to not only reduce the fuel oil, which is the main energy of the vessel, by optimizing all the internal and external energy consumption of the vessel and optimizing the energy efficiency according to the operating conditions, as well as the vessel navigation information device and engine for optimizing the energy consumption
  • the controller we can implement the technology to calculate the optimum operating conditions and use it to induce unmanned control of the engine.
  • FIG. 2 is a view showing a marine fuel saving system of the present invention.
  • FIG. 3 is a diagram illustrating an embodiment in which the ship fuel saving system of FIG. 2 is applied to a ship navigation system;
  • FIG. 4 is a diagram showing an example of reference flight data generated in a factory trial run
  • FIG. 5 is a diagram showing an example of reference flight data generated in a sea trial run
  • FIG. 6 is a diagram showing an example of reference flight data generated in N-track after construction
  • FIG. 8 is a view showing a ship fuel saving method of the present invention.
  • Optimal RPM calculation module generation unit 42 Optimal RPM manual change setting unit
  • the captain judges the weather condition, the schedule condition, and the hull condition mainly among the operating conditions, and the engineer judges the engine condition and the hull condition among the operating conditions, and readjusts the RPM. That is, during normal operation, the captain or engineer adjusts the speed by adjusting the RPM in consideration of weather conditions, schedule conditions, hull conditions, and engine conditions in order to arrive at a destination within a target time or a variable target time to be described later.
  • the present invention is a ship fuel saving system that is a system for calculating the RPM (hereinafter referred to as an optimal RPM) for maximizing fuel efficiency while operating a target distance within a target time or a variable target time in consideration of the above operating conditions.
  • the purpose is to apply to the vessel (hereinafter the vessel fuel saving system is referred to as the optimization system).
  • the schedule condition includes a target distance (D), a target time (H), and a variable time (h).
  • the target distance divided by the target time is a target speed (V)
  • the target distance (D) is a target time.
  • the variable target speed Vv is divided by the variable target time Hv which is the sum of (H) and the variable time h.
  • the operating conditions include hull conditions, weather conditions, engine conditions.
  • the weather conditions include wind speed, tidal velocity, pitching, rolling, and water depth, and the pitching is that the ship is shaking back and forth, and the rolling is the ship is shaking from side to side.
  • the engine conditions include RPM, engine load, and engine performance.
  • the hull condition includes drainage, hull slope, hull center of gravity, cargo load, fuel oil load, and parallel load.
  • the speed increase of the ship is proportional to the increase in RPM, but since the ship is affected by the change in the operating conditions, the change in RPM may not be reflected in the speed (ex. In the case of algae), which is reflected in excess (ex.
  • the fuel consumption change rate when the RPM is changed may also be increased depending on the above operating conditions (ex. When the cargo load is larger than usual) or may be decreased (ex. When the cargo load is lower than the normal). If the above operating conditions are different, the actual speed and the actual fuel consumption may be different even when operating at the same RPM, so operating at an RPM with a higher actual speed than the actual fuel consumption is efficient in terms of time while reducing fuel consumption. .
  • the data (hereinafter referred to as reference flight data) for calculating the optimal RPM are measured for each operating condition. At this time, while changing the RPM and the operating conditions, the speed and fuel consumption are measured accordingly.
  • the reference flight data is measured over a plurality of flights, and the flight to be measured for the reference flight data will be referred to as the reference flight.
  • the reference flight includes operations such as factory trial operation, maritime trial operation, new port N port, and recent M port, and may include only some of the four operations.
  • the manager, owner, user, etc. of the optimization system select some of the four operations as the reference flight in advance.
  • 4 is an example of reference flight data measured at the time of factory test run
  • FIG. 5 is an example of reference flight data measured at sea trial run
  • 6 is an example of reference flight data measured at the time of N port after construction.
  • an optimal RPM calculation module is generated to calculate an optimal RPM relative to the operating conditions based on the reference flight data, and the current RPM is input to the optimal RPM calculation module to input an optimal RPM. Calculate and apply to the operation (hereinafter, enter the current schedule conditions and operating conditions in the optimal RPM calculation module to calculate the optimal RPM to operate the optimal operation by minimizing fuel consumption compared to the normal operation).
  • FIG. 2 shows a ship fuel saving system according to an embodiment for achieving the above object of the present invention
  • the ship fuel saving system is a reference ship specification collection unit 10, reference flight data collection unit 20, Optimal RPM calculation module generation unit 30, optimal RPM automatic change setting unit 43, optimal RPM manual change setting unit 42, optimal RPM calculation unit 50, RPM application unit 60, fuel efficiency analysis unit ( 70) and perform the following functions.
  • the reference ship specification collection unit 10 collects the ship specifications (hereinafter referred to as the reference ship specifications) of the vessel to apply the optimization system.
  • the reference ship specifications include tonnage, age, linear, class.
  • the reference flight data collection unit 20 collects reference flight data to be used to generate the optimal RPM calculation module.
  • the optimum RPM calculation module generator 30 receives the reference flight data measured at the time of the reference flight and generates an optimal RPM calculation module.
  • the optimum RPM automatic change setting unit 43 includes a shift shift / constant shift setting unit 44 and an optimum RPM automatic change setting unit 43.
  • the shifting / constant shift setting unit 44 transmits an optimal RPM generation command to the optimum RPM calculating unit 50 during shifting, and receives an initial RPM from a user (captain or engineer) during constant shifting. Transfer to the application unit 60.
  • the optimum RPM automatic change setting unit 43 receives a change time interval of the optimum RPM, and transmits an optimal RPM generation command to the optimum RPM calculation unit 50 at each change time interval.
  • the constant shift and the shift are types of shift methods, and are classified according to the initial RPM value in the present invention.
  • the shifting is to change the speed while maintaining the target speed on average, and at this time, it is a constant shift to input an arbitrary RPM, such as RPM expected to reach the target speed in the initial RPM, the previous operating RPM, and the initial speed.
  • Variable speed is the operation of inputting the optimum RPM obtained through the optimization system into the RPM. In other words, when operating at variable speed, fuel efficiency is increased because the optimization starts from the beginning of the operation, but in the present invention, it is also possible to select and operate the constant speed when the user's needs or the current operating conditions cannot be collected. Do.
  • the optimal RPM manual change setting unit 42 When the optimal RPM manual change setting unit 42 receives the user's optimal RPM change request, the optimum RPM setting unit 42 transmits an optimal RPM generation command to the optimal RPM calculation unit 50.
  • the optimum RPM calculation unit 50 receives the user setting from the automatic change setting unit 43, and receives the optimal RPM calculation module from the optimal RPM calculation reference generation unit, and optimizes the RPM according to the operating conditions. To calculate.
  • the optimal RPM calculator 50 includes a schedule / operation condition collector 52 and an optimal RPM calculator module 54.
  • the schedule / operation condition collecting unit 52 collects current schedule conditions and flight conditions to be input to the optimal RPM calculation module.
  • the optimal RPM calculation module execution unit 54 receives the optimal RPM generation command from the optimal RPM automatic change setting unit 43 or the optimal RPM manual change setting unit 42. ) Receives the current schedule conditions and operating conditions and inputs them to the optimal RPM calculation module to calculate the optimal RPM.
  • the RPM application unit 60 receives the optimum RPM from the optimum RPM calculation unit 50, or when the constant speed, when the initial RPM is automatically received from the automatic RPM setting unit 43 is applied to the engine of the ship do.
  • the fuel efficiency analysis unit 70 compares and analyzes the fuel saving effect of the normal operation time without the ship fuel saving system and the optimum operation time with the ship fuel saving system.
  • the fuel efficiency analysis unit 70 includes a fuel consumption data collection unit 72, a fuel consumption rate calculation unit 74, a fuel loss rate calculation unit 76, and a fuel saving rate calculation unit 78.
  • the fuel consumption data collection unit 72 collects fuel consumption data of the reference flight and fuel consumption data of the normal flight with respect to the same schedule as the optimal flight.
  • the fuel consumption rate calculation unit 74 receives the fuel consumption data from the fuel consumption data collection unit 72, the fuel consumption rate of the optimal flight to which the ship fuel saving system is applied, and the fuel of the reference flight relative to the same schedule as the optimal flight. The consumption rate, the fuel consumption rate of the normal operation compared to the same schedule as the optimum flight is calculated.
  • the fuel loss rate calculation unit 76 receives the fuel consumption rate of the normal flight and the fuel consumption rate of the standard flight from the fuel consumption rate calculation unit 74 to calculate the fuel loss rate of the normal flight, and calculates the fuel consumption rate calculation unit 74.
  • the fuel loss rate of the optimal flight is calculated by receiving the fuel consumption rate of the optimal flight and the fuel consumption rate of the standard flight.
  • the fuel saving rate calculator 78 receives the fuel loss rate of the normal flight from the normal fuel loss rate calculator 76, and receives the fuel consumption rate of the optimum flight from the optimum flight fuel loss rate calculator 76. Calculate the fuel savings rate for optimal operation.
  • the ship fuel saving system of the present invention can be installed in a PC in various ways.
  • the ship fuel saving system can be installed in the entire system in one PC, at this time can be connected to another PC network or send and receive the necessary data to the electronic recording medium applicable to the PC.
  • a plurality of systems are respectively installed in a plurality of PCs, can be installed with all the components of the optimization system, where each system can be synchronized by transmitting information to the network.
  • a plurality of systems are installed in each of a plurality of PCs, each of the components of the optimization system can be installed with each PC is divided, where each system can be synchronized by transmitting information to the network.
  • FIG. 3 is a diagram illustrating a PC and a ship PC of a ship fuel reduction system manager connected to a network and a ship to which the ship fuel reduction system of the present invention is applied, and a plurality of the above ship fuel reduction systems to a plurality of PCs (hereinafter as an optimization system). Example) is installed.
  • the optimization system is networked with various equipment inside and outside the vessel to collect data and control the engine.
  • the reference ship specification collection unit 10 is connected to an input / output device or another PC to receive the reference flight specification, and is connected to the reference flight data collection unit 20 to transmit the reference ship specification.
  • the reference flight data collection unit 20 is connected to an input / output device or another PC to receive the reference flight data, and is connected to the optimal RPM calculation module generation unit 30 to transmit the reference flight data, and the fuel efficiency analysis unit It is connected to (70) to convey the fuel consumption rate of the standard flight.
  • the optimum RPM calculation module generation unit 30 is connected to the reference ship specification collection unit 10 and the reference flight data collection unit 20 to receive the reference ship specification and reference flight data to generate an optimal RPM calculation module. do.
  • the optimum RPM calculation unit 50 receives the user's selection from the optimal RPM automatic change setting unit 43 or the optimal RPM manual change setting unit 42, and the optimal RPM calculation module generating unit 30 receives the selection of the user.
  • the optimum RPM calculation module is received to calculate the optimal RPM according to the current schedule conditions and operating conditions and delivers the RPM to the RPM application unit 60.
  • the engine control unit is connected to receive the engine conditions, and connected to the input and output device or other PC to receive the hull conditions and schedule conditions.
  • the information collecting device (denoted as the first collecting device to the Nth collecting device in FIGS. 1 and 3) connected to the optimum RPM calculating unit 50 is a collection such as GPS, ANEMOMETER, GYROCOMPASS, SPEED LOG, HEADING / TRACK CONTROL SYSTEM, etc.
  • EW, BWWAS, converter can be connected between the information collecting device and the optimization system.
  • the converter is for converting information of the information collecting device into data in a form that can be input from a PC equipped with the optimization system.
  • the RPM application unit 60 is connected to the output device to output the optimal RPM received from the optimum RPM calculation unit 50, or connected to one or more of the ETC of the engine room, the captain's room, the optimal RPM calculation unit 50 Transmit the optimal RPM received from
  • the fuel efficiency analysis unit 70 is connected to the reference flight data collection unit 20 to compare and compare the reference flight data in order to compare and analyze the fuel saving effect during the normal flight and the optimum flight to which the ship fuel saving system is applied. It is connected to the optimum RPM calculation unit 50 and receives the schedule conditions, operating conditions, fuel consumption amount when applying the optimum flight.
  • connection can be made by direct cable or by wire or wireless network.
  • the optimal RPM calculation module generates an optimal RPM in the following manner.
  • the formula is generated by the optimum RPM calculation module generation unit 30 by simulating the reference ship specification and the reference flight data, and should be generated again when the reference ship specification is changed.
  • the standard optimum speed is the speed at which the fuel consumption rate / speed per mile in the standard operating condition is the lowest among the target speed, the variable target speed, and the speed between the target speed and the variable target speed.
  • Operating conditions Referring to FIG. 7, the horizontal axis is speed, the vertical axis is fuel consumption rate per mile under standard operating conditions, A is a target speed, and B is a variable speed. The point is C, so the speed at C becomes the standard optimal speed.
  • the speed increase / decrease compared to the operating condition is an amount of speed that increases or decreases from the standard optimal speed when operating at the standard optimal RPM under the current operating condition, and the standard optimal RPM is operated at the standard optimal speed under the standard operating condition. RPM is possible.
  • the RPM conversion coefficient is a coefficient that converts the speed of the [standard optimum speed-speed increase / loss relative to the operating condition] under the current operating conditions by multiplying the [standard optimum speed-speed increase / loss compared to the operating conditions]. to be.
  • the equation of the weather compensation coefficient is as follows.
  • the regular phase accuracy is a value obtained by quantifying the degree of meteorological conditions of the standard operating conditions.
  • the net meteorological degree is a value obtained by quantifying the net meteorological degree of the current weather condition
  • the astronomical degree is a value obtained by quantifying the degree of turbulence of the current weather condition.
  • the degree of net weather is the quantification of pure wind and net algae
  • the degree of turbulence is the quantification of backwind and algae strength.
  • the net meteorological coefficient is the net meteorological limit RPM when the RPM is obtained by multiplying the [normal meteorological coefficient (normal meteorological accuracy-regular meteorological accuracy)] by the [standard optimal speed-speed increase / decrease vs. operating condition] ⁇ RPM conversion coefficient. It is a coefficient which limits so that it may not become an abnormality,
  • the said net weather limit RPM is RPM of the point which the fuel consumption increase amount / speed increase amount increase when RPM is increased.
  • the turbulence phase coefficient is obtained by multiplying the [turbulence phase coefficient (turbulence phase accuracy-regular phase accuracy)] by the [standard optimal speed-speed increase / decrease compared to the operating conditions] ⁇ RPM conversion coefficient, RPM is the turbulence limit RPM. It is a coefficient which limits so that it may not become the following, The said upper limit air limit RPM is RPM of the point which reduces fuel consumption amount / speed reduction amount when RPM is reduced.
  • Fuel saving rate of optimal operation Fuel loss rate of normal operation-Fuel loss rate of optimal operation
  • the fuel loss rate of the optimum flight and the fuel loss rate of the normal operation are as follows.
  • Fuel loss rate of optimal flight fuel consumption rate of optimal flight-fuel consumption rate of standard flight
  • Fuel loss rate of normal operation Fuel consumption rate of normal operation-Fuel consumption rate of standard operation
  • the fuel consumption rate of the reference flight is the average fuel consumption rate of the reference flight calculated from the reference flight data.
  • FIG. 8 is a view showing a ship fuel saving method of the present invention
  • Figure 9 is a view showing in more detail the ship fuel saving method of Figure 8
  • the ship fuel saving method using the optimization system is a reference ship specification collection step (S10), reference operation data collection step (S20), optimal RPM calculation module generation step (S30), optimal RPM change setting step (S40), optimal RPM calculation step (S50), RPM application step (S60), fuel efficiency analysis Step S70 is included.
  • the reference ship specification collection unit 10 of the optimization system collects the reference ship specifications.
  • the reference flight data collection unit 20 collects the reference flight data.
  • the optimal RPM calculation module generation unit 30 receives the reference ship specification and reference flight data to generate an optimal RPM calculation module.
  • the optimal RPM change setting step (S40) receives a user setting for the calculation and application method of the optimal RPM, according to the user's selection, can automatically adjust the optimal RPM, or manually adjust the optimal RPM, In case of operation, it is possible to choose between constant speed or variable speed.
  • the optimum RPM automatic change setting unit 43 transmits an optimal RPM generation command to the optimum RPM calculation unit 50, and inputs an initial RPM from the user at the constant speed. Receives and delivers to the RPM application unit 60.
  • the optimal RPM automatic change setting unit 43 receives a change time interval, and transmits an optimal RPM generation command to the optimum RPM calculation unit 50 at each change time interval. do.
  • the optimal RPM manual change setting unit 42 when the optimal RPM manual change setting unit 42 receives the user's optimal RPM change request, the optimal RPM generation command is transmitted to the optimal RPM calculation unit 50.
  • the optimum RPM calculation module 50 calculates an optimal RPM by inputting the current schedule condition and operating conditions to the optimal RPM calculation module.
  • the optimal RPM calculation step S50 includes a schedule / operation condition collection step S52 and an optimal RPM calculation module execution step S54.
  • the optimal RPM calculation unit 50 receives the optimal RPM generation command from the optimal RPM automatic change setting unit 43 or the optimal RPM manual change setting unit 42,
  • the optimum RPM calculator 50 inputs the current schedule condition and flight condition to the optimum RPM calculation module to calculate the optimal RPM.
  • the RPM application unit 60 receives the optimal RPM from the optimal RPM calculation unit 50, and at the constant speed, the initial RPM automatic change setting unit 43 at the initial RPM Is applied to the ship's engine.
  • the fuel saving effect is compared and analyzed during the normal operation when the ship fuel saving system is not applied and during the optimal operation when the ship fuel saving system is applied.
  • the fuel efficiency analysis step (S70) includes a fuel consumption data collection step (S72), a fuel consumption rate calculation step (S74), a fuel loss rate calculation step (S76), and a fuel saving rate calculation step (S78).
  • the fuel efficiency analysis unit 70 In the fuel consumption data collection step (S72), the fuel efficiency analysis unit 70, the fuel consumption data of the optimal flight to which the vessel fuel saving system is applied, the fuel consumption data of the reference flight compared to the same schedule as the optimal flight, the Collect fuel consumption data of normal operation against the same schedule as optimal operation.
  • the fuel efficiency analysis unit 70 calculates the fuel consumption rate of the optimal flight to which the ship fuel saving system is applied as the fuel consumption data, the fuel consumption rate of the reference flight to the same schedule as the optimal flight, Calculate the fuel consumption rate of the normal flight compared to the same schedule as the optimal flight.
  • the fuel efficiency analysis unit 70 calculates the fuel loss rate of the normal flight based on the fuel consumption rate of the normal flight and the fuel consumption rate of the reference flight, and the fuel consumption rate of the optimum flight, the reference standard.
  • the fuel consumption rate of an operation calculates the fuel loss rate of an optimal operation.
  • the fuel efficiency analysis unit 70 calculates the fuel saving rate of the optimum flight based on the fuel loss rate of the normal flight and the fuel consumption rate of the optimum flight.
  • the vessel fuel saving method may be stored in a recording medium using a computer program.
  • the reference ship specification collection unit 10 for collecting the reference ship specifications; and the reference operating data to collect the reference flight data measured the speed and fuel consumption rate while changing the operating conditions during the reference operation Collecting unit 20; And, the optimum RPM calculation module generation unit 30 for receiving the reference ship specification and the reference flight data to generate an optimal RPM calculation module; And, the optimal RPM calculation module generation unit 30 An optimum RPM calculation unit 50 for calculating an optimal RPM by inputting current schedule conditions and operating conditions to the optimal RPM calculation module; and receiving the optimal RPM from the optimal RPM calculation unit 50 to obtain the engine of the ship.
  • RPM application unit 60 to be applied to; including, but the reference operation is to include a factory commissioning, sea trials, new construction N port, the recent M port, the N and M is the number of times arbitrarily designated by the official,
  • the best RPM is above RPM is the lowest consumption of fuel compared to the current schedule conditions and operating conditions
  • the schedule conditions include the target distance, target time, variable time
  • the operating conditions include the hull conditions, weather conditions, engine conditions,
  • the optimum RPM [standard optimum speed-speed increase / decrease compared to operating conditions] ⁇ RPM conversion factor x weather compensation coefficient
  • the above standard operating conditions are operating conditions at the time of factory test run,
  • the target speed target distance / target time
  • variable target speed target distance / (target time + variable time)
  • the speed increase or decrease compared to the operating conditions is the speed that increases or decreases from the standard optimum speed when operating at the standard optimal RPM under the current operating conditions
  • the standard optimal RPM is RPM capable of operating at the standard optimum speed when the standard operating conditions
  • the RPM conversion coefficient is a coefficient that converts the speed of the [standard optimum speed-speed increase / loss relative to the operating condition] under the current operating conditions by multiplying the [standard optimum speed-speed increase / loss compared to the operating conditions].
  • the weather compensation coefficient net weather coefficient (normal weather degree-regular weather degree)-turbulent weather coefficient (warm weather degree-regular weather degree),
  • the regular phase accuracy is a value obtained by quantifying the degree of meteorological conditions of the standard operating conditions
  • the net weather degree is a value obtained by quantifying the net weather degree of current weather conditions
  • the turbulence is a numerical value of the turbulence of the current weather conditions
  • the net meteorological coefficient is obtained by multiplying the [normal meteorological coefficient (normal meteorological degree-regular meteorological degree)] by the [standard optimum speed-speed increase / decrease compared with the operating conditions] ⁇ RPM conversion coefficient to determine the RPM. Coefficient limiting not to exceed the limit RPM,
  • the upper limit RPM is the RPM of the point where the fuel consumption increase / speed increase increases when the RPM
  • the turbulence coefficient is obtained by multiplying the [turbulence phase coefficient (turbulence phase accuracy-regular phase accuracy)] by the [standard optimum speed-speed increase / decrease compared with the operating conditions] ⁇ RPM conversion coefficient to obtain the RPM. Coefficient limiting not to be below the limit RPM,
  • the upper limit air limit RPM is a means of reducing the amount of fuel consumption reduction / speed reduction per mile in the current operating conditions when the RPM is reduced means.
  • the ship fuel saving system of the present invention further includes an optimal RPM automatic change setting unit 43 that receives a user's selection when the optimal RPM is automatically changed, and the optimal RPM automatic change setting unit 43 includes: In shifting, the optimum RPM calculation unit 50 transmits an optimal RPM generation command, and in the case of constant shifting, an initial RPM is received from a user and the shifting / constant shift setting unit (8) is transmitted to the RPM application unit (60). 44); and an optimum RPM automatic change time setting unit 46 which receives the change time interval of the optimum RPM and transmits the optimum RPM generation command to the optimum RPM calculation unit 50 at each change time interval. It is a means to include.
  • the ship fuel saving system of the present invention further includes: an optimal RPM manual change setting unit 42 which transmits an optimal RPM generation command to the optimal RPM calculation unit 50 when an optimal RPM change request of the user is input.
  • the optimal RPM calculation unit 50 of the ship fuel saving system of the present invention the schedule / operating condition collection unit 52 for collecting the current schedule conditions and operating conditions to be input to the optimum RPM calculation module; and the optimal RPM An optimal RPM calculation module execution unit 54 which receives the current schedule condition and operation condition from the schedule / operation condition collection unit 52 and inputs the current RPM to a optimum RPM calculation module to calculate an optimal RPM;
  • the ship fuel saving system of the present invention the fuel efficiency analysis unit 70 for comparing and analyzing the fuel saving effect of the normal operation time when the ship fuel saving system is not applied, and the optimum operation to which the ship fuel saving system is applied. It includes, the fuel efficiency analysis unit 70, the fuel consumption data collection to collect the fuel consumption data of the standard flight compared to the schedule conditions and the same schedule conditions, and the fuel consumption data of the normal operation compared to the same schedule conditions as the optimal flight Unit 72; and a fuel consumption rate calculator for calculating the fuel consumption rate of the optimal flight, the fuel consumption rate of the standard flight to the same schedule condition as the optimal flight, and the fuel consumption rate of the normal flight to the same schedule condition as the optimal flight.
  • the fuel consumption rate calculation unit 74 receives the fuel consumption rate of the normal flight and the fuel consumption rate of the reference flight.
  • a fuel loss rate calculation unit (76) which calculates a fuel loss rate of a half flight and receives the fuel consumption rate of the optimum flight and the fuel consumption rate of the reference flight from the fuel consumption rate calculating unit 74 to calculate a fuel loss rate of the optimal flight;
  • the RPM application unit 60 receives the optimal RPM from the optimum RPM calculation unit 50 and applies the RPM to the engine of the ship (S60); including, but the reference operation is a factory test run, It includes the sea trial operation, N port after the new construction, the recent M port, the N and M are the number of times arbitrarily designated by the official, the optimal RPM is the RPM that consumes the lowest fuel compared to the current schedule conditions and operating conditions,
  • the schedule condition includes a target distance, a target time, a variable time
  • the operation conditions include a hull condition, weather conditions, engine conditions,
  • the optimum RPM [standard optimum speed-speed increase / decrease compared to operating conditions] ⁇ RPM conversion factor x weather compensation coefficient
  • the above standard operating conditions are operating conditions at the time of factory test run,
  • the target speed target distance / target time
  • variable target speed target distance / (target time + variable time)
  • the speed increase or decrease compared to the operating conditions is the speed that increases or decreases from the standard optimum speed when operating at the standard optimal RPM under the current operating conditions
  • the standard optimal RPM is RPM capable of operating at the standard optimum speed when the standard operating conditions
  • the RPM conversion coefficient is a coefficient that converts the speed of the [standard optimum speed-speed increase / loss relative to the operating condition] under the current operating conditions by multiplying the [standard optimum speed-speed increase / loss compared to the operating conditions].
  • the weather compensation coefficient net weather coefficient (normal weather degree-regular weather degree)-turbulent weather coefficient (warm weather degree-regular weather degree),
  • the regular phase accuracy is a value obtained by quantifying the degree of meteorological conditions of the standard operating conditions
  • the net weather degree is a value obtained by quantifying the net weather degree of current weather conditions
  • the turbulence is a numerical value of the turbulence of the current weather conditions
  • the net meteorological coefficient is obtained by multiplying the [normal meteorological coefficient (normal meteorological degree-regular meteorological degree)] by the [standard optimum speed-speed increase / decrease compared with the operating conditions] ⁇ RPM conversion coefficient to determine the RPM. Coefficient limiting not to exceed the limit RPM,
  • the upper limit RPM is the RPM of the point where the fuel consumption increase / speed increase increases when the RPM
  • the turbulence coefficient is obtained by multiplying the [turbulence phase coefficient (turbulence phase accuracy-regular phase accuracy)] by the [standard optimum speed-speed increase / decrease compared with the operating conditions] ⁇ RPM conversion coefficient to obtain the RPM. Coefficient limiting not to be below the limit RPM,
  • the upper limit air limit RPM is a means of reducing the amount of fuel consumption reduction / speed reduction per mile in the current operating conditions when the RPM is reduced means.
  • the ship fuel saving method using the ship fuel saving system of the present invention further includes (f) an optimum RPM change setting step (S40); when the automatic RPM is to be changed automatically, the optimum at shifting RPM automatic change setting unit 43 transmits the optimum RPM generation command to the optimum RPM calculation unit 50, and during constant shift, the constant speed / receiving the initial RPM from the user and delivers to the RPM application unit 60 In the shift setting step (S46); and when the optimum RPM is to be automatically changed, the optimum RPM automatic change setting unit 43 receives a change time interval, and sends the optimum RPM generation command at each change time interval.
  • the optimum RPM automatic change time setting step (S44) to be delivered to the optimum RPM calculation unit 50; further comprising, wherein the RPM application unit 60 receives the initial RPM is applied to the engine of the ship as a means .
  • the ship fuel saving method using the ship fuel saving system of the present invention includes (f) an optimal RPM change setting step (S40), wherein the step (f) includes the optimal RPM manual change setting unit 42 being a user. If the optimal RPM change request is received, an optimal RPM manual change setting step (S42) for transferring the optimal RPM generation command to the optimal RPM calculation unit 50; and means.
  • the optimal RPM calculation unit 50 collects the current schedule conditions and operating conditions to be input to the optimal RPM calculation module A schedule / operation condition collection step (S52); and the optimal RPM calculation module 50 executing the optimal RPM calculation module for calculating the optimal RPM by inputting the current schedule condition and operation conditions to the optimal RPM calculation module ( S54); means to include.
  • the ship fuel saving method using the ship fuel saving system of the present invention (g) the comparative analysis of the fuel saving effect of the normal operation when the ship fuel saving system is not applied, and the optimum operation to which the ship fuel saving system is applied.
  • the fuel efficiency analysis step (S70) for further comprising, The fuel efficiency analysis step (S70), the fuel consumption data of the fuel consumption data during the optimum operation of the fuel efficiency analysis unit 70 is applied to the ship fuel saving system, the A fuel consumption data collecting step (S72) of collecting fuel consumption data of the reference flight with respect to the same schedule condition as the optimal flight and fuel consumption data of the normal flight with the same schedule condition as the optimal flight; and the fuel efficiency analysis unit 70
  • the fuel loss rate of the optimum flight fuel consumption rate of the optimal flight-fuel consumption rate of the standard flight
  • Fuel loss rate of the normal operation fuel consumption rate of the normal operation-fuel consumption rate of the standard operation
  • the fuel saving rate of the optimum flight the fuel loss rate of the normal operation-the fuel loss rate of the optimal operation.
  • Ship fuel saving system using energy efficiency optimization for the implementation of ship navigation instruction optimization according to the present invention and a method and a recording medium storing a computer program according to the method by intensive analysis of all internal and external energy consumption of the vessel
  • energy efficiency not only can you save fuel oil, which is the main energy of the ship, but also you can implement the technology to calculate the optimal operating conditions by integrating the ship navigation information equipment and engine controller for optimizing energy consumption and using the engine. It can induce unmanned control, reduce the cost of required forces and reduce operating costs of ship companies by saving energy, and secure economic and high efficiency of maritime transportation by optimizing fuel consumption by optimizing fuel oil consumption.
  • As ship fuel saving system and method and recording medium storing a computer program according to the method it is expected to be widely used in industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Health & Medical Sciences (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Tourism & Hospitality (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Automation & Control Theory (AREA)
  • General Business, Economics & Management (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

본 발명은 선박 운항지시 최적화 구현을 위한 에너지 효율 최적화를 이용한 선박 연료 절감 시스템 및 그 방법과 그 방법에 의한 컴퓨터 프로그램을 저장한 기록매체에 관한 것으로, 본 발명에 의한 선박 연료 절감 방법은 (a) 기준선박사양을 수집하는 기준선박사양 수집단계와, (b) 기준운항데이터를 수집하는 기준운항데이터 수집단계와, (c) 최적RPM 산출모듈을 생성하는 최적RPM 산출모듈 생성단계와, (d) 상기 최적RPM 산출모듈에 상기 현재의 스케줄조건 및 운항조건을 입력하여 최적RPM을 산출하는 최적RPM 산출단계와, (e) 상기 최적RPM을 전달받아 선박의 엔진에 적용하는 RPM 적용단계를 포함하고, 선박의 내외부적인 모든 에너지 소모를 집중 분석하여 운항 조건별 에너지 효율 최적화를 통하여 선박의 주 에너지인 연료유 절감을 할 수 있을 뿐만 아니라, 에너지 소비 최적화를 위한 선박 항해정보기기와 엔진 제어기와의 통합으로 최적 운항조건을 산출하는 기술을 구현하고 이를 이용하여 엔진 제어의 무인화 유도할 수 있으며, 에너지 절감으로 소요군의 경비 절감 및 선박회사의 운영비를 절감할 수 있으며, 인력 절감을 통해 해상 운송의 경제성 및 고효율성을 확보하고, 연료유 소모를 최적화함으로서 탄소 배출권의 확보와 동시에 지구 온난화 방지에 적극 대응할 수 있는 효과가 있다.

Description

선박 운항지시 최적화 구현을 위한 에너지 효율 최적화를 이용한 선박 연료 절감 시스템 및 그 방법과 그 방법에 의한 컴퓨터 프로그램을 저장한 기록매체
본 발명은 연료효율 최적화를 이용한 선박 연료 절감 시스템 및 그 방법과 그 방법에 의한 컴퓨터 프로그램을 저장한 기록매체에 관한 것으로, 보다 상세하게는 선박의 운항조건을 실시간으로 수집하여 각 동력기기를 최적의 운전조건으로 운항하게 함으로써, 연료소모량을 절감하고 CO2 발생을 최소화하는 에너지 효율 최적화를 이용한 선박 연료 절감 시스템 및 그 방법과 그 방법에 의한 컴퓨터 프로그램을 저장한 기록매체에 관한 것이다.
연료가 적게 드는 선박을 개발하고 건조하는 것은 미래 조선산업의 핵심이다. 하루 100톤의 연료를 소비하고, 320톤의 이산화탄소를 배출하는 선박을 가정하면, 1%의 연비개선은 연간 24만 달러 이상의 비용을 절감하며, 25년이면 약 6백만 달러를 줄일 수 있으며, 중고선 시장에서도 연비는 가장 중요한 요소 중 하나이다.
또한 현대사회는 온실가스를 배출하는 동력수송시스템에 대부분 의존하고 있으며, 선박도 온실가스의 배출의 주요한 원인으로, CO2배출은 지구 온난화, 기후 변화와 해양 산성화를 일으키는 핵심요인으로 널리 알려져 있다. 1톤의 화물을 1마일 수송하는데 배출되는 CO2의 양은 선박이 수송수단 중에서 가장 효율적임에도 불구하고, 세계무역에서 가장 압도적인 수송수단이기 때문에 CO2배출량이 산업계에서 배출하는 전체 온실가스 배출량의 약 3%나 해당된다.
또한 선박 운항의 기존의 수작업 및 반자동화 방식은 선원의 업무수준에 따라 차이가 많은데, 연료소모 또한 현재의 방식에서는 선원의 경험과 능력에 의존할수밖에 없고, 반자동화 방식으로 개발된 시스템의 경우에도 해당 선박에만 적용가능한 상황이므로 다양한 선종을 포괄할 수 있는 시스템을 구현하기 위해서는 소프트웨어 공학적 접근 필요하고, 비슷한 종류의 응용 개발을 위한 토대를 제공하는 개념인 소프트웨어 프레임워크 개발이 필요하다.
상기와 같은 이유로, 선박의 연료절감을 위한 노력이 다방면에서 시도되고 있으며, 현재는 시중에 도입된 기상조건을 반영하여 최적항로를 제공하는 방식과 선체조건을 고려하여 최적 항로 및 최적 엔진모드를 제공하는 방식이 있다. 기상조건을 반영하는 모델의 경우 육상의 기상정보제공업체에서 전송되는 기상조건만을 기반으로 최적 항로를 설계한다는 점에서 기상조건, 선체조건, 엔진조건을 모두 고려하여 최적RPM을 제공하는 본 발명과는 고려하는 조건과 제공하는 정보에서 차이가 있고, 국내에 도입된 다수 건수가 있으나 유류절감 효과는 미미한 실정이다.
다른 방식으로는 선박 설계 시 고려되는 선체조건을 광범위하게 고려하여, 최적 항로와 최적 엔진 모드를 제시하는 모델이 있다. 이 모델은 엔진의 최적 상태를 결정하는데 있어 출발시간과 도착시간을 거리로 나누어 속력을 계산하는 방식으로 정속 개념을 적용하는 것으로 본 발명은 변속(정변속, 변변속 모두 포함)을 하면서 주기적으로 최적 RPM을 제공한다는 면에서 차이가 있다. 또한, 벌크선이나 광탄선과 같이 돌아오는 항차에는 선적물이 없이 발라스트 운항을 하는 경우는 정확한 계산이 어렵지만 본 발명의 선체조건은 선적물도 포함한 개념이며, 엔진과 선령(선박의 나이)에 따라 감가상각을 고려할 수 있다. (발라스트 운항: 선박의 중심 및 평형을 유지하기 위해 최저 입수깊이를 유지하도록 선적물이 없으면 물을 채워서 운항함; ballast water: 평형수) 또한, 종래에는 선박 회사, 즉 육상에서 운항 선박의 환경 변화에 따른 정확한 연료 소모량을 검증할 수 있는 모니터링 도구(Monitoring Tool)가 없어, 단순 비교 방식 즉 타 선박 대비 혹은 전 항차 대비 등으로 정확한 검증이 불가능하였으나, 본 발명은 연료효율 분석기능을 제공함으로써 보다 객관적인 검증을 할 수 있다.
이하, 종래의 선박 운항 시스템과 관련된 선행기술들은 다음과 같다.
국내 공개특허 제1997-0071419호(이하, "선행기술 1"이라 한다)는 선박의 최적 운항 시스템에 관한 것으로, 선박에 장착되며 요청신호를 발신하는 음향발신기 및 응답신호를 수신하는 음향수신기를 갖는 음향장치와, 상기 요청신호에 응답하여 응답신호를 발신하는 협곡 하부에 설치되는 음향 반응기기를 포함하고 있다.
국내 등록특허 제0433258호(이하, "선행기술 2"라 한다)는 선박 안전운항과 선박들의 관제를 위한 웹 서비스방법에 관한 것으로, 다수의 선박에 설치된 ECS 단말기에서 선박의 식별번호, 배 이름, 뱃길이, 배 폭, 배 유형, 위치정보, 배속도, 항해상태, 선수방향, 회두각 속도, 배 진행방향의 선박데이터를 생성하는 단계와; 상기 선박 데이터를 주기적으로 인공위성을 통해서 ASP시스템으로 전송하는 단계와; 상기 ASP 시스템에 구축된 선박관리 모듈이 상기 선박데이터 사용자에 맞게 가공하여 선박DB에 저장하는 단계와; 상기 선박 DB에 저장된 선박 데이터를 추출하기 위한 ECS 단말기와, 관제 클라이언트 단말기로 웹상에 전자해도를 도시하는 프로그램이 설치된 홈페이지에 접속하는 단계와; 상기 홈페이지는 선박 정보가 ASP 시스템에 전송되어 전자해도 DB에 저장된 데이터를 이용하여 전자해도 상에 선박을 표현하는 단계와; 웹으로 구현된 홈페이지상의 전자해도에 도시된 다수의 선박을 클릭하여 상기 선박에 모든 정보를 실시간 획득하는 단계로 이루어져 있다.
상기 선행기술 1은 음향 신호를 이용하여 직선 협곡에서의 협곡 정 중앙뿐만 아니라 협곡의 깊이 변화 예측, 협곡의 굴곡도 등을 예측할 수 있는 효과가 있고, 상기 선행기술 2는 선박의 항해자로 하여금 최신의 전자해도와 현재 기상환경과 같은 실시간 선박안전 관련정보를 서비스받을 수 있고, 선박들의 위치정보를 인터넷을 통해 어느 곳에서나 서비스받을 수 있는 효과가 있지만, 선박의 운항 상황을 실시간으로 수집하여 각 동력기기를 최적의 운전조건으로 운항하게 함으로써, 연료소모량을 절감하는 본 발명의 기술적 특징에 대해서는 전혀 기재 또는 언급되어 있지 않다.
본 발명이 이루고자 하는 기술적 과제는 선박의 각종 정보기기로부터 기상 정보, 항해 정보, 적재물 정보, 엔진 정보 등을 실시간으로 입수하여 다음 목적지까지 가장 경제적으로 운항할 수 있는 최적RPM을 산출하여 에너지 소비 절감을 통한 연료소비를 절감하되, 운항조건의 변경에 따라 신속하게 최적RPM을 변경하고, 최적운항을 통한 연료절감효과를 객관적으로 산출하여 다음 항차에 반영하여, 통합적인 연료유 절감으로 에너지 효율을 최적화하고, 상기의 과정을 자동 또는 반자동으로 실행할 수 있는 선박 연료 절감 시스템 및 그 방법과 그 방법에 의한 컴퓨터 프로그램을 저장한 기록매체를 제공하는 데 있다.
본 발명의 해결과제는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 해결과제들은 아래의 기재로부터 당업자에게 명확하게 이해되어 질 수 있을 것이다.
전술한 기술적 과제를 해결하기 위한 수단으로서, 본 발명의 선박 연료 절감 시스템은, 기준선박사양을 수집하는 기준선박사양 수집부(10);와, 기준운항시 운항조건을 변경시키면서 속도와 연료소모율을 측정한 기준운항데이터를 수집하는 기준운항데이터 수집부(20);와, 상기 기준선박사양 및 기준운항데이터를 입력받아 최적RPM 산출모듈을 생성하는 최적RPM 산출모듈 생성부(30);와, 상기 최적RPM 산출모듈 생성부(30)에서 전달받은 상기 최적RPM 산출모듈에 현재의 스케줄조건 및 운항조건을 입력하여 최적RPM을 산출하는 최적RPM 산출부(50);와, 상기 최적RPM 산출부(50)에서 상기 최적RPM을 전달받아 선박의 엔진에 적용하는 RPM 적용부(60);를 포함하되, 상기 기준운항은 공장시운전, 해상시운전, 신조후N항차, 최근M항차를 포함한 것이며, 상기 N 및 M은 관계자들이 임의로 지정하는 횟수이며, 상기 최적RPM은 상기 현재의 스케줄조건 및 운항조건 대비 연료를 최저로 소모하는 RPM이되, 상기 스케줄조건은 목표거리, 목표시간, 가변시간을 포함하며, 상기 운항조건은 선체조건, 기상조건, 엔진조건을 포함하며,
상기 최적RPM = [표준최적속도-운항조건대비 속도증감량]×RPM 변환계수×기상보상계수,
상기 표준최적속도는 목표속도, 가변목표속도, 상기 목표속도와 가변목표속도 사이의 속도 중 속도대비 연료소모율(=표준운항조건에서의 마일당 연료소모율/속도)이 최저인 속도,
상기 표준운항조건은 공장시운전시의 운항조건,
상기 목표속도 = 목표거리/목표시간,
상기 가변목표속도 = 목표거리/(목표시간+가변시간),
상기 운항조건대비 속도증감량은 현재의 운항조건에서 표준최적RPM으로 운항했을 경우 상기 표준최적속도에 비해 증감되는 속도,
상기 표준최적RPM은 상기 표준운항조건일 때 상기 표준최적속도로 운항할 수 있는 RPM,
상기 RPM 변환계수는 상기 [표준최적속도-운항조건대비 속도증감량]에 곱하여 현재의 운항조건에서 상기 [표준최적속도-운항조건대비 속도증감량]의 속도를 낼 수 있는 RPM으로 변환하여주는 계수,
상기 기상보상계수 = 순기상계수(순기상정도-정기상정도)-난기상계수(난기상정도-정기상정도),
상기 정기상정도는 상기 표준운항조건의 기상조건의 정도를 수치화한 값,
상기 순기상정도는 현재의 기상조건의 순기상정도를 수치화한 값,
상기 난기상정도는 현재의 기상조건의 난기상정도를 수치화한 값,
상기 순기상계수는 상기 [순기상계수(순기상정도-정기상정도)]를 상기 [표준최적속도-운항조건대비 속도증감량]×RPM 변환계수에 곱하여 RPM을 구할 때, 상기 최적RPM이 순기상한계 RPM 이상이 되지 않도록 한정하는 계수,
상기 순기상한계 RPM은 RPM을 증가시켰을 때 연료소모증가량/속도증가량이 증가하는 점의 RPM,
상기 난기상계수는 상기 [난기상계수(난기상정도-정기상정도)]를 상기 [표준최적속도-운항조건대비 속도증감량]×RPM 변환계수에 곱하여 RPM을 구할 때, 상기 최적RPM이 난기상한계 RPM 이하가 되지 않도록 한정하는 계수,
상기 난기상한계 RPM은 RPM을 감소시켰을 때 현재의 운항조건에서의 마일당 연료소모감소량/속도감소량이 감소하는 점의 RPM인 것을 특징으로 한다.
전술한 기술적 과제를 해결하기 위한 수단으로서, 본 발명의 선박 연료 절감 시스템은, 상기 최적RPM을 자동으로 변경할 때 사용자의 선택사항을 입력받는 최적RPM 자동변경 설정부(43)를 더 포함하되, 상기 최적RPM 자동변경 설정부(43)는, 변변속 시에는 상기 최적RPM 산출부(50)에 최적RPM 생성명령을 전달하고, 정변속 시에는 사용자에게서 초기RPM을 입력받아 상기 RPM 적용부(60)에 전달하는 변변속/정변속 설정부(44);와 상기 최적RPM의 변경시간 간격을 입력받아, 상기 변경시간 간격마다 상기 최적RPM 생성명령을 상기 최적RPM 산출부(50)에 전달하는 최적RPM 자동변경시간 설정부(46);를 더 포함하는 것을 특징으로 한다.
전술한 기술적 과제를 해결하기 위한 수단으로서, 본 발명의 선박 연료 절감 시스템은, 사용자의 최적RPM변경요청을 입력받으면, 최적RPM 생성명령을 상기 최적RPM 산출부(50)에 전달하는 최적RPM 수동변경 설정부(42);를 더 포함하는 것을 특징으로 한다.
전술한 기술적 과제를 해결하기 위한 수단으로서, 본 발명의 선박 연료 절감 시스템의 상기 최적RPM 산출부(50)는, 상기 최적RPM 산출모듈에 입력될 현재의 스케줄조건 및 운항조건을 수집하는 스케줄/운항조건 수집부(52);와 상기 최적RPM 생성명령을 전달받으면 상기 스케줄/운항조건 수집부(52)에서 상기 현재의 스케줄조건 및 운항조건을 입력받아 상기 최적RPM 산출모듈에 입력하여 최적RPM을 산출하는 최적RPM 산출모듈 실행부(54);를 포함하는 것을 특징으로 한다.
전술한 기술적 과제를 해결하기 위한 수단으로서, 본 발명의 선박 연료 절감 시스템은, 상기 선박 연료 절감 시스템을 적용하지 않은 일반운항 시와, 상기 선박 연료 절감 시스템을 적용한 최적운항 시의 연료절감 효과를 비교분석하기 위한 연료효율 분석부(70)를 포함하며, 상기 연료효율 분석부(70)는, 상기 최적운항과 동일한 스케줄조건 대비 상기 기준운항의 연료소모데이터, 상기 최적운항과 동일한 스케줄조건 대비 일반운항의 연료소모데이터를 수집하는 연료소모데이터 수집부(72);와 상기 최적운항의 연료소모율, 상기 최적운항과 동일한 스케줄조건 대비 상기 기준운항의 연료소모율, 상기 최적운항과 동일한 스케줄조건 대비 일반운항의 연료소모율을 산출하는 연료소모율 계산부(74);와 상기 연료소모율 계산부(74)에서 상기 일반운항의 연료소모율, 상기 기준운항의 연료소모율을 전달받아 일반운항의 연료손실율을 산출하고, 상기 연료소모율 계산부(74)에서 상기 최적운항의 연료소모율, 상기 기준운항의 연료소모율을 전달받아 최적운항의 연료손실율을 산출하는 연료손실율 계산부(76);와
상기 일반운항 연료손실율 계산부(76)에서 상기 일반운항의 연료손실율을 전달받고, 상기 최적운항 연료손실율 계산부(76)에서 상기 최적운항의 연료소모율을 전달받아 최적운항의 연료절감율을 산출하는 연료절감율 계산부(78);를 포함하되, 상기 최적운항의 연료손실율 = 최적운항의 연료소모율-기준운항의 연료소모율, 상기 일반운항의 연료손실율 = 일반운항의 연료소모율-기준운항의 연료소모율, 상기 최적운항의 연료절감율 = 일반운항의 연료손실율-최적운항의 연료손실율인 것을 특징으로 한다.
전술한 기술적 과제를 해결하기 위한 수단으로서, 본 발명의 상기 선박 연료 절감 시스템을 사용한 선박 연료 절감 방법은,
(a) 상기 기준선박사양 수집부(10)가 기준선박사양을 수집하는 기준선박사양 수집단계(S10);와
(b) 상기 기준운항데이터 수집부(20)가 기준운항데이터를 수집하는 기준운항데이터 수집단계(S20);와
(c) 상기 최적RPM 산출모듈 생성부(30)가 상기 기준선박사양 및 기준운항데이터를 입력받아 최적RPM 산출모듈을 생성하는 최적RPM 산출모듈 생성단계(S30);와
(d) 상기 최적RPM 산출부(50)가 상기 최적RPM 산출모듈 생성부(30)에서 전달받은 상기 최적RPM 산출모듈에 현재의 스케줄조건 및 운항조건을 입력하여 최적RPM을 산출하는 최적RPM 산출단계(S50);와
(e) 상기 RPM 적용부(60)가 상기 최적RPM 산출부(50)에서 상기 최적RPM을 전달받아 선박의 엔진에 적용하는 RPM 적용단계(S60);를 포함하되, 상기 기준운항은 공장시운전, 해상시운전, 신조후N항차, 최근M항차를 포함한 것이며, 상기 N 및 M은 관계자들이 임의로 지정하는 횟수이며, 상기 최적RPM은 상기 현재의 스케줄조건 및 운항조건 대비 연료를 최저로 소모하는 RPM이되, 상기 스케줄조건은 목표거리, 목표시간, 가변시간을 포함하며, 상기 운항조건은 선체조건, 기상조건, 엔진조건을 포함하며,
상기 최적RPM = [표준최적속도-운항조건대비 속도증감량]×RPM 변환계수×기상보상계수,
상기 표준최적속도는 목표속도, 가변목표속도, 상기 목표속도와 가변목표속도 사이의 속도 중 속도대비 연료소모율(=표준운항조건에서의 마일당 연료소모율/속도)이 최저인 속도,
상기 표준운항조건은 공장시운전시의 운항조건,
상기 목표속도 = 목표거리/목표시간,
상기 가변목표속도 = 목표거리/(목표시간+가변시간),
상기 운항조건대비 속도증감량은 현재의 운항조건에서 표준최적RPM으로 운항했을 경우 상기 표준최적속도에 비해 증감되는 속도,
상기 표준최적RPM은 상기 표준운항조건일 때 상기 표준최적속도로 운항할 수 있는 RPM,
상기 RPM 변환계수는 상기 [표준최적속도-운항조건대비 속도증감량]에 곱하여 현재의 운항조건에서 상기 [표준최적속도-운항조건대비 속도증감량]의 속도를 낼 수 있는 RPM으로 변환하여주는 계수,
상기 기상보상계수 = 순기상계수(순기상정도-정기상정도)-난기상계수(난기상정도-정기상정도),
상기 정기상정도는 상기 표준운항조건의 기상조건의 정도를 수치화한 값,
상기 순기상정도는 현재의 기상조건의 순기상정도를 수치화한 값,
상기 난기상정도는 현재의 기상조건의 난기상정도를 수치화한 값,
상기 순기상계수는 상기 [순기상계수(순기상정도-정기상정도)]를 상기 [표준최적속도-운항조건대비 속도증감량]×RPM 변환계수에 곱하여 RPM을 구할 때, 상기 최적RPM이 순기상한계 RPM 이상이 되지 않도록 한정하는 계수,
상기 순기상한계 RPM은 RPM을 증가시켰을 때 연료소모증가량/속도증가량이 증가하는 점의 RPM,
상기 난기상계수는 상기 [난기상계수(난기상정도-정기상정도)]를 상기 [표준최적속도-운항조건대비 속도증감량]×RPM 변환계수에 곱하여 RPM을 구할 때, 상기 최적RPM이 난기상한계 RPM 이하가 되지 않도록 한정하는 계수,
상기 난기상한계 RPM은 RPM을 감소시켰을 때 현재의 운항조건에서의 마일당 연료소모감소량/속도감소량이 감소하는 점의 RPM인 것을 특징으로 한다.
전술한 기술적 과제를 해결하기 위한 수단으로서, 본 발명의 상기 선박 연료 절감 시스템을 사용한 선박 연료 절감 방법은, (f) 최적RPM 변경 설정단계(S40);를 더 포함하되, 상기 최적RPM을 자동으로 변경하고자 할 때, 변변속 시에는 상기 최적RPM 자동변경 설정부(43)가 상기 최적RPM 산출부(50)에 최적RPM 생성명령을 전달하고, 정변속 시에는 사용자에게서 초기RPM을 입력받아 상기 RPM 적용부(60)에 전달하는 정변속/변변속 설정단계(S46);와 상기 최적RPM을 자동으로 변경하고자 할 때, 상기 최적RPM 자동변경 설정부(43)가 변경시간 간격을 입력받아, 상기 변경시간 간격마다 상기 최적RPM 생성명령을 상기 최적RPM 산출부(50)에 전달하는 최적RPM 자동변경시간 설정단계(S44);를 더 포함하고, 상기 RPM 적용부(60)는 상기 초기RPM을 전달받아 선박의 엔진에 적용하는 것을 특징으로 한다.
전술한 기술적 과제를 해결하기 위한 수단으로서, 본 발명의 상기 선박 연료 절감 시스템을 사용한 선박 연료 절감 방법은, (f) 최적RPM 변경 설정단계(S40)를 포함하되, 상기 (f)단계는, 상기 최적RPM 수동변경 설정부(42)가 사용자의 최적RPM변경요청을 입력받으면, 최적RPM 생성명령을 상기 최적RPM 산출부(50)에 전달하는 최적RPM 수동변경 설정단계(S42);를 포함하는 것을 특징으로 한다.
전술한 기술적 과제를 해결하기 위한 수단으로서, 본 발명의 상기 선박 연료 절감 시스템을 사용한 선박 연료 절감 방법의 상기 (d)단계는, 상기 최적RPM 산출부(50)가 상기 최적RPM 산출모듈에 입력될 상기 현재의 스케줄조건 및 운항조건을 수집하는 스케줄/운항조건 수집단계(S52);와 상기 최적RPM 산출부(50)가 상기 현재의 스케줄조건 및 운항조건을 상기 최적RPM 산출모듈에 입력하여 상기 최적RPM을 산출하는 최적RPM 산출모듈 실행단계(S54);를 포함하는 것을 특징으로 한다.
전술한 기술적 과제를 해결하기 위한 수단으로서, 본 발명의 상기 선박 연료 절감 시스템을 사용한 선박 연료 절감 방법은, (g) 상기 선박 연료 절감 시스템을 적용하지 않은 일반운항 시와, 상기 선박 연료 절감 시스템을 적용한 최적운항 시의 연료절감 효과를 비교분석하기 위한 연료효율 분석단계(S70);를 더 포함하되, 상기 연료효율 분석단계(S70)는, 상기 연료효율 분석부(70)가 상기 선박 연료 절감 시스템을 적용한 최적운항시의 연료소모데이터, 상기 최적운항과 동일한 스케줄조건 대비 상기 기준운항의 연료소모데이터, 상기 최적운항과 동일한 스케줄조건 대비 일반운항의 연료소모데이터를 수집하는 연료소모데이터 수집단계(S72);와 상기 연료효율 분석부(70)가 상기 연료소모데이터로 상기 선박 연료 절감 시스템을 적용한 최적운항의 연료소모율, 상기 최적운항과 동일한 스케줄조건 대비 상기 기준운항의 연료소모율, 상기 최적운항과 동일한 스케줄조건 대비 일반운항의 연료소모율을 산출하는 연료소모율 계산단계(S74);와 상기 연료효율 분석부(70)가 상기 일반운항의 연료소모율, 상기 기준운항의 연료소모율로 일반운항의 연료손실율을 산출하고, 상기 최적운항의 연료소모율, 상기 기준운항의 연료소모율로 최적운항의 연료손실율을 산출하는 연료손실율 계산단계(S76);와 상기 연료효율 분석부(70)가 상기 일반운항의 연료손실율, 상기 최적운항의 연료소모율로 최적운항의 연료절감율을 산출하는 연료절감율 계산단계(S78);를 포함하되,
상기 최적운항의 연료손실율 = 최적운항의 연료소모율-기준운항의 연료소모율,
상기 일반운항의 연료손실율 = 일반운항의 연료소모율-기준운항의 연료소모율,
상기 최적운항의 연료절감율 = 일반운항의 연료손실율-최적운항의 연료손실율인 것을 특징으로 한다.
본 발명에 따르면, 선박의 내외부적인 모든 에너지 소모를 집중 분석하여 운항 조건별 에너지 효율 최적화를 통하여 선박의 주 에너지인 연료유 절감을 할 수 있을 뿐만 아니라, 에너지 소비 최적화를 위한 선박 항해정보기기와 엔진 제어기와의 통합으로 최적 운항조건을 산출하는 기술을 구현하고 이를 이용하여 엔진 제어의 무인화 유도할 수 있으며, 에너지 절감으로 소요군의 경비 절감 및 선박회사의 운영비를 절감할 수 있으며, 인력 절감을 통해 해상 운송의 경제성 및 고효율성을 확보하고, 연료유 소모를 최적화함으로서 탄소 배출권의 확보와 동시에 지구 온난화 방지에 적극 대응할 수 있는 효과가 있다.
본 발명의 효과는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 효과들은 아래의 기재로부터 당업자에게 명확하게 이해되어 질 수 있을 것이다.
도 1은 종래의 선박 운항 시스템
도 2는 본 발명의 선박 연료 절감 시스템을 도시한 도면.
도 3은 도 2의 선박 연료 절감 시스템을 선박 운항 시스템에 적용한 실시예를 도시한 도면.
도 4는 공장시운전에서 생성된 기준운항데이터의 예를 도시한 도면.
도 5는 해상시운전에서 생성된 기준운항데이터의 예를 도시한 도면.
도 6은 신조 후 N항차에서 생성된 기준운항데이터의 예를 도시한 도면.
도 7은 표준운항조건에서의 마일당 연료소모율/속도 그래프를 도시한 도면.
도 8은 본 발명의 선박 연료 절감 방법을 도시한 도면.
도 9는 도 8의 상세한 방법을 도시한 도면.
(부호의 설명)
10 : 기준선박사양 수집부 20 : 기준운항데이터 수집부
30 : 최적RPM 산출모듈 생성부 42 : 최적RPM 수동변경 설정부
43 : 최적RPM 자동변경 설정부 44 : 변변속/정변속 설정부
46 : 최적RPM 자동변경시간 설정부 50 : 최적RPM 산출부
52 : 스케줄/운항조건 수집부 54 : 최적RPM 산출모듈 실행부
60 : RPM 적용부 70 : 연료효율 분석부
72 : 연료소모데이터 수집부 74 : 연료소모율 계산부
76 : 연료손실율 계산부 78 : 연료절감율 계산부
S10 : 기준선박사양 수집단계 S20 : 기준운항데이터 수집단계
S30 : 최적RPM 산출모듈 생성단계 S40 : 최적RPM 변경 설정단계
S42 : 최적RPM 수동변경 설정단계 S44 : 최적RPM 자동변경시간 설정단계
S46 : 정변속/변변속 설정단계 S50 : 최적RPM 산출단계 S52 : 스케줄/운항조건 수집단계 S54 : 최적RPM 산출모듈 실행단계
S60 : RPM 적용단계 S70 : 연료효율 분석단계
S72 : 연료소모데이터 수집단계 S74 : 연료소모율 계산단계
S76 : 연료손실율 계산단계 S78 : 연료절감율 계산단계
본 발명은 선박 연료 절감 시스템을 적용하여 목표거리를 목표시간 내에 운항하면서도 운항조건을 고려하여 연료소모를 최소화하는 최적화된 RPM을 구하여 실제 운항에 적용하는 것이 목적이다.
일반적인 선박의 운항 시스템
일반적인 선박의 운항(이하 일반운항이라 표기함)은 도 1에서와 같이, 선장과 기관사가 스케줄조건과 운항조건을 고려하여, 속도의 변경이 필요하다고 판단될 때마다 엔진의 RPM을 다시 재조정하게 된다.
상기 일반운항인 경우 선장은 상기 운항조건 중 기상조건과 스케줄조건, 선체조건을 위주로 판단하고, 기관사는 상기 운항조건 중 엔진조건, 선체조건을 위주로 판단하여, RPM을 재조정 한다. 즉, 일반운항 시에는 목표시간 또는 후술되어질 가변목표시간내에 목적지로 도착하기 위해 선장 또는 기관사가 기상조건, 스케줄조건, 선체조건, 엔진조건을 고려하여 RPM을 조정하여 속도를 조절한다.
이렇게 일반운항은 상기 운항조건을 모두 고려하여 RPM을 결정하는 것 같지만, 실제로는 기관사와 선장이 상기 언급된 조건 중 일부분을 위주로 판단하기 때문에 최적의 RPM을 산출하는 것은 불가능 하다고 할 수 있다. 또한 선박 운항분야의 전문가인 사람이 상기 운항조건을 모두 포함한 정보를 수신하여 운항한다 하더라도, 고려해야할 운항조건이 너무 많기 때문에 최적의 RPM을 산출하는 것은 불가능하며, 주관적이며, 경험적인 판단에서 적당한 값이라 예상되는 RPM으로 조절 할 수밖에 없다.
그래서 본 발명은, 상기의 운항조건을 종합적으로 고려하여 목표시간 또는 가변목표시간 내에 목표거리를 운항하면서도, 연료효율성을 최대화하는 RPM(이하 최적RPM이라고 표기함)을 산출하는 시스템인 선박 연료 절감 시스템을 선박에 적용하는 것이 목적이다.(이하 상기 선박 연료 절감 시스템을 최적화시스템으로 표기함)
스케줄조건 및 운항조건
상기 스케줄조건이란 목표거리(D), 목표시간(H), 가변시간(h)을 포함하며, 상기 목표거리를 목표시간으로 나눈 것이 목표속도(V)이며, 상기 목표거리(D)를 목표시간(H)과 가변시간(h)의 합인 가변목표시간(Hv)으로 나눈 것이 가변목표속도(Vv)가 된다.
수학식 1
Figure PCTKR2010005893-appb-M000001
상기 운항조건은 선체조건, 기상조건, 엔진조건을 포함한다.
상기 기상조건이란 풍속, 조류속도, 피칭, 롤링, 수심을 포함하며, 상기 피칭이란 선박이 앞뒤로 흔들리는 것이며, 상기 롤링이란 선박이 좌우로 흔들리는 것이다.
상기 엔진조건이란 RPM, 엔진부하, 엔진성능을 포함한다.
상기 선체조건이란 배수량, 선체경사, 선체무게중심, 화물적재량, 연료유 적재량, 평행수적재량을 포함한다.
일반적으로 외부 조건이 균일할 때는 선박의 속도 증가는 RPM의 증가에 비례하게 되지만 상기 운항조건의 변화에 의해 선박이 영향을 받기 때문에 RPM의 변화량이 속도에 모두 반영되지 못하거나(ex.역풍, 역조류의 경우), 초과하여 반영된다(ex.순풍, 순조류의 경우). 또한 RPM을 변화시켰을 때에 따른 연료소모변화율도 상기 운항조건에 따라 증가될 수도 있고(ex.화물적재량이 보통보다 많은 경우), 감소될 수도 있다(ex.화물적재량이 보통보다 적은 경우). 이렇게 상기 운항조건이 다르면 동일 RPM으로 운항하더라도 실제 속도와 실제 연료소모량이 각각 달라질 수 있기 때문에, 실제 연료소모량 대비 실제 속도가 높은 RPM으로 운항하는 것이 연료소모량을 줄이면서 시간적인 면에서도 효율적인 운항이 된다. RPM을 최고로 유지하면, 속도는 빠르지만 연료가 과다하게 소모되며, 연료소모율을 최소로 유지하면, 속도가 목표속도보다 낮은경우 목표시간내에 목적지에 도착하기 어렵기 때문에, 연료소모량과, 속도를 모두 고려하여, 평균적으로 목표속도(V) 또는 가변목표속도(Vv)를 유지하며 연료소모량을 절감할 수 있는 RPM으로 운항하는 것이 비용과 효과면에서 적절하다.
기준운항데이터 및 기준운항
상기 목적을 달성하기 위해 최적RPM을 산출하는 기준이 되는 데이터(이하 기준운항데이터라고 함)를 각 운항조건별로 측정한다. 이때 RPM과 상기 운항조건을 변화시키면서 그에 따른 속도, 연료소모량을 측정한다. 상기 기준운항데이터는 여러 차례의 운항에 걸쳐서 측정이 되며, 상기 기준운항데이터의 측정 대상이 되는 운항을 기준운항이라고 하겠다.
상기 기준운항이란 공장시운전, 해상시운전, 신조후N항차, 최근M항차 등의 운항을 포함한 것으로, 상기 4가지 운항 중 일부 운항만 포함되는 경우도 있다. 즉, 상기 최적화시스템의 기준이 되는 데이터를 측정하기 위하여 상기 최적화시스템의 관리자, 선주, 사용자 등이 사전에 상기 4가지 운항 중 몇 가지를 기준운항으로 선정하는 것이다.(N, M 역시 본 시스템의 관리자, 선주, 사용자 등이 사전에 임으로 기준으로 정하는 운항 횟수이다.) 도 4는 상기 공장 시운전 시 측정한 기준운항데이터의 예이며, 도 5는 상기 해상 시운전 시 측정한 기준운항데이터의 예이며, 도 6은 신조 후 N항차 시 측정한 기준운항데이터의 예이다.
상기 기준운항데이터를 모두 수집하면, 상기 기준운항데이터를 바탕으로 운항조건대비 최적RPM을 산출하는 최적RPM 산출모듈을 생성하고, 상기 최적RPM 산출모듈에 현재의 스케줄조건 및 운항조건을 입력하여 최적RPM을 산출하여 운항에 적용(이하 상기 최적RPM 산출모듈에 현재의 스케줄조건 및 운항조건을 입력하여 최적RPM을 산출하여 운항하는 것을 최적운항이라고 표기함)함으로써 일반운항 대비 연료소모를 최소화한다.
선박 연료 절감 시스템
도 2는 본 발명의 상기 목적을 달성하기 위한 일실시예에 따른 선박 연료 절감 시스템을 도시한 것으로, 상기 선박 연료 절감 시스템은 기준선박사양 수집부(10), 기준운항데이터 수집부(20), 최적RPM 산출모듈 생성부(30), 최적RPM 자동변경 설정부(43), 최적RPM 수동변경 설정부(42), 최적RPM 산출부(50), RPM 적용부(60), 연료효율 분석부(70)를 포함하며, 다음과 같은 기능을 수행한다.
상기 기준선박사양 수집부(10)는 상기 최적화시스템을 적용할 선박의 선박사양(이하 기준선박사양으로 표기함)을 수집한다. 상기 기준선박사양에는 톤수, 선령, 선형, 선급이 포함된다.
상기 기준운항데이터 수집부(20)는 상기 최적RPM 산출모듈 생성에 이용될 기준운항데이터를 수집한다.
상기 최적RPM 산출모듈 생성부(30)는 기준운항 시 측정되는 기준운항데이터를 입력받아 최적RPM 산출모듈을 생성한다.
상기 최적RPM 자동변경 설정부(43)는 변변속/정변속 설정부(44), 최적RPM 자동변경 설정부(43)를 포함하여 구성된다.
상기 변변속/정변속 설정부(44)는 변변속 시에는 상기 최적RPM 산출부(50)에 최적RPM 생성명령을 전달하며, 정변속 시에는 사용자(선장 또는 기관사)에게서 초기RPM을 입력받아 RPM 적용부(60)에 전달한다.
상기 최적RPM 자동변경 설정부(43)는 설정부는 최적RPM의 변경시간 간격을 입력받아, 상기 변경시간 간격마다 최적RPM 생성명령을 상기 최적RPM 산출부(50)에 전달한다.
상기 정변속과 변변속은 변속방법 종류로, 본 발명에서는 초기RPM값에 따라 구분된다. 상기 변속이란 속도를 변경하더라도 평균적으로는 목표속도를 유지하면서 변속하는 것인데, 이 때 초기RPM에 목표속도를 낼 것으로 예상되는 RPM, 예전 운항 RPM 등 임의의 RPM을 입력하여 운항하는 것이 정변속이며, 초기RPM에 상기 최적화시스템을 통하여 구한 최적RPM을 입력하여 운항하는 것이 변변속이다. 즉, 변변속으로 운항하면 운항 초기부터 최적화가 시작되기 때문에 더욱 연료효율이 높아지는 장점이 있지만, 본 발명에서는 사용자의 필요에 의해, 또는 현재 운항조건 수집이 불가능한 경우 정변속을 선택하여 운항하는 것도 가능하다.
상기 최적RPM 수동변경 설정부(42)는 사용자의 최적RPM변경요청을 입력받으면, 최적RPM 생성명령을 상기 최적RPM 산출부(50)에 전달한다.
상기 최적RPM 산출부(50)는 상기 최적RPM 자동변경 설정부(43)에서 상기 사용자 설정을 전달받고, 상기 최적RPM 산출기준 생성부에서 상기 최적RPM 산출모듈을 전달받아 상기 운항조건에 따른 최적RPM을 산출한다.
상기 최적RPM 산출부(50)는 스케줄/운항조건 수집부(52), 최적RPM 산출모듈 실행부(54)를 포함하여 구성된다.
상기 스케줄/운항조건 수집부(52)는 상기 최적RPM 산출모듈에 입력될 현재의 스케줄조건 및 운항조건을 수집한다.
상기 최적RPM 산출모듈 실행부(54)는 상기 최적RPM 생성명령을 상기 최적RPM 자동변경 설정부(43) 또는 상기 최적RPM 수동변경 설정부(42)에서 전달받으면 상기 스케줄/운항조건 수집부(52)에서 현재의 스케줄조건 및 운항조건을 전달받아 상기 최적RPM 산출모듈에 입력하여 상기 최적RPM을 산출한다.
상기 RPM 적용부(60)는 상기 최적RPM 산출부(50)에서 상기 최적RPM을 전달받거나, 정변속일때, 상기 최적RPM 자동변경 설정부(43)에서 상기 초기RPM을 전달받으면 선박의 엔진에 적용한다.
상기 연료효율 분석부(70)는 상기 선박 연료 절감 시스템을 적용하지 않은 일반운항 시와, 상기 선박 연료 절감 시스템을 적용한 최적운항 시의 연료절감 효과를 비교분석한다.
상기 연료효율 분석부(70)는 연료소모데이터 수집부(72), 연료소모율 계산부(74), 연료손실율 계산부(76), 연료절감율 계산부(78)를 포함하여 구성된다.
상기 연료소모데이터 수집부(72)는 상기 최적운항과 동일한 스케줄 대비 상기 기준운항의 연료소모데이터, 상기 최적운항과 동일한 스케줄 대비 일반운항의 연료소모데이터를 수집한다.
상기 연료소모율 계산부(74)는 상기 연료소모데이터 수집부(72)에서 연료소모데이터를 입력받아 상기 선박 연료 절감 시스템을 적용한 최적운항의 연료소모율, 상기 최적운항과 동일한 스케줄 대비 상기 기준운항의 연료소모율, 상기 최적운항과 동일한 스케줄 대비 일반운항의 연료소모율을 산출한다.
상기 연료손실율 계산부(76)는 상기 연료소모율 계산부(74)에서 상기 일반운항의 연료소모율, 상기 기준운항의 연료소모율을 전달받아 일반운항의 연료손실율을 산출하고, 상기 연료소모율 계산부(74)에서 상기 최적운항의 연료소모율, 상기 기준운항의 연료소모율을 전달받아 최적운항의 연료손실율을 산출한다.
상기 연료절감율 계산부(78)는 상기 일반운항 연료손실율 계산부(76)에서 상기 일반운항의 연료손실율을 전달받고, 상기 최적운항 연료손실율 계산부(76)에서 상기 최적운항의 연료소모율을 전달받아 최적운항의 연료절감율을 산출한다.
선박 연료 절감 시스템의 적용예
본 발명의 선박 연료 절감 시스템은 PC에 다양한 방법으로 설치될 수 있다. 상기 선박 연료 절감 시스템은 하나의 PC에 전체 시스템이 모두 설치 될 수 있으며, 이때 다른 PC와 네트워크로 연결되거나 PC에 적용 가능한 전자기록매체로 필요한 자료를 주고받을 수 있다. 또한 복수개의 PC에 복수개의 시스템이 각각 설치되되, 상기 최적화시스템의 모든 구성요소를 가진 채 설치될 수 있으며, 이때 각각의 시스템은 네트워크로 정보를 전달하여 동기화할 수 있다. 또한 복수개의 PC에 복수개의 시스템이 각각 설치되되, 상기 최적화시스템의 구성요소를 각각의 PC가 나누어 가진 채 설치될 수 있으며, 이때 각각의 시스템은 네트워크로 정보를 전달하여 동기화할 수 있다.
도 3은 본 발명의 선박 연료 절감 시스템을 적용한 선박 및 이와 네트워크로 연결된 선박 연료 절감 시스템 관리자의 PC, 선주의 PC를 도시한 것으로, 복수개의 PC에 복수개의 상기 선박 연료 절감 시스템(이하 최적화시스템으로 표기)을 설치한 예이다. 상기 최적화시스템은 선박 내외의 다양한 장비들과 네트워크로 연결되어 자료를 수집하고, 엔진을 컨트롤 하게 된다.
상기 기준선박사양 수집부(10)는 입출력장치 또는 타 PC와 연결되어 상기 기준운항사양을 입력받고, 상기 기준운항데이터 수집부(20)에 연결되어 기준선박사양을 전달한다.
상기 기준운항데이터 수집부(20)는 입출력장치 또는 타 PC와 연결되어 기준운항데이터를 입력받고, 상기 최적RPM 산출모듈 생성부(30)에 연결되어 기준운항데이터를 전달하며, 상기 연료효율 분석부(70)에 연결되어, 기준운항 시의 연료소모율을 전달한다.
상기 최적RPM 산출모듈 생성부(30)는 상기 기준선박사양 수집부(10)와 상기 기준운항데이터 수집부(20)에 연결되어 상기 기준선박사양 및 기준운항데이터를 입력받아 최적RPM 산출모듈을 생성한다.
상기 최적RPM 산출부(50)는 상기 최적RPM 자동변경 설정부(43) 또는 최적RPM 수동변경 설정부(42)에서 사용자의 선택사항을 전달받고, 상기 최적RPM 산출모듈 생성부(30)에서 상기 최적RPM 산출모듈을 전달받아 현재의 스케줄조건 및 운항조건에 따른 최적RPM을 산출하여 상기 RPM 적용부(60)에 전달한다.
또한 상기 최적RPM 산출모듈에 입력할 현재의 스케줄조건 및 운항조건을 수집하기 위해 입출력장치 또는 타 PC 또는 선박내외의 정보수집장치와 연결되어 상기 운항조건 중 기상조건을 수신 하고, 입출력 장치 또는 타 PC 또는 엔진제어장치와 연결되어 엔진조건을 수신하고, 입출력 장치 또는 타 PC와 연결되어 선체조건 및 스케줄조건을 수신 한다.
상기 최적RPM 산출부(50)에 연결된 정보수집장치(도 1 및 도 3에는 제 1수집장치 ~ 제 N수집장치로 표기)는 GPS, ANEMOMETER, GYROCOMPASS, SPEED LOG, HEADING/TRACK CONTROL SYSTEM 등과 같은 수집장치로 구성되어 있으며, 전자해도, BWWAS, 컨버터가 상기 정보수집장치와 상기 최적화시스템의 사이에 연결 될 수 있다. 상기 컨버터는 상기 정보수집장치의 정보를 상기 최적화시스템이 설치된 PC에서 입력받을 수 있는 형태의 데이터로 변환하기 위한 것이다.
상기 RPM 적용부(60)는 출력장치에 연결되어 최적RPM 산출부(50)에서 전달받은 상기 최적RPM을 출력하거나, 기관실의 ETC, 선장실의 ETC 중 하나이상에 연결되어 상기 최적RPM 산출부(50)에서 전달받은 상기 최적RPM을 송신 한다.
상기 연료효율 분석부(70)는, 일반운항 시와, 상기 선박 연료 절감 시스템을 적용한 최적운항 시의 연료절감 효과를 비교분석하기 위해 상기 기준운항데이터 수집부(20)와 연결되어 기준운항데이터를 수신하고, 상기 최적RPM 산출부(50)와 연결되어 최적운항 적용시의 스케줄조건, 운항조건, 연료소모량을 수신한다.
상기 연결은 직접 케이블로 연결하거나 유무선 네트워크로 가능하다.
최적RPM 및 최적RPM 산출모듈
상기 최적RPM 산출모듈은 다음과 같은 방식으로 최적RPM을 생성한다.
수학식 2
Figure PCTKR2010005893-appb-M000002
상기 공식은 상기 최적RPM 산출모듈 생성부(30)가 기준선박사양과, 기준운항데이터를 시뮬레이션하여 생성하며, 기준선박사양이 변경되면 다시 생성하여야 한다.
상기 표준최적속도는 상기 목표속도, 가변목표속도, 상기 목표속도와 가변목표속도 사이의 속도 중 속도대비 표준운항조건에서의 마일당 연료소모율/속도가 최저인 속도이며 상기 표준운항조건은 공장시운전시의 운항조건이다. 도 7을 참고하면, 가로축은 속도이고, 세로축은 표준운항조건에서의 마일당 연료소모율이고, A는 목표속도이고, B는 가변속도라고 하였을 때 A와 B의 사이에서 마일당 연료소모율이 가장 작은 점은 C이므로 C일 때의 속도가 표준최적속도가 된다.
상기 운항조건대비 속도증감량은 현재의 운항조건에서 표준최적RPM으로 운항했을 경우 상기 표준최적속도에 비해 증감되는 속도의 양이며, 상기 표준최적RPM은 상기 표준운항조건일 때 상기 표준최적속도로 운항할 수 있는 RPM이다.
상기 RPM 변환계수는 상기 [표준최적속도-운항조건대비 속도증감량]에 곱하여 현재의 운항조건에서 상기 [표준최적속도-운항조건대비 속도증감량]의 속도를 낼 수 있는 RPM으로 변환하여주는 계수이다.
상기 기상보상계수의 식은 다음과 같다.
수학식 3
Figure PCTKR2010005893-appb-M000003
상기 정기상정도는 상기 표준운항조건의 기상조건의 정도를 수치화한 값으로 일반적으로 바람 및 조류의 세기가 0인 때가 표준운항조건이 된다. 상기 순기상정도는 현재의 기상조건의 순기상정도를 수치화한 값이며, 상기 난기상정도는 현재의 기상조건의 난기상정도를 수치화한 값이다. 즉, 순기상정도는 순풍과 순조류의 세기를 수치화 한것이며, 난기상정도는 역풍과 역조류의 세기를 수치화 한 것으로, 상기 (순기상정도-정기상정도)와, (난기상정도-정기상정도)는 상기 기상조건이 속도의 증감에 미치는 영향을 나타낸다.
상기 순기상계수는 상기 [순기상계수(순기상정도-정기상정도)]를 상기 [표준최적속도-운항조건대비 속도증감량]×RPM 변환계수에 곱하여 RPM을 구할 때, RPM이 순기상한계 RPM 이상이 되지 않도록 한정하는 계수이며, 상기 순기상한계 RPM은 RPM을 증가시켰을 때 연료소모증가량/속도증가량이 증가하는 점의 RPM이다.
상기 난기상계수는 상기 [난기상계수(난기상정도-정기상정도)]를 상기 [표준최적속도-운항조건대비 속도증감량]×RPM 변환계수에 곱하여 RPM을 구할 때, RPM이 난기상한계 RPM 이하가 되지 않도록 한정하는 계수이며, 상기 난기상한계 RPM은 RPM을 감소시켰을 때 연료소모감소량/속도감소량이 감소하는 점의 RPM이다.
최적운항의 연료절감율
상기 최적운항의 연료절감율을 구하는 식은 다음과 같다.
최적운항의 연료절감율 = 일반운항의 연료손실율-최적운항의 연료손실율
이때, 상기 최적운항의 연료손실율과 일반운항의 연료손실율은 다음과 같다.
최적운항의 연료손실율 = 최적운항의 연료소모율-기준운항의 연료소모율
일반운항의 연료손실율 = 일반운항의 연료소모율-기준운항의 연료소모율
여기서 기준운항의 연료소모율은 기준운항데이터를 통해 산출한 기준운항시의 평균연료소모율이다.
선박 연료 절감 방법
도 8은 본 발명의 선박 연료 절감 방법을 도시한 도면이고, 도 9는 도 8의 선박 연료 절감 방법을 보다 상세하게 도시한 도면으로, 상기 최적화시스템을 사용한 선박 연료 절감 방법은 기준선박사양 수집단계(S10), 기준운항데이터 수집단계(S20), 최적RPM 산출모듈 생성단계(S30), 최적RPM 변경 설정단계(S40), 최적RPM 산출단계(S50), RPM 적용단계(S60), 연료효율 분석단계(S70)를 포함한다.
상기 기준선박사양 수집단계(S10)에서는 상기 최적화시스템의 기준선박사양 수집부(10)가 기준선박사양을 수집한다.
상기 기준운항데이터 수집단계(S20)에서는 상기 기준운항데이터 수집부(20)가 상기 기준운항데이터를 수집한다.
상기 최적RPM 산출모듈 생성단계(S30)에서는 상기 최적RPM 산출모듈 생성부(30)가 상기 기준선박사양 및 기준운항데이터를 입력받아 최적RPM 산출모듈을 생성한다.
상기 최적RPM 변경 설정단계(S40)에서는 최적RPM의 산출 및 적용 방법에 대한 사용자 설정을 입력받으며, 사용자의 선택에 따라, 자동으로 최적RPM을 조절하거나, 수동으로 최적RPM을 조절 할 수 있으며, 자동으로 운항시에는 정변속 또는 변변속 중 선택하여 운항 할 수 있다.
상기 최적RPM 변경 설정단계(S40)에서는 상기 최적RPM을 자동으로 변경할 때 정변속/변변속 설정단계(S46), 최적RPM 자동변경시간 설정단계(S44)를 거치게 된다.
상기 정변속/변변속 설정단계(S46)에서는 상기 최적RPM 자동변경 설정부(43)가 상기 최적RPM 산출부(50)에 최적RPM 생성명령을 전달하고, 정변속 시에는 사용자에게서 초기RPM을 입력받아 상기 RPM 적용부(60)에 전달한다.
상기 최적RPM 자동변경시간 설정단계(S44)에서는 상기 최적RPM 자동변경 설정부(43)가 변경시간 간격을 입력받아, 상기 변경시간 간격마다 최적RPM 생성명령을 상기 최적RPM 산출부(50)에 전달한다.
상기 최적RPM 수동변경 설정단계(S42)에서는 상기 최적RPM 수동변경 설정부(42)가 사용자의 최적RPM변경요청을 입력받으면, 최적RPM 생성명령을 상기 최적RPM 산출부(50)에 전달한다.
상기 최적RPM 산출단계(S50)에서는 상기 최적RPM 산출부(50)가 전달받은 상기 최적RPM 산출모듈에 상기 현재의 스케줄조건 및 운항조건을 입력하여 최적RPM을 산출한다.
상기 최적RPM 산출단계(S50)는, 스케줄/운항조건 수집단계(S52), 최적RPM 산출모듈 실행단계(S54)를 포함하여 구성된다.
상기 스케줄/운항조건 수집단계(S52)에서는 상기 최적RPM 산출모듈에 입력될 상기 현재의 스케줄조건 및 운항조건을 수집한다.
상기 최적RPM 산출모듈 실행단계(S54)에서는 상기 최적RPM 산출부(50)가 상기 최적RPM 생성명령을 상기 최적RPM 자동변경 설정부(43) 또는 최적RPM 수동변경 설정부(42)에서 전달받으면 상기 최적RPM 산출부(50)가 상기 현재의 스케줄조건 및 운항조건을 상기 최적RPM 산출모듈에 입력하여 상기 최적RPM을 산출한다.
상기 RPM 적용단계(S60)에서는 상기 RPM 적용부(60)가 상기 최적RPM 산출부(50)에서 상기 최적RPM을 전달받고, 정변속시에는 상기 최적RPM 자동변경 설정부(43)에서 상기 초기RPM을 전달받아 선박의 엔진에 적용한다.
상기 연료효율 분석단계(S70)에서는 상기 선박 연료 절감 시스템을 적용하지 않은 일반운항 시와, 상기 선박 연료 절감 시스템을 적용한 최적운항 시의 연료절감 효과를 비교분석한다.
상기 연료효율 분석단계(S70)는 연료소모데이터 수집단계(S72), 연료소모율 계산단계(S74), 연료손실율 계산단계(S76), 연료절감율 계산단계(S78)를 포함하여 구성된다.
상기 연료소모데이터 수집단계(S72)에서는 상기 연료효율 분석부(70)가 상기 선박 연료 절감 시스템을 적용한 최적운항시의 연료소모데이터, 상기 최적운항과 동일한 스케줄 대비 상기 기준운항의 연료소모데이터, 상기 최적운항과 동일한 스케줄 대비 일반운항의 연료소모데이터를 수집한다.
상기 연료소모율 계산단계(S74)에서는 상기 연료효율 분석부(70)가 상기 연료소모데이터로 상기 선박 연료 절감 시스템을 적용한 최적운항의 연료소모율, 상기 최적운항과 동일한 스케줄 대비 상기 기준운항의 연료소모율, 상기 최적운항과 동일한 스케줄 대비 일반운항의 연료소모율을 산출한다.
상기 연료손실율 계산단계(S76)에서는 상기 연료효율 분석부(70)가 상기 일반운항의 연료소모율, 상기 기준운항의 연료소모율로 일반운항의 연료손실율을 산출하고, 상기 최적운항의 연료소모율, 상기 기준운항의 연료소모율로 최적운항의 연료손실율을 산출한다.
상기 연료절감율 계산단계(S78)에서는 상기 연료효율 분석부(70)가 상기 일반운항의 연료손실율, 상기 최적운항의 연료소모율로 최적운항의 연료절감율을 산출한다.
상기 선박 연료 절감 방법은 컴퓨터 프로그램으로 기록매체에 저장되하여 사용할 수 있다.
이상에서 설명한 본 발명의 바람직한 실시 예들은 기술적 과제를 해결하기 위해 개시된 것으로, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자(육상기술담당자, 선박 내 실무자)라면 본 발명의 사상과 범위 안에서 다양한 수정, 변경, 부가 등이 가능할 것이며, 이러한 수정 변경 등은 이하의 특허청구범위에 속하는 것으로 보아야 할 것이다.
본 발명의 선박 연료 절감 시스템은, 기준선박사양을 수집하는 기준선박사양 수집부(10);와, 기준운항시 운항조건을 변경시키면서 속도와 연료소모율을 측정한 기준운항데이터를 수집하는 기준운항데이터 수집부(20);와, 상기 기준선박사양 및 기준운항데이터를 입력받아 최적RPM 산출모듈을 생성하는 최적RPM 산출모듈 생성부(30);와, 상기 최적RPM 산출모듈 생성부(30)에서 전달받은 상기 최적RPM 산출모듈에 현재의 스케줄조건 및 운항조건을 입력하여 최적RPM을 산출하는 최적RPM 산출부(50);와, 상기 최적RPM 산출부(50)에서 상기 최적RPM을 전달받아 선박의 엔진에 적용하는 RPM 적용부(60);를 포함하되, 상기 기준운항은 공장시운전, 해상시운전, 신조후N항차, 최근M항차를 포함한 것이며, 상기 N 및 M은 관계자들이 임의로 지정하는 횟수이며, 상기 최적RPM은 상기 현재의 스케줄조건 및 운항조건 대비 연료를 최저로 소모하는 RPM이되, 상기 스케줄조건은 목표거리, 목표시간, 가변시간을 포함하며, 상기 운항조건은 선체조건, 기상조건, 엔진조건을 포함하며,
상기 최적RPM = [표준최적속도-운항조건대비 속도증감량]×RPM 변환계수×기상보상계수,
상기 표준최적속도는 목표속도, 가변목표속도, 상기 목표속도와 가변목표속도 사이의 속도 중 속도대비 연료소모율(=표준운항조건에서의 마일당 연료소모율/속도)이 최저인 속도,
상기 표준운항조건은 공장시운전시의 운항조건,
상기 목표속도 = 목표거리/목표시간,
상기 가변목표속도 = 목표거리/(목표시간+가변시간),
상기 운항조건대비 속도증감량은 현재의 운항조건에서 표준최적RPM으로 운항했을 경우 상기 표준최적속도에 비해 증감되는 속도,
상기 표준최적RPM은 상기 표준운항조건일 때 상기 표준최적속도로 운항할 수 있는 RPM,
상기 RPM 변환계수는 상기 [표준최적속도-운항조건대비 속도증감량]에 곱하여 현재의 운항조건에서 상기 [표준최적속도-운항조건대비 속도증감량]의 속도를 낼 수 있는 RPM으로 변환하여주는 계수,
상기 기상보상계수 = 순기상계수(순기상정도-정기상정도)-난기상계수(난기상정도-정기상정도),
상기 정기상정도는 상기 표준운항조건의 기상조건의 정도를 수치화한 값,
상기 순기상정도는 현재의 기상조건의 순기상정도를 수치화한 값,
상기 난기상정도는 현재의 기상조건의 난기상정도를 수치화한 값,
상기 순기상계수는 상기 [순기상계수(순기상정도-정기상정도)]를 상기 [표준최적속도-운항조건대비 속도증감량]×RPM 변환계수에 곱하여 RPM을 구할 때, 상기 최적RPM이 순기상한계 RPM 이상이 되지 않도록 한정하는 계수,
상기 순기상한계 RPM은 RPM을 증가시켰을 때 연료소모증가량/속도증가량이 증가하는 점의 RPM,
상기 난기상계수는 상기 [난기상계수(난기상정도-정기상정도)]를 상기 [표준최적속도-운항조건대비 속도증감량]×RPM 변환계수에 곱하여 RPM을 구할 때, 상기 최적RPM이 난기상한계 RPM 이하가 되지 않도록 한정하는 계수,
상기 난기상한계 RPM은 RPM을 감소시켰을 때 현재의 운항조건에서의 마일당 연료소모감소량/속도감소량이 감소하는 점의 RPM인 것을 수단으로 한다.
본 발명의 선박 연료 절감 시스템은, 상기 최적RPM을 자동으로 변경할 때 사용자의 선택사항을 입력받는 최적RPM 자동변경 설정부(43)를 더 포함하되, 상기 최적RPM 자동변경 설정부(43)는, 변변속 시에는 상기 최적RPM 산출부(50)에 최적RPM 생성명령을 전달하고, 정변속 시에는 사용자에게서 초기RPM을 입력받아 상기 RPM 적용부(60)에 전달하는 변변속/정변속 설정부(44);와 상기 최적RPM의 변경시간 간격을 입력받아, 상기 변경시간 간격마다 상기 최적RPM 생성명령을 상기 최적RPM 산출부(50)에 전달하는 최적RPM 자동변경시간 설정부(46);를 더 포함하는 것을 수단으로 한다.
본 발명의 선박 연료 절감 시스템은, 사용자의 최적RPM변경요청을 입력받으면, 최적RPM 생성명령을 상기 최적RPM 산출부(50)에 전달하는 최적RPM 수동변경 설정부(42);를 더 포함하는 것을 수단으로 한다.
본 발명의 선박 연료 절감 시스템의 상기 최적RPM 산출부(50)는, 상기 최적RPM 산출모듈에 입력될 현재의 스케줄조건 및 운항조건을 수집하는 스케줄/운항조건 수집부(52);와 상기 최적RPM 생성명령을 전달받으면 상기 스케줄/운항조건 수집부(52)에서 상기 현재의 스케줄조건 및 운항조건을 입력받아 상기 최적RPM 산출모듈에 입력하여 최적RPM을 산출하는 최적RPM 산출모듈 실행부(54);를 포함하는 것을 수단으로 한다.
본 발명의 선박 연료 절감 시스템은, 상기 선박 연료 절감 시스템을 적용하지 않은 일반운항 시와, 상기 선박 연료 절감 시스템을 적용한 최적운항 시의 연료절감 효과를 비교분석하기 위한 연료효율 분석부(70)를 포함하며, 상기 연료효율 분석부(70)는, 상기 최적운항과 동일한 스케줄조건 대비 상기 기준운항의 연료소모데이터, 상기 최적운항과 동일한 스케줄조건 대비 일반운항의 연료소모데이터를 수집하는 연료소모데이터 수집부(72);와 상기 최적운항의 연료소모율, 상기 최적운항과 동일한 스케줄조건 대비 상기 기준운항의 연료소모율, 상기 최적운항과 동일한 스케줄조건 대비 일반운항의 연료소모율을 산출하는 연료소모율 계산부(74);와 상기 연료소모율 계산부(74)에서 상기 일반운항의 연료소모율, 상기 기준운항의 연료소모율을 전달받아 일반운항의 연료손실율을 산출하고, 상기 연료소모율 계산부(74)에서 상기 최적운항의 연료소모율, 상기 기준운항의 연료소모율을 전달받아 최적운항의 연료손실율을 산출하는 연료손실율 계산부(76);와
상기 일반운항 연료손실율 계산부(76)에서 상기 일반운항의 연료손실율을 전달받고, 상기 최적운항 연료손실율 계산부(76)에서 상기 최적운항의 연료소모율을 전달받아 최적운항의 연료절감율을 산출하는 연료절감율 계산부(78);를 포함하되, 상기 최적운항의 연료손실율 = 최적운항의 연료소모율-기준운항의 연료소모율, 상기 일반운항의 연료손실율 = 일반운항의 연료소모율-기준운항의 연료소모율, 상기 최적운항의 연료절감율 = 일반운항의 연료손실율-최적운항의 연료손실율인 것을 수단으로 한다.
본 발명의 상기 선박 연료 절감 시스템을 사용한 선박 연료 절감 방법은,
(a) 상기 기준선박사양 수집부(10)가 기준선박사양을 수집하는 기준선박사양 수집단계(S10);와
(b) 상기 기준운항데이터 수집부(20)가 기준운항데이터를 수집하는 기준운항데이터 수집단계(S20);와
(c) 상기 최적RPM 산출모듈 생성부(30)가 상기 기준선박사양 및 기준운항데이터를 입력받아 최적RPM 산출모듈을 생성하는 최적RPM 산출모듈 생성단계(S30);와
(d) 상기 최적RPM 산출부(50)가 상기 최적RPM 산출모듈 생성부(30)에서 전달받은 상기 최적RPM 산출모듈에 현재의 스케줄조건 및 운항조건을 입력하여 최적RPM을 산출하는 최적RPM 산출단계(S50);와
(e) 상기 RPM 적용부(60)가 상기 최적RPM 산출부(50)에서 상기 최적RPM을 전달받아 선박의 엔진에 적용하는 RPM 적용단계(S60);를 포함하되, 상기 기준운항은 공장시운전, 해상시운전, 신조후N항차, 최근M항차를 포함한 것이며, 상기 N 및 M은 관계자들이 임의로 지정하는 횟수이며, 상기 최적RPM은 상기 현재의 스케줄조건 및 운항조건 대비 연료를 최저로 소모하는 RPM이되, 상기 스케줄조건은 목표거리, 목표시간, 가변시간을 포함하며, 상기 운항조건은 선체조건, 기상조건, 엔진조건을 포함하며,
상기 최적RPM = [표준최적속도-운항조건대비 속도증감량]×RPM 변환계수×기상보상계수,
상기 표준최적속도는 목표속도, 가변목표속도, 상기 목표속도와 가변목표속도 사이의 속도 중 속도대비 연료소모율(=표준운항조건에서의 마일당 연료소모율/속도)이 최저인 속도,
상기 표준운항조건은 공장시운전시의 운항조건,
상기 목표속도 = 목표거리/목표시간,
상기 가변목표속도 = 목표거리/(목표시간+가변시간),
상기 운항조건대비 속도증감량은 현재의 운항조건에서 표준최적RPM으로 운항했을 경우 상기 표준최적속도에 비해 증감되는 속도,
상기 표준최적RPM은 상기 표준운항조건일 때 상기 표준최적속도로 운항할 수 있는 RPM,
상기 RPM 변환계수는 상기 [표준최적속도-운항조건대비 속도증감량]에 곱하여 현재의 운항조건에서 상기 [표준최적속도-운항조건대비 속도증감량]의 속도를 낼 수 있는 RPM으로 변환하여주는 계수,
상기 기상보상계수 = 순기상계수(순기상정도-정기상정도)-난기상계수(난기상정도-정기상정도),
상기 정기상정도는 상기 표준운항조건의 기상조건의 정도를 수치화한 값,
상기 순기상정도는 현재의 기상조건의 순기상정도를 수치화한 값,
상기 난기상정도는 현재의 기상조건의 난기상정도를 수치화한 값,
상기 순기상계수는 상기 [순기상계수(순기상정도-정기상정도)]를 상기 [표준최적속도-운항조건대비 속도증감량]×RPM 변환계수에 곱하여 RPM을 구할 때, 상기 최적RPM이 순기상한계 RPM 이상이 되지 않도록 한정하는 계수,
상기 순기상한계 RPM은 RPM을 증가시켰을 때 연료소모증가량/속도증가량이 증가하는 점의 RPM,
상기 난기상계수는 상기 [난기상계수(난기상정도-정기상정도)]를 상기 [표준최적속도-운항조건대비 속도증감량]×RPM 변환계수에 곱하여 RPM을 구할 때, 상기 최적RPM이 난기상한계 RPM 이하가 되지 않도록 한정하는 계수,
상기 난기상한계 RPM은 RPM을 감소시켰을 때 현재의 운항조건에서의 마일당 연료소모감소량/속도감소량이 감소하는 점의 RPM인 것을 수단으로 한다.
본 발명의 상기 선박 연료 절감 시스템을 사용한 선박 연료 절감 방법은, (f) 최적RPM 변경 설정단계(S40);를 더 포함하되, 상기 최적RPM을 자동으로 변경하고자 할 때, 변변속 시에는 상기 최적RPM 자동변경 설정부(43)가 상기 최적RPM 산출부(50)에 최적RPM 생성명령을 전달하고, 정변속 시에는 사용자에게서 초기RPM을 입력받아 상기 RPM 적용부(60)에 전달하는 정변속/변변속 설정단계(S46);와 상기 최적RPM을 자동으로 변경하고자 할 때, 상기 최적RPM 자동변경 설정부(43)가 변경시간 간격을 입력받아, 상기 변경시간 간격마다 상기 최적RPM 생성명령을 상기 최적RPM 산출부(50)에 전달하는 최적RPM 자동변경시간 설정단계(S44);를 더 포함하고, 상기 RPM 적용부(60)는 상기 초기RPM을 전달받아 선박의 엔진에 적용하는 것을 수단으로 한다.
본 발명의 상기 선박 연료 절감 시스템을 사용한 선박 연료 절감 방법은, (f) 최적RPM 변경 설정단계(S40)를 포함하되, 상기 (f)단계는, 상기 최적RPM 수동변경 설정부(42)가 사용자의 최적RPM변경요청을 입력받으면, 최적RPM 생성명령을 상기 최적RPM 산출부(50)에 전달하는 최적RPM 수동변경 설정단계(S42);를 포함하는 것을 수단으로 한다.
본 발명의 상기 선박 연료 절감 시스템을 사용한 선박 연료 절감 방법의 상기 (d)단계는, 상기 최적RPM 산출부(50)가 상기 최적RPM 산출모듈에 입력될 상기 현재의 스케줄조건 및 운항조건을 수집하는 스케줄/운항조건 수집단계(S52);와 상기 최적RPM 산출부(50)가 상기 현재의 스케줄조건 및 운항조건을 상기 최적RPM 산출모듈에 입력하여 상기 최적RPM을 산출하는 최적RPM 산출모듈 실행단계(S54);를 포함하는 것을 수단으로 한다.
본 발명의 상기 선박 연료 절감 시스템을 사용한 선박 연료 절감 방법은, (g) 상기 선박 연료 절감 시스템을 적용하지 않은 일반운항 시와, 상기 선박 연료 절감 시스템을 적용한 최적운항 시의 연료절감 효과를 비교분석하기 위한 연료효율 분석단계(S70);를 더 포함하되, 상기 연료효율 분석단계(S70)는, 상기 연료효율 분석부(70)가 상기 선박 연료 절감 시스템을 적용한 최적운항시의 연료소모데이터, 상기 최적운항과 동일한 스케줄조건 대비 상기 기준운항의 연료소모데이터, 상기 최적운항과 동일한 스케줄조건 대비 일반운항의 연료소모데이터를 수집하는 연료소모데이터 수집단계(S72);와 상기 연료효율 분석부(70)가 상기 연료소모데이터로 상기 선박 연료 절감 시스템을 적용한 최적운항의 연료소모율, 상기 최적운항과 동일한 스케줄조건 대비 상기 기준운항의 연료소모율, 상기 최적운항과 동일한 스케줄조건 대비 일반운항의 연료소모율을 산출하는 연료소모율 계산단계(S74);와 상기 연료효율 분석부(70)가 상기 일반운항의 연료소모율, 상기 기준운항의 연료소모율로 일반운항의 연료손실율을 산출하고, 상기 최적운항의 연료소모율, 상기 기준운항의 연료소모율로 최적운항의 연료손실율을 산출하는 연료손실율 계산단계(S76);와 상기 연료효율 분석부(70)가 상기 일반운항의 연료손실율, 상기 최적운항의 연료소모율로 최적운항의 연료절감율을 산출하는 연료절감율 계산단계(S78);를 포함하되,
상기 최적운항의 연료손실율 = 최적운항의 연료소모율-기준운항의 연료소모율,
상기 일반운항의 연료손실율 = 일반운항의 연료소모율-기준운항의 연료소모율,
상기 최적운항의 연료절감율 = 일반운항의 연료손실율-최적운항의 연료손실율인 것을 수단으로 한다.
본 발명에 따른 선박 운항지시 최적화 구현을 위한 에너지 효율 최적화를 이용한 선박 연료 절감 시스템 및 그 방법과 그 방법에 의한 컴퓨터 프로그램을 저장한 기록매체는 선박의 내외부적인 모든 에너지 소모를 집중 분석하여 운항 조건별 에너지 효율 최적화를 통하여 선박의 주 에너지인 연료유 절감을 할 수 있을 뿐만 아니라, 에너지 소비 최적화를 위한 선박 항해정보기기와 엔진 제어기와의 통합으로 최적 운항조건을 산출하는 기술을 구현하고 이를 이용하여 엔진 제어의 무인화 유도할 수 있으며, 에너지 절감으로 소요군의 경비 절감 및 선박회사의 운영비를 절감할 수 있으며, 인력 절감을 통해 해상 운송의 경제성 및 고효율성을 확보하고, 연료유 소모를 최적화함으로서 탄소 배출권의 확보와 동시에 지구 온난화 방지에 적극 대응할 수 있는 선박 연료 절감 시스템 및 그 방법과 그 방법에 의한 컴퓨터 프로그램을 저장한 기록매체로 산업현장에서 널리 사용될 것으로 기대된다.

Claims (11)

  1. 선박 연료 절감 시스템에 있어서,
    기준선박사양을 수집하는 기준선박사양 수집부(10);와,
    기준운항시 운항조건을 변경시키면서 속도와 연료소모율을 측정한 기준운항데이터를 수집하는 기준운항데이터 수집부(20);와
    상기 기준선박사양 및 기준운항데이터를 입력받아 최적RPM 산출모듈을 생성하는 최적RPM 산출모듈 생성부(30);와
    상기 최적RPM 산출모듈 생성부(30)에서 전달받은 상기 최적RPM 산출모듈에 현재의 스케줄조건 및 운항조건을 입력하여 최적RPM을 산출하는 최적RPM 산출부(50);와
    상기 최적RPM 산출부(50)에서 상기 최적RPM을 전달받아 선박의 엔진에 적용하는 RPM 적용부(60);를 포함하되,
    상기 기준운항은 공장시운전, 해상시운전, 신조후N항차, 최근M항차를 포함한 것이며, 상기 N 및 M은 관계자들이 임의로 지정하는 횟수이며,
    상기 최적RPM은 상기 현재의 스케줄조건 및 운항조건 대비 연료를 최저로 소모하는 RPM이되,
    상기 스케줄조건은 목표거리, 목표시간, 가변시간을 포함하며,
    상기 운항조건은 선체조건, 기상조건, 엔진조건을 포함하며,
    상기 최적RPM = [표준최적속도-운항조건대비 속도증감량]×RPM 변환계수×기상보상계수,
    상기 표준최적속도는 목표속도, 가변목표속도, 상기 목표속도와 가변목표속도 사이의 속도 중 속도대비 연료소모율(=표준운항조건에서의 마일당 연료소모율/속도)이 최저인 속도,
    상기 표준운항조건은 공장시운전시의 운항조건,
    상기 목표속도 = 목표거리/목표시간,
    상기 가변목표속도 = 목표거리/(목표시간+가변시간),
    상기 운항조건대비 속도증감량은 현재의 운항조건에서 표준최적RPM으로 운항했을 경우 상기 표준최적속도에 비해 증감되는 속도,
    상기 표준최적RPM은 상기 표준운항조건일 때 상기 표준최적속도로 운항할 수 있는 RPM,
    상기 RPM 변환계수는 상기 [표준최적속도-운항조건대비 속도증감량]에 곱하여 현재의 운항조건에서 상기 [표준최적속도-운항조건대비 속도증감량]의 속도를 낼 수 있는 RPM으로 변환하여주는 계수,
    상기 기상보상계수 = 순기상계수(순기상정도-정기상정도)-난기상계수(난기상정도-정기상정도),
    상기 정기상정도는 상기 표준운항조건의 기상조건의 정도를 수치화한 값,
    상기 순기상정도는 현재의 기상조건의 순기상정도를 수치화한 값,
    상기 난기상정도는 현재의 기상조건의 난기상정도를 수치화한 값,
    상기 순기상계수는 상기 [순기상계수(순기상정도-정기상정도)]를 상기 [표준최적속도-운항조건대비 속도증감량]×RPM 변환계수에 곱하여 RPM을 구할 때, 상기 최적RPM이 순기상한계 RPM 이상이 되지 않도록 한정하는 계수,
    상기 순기상한계 RPM은 RPM을 증가시켰을 때 연료소모증가량/속도증가량이 증가하는 점의 RPM,
    상기 난기상계수는 상기 [난기상계수(난기상정도-정기상정도)]를 상기 [표준최적속도-운항조건대비 속도증감량]×RPM 변환계수에 곱하여 RPM을 구할 때, 상기 최적RPM이 난기상한계 RPM 이하가 되지 않도록 한정하는 계수,
    상기 난기상한계 RPM은 RPM을 감소시켰을 때 현재의 운항조건에서의 마일당 연료소모감소량/속도감소량이 감소하는 점의 RPM인 것을 특징으로 하는 선박 연료 절감 시스템.
  2. 제 1항에 있어서,
    상기 선박 연료 절감 시스템은,
    상기 최적RPM을 자동으로 변경할 때 사용자의 선택사항을 입력받는 최적RPM 자동변경 설정부(43)를 더 포함하되,
    상기 최적RPM 자동변경 설정부(43)는,
    변변속 시에는 상기 최적RPM 산출부(50)에 최적RPM 생성명령을 전달하고, 정변속 시에는 사용자에게서 초기RPM을 입력받아 상기 RPM 적용부(60)에 전달하는 변변속/정변속 설정부(44);와
    상기 최적RPM의 변경시간 간격을 입력받아, 상기 변경시간 간격마다 상기 최적RPM 생성명령을 상기 최적RPM 산출부(50)에 전달하는 최적RPM 자동변경시간 설정부(46);를 더 포함하는 것을 특징으로 하는 선박 연료 절감 시스템.
  3. 제 1항에 있어서,
    상기 선박 연료 절감 시스템은,
    사용자의 최적RPM변경요청을 입력받으면, 최적RPM 생성명령을 상기 최적RPM 산출부(50)에 전달하는 최적RPM 수동변경 설정부(42);를 더 포함하는 것을 특징으로 하는 선박 연료 절감 시스템.
  4. 제 2항 내지 3항에 있어서,
    상기 최적RPM 산출부(50)는,
    상기 최적RPM 산출모듈에 입력될 현재의 스케줄조건 및 운항조건을 수집하는 스케줄/운항조건 수집부(52);와
    상기 최적RPM 생성명령을 전달받으면 상기 스케줄/운항조건 수집부(52)에서 상기 현재의 스케줄조건 및 운항조건을 입력받아 상기 최적RPM 산출모듈에 입력하여 최적RPM을 산출하는 최적RPM 산출모듈 실행부(54);를
    포함하는 것을 특징으로 하는 선박 연료 절감 시스템.
  5. 제 1항에 있어서,
    상기 선박 연료 절감 시스템은,
    상기 선박 연료 절감 시스템을 적용하지 않은 일반운항 시와, 상기 선박 연료 절감 시스템을 적용한 최적운항 시의 연료절감 효과를 비교분석하기 위한 연료효율 분석부(70)를 포함하며,
    상기 연료효율 분석부(70)는,
    상기 최적운항과 동일한 스케줄조건 대비 상기 기준운항의 연료소모데이터, 상기 최적운항과 동일한 스케줄조건 대비 일반운항의 연료소모데이터를 수집하는 연료소모데이터 수집부(72);와
    상기 최적운항의 연료소모율, 상기 최적운항과 동일한 스케줄조건 대비 상기 기준운항의 연료소모율, 상기 최적운항과 동일한 스케줄조건 대비 일반운항의 연료소모율을 산출하는 연료소모율 계산부(74);와
    상기 연료소모율 계산부(74)에서 상기 일반운항의 연료소모율, 상기 기준운항의 연료소모율을 전달받아 일반운항의 연료손실율을 산출하고, 상기 연료소모율 계산부(74)에서 상기 최적운항의 연료소모율, 상기 기준운항의 연료소모율을 전달받아 최적운항의 연료손실율을 산출하는 연료손실율 계산부(76);와
    상기 일반운항 연료손실율 계산부(76)에서 상기 일반운항의 연료손실율을 전달받고, 상기 최적운항 연료손실율 계산부(76)에서 상기 최적운항의 연료소모율을 전달받아 최적운항의 연료절감율을 산출하는 연료절감율 계산부(78);를 포함하되,
    상기 최적운항의 연료손실율 = 최적운항의 연료소모율-기준운항의 연료소모율,
    상기 일반운항의 연료손실율 = 일반운항의 연료소모율-기준운항의 연료소모율,
    상기 최적운항의 연료절감율 = 일반운항의 연료손실율-최적운항의 연료손실율인 것을 특징으로 하는 선박 연료 절감 시스템.
  6. 기준선박사양 수집부(10), 기준운항데이터 수집부(20), 최적RPM 산출모듈 생성부(30), 최적RPM 산출부(50), RPM 적용부(60)를 포함한 선박 연료 절감 시스템을 사용한 선박 연료 절감 방법에 있어서,
    (a) 상기 기준선박사양 수집부(10)가 기준선박사양을 수집하는 기준선박사양 수집단계(S10);와
    (b) 상기 기준운항데이터 수집부(20)가 기준운항데이터를 수집하는 기준운항데이터 수집단계(S20);와
    (c) 상기 최적RPM 산출모듈 생성부(30)가 상기 기준선박사양 및 기준운항데이터를 입력받아 최적RPM 산출모듈을 생성하는 최적RPM 산출모듈 생성단계(S30);와
    (d) 상기 최적RPM 산출부(50)가 상기 최적RPM 산출모듈 생성부(30)에서 전달받은 상기 최적RPM 산출모듈에 현재의 스케줄조건 및 운항조건을 입력하여 최적RPM을 산출하는 최적RPM 산출단계(S50);와
    (e) 상기 RPM 적용부(60)가 상기 최적RPM 산출부(50)에서 상기 최적RPM을 전달받아 선박의 엔진에 적용하는 RPM 적용단계(S60);를 포함하되,
    상기 기준운항은 공장시운전, 해상시운전, 신조후N항차, 최근M항차를 포함한 것이며, 상기 N 및 M은 관계자들이 임의로 지정하는 횟수이며,
    상기 최적RPM은 상기 현재의 스케줄조건 및 운항조건 대비 연료를 최저로 소모하는 RPM이되,
    상기 스케줄조건은 목표거리, 목표시간, 가변시간을 포함하며,
    상기 운항조건은 선체조건, 기상조건, 엔진조건을 포함하며,
    상기 최적RPM = [표준최적속도-운항조건대비 속도증감량]×RPM 변환계수×기상보상계수,
    상기 표준최적속도는 목표속도, 가변목표속도, 상기 목표속도와 가변목표속도 사이의 속도 중 속도대비 연료소모율(=표준운항조건에서의 마일당 연료소모율/속도)이 최저인 속도,
    상기 표준운항조건은 공장시운전시의 운항조건,
    상기 목표속도 = 목표거리/목표시간,
    상기 가변목표속도 = 목표거리/(목표시간+가변시간),
    상기 운항조건대비 속도증감량은 현재의 운항조건에서 표준최적RPM으로 운항했을 경우 상기 표준최적속도에 비해 증감되는 속도,
    상기 표준최적RPM은 상기 표준운항조건일 때 상기 표준최적속도로 운항할 수 있는 RPM,
    상기 RPM 변환계수는 상기 [표준최적속도-운항조건대비 속도증감량]에 곱하여 현재의 운항조건에서 상기 [표준최적속도-운항조건대비 속도증감량]의 속도를 낼 수 있는 RPM으로 변환하여주는 계수,
    상기 기상보상계수 = 순기상계수(순기상정도-정기상정도)-난기상계수(난기상정도-정기상정도),
    상기 정기상정도는 상기 표준운항조건의 기상조건의 정도를 수치화한 값,
    상기 순기상정도는 현재의 기상조건의 순기상정도를 수치화한 값,
    상기 난기상정도는 현재의 기상조건의 난기상정도를 수치화한 값,
    상기 순기상계수는 상기 [순기상계수(순기상정도-정기상정도)]를 상기 [표준최적속도-운항조건대비 속도증감량]×RPM 변환계수에 곱하여 RPM을 구할 때, 상기 최적RPM이 순기상한계 RPM 이상이 되지 않도록 한정하는 계수,
    상기 순기상한계 RPM은 RPM을 증가시켰을 때 연료소모증가량/속도증가량이 증가하는 점의 RPM,
    상기 난기상계수는 상기 [난기상계수(난기상정도-정기상정도)]를 상기 [표준최적속도-운항조건대비 속도증감량]×RPM 변환계수에 곱하여 RPM을 구할 때, 상기 최적RPM이 난기상한계 RPM 이하가 되지 않도록 한정하는 계수,
    상기 난기상한계 RPM은 RPM을 감소시켰을 때 현재의 운항조건에서의 마일당 연료소모감소량/속도감소량이 감소하는 점의 RPM인 것을 특징으로 하는 선박 연료 절감 방법.
  7. 제 6항에 있어서,
    상기 선박 연료 절감 시스템은 최적RPM 자동변경 설정부(43)를 더 포함하며,
    상기 선박 연료 절감 방법은,
    (f) 최적RPM 변경 설정단계(S40);를 더 포함하되,
    상기 최적RPM을 자동으로 변경하고자 할 때, 변변속 시에는 상기 최적RPM 자동변경 설정부(43)가 상기 최적RPM 산출부(50)에 최적RPM 생성명령을 전달하고, 정변속 시에는 사용자에게서 초기RPM을 입력받아 상기 RPM 적용부(60)에 전달하는 정변속/변변속 설정단계(S46);와
    상기 최적RPM을 자동으로 변경하고자 할 때, 상기 최적RPM 자동변경 설정부(43)가 변경시간 간격을 입력받아, 상기 변경시간 간격마다 상기 최적RPM 생성명령을 상기 최적RPM 산출부(50)에 전달하는 최적RPM 자동변경시간 설정단계(S44);를 더 포함하고,
    상기 RPM 적용부(60)는 상기 초기RPM을 전달받아 선박의 엔진에 적용하는 것을 특징으로 하는 선박 연료 절감 방법.
  8. 제 6항에 있어서,
    상기 선박 연료 절감 시스템은 최적RPM 수동변경 설정부(42)를 더 포함하며,
    상기 선박 연료 절감 방법은,
    (f) 최적RPM 변경 설정단계(S40)를 포함하되,
    상기 (f)단계는,
    상기 최적RPM 수동변경 설정부(42)가 사용자의 최적RPM변경요청을 입력받으면, 최적RPM 생성명령을 상기 최적RPM 산출부(50)에 전달하는 최적RPM 수동변경 설정단계(S42);를 포함하는 것을 특징으로 하는 선박 연료 절감 방법.
  9. 제 7 내지 8항 중 어느 한 항에 있어서,
    상기 (d)단계는,
    상기 최적RPM 산출부(50)가 상기 최적RPM 산출모듈에 입력될 상기 현재의 스케줄조건 및 운항조건을 수집하는 스케줄/운항조건 수집단계(S52);와
    상기 최적RPM 산출부(50)가 상기 현재의 스케줄조건 및 운항조건을 상기 최적RPM 산출모듈에 입력하여 상기 최적RPM을 산출하는 최적RPM 산출모듈 실행단계(S54);를 포함하는 것을 특징으로 하는 선박 연료 절감 방법.
  10. 제 6항에 있어서,
    상기 선박 연료 절감 시스템은 연료효율 분석부(70)를 더 포함하며,
    상기 선박 연료 절감 방법은,
    (g) 상기 선박 연료 절감 시스템을 적용하지 않은 일반운항 시와, 상기 선박 연료 절감 시스템을 적용한 최적운항 시의 연료절감 효과를 비교분석하기 위한 연료효율 분석단계(S70);를 더 포함하되,
    상기 연료효율 분석단계(S70)는,
    상기 연료효율 분석부(70)가 상기 선박 연료 절감 시스템을 적용한 최적운항시의 연료소모데이터, 상기 최적운항과 동일한 스케줄조건 대비 상기 기준운항의 연료소모데이터, 상기 최적운항과 동일한 스케줄조건 대비 일반운항의 연료소모데이터를 수집하는 연료소모데이터 수집단계(S72);와
    상기 연료효율 분석부(70)가 상기 연료소모데이터로 상기 선박 연료 절감 시스템을 적용한 최적운항의 연료소모율, 상기 최적운항과 동일한 스케줄조건 대비 상기 기준운항의 연료소모율, 상기 최적운항과 동일한 스케줄조건 대비 일반운항의 연료소모율을 산출하는 연료소모율 계산단계(S74);와
    상기 연료효율 분석부(70)가 상기 일반운항의 연료소모율, 상기 기준운항의 연료소모율로 일반운항의 연료손실율을 산출하고, 상기 최적운항의 연료소모율, 상기 기준운항의 연료소모율로 최적운항의 연료손실율을 산출하는 연료손실율 계산단계(S76);와
    상기 연료효율 분석부(70)가 상기 일반운항의 연료손실율, 상기 최적운항의 연료소모율로 최적운항의 연료절감율을 산출하는 연료절감율 계산단계(S78);를 포함하되,
    상기 최적운항의 연료손실율 = 최적운항의 연료소모율-기준운항의 연료소모율,
    상기 일반운항의 연료손실율 = 일반운항의 연료소모율-기준운항의 연료소모율,
    상기 최적운항의 연료절감율 = 일반운항의 연료손실율-최적운항의 연료손실율인 것을 특징으로 하는 선박 연료 절감 방법.
  11. 제 6 항 내지 제 10 항 중 어느 한 항에 기재된 선박 연료 절감 방법에 의한 컴퓨터 프로그램을 저장한 기록매체.
PCT/KR2010/005893 2010-07-07 2010-08-31 선박 운항지시 최적화 구현을 위한 에너지 효율 최적화를 이용한 선박 연료 절감 시스템 및 그 방법과 그 방법에 의한 컴퓨터 프로그램을 저장한 기록매체 WO2012005408A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800679351A CN103124965A (zh) 2010-07-07 2010-08-31 为优化船舶的航行指示而利用优化能量效率的船舶燃料节约系统及其方法以及以计算机程序存储此方法的记录介质
JP2013518209A JP2013531580A (ja) 2010-07-07 2010-08-31 船舶運航指示最適化具現のためのエネルギー効率最適化を利用した船舶燃料節減システム、その方法及びその方法によるコンピュータープログラムを保存した記録媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20100065574 2010-07-07
KR10-2010-0065574 2010-07-07

Publications (1)

Publication Number Publication Date
WO2012005408A1 true WO2012005408A1 (ko) 2012-01-12

Family

ID=44405733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/005893 WO2012005408A1 (ko) 2010-07-07 2010-08-31 선박 운항지시 최적화 구현을 위한 에너지 효율 최적화를 이용한 선박 연료 절감 시스템 및 그 방법과 그 방법에 의한 컴퓨터 프로그램을 저장한 기록매체

Country Status (4)

Country Link
JP (1) JP2013531580A (ko)
KR (1) KR101042334B1 (ko)
CN (1) CN103124965A (ko)
WO (1) WO2012005408A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020190279A1 (en) * 2019-03-19 2020-09-24 Wärtsilä SAM Electronics GmbH Method and apparatus for automated energy management of marine vessel
US11898934B1 (en) 2022-09-28 2024-02-13 Inlecom Group BV Integration and tuning of performance control parameters of a vessel in order to meet decarbonization goals

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101203252B1 (ko) * 2012-03-02 2012-11-21 (주) 윈플러스코포레이션 선박의 최적운항조건 산출시스템
KR101422507B1 (ko) 2012-11-08 2014-07-28 삼성중공업 주식회사 선박의 경제적 운항을 위한 장치 및 방법
KR101419049B1 (ko) * 2014-01-20 2014-07-14 (주)뉴월드마리타임 절감 연료유 거래 및 보상 시스템을 이용한 절감 연료유 거래 및 보상 방법, 그리고 절감 연료유 거래 및 보상 프로그램을 기록한 컴퓨터로 판독가능한 기록매체
KR101464323B1 (ko) * 2014-03-28 2014-11-25 주식회사 에이드 선박 운항 장치
KR101642752B1 (ko) 2014-08-04 2016-07-26 현대중공업 주식회사 선박운항정보 제공 방법, 이를 수행하는 선박운항정보 제공 서버 및 이를 저장하는 기록매체
KR20160022990A (ko) 2014-08-20 2016-03-03 현대중공업 주식회사 선박운항정보 제공 방법, 이를 수행하는 선박운항정보 제공 장치 및 이를 저장하는 기록매체
KR101644557B1 (ko) 2014-10-29 2016-08-01 삼성중공업 주식회사 선박의 에너지 효율 최적화 방법
KR20160063597A (ko) 2014-11-27 2016-06-07 현대중공업 주식회사 연료 소모량 예측 방법, 이를 수행하는 연료 소모량 예측 장치 및 이를 저장하는 기록매체
KR20160063595A (ko) 2014-11-27 2016-06-07 현대중공업 주식회사 최적 운항 경로 제공 방법, 이를 수행하는 최적 운항 경로 제공 장치 및 이를 저장하는 기록매체
KR20160063594A (ko) 2014-11-27 2016-06-07 현대중공업 주식회사 연료 상태 모니터링 방법, 이를 수행하는 연료 상태 모니터링 장치 및 이를 저장하는 기록매체
KR20160063593A (ko) 2014-11-27 2016-06-07 현대중공업 주식회사 선박 운항 제어 방법, 이를 수행하는 선박 운항 제어 장치 및 이를 저장하는 기록매체
KR101661928B1 (ko) * 2014-11-28 2016-10-05 삼성중공업 주식회사 선박용 에너지 관리 방법 및 시스템
WO2016136297A1 (ja) * 2015-02-25 2016-09-01 三菱重工業株式会社 船舶の運航支援システム及び船舶の運航支援方法
KR102315031B1 (ko) 2015-04-16 2021-10-20 대우조선해양 주식회사 이중연료를 사용하는 lng 선박의 연료 운용 시스템 및 방법
KR101640881B1 (ko) * 2015-05-27 2016-07-20 (주)띵크마린 선박 운항정보 수집을 통한 연료유 사용현황 분석 서비스 제공 시스템
CN105083491A (zh) * 2015-09-21 2015-11-25 杭州比孚科技有限公司 船舶油耗降低方法
JP6062095B1 (ja) * 2016-06-09 2017-01-18 株式会社マリタイムイノベーションジャパン 船舶推進機関用指示装置
KR102257970B1 (ko) * 2016-08-24 2021-05-28 한국조선해양 주식회사 엔진의 운전 최적화 시스템 및 방법
KR101805510B1 (ko) * 2016-10-24 2017-12-07 대우조선해양 주식회사 선박용 엔진 운전 방법
JP6807237B2 (ja) * 2017-01-16 2021-01-06 ナブテスコ株式会社 情報処理装置及びプログラム
JP6921560B2 (ja) * 2017-03-02 2021-08-18 ナブテスコ株式会社 情報処理装置およびプログラム
CN107358048A (zh) * 2017-07-14 2017-11-17 广东省环境科学研究院 一种基于ais数据的高精度船舶污染物排放量计算方法
KR101914920B1 (ko) * 2017-12-29 2018-11-05 마린웍스 주식회사 선박 최적 운항 지원을 위한 연료소모량 모니터링과 추진 rpm 산출 방법 및 그 장치
KR102482085B1 (ko) * 2018-03-30 2022-12-29 한국조선해양 주식회사 운영 관리 시스템 및 이를 포함하는 선박
EP3790795B1 (en) 2018-05-08 2022-09-28 CPAC Systems AB Improved engine control
CN118062188A (zh) * 2018-05-14 2024-05-24 国立研究开发法人海上·港湾·航空技术研究所 船舶的实际海域性能提供系统
KR102475553B1 (ko) * 2018-06-29 2022-12-07 대우조선해양 주식회사 선박의 최적 운항속도 도출 시스템 및 방법, 동 방법을 컴퓨터에서 실행하기 위한 컴퓨터 프로그램이 기록된, 컴퓨터 판독 가능한 기록 매체
KR20240071749A (ko) 2022-11-16 2024-05-23 한화오션 주식회사 선박 운항 데이터 분석을 통한 선박 에너지 자동 측정 및 효율 최적화 시스템 및 방법
KR20240104999A (ko) 2022-12-28 2024-07-05 한국해양과학기술원 선체관리 효과지표 산출 장치 및 방법
CN116663696A (zh) * 2023-01-14 2023-08-29 武汉理工大学 基于遗传算法的北极东北航线多目标航速优化方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080063273A (ko) * 2005-08-11 2008-07-03 마로르카 이에이치에프 선박들에서의 에너지 소스 이용의 최적화
US20090048726A1 (en) * 2007-08-14 2009-02-19 Lofall Marine Systems, Llc Vessel performance monitoring system and method
KR20090051150A (ko) * 2009-04-29 2009-05-21 김상호 선박의 에너지소모 최적화 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체
US20100106350A1 (en) * 2008-10-28 2010-04-29 Glacier Bay, Inc. Real-time efficiency monitoring for marine vessel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE7905713L (sv) * 1979-06-29 1980-12-30 Salen Technologies Ab Forfarande och anordning for minimering hos brensleatgangen hos ett fartyg
JP3868338B2 (ja) * 2002-06-21 2007-01-17 三菱重工業株式会社 船舶の運航システム
US6885919B1 (en) * 2003-06-02 2005-04-26 Brunswick Corporation Method for controlling the operation of a marine vessel
JP4970346B2 (ja) * 2008-05-28 2012-07-04 三井造船株式会社 船舶の運航支援システムと船舶の運航支援方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080063273A (ko) * 2005-08-11 2008-07-03 마로르카 이에이치에프 선박들에서의 에너지 소스 이용의 최적화
US20090048726A1 (en) * 2007-08-14 2009-02-19 Lofall Marine Systems, Llc Vessel performance monitoring system and method
US20100106350A1 (en) * 2008-10-28 2010-04-29 Glacier Bay, Inc. Real-time efficiency monitoring for marine vessel
KR20090051150A (ko) * 2009-04-29 2009-05-21 김상호 선박의 에너지소모 최적화 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020190279A1 (en) * 2019-03-19 2020-09-24 Wärtsilä SAM Electronics GmbH Method and apparatus for automated energy management of marine vessel
US11898934B1 (en) 2022-09-28 2024-02-13 Inlecom Group BV Integration and tuning of performance control parameters of a vessel in order to meet decarbonization goals

Also Published As

Publication number Publication date
CN103124965A (zh) 2013-05-29
KR101042334B1 (ko) 2011-06-17
JP2013531580A (ja) 2013-08-08

Similar Documents

Publication Publication Date Title
WO2012005408A1 (ko) 선박 운항지시 최적화 구현을 위한 에너지 효율 최적화를 이용한 선박 연료 절감 시스템 및 그 방법과 그 방법에 의한 컴퓨터 프로그램을 저장한 기록매체
WO2013180496A2 (ko) 실시간 해양 구조물에 대한 기체역학적, 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감, 안전운용 및 유지보수정보 제공 시스템 및 방법
WO2020050498A1 (ko) 이미지 세그멘테이션을 이용한 주변 환경 감지 방법 및 장치
WO2020101104A1 (ko) Cctv 영상 기반의 실시간 자동 유량계측 시스템 및 방법
WO2013154231A1 (ko) 계류라인의 실시간 모니터링을 이용한 해양 구조물의 정적 및 동적 포지셔닝 시스템 및 방법
JP4756331B2 (ja) 環境負荷低減型航海計画提供システム
US10611608B2 (en) Method and device for automatic control of the position of a burden suspended in a main wire on a crane
WO2016182115A1 (ko) 선박 및 그 전력 운용 방법
CN1732417A (zh) 用于测试海洋船舶控制系统的系统与方法
KR101903759B1 (ko) 해양 플로팅 도크 탑재 정도 관리 시스템
WO2021221344A1 (ko) 경사로가 있는 환경에서 이동로봇의 환경 인식 장치 및 방법, 이를 구현하기 위한 프로그램이 저장된 기록매체 및 이를 구현하기 위해 매체에 저장된 컴퓨터프로그램
WO2021118168A2 (ko) 발파 패턴 좌표를 변환하여 제공하는 장치 및 그 방법
WO2011087249A2 (ko) 객체 인식시스템 및 이를 이용하는 객체 인식 방법
CN108507570A (zh) 舰载分布式局部基准状态检测与姿态信息重构方法
WO2020096198A1 (ko) 해상 통신 서비스 제공 방법 및 해상 통신 서비스 제공 장치
WO2023136408A1 (ko) 자율운항선박의 원격제어에서 제어지연에 따른 선수방위 제어성능의 분석평가모듈을 이용한 충돌회피를 위한 선수방위 범위 산출방법
WO2023120760A1 (ko) 발파 설계 장치, 발파 시스템 및 이의 동작 방법
WO2022080633A1 (ko) 냉동 컨테이너 용 원격 관제 모듈 및 원격 관제 모듈의 제어 방법
KR102396946B1 (ko) 진동 감지 장치를 포함하는 송전탑 모니터링 시스템
JPH06138256A (ja) 波浪自動観測装置
Vinther Dry Sea State Monitoring for More Efficient Marine Operations
Hoffman et al. Shipboard guidance for operation in heavy weather
WO2023080690A1 (ko) 실시간 제어 기반 수소 충전을 위한 통합 제어 시스템, 방법 및 장치
WO2023214792A1 (ko) 기지국 모델 학습을 위한 대표 데이터 생성 전자 장치 및 방법
WO2021145579A1 (ko) 화물 선적 관리 장치 및 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080067935.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854480

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013518209

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10854480

Country of ref document: EP

Kind code of ref document: A1