WO2013180496A2 - 실시간 해양 구조물에 대한 기체역학적, 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감, 안전운용 및 유지보수정보 제공 시스템 및 방법 - Google Patents

실시간 해양 구조물에 대한 기체역학적, 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감, 안전운용 및 유지보수정보 제공 시스템 및 방법 Download PDF

Info

Publication number
WO2013180496A2
WO2013180496A2 PCT/KR2013/004777 KR2013004777W WO2013180496A2 WO 2013180496 A2 WO2013180496 A2 WO 2013180496A2 KR 2013004777 W KR2013004777 W KR 2013004777W WO 2013180496 A2 WO2013180496 A2 WO 2013180496A2
Authority
WO
WIPO (PCT)
Prior art keywords
data
monitoring
offshore
marine structure
marine
Prior art date
Application number
PCT/KR2013/004777
Other languages
English (en)
French (fr)
Other versions
WO2013180496A3 (ko
Inventor
명섭 리마이클
Original Assignee
주식회사 싸이트로닉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120149412A external-priority patent/KR20130135024A/ko
Priority claimed from KR1020120149411A external-priority patent/KR20130135721A/ko
Priority to CN201380040663.XA priority Critical patent/CN104508422B/zh
Priority to EP23156944.3A priority patent/EP4239283A3/en
Priority to EP20176395.0A priority patent/EP3722744A1/en
Priority to JP2015514905A priority patent/JP6223436B2/ja
Application filed by 주식회사 싸이트로닉 filed Critical 주식회사 싸이트로닉
Priority claimed from KR1020130061759A external-priority patent/KR101529378B1/ko
Priority claimed from KR1020130061477A external-priority patent/KR101472827B1/ko
Priority to EP13796337.7A priority patent/EP2860489A4/en
Priority to AU2013268170A priority patent/AU2013268170B2/en
Publication of WO2013180496A2 publication Critical patent/WO2013180496A2/ko
Publication of WO2013180496A3 publication Critical patent/WO2013180496A3/ko
Priority to US14/555,928 priority patent/US9580150B2/en
Priority to US15/407,849 priority patent/US11034418B2/en
Priority to AU2017279830A priority patent/AU2017279830B2/en
Priority to AU2020204051A priority patent/AU2020204051B2/en
Priority to US17/315,289 priority patent/US11976917B2/en
Priority to AU2022241564A priority patent/AU2022241564A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/18Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge using photoelastic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B49/00Arrangements of nautical instruments or navigational aids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B71/00Designing vessels; Predicting their performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B71/00Designing vessels; Predicting their performance
    • B63B71/10Designing vessels; Predicting their performance using computer simulation, e.g. finite element method [FEM] or computational fluid dynamics [CFD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B71/00Designing vessels; Predicting their performance
    • B63B71/20Designing vessels; Predicting their performance using towing tanks or model basins for designing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/10Monitoring properties or operating parameters of vessels in operation using sensors, e.g. pressure sensors, strain gauges or accelerometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/10Monitoring properties or operating parameters of vessels in operation using sensors, e.g. pressure sensors, strain gauges or accelerometers
    • B63B79/15Monitoring properties or operating parameters of vessels in operation using sensors, e.g. pressure sensors, strain gauges or accelerometers for monitoring environmental variables, e.g. wave height or weather data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/30Monitoring properties or operating parameters of vessels in operation for diagnosing, testing or predicting the integrity or performance of vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/40Monitoring properties or operating parameters of vessels in operation for controlling the operation of vessels, e.g. monitoring their speed, routing or maintenance schedules
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/01Risers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/246Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0028Force sensors associated with force applying means
    • G01L5/0038Force sensors associated with force applying means applying a pushing force
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/167Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using piezoelectric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/865Combination of radar systems with lidar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/937Radar or analogous systems specially adapted for specific applications for anti-collision purposes of marine craft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • G01S13/956Radar or analogous systems specially adapted for specific applications for meteorological use mounted on ship or other platform
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • the present invention relates to a system and method for monitoring a physical change of a marine structure in real time by a composite photometer by introducing an optical sensor method. More specifically, the present invention relates to a system and method for monitoring the physical change of the marine structure in real time by the composite optical measuring device by introducing an optical sensor method.
  • the present invention relates to predictive monitoring and predictive control of aerodynamic and hydrodynamic environmental forces, hull stress, six degree of freedom motion, and position of a marine structure in real time, and more specifically, by aerodynamic and hydrodynamic environmental forces.
  • the present invention relates to a method of controlling a target structure (eg associated with marine / land, shipbuilding, aviation / space, submersible mooring, stationary or wind / tidal / wave power, etc.) through integrated monitoring of environmental external forces.
  • a target structure eg associated with marine / land, shipbuilding, aviation / space, submersible mooring, stationary or wind / tidal / wave power, etc.
  • Crude oil produced from offshore oil wells is transported to offshore structures using pipelines, a type of offshore structure.
  • the offshore structure includes Floating Production Storage and Offloading (FLO), TLP (Tension-Leg Platform), SPAR, Semi-Submersible, and Fixed Platform.
  • FLO Floating Production Storage and Offloading
  • TLP Transmission-Leg Platform
  • SPAR Semi-Submersible
  • Fixed Platform Fixed Platform
  • Pipelines are then installed in the deep sea for as little as twenty years, ranging from a few kilometers to as many as hundreds of kilometers.
  • the pipeline installed in the deep sea is largely contracted or expanded due to a temperature deviation of 100 degrees or more, and a physical change including a length change occurs according to a pressure change in the pipeline.
  • the pipeline installed in the offshore is concentrated in the stress at a specific or unspecified number of points, causing buckling and deformation.
  • the fluctuation of the pipeline is caused by a number of environmental external forces such as currents, waves, tides, wind, and temperature. cause.
  • monitoring methods are currently used to measure such fluctuations.
  • Conventional monitoring method is to measure the strain of the pipeline itself, an electrical or optical strain sensor is used. Since offshore structures are mainly the weakest part of the welded area, sensors are installed and operated at intervals of 20 to 50 cm. Here, the sensor is installed in the longitudinal direction of the pipeline to analyze the deformation.
  • Another monitoring method is to use an electronic inclinometer to detect the deformation of the pipeline.
  • the existing monitoring method since the strain generated by the temperature and pressure of the marine structure is much larger than the strain caused by the buckling and walking phenomenon, it was difficult to accurately analyze the phenomenon.
  • the electric inclinometer is currently installed in the ocean, and the demand for a new measuring method that is easy to use due to the complexity of the power supply and the connection method due to the loss due to high water pressure and the installation is increasing.
  • the sensor used in the existing monitoring method is a situation that requires a sensor that can be used for a longer period of time because the fatigue life resistance is short.
  • CO2 emissions are widely known as key factors for global warming, climate change and ocean acidification.
  • the amount of CO2 emitted to transport one ton of cargo a mile is the most overwhelming means of transportation in the world trade, even though marine structures are the most efficient means of transportation, so CO2 emissions represent about three of the total greenhouse gas emissions emitted by industry. Corresponds to%. Therefore, by increasing the fuel efficiency of offshore structures, the emission of greenhouse gases emitted by the industry can be greatly reduced.
  • the present invention has been proposed to solve the above problems, and provides a fuel-saving method through the monitoring and control of aerodynamic and hydrodynamic environmental forces, hull stress, six degree of freedom motion and position of the offshore structure in real time. It aims to do it.
  • an object of the present invention is to provide a monitoring system and method that can measure changes in offshore structures for a longer period of time than conventional electric sensors, and is easy to install and operate through an optical sensor type fusion measurement.
  • the object of the present invention is to provide an environment in which the monitoring information is shared with other external devices to improve the accuracy of weather information and to calibrate data measured by satellites.
  • the present invention has been proposed to solve the above problems, and provides a fuel-saving method through the monitoring and control of aerodynamic and hydrodynamic environmental forces, hull stress, six degree of freedom motion and position of the offshore structure in real time. It aims to do it.
  • the object of the present invention is to provide an environment in which the monitoring information is shared with other external devices to improve the accuracy of weather information and to calibrate data measured by satellites.
  • a system for monitoring the physical change of the marine structure of the present invention for achieving the above object, by using at least one optical sensor using an optical fiber Bragg grating, composite optical measurement for detecting the behavior and structural changes of the marine structure
  • a system is provided for monitoring physical changes in offshore structures, including appliances.
  • the composite optical measuring device includes an extensometer for measuring a distance change between the at least one reference point set outside the marine structure and the point set on the marine structure using the optical sensor, the optical sensor, The wavelength of the optical signal passing through the optical sensor is changed in response to the change in stress applied to the optical fiber due to the distance change.
  • the extensometer includes at least one wire that connects between the reference point and a point set on the marine structure.
  • the wire may include an invar.
  • the extensometer may further include a winding unit winding the wire with a predetermined tension and a sensing unit measuring the rotation speed of the winding unit using an optical sensor.
  • the extensometer may further include a stimulation unit for stimulating the optical sensor periodically corresponding to the number of revolutions measured from the detection unit.
  • the composite optical measuring device is provided with an optical fiber wire 320 to interconnect at least one or more points on the offshore structure is an extensometer for measuring the change in length of the offshore structure Include.
  • the optical fiber wire 320 changes the wavelength of the optical signal passing through the optical fiber in response to the stress change applied to the optical sensor due to the distance change on the marine structure.
  • the extensometer is installed at least one or more at the same point on the structure, and comprises a wire made of an optical fiber, the wire, the change in distance on the marine structure Therefore, the wavelength of the optical signal passing through the optical fiber is changed in response to the stress change applied to the optical fiber.
  • the extensometer provides absolute position information of the point by converting the degree of tension of each wire using the triangulation method.
  • the composite optical measuring device includes an inclinometer for measuring a change in the inclination between a plurality of points on the marine structure using the optical sensor.
  • the inclinometer includes a weight installed in the direction of gravity, the optical sensor made of at least one optical fiber connected to the weight, due to the change in the inclination of the point on the offshore structure in which the inclinometer is installed, by the weight The wavelength of the optical signal passing through the optical fiber is changed in response to the stress change applied to the optical fiber.
  • the composite photometer may further include an earthquake meter for measuring a change in position of the reference point.
  • the composite optical measuring device may further include a vibration meter for measuring the vibration of the marine structure.
  • it may further include a measuring device for detecting a change in the wavelength of the optical signal from the composite photometer.
  • a measuring device for detecting a change in the wavelength of the optical signal from the composite photometer.
  • a data logger or an interrogator can be used as the measuring device.
  • the composite optical measuring device includes an optical time-domain reflectometer (OTDR), a Raman spectrum method (Raman), a Brillouin scattering, a Rayleigh wave, a DAS ( At least one of Distributed Acoustic Sensing, Acoustic Emission, and Interferometry is used to detect a change in the target structure.
  • OTDR optical time-domain reflectometer
  • Raman Raman spectrum method
  • Brillouin scattering a Brillouin scattering
  • Rayleigh wave a Rayleigh wave
  • DAS At least one of Distributed Acoustic Sensing, Acoustic Emission, and Interferometry is used to detect a change in the target structure.
  • the measuring device an optical unit having a laser capable of controlling the wavelength, an optical reference for distinguishing the wavelength of the optical signal reflected by the optical unit for each optical sensor, An optical coupler connecting a plurality of optical fiber Bragg gratings of each optical sensor output from the optical reference and distributing Bragg reflection wavelengths for each channel; And a photo diode converting the Bragg reflection wavelength received from the optical coupler into an electrical signal.
  • the measuring device also has a function of collecting the scattered optical signals.
  • the behavior of the marine structure using at least one or more complex optical measuring instruments installed on and / or a reference point (A) changing the wavelength and / or light quantity of the optical signal passing through the optical sensor according to the structural change, wherein the composite optical measuring device transmits the optical signal having the changed wavelength and / or light quantity to the measuring device; and (c) detecting the wavelength and / or light quantity change of the optical signal by the measuring device, wherein the composite optical measuring device includes at least one optical sensor using an optical fiber Bragg grating.
  • the composite photometer may include an extensometer for measuring a change in distance between at least one reference point set outside the marine structure and the set position of the marine structure.
  • the extensometer is at least one wire connecting between the reference point and the point set on the marine structure, a winding unit for winding the wire with a constant tension, using the optical fiber And a sensing unit for measuring the rotational speed of the winding unit and a magnetic pole unit for stimulating the optical fiber periodically in accordance with the rotational speed measured from the sensing unit.
  • the extensometer is provided with optical fiber wires interconnecting at least one or more points on the marine structure to measure the change in length of the marine structure, the optical fiber wire, the The wavelength of the optical signal passing through the optical fiber is changed in response to the change in stress due to the change in distance on the offshore structure.
  • the extensometer is connected to at least one or more at the same point on the structure, and comprises a wire made of an optical fiber, the wire, as the distance change on the marine structure Therefore, the wavelength of the optical signal passing through the optical fiber is changed in response to the stress change applied to the optical fiber.
  • the extensometer provides absolute position information of the point by converting the degree of tension of each wire using the triangulation method.
  • the composite optical measuring device includes an inclinometer for measuring a change in the inclination between a plurality of points on the marine structure using the optical sensor.
  • the inclinometer includes a weight installed in the direction of gravity and the optical fiber connected to the weight, wherein the step (a), the weight is stimulated by the weight in accordance with the change in the slope generated in the offshore structure to generate a stress change In turn, the generated stress change is converted into an optical signal.
  • the composite optical measuring device further comprises a seismometer for measuring the position change of at least one reference point set outside the marine structure using the optical sensor.
  • the composite optical measuring device further comprises a vibrometer for measuring the vibration of the marine structure
  • the measuring device may use a data logger or an interrogator.
  • the measuring device an optical unit having a laser capable of controlling the wavelength, an optical reference for distinguishing the wavelength of the optical signal reflected by the optical unit for each optical sensor, An optical coupler connecting a plurality of optical fiber Bragg gratings of each optical sensor output from the optical reference and distributing Bragg reflection wavelengths for each channel; And a photo diode converting the Bragg reflection wavelength received from the optical coupler into an electrical signal.
  • the control method through the real-time physical change monitoring of the marine structure of the present invention for achieving the above object, to obtain the data on the physical change of the marine structure by the experiment in the water tank or wind tunnel, and the obtained data (A) generating a lookup table by accumulating, acquiring data on the actual physical change of the marine structure output from the measuring device, and (b) and storing the data obtained in (b). (c) generating predictive data on physical changes of the offshore structure by comparing the data accumulated in the lookup table of step a), and controlling the structure by a three-dimensional numerical analysis program that receives the predicted data.
  • Maintenance including at least one of operation information, location information requiring maintenance, maintenance cost information, maintenance time required (D) generating information and warning information about a gas leak, fire, or explosion in the offshore structure, wherein the physical change includes a change in length, inclination, and temperature for at least one point on the offshore structure. , At least one of pressure change and specific volume change.
  • the step (c) of comparing the prediction data with the data on the actual physical change of the marine structure and modifying the lookup table is further performed. Include.
  • the marine structure control information is generated as a simulator by a FSI program (Fluid Structure Interaction), and the simulator by the situation recognition middleware (The method may further include generating an algorithm for automatically controlling the offshore structure by interlocking with data on the actual physical change amount of the offshore structure obtained in step b) in real time.
  • FSI program Fluid Structure Interaction
  • the method may further include generating an algorithm for automatically controlling the offshore structure by interlocking with data on the actual physical change amount of the offshore structure obtained in step b) in real time.
  • the three-dimensional numerical analysis program of step (d) may use finite element analysis (FEM) and computational fluid dynamics (CFD).
  • FEM finite element analysis
  • CFD computational fluid dynamics
  • the step (d), the three-dimensional numerical analysis program, the gas leakage / diffusion, fire that can occur according to the behavior and structural changes of the marine structure may be generated by interlocking with a situation analysis module in which data about virtual situations such as blasting and corresponding measures according to the virtual situations are stored.
  • the structure automatic control unit further comprises the step (e) of controlling by changing the position or angle of the offshore structure according to the control operation information, the control unit, the offshore structure It may include a coupling means connected to at least one point of the image and displacement control means connected to the coupling means to move the marine structure up, down, left and right.
  • the warning information is generated using the data on the actual physical change of the marine structure measured by the measuring device using at least one of TDLAS, DTS, DAS, FBG or RMLD.
  • Step 3 the attitude or navigational view of the offshore structure using data on the predicted response of the offshore structure
  • a fuel saving and safe operation method is provided through predictive monitoring and predictive control of aerodynamic forces, hull stress, six degree of freedom motion and position of aerodynamic environment for a real time offshore structure including a fourth step of controlling the engine in real time.
  • step 3-2 is further modified to correct the data on the response of the marine structure in the lookup table generated in the first step by the data on the response of the marine structure in step 3-1. It may include.
  • the modification of the data on the response of the marine structure can be made by a finite element method (FEA) based simulator.
  • FEA finite element method
  • the second step while measuring the internal and external force by the gas through a measuring device provided in the marine bracket, the measuring device may be made of an electrical sensor or an optical sensor.
  • the measuring device measures the wind direction, wind speed, air pressure, temperature, humidity and dust for each altitude.
  • the second step using the IMU actually measures the internal and external forces of the gas flow on the offshore structure.
  • reaction of the offshore structure in the second step when the offshore structure is a vessel may include at least one or more of the traveling direction, the front and rear, left and right tilt, draft or trim of the vessel.
  • reaction of the marine structure in the second step, when the marine structure is a temporary fixed structure may include at least one or more of the moving direction of the structure, front and rear tilt, draft.
  • the second step it is possible to measure the data including the natural frequency, harmonic frequency and gas characteristics of the offshore structure by the flow of gas.
  • the database in which the lookup table is stored in the first step may be a navigation recorder (VDR) provided in the marine structure.
  • VDR navigation recorder
  • the lookup table is recorded as hourly time series data, and compared with the time series data accumulated up to the previous year.
  • the lookup table can be modified by using.
  • the fourth step by using at least one of the rudder (ruster), thruster (thruster), propeller, sail, kite or balloon can control the attitude or the navigation path of the marine structure in real time.
  • the direction of the rudder may be a target propagation direction so that the force between the propulsion force and the internal and external forces may be a target traveling direction according to data about the predicted response of the marine structure. Can be controlled.
  • the thrust with the internal and external forces can be controlled to maintain the current position to the minimum.
  • the marine structure is provided with a helix (helideck), the fourth step, the posture of the marine structure through the dynamic positioning (DP) and dynamic motion (DM) to maintain the balance of the helix deck Control, and the equilibrium state information of the helidec can be stored in the database.
  • the equilibrium state information of the helidec according to controlling the attitude of the offshore structure is stored in the database, the database transmits the equilibrium state information of the helidec to an external rescue information server through a communication unit, the rescue The information server may provide the helicopter with the position information of the marine structure having the equilibrium state information of the helidec from which the helicopter can take off and land among the plurality of marine structures.
  • the second step at least one of wind direction, wind speed, air temperature, humidity, air pressure, solar radiation, inorganic ion, carbon dioxide, dust, radioactivity or ozone from the marine structure is measured by a measuring instrument and is measured in the database. Further comprising the step 2-1 of storing,
  • the measuring device is preferably at least one of anemometer, wind vane, hygrometer, thermometer, barometer, solar meter, atmospheric gassol automatic collector, CO2flux measuring equipment, atmospheric dust collector, air sampler or ozone analyzer.
  • the marine structure includes a ballast tank, and in order to reduce the sloshing phenomenon in the ballast tank, it may include a sloshing suppression portion provided on each side of the ballast tank.
  • the sloshing suppressing portion suppresses the sloshing phenomenon by narrowing the open area of the cross section in one horizontal cross section of the ballast tank.
  • the attitude of the marine structure may be controlled by moving the ballast water loaded in the ballast tank in the opposite direction to the inclined direction.
  • the ballast tank includes a partition wall dividing a partition inside the ballast tank, and the partition wall is provided with an opening and closing part for moving the ballast water to another partition, and inside the opening and closing part of the ballast tank. Pumps to control the speed and direction of movement can be installed.
  • the measurement data of the internal and external force in the second step is transmitted to an external weather information server, and the weather information server corrects the error by comparing and processing the weather information received from the satellite with the measurement data of the internal and external force.
  • One weather information correction data can be stored.
  • the weather information correction data may be provided to the external user terminal.
  • the present invention for achieving the above object, through the linear test in the water tank or wind tunnel data on the internal and external forces of the flow of the gas outside the marine structure on the marine structure and the The first step of accumulating data on the response of the offshore structure to generate a lookup table and storing the lookup table in a database, using the time-of-flight method in actual navigation of the offshore structure Predict the data on the response of the marine structure by comparing the measured data of the internal and external forces of the second and second stages by measuring the external force and storing them in the database with the data of the internal and external forces accumulated in the lookup table of the first stage.
  • the step 3-1 of measuring the response of the actual offshore structure, of the offshore structure measured in step 3-1 Compare the data on the response to the response of the offshore structure predicted in the third step, and if the difference occurs, the lookup table generated in the first step with the data on the response of the offshore structure in step 3-1. And a third step of modifying data on the response of the offshore structure in the second step and a fourth step of acquiring maintenance data on the offshore structure through virtual simulation of the data accumulated in the lookup table.
  • the data on the reaction of the marine structure may include at least one of strain, deformation, crack, vibration, frequency, corrosion, erosion.
  • the maintenance data of the fourth step may be obtained by being distinguished according to a predetermined importance of individual structures provided in the marine structure.
  • the maintenance data may include at least one of location information requiring maintenance, maintenance cost information, maintenance required time information, or remaining life information for each structure.
  • Step 3 the attitude or navigational view of the offshore structure using data on the predicted response of the offshore structure
  • a fuel saving and safe operation method is provided through predictive monitoring and predictive control of hydrodynamic environment, hull stress, six degree of freedom motion and operation position for a real-time offshore structure including a fourth step of controlling the engine in real time. do.
  • step 3-2 is further modified to correct the data on the response of the marine structure in the lookup table generated in the first step by the data on the response of the marine structure in step 3-1. It may include.
  • the modification of the data on the response of the offshore structure can be made by a finite element method (FEA) or an inverse finite element method (iFEM) based simulator.
  • FEA finite element method
  • iFEM inverse finite element method
  • the second step while measuring the internal and external force by the fluid through a measuring device provided on the side of the marine bracket, the measuring device may be made of an electrical sensor or an optical sensor.
  • the second step using the IMU actually measures the internal and external forces of the flow of the fluid to the marine structure.
  • reaction of the offshore structure in the second step when the offshore structure is a vessel may include at least one or more of the traveling direction, the front and rear, left and right tilt, draft or trim of the vessel.
  • reaction of the offshore structure in the second step, when the offshore structure is a temporary fixed structure may include at least one or more of the operation direction of the structure, front and rear tilt, draft.
  • the second step it is possible to measure the direction and speed according to the space and time of the tidal current and the current for each depth.
  • the second step it is possible to measure the data including the natural frequency, harmonic frequency and fluid characteristics of the offshore structure by the flow of the fluid.
  • the database in which the lookup table is stored in the first step may be a navigation recorder (VDR) provided in the marine structure.
  • VDR navigation recorder
  • the lookup table is recorded as hourly time series data, and compared with the time series data accumulated up to the previous year.
  • the lookup table can be modified by using.
  • the fourth step by using at least one of the rudder (ruster), thruster (thruster), propeller, sail, kite or balloon can control the attitude or the navigation path of the marine structure in real time.
  • the direction of the rudder may be a target propagation direction so that the combined force with the internal and external forces with the propulsion force may be a target direction according to the data on the predicted response of the marine structure And it can control the RPM of the thruster and the propeller.
  • the thrust with the internal and external forces can be controlled to maintain the current position to the minimum.
  • the marine structure is provided with a helix (helideck), the fourth step, the posture of the marine structure through the dynamic positioning (DP) and dynamic motion (DM) to maintain the balance of the helix deck Control, and the equilibrium state information of the helidec can be stored in the database.
  • the equilibrium state information of the helidec according to controlling the attitude of the offshore structure is stored in the database, the database transmits the equilibrium state information of the helidec to an external rescue information server through a communication unit, the rescue The information server may provide the helicopter with the position information of the marine structure having the equilibrium state information of the helidec from which the helicopter can take off and land among the plurality of marine structures.
  • the data on the internal and external forces of the fluid flow on the marine structure are measured by the pressure sensor installed on the side of the marine structure, and the data on the currents and tidal current vectors. Can be.
  • the pressure sensor may be provided in plurality, and may be installed at predetermined intervals on the side of the marine structure.
  • the pressure sensor may be provided in plurality, and may be installed to have a height difference on a side surface of the marine structure.
  • the pressure sensor may be provided in plurality, and may be installed to have a height difference on a side surface of the marine structure.
  • the three-dimensional pressure sensor module obtains the three-dimensional vector information of the current and current.
  • the second step is a step 2-1 for measuring at least one or more of the distance, the wave, the period of the wave, the speed of the wave or the direction of the wave from the marine structure by the meteorological measuring equipment and store in the database
  • the meteorological measuring device may be made of at least one of a wave radar, a directional waverider, a sea level monitor, an ultrasonic tide meter, a wind vane or an ultrasonic wave height meter.
  • the second step the radar (radar) to measure at least one or more of the distance, wave, wave period, wave speed or direction of the wave from the marine structure and stored in the database 2- It may further comprise a step.
  • the marine structure includes a ballast tank, and in order to reduce the sloshing phenomenon in the ballast tank, it may include a sloshing suppression portion provided on each side of the ballast tank.
  • the sloshing suppressing portion suppresses the sloshing phenomenon by narrowing the open area of the cross section in one horizontal cross section of the ballast tank.
  • the attitude of the marine structure may be controlled by moving the ballast water loaded in the ballast tank in the opposite direction to the inclined direction.
  • the ballast tank includes a partition wall dividing a partition inside the ballast tank, and the partition wall is provided with an opening and closing part for moving the ballast water to another partition, and inside the opening and closing part of the ballast tank. Pumps to control the speed and direction of movement can be installed.
  • the measurement data of the internal and external force in the second step is transmitted to an external weather information server, and the weather information server corrects the error by comparing and processing the weather information received from the satellite with the measurement data of the internal and external force.
  • One weather information correction data can be stored.
  • the weather information correction data may be provided to the external user terminal.
  • the data according to the internal and external forces and the internal and external forces of the flow of the fluid outside the marine structure through the linear test in the water tank or wind tunnel on the marine structure The first step of accumulating data on the response of the offshore structure to generate a lookup table and storing the lookup table in a database, using the time-of-flight method in actual navigation of the offshore structure Predict the data on the response of the marine structure by comparing the measured data of the internal and external forces of the second and second stages by measuring the external force and storing them in the database with the data of the internal and external forces accumulated in the lookup table of the first stage.
  • the step 3-1 of measuring the response of the actual offshore structure, of the offshore structure measured in step 3-1 Compare the data on the response to the response of the offshore structure predicted in the third step, and if the difference occurs, the lookup table generated in the first step with the data on the response of the offshore structure in step 3-1. And a third step of modifying data on the response of the offshore structure in the second step and a fourth step of acquiring maintenance data on the offshore structure through virtual simulation of the data accumulated in the lookup table.
  • the data on the reaction of the marine structure may include at least one of strain, deformation, crack, vibration, frequency, corrosion, erosion.
  • the maintenance data of the fourth step may be obtained by being distinguished according to a predetermined importance of individual structures provided in the marine structure.
  • the maintenance data may include at least one of location information requiring maintenance, maintenance cost information, maintenance required time information, or remaining life information for each structure.
  • the present invention it is possible to detect and prevent the environmental pollution, such as oil leakage from the offshore structure in advance through real-time monitoring of the offshore structure.
  • the real-time monitoring and control of the aerodynamic, hydrodynamic, internal and external forces, hull stresses, six degree of freedom movement and position of the offshore structure towards or pending can effectively reduce the fuel consumed when sailing or mooring offshore structures. Can be.
  • the information monitored by the marine structure can be shared with others to increase the accuracy of the weather information, and can provide an environment that can be used as a ground true station for calibrating data measured by satellites.
  • the weather information received from the satellite can be compared with the measured data of the internal and external forces to reduce the error to provide a basic data for forecasting can contribute to the fisheries industry.
  • the life of the offshore structure is extended for a long time by providing information on related maintenance. Do it.
  • 1 is a view showing a method of measuring the change in distance between the reference point and the point set on the offshore structure using an extensometer connected to the pipeline of the seabed according to an embodiment of the present invention.
  • FIG. 2 is a view showing the structure of an extensometer according to another embodiment of the present invention.
  • FIG 3 is a view showing an extensometer for measuring a change in length of the offshore structure is provided with an optical fiber wire interconnecting at least two or more points on the offshore structure according to another embodiment of the present invention.
  • FIG. 4 is a view illustrating a method of measuring a change in length of the marine structure by using an extensometer triangulation according to another embodiment of the present invention.
  • FIG. 5 is a view showing that the automatic structure control unit according to another embodiment of the present invention changes the position or angle of the marine structure according to the control operation information.
  • FIG. 6 is a flow chart of a fuel saving and safe operation method through monitoring and controlling an offshore structure for internal and external forces of aerodynamic and hydrodynamic environments for an offshore structure.
  • FIG. 7 is a diagram illustrating a gas dynamic vector applied to an offshore structure.
  • FIG. 8 shows a measurement of a gas dynamic vector applied to an offshore structure in accordance with an embodiment of the present invention.
  • FIG. 9 is a view showing a fuel saving and safe operation method by controlling the rudder when the internal and external force is applied by the gas dynamics according to an embodiment of the present invention.
  • FIGS. 10 and 11 are cross-sectional views of a ballast tank according to still another embodiment of the present invention, a partition wall provided in the ballast tank, and a view showing the structure of the partition wall.
  • FIG. 12 is a diagram illustrating maintenance data for an offshore structure through simulation according to another embodiment of the present invention.
  • FIG. 13 shows a marine structure (particularly a ship) and a helideck installed in the marine structure.
  • FIG. 14 is a view showing a state in which a pressure sensor is installed in the offshore structure according to an embodiment of the present invention.
  • optical sensor 310 wire
  • ballast tank 510 sloshing suppression
  • offshore structure means, for example, jack up leagues, semi-sub leagues, jackets, compliant towers, TLPs, floating oil production, storage, extraction facilities, wind turbines, wave generators, and the like.
  • directly or indirectly linked composite structures e.g. non-subsea structure / flare towers, top-side, berthing offshore structures, drill rigs, production casings for oil and gas extraction from oil fields, risers and flowlines).
  • Mathematical models include computational fluid dynamics, finite element method (FEM), fluid structural interaction, finite difference method, finite volume method, or inverse finite element method (iFEM).
  • FEM finite element method
  • iFEM inverse finite element method
  • DMS Dynamic Motion System
  • DPS Dynamic Positioning System
  • EEOI Energy Efficiency Operational Indicator
  • EEDI Energy Efficiency Design Index
  • DP or DM Boundary among the main / composite structures, reflects the priority of the target structures to minimize the fatigue or stabilize the helicopter take-off, landing, liquefaction and liquefaction through DMS.
  • priority of fatigue minimization is determined by reflecting the priority of the target structures among the main / composite structures, and operation or quantitative EEDI is applied to maximize the control efficiency of DPS, DMS or EEOI /. Measure it.
  • diagonostics e.g. fatigue of offshore structures and periodicity of upper bounds, deformation / displacement or positional changes, tensile and cumulative fatigue generated from the structure posture
  • Prognostic interpretation based on cumulative results.
  • the optical sensor is a term used to mean a sensor for estimating the measured amount using a change in the intensity of light passing through the optical fiber, the refractive index and the length of the optical fiber, the mode, and the polarization state.
  • the measurement amount of the optical sensor is various, such as temperature, pressure, strain, rotation rate, and does not use electricity in the sensor, there is almost no restriction on the use environment due to the excellent corrosion resistance of the silica material.
  • the optical Bragg grating used herein is a term meaning a constant refractive index change pattern generated by changing the optical refractive index depending on the degree of exposure of the optical fiber when exposed to ultraviolet light for a certain time.
  • the optical Bragg grating since the optical Bragg grating has a characteristic of selectively reflecting or removing light having a specific wavelength according to the period of change of the refractive index, the optical Bragg grating can be used for an optical communication filter, an optical dispersion compensator, and an optical fiber laser.
  • it is widely applied as an optical sensor by using a change in light selectivity due to external tensile force or temperature change.
  • extensometer as used herein generally refers to a device for precisely measuring the change in length, that is, the elongation at the gage distance
  • inclinometer generally refers to an angle occurring at a measurement object.
  • a device that measures change
  • the numerical analysis used in the present specification refers to a model of a structure or a real model using a computer program, and inputs various variables such as stress applied to the actual data, such as displacement and stress state. It is the analysis method that numerically identifies the deformation behavior of the applied model using the output data as the output data, and it is computational fluid dynamics, finite element analysis (FEM), fluid-structure interlocking analysis (FSI), finite difference method (FDM), finite volume
  • FEM finite element analysis
  • FMI fluid-structure interlocking analysis
  • FDM finite difference method
  • the finite element analysis method used in the present specification
  • the finite element analysis method is a structure that is a continuum, a one-dimensional rod, a two-dimensional triangle or square, a solid three-dimensional solid (tetrahedron, tetrahedron)
  • the term refers to a numerical calculation method that divides into finite elements of and calculates them based on an approximate solution based on the principle of energy for each domain.
  • computational fluid dynamics is a term that means to calculate the dynamic movement of the fluid or gas in a numerical method using a computer.
  • the present invention is a system and method for measuring buckling and walking of an offshore structure using optical fibers and thus monitoring physical changes in the offshore structure, the distance from a reference point at each set location on the offshore structure.
  • An extensometer for measuring change, an inclinometer for measuring the direction of change installed at each set position on the marine structure, or a combined optical measuring device including a seismometer for detecting a change in the reference point I use it.
  • it may include a thermometer, a flow meter, a pressure gauge.
  • a system for monitoring the physical change of the offshore structure including a composite photometer for detecting the behavior and structural changes of the offshore structure.
  • the composite optical measuring device includes an extensometer for measuring a distance change between the at least one reference point set outside the marine structure and the point set on the marine structure using the optical sensor, the optical sensor, The wavelength of the optical signal passing through the optical sensor is changed in response to the change in stress applied to the optical fiber due to the distance change.
  • the extensometer includes at least one wire connecting the reference point and a point set on the marine structure.
  • the wire may be made of a tape measure made of Invar, which is an alloy having a small coefficient of thermal expansion by adding 36.5% of nickel to 63.5% of iron. Invar wire is used for high precision distance measurement without being affected by external temperature changes.
  • the extensometer may further include a winding unit winding the wire with a predetermined tension and a sensing unit measuring the rotation speed of the winding unit using an optical sensor.
  • the extensometer may further include a stimulation unit for stimulating the optical sensor periodically corresponding to the number of revolutions measured from the detection unit.
  • the composite photometer is provided with an optical fiber wire interconnecting at least one or more points on the marine structure to measure the change in length of the marine structure It includes an extensometer.
  • the optical fiber wire changes the wavelength of the optical signal passing through the optical fiber in response to the stress change applied to the optical sensor due to the distance change on the marine structure.
  • At least one extensometer is installed at the same point on the structure, and comprises a wire made of an optical fiber, the wire, The wavelength of the optical signal passing through the optical fiber is changed in response to the change in stress applied to the optical fiber due to the change in distance on the marine structure.
  • the extensometer provides absolute position information of the point by converting the degree of tension of each wire using the triangulation method.
  • Triangulation is a method of determining the coordinates and distances of a point using the properties of a triangle. Given that point and two reference points, measure the angle between the base and the two sides of the triangle between the point and the two reference points, measure the length of the side, and perform a series of calculations using the law of sine. , How to find the coordinates and distance to that point.
  • the composite optical measuring device includes an inclinometer for measuring the change in the inclination between a plurality of points on the marine structure using the optical sensor.
  • the inclinometer includes a weight installed in the direction of gravity, an optical sensor made of at least one optical fiber connected to the weight, due to the change in the inclination of the point on the offshore structure in which the inclinometer is installed, by the weight The wavelength of the optical signal passing through the optical fiber is changed in response to the stress change applied to the optical fiber.
  • the composite photometer may further include an earthquake meter for measuring a change in position of the reference point.
  • the composite optical measuring device may further include a vibration meter for measuring the vibration of the marine structure.
  • it may further include a measuring device for detecting a change in the wavelength of the optical signal from the composite photometer.
  • a measuring device for detecting a change in the wavelength of the optical signal from the composite photometer.
  • a data logger or an interrogator can be used as the measuring device.
  • the composite optical measuring device includes an optical time-domain reflectometer (OTDR), a Raman spectrum method (Raman), a Brillouin scattering, a Rayleigh wave, a DAS ( At least one of Distributed Acoustic Sensing, Acoustic Emission, and Interferometry is used to detect a change in the target structure.
  • OTDR optical time-domain reflectometer
  • Raman Raman spectrum method
  • Brillouin scattering a Brillouin scattering
  • Rayleigh wave a Rayleigh wave
  • DAS At least one of Distributed Acoustic Sensing, Acoustic Emission, and Interferometry is used to detect a change in the target structure.
  • the measuring device an optical unit having a laser capable of controlling the wavelength, an optical reference for distinguishing the wavelength of the optical signal reflected by the optical unit for each optical sensor, An optical coupler for connecting a plurality of optical fiber Bragg gratings of each optical sensor output from the optical reference, an optical coupler for distributing Bragg reflection wavelengths for each channel, and a photo for converting Bragg reflection wavelengths received from the optical coupler into electrical signals. It may be configured to include a diode (photo diode). In addition, the measuring device may have a function of collecting scattered light signals.
  • the extensometer measures the length of the offshore structure by detecting the change in length between the set positions of the offshore structure, and the inclinometer measures the angle change by detecting the direction of the offshore structure.
  • the measured result is communicated with the measuring device using at least one of electric, electronic, sonar or optical methods of wired or wireless methods.
  • a plurality of extensometers and inclinometers are configured to monitor the physical change of the marine structure.
  • the extensometer is installed at intervals of 90 degrees, and the physical change of the offshore structure is monitored by measuring the slope change using the inclinometer.
  • the reference point may further include a seismometer for measuring the movement of the ground, and consists of an optical measuring device that receives the optical signal from the inclinometer and extensometer.
  • the output from the measuring device is transmitted using at least one of electric, electronic, sonar or optical, wired or wireless, so that it can be checked at sea and remotely.
  • a plurality of the extensometers or inclinometers may be used.
  • the reference point may be installed to further include a seismometer for measuring the movement of the ground, it is composed of an optical measuring device for receiving an optical signal from the inclinometer and the extensometer.
  • the output from the measuring device is transmitted using at least one of electric, electronic, sonar or optical, wired or wireless, so that it can be checked at sea and remotely.
  • a plurality of the extensometers or inclinometers may be used.
  • the method for monitoring the physical change of the marine structure by using at least one or more composite optical measuring instruments installed on and / or a reference point of the marine structure, according to the behavior or structural change of the marine structure (A) changing the wavelength and / or light quantity of the optical signal passing through the optical sensor, and (b) transmitting the optical signal having the wavelength and / or light quantity changed to the measuring device by the composite photometer. And (c) detecting a change in wavelength and / or light quantity of the optical signal by a measuring device, wherein the composite optical measuring device includes at least one optical sensor using an optical fiber Bragg grating.
  • another embodiment of the present invention provides a composite optical measuring device that uses an extensometer for measuring a change in distance between at least one reference point set outside the marine structure and a set position of the marine structure. Can be done.
  • the extensometer is at least one or more wires connecting between the reference point and the point set on the marine structure, the winding unit for winding the wire with a constant tension
  • the sensor includes a sensing unit for measuring the rotational speed of the winding unit using an optical fiber, and a stimulation unit periodically stimulating the optical fiber corresponding to the rotational speed measured from the sensing unit.
  • the extensometer is provided with an optical fiber wire 320 to interconnect at least one or more points on the offshore structure to change the length of the offshore structure
  • the optical fiber wire 320 changes the wavelength of an optical signal passing through the optical fiber in response to a change in stress due to a change in distance on the marine structure.
  • the extensometer is connected to at least one or more at the same point on the structure, and comprises a wire made of an optical fiber, the wire, The wavelength of the optical signal passing through the optical fiber is changed in response to the change in stress applied to the optical fiber due to the change in distance on the marine structure.
  • the extensometer provides absolute position information of the point by converting the degree of tension of each wire using the triangulation method.
  • the composite optical measuring device includes an inclinometer for measuring the change in the inclination between a plurality of points on the marine structure using the optical sensor.
  • the inclinometer includes a weight installed in the direction of gravity and the optical fiber connected to the weight, the step (a), the weight is stimulated by the weight in accordance with the change in the slope generated in the offshore structure to generate a stress change In turn, the generated stress change is converted into an optical signal.
  • the composite optical measuring device further comprises a seismometer for measuring the position change of at least one reference point set outside the marine structure using the optical sensor.
  • the composite optical measuring device further comprises a vibrometer for measuring the vibration of the marine structure
  • the measuring device may use a data logger or an interrogator.
  • the measuring device an optical unit having a laser capable of controlling the wavelength, an optical reference for distinguishing the wavelength of the optical signal reflected by the optical unit for each optical sensor, An optical coupler for connecting a plurality of optical fiber Bragg gratings of each optical sensor output from the optical reference, an optical coupler for distributing Bragg reflection wavelengths for each channel, and a photo for converting Bragg reflection wavelengths received from the optical coupler into electrical signals. It may be configured to include a diode (photo diode).
  • Maintenance management including at least one of information, location information requiring maintenance, maintenance cost information, maintenance time required (D) generating warning information for gas leaks, fires or explosions in beams and offshore structures, wherein the physical changes include length changes, gradient changes, and temperature changes for at least one point on the offshore structure. , At least one of pressure change and specific volume change.
  • the step (c) of comparing the prediction data with the data on the actual physical change of the marine structure and modifying the lookup table is further performed. Include.
  • the marine structure control information is generated as a simulator by a FSI program (Fluid Structure Interaction), and the simulator by the situation recognition middleware (The method may further include generating an algorithm for automatically controlling the offshore structure by interlocking with data on the actual physical change amount of the offshore structure obtained in step b) in real time.
  • FSI program Fluid Structure Interaction
  • the method may further include generating an algorithm for automatically controlling the offshore structure by interlocking with data on the actual physical change amount of the offshore structure obtained in step b) in real time.
  • the three-dimensional numerical analysis program may use finite element analysis (FEM) and computational fluid dynamics (CFD).
  • FEM finite element analysis
  • CFD computational fluid dynamics
  • the step (d), the three-dimensional numerical analysis program, the gas leakage / diffusion, fire that can occur according to the behavior and structural changes of the marine structure may be generated by interlocking with a situation analysis module in which data about virtual situations such as blasting and corresponding measures according to the virtual situations are stored.
  • the method may further include (e) controlling, by the structure automatic control unit, by changing the position or angle of the marine structure according to the control operation information.
  • the control unit may include a coupling means connected to at least one point on the marine structure and displacement control means connected to the coupling means to move the marine structure up, down, left and right.
  • the structure automatic control unit can be adjusted to minimize the behavior and structural changes of the offshore structure.
  • the warning information, the measuring device is TDLAS (Tunable Diode Laser Absorption Spectroscopy), Distributed Temperature Sensing (DTS), Distributed Acoustic Sensing (DAS), Fiber Bragg Grating (FBG) Or it is generated using the data on the actual physical change of the marine structure measured using at least one of RMLD (Remote Methane Leak Detector).
  • TDLAS Tunable Diode Laser Absorption Spectroscopy
  • DTS Distributed Temperature Sensing
  • DAS Distributed Acoustic Sensing
  • FBG Fiber Bragg Grating
  • offshore structure means, for example, jack up leagues, semi-sub leagues, jackets, compliant towers, TLPs, floating oil production, storage, extraction facilities, wind turbines, wave generators, and the like.
  • directly or indirectly linked composite structures e.g. non-subsea structure / flare towers, top-side, berthing offshore structures, drill rigs, production casings for oil and gas extraction from oil fields, risers and flowlines).
  • Production line Production line, mooring line, hawser line, lowering line, Tethering cable line for ROV, structural support and connection cable for eco-friendly fuel saving do / sail, tentioner with fiber optic sensor, blade and tower of wind power generator, jacket, foundation
  • structures such as tensioners for overloading, cables for bridges / bridges, supports / supports for offshore, underwater or undersea structures, and concrete tensioners for such structures. Put it on.
  • the propeller when the ballast tank is operated in the empty ship without loading cargo on the ship, the propeller floats on the water surface, so that the efficiency may be seriously damaged or serious damage may occur. This prevents the ship from maintaining a constant draft, and is intended to prevent loss of stability when cargo is loaded unbalanced on board.
  • a water ballast is used to fill seawater in a ballast tank, but when this is not enough, a solid ballast is used to load sand.
  • the measuring device for measuring the external force for example, wind load, wave load, current load
  • the response of the structure for example, Displacement, Deformation, Motion, Vortex
  • an electrical or optical measurement method particle induced velocity (piv), particle tracking velocity (ptv), strain sensor, extensometer, accelerometer, inclinometer, pressure, flow meter, thermometer, ammeter, acoustic emission test, earthquake sensor, flow velocity, distribution temperature sensor, distribution strain sensor, It is known in advance that it is a broad term encompassing a distance split optical loss meter (OTDR).
  • OTDR distance split optical loss meter
  • the measuring device for measuring the internal load eg, sloshing load, flow load, pressure load, thermal load
  • the response of the structure eg, displacement, deformation, motion, walking, buckling, vortex
  • lidar particle induced velocity (piv), particle tracking velocity (ptv), strain sensor, accelerometer, ammeter, acoustic emission test, seismic sensor, flow velocity, distribution temperature sensor, distribution strain sensor, distance division light It is known in advance that it is a broad term encompassing OTDR and the like.
  • the composite optical measuring device includes an optical time-domain reflectometer (OTDR), a Raman spectrum method (Raman), a Brillouin scattering, a Rayleigh wave, a DAS ( At least one of Distributed Acoustic Sensing, Acoustic Emission, and Interferometry is used to detect a change in the target structure.
  • OTDR optical time-domain reflectometer
  • Raman Raman spectrum method
  • Brillouin scattering a Brillouin scattering
  • Rayleigh wave a Rayleigh wave
  • DAS At least one of Distributed Acoustic Sensing, Acoustic Emission, and Interferometry is used to detect a change in the target structure.
  • the temporal and spatial information and shape acquisition techniques are widely used to encompass data on gas dynamics using RF & Microwave-GPS, DGPS, RTK, Optical-Lidar, PIV, PIT, Interferometer, etc. Make a clear statement of the term.
  • the IMU inertial measurement unit
  • the IMU is previously described as a broad term encompassing a device for measuring acceleration and rotational motion such as a gyro and a grating.
  • the gyro is an instrument used to measure the direction of rotation in the inertial space of an axis-symmetric high-speed rotating body or the rotational angular velocity with respect to the inertial space.It is used to measure the direction and equilibrium of an aircraft, a ship, and a missile. Ensure the direction and equilibrium of aircraft and vessels in night operation are constant.
  • time and space information and shape acquisition techniques and IMUs are linked to the six degrees of freedom movement, reaction posture, position measurement, and database of the marine structure to monitor EEOI / EEDI / DMS / DPS of AI Perform posture control using the control system.
  • the term mathematical models (Mathmatical models) used in the present invention is a finite element method (FEM), gas structure interlocking analysis, finite difference method, finite volume method, IFEM (Inverse Finite Element Method) This is a broad term covering the interpretation program.
  • the finite element method (FEM) is based on the principle of energy in relation to each region by dividing the structure as a continuum into finite elements of 1-dimensional rods, 2-dimensional triangles or squares, and 3-dimensional solids (tetrahedron, hexahedron). It is a numerical calculation method that calculates based on an approximate solution.
  • the situation recognition middleware when the agent converts the situation information input from the sensor, such as USN sensor to the middleware-only packet and transmits it to the situation recognition middleware, the middleware receives it and processes it in each module classified by the function, and processes the result. It collects all kinds of sensor information or controls all equipment through an agent that converts program status information that can be monitored and controlled by transmitting to a user program into a packet for middleware.
  • Middleware is modularized by each function (notification, processing, storage, log, control, IO, external application), and the interoperability between modules uses middleware messages defined in XML to ensure independence between modules to modify and add additional functions. It is known in advance that it is a broad term covering the back.
  • the web-based situational awareness monitoring program is a program for monitoring contextual information using contextual awareness middleware.
  • the web-based situational awareness monitoring program can be used in a system in which the flash operates normally.
  • Real-time monitoring graph display, chart expression
  • 10-minute average inquiry historical data inquiry per period, sensor
  • threshold setting after sensor setting warning when threshold is exceeded
  • external program call for some sensors and result monitoring program It is known in advance that it is a broad term.
  • the present invention integrates electrical or optical measuring instruments to measure the load, strain, deformation, displacement, fatigue, crack, vibration or frequency of the marine structure.
  • the force exerted by the flow of gas on the hull is due to the velocity and direction in three dimensions over time, and the responses of the x, y, z axes and the incident angles of the x, y, z axes are different.
  • the first step of storing in the database the second and second steps of measuring and storing the internal and external forces in the database by using the time-of-flight method in the actual navigation of the marine structure Response of offshore structures by comparing the measured data of internal and external forces with the data of internal and external forces accumulated in the lookup table of the first stage
  • a third step of predicting data for the marine structure and a fourth step of controlling the attitude or navigation path of the marine structure in real time using the data on the predicted response of the marine structure.
  • Fuel saving and safe operation methods are provided through predictive monitoring and predictive control of external force, hull stress, six degree of freedom motion and position.
  • Linear tests in water tanks or wind tunnels measure hull resistance due to changes in draft and trim, and consider the effects of six degrees of freedom motion to determine the aerodynamic energy to be applied to ships in the future, including radar, pressure sensors, and strain sensors. Measure with an accelerometer. In this case, the direction and velocity of the gas for each altitude are measured according to space and time.
  • the automatic control in conjunction with the numerical arithmetic model and the actual measurement data.
  • the response of the marine structure is predicted and compared with the actual measured data. It is characterized by developing a gas dynamic response model, through which attitude control or navigation routes are determined.
  • the response of the marine structure predicted in the third step and the data of the response of the marine structure measured in step 3-1 and step 3-1 to measure the actual response of the offshore structure In case of inconsistency, the data on the response of the offshore structure in step 3-1 is corrected or the data on the response of the offshore structure in the lookup table generated in step 1 is reflected or the revised value of this data is reflected. It may further include steps 3-2 to modify / supplement the numerical model (CFD & / or FEM).
  • modification of the data on the response of the marine structure may be made by a finite element method (FEA) or an inverse finite element method (iFEM) based simulation.
  • FEA finite element method
  • iFEM inverse finite element method
  • the data measured by the measuring instrument maximizes the input condition of computational fluid dynamics (CFD), and analyzes the behavior of the offshore structure, the six degree of freedom motion, and the correlation of various physical quantities.
  • CFD computational fluid dynamics
  • Algorithms and simulations are built by interlocking the results of the arithmetic and vertebral models in the situational awareness middleware with actual measurement data.
  • the artificial intelligence monitoring and predictive control system is implemented by constructing a web-based system through the context awareness middleware and web based context awareness monitoring program.
  • the measuring device in the second step, internal and external forces by a gas are measured through a measuring device provided in the marine bracket, and the measuring device may be an electric sensor or an optical sensor.
  • the measuring device measures wind direction, wind speed, air pressure, temperature, humidity, and dust for each altitude.
  • the second step using the IMU actually measures the internal and external forces of the gas flow on the offshore structure.
  • reaction of the offshore structure in the second step when the offshore structure is a vessel may include at least one or more of the traveling direction, the front and rear tilt, draft or trim of the vessel.
  • reaction of the offshore structure in the second step, when the offshore structure is a temporary fixed structure may include at least one or more of the moving direction of the structure, front and rear tilt, draft.
  • the second step it is possible to measure the data including the natural frequency, harmonic frequency and gas characteristics of the offshore structure by the flow of gas.
  • the database in which the lookup table is stored in the first step may be a navigation recorder (VDR) provided in an offshore structure.
  • VDR navigation recorder
  • electric or optical sensors can be attached to mooring lines, support for eco-friendly fuel-saving sails, and sail lines to monitor changes in gas dynamics by coupled energy. .
  • the data stored in the database may be used as reference data to implement real-time situation recognition, situation representation of past records, and situation prediction for the number of cases.
  • the stored data may be used to perform a structural diagnosis and a task evaluation function through a virtual simulation.
  • the lookup table is recorded as hourly time series data, and compared with the time series data accumulated up to the previous year.
  • the lookup table can be modified by using. This can reduce the error automatically.
  • the fourth step by using at least one of the rudder (ruster), thruster (thruster), propeller, sail, kite or balloon can control the attitude or the navigation path of the marine structure in real time.
  • it controls the rudder to minimize the 6 degree of freedom movement
  • it controls the direction of the rudder to compensate for the force caused by the aerodynamics so that it can be operated in the optimized path.
  • the fourth step is the sum of the propulsion force and the internal and external forces, according to the data on the expected response of the marine structure, when the marine structure is a ship
  • the direction of the rudder and the RPMs of the thrusters and propellers can be controlled so that this is the desired direction of travel.
  • the moving distance to the target point is shortened when the rudder is controlled, rather than the rudder provided on the vessel with respect to internal and external forces applied to the vessel by gas dynamics. Can be.
  • the thrust with the internal and external forces can be controlled to maintain the current position to the minimum.
  • the marine structure includes a helideck
  • the fourth step includes DP (Dynamic Positioning) and DM (to maintain the equilibrium of the helix deck or to mitigate impact during takeoff and landing of the helicopter).
  • Dynamic motion may be used to control the attitude of the offshore structure, or change the center of gravity of the offshore structure by adjusting the angle of six degrees of freedom, and store the equilibrium state information of the helidec in the database.
  • the equilibrium state information of the helidec according to controlling the attitude of the offshore structure is stored in the database, the database transmits the equilibrium state information of the helidec to an external rescue information server through a communication unit, the rescue The information server may provide the helicopter with the position information of the marine structure having the equilibrium state information of the helidec from which the helicopter can take off and land among the plurality of marine structures.
  • the rescue The information server may provide the helicopter with the position information of the marine structure having the equilibrium state information of the helidec from which the helicopter can take off and land among the plurality of marine structures.
  • trim tilt
  • Equilibrium can be maintained or shocks can be alleviated.
  • the impact of the marine structure or the helicopter structure and the support structure of the helicopter is alleviated.
  • the second step at least one of wind direction, wind speed, air temperature, humidity, air pressure, solar radiation, inorganic ion, carbon dioxide, dust, radioactivity or ozone from the marine structure is measured by a measuring instrument and is measured in the database. Further includes steps 2-1 of storing
  • the measuring device is preferably at least one of anemometer, wind vane, hygrometer, thermometer, barometer, solar meter, atmospheric gassol automatic collector, CO2flux measuring equipment, atmospheric dust collector, air sampler or ozone analyzer.
  • the IMU time and spatial information and shape acquisition techniques, and radar capable of detecting X-band / S-band, it not only prevents collision with dangerous goods, but also predicts wind direction, wind speed, air pressure, and temperature. Measure more than 6 degrees of freedom of movement of the offshore structure as well as hogging, sagging and torsion, and measure the moving distance and coordinates of the offshore structure using the time and spatial information acquisition technique. Minimize fatigue of offshore structures by interlocking satellite internal and external force data with radar and IMU data.
  • the polarizer collection of the wave radar is not limited to 32, and in order to perform real-time dynamic image processing, a real-time dynamic image processing is performed by deleting a first or oldest polar image while receiving a new polar image.
  • a real-time dynamic image processing is performed by deleting a first or oldest polar image while receiving a new polar image.
  • collision prevention with dangerous goods, wind speed, wind direction, air pressure, and temperature can be predicted in real time.
  • it utilizes existing X-band or S-band anti-collision radar by utilizing RF 1x2 splitter or RF amplifier.
  • the effects of the six degrees of freedom motion on the wave data are compensated for, and a time of flight method and an image overlay method are used.
  • the marine structure includes a ballast tank and may include a sloshing suppression unit provided on each side of the ballast tank in order to reduce the sloshing phenomenon in the ballast tank.
  • the sloshing suppressing portion suppresses the sloshing phenomenon by narrowing the open area of the cross section in one horizontal cross section of the ballast tank.
  • the ballast water loaded in the ballast tank is moved to the opposite side of the inclined direction.
  • the attitude of the marine structure can be controlled.
  • the ballast tank the ballast tank is provided with a partition wall for dividing the compartment inside the ballast tank, the partition wall is provided with an opening and closing portion for moving the ballast water to other compartments, the interior of the opening and closing portion
  • the pump may be installed to control the moving speed and the moving direction of the ballast number.
  • the ballast tank and a water gauge may be connected to monitor the water level of the ballast tank, and active control may be performed through feed back and / or feed forward.
  • the measurement data of the internal and external force in step 2 is transmitted to an external weather information server, and the weather information server compares the weather information received from the satellite with the measurement data of the internal and external force, and corrects the error. Can be stored.
  • the weather information correction data may be provided to the external user terminal.
  • the response result values resulting from the virtual simulation are recorded in real time.
  • the maintenance data may be obtained through simulation.
  • the maintenance data may be output including position information, maintenance cost information, maintenance time information, remaining life information, etc. for each in the order of importance of the individual structures provided in the offshore structure.
  • the marine structure control information is generated as a simulator by FSI program (Fluid Structure Interaction), and the simulator of the marine structure obtained in the step 3-1 by the situation recognition middleware
  • the method may further include generating an algorithm for automatically controlling the marine structure by interworking with data about an actual reaction in real time.
  • a three-dimensional numerical analysis program using finite element analysis (FEM) and computational fluid dynamics (CFD) is performed. Create maintenance information by interlocking with the situation analysis module that stores data on virtual situation such as gas diffusion, fire or blasting and countermeasure according to the virtual situation
  • the data on the reaction of the marine structure may include at least one of strain, deformation, crack, vibration, frequency, corrosion, erosion.
  • the frequency includes a natural frequency and a harmonic frequency, and is used as data for minimizing fatigue and extending life by avoiding a frequency applied to the marine structure in conjunction with a structural analysis method.
  • the maintenance data of the fourth step may be obtained by being distinguished according to a predetermined importance of individual structures provided in the marine structure.
  • priority is given to the priority of minimizing fatigue for individual structures provided in the marine structure, and urgent, urgent, and prioritized so that the efficiency of EEOI / EEDI / DMS / DPS is appropriately large. By ranking Can operate.
  • the maintenance data may include at least one of location information requiring maintenance, maintenance cost information, maintenance required time information, or remaining life information for each structure.
  • the data on the reaction of the offshore structure by slamming and the reaction of the storage tank including the ballast tank by sloshing are interlocked with mathematical models to obtain an optimization & artificial intelligence algorithm. It is stored in a navigation recorder (VDR) or a separate server in the form of a lookup table to control the attitude of offshore structures to minimize damage.
  • VDR navigation recorder
  • the stored data is used as reference data for situation recognition necessary for real-time situation recognition, situation reproduction of past records, and situation prediction for the number of cases.
  • the structured diagnosis and work evaluation function can be performed through the virtual simulation using the stored data.
  • the optimized prediction simulator is implemented by continuously reflecting the actual measurement data in the algorithm or the simulator and modifying the lookup table.
  • Automation using automated learning techniques can be implemented by reflecting the above algorithms or simulators on offshore structures including Risers (SCR, TTR, Tendon) / ROV / Drill rig.
  • a fuel saving and safe operation method through predicted monitoring and control of hydrodynamic environment internal and external forces, hull stress, six degree of freedom motion, and operation position for a real-time offshore structure according to an embodiment of the present invention
  • a linear test in a water tank or a wind tunnel data about internal and external forces of the flow of the external fluid of the marine structure to the marine structure and data about the reaction of the marine structure according to the internal and external forces are accumulated to generate a lookup table, and the lookup table is a database.
  • Fuel saving and safe operation methods are provided through predictive monitoring and predictive control of external forces, hull stress, six degree of freedom motion and operating position.
  • Linear tests in water tanks or wind tunnels measure hull resistance due to changes in draft and trim, and consider hydrodynamic energy to be applied to the ship in the future, taking into account the effects of six-degree-of-freedom motions, including pressure sensors, strain sensors, and accelerometers. It measures using etc. In this case, the direction and velocity of the currents and tidal currents are measured according to space and time.
  • the automatic control in conjunction with the numerical arithmetic model and the actual measurement data.
  • the lookup table is optimized through modification Develop a hydrodynamic response model and use it to determine attitude control or navigational routes.
  • the method further includes steps 3-2 of modifying data on the response of the marine structure in the look-up table generated in the first step as data on the response of the marine structure in step 3-1. can do.
  • the correction of the data on the response of the marine structure can be made by a finite element method (FEA) based simulation.
  • FEA finite element method
  • the data measured by the measuring instrument maximizes the input condition of the computational fluid dynamics (CFD), and analyzes the behavior of the offshore structure, the six degree of freedom motion, and the correlation of various physical quantities.
  • CFD computational fluid dynamics
  • Algorithms and simulations are built by interlocking the results of the arithmetic and vertebral models in the situational awareness middleware with actual measurement data.
  • the artificial intelligence monitoring and predictive control system is implemented by constructing a web-based system through the context awareness middleware and web based context awareness monitoring program.
  • the second step, the second step, while measuring the internal and external force by the fluid through a measuring device provided on the side of the marine bracket the measuring device may be made of an electrical sensor or an optical sensor.
  • the second step using the IMU actually measures the internal and external forces of the flow of the fluid to the marine structure.
  • reaction of the offshore structure in the second step when the offshore structure is a vessel may include at least one or more of the traveling direction, the front and rear tilt, draft or trim of the vessel.
  • reaction of the offshore structure in the second step, when the offshore structure is a temporary fixed structure may include at least one or more of the operation direction of the structure, front and rear tilt, draft.
  • the second step it is possible to measure the direction and speed according to the space and time of the tidal current and the current for each depth.
  • the second step it is possible to measure the data including the natural frequency, harmonic frequency and fluid characteristics of the offshore structure by the flow of the fluid.
  • the database in which the lookup table is stored in the first step may be a navigation recorder (VDR) provided in an offshore structure.
  • VDR navigation recorder
  • electric or optical sensors can be attached to mooring lines, support for eco-friendly fuel-saving sails, and sail lines to monitor changes in fluid dynamics by coupled energy. .
  • the data stored in the database may be used as reference data to implement real-time situation recognition, situation representation of past records, and situation prediction for the number of cases.
  • the stored data may be used to perform a structural diagnosis and a task evaluation function through a virtual simulation.
  • the lookup table is recorded as hourly time series data, and compared with the time series data accumulated up to the previous year.
  • the lookup table can be modified by using. This can reduce the error automatically.
  • the fourth step by using at least one of a rudder (ruster), thruster (thruster), propulsion propeller or sail can control the attitude or the navigation path of the marine structure in real time.
  • a rudder tilter
  • thruster thruster
  • propulsion propeller or sail can control the attitude or the navigation path of the marine structure in real time.
  • it controls the rudder to minimize the 6 degree of freedom movement
  • the direction of the rudder in order to compensate for the force caused by the hydrodynamics so that it can be operated in the optimized path.
  • the fourth step if the offshore structure is a ship, according to the data on the predicted response of the offshore structure, within the above- It is possible to control the direction of the rudder and the RPMs of the thrusters and propellers so that the force with the external force can be the desired direction of travel.
  • the moving distance to the target point is shortened when the rudder is controlled than when the rudder provided in the vessel is not controlled with respect to internal and external forces applied to the vessel by hydrodynamics. Can be.
  • the thrust with the internal and external forces can be controlled to maintain the current position to the minimum.
  • the marine structure but having a helix (helideck)
  • the fourth step through the DP (Dynamic Positioning) and DM (Dynamic Motion) to maintain the balance of the helix
  • DP Dynamic Positioning
  • DM Dynamic Motion
  • the equilibrium state information of the helidec according to the attitude control of the offshore structure is stored in the database
  • the database transmits the equilibrium state information of the helidec to an external rescue information server through a communication unit
  • the rescue The information server may provide the helicopter with the position information of the marine structure having the equilibrium state information of the heli-deck to which the helicopter can take off and land among the plurality of marine structures.
  • the data on the internal and external forces of the fluid flow on the marine structure are measured by the pressure sensor installed on the side of the marine structure, and the data on the currents and tidal current vectors. Can be.
  • the pressure sensor is provided with a plurality, it may be installed at a predetermined interval on the side of the marine structure.
  • the monitoring of the waves acting on the marine structure is installed on the side of the three-dimensional pressure sensor module to analyze the measured data to extract the vector of the currents and currents, the wave at the installation position of the sensor with the largest value I can see that it is coming. Through this, it is possible to infer the speed of the wave by calculating the strain value due to the wave as well as the direction of the wave over space and time.
  • the second step is a step 2-1 for measuring at least one or more of the distance, the wave, the period of the wave, the speed of the wave or the direction of the wave from the marine structure by the meteorological measuring equipment and store in the database
  • the meteorological measurement device may be made of at least one of a wave radar, a directional waverider, a sea level monitor, an ultrasonic tide meter, a wind vane or an ultrasonic wave height meter.
  • the pressure sensor is provided with a plurality, may be installed with a height difference on the side of the marine structure.
  • the pressure sensor By analyzing the presence or absence of data measurement from the pressure sensor, it is possible to obtain the digging data through the data from the pressure sensor located at the highest position.
  • the period of the wave may be calculated by measuring the period of the measurement data.
  • the second step is a wave radar 310 (wave radar) (wave radar) far from the marine structure, wave, wave period, wave of
  • the method may further include a step 2-1 of measuring at least one of the velocity or the direction of the wave and storing it in the database.
  • the wave radar 310 it is possible to calculate the hydrodynamics that will extend to the marine structure by measuring the wave, wave height, wave period, wave speed and direction of the wave of several hundred meters.
  • the polarizer collection of the wave radar is not limited to 32, and in order to perform real-time dynamic image processing, a real-time dynamic image processing is performed by deleting a first or oldest polar image while receiving a new polar image. Through this, it is possible to predict the movement of the wave including the collision with the dangerous goods, wave and wave in real time.
  • it utilizes existing X-band or S-band anti-collision radar by utilizing RF 1x2 splitter or RF amplifier.
  • the effects of the six degrees of freedom motion on the wave data are compensated for, and a time of flight method and an image overlay method are used.
  • the marine structure is provided with a ballast tank, in order to reduce the sloshing phenomenon inside the ballast tank, provided on each side of the ballast tank It may include a sloshing suppressor.
  • the sloshing suppressing portion suppresses the sloshing phenomenon by narrowing the open area of the cross section in one horizontal cross section of the ballast tank.
  • the ballast water loaded in the ballast tank is moved to the opposite side of the inclined direction.
  • the attitude of the marine structure can be controlled.
  • the ballast tank, the ballast tank has a partition for dividing the partition inside the ballast tank, the partition is provided with an opening and closing portion for moving the ballast water to the other compartment, the inside of the opening and closing portion
  • the pump may be installed to control the moving speed and the moving direction of the ballast number.
  • the ballast tank and a water gauge may be connected to monitor the water level of the ballast tank, and active control may be performed through feed back and / or feed forward.
  • the measurement data of the internal and external force in step 2 is transmitted to an external weather information server, and the weather information server compares the weather information received from the satellite with the measurement data of the internal and external force, and corrects the error. Can be stored.
  • the weather information correction data may be provided to the external user terminal.
  • the maintenance data may be obtained through simulation.
  • the maintenance data may be output including position information, maintenance cost information, maintenance time information, remaining life information, etc. for each in the order of importance of the individual structures provided in the offshore structure.
  • the data on the reaction of the marine structure may include at least one of strain, deformation, crack, vibration, frequency, corrosion, erosion.
  • the frequency includes a natural frequency and a harmonic frequency, and is used as data for minimizing fatigue and extending life by avoiding a frequency applied to the marine structure in conjunction with a structural analysis method.
  • the maintenance data of the fourth step may be acquired separately according to a predetermined importance of the individual structure provided in the offshore structure.
  • priority is given to the priority of minimizing fatigue for individual structures provided in the offshore structure, and urgent, urgent, and prioritized so that the efficiency of EEOI / EEDI / DMS / DPS is appropriately large. It can be operated by ranking.
  • the maintenance data may include at least one of location information requiring maintenance, maintenance cost information, maintenance required time information, or remaining life information for each structure.
  • Load, strain, deformation, displacement, fatigue, micro cracks, vibrations, and the like of the floating mat assembly caused by sloshing by introducing an electrical or optical sensor at one or more points of the floating mat assembly. Measure the frequency. Electrical or optical sensors are also inserted between the walls of the fluid storage tank, so that the load, strain, deformation, displacement, micro crack and vibration due to the impact between the floating mat and the fluid storage tank wall due to the sloshing of the fluid. , Measure the frequency.
  • the floating mat unit is made of a structure or material that can be suspended in a liquid including LNG, and can be applied to an LNG tank or a ballast tank, and the size of the floating mat is determined in consideration of the maximum amount of material filled in the tank and sloshing. At the same time, the impact of sloshing the mat and tank is minimized.
  • Measurements of offshore structures and tanks are also important, but the response of offshore structures by slamming is not the same, so the load of the floating mat assembly generated by sloshing by introducing electrical or optical sensors Strain, strain, displacement, fatigue, micro crack, vibration, and frequency are measured and used as data to minimize the impact between the marine structure and the tank through safety diagnosis and control.
  • the data on the reaction of the offshore structure by slamming and the reaction of the storage tank including the ballast tank by sloshing are interlocked with mathematical models to obtain an optimization & artificial intelligence algorithm. It is stored in a navigation recorder (VDR) or a separate server in the form of a look-up table to minimize the damage by controlling the attitude of offshore structures.
  • VDR navigation recorder
  • the stored data is used as reference data for situation recognition necessary for real-time situation recognition, situation reproduction of past records, and situation prediction for the number of cases.
  • the structured diagnosis and work evaluation function can be performed through the virtual simulation using the stored data.
  • the optimized prediction simulator is implemented by continuously reflecting the actual measurement data in the algorithm or the simulator and modifying the lookup table.
  • Automation using automated learning techniques can be implemented by reflecting the above algorithms or simulators on offshore structures including Risers (SCR, TTR, Tendon) / ROV / Drill rig.
  • the control method through monitoring of hydrodynamic environment, hull stress, six degree of freedom motion and operating position for the real-time offshore structure according to an embodiment of the present invention using Radar, IMU, GPS measurement technique, X-band Radar In addition to collision avoidance, it measures wave and wave heights and predicts wave motion, measures not only six degrees of freedom motion but also hogging, sagging and torsion of offshore structures using at least one IMU.
  • Measurement of travel distances and coordinates of offshore structures Minimize fatigue of offshore structures by interfacing environmental external force data of satellites with data of Radar and IMU, and EEOI / EEDI / DP Boundary / DM Boundary / Risers (SCR, TTR, Tendon) / Lowering / It can be reflected in ROV / Drill Rig and replaced by algorithm and simulator of prediction procedure.
  • Radar is used to measure wave speed, wave, period, wave speed and direction, but Radar's polar image collection is not limited to 32, and it is possible to receive new Polar images for real-time dynamic image processing while simultaneously receiving the first or oldest You can delete Polar images for real-time dynamic image processing.
  • collision prevention, wave / wave height measurement, and wave motion prediction can be linked.
  • using the existing X-Band or S-Band anti-collision Radar using the RF 1x2 Splitter, RF amplifier or optical signal transmission and amplifier capabilities, it is possible to extract the wave, wave, period, and smell measurement results.
  • six degrees of freedom Motion Compensated X / S-Band Wave Radar, Wave Height Measuring Sensor, Doppler, Time of Flight and Image Overlay can be used.
  • Time and Spatial Information Acquisition Tool e.g. RF & Microwave-GPS, DGPS, RTK, Optical-Lidar, PIV, PIT, Interferometer, etc., Underwater, Sound Wave, Ultrasound, Optical / Lidar, etc.
  • Smart IMU Electro / Photoelectric Gyro + Electric Acceleration of Light Grating, MEM, etc.
  • Drill Rig / Riser monitoring is performed to set the most comfortable posture of the offshore structure and to predict it, but to perform the damping considering the six degrees of freedom required at the required time (e.g., motion-oriented motion damping at the joints, In consideration of the predicted motion, the hydraulic motor is controlled in advance to damp the six degrees of freedom required.
  • vibrations e.g., DAS
  • subsea structures e.g. Mooring Line, Risers, Umbilical Line structures
  • the external force e.g., vector of external force of tidal current and current
  • the situational middleware or similar software integration can be used as a basic tool that optimizes the measurement results of all situational awareness functions by integrating real-time Mathematical Models (eg CFD, FEA & / or FSI ).
  • Mathematical Models eg CFD, FEA & / or FSI .
  • the integrated measured situation-aware database can be stored or linked to VDR (Voyage Data Recorder) to provide Hydro-Dynamic & / or Aero-Dynamic Energy (e.g. wave direction and speed or vector of wind direction and wind speed and Eject the vector of the structure's response.
  • VDR Vehicle Data Recorder
  • Aero-Dynamic Energy e.g. wave direction and speed or vector of wind direction and wind speed and Eject the vector of the structure's response.
  • the prediction control is performed by using the Experienced Reference data.
  • the monitoring function and the predictive control system e.g., Utilize the resulted influence to 6 DoF Motion & Displacement for DPS, DMS, & EEOI
  • Save and record / EEDI Energy Efficiency Design Index
  • Strain sensors measure the deformation of bulkheads and monitor them by ultrasonic measurement or DAS excitation for global measurement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Analytical Chemistry (AREA)
  • Atmospheric Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Optical Transform (AREA)
  • Feedback Control In General (AREA)

Abstract

본 발명은 해양 구조물의 물리적 변화를 모니터링하는 시스템 및 방법에 관한 것으로서, 보다 구체적으로 광섬유 브래그 격자를 이용한 적어도 하나 이상의 광학센서를 이용하여, 상기 해양 구조물의 거동 및 구조적 변화를 감지하는 복합광계측기기를 포함하는 해양 구조물의 물리적 변화를 모니터링하는 시스템이 제공된다. 본 발명에 의하면, 광학센서 방식의 측정방법을 도입하여 해양 구조물의 물리적 변화를 실시간으로 정확하게 모니터링 할 수 있다. 본 발명은 실시간으로 해양 구조물에 대한 기체역학적, 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 제어함에 관한 것으로서, 보다 상세하게는 기체역학적 환경 내외력에 의하여 해양 부유물에 가해지는 전후좌우 기울기, 흘수, 트림, 부식, 침식, 균열, 압력, 스트레스, 진동, 주파수 등의 변화를 종합적으로 측정하고, 이를 바탕으로 상기 해양 구조물을 예측 제어하여 연료절감, 안전운용 및 유지보수정보의 제공 방법에 관한 것이다. 본 발명의 일 측면에 따르면, 수조 또는 풍동에서 선형 시험을 통하여 해양 구조물 외부 기체 또는 유체의 흐름이 상기 해양 구조물에 미치는 내외력에 대한 데이터 및 상기 내외력에 따른 상기 해양 구조물의 반응에 대한 데이터를 축적하여 룩업테이블을 생성하고 상기 룩업테이블을 데이터베이스에 저장하는 제 1단계, 상기 해양 구조물 의 실제 항해에 있어서 비행시간법(Time-of-Flight Method)을 이용하여 상기 내외력을 측정하여 상기 데이터베이스에 저장하는 제 2단계, 제 2단계의 내외력의 측정 데이터를 제 1단계의 룩업테이블에 축적된 내외력에 대한 데이터와 비교하여, 해양 구조물의 반응에 대한 데이터를 예측하는 제3단계, 상기 예측된 해양 구조물의 반응에 대한 데이터를 이용하여 해양 구조물의 자세 또는 항해 경로를 실시간으로 제어하는 제 4단계를 포함하는, 실시간 해양 구조물에 대한 기체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감, 안전운용 및 유지보수정보제공 방법이 제공된다.

Description

실시간 해양 구조물에 대한 기체역학적, 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감, 안전운용 및 유지보수정보 제공 시스템 및 방법
본 발명은 광학센서 방식의 측정방법을 도입하여 해양 구조물의 물리적 변화를 복합광계측기기에 의하여 실시간으로 모니터링 하기 위한 시스템 및 방법에 관한 것이다. 보다 상세하게는, 본 발명은 광학센서 방식의 측정방법을 도입하여 해양 구조물의 물리적 변화를 복합광계측기기에 의하여 실시간으로 모니터링 하기 위한 시스템 및 방법에 관한 것이다.
또한, 실시간으로 해양 구조물에 대한 기체역학적, 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함에 관한 것으로서, 보다 상세하게는 기체역학적, 유체역학적 환경 내외력에 의하여 해양 부유물에 가해지는 전후좌우 기울기, 흘수, 트림, 부식, 침식, 균열, 압력, 스트레스, 진동, 주파수 등의 변화를 종합적으로 측정하고, 이를 바탕으로 상기 해양 구조물을 제어하여 연료절감, 안전운용 및 유지보수정보의 제공 방법에 관한 것이다.
본 발명은 환경 외력의 통합 모니터링을 통한 대상 구조물 (예, 해양/육상, 조선, 항공/우주, 수중잠수 계류, 고정식 혹은 풍력/조력/파력, 등 연관되는 ) 의 제어 방법에 관한 것이다.
해양의 유정에서 생산된 원유는 해양 구조물의 일종인 파이프라인을 이용하여 해상구조물로 이송한다. 상기 해상구조물에는 FPSO(Floating Production Storage and Offloading, 부유식 원유생산저장하역설비), TLP(Tension-Leg Platform), SPAR, Semi-Submersible, 고정플렛폼 (fixed Platform) 등이 있다.
이 때 파이프라인은 20년 이상의 운영기간을 목적으로 적게는 수km에서 많게는 수백km까지 심해에 설치된다.
이 경우, 심해에 설치된 파이프라인은 크게는 100도 이상의 온도 편차에 의해 수축 또는 팽창 현상이 발생하고, 파이프라인 내부의 압력 변화에 따라서 길이 변화를 포함하는 물리적 변화가 발생하게 된다.
이에 따라, 해양에 설치된 파이프라인은 특정 또는 불특정 다수의 지점에서 응력이 집중적으로 발생하여 좌굴(buckling) 및 변형이 발생하게 된다. 또한, 해저에 설치된 파이프라인과 해상 운송장치의 라이저(riser)의 연결부인 터치다운존(touch down zone)에서는 해류, 파도, 조류, 바람, 온도 등의 다수의 환경외력에 의해 파이프라인의 요동을 유발한다.
이와 같은 요동을 측정하기 위해 현재 다양한 모니터링 방식이 사용되고 있다. 기존의 모니터링 방식은 파이프라인 자체의 변형률을 측정하는 방식으로, 전기식 또는 광섬유 방식의 변형률 센서가 사용되고 있다. 해양 구조물은 주로 용접부위가 구조적으로 가장 취약한 부분이기 때문에 20 ~50cm 간격으로 센서를 설치하여 운용하고 있다. 여기서 파이프라인의 길이 방향으로 센서를 설치하여 변형을 분석하는 형태로 되어 있다. 또 다른 모니터링 방식으로는 전기식 경사계를 이용하여 파이프라인의 변형을 감지하는 방식이 있다.
하지만, 기존의 모니터링 방식에 따르면 해양 구조물의 온도, 압력에 의해 발생하는 변형률이 좌굴 및 워킹 현상에 의해 발생하는 변형률 보다 훨씬 크게 발생하기 때문에, 정확한 현상 분석에 어려움이 있었다. 그리고 현재 전기식 경사계 는 해양에 설치되는 이유로 높은 수압에 의한 누수에 따른 망실 및 설치 시 전원공급장치 및 연결 방식의 복잡하여 사용이 용이한 새로운 측정방식에 대한 수요가 증가하고 있다. 또한 기존의 모니터링 방식에 사용되는 센서는 피로 측정 내구연한이 짧아 보다 장기간 사용할 수 있는 방식의 센서가 필요한 상황이다.
해양 구조물의 운용시 기체 및 유체의 흐름은 해양 구조물에 대하여 필연적으로 내외력을 가하게 되며, 특히 해양의 특정 지점에 장기간 계류하는 해양 고정 구조물의 경우에는 이러한 기체 및 유체의 흐름에 의한 내외력의 영향을 최소화할 수 있도록 제어하는 것이 필수적이다.
또한, 해양 구조물의 운용 중 기체역학적, 유체역학적 환경 내외력 및 선체 응력에 의하여 선박 등이 전복되거나 운송물이 낙하하는 문제에 대한 해결책이 시급하다.
한편, 연료가 적게 드는 해양 구조물을 개발하고 건조하는 것은 미래 조선해양 산업의 핵심이다. 하루 100톤의 연료를 소비하고, 320톤의 이산화탄소를 배출하는 해양 구조물 을 가정하면, 1%의 연비개선은 연간 24만 달러 이상의 비용을 절감하며, 25년이면 약 6백만 달러를 줄일 수 있으며, 중고선 시장에서 연비가 가장 중요한 요소 중 하나이다.
또한, 현대사회는 온실가스를 배출하는 동력수송시스템에 대부분 의존하고 있지만, CO2배출은 지구 온난화, 기후 변화와 해양 산성화를 일으키는 핵심요인으로 널리 알려져 있다. 1톤의 화물을 1마일 수송하는데 배출되는 CO2의 양은 해양 구조물이 수송수단 중에서 가장 효율적임에도 불구하고, 세계무역에서 가장 압도적인 수송수단이기 때문에 CO2 배출량이 산업계에서 배출하는 전체 온실가스 배출량의 약 3%에 해당한다. 그러므로 해양 구조물의 연료효율을 높임으로써 산업계에서 배출하는 온실가스의 배출량을 크게 줄일 수 있다.
또한, 해양 구조물 운용의 기존의 수작업 및 반자동화 방식은 작업자의 업무수준에 따라 차이가 크고, 반자동화 방식으로 개발된 시스템의 경우에도 해당 해양 구조물에만 적용 가능한 상황이므로 다양한 선종을 포괄할 수 있는 시스템을 구현하기 위해서는 소프트웨어 공학적 접근이 필요하고, 비슷한 종류의 응용 개발을 위한 토대를 제공하는 개념인 소프트웨어 프레임워크 개발이 필요하다.
본 발명은 상기와 같은 문제점을 해결하기 위해 제안된 것으로, 실시간으로 해양 구조물에 대한 기체역학적, 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치의 모니터링 및 제어를 통한 연료절감 방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 광학센서 방식의 융합계측을 통하여 기존의 전기식 센서에 비하여 해양 구조물의 변화를 더욱 장기간 측정할 수 있고, 설치 및 운용이 간편한 모니터링 시스템 및 방법을 제공하는 것을 목적으로 한다.
또한, 상기 모니터링 정보를 외부의 타 장치와 공유하여 기상정보의 정확성을 높일 수 있고, 인공위성에 의해 측정된 데이터를 검교정할 수 있는 환경을 제공하는 것을 목적으로 한다.
또한, 기체역학적, 유체역학적 환경 내외력에 의하여 해양 부유물에 가해지는 전후좌우 기울기, 흘수, 트림 등의 변화를 측정하여, 이를 바탕으로 상기 해양 부유물을 제어함을 통하여 실시간으로 안전운용 방법을 제공하는 것을 목적으로 한다.
또한, 해양 구조물에 가해지는 기체역학적, 유체역학적 환경 내외력에 의한 부식, 침식, 균열, 압력, 스트레스 등을 측정하여, 유지보수에 대한 정보를 실시간으로 제공하는 것을 목적으로 한다.
본 발명은 상기와 같은 문제점을 해결하기 위해 제안된 것으로, 실시간으로 해양 구조물에 대한 기체역학적, 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치의 모니터링 및 제어를 통한 연료절감 방법을 제공하는 것을 목적으로 한다.
또한, 상기 모니터링 정보를 외부의 타 장치와 공유하여 기상정보의 정확성을 높일 수 있고, 인공위성에 의해 측정된 데이터를 검교정할 수 있는 환경을 제공하는 것을 목적으로 한다.
또한, 기체역학적, 유체역학적 환경 내외력에 의하여 해양 부유물에 가해지는 전후좌우 기울기, 흘수, 트림 등의 변화를 측정하여, 이를 바탕으로 상기 해양 부유물을 제어함을 통하여 실시간으로 안전운용 방법을 제공하는 것을 목적으로 한다.
또한, 해양 구조물에 가해지는 기체역학적, 유체역학적 환경 내외력에 의한 부식, 침식, 균열, 압력, 스트레스 등을 측정하여, 유지보수에 대한 정보를 실시간으로 제공하는 것을 목적으로 한다.
전술한 목적을 달성하기 위한 본 발명의 해양 구조물 의 물리적 변화를 모니터링하는 시스템에 따르면, 광섬유 브래그 격자를 이용한 적어도 하나 이상의 광학센서 를 이용하여, 상기 해양 구조물 의 거동 및 구조적 변화를 감지하는 복합광계측기기 를 포함하는 해양 구조물 의 물리적 변화를 모니터링하는 시스템이 제공된다.
또한, 상기 복합광계측기기는 상기 해양 구조물 외부에 설정된 적어도 하나 이상의 기준점과 상기 해양 구조물 상에 설정된 지점 사이의 거리 변화를 상기 광학센서 를 이용하여 측정하는 신장계 를 포함하여 구성되며, 상기 광학센서 는, 상기 거리 변화로 인하여 광섬유에 인가되는 응력 변화에 대응하여 상기 광학센서 를 통과하는 광신호의 파장을 변화시킨다.
상기 신장계는, 상기 기준점과 상기 해양 구조물 상에 설정된 지점 사이를 연결하는 적어도 하나 이상의 와이어 를 포함하여 구성된다. 또한, 상기 와이어 는, 인바(invar)를 포함하여 이루어질 수 있다. 또한, 상기 신장계 는, 상기 와이어 를 일정 장력으로 권취하는 와인딩부, 광학센서를 이용하여 상기 와인딩부 의 회전수를 측정하는 감지부를 더 포함할 수 있다. 또한, 상기 신장계 는 상기 감지부 로부터 측정된 회전수에 상응하여 주기적으로 상기 광학센서 를 자극하는 자극부 를 더 포함할 수 있다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 복합광계측기기 는 상기 해양 구조물 상의 적어도 1개 이상의 지점을 상호 연결하는 광섬유 와이어(320)가 구비되어 상기 해양 구조물 의 길이변화를 측정하는 신장계 를 포함한다. 상기 광섬유 와이어(320)는 상기 해양 구조물 상의 거리 변화로 인하여 광학센서 에 인가되는 응력 변화에 대응하여 상기 광섬유를 통과하는 광신호의 파장을 변화시킨다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 신장계 는, 상기 구조물 상의 동일한 지점에 적어도 1개 이상 설치되며, 광섬유로 이루어지는 와이어 를 포함하여 구성되며, 상기 와이어 는, 상기 해양 구조물 상의 거리 변화로 인하여 광섬유에 인가되는 응력 변화에 대응하여 상기 광섬유를 통과하는 광신호의 파장을 변화시킨다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 신장계 는, 상기 삼각측정법을 이용하여 상기 와이어 각각의 인장 정도를 환산하여 상기 지점의 절대적인 위치 정보를 제공한다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 복합광계측기기 는 상기 해양 구조물 상의 복수 지점 간의 경사변화를 상기 광학센서 를 이용하여 측정하는 경사계 를 포함한다. 또한, 상기 경사계 는, 중력방향으로 설치된 무게추, 상기 무게추에 연결된 적어도 하나 이상의 광섬유로 이루어진 광학센서 를 포함하며, 상기 경사계 가 설치된 해양 구조물 상의 지점의 경사변화로 인하여, 상기 무게추에 의해 상기 광섬유에 인가되는 응력 변화에 대응하여 상기 광섬유를 통과하는 광신호의 파장을 변화시킨다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 복합광계측기기 는, 상기 기준점의 위치 변화를 측정하기 위한 지진계 를 더 포함할 수 있다. 또한, 상기 복합광계측기기 는, 상기 해양 구조물 의 진동을 측정하는 진동계 를 더 포함할 수 있다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 복합광계측기기 로부터 광신호의 파장 변화를 감지하는 측정장치 를 더 포함할 수 있다. 상기 측정장치 로서 데이터 로거 또는 인터로게이터를 이용할 수 있다.
또한, 본 발명의 또 다른 실시예에 따르면, 복합광계측기기 는 OTDR(Optical Time-Domain Reflectometer), 라만스텍트럼법(Raman), 브릴루앙 산란(Brillouin scattering), 레일리파(Rayleigh wave), DAS(Distributed Acoustic Sensing), 음향방출법(Acoustic Emission), 간섭법(Interferometry) 중 적어도 어느 하나를 이용하여 목표로 하는 구조물의 변화를 감지한다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 측정장치 는, 파장을 제어할 수 있는 레이저가 구비된 광학부, 상기 광학부에 의해 반사된 광신호의 파장을 광학센서 별로 구별하는 광참조기, 상기 광참조기로부터 출력된 각 광학센서 의 광섬유 브래그 격자를 다수로 연결하고, 브래그 반사 파장을 채널별로 분배하는 광 결합기(optical coupler); 및 상기 광 결합기로부터 전달받은 브래그 반사 파장을 전기신호로 변환하는 포토다이오드(photo diode)를 포함하여 구성될 수 있다. 또한, 상기 측정장치 는 산란된 광신호를 취합하는 기능을 구비한다.
한편, 전술한 목적을 달성하기 위한 본 발명의 해양 구조물의 물리적 변화를 모니터링 하는 방법에 따르면, 해양 구조물 상 및/또는 기준점에 설치된 적어도 하나 이상의 복합광계측기기 를 이용하여, 상기 해양 구조물 의 거동 또는 구조적 변화에 따라 상기 광학센서 를 통과하는 광신호의 파장 및/또는 광량을 변화시키는 (a)단계, 상기 복합광계측기기 가 상기 파장 및/또는 광량이 변화된 상기 광신호를 상기 측정장치 로 전달하는 (b)단계, 측정장치 에 의해 상기 광신호의 파장 및/또는 광량 변화를 감지하는 (c)단계를 포함하며, 상기 복합광계측기기 는 광섬유 브래그 격자를 이용한 적어도 하나 이상의 광학센서 를 포함한다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 복합광계측기기 는, 상기 해양 구조물 외부에 설정된 적어도 하나 이상의 기준점과 상기 해양 구조물 의 설정된 위치 사이의 거리 변화를 측정하는 신장계 로 이루어질 수 있다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 신장계 는 상기 기준점과 상기 해양 구조물 상에 설정된 지점 사이를 연결하는 적어도 하나 이상의 와이어 , 상기 와이어 를 일정 장력으로 권취하는 와인딩부 , 광섬유를 이용하여 상기 와인딩부 의 회전수를 측정하는 감지부 및 상기 감지부 로부터 측정된 회전수에 상응하여 주기적으로 상기 광섬유를 자극하는 자극부 를 포함한다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 신장계 는, 상기 해상 구조물 상의 적어도 1개 이상의 지점을 상호 연결하는 광섬유 와이어 가 구비되어 상기 해양 구조물 의 길이변화를 측정하며, 상기 광섬유 와이어 는, 상기 해양 구조물 상의 거리 변화로 인한 응력 변화에 대응하여 상기 광섬유를 통과하는 광신호의 파장을 변화시킨다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 신장계 는, 상기 구조물 상의 동일한 지점에 적어도 1개 이상 연결되며, 광섬유로 이루어지는 와이어 를 포함하여 구성되며, 상기 와이어 는, 상기 해양 구조물 상의 거리 변화로 인하여 상기 광섬유에 인가되는 응력 변화에 대응하여 상기 광섬유를 통과하는 광신호의 파장을 변화시킨다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 신장계 는, 상기 삼각측정법을 이용하여 상기 와이어 각각의 인장 정도를 환산하여 상기 지점의 절대적인 위치 정보를 제공한다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 복합광계측기기 는 상기 해양 구조물 상의 복수 지점 간의 경사변화를 상기 광학센서 를 이용하여 측정하는 경사계 를 포함한다. 상기 경사계 는, 중력방향으로 설치된 무게추와 상기 무게추에 연결된 광섬유를 포함하며, 상기 (a)단계는, 상기 해양 구조물 에 발생한 경사변화에 따라 상기 무게추가 상기 광섬유를 자극하여 응력 변화를 발생시키고, 발생 된 응력 변화를 광신호로 변환한다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 복합광계측기기 는 상기 해양 구조물 외부에 설정된 적어도 하나 이상의 기준점의 위치 변화를 상기 광학센서 를 이용하여 측정하는 지진계 를 더 포함하여 구성된다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 복합광계측기기 는, 상기 해양 구조물 의 진동을 측정하는 진동계 를 더 포함하는 것을 특징으로 하는
또한, 본 발명의 또 다른 실시예에 따르면, 상기 측정장치 는, 데이터 로거 또는 인터로게이터를 이용할 수 있다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 측정장치 는, 파장을 제어할 수 있는 레이저가 구비된 광학부, 상기 광학부에 의해 반사된 광신호의 파장을 광학센서 별로 구별하는 광참조기, 상기 광참조기로부터 출력된 각 광학센서 의 광섬유 브래그 격자를 다수로 연결하고, 브래그 반사 파장을 채널별로 분배하는 광 결합기(optical coupler); 및 상기 광 결합기로부터 전달받은 브래그 반사 파장을 전기신호로 변환하는 포토다이오드(photo diode)를 포함하여 구성될 수 있다.
한편, 전술한 목적을 달성하기 위한 본 발명의 해양 구조물의 실시간 물리적 변화 모니터링을 통한 제어 방법에 따르면, 수조 또는 풍동에서 실험에 의한 해양 구조물 의 물리적 변화에 대한 데이터를 획득하고, 상기 획득된 데이터를 축적하여 룩업테이블(Lookup table)을 생성하는 (a)단계, 측정장치 로부터 출력된 해양 구조물 의 실제 물리적 변화에 대한 데이터를 획득하는 (b)단계, 상기 (b)단계에서 획득한 데이터를 상기(a)단계의 룩업테이블에 축적된 데이터와 비교하여, 해양 구조물 의 물리적 변화에 대한 예측데이터를 생성하는 (c)단계, 상기 예측데이터를 전달받은 3차원 수치해석(numerical analysis) 프로그램에 의하여 구조물 제어 동작정보, 유지보수가 필요한 위치정보, 유지보수비용정보, 유지보수소요시간 중 적어도 어느 하나를 포함하는 유지보수정보 및 해양 구조물 에서의 가스 누출, 화재 또는 폭발에 대한 경고정보를 생성하는 (d)단계를 포함하며, 상기 물리적 변화는, 상기 해양 구조물 상의 적어도 하나 이상의 지점에 대한 길이변화, 경사변화, 온도변화, 압력변화, 비체적변화 중 적어도 어느 하나를 포함한다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 (c)단계 이후에, 상기 예측데이터와 해양 구조물 의 실제 물리적 변화에 대한 데이터를 비교하여, 룩업테이블을 수정하는 (c-1)단계를 더 포함한다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기(d)단계 이후에, FSI프로그램(Fluid Structure Interaction)에 의해 상기 해양 구조물 제어정보를 시뮬레이터로 생성하고, 상황인식 미들웨어에 의해 상기 시뮬레이터를 상기 (b)단계에서 획득한 상기 해양 구조물 의 실제 물리적 변화량에 대한 데이터와 실시간으로 연동시켜, 상기 해양 구조물 을 자동으로 제어하는 알고리즘을 생성하는 단계를 더 포함할 수 있다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 (d)단계의 3차원 수치해석(numerical analysis) 프로그램은 유한요소해석법(FEM) 및 전산유체역학(CFD)를 이용할 수 있다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 (d)단계는, 상기 3차원 수치해석(numerical analysis) 프로그램이, 상기 해양 구조물 의 거동 및 구조적 변화에 따라 발생할 수 있는 가스 누출/확산, 화재 또는 폭파 등의 가상상황 및 상기 가상상황에 따른 대응방안에 대한 데이터가 저장된 상황해석모듈과 연동되어, 유지보수정보를 생성할 수 있다.
또한, 본 발명의 또 다른 실시예에 따르면, 구조물 자동제어부 가 상기 제어 동작 정보에 따라 상기 해양 구조물 의 위치 또는 각도를 변화시켜 제어하는 (e)단계를 더 포함하되, 상기 제어부는, 상기 해양 구조물 상의 적어도 하나의 지점에 연결되는 결합수단 및 상기 결합수단 과 연결되어 상기 해양 구조물 을 상하좌우로 이동시키는 변위조절수단 을 포함하여 구성될 수 있다.
또한, 상기 경고정보는, 상기 측정장치 가 TDLAS, DTS, DAS, FBG 또는 RMLD 중 적어도 어느 하나를 이용하여 측정한 상기 해양 구조물 의 실제 물리적 변화에 대한 데이터를 이용하여 생성된다.
전술한 목적을 달성하기 위한 본 발명의 일 측면에 따르면, 수조 또는 풍동에서 선형 시험을 통하여 해양 구조물 외부 기체의 흐름이 상기 해양 구조물 에 미치는 내외력에 대한 데이터 및 상기 내외력에 따른 상기 해양 구조물 의 반응에 대한 데이터를 축적하여 룩업테이블 을 생성하고 상기 룩업테이블 을 데이터베이스 에 저장하는 제 1단계, 상기 해양 구조물 의 실제 항해에 있어서 비행시간법(Time-of-Flight Method)을 이용하여 상기 내외력을 측정하여 상기 데이터베이스 에 저장하는 제 2단계, 제 2단계의 내외력의 측정 데이터를 제 1단계의 룩업테이블 에 축적된 내외력에 대한 데이터와 비교하여, 해양 구조물 의 반응에 대한 데이터를 예측하는 제3단계, 상기 예측된 해양 구조물 의 반응에 대한 데이터를 이용하여 해양 구조물 의 자세 또는 항해 경로를 실시간으로 제어하는 제 4단계를 포함하는, 실시간 해양 구조물에 대한 기체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법이 제공된다.
또한, 상기 제3단계는, 상기 해양 구조물 의 실제 반응을 측정하는 제3-1단계 및 상기 제3-1단계에서 측정된 해양 구조물 의 반응에 대한 데이터와 제3단계에서 예측된 해양 구조물 의 반응에 대한 데이터가 불일치하는 경우, 제3-1단계의 상기 해양 구조물 의 반응에 대한 데이터로 제1단계에서 생성된 룩업테이블 에 있어서의 해양 구조물 의 반응에 대한 데이터를 수정하는 3-2단계를 더 포함할 수 있다.
이 경우, 상기 해양 구조물 의 반응에 대한 데이터의 수정은, 유한요소법(FEA) 기반의 시뮬레이터에 의하여 이루어질 수 있다.
또한, 상기 제 2단계는, 상기 해양 부류체에 구비된 계측기기 를 통하여 기체에 의한 내외력을 측정하되, 상기 계측기기 는 전기식 센서 또는 광학 센서로 이루어질 수 있다. 그리고, 상기 계측기기 는 풍향, 풍속, 기압, 기온, 습도 및 분진을 고도별로 측정한다.
또한, 상기 제 2단계는, IMU를 이용하여 기체의 흐름이 해양 구조물 에 미치는 내외력을 실제로 측정한다.
또한, 상기 제 2단계에서의 상기 해양 구조물 의 반응은, 상기 해양 구조물 이 선박인 경우 상기 선박의 진행방향, 전후좌우 기울기, 흘수 또는 트림 중 적어도 하나 이상을 포함할 수 있다.
또한, 상기 제 2단계에서 상기 해양 구조물 의 반응은, 상기 해양 구조물 이 일시적 고정 구조물인 경우 상기 구조물의 이동방향, 전후 좌우 기울기, 흘수 중 적어도 하나 이상을 포함할 수 있다.
또한, 상기 제 2단계는, 기체의 흐름에 의한 해양 구조물 의 고유주파수, 조화주파수 및 기체특성을 포함하는 데이터를 측정할 수 있다.
또한, 상기 제 1단계에서 상기 룩업테이블 이 저장되는 데이터베이스 는, 상기 해양 구조물 에 구비된 항해기록장치(VDR)일 수 있다.
또한, 상기 해양 구조물 이 일시적 고정 구조물인 경우, 상기 룩업테이블 은 1년 단위의 시(時)계열적 데이터로 기록되며, 전년도까지의 축적된 1년 단위의 시(時)계열적 데이터와의 비교를 통해 상기 룩업테이블 을 수정할 수 있다.
또한, 상기 제4단계는, 러더 (rudder), 트러스터 (thruster), 추진용 프로펠러 , 돛 , 연 또는 풍선 중 적어도 어느 하나를 이용하여 해양 구조물 의 자세 또는 항해 경로를 실시간으로 제어할 수 있다.
또한, 상기 제4단계는, 상기 해양 구조물 이 선박인 경우, 상기 예측된 해양 구조물 의 반응에 대한 데이터에 따라, 추진력과 상기 내외력과의 합력이 목표하는 진행방향이 될 수 있도록 러더 의 방향을 제어할 수 있다.
또한, 상기 해양 구조물 이 일시적 고정 구조물인 경우, 상기 예측된 구조물의 반응에 대한 데이터에 따라, 상기 내외력과의 합력이 최소가 되어 현 위치를 유지하도록 트러스터 를 제어할 수 있다.
또한, 상기 해양 구조물 은, 헬리덱 (helideck)을 구비하되, 상기 제 4단계는, 상기 헬리덱 의 평형을 유지할 수 있도록 DP(Dynamic Positioning) 및 DM(Dynamic Motioning)을 통해 상기 해양 구조물 의 자세를 제어하고, 상기 헬리덱 의 평형 상태 정보를 상기 데이터베이스 에 저장할 수 있다. 그리고, 상기 해양 구조물 의 자세를 제어함에 따른 상기 헬리덱 의 평형 상태 정보를 상기 데이터베이스 에 저장하되, 상기 데이터베이스 는 통신부를 통하여 외부의 구조정보서버로 상기 헬리덱 의 평형 상태 정보를 송신하며, 상기 구조정보서버는 복수의 해양 구조물 중에서 헬기가 이착륙할 수 있는 헬리덱 의 평형 상태 정보를 보유한 해양 구조물 의 위치 정보를 헬기로 제공할 수 있다.
또한, 상기 제 2단계는 계측기기 에 의해 상기 해양 구조물 로부터 원거리의 풍향, 풍속, 기온, 습도, 기압, 태양복사선, 무기이온, 이산화탄소, 분진, 방사능 또는 오존 중 적어도 하나 이상을 계측하고 상기 데이터베이스 에 저장하는 제 2-1단계를 더 포함하되,
상기 계측기기 는 풍속계, 풍향계, 습도계, 온도계, 기압계, 일사계, 대기gassol 자동채취기, CO2flux측정장비, 대기분진채집기, air sampler 또는 오존분석기 중 적어도 어느 하나 이상인 것이 바람직하다.
또한, 상기 해양 구조물 은 발라스트 탱크 를 구비하며, 상기 발라스트 탱크 내부의 슬로싱 현상을 감소시키기 위하여, 상기 발라스트 탱크 의 양 측면 각각에 구비되는 슬로싱 억제부 를 포함할 수 있다. 그리고, 상기 슬로싱 억제부 는 상기 발라스트 탱크 의 일 수평 단면에 있어서 상기 단면의 개방 면적을 좁힘으로써 슬로싱 현상을 억제한다.
또한, 상기 제4단계는, 기울어진 방향의 반대쪽으로 상기 발라스트 탱크 에 적재된 발라스트 수(水)를 이동시켜 상기 해양 구조물 의 자세를 제어할 수 있다. 그리고, 상기 발라스트 탱크 는, 상기 발라스트 탱크 내부에 구획을 나누는 격벽 을 구비하며, 상기 격벽 에는 타 구획으로 상기 발라스트 수(水)를 이동시키기 위한 개폐부 를 설치하고, 상기 개폐부 의 내부에는 상기 발라스트 수의 이동 속도 및 이동 방향을 제어하는 펌프 가 설치될 수 있다.
또한, 상기 2단계에서의 내외력의 측정 데이터를 외부 기상정보서버에 전송하고, 상기 기상정보서버는 인공위성으로부터 수신된 기상정보를 상기 내외력의 측정 데이터와 비교 및 가공(Algorithm)하여 오차를 수정한 기상정보수정데이터를 저장할 수 있다.
또한, 상기 기상정보서버에 접속된 외부 사용자단말기의 요청에 따라, 상기 기상정보수정데이터를 상기 외부 사용자단말기에 제공할 수 있다.
한편, 전술한 목적을 달성하기 위한 본 발명의 또 다른 일 측면에 따르면, 수조 또는 풍동에서 선형 시험을 통하여 해양 구조물 외부 기체의 흐름이 해양 구조물 에 미치는 내외력에 대한 데이터 및 상기 내외력에 따른 상기 해양 구조물 의 반응에 대한 데이터를 축적하여 룩업테이블 을 생성하고 상기 룩업테이블 을 데이터베이스 에 저장하는 제 1단계, 해양 구조물 의 실제 항해에 있어서 비행시간법(Time-of-Flight Method)을 이용하여 상기 내외력을 측정하여 상기 데이터베이스 에 저장하는 제 2단계, 제 2단계의 내외력의 측정 데이터를 제 1단계의 룩업테이블 에 축적된 내외력에 대한 데이터와 비교하여, 해양 구조물 의 반응에 대한 데이터를 예측하는 제3단계, 실제 해양 구조물 의 반응을 측정하는 제3-1단계, 상기 제3-1단계에서 측정된 해양 구조물 의 반응에 대한 데이터와 제3단계에서 예측된 해양 구조물 의 반응에 대한 데이터를 비교하여, 그 차이가 발생된 경우 제3-1단계의 해양 구조물 의 반응에 대한 데이터로 제1단계에서 생성된 룩업테이블 에 있어서의 해양 구조물 의 반응에 대한 데이터를수정하는 제3-2단계 및 상기 룩업테이블 에 축적된 데이터를 가상의 시뮬레이션을 통하여 해양 구조물 에 대한 유지보수 데이터를 획득하는 제 4단계를 포함한다.
또한, 상기 해양 구조물 의 반응에 대한 데이터는, 스트레인, 변형, 균열, 진동, 주파수, 부식, 침식 중 적어도 어느 하나를 포함할 수 있다.
또한, 상기 제 4단계의 유지보수 데이터는, 상기 해양 구조물 에 구비된 개별 구조물의 미리 설정된 중요도에 따라 구별되어 획득될 수 있다.
또한, 상기 유지보수 데이터는, 유지보수가 필요한 위치정보, 유지보수 비용 정보, 유지보수 소요시간 정보 또는 구조물별 잔여수명 정보 중 적어도 어느 하나를 포함할 수 있다.
전술한 목적을 달성하기 위한 본 발명의 일 측면에 따르면, 수조 또는 풍동에서 선형 시험을 통하여 해양 구조물 외부 유체의 흐름이 상기 해양 구조물 에 미치는 내외력에 대한 데이터 및 상기 내외력에 따른 상기 해양 구조물 의 반응에 대한 데이터를 축적하여 룩업테이블 을 생성하고 상기 룩업테이블 을 데이터베이스 에 저장하는 제 1단계, 상기 해양 구조물 의 실제 항해에 있어서 비행시간법(Time-of-Flight Method)을 이용하여 상기 내외력을 측정하여 상기 데이터베이스 에 저장하는 제 2단계, 제 2단계의 내외력의 측정 데이터를 제 1단계의 룩업테이블 에 축적된 내외력에 대한 데이터와 비교하여, 해양 구조물 의 반응에 대한 데이터를 예측하는 제3단계, 상기 예측된 해양 구조물 의 반응에 대한 데이터를 이용하여 해양 구조물 의 자세 또는 항해 경로를 실시간으로 제어하는 제 4단계를 포함하는, 실시간 해양 구조물 에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법이 제공된다.
또한, 상기 제3단계는, 상기 해양 구조물 의 실제 반응을 측정하는 제3-1단계 및 상기 제3-1단계에서 측정된 해양 구조물 의 반응에 대한 데이터와 제3단계에서 예측된 해양 구조물 의 반응에 대한 데이터가 불일치하는 경우, 제3-1단계의 상기 해양 구조물 의 반응에 대한 데이터로 제1단계에서 생성된 룩업테이블 에 있어서의 해양 구조물 의 반응에 대한 데이터를 수정하는 3-2단계를 더 포함할 수 있다.
이 경우, 상기 해양 구조물 의 반응에 대한 데이터의 수정은, 유한요소법(FEA) 또는 Inverse Finite Element Method(iFEM)기반의 시뮬레이터에 의하여 이루어질 수 있다.
또한, 상기 제 2단계는, 상기 해양 부류체의 측면에 마련된 계측기기를 통하여 유체에 의한 내외력을 측정하되, 상기 계측기기는 전기식 센서 또는 광학 센서로 이루어질 수 있다.
또한, 상기 제 2단계는, IMU를 이용하여 유체의 흐름이 해양 구조물 에 미치는 내외력을 실제로 측정한다.
또한, 상기 제 2단계에서의 상기 해양 구조물 의 반응은, 상기 해양 구조물 이 선박인 경우 상기 선박의 진행방향, 전후좌우 기울기, 흘수 또는 트림 중 적어도 하나 이상을 포함할 수 있다.
또한, 상기 제 2단계에서 상기 해양 구조물 의 반응은, 상기 해양 구조물 이 일시적 고정 구조물인 경우 상기 구조물의 운용방향, 전후 좌우 기울기, 흘수 중 적어도 하나 이상을 포함할 수 있다.
또한, 상기 제 2단계는, 수심 별로 조류 및 해류의 공간 및 시간에 따른 방향과 속도를 측정할 수 있다.
또한, 상기 제 2단계는, 유체의 흐름에 의한 해양 구조물 의 고유주파수, 조화주파수 및 유체특성을 포함하는 데이터를 측정할 수 있다.
또한, 상기 제 1단계에서 상기 룩업테이블 이 저장되는 데이터베이스 는, 상기 해양 구조물 에 구비된 항해기록장치(VDR)일 수 있다.
또한, 상기 해양 구조물 이 일시적 고정 구조물인 경우, 상기 룩업테이블 은 1년 단위의 시(時)계열적 데이터로 기록되며, 전년도까지의 축적된 1년 단위의 시(時)계열적 데이터와의 비교를 통해 상기 룩업테이블 을 수정할 수 있다.
또한, 상기 제4단계는, 러더 (rudder), 트러스터 (thruster), 추진용 프로펠러 , 돛 , 연 또는 풍선 중 적어도 어느 하나를 이용하여 해양 구조물 의 자세 또는 항해 경로를 실시간으로 제어할 수 있다.
또한, 상기 제4단계는, 상기 해양 구조물 이 선박인 경우, 상기 예측된 해양 구조물 의 반응에 대한 데이터에 따라, 추진력과의 상기 내외력과의 합력이 목표하는 진행방향이 될 수 있도록 러더 의 방향 및 트러스터와 프로펠러의 RPM을 제어할 수 있다.
또한, 상기 해양 구조물 이 일시적 고정 구조물인 경우, 상기 예측된 구조물의 반응에 대한 데이터에 따라, 상기 내외력과의 합력이 최소가 되어 현 위치를 유지하도록 트러스터 를 제어할 수 있다.
또한, 상기 해양 구조물 은, 헬리덱 (helideck)을 구비하되, 상기 제 4단계는, 상기 헬리덱 의 평형을 유지할 수 있도록 DP(Dynamic Positioning) 및 DM(Dynamic Motioning)을 통해 상기 해양 구조물 의 자세를 제어하고, 상기 헬리덱 의 평형 상태 정보를 상기 데이터베이스 에 저장할 수 있다. 그리고, 상기 해양 구조물 의 자세를 제어함에 따른 상기 헬리덱 의 평형 상태 정보를 상기 데이터베이스 에 저장하되, 상기 데이터베이스 는 통신부를 통하여 외부의 구조정보서버로 상기 헬리덱 의 평형 상태 정보를 송신하며, 상기 구조정보서버는 복수의 해양 구조물 중에서 헬기가 이착륙할 수 있는 헬리덱 의 평형 상태 정보를 보유한 해양 구조물 의 위치 정보를 헬기로 제공할 수 있다.
또한, 상기 제 1단계 및 제 2단계에서, 상기 유체의 흐름이 해양 구조물 에 미치는 내외력에 대한 데이터는, 상기 해양 구조물 의 측면에 설치된 압력센서에 의해 측정되는, 해류 및 조류의 벡터에 대한 데이터일 수 있다.
또한, 상기 압력센서는 복수개로 구비되며, 상기 해양 구조물 의 측면에 일정 간격으로 설치될 수 있다.
또한, 상기 압력센서는 복수개로 구비되며, 상기 해양 구조물 의 측면에 높이 차이를 두어 설치될 수 있다. 그리고, 상기 압력센서로부터의 데이터 측정 유무를 분석하여, 가장 높은 곳에 위치한 압력센서로부터의 데이터를 통해 파고 데이터를 획득할 수 있다.
또한, 상기 복수 개의 압력센서 중 적어도 3개 이상의 압력센서를 하나의 3차원압력센서모듈로 형성하되, 상기 3차원압력센서모듈은 해류 및 조류의 3차원 벡터 정보를 획득한다.
또한, 상기 제 2단계는 기상측정장비 에 의해 상기 해양 구조물 로부터 원거리의 파랑, 파고, 파도의 주기, 파도의 속도 또는 파도의 방향 중 적어도 하나 이상을 계측하고 상기 데이터베이스 에 저장하는 제 2-1단계를 더 포함하되, 상기 기상측정장비 는 웨이브레이더(wave radar), directional waverider, sea level monitor, 초음파 조위계, 풍향풍속계 또는 초음파 파고계 중 적어도 어느 하나 이상으로 이루어질 수 있다.
또한, 상기 제 2단계는, 레이더(radar)에 의해 상기 해양 구조물 로부터 원거리의 파랑, 파고, 파도의 주기, 파도의 속도 또는 파도의 방향 중 적어도 하나 이상을 계측하고 상기 데이터베이스 에 저장하는 제 2-1단계를 더 포함할 수 있다.
또한, 상기 해양 구조물 은 발라스트 탱크 를 구비하며, 상기 발라스트 탱크 내부의 슬로싱 현상을 감소시키기 위하여, 상기 발라스트 탱크 의 양 측면 각각에 구비되는 슬로싱 억제부 를 포함할 수 있다. 그리고, 상기 슬로싱 억제부 는 상기 발라스트 탱크 의 일 수평 단면에 있어서 상기 단면의 개방 면적을 좁힘으로써 슬로싱 현상을 억제한다.
또한, 상기 제4단계는, 기울어진 방향의 반대쪽으로 상기 발라스트 탱크 에 적재된 발라스트 수(水)를 이동시켜 상기 해양 구조물 의 자세를 제어할 수 있다. 그리고, 상기 발라스트 탱크 는, 상기 발라스트 탱크 내부에 구획을 나누는 격벽 을 구비하며, 상기 격벽 에는 타 구획으로 상기 발라스트 수(水)를 이동시키기 위한 개폐부 를 설치하고, 상기 개폐부 의 내부에는 상기 발라스트 수의 이동 속도 및 이동 방향을 제어하는 펌프 가 설치될 수 있다.
또한, 상기 2단계에서의 내외력의 측정 데이터를 외부 기상정보서버에 전송하고, 상기 기상정보서버는 인공위성으로부터 수신된 기상정보를 상기 내외력의 측정 데이터와 비교 및 가공(Algorithm)하여 오차를 수정한 기상정보수정데이터를 저장할 수 있다.
또한, 상기 기상정보서버에 접속된 외부 사용자단말기의 요청에 따라, 상기 기상정보수정데이터를 상기 외부 사용자단말기에 제공할 수 있다.
한편, 전술한 목적을 달성하기 위한 본 발명의 또 다른 일 측면에 따르면, 수조 또는 풍동에서 선형 시험을 통하여 해양 구조물 외부 유체의 흐름이 해양 구조물 에 미치는 내외력에 대한 데이터 및 상기 내외력에 따른 상기 해양 구조물 의 반응에 대한 데이터를 축적하여 룩업테이블 을 생성하고 상기 룩업테이블 을 데이터베이스 에 저장하는 제 1단계, 해양 구조물 의 실제 항해에 있어서 비행시간법(Time-of-Flight Method)을 이용하여 상기 내외력을 측정하여 상기 데이터베이스 에 저장하는 제 2단계, 제 2단계의 내외력의 측정 데이터를 제 1단계의 룩업테이블 에 축적된 내외력에 대한 데이터와 비교하여, 해양 구조물 의 반응에 대한 데이터를 예측하는 제3단계, 실제 해양 구조물 의 반응을 측정하는 제3-1단계, 상기 제3-1단계에서 측정된 해양 구조물 의 반응에 대한 데이터와 제3단계에서 예측된 해양 구조물 의 반응에 대한 데이터를 비교하여, 그 차이가 발생된 경우 제3-1단계의 해양 구조물 의 반응에 대한 데이터로 제1단계에서 생성된 룩업테이블 에 있어서의 해양 구조물 의 반응에 대한 데이터를수정하는 제3-2단계 및 상기 룩업테이블 에 축적된 데이터를 가상의 시뮬레이션을 통하여 해양 구조물 에 대한 유지보수 데이터를 획득하는 제 4단계를 포함한다.
또한, 상기 해양 구조물 의 반응에 대한 데이터는, 스트레인, 변형, 균열, 진동, 주파수, 부식, 침식 중 적어도 어느 하나를 포함할 수 있다.
또한, 상기 제 4단계의 유지보수 데이터는, 상기 해양 구조물 에 구비된 개별 구조물의 미리 설정된 중요도에 따라 구별되어 획득될 수 있다.
또한, 상기 유지보수 데이터는, 유지보수가 필요한 위치정보, 유지보수 비용 정보, 유지보수 소요시간 정보 또는 구조물별 잔여수명 정보 중 적어도 어느 하나를 포함할 수 있다.
본 발명에 의하면, 광학센서 방식의 측정방법을 도입하여 해양 구조물의 물리적 변화를 실시간으로 정확하게 모니터링 할 수 있다.
또한, 본 발명에 의하면 광학센서 방식의 측정방법을 통하여 기존의 전기식 센서에 비하여 해양 구조물의 변화를 더욱 장기간 안정적으로 측정할 수 있고, 설치 및 운용이 간편한 모니터링 시스템 및 방법을 제공할 수 있다.
또한, 본 발명에 의하면 해양 구조물의 실시간 모니터링을 통하여 해양 구조물에 대한 즉각적인 유지, 보수가 가능하므로, 해양 구조물의 운용에 필요한 비용을 절감할 수 있다.
또한, 본 발명에 의하면 해양 구조물의 실시간 모니터링을 통하여 해양 구조물로부터 원유 누출과 같은 환경오염을 사전에 감지하고 예방할 수 있다.
본 발명에 따르면, 향해 또는 계류 중인 해양 구조물 의 기체역학적, 유체역학적 환경 내외력, 선체 응력, 6자유도운동 및 위치를 실시간 모니터링&제어함으로써 해양 구조물 의 항해 또는 계류 시 소모되는 연료를 효율적으로 절감할 수 있다.
또한, 기체역학적, 유체역학적 환경 내외력에 의하여 해양 부유물에 가해지는 전후좌우 기울기, 흘수, 트림 등의 변화를 측정하여, 상기 해양 부유물을 제어함을 통하여 안전한 운용을 가능하게 한다.
또한, 상기 해양 구조물에서 모니터링한 정보를 타인과 공유하여 기상정보의 정확성을 높일 수 있고, 인공위성에 의해 측정된 데이터를 검교정할 수 있는 ground true station으로 활용될 수 있는 환경을 제공할 수 있다.
또한, 상기 해양 구조물에서 모너터링한 정보를 축적하여 지구온난화 등에 의한 해수면 상승, 에너지 수지 변화 등 지구환경 연구에 기여할 수 있다.
또한, 해양 구조물에 설치된 헬리덱의 평형을 유지하여 해난사고 시 헬기로 신속히 구조할 수 있는 환경을 제공할 수 있다.
또한, 인공위성으로부터 수신된 기상정보를 상기 내외력의 측정 데이터와 비교하여 오차를 감소시켜 예보를 위한 기초자료로 제공으로 수산업에 기여할 수 있다.
또한, 해양 구조물에 가해지는 기체역학적, 유체역학적 환경 내외력에 의한 부식, 침식, 균열, 압력, 스트레스 등에 대응하여, 관련된 유지보수에 대한 정보를 제공함을 통하여 상기 해양 구조물의 수명을 연장시켜 장기간 운용할 수 있도록 한다.
또한, 고(高)파랑, 강풍속 등의 현장여건에 노출된 해양 구조물의 정적 또는 동적 특성을 분석함으로써 해양 구조물의 장기 안정성을 확보하기 위한 중장기 대책을 마련하는데 중요한 자료를 제공할 수 있다.
도 1은 본 발명의 실시예에 따른 해저의 파이프라인에 연결된 신장계 를 이용하여 기준점과 해양 구조물 상에 설정된 지점 사이의 거리 변화 측정 방법을 나타낸 도면이다.
도 2는 본 발명의 또 다른 실시예에 따른 신장계 의 구조를 나타낸 도면이다.
도 3은 본 발명의 또 다른 실시예에 따른 해양 구조물 상의 적어도 2개 이상의 지점을 상호 연결하는 광섬유 와이어 가 구비되어 상기 해양 구조물 의 길이변화를 측정하는 신장계 를 나타낸 도면이다.
도 4는 본 발명의 또 다른 실시예에 따른 신장계 가 삼각측정법을 이용하여 상기 해양 구조물 의 길이변화를 측정하는 방법을 나타낸 도면이다.
도 5는 본 발명의 또 다른 실시예에 따른 구조물 자동제어부 가 상기 제어 동작 정보에 따라 상기 해양 구조물 의 위치 또는 각도를 변화시키는 것을 나타낸 도면이다.
도 6은 본 발명 해양 구조물에 대한 기체역학적 및 유체역학적 환경 내외력에 대한 해양 구조물의 모니터링 및 제어함을 통한 연료절감 및 안전운용 방법에 대한 플로우 챠트이다.
도 7은 해양 구조물에 인가되는 기체역학 벡터를 나타낸 도면이다.
도 8은 본 발명의 실시예에 따라 해양 구조물에 인가되는 기체역학 벡터를 측정을 나타낸다.
도 9는 본 발명의 실시예에 따른 기체역학에 의한 내외력이 인가되는 경우 러더를 제어하여 연료절감 및 안전운용 방법을 나타낸 도면이다.
도 10 및 도 11은 본 발명의 또 다른 실시예에 따른 발라스트 탱크의 단면도와 발라스트 탱크에 구비된 격벽 및 상기 격벽의 구조를 나타낸 도면이다.
도 12는 본 발명의 또 다른 실시예에 따라 시뮬레이션을 통하여 해양 구조물에 대한 유지보수 데이터를 도식화한 것이다.
도 13은 해양 구조물(특히, 선박) 및 상기 해양 구조물에 설치된 헬리덱(helideck)을 나타낸 도면이다.
도 14는 본 발명의 실시예에 따라 해양 구조물에 압력센서가 설치된 상태를 나타낸 도면이다.
<부호의 설명>
100 : 해양 구조물 200 : 해양 구조물
300 : 신장계 301 : 와인딩부
302 : 감지부 303 : 자극부
304 : 광학센서 310 : 와이어
320 : 광섬유 와이어 400 : 구조물 자동제어부
410 : 결합수단 420 : 변위조절수단
500 : 발라스트 탱크 510 : 슬로싱 억제부
520 : 격벽 530 : 개폐부
540 : 펌프
본 발명의 목적과 기술적 구성 및 그에 따른 작용 효과에 관한 자세한 사항은 본 발명의 명세서에 첨부된 도면에 의거한 이하의 상세한 설명에 의해서 보다 명확하게 이해될 것이다. 첨부된 도면을 참조하여 본 발명에 따른 실시예를 상세하게 설명한다.
본 명세서에서 개시되는 실시예들은 본 발명의 범위를 한정하는 것으로 해석되거나 이용되지 않아야 할 것이다. 이 분야의 통상의 기술자에게 본 명세서의 실시예를 포함한 설명은 다양한 응용을 갖는다는 것이 당연하다. 따라서, 특허청구범위에 의해 한정되지 않는 이상, 임의의 실시예는 본 발명을 보다 잘 설명하기 위한 예시적인 것이며 본 발명의 범위가 실시예들로 한정되는 것을 의도하지 않는다.
본 발명에서 사용되는 해양 구조물이라는 용어는, 예를 들어, 잭 업 리그, 세미서브 리그, 자켓, 컴플라이언트 타워, TLP, 부체식 석유생산,저장,적출시설, 풍력발전기, 파력발전기 등을 의미하며, 또한 직간접적으로 연계된 복합구조물(예를 들어, non-subsea structure/Flare tower, Top-side, 접안하는 관계의 해양 구조물 들, Drill Rig, 유전에서 오일 및 가스 채취용 Production Casing, Risers, Flowline, Production line, mooring line, hawser line, Lowering line, ROV용 Tethering Cable line, 친환경 연료절감용 돗/세일의 구조 지지대 및 연결 케이블, 광섬유센서가 인입된 tentioner, 풍력발전기의 블래이드 및 타워, jacket, foundation과 인입하는 tensioner, 교량/사장교용 케이블, 해상, 해중 또는 해저구조물의 지지대/받침대 등의 구조물과 이러한 구조물용의 concrete tensioner 등 해상 또는 해저(submersible)의 모든 구조물을 포괄하는 광의의 용어임을 밝혀둔다. 또한, 해양 구조물은 Coupled Riser와 Un-coupled Riser를 포함하는 용어이다. Coupled Riser에는 Steel Catenary Riser(SCRs), Weight-Distributes SCRs, Steel Lazy Wave Risers(SLWRs), Flexible riser systems 등이 있으며, Un-coupled Riser에는 Single Hybrid Riser Tower, Grouped SLOR, Hybrid Riser Tower, Buoyancy Supported Risers (commonly known as BSR system) 등이 있다.
1. 수치산술모델 (Mathematical models)은 전산유체역학, 유한요소법(FEM), 유체구조연동해석, 유한차분법, 유한체적법, 또는 Inverse Finite Element Method (iFEM) 역유한요소법을 포함한다.
2. 전산유체역학(CFD)을 통해 Wind, Wave & Current Load을 산출한다.
3. FSI (Fluid Structure Interaction) & 상황인식용 룩업테이블; Wind, Wave & Current Load Response을 산출한다.
4. Artificial Intelligence (인공지능)부터 Self-Learning &, 예측 모니터링 & 예측 제어, DMS (Dynamic Motioning System)/DPS (Dynamic Positioning System)/EEOI (Energy Efficiency Operational Indicator)/EEDI (Energy Efficiency Design Index)를 달성한다.
4-0-a. DP 또는 DM Boundary, 본/복합 구조물들 중에 우선 대상 구조물들의 순위를 반영하여 피로 최소화 또는 DMS를 통해 헬기 이착륙, Separator, 액화공정의 안정화를 이룬다.
4-0-b. EEOI/EEDI 조건 충족 제어 시, 상기 본/복합 구조물들 중에 우선 대상 구조물들의 순위를 반영하여 피로 최소화 우선 순위를 결정하고, DPS, DMS 혹은 EEOI/의 control 효율이 가장 크게 되도록 운영 혹은 정량적인 EEDI를 계측한다.
4-1. 실시간 (Real Time) 또는 후처리 (Post-Processing)로 Calibrate Numerical Analysis with empirical data, to evolve and/or define the specific Algorithm (Artificial Intelligence) with NA (예, CFD/FEM/FSI.)를 달성한다.
4-2. 실시간 (Real Time) 또는 후처리 (Post-Processing) 로 diagonostic (예, 해양구조물의 모션크기와 주기 상계관계의 피로도, 변형/변위 또는 위치변화, 구조물자세로 생성된 인장과 누적되는 피로도)을 하면서 누적되는 결과를 기초로 prognostic한 해석을 한다.
4-3. 해양플랜트의 최적 운영 및 유지보수를 위한 예지보전 핵심기술 개발 내용을 참조하면, 상태 진단(diagnosis) 및 예지(prognosis)를 위한 실시간 대용량 센서 데이터 처리 및 분석한다.
본 명세서에서 사용되는 광학센서란, 광섬유를 지나가는 빛의 세기, 광섬유의 굴절률 및 길이, 모드, 그리고 편광상태의 변화 등을 이용하여 피측정량을 추정하는 센서를 의미하는 용어이다. 또한, 상기 광학센서 의 측정량으로는 온도, 압력, 스트레인, 회전율 등 다양하며 센서부에서 전기를 사용하지 않으며, 실리카 재질의 뛰어난 내부식성으로 사용 환경에 대한 제약이 거의 없다.
또한, 본 명세서에서 사용되는 광 브래그 격자란, 광섬유가 자외선에 일정 시간 노출되었을 때 노출된 정도에 따라 광 굴절률의 변화를 일으켜 생성된 일정한 굴절률 변화 패턴을 의미하는 용어이다. 또한, 광 브래그(Bragg) 격자는 굴절률의 변화 주기에 따라 특정한 파장의 빛을 선택적으로 반사 또는 제거하는 특성이 있으므로 이러한 특성을 이용하면, 광통신용 필터, 광 분산 보상기, 광섬유 레이저 등에 이용할 수 있다. 또한 외부의 인장력이나 온도 변화에 따른 광 선택성의 변화를 이용하여 광학센서 로도 폭넓게 응용되고 있다.
또한, 본 명세서에서 사용되는 신장계(extensometer)라는 용어는 일반적으로 표점 거리에 생긴 길이의 변화, 즉 신장을 정밀하게 측정하는 장치를 말하며, 경사계 (inclinometer)란 용어는 일반적으로 측정 대상물에 발생하는 각도 변화를 측정하는 장치를 말한다.
또한, 본 명세서에서 사용되는 수치해석(numerical analysis)이란, 구조물의 형태나 실제모형을 컴퓨터 프로그램 등을 이용 모델화 하여 실제로 거기에 적용되는 응력 등 여러 가지 변수들을 입력자료로 하고, 변위나 응력상태 등을 출력자료로 하여 적용모델의 변형거동을 수치적으로 규명하는 해석법을 의미하며, 전산유체역학, 유한요소해석(FEM), 유체-구조연동해석(FSI), 유한 차분법(FDM), 유한 체적법(FVM), IFEM(Inverse Finite Element Method) 등을 포괄하는 용어이다.
또한, 본 명세서에서 사용되는 유한요소해석법(FEM)은, 상기 유한요소해석법(FEM)은 연속체인 구조물을 1차원인 막대, 2차원인 삼각형이나 사각형, 3차원인 중실체(사면체, 6면체)의 유한 개의 요소로 분할하여 각기의 영역에 관하여 에너지원리를 기초로 하는 근사해법에 기하여 계산을 해나가는 수치계산방법을 의미하는 용어이다.
또한, 본 명세서에서 사용되는, 상기 전산유체역학(CFD)은 유체 또는 기체의 동적인 움직임을 컴퓨터를 이용해서 수치해석적 방법으로 계산해 내는 것을 의미하는 용어이다.
본 발명은, 광섬유를 이용하여 해양 구조물의 좌굴(buckling), 워킹(walking) 현상을 측정하고 이에 따라 해양 구조물 의 물리적 변화를 모니터링하는 시스템 및 방법으로, 해양 구조물 상의 각 설정된 위치에서 기준점으로부터의 거리 변화를 측정할 수 있는 신장계 (extensometer), 상기 해양 구조물 상의 각 설정된 위치에 설치되어 변화 방향을 측정할 수 있는 경사계(inclinometer) 또는 기준점의 변화를 감지할 수 있는 지진계 가 포함되는 복합광계측기기 를 이용한다. 또한, 온도계, 유량계(Flow meter), 압력계를 포함될 수 있다.
광섬유를 이용한 적어도 하나 이상의 광학센서를 이용하여, 상기 해양 구조물 의 거동 및 구조적 변화를 감지하는 복합광계측기기를 포함하는 해양 구조물 의 물리적 변화를 모니터링하는 시스템이 제공된다.
또한, 상기 복합광계측기기는 상기 해양 구조물 외부에 설정된 적어도 하나 이상의 기준점과 상기 해양 구조물 상에 설정된 지점 사이의 거리 변화를 상기 광학센서 를 이용하여 측정하는 신장계 를 포함하여 구성되며, 상기 광학센서 는, 상기 거리 변화로 인하여 광섬유에 인가되는 응력 변화에 대응하여 상기 광학센서 를 통과하는 광신호의 파장을 변화시킨다.
도 1을 참조하면, 상기 신장계는, 상기 기준점과 상기 해양 구조물 상에 설정된 지점 사이를 연결하는 적어도 하나 이상의 와이어 를 포함하여 구성된다. 상기 와이어 는, 철 63.5%에 니켈 36.5%를 첨가하여 열팽창계수가 작은 합금인 인바(invar)로 제작한 줄자로 제작할 수 있다. 인바선(invar wire)을 이용하여 외부 온도변화에 영향을 받지 않고 높은 정밀도의 거리측정에 이용되도록 한다.
또한, 도 2를 참조하면 상기 신장계는, 상기 와이어를 일정 장력으로 권취하는 와인딩부, 광학센서를 이용하여 상기 와인딩부의 회전수를 측정하는 감지부 를 더 포함할 수 있다. 또한, 상기 신장계는 상기 감지부로부터 측정된 회전수에 상응하여 주기적으로 상기 광학센서를 자극하는 자극부를 더 포함할 수 있다.
또한, 도 3을 참조하여 본 발명의 또 다른 실시예를 설명하면, 상기 복합광계측기기는 상기 해양 구조물 상의 적어도 1개 이상의 지점을 상호 연결하는 광섬유 와이어 가 구비되어 상기 해양 구조물의 길이변화를 측정하는 신장계를 포함한다. 상기 광섬유 와이어는 상기 해양 구조물 상의 거리 변화로 인하여 광학센서 에 인가되는 응력 변화에 대응하여 상기 광섬유를 통과하는 광신호의 파장을 변화시킨다.
또한, 도 4를 참조하여 본 발명의 또 다른 실시예를 설명하면, 상기 신장계 는, 상기 구조물 상의 동일한 지점에 적어도 1개 이상 설치되며, 광섬유로 이루어지는 와이어를 포함하여 구성되며, 상기 와이어는, 상기 해양 구조물 상의 거리 변화로 인하여 광섬유에 인가되는 응력 변화에 대응하여 상기 광섬유를 통과하는 광신호의 파장을 변화시킨다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 신장계는, 상기 삼각측정법을 이용하여 상기 와이어 각각의 인장 정도를 환산하여 상기 지점의 절대적인 위치 정보를 제공한다. 여기서 삼각측정법이란 삼각측량법이란 어떤 한 점의 좌표와 거리를 삼각형의 성질을 이용하여 알아내는 방법이다. 그 점과 두 기준점이 주어졌으면, 그 점과 두 기준점이 이루는 삼각형에서 밑변과 다른 두 변이 이루는 각을 각각 측정하고, 그 변의 길이를 측정한 뒤, 사인 법칙 등을 이용하여 일련의 계산을 수행함으로써, 그 점에 대해 좌표와 거리를 알아내는 방법이다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 복합광계측기기는 상기 해양 구조물 상의 복수 지점 간의 경사변화를 상기 광학센서를 이용하여 측정하는 경사계 를 포함한다. 또한, 상기 경사계는, 중력방향으로 설치된 무게추, 상기 무게추에 연결된 적어도 하나 이상의 광섬유로 이루어진 광학센서 를 포함하며, 상기 경사계 가 설치된 해양 구조물 상의 지점의 경사변화로 인하여, 상기 무게추에 의해 상기 광섬유에 인가되는 응력 변화에 대응하여 상기 광섬유를 통과하는 광신호의 파장을 변화시킨다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 복합광계측기기 는, 상기 기준점의 위치 변화를 측정하기 위한 지진계 를 더 포함할 수 있다. 또한, 상기 복합광계측기기 는, 상기 해양 구조물 의 진동을 측정하는 진동계 를 더 포함할 수 있다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 복합광계측기기로부터 광신호의 파장 변화를 감지하는 측정장치 를 더 포함할 수 있다. 상기 측정장치 로서 데이터 로거 또는 인터로게이터를 이용할 수 있다.
또한, 본 발명의 또 다른 실시예에 따르면, 복합광계측기기 는 OTDR(Optical Time-Domain Reflectometer), 라만스텍트럼법(Raman), 브릴루앙 산란(Brillouin scattering), 레일리파(Rayleigh wave), DAS(Distributed Acoustic Sensing), 음향방출법(Acoustic Emission), 간섭법(Interferometry) 중 적어도 어느 하나를 이용하여 목표로 하는 구조물의 변화를 감지한다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 측정장치 는, 파장을 제어할 수 있는 레이저가 구비된 광학부, 상기 광학부에 의해 반사된 광신호의 파장을 광학센서 별로 구별하는 광참조기, 상기 광참조기로부터 출력된 각 광학센서 의 광섬유 브래그 격자를 다수로 연결하고, 브래그 반사 파장을 채널별로 분배하는 광 결합기(optical coupler) 및 상기 광 결합기로부터 전달받은 브래그 반사 파장을 전기신호로 변환하는 포토다이오드(photo diode)를 포함하여 구성될 수 있다. 또한, 상기 측정장치 는 산란된 광신호를 취합하는 기능을 갖출 수 있다.
신장계 는 해양 구조물 의 설정된 위치 사이의 길이변화를 감지하여 해양 구조물 의 거동량을 측정하며, 경사계 는 해양 구조물 의 거동방향을 감지하여 각도변화를 측정한다. 측정된 결과는 유선 또는 무선방식의 전기, 전자, 소나(sonar) 또는 광학 방식 중 적어도 어느 하나를 이용하여 상기 측정장치 와 통신하여 전달된다.
수십m 내지 수백m의 거리에 걸쳐 거시적으로 발생하는 해저면의 수평 방향으로 발생하는 좌굴을 측정하기 위하여 다수의 신장계 와 경사계 를 구성하여 해양 구조물 의 물리적 변화를 모니터링 한다.
해저 기준점의 설치가 어려운 경우 90도 간격으로 신장계 를 설치하고, 경사계 를 이용하여 경사변화를 측정하여 해양 구조물 의 물리적 변화를 모니터링 한다.
상기 기준점으로부터 길이 변화를 측정할 수 있는 신장계와 각도 변화를 측정할 수 있는 경사계로 구성된다. 기준점에는 지반의 움직임을 측정할 수 있는 지진계 를 더 포함하여 설치될 수 있으며, 경사계 와 신장계 로부터 광신호를 전달받는 광학 방식의 측정장치 로 구성된다. 상기 측정장치 로부터의 출력은 해상 및 원격에서 확인할 수 있도록, 유선 또는 무선방식의 전기, 전자, 소나(sonar) 또는 광학 방식 중 적어도 어느 하나를 이용하여 전달된다. 또한, 복수개의 상기 신장계 또는 경사계 가 사용될 수 있다.
또한, 상기 기준점에는 지반의 움직임을 측정할 수 있는 지진계 를 더 포함하여 설치될 수 있으며, 경사계 와 신장계 로부터 광신호를 전달받는 광학 방식의 측정장치 로 구성된다. 상기 측정장치 로부터의 출력은 해상 및 원격에서 확인할 수 있도록, 유선 또는 무선방식의 전기, 전자, 소나(sonar) 또는 광학 방식 중 적어도 어느 하나를 이용하여 전달된다. 또한, 복수개의 상기 신장계 또는 경사계 가 사용될 수 있다.
한편, 본 발명의 실시예에 따른 해양 구조물 의 물리적 변화를 모니터링 하는 방법은, 해양 구조물 상 및/또는 기준점에 설치된 적어도 하나 이상의 복합광계측기기 를 이용하여, 상기 해양 구조물 의 거동 또는 구조적 변화에 따라 상기 광학센서 를 통과하는 광신호의 파장 및/또는 광량을 변화시키는 (a)단계, 상기 복합광계측기기 가 상기 파장 및/또는 광량이 변화된 상기 광신호를 상기 측정장치 로 전달하는 (b)단계, 측정장치 에 의해 상기 광신호의 파장 및/또는 광량 변화를 감지하는 (c)단계를 포함하며, 상기 복합광계측기기는 광섬유 브래그 격자를 이용한 적어도 하나 이상의 광학센서 를 포함한다.
또한, 도 1을 참조하여 본 발명의 또 다른 실시예를 설명하면, 상기 복합광계측기기는, 상기 해양 구조물 외부에 설정된 적어도 하나 이상의 기준점과 상기 해양 구조물 의 설정된 위치 사이의 거리 변화를 측정하는 신장계 로 이루어질 수 있다.
또한, 도 2를 참조하여 본 발명의 또 다른 실시예를 설명하면, 상기 신장계 는 상기 기준점과 상기 해양 구조물 상에 설정된 지점 사이를 연결하는 적어도 하나 이상의 와이어 , 상기 와이어 를 일정 장력으로 권취하는 와인딩부 , 광섬유를 이용하여 상기 와인딩부 의 회전수를 측정하는 감지부 및 상기 감지부 로부터 측정된 회전수에 상응하여 주기적으로 상기 광섬유를 자극하는 자극부 를 포함한다.
또한, 도 3을 참조하여 본 발명의 또 다른 실시예를 설명하면, 상기 신장계 는, 상기 해상 구조물 상의 적어도 1개 이상의 지점을 상호 연결하는 광섬유 와이어(320)가 구비되어 상기 해양 구조물 의 길이변화를 측정하며, 상기 광섬유 와이어(320)는, 상기 해양 구조물 상의 거리 변화로 인한 응력 변화에 대응하여 상기 광섬유를 통과하는 광신호의 파장을 변화시킨다.
또한, 도 4를 참조하여 본 발명의 또 다른 실시예를 설명하면, 상기 신장계 는, 상기 구조물 상의 동일한 지점에 적어도 1개 이상 연결되며, 광섬유로 이루어지는 와이어 를 포함하여 구성되며, 상기 와이어 는, 상기 해양 구조물 상의 거리 변화로 인하여 상기 광섬유에 인가되는 응력 변화에 대응하여 상기 광섬유를 통과하는 광신호의 파장을 변화시킨다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 신장계는, 상기 삼각측정법을 이용하여 상기 와이어 각각의 인장 정도를 환산하여 상기 지점의 절대적인 위치 정보를 제공한다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 복합광계측기기는 상기 해양 구조물 상의 복수 지점 간의 경사변화를 상기 광학센서 를 이용하여 측정하는 경사계 를 포함한다. 상기 경사계는, 중력방향으로 설치된 무게추와 상기 무게추에 연결된 광섬유를 포함하며, 상기 (a)단계는, 상기 해양 구조물 에 발생한 경사변화에 따라 상기 무게추가 상기 광섬유를 자극하여 응력 변화를 발생시키고, 발생 된 응력 변화를 광신호로 변환한다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 복합광계측기기는 상기 해양 구조물 외부에 설정된 적어도 하나 이상의 기준점의 위치 변화를 상기 광학센서 를 이용하여 측정하는 지진계 를 더 포함하여 구성된다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 복합광계측기기는, 상기 해양 구조물 의 진동을 측정하는 진동계 를 더 포함하는 것을 특징으로 하는
또한, 본 발명의 또 다른 실시예에 따르면, 상기 측정장치는, 데이터 로거 또는 인터로게이터를 이용할 수 있다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 측정장치는, 파장을 제어할 수 있는 레이저가 구비된 광학부, 상기 광학부에 의해 반사된 광신호의 파장을 광학센서 별로 구별하는 광참조기, 상기 광참조기로부터 출력된 각 광학센서 의 광섬유 브래그 격자를 다수로 연결하고, 브래그 반사 파장을 채널별로 분배하는 광 결합기(optical coupler) 및 상기 광 결합기로부터 전달받은 브래그 반사 파장을 전기신호로 변환하는 포토다이오드(photo diode)를 포함하여 구성될 수 있다.
한편, 전술한 목적을 달성하기 위한 해양 구조물 에 대한 물리적 변화의 실시간 모니터링을 통한 제어 방법에 따르면, 수조 또는 풍동에서 실험에 의한 해양 구조물 의 물리적 변화에 대한 데이터를 획득하고, 상기 획득된 데이터를 축적하여 룩업테이블(Lookup table)을 생성하는 (a)단계, 측정장치 로부터 출력된 해양 구조물 의 실제 물리적 변화에 대한 데이터를 획득하는 (b)단계, 상기 (b)단계에서 획득한 데이터를 상기(a)단계의 룩업테이블에 축적된 데이터와 비교하여, 해양 구조물 의 물리적 변화에 대한 예측데이터를 생성하는 (c)단계, 상기 예측데이터를 전달받은 3차원 수치해석(numerical analysis) 프로그램에 의하여 구조물 제어 동작정보, 유지보수가 필요한 위치정보, 유지보수비용정보, 유지보수소요시간 중 적어도 어느 하나를 포함하는 유지보수정보 및 해양 구조물 에서의 가스 누출, 화재 또는 폭발에 대한 경고정보를 생성하는 (d)단계를 포함하며, 상기 물리적 변화는, 상기 해양 구조물 상의 적어도 하나 이상의 지점에 대한 길이변화, 경사변화, 온도변화, 압력변화, 비체적변화 중 적어도 어느 하나를 포함한다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 (c)단계 이후에, 상기 예측데이터와 해양 구조물 의 실제 물리적 변화에 대한 데이터를 비교하여, 룩업테이블을 수정하는 (c-1)단계를 더 포함한다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기(d)단계 이후에, FSI프로그램(Fluid Structure Interaction)에 의해 상기 해양 구조물 제어정보를 시뮬레이터로 생성하고, 상황인식 미들웨어에 의해 상기 시뮬레이터를 상기 (b)단계에서 획득한 상기 해양 구조물 의 실제 물리적 변화량에 대한 데이터와 실시간으로 연동시켜, 상기 해양 구조물 을 자동으로 제어하는 알고리즘을 생성하는 단계를 더 포함할 수 있다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 (d)단계는, 3차원 수치해석(numerical analysis) 프로그램은 유한요소해석법(FEM) 및 전산유체역학(CFD)를 이용할 수 있다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 (d)단계는, 상기 3차원 수치해석(numerical analysis) 프로그램이, 상기 해양 구조물 의 거동 및 구조적 변화에 따라 발생할 수 있는 가스 누출/확산, 화재 또는 폭파 등의 가상상황 및 상기 가상상황에 따른 대응방안에 대한 데이터가 저장된 상황해석모듈과 연동되어, 유지보수정보를 생성할 수 있다.
또한, 도 5를 참조하여 본 발명의 또 다른 실시예를 설명하면, 구조물 자동제어부 가 상기 제어 동작 정보에 따라 상기 해양 구조물 의 위치 또는 각도를 변화시켜 제어하는 (e)단계를 더 포함하되, 상기 제어부는, 상기 해양 구조물 상의 적어도 하나의 지점에 연결되는 결합수단 및 상기 결합수단 과 연결되어 상기 해양 구조물 을 상하좌우로 이동시키는 변위조절수단 을 포함하여 구성될 수 있다. 상기 구조물 자동제어부 에 의하여 해양 구조물 의 거동 및 구조적 변화가 최소화될 수 있도록 조절할 수 있다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 경고정보는, 상기 측정장치 가 TDLAS(Tunable Diode Laser Absorption Spectroscopy), DTS(Distributed Temperature Sensing), DAS(Distributed Acoustic Sensing), FBG(Fiber Bragg Grating) 또는 RMLD(Remote Methane Leak Detector) 중 적어도 어느 하나를 이용하여 측정한 상기 해양 구조물 의 실제 물리적 변화에 대한 데이터를 이용하여 생성된다.
본 발명에서 사용되는 해양 구조물 라는 용어는, 예를 들어, 잭 업 리그, 세미서브 리그, 자켓, 컴플라이언트 타워, TLP, 부체식 석유생산,저장,적출시설, 풍력발전기, 파력발전기 등을 의미하며, 또한 직간접적으로 연계된 복합구조물(예를 들어, non-subsea structure/Flare tower, Top-side, 접안하는 관계의 해양 구조물 들, Drill Rig, 유전에서 오일 및 가스 채취용 Production Casing, Risers, Flowline, Production line, mooring line, hawser line, Lowering line, ROV용 Tethering Cable line, 친환경 연료절감용 돗/세일의 구조 지지대 및 연결 케이블, 광섬유센서가 인입된 tentioner, 풍력발전기의 블래이드 및 타워, jacket, foundation과 인입하는 tensioner, 교량/사장교용 케이블, 해상, 해중 또는 해저구조물의 지지대/받침대 등의 구조물과 이러한 구조물용의 concrete tensioner 등을 포괄하는 광의의 용어임을 밝혀둔다.
본 발명에서, 발라스트 탱크 는 선박에 화물을 적재하지 않은 채 공선(空船)으로 운용하는 경우 프로펠러 가 수면에 떠올라 그 효율이 떨어지거나 심한 손상을 입게 되는 등 안전항해에 큰 지장을 초래할 우려가 있으므로 이를 방지하여 선박이 일정한 흘수(吃水)를 유지할 수 있도록 하며, 선내에 화물이 불균형하게 적재된 경우 복원성을 잃지 않도록 하기 위한 것이다. 그리고, 일반적으로 바닷물(海水)을 밸러스트 탱크(Ballast Tank)에 채우는 Water Ballast를 사용하나 이로써 충분하지 않을 경우에는 모래 등을 적재하는 Solid Ballast가 사용된다.
본 발명에서, 외력(예를 들어, wind load, wave load, current load) 및 구조물의 반응(예를 들어, Displacement, Deformation, Motion, Vortex)을 측정하는 계측기기는 전기식 또는 광학 계측 방식을 이용하는 lidar, particle induced velocity(piv), particle tracking velocity(ptv), 스트레인 센서, 신장계, 가속도계, 경사계, 압력, flow meter, 온도계, 전류계, 음향방출검사, 지진감지 계측기, 유속, 분포온도센서, 분포스트레인센서, 거리분할 광손실 측정기(OTDR) 등을 포괄하는 광의의 용어임을 미리 밝혀둔다.
본 발명에서, 내력(예를 들어, Sloshing load, Flow load, Pressure load, Thermal load) 및 구조물의 반응(예를 들어, Displacement, Deformation, Motion, Walking, Buckling, Vortex)을 측정하는 계측기기는 전기식 센서 또는 광학 센서 방식을 이용하는 lidar, particle induced velocity(piv), particle tracking velocity(ptv), 스트레인센서, 가속도계, 전류계, 음향방출검사, 지진감지 계측기, 유속, 분포온도센서, 분포스트레인센서, 거리분할 광손실 측정기(OTDR) 등을 포괄하는 광의의 용어임을 미리 밝혀둔다.
또한, 본 발명의 또 다른 실시예에 따르면, 복합광계측기기 는 OTDR(Optical Time-Domain Reflectometer), 라만스텍트럼법(Raman), 브릴루앙 산란(Brillouin scattering), 레일리파(Rayleigh wave), DAS(Distributed Acoustic Sensing), 음향방출법(Acoustic Emission), 간섭법(Interferometry) 중 적어도 어느 하나를 이용하여 목표로 하는 구조물의 변화를 감지한다.
본 발명에서, 시간과 공간정보 및 형상 취득 기법은 RF & Microwave-GPS, DGPS, RTK, 광-Lidar, PIV, PIT, 간섭계 등을 이용하여 기체역학에 대한 데이터를 수집하는 방법을 포괄하는 광의의 용어임을 미리 밝혀둔다.
본 발명에서, IMU(inertial measurement unit)는 자이로, 광격자 등의 가속도 및 회전운동을 측정하는 기기를 포괄하는 광의의 용어임을 미리 밝여둔다. 또한, 자이로는 축대칭인 고속회전체의 관성공간에서의 방향측정이나 관성공간에 대한 회전각속도의 측정에 사용되는 기구로서, 항공기나 선박, 미사일 등의 방향과 평형성(기울기)을 측정하는데 사용되며 야간 운용 중인 항공기 및 선박의 방향과 평형성을 일정하게 유지할수 있도록 한다.
또한, 상기 시간과 공간정보 및 형상 취득 기법과 IMU를 상기 해양 구조물 의 6자유도 운동, 반응자세, 위치 측정 및 데이터베이스 와 연동시켜 인공지능의 EEOI/EEDI/DMS/DPS용 모니터링, 경고시스템, 자동제어시스템을 활용하여 자세제어를 수행한다.
본 발명을 설명하기에 앞서, 본 발명에서 사용하는 용어인 수치산술모델(Mathmatical models)은 유한요소법(FEM), 기체구조연동해석, 유한차분법, 유한체적법, IFEM(Inverse Finite Element Method) 등에 의한 해석 프로그램을 포괄하는 광의의 용어임을 미리 밝혀둔다. 여기서 유한요소법(FEM)은 연속체인 구조물을 1차원인 막대, 2차원인 삼각형이나 사각형, 3차원인 중실체(사면체, 6면체)의 유한 개의 요소로 분할하여 각기의 영역에 관하여 에너지원리를 기초로 하는 근사해법에 기하여 계산을 해나가는 수치계산방법이다.
본 발명에서, 상황인식 미들웨어는 USN 센서와 같은 센서에서 입력된 상황정보를 에이전트가 미들웨어 전용 패킷으로 변환하여 상황인식 미들웨어로 전송하면 미들웨어는 이를 수신하여 기능별로 분류된 각 모듈에서 처리하고 그 결과를 사용자 프로그램으로 전송하여 모니터링 및 제어할 수 있는 프로그램 상황정보를 미들웨어 전용 패킷으로 변환하는 에이전트를 통하여 모든 종류의 센서 정보를 수집하거나 모든 장비를 제어한다. 미들웨어는 각 기능별(통지, 처리, 저장, 로그, 제어, IO, 외부 응용)로 모듈화되어 있으며, 모듈간 데이터 연동을 XML로 정의된 미들웨어 메시지를 이용하므로 모듈간 독립성이 확보되어 기능 수정 및 추가 기능 등을 포괄하는 광의의 용어임을 미리 밝혀둔다.
본 발명에서 웹기반 상황인식 모니터링 프로그램은 상황인식 미들웨어를 이용하여 상황정보를 모니터링하는 프로그램이며, 웹 기반으로 제작되어 플래쉬가 정상적으로 동작하는 시스템에서 사용 가능하다. 실시간 모니터링(그래프 표현, 차트표현 가능), 10분 평균 조회과거 데이터 조회(기간별, 센서별), 센서별 임계치 설정 후 임계치 초과시 경고, 일부 센서를 위한 외부프로그램 호출 및 결과 모니터링 기능을 수행하는 프로그램을 포괄하는 광의의 용어임을 미리 밝혀둔다.
본 발명은, 전기식 또는 광학방식의 계측기기 들을 통합하여 상기 해양 구조물 의 부하, 스트레인, 변형, 변위, 피로, 균열, 진동 또는 주파수 등을 측정한다.
기체의 흐름이 선체에 미치는 힘은 시간에 따른 3차원에서의 속도와 방향에 의한 것이며, x, y, z축 및 입사각의 x, y, z축에 의한 반응이 각각 다르다.
도 6 및 도 7을 참조하면 본 발명의 실시예에 따른 실시간 해양 구조물에 대한 기체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 제어함을 통한 연료절감, 안전운용 방법은, 수조 또는 풍동에서 선형 시험을 통하여 해양 구조물 외부 기체의 흐름이 해양 구조물 에 미치는 내외력에 대한 데이터 및 상기 내외력에 따른 해양 구조물 의 반응에 대한 데이터를 축적하여 룩업테이블 을 생성하고 상기 룩업테이블 을 데이터베이스 에 저장하는 제 1단계, 계측기기 가 해양 구조물 의 실제 항해에 있어서 비행시간법(Time-of-Flight Method)을 이용하여 상기 내외력을 측정하여 데이터베이스 에 저장하는 제 2단계, 제 2단계의 내외력의 측정 데이터를 제 1단계의 룩업테이블 에 축적된 내외력에 대한 데이터와 비교하여, 해양 구조물 의 반응에 대한 데이터를 예측하는 제3단계, 상기 예측된 해양 구조물의 반응에 대한 데이터를 이용하여 해양 구조물의 자세 또는 항해 경로를 실시간으로 제어하는 제 4단계를 포함하는, 실시간 해양 구조물 에 대한 기체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법이 제공된다.
수조 또는 풍동에서 선형 시험을 통하여 흘수 및 트림의 변화에 의한 선체저항(hull resistance)을 측정하고 6자유도 운동에 의한 영향을 감안하여 추후 선박에 인가될 기체역학 에너지를 레이더, 압력센서, 스트레인센서, 가속도계 등을 이용하여 측정한다. 이 경우, 고도별로 기체의 방향과 속도를 공간 및 시간에 따라 측정한다.
또한, 상기 단계에 따라, 수치산술모델과 실제 측정 데이터를 연동하여 자동제어를 진행한다. 선체에 인가될 기체역학 에너지의 방향과 속도를 미리 측정하고 선체에 반영하여 기체역학 반응 모델 테스트를 활용하여 해양 구조물 의 반응을 예측하고 실제 측정된 데이터와 비교하여, 룩업테이블 의 수정을 통해 최적화된 기체역학 반응 모델을 개발하고, 이를 통해 자세제어 또는 항해 경로를 결정하는 것을 특징으로 한다.
또한, 상기 제3단계는, 상기 해양 구조물 의 실제 반응을 측정하는 제3-1단계 및 상기 제3-1단계에서 측정된 해양 구조물 의 반응에 대한 데이터와 제3단계에서 예측된 해양 구조물 의 반응에 대한 데이터가 불일치하는 경우, 제3-1단계의 해양 구조물 의 반응에 대한 데이터로 제1단계에서 생성된 룩업테이블 에 있어서의 해양 구조물 의 반응에 대한 데이터를 수정 또는 이데이터의 수정수치를 반영하여 수치모델 (CFD &/or FEM)을 수정/보완하는 3-2단계를 더 포함할 수 있다.
이경우, 상기 해양 구조물의 반응에 대한 데이터의 수정은, 유한요소법(FEA) 또는 Inverse Finite Element Method(iFEM)기반의 시뮬레이션에 의하여 이루어질 수 있다.
계측기기 에서 측정된 데이터는 전산유체역학(CFD)의 입력 조건을 최대로 하여, 해양 구조물 의 거동 및 6자유도 운동, 각종 물리량들의 상관관계를 분석한다. 상기 상황인식 미들웨어에서의 산술추치모델의 결과와 실제 측정 데이터를 연동하여 알고리즘 및 시뮬레이션을 구축한다. 상기 상황인식 미들웨어 및 웹기반 상황인식 모니터링 프로그램을 통해 웹기반 시스템을 구축하여 단순한 모니터링 이외에도 인공지능의 모니터링 및 예측 제어시스템을 구현한다.
도 8을 참조하면 상기 제 2단계는, 상기 해양 부류체에 구비된 계측기기를 통하여 기체에 의한 내외력을 측정하되, 상기 계측기기는 전기식 센서 또는 광학 센서로 이루어질 수 있다. 그리고, 상기 계측기기는 풍향, 풍속, 기압, 기온, 습도 및 분진을 고도별로 측정한다.
또한, 상기 제 2단계는, IMU를 이용하여 기체의 흐름이 해양 구조물 에 미치는 내외력을 실제로 측정한다.
또한, 상기 제 2단계에서의 상기 해양 구조물의 반응은, 상기 해양 구조물 이 선박인 경우 상기 선박의 진행방향, 전후좌우 기울기, 흘수 또는 트림 중 적어도 하나 이상을 포함할 수 있다.
또한, 상기 제 2단계에서 상기 해양 구조물의 반응은, 상기 해양 구조물 이 일시적 고정 구조물인 경우 상기 구조물의 이동방향, 전후 좌우 기울기, 흘수 중 적어도 하나 이상을 포함할 수 있다.
또한, 상기 제 2단계는, 기체의 흐름에 의한 해양 구조물의 고유주파수, 조화주파수 및 기체특성을 포함하는 데이터를 측정할 수 있다.
또한, 상기 제 1단계에서 상기 룩업테이블 이 저장되는 데이터베이스는, 해양 구조물 에 구비된 항해기록장치(VDR)일 수 있다.
또한, 계류라인(mooring line), 친환경 연료절감형 돛 의 지지대 및 연결 케이블(sail line)에 전기식 또는 광학방식의 센서를 부착하여 기체역학의 복합 에너지(coupled energy)에 의한 변화를 모니터링 할 수 있다.
하역(Off-Loading) 또는 접안 시에도, 호저(Hawser) 와 선적호스(Loading Hose)에 광섬유 또는 전기식 스트레인 센서를 인입하여 계측되는 응력과 기체역학적 환경 내외력에 의해 상기 해양 구조물 에 발생하는 6자유도 운동(Heading, Sway, Heave, Rolling, Pitching, Yawing motion)에 대한 측정 데이터를 구조해석과 연동하고, 상황판단의 우선순위 또는 중요도를 감안한 Off-Loading 라인의 실시간 제어 또는 예측 제어를 통하여 기체역학에 의해 인가되는 힘(Pipe line, Pump, 인입형 텐셔너, 라이저, 계류라인, 하우저, Off-Loading 라인의 관성 및 탄성)을 최소화 한다.
그리고 상기 데이터베이스 에 저장된 데이터는 실시간 상황인식, 과거기록의 상황재현 및 경우의 수에 대비한 상황예측을 구현하기 위해 기준 데이터로 활용할 수 있다. 또한 상기 저장된 데이터는 가상 시뮬레이션을 통하여 구조 진단 및 작업 평가 기능을 수행하는데 이용할 수 있다.
또한, 상기 해양 구조물 이 일시적 고정 구조물인 경우, 상기 룩업테이블 은 1년 단위의 시(時)계열적 데이터로 기록되며, 전년도까지의 축적된 1년 단위의 시(時)계열적 데이터와의 비교를 통해 상기 룩업테이블 을 수정할 수 있다. 이를 통하여 오차를 자동적으로 감소시킬 수 있다.
또한, 상기 제4단계는, 러더 (rudder), 트러스터 (thruster), 추진용 프로펠러 , 돛 , 연 또는 풍선 중 적어도 어느 하나를 이용하여 해양 구조물 의 자세 또는 항해 경로를 실시간으로 제어할 수 있다. 즉, 6자유도 운동이 최소화 될 수 있도록 러더 등에 대한 제어를 수행하고, 항해 중인 해양 구조물 의 경우 기체역학에 의한 힘을 보상하기 위해 러더 의 방향을 제어하여 최적화된 경로로 운용 가능하게 한다.
한편, 상기 해양 구조물 운용 중인 경우, 롤링(rolling)에 의하여 해양 구조물 이 전복되거나 운송물이 낙하할 위험이 있다. 이 경우, 해양 구조물 의 아래쪽에 키를 적어도 하나 이상을 설치하면 키에 의한 마찰에 의해 롤링을 감소시킬 수 있다.
도 9를 참조하여 본 발명의 또 다른 실시예를 설명하면, 상기 제4단계는 상기 해양 구조물 이 선박인 경우, 상기 예측된 해양 구조물 의 반응에 대한 데이터에 따라, 추진력과 상기 내외력과의 합력이 목표하는 진행방향이 될 수 있도록 러더 의 방향 및 트러스터와 프로펠러의 RPM을 제어할 수 있다. 예를 들어, 기체역학에 의해 선박에 인가되는 내외력에 대하여 선박에 구비된 러더 (rudder)를 제어하지 않는 경우보다 러더 를 제어하는 경우에 목표지점까지의 이동거리가 단축됨을 도 9를 통하여 확인할 수 있다.
또한, 상기 해양 구조물 이 일시적 고정 구조물인 경우, 상기 예측된 구조물의 반응에 대한 데이터에 따라, 상기 내외력과의 합력이 최소가 되어 현 위치를 유지하도록 트러스터 를 제어할 수 있다.
도 13을 참조하면 상기 해양 구조물 은, 헬리덱 (helideck)을 구비하되, 상기 제 4단계는, 상기 헬리덱의 평형을 유지 또는 헬기 이착륙시 충격을 완화할 수 있도록 DP(Dynamic Positioning) 및 DM(Dynamic Motioning)을 통해 상기 해양 구조물의 자세를 제어하거나, 6자유도의 각도를 조절하여 상기 해양 구조물의 무게 중심을 변화시키고, 상기 헬리덱 의 평형 상태 정보를 상기 데이터베이스 에 저장할 수 있다.
그리고, 상기 해양 구조물 의 자세를 제어함에 따른 상기 헬리덱 의 평형 상태 정보를 상기 데이터베이스 에 저장하되, 상기 데이터베이스 는 통신부를 통하여 외부의 구조정보서버로 상기 헬리덱 의 평형 상태 정보를 송신하며, 상기 구조정보서버는 복수의 해양 구조물 중에서 헬기가 이착륙할 수 있는 헬리덱 의 평형 상태 정보를 보유한 해양 구조물 의 위치 정보를 헬기로 제공할 수 있다. 또한, 해양 구조물 의 작업 목적 기능(헬기 이착륙, Separator, 액화공정 등)에 맞춰 평형을 유지할 수 있도록 트림(trim) 등의 6자유도의 각도를 조절하여 상기 해양 구조물 의 무게 중심을 변화 시킬 수 있고, 평형 상태를 유지시킬 수 있고, 또는 충격을 완화한다. 특히, 헬기 이착륙시 해양구조물 또는 헬리덱과 헬기의 지지구조기능과의 충격을 완화한다.
또한, 상기 제 2단계는 계측기기 에 의해 상기 해양 구조물 로부터 원거리의 풍향, 풍속, 기온, 습도, 기압, 태양복사선, 무기이온, 이산화탄소, 분진, 방사능 또는 오존 중 적어도 하나 이상을 계측하고 상기 데이터베이스 에 저장하는 제 2-1단계를 더 포함하되
상기 계측기기 는 풍속계, 풍향계, 습도계, 온도계, 기압계, 일사계, 대기gassol 자동채취기, CO2flux측정장비, 대기분진채집기, air sampler 또는 오존분석기 중 적어도 어느 하나 이상인 것이 바람직하다.
또한, IMU, 시간과 공간정보 및 형상 취득 기법, X-band/S-band를 감지할 수 있는 레이더를 이용하여 위험물과의 충돌 방지뿐만 아니라 풍향, 풍속, 기압, 기온을 예측하고, IMU를 1개 이상 이용하여 상기 해양 구조물 의 6자유도 운동 뿐만 아니라 호깅(hogging), 새깅(sagging), 비틀림(tortion)까지 측정하고, 시간과 공간정보 취득 기법을 이용하여 상기 해양 구조물 의 이동 거리 및 좌표 계측 위성의 환경내외력 데이터를 레이더 및 IMU 데이터와 연동하여 해양 구조물 의 피로를 최소화 한다.
또한, 상기 웨이브 레이터의 Polar 이미지 수집은 32개로 한정되지 않으며, 실시간 동적 이미지 프로세싱을 하기 위해서 새로운 Polar 이미지를 받는 동시에 첫번째 또는 가장 오래된 Polar 이미지를 삭제하여 실시간 동적 이미지 프로세싱을 한다. 이를 통하여, 실시간으로 위험물과의 충돌 방지, 풍속, 풍향, 기압, 기온을 예측할 수 있다. 또한, RF 1x2 Splitter 또는 RF 증폭기를 활용하여 기존의 X-band 또는 S-band 충돌방지용 레이더를 이용한다. 또한, 웨이브레이터의 측정 데이터에 대하여 6자유도 운동에 의한 영향을 보상하고, Time of Flight method, 영상이음(image overlay) 방식을 이용한다.
도 10을 참조하면, 상기 해양 구조물은 발라스트 탱크를 구비하며 상기 발라스트 탱크 내부의 슬로싱 현상을 감소시키기 위하여, 상기 발라스트 탱크 의 양 측면 각각에 구비되는 슬로싱 억제부 를 포함할 수 있다. 그리고, 상기 슬로싱 억제부 는 상기 발라스트 탱크 의 일 수평 단면에 있어서 상기 단면의 개방 면적을 좁힘으로써 슬로싱 현상을 억제한다.
또한, 도 11을 참조하면 상기 제4단계는 기체역학에 의한 내외력의 영향으로 상기 해양 구조물 에 기울기가 발생한 경우, 기울어진 방향의 반대쪽으로 상기 발라스트 탱크 에 적재된 발라스트 수(水)를 이동시켜 상기 해양 구조물 의 자세를 제어할 수 있다. 그리고, 상기 발라스트 탱크 는, 상기 발라스트 탱크 는, 상기 발라스트 탱크 내부에 구획을 나누는 격벽 을 구비하며, 상기 격벽 에는 타 구획으로 상기 발라스트 수(水)를 이동시키기 위한 개폐부 를 설치하고, 상기 개폐부 의 내부에는 상기 발라스트 수의 이동 속도 및 이동 방향을 제어하는 펌프 가 설치될 수 있다. 또한, 상기 발라스트 탱크 와 수위계(water gauge)를 연결하여 상기 발라스트 탱크의 수위를 모니터링하고 피드백(feed back) 및/또는 피드포워드(feed forward)를 통해 액티브 제어(active control)를 할 수 있다.
또한, 상기 2단계에서의 내외력의 측정 데이터를 외부 기상정보서버에 전송하고, 상기 기상정보서버는 인공위성으로부터 수신된 기상정보를 상기 내외력의 측정 데이터와 비교하여 오차를 수정한 기상정보수정데이터를 저장할 수 있다.
또한, 상기 기상정보서버에 접속된 외부 사용자단말기의 요청에 따라, 상기 기상정보수정데이터를 상기 외부 사용자단말기에 제공할 수 있다.
한편, 전술한 목적을 달성하기 위한 본 발명의 또 다른 일 측면에 따르면, 수조 또는 풍동에서 선형 시험을 통하여 해양 구조물 외부 기체의 흐름이 해양 구조물 에 미치는 내외력에 대한 데이터 및 상기 내외력에 따른 해양 구조물 의 반응에 대한 데이터를 축적하여 룩업테이블 을 생성하는 제 1단계, 해양 구조물 의 실제 항해에 있어서 비행시간법(Time-of-Flight Method)을 이용하여 상기 내외력을 측정하는 제 2단계, 제2단계의 내외력의 측정 데이터를 제 1단계의 룩업테이블 에 축적된 내외력에 대한 데이터와 비교하여 해양 구조물 의 반응에 대한 데이터를 예측하는 제 3단계, 실제 해양 구조물 의 반응을 측정하는 제3-1단계, 상기 제3-1단계에서 측정된 해양 구조물 의 반응에 대한 데이터와 제3단계에서 예측된 해양 구조물 의 반응에 대한 데이터를 비교하여, 그 차이가 발생된 경우 제3-1단계의 해양 구조물 의 반응에 대한 데이터로 제1단계에서 생성된 룩업테이블 에 있어서의 해양 구조물 의 반응에 대한 데이터를수정하는 제3-2단계 및 상기 룩업테이블 에 축적된 데이터를 가상의 시뮬레이션을 통하여 해양 구조물 에 대한 유지보수 데이터를 획득하는 제 4단계 및 상기 가상의 시뮬레이션의 실계측 데이터를 반영하여, 상기 가상 시뮬레이션의 결과인 반응결과수치를 실시간 해양 구조물의 반응 실계측 수치와 비교하고, 상기 해양 구조물의 반응에 대한 데이터를 수정하거나 상기 수정된 데이터를 반영하여 수치모델을 수정 및 보완하는 제 5단계가 포함된다.
도 12를 참조하면, 본 발명의 실시예에 따라 상기 유지보수 데이터가 시뮬레이션을 통하여 획득된 내용을 확인할 수 있다. 예를 들어, 유지보수 데이터는 상기 해양 구조물 에 구비된 개별 구조물의 중요도 순서로 각각에 대한 위치정보, 유지보수 비용 정보, 유지보수 소요시간 정보, 잔여수명 정보 등을 포함하여 출력될 수 있다.
또한, 상기 제 4단계 이후에, FSI프로그램(Fluid Structure Interaction)에 의해 상기 해양 구조물 제어정보를 시뮬레이터로 생성하고, 상황인식 미들웨어에 의해 상기 시뮬레이터를 상기 제3-1단계에서 획득한 상기 해양 구조물의 실제 반응에 대한 데이터와 실시간으로 연동시켜, 상기 해양 구조물을 자동으로 제어하는 알고리즘을 생성하는 단계를 더 포함할 수 있다.
그리고, 상기 제 4단계는, 유한요소해석법(FEM) 및 전산유체역학(CFD)를 이용한 3차원 수치해석(numerical analysis)프로그램이, 상기 해양 구조물의 거동 및 구조적 변화에 따라 발생할 수 있는 가스 누출, 가스 확산, 화재 또는 폭파 등의 가상상황 및 상기 가상상황에 따른 대응방안에 대한 데이터가 저장된 상황해석모듈과 연동되어 유지보수정보를 생성
또한, 상기 해양 구조물의 반응에 대한 데이터는, 스트레인, 변형, 균열, 진동, 주파수, 부식, 침식 중 적어도 어느 하나를 포함할 수 있다. 상기 주파수는 고유주파수(natural frequency), 조화주파수(harmonic frequency)를 포함하며, 구조해석 방식과 연동하여 상기 해양 구조물 에 가해지는 주파수를 회피하여 피로를 최소화하고 수명 연장을 위한 데이터로 활용된다.
또한, 상기 제 4단계의 유지보수 데이터는, 상기 해양 구조물 에 구비된 개별 구조물의 미리 설정된 중요도에 따라 구별되어 획득될 수 있다.
DP 또는 DM Boundary 조건을 충족하여 제어 시, 상기 해양 구조물 에 구비된 개별 구조물들에 대하여 피로 최소화에 대한 우선 순위를 결정하고, EEOI/EEDI/DMS/DPS의 효율이 적절히 크게 되도록 긴급, 시급, 우선 등의 순위로 운영할 수 있다.
또한, 상기 유지보수 데이터는, 유지보수가 필요한 위치정보, 유지보수 비용 정보, 유지보수 소요시간 정보 또는 구조물별 잔여수명 정보 중 적어도 어느 하나를 포함할 수 있다.
상기 측정된 슬래밍에 의한 해양 구조물의 반응과 슬로싱에 의한 발라스트 탱크 를 포함하는 저장탱크의 반응에 대한 데이터는 수치산술모델(mathmatical models)과 연동하여 최적화&인공지능 알고리즘을 얻어내고, 그 결과가 룩업테이블 형태로 항해기록장치(VDR) 또는 별도의 서버에 저장되어 해양 구조물 의 자세를 제어하여 손상을 최소화 한다. 또한 상기 저장된 데이터는 실시간 상황인식, 과거기록의 상황재현, 경우의 수에 대한 상황예측을 구현하기 위해 필요한 상황인식용 기준 데이터(reference data)로 활용한다. 또한, 저장된 데이터를 이용하여 가상의 시뮬레이션을 통하여 구조 진단 및 작업 평가 기능을 수행할 수 있다.
상기 알고리즘 또는 시뮬레이터에 실제 측정 데이터의 지속적으로 반영 및 룩업테이블 의 수정을 통하여 최적화된 예측 시뮬레이터를 구현한다. Risers(SCR, TTR, Tendon)/ROV/Drill rig등을 포함하는 해양 구조물 에 상기 알고리즘 또는 시뮬레이터를 반영하여 자동학습 기법을 활용한 자동화를 구현할 수 있다.
도 6을 참조하면, 본 발명의 실시예에 따른 실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치를 예측 모니터링 및 제어함을 통한 연료절감, 안전운용 방법은, 수조 또는 풍동에서 선형 시험을 통하여 해양 구조물 외부 유체의 흐름이 해양 구조물 에 미치는 내외력에 대한 데이터 및 상기 내외력에 따른 해양 구조물 의 반응에 대한 데이터를 축적하여 룩업테이블 을 생성하고 상기 룩업테이블 을 데이터베이스 에 저장하는 제 1단계, 계측기기가 해양 구조물 의 실제 항해에 있어서 비행시간법(Time-of-Flight Method)을 이용하여 상기 내외력을 측정하여 데이터베이스 에 저장하는 제 2단계, 제 2단계의 내외력의 측정 데이터를 제 1단계의 룩업테이블 에 축적된 내외력에 대한 데이터와 비교하여, 해양 구조물 의 반응에 대한 데이터를 예측하는 제3단계, 상기 예측된 해양 구조물 의 반응에 대한 데이터를 이용하여 해양 구조물 의 자세 또는 항해 경로를 실시간으로 제어하는 제 4단계를 포함하는, 실시간 해양 구조물 에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법이 제공된다.
수조 또는 풍동에서 선형 시험을 통하여 흘수 및 트림의 변화에 의한 선체저항(hull resistance)을 측정하고 6자유도 운동에 의한 영향을 감안하여 추후 선박에 인가될 유체역학 에너지를 압력센서, 스트레인센서, 가속도계 등을 이용하여 측정한다. 이 경우, 높이별로 해류 및 조류의 방향과 속도를 공간 및 시간에 따라 측정한다.
또한, 상기 단계에 따라, 수치산술모델과 실제 측정 데이터를 연동하여 자동제어를 진행한다. 선체에 인가될 유체역학 에너지의 방향과 속도를 미리 측정하고 선체에 반영하여 유체역학 반응 모델 테스트를 활용하여 해양 구조물의 반응을 예측하고 실제 측정된 데이터와 비교하여, 룩업테이블의 수정을 통해 최적화된 유체역학 반응 모델을 개발하고 , 이를 통해 자세제어 또는 항해 경로를 결정하는 것을 특징으로 한다.
또한, 상기 제3단계는, 상기 해양 구조물의 실제 반응을 측정하는 제3-1단계 및 상기 제3-1단계에서 측정된 해양 구조물의 반응에 대한 데이터와 제3단계에서 예측된 해양 구조물 의 반응에 대한 데이터가 불일치하는 경우, 제3-1단계의 해양 구조물 의 반응에 대한 데이터로 제1단계에서 생성된 룩업테이블 에 있어서의 해양 구조물 의 반응에 대한 데이터를 수정하는 3-2단계를 더 포함할 수 있다.
이경우, 상기 해양 구조물 의 반응에 대한 데이터의 수정은, 유한요소법(FEA) 기반의 시뮬레이션에 의하여 이루어질 수 있다.
계측기기에서 측정된 데이터는 전산유체역학(CFD)의 입력 조건을 최대로 하여, 해양 구조물 의 거동 및 6자유도 운동, 각종 물리량들의 상관관계를 분석한다. 상기 상황인식 미들웨어에서의 산술추치모델의 결과와 실제 측정 데이터를 연동하여 알고리즘 및 시뮬레이션을 구축한다. 상기 상황인식 미들웨어 및 웹기반 상황인식 모니터링 프로그램을 통해 웹기반 시스템을 구축하여 단순한 모니터링 이외에도 인공지능의 모니터링 및 예측 제어시스템을 구현한다.
또한, 상기 제 2단계는, 상기 제 2단계는, 상기 해양 부류체의 측면에 마련된 계측기기를 통하여 유체에 의한 내외력을 측정하되, 상기 계측기기는 전기식 센서 또는 광학 센서로 이루어 질 수 있다.
또한, 상기 제 2단계는, IMU를 이용하여 유체의 흐름이 해양 구조물 에 미치는 내외력을 실제로 측정한다.
또한, 상기 제 2단계에서의 상기 해양 구조물의 반응은, 상기 해양 구조물 이 선박인 경우 상기 선박의 진행방향, 전후좌우 기울기, 흘수 또는 트림 중 적어도 하나 이상을 포함할 수 있다.
또한, 상기 제 2단계에서 상기 해양 구조물의 반응은, 상기 해양 구조물 이 일시적 고정 구조물인 경우 상기 구조물의 운용방향, 전후 좌우 기울기, 흘수 중 적어도 하나 이상을 포함할 수 있다.
또한, 상기 제 2단계는, 수심 별로 조류 및 해류의 공간 및 시간에 따른 방향과 속도를 측정할 수 있다.
또한, 상기 제 2단계는, 유체의 흐름에 의한 해양 구조물의 고유주파수, 조화주파수 및 유체특성을 포함하는 데이터를 측정할 수 있다.
또한, 상기 제 1단계에서 상기 룩업테이블이 저장되는 데이터베이스 는, 해양 구조물 에 구비된 항해기록장치(VDR)일 수 있다.
또한, 계류라인(mooring line), 친환경 연료절감형 돛 의 지지대 및 연결 케이블(sail line)에 전기식 또는 광학방식의 센서를 부착하여 유체역학의 복합 에너지(coupled energy)에 의한 변화를 모니터링 할 수 있다.
하역(Off-Loading) 또는 접안 시에도, 호저(Hawser) 와 선적호스(Loading Hose)에 광섬유 또는 전기식 스트레인 센서를 인입하여 계측되는 응력과 유체역학적 환경 내외력에 의해 상기 해양 구조물 에 발생하는 6자유도 운동(Heading, Sway, Heave, Rolling, Pitching, Yawing motion)에 대한 측정 데이터를 구조해석과 연동하고, 상황판단의 우선순위 또는 중요도를 감안한 Off-Loading 라인의 실시간 제어 또는 예측 제어를 통하여 유체역학에 의해 인가되는 힘(Pipe line, Pump, 인입형 텐셔너, 라이저, 계류라인, 하우저, Off-Loading 라인의 관성 및 탄성)을 최소화 한다.
그리고 상기 데이터베이스에 저장된 데이터는 실시간 상황인식, 과거기록의 상황재현 및 경우의 수에 대비한 상황예측을 구현하기 위해 기준 데이터로 활용할 수 있다. 또한 상기 저장된 데이터는 가상 시뮬레이션을 통하여 구조 진단 및 작업 평가 기능을 수행하는데 이용할 수 있다.
또한, 상기 해양 구조물 이 일시적 고정 구조물인 경우, 상기 룩업테이블 은 1년 단위의 시(時)계열적 데이터로 기록되며, 전년도까지의 축적된 1년 단위의 시(時)계열적 데이터와의 비교를 통해 상기 룩업테이블 을 수정할 수 있다. 이를 통하여 오차를 자동적으로 감소시킬 수 있다.
또한, 상기 제4단계는, 러더(rudder), 트러스터(thruster), 추진용 프로펠러 또는 돛 중 적어도 어느 하나를 이용하여 해양 구조물 의 자세 또는 항해 경로를 실시간으로 제어할 수 있다. 즉, 6자유도 운동이 최소화 될 수 있도록 러더 등에 대한 제어를 수행하고, 항해 중인 해양 구조물 의 경우 유체역학에 의한 힘을 보상하기 위해 러더 의 방향을 제어하여 최적화된 경로로 운용 가능하게 한다.
한편, 상기 해양 구조물이 운용 중인 경우, 롤링(rolling)에 의하여 해양 구조물 이 전복되거나 운송물이 낙하할 위험이 있다. 이 경우, 해양 구조물 의 아래쪽에 키를 적어도 하나 이상을 설치하면 키에 의한 마찰에 의해 롤링을 감소시킬 수 있다.
또한, 도 9를 참조하여 본 발명의 또 다른 실시예를 설명하면, 상기 제4단계는, 상기 해양 구조물이 선박인 경우, 상기 예측된 해양 구조물 의 반응에 대한 데이터에 따라, 추진력과의 상기 내외력과의 합력이 목표하는 진행방향이 될 수 있도록 러더 의 방향 및 트러스터와 프로펠러의 RPM을 제어할 수 있다.을 제어할 수 있다. 예를 들어, 유체역학에 의해 선박에 인가되는 내외력에 대하여 선박에 구비된 러더 (rudder)를 제어하지 않는 경우보다 러더 를 제어하는 경우에 목표지점까지의 이동거리가 단축됨을 도 9를 통하여 확인할 수 있다.
또한, 상기 해양 구조물 이 일시적 고정 구조물인 경우, 상기 예측된 구조물의 반응에 대한 데이터에 따라, 상기 내외력과의 합력이 최소가 되어 현 위치를 유지하도록 트러스터 를 제어할 수 있다.
또한, 도 13을 참조하면 상기 해양 구조물은, 헬리덱(helideck)을 구비하되, 상기 제 4단계는, 상기 헬리덱 의 평형을 유지할 수 있도록 DP(Dynamic Positioning) 및 DM(Dynamic Motioning)을 통해 상기 해양 구조물의 자세를 제어하고, 상기 헬리덱 의 평형 상태 정보를 상기 데이터베이스 에 저장할 수 있다. 그리고, 상기 해양 구조물 의 자세를 제어함에 따른 상기 헬리덱의 평형 상태 정보를 상기 데이터베이스 에 저장하되, 상기 데이터베이스는 통신부를 통하여 외부의 구조정보서버로 상기 헬리덱의 평형 상태 정보를 송신하며, 상기 구조정보서버는 복수의 해양 구조물 중에서 헬기가 이착륙할 수 있는 헬리덱의 평형 상태 정보를 보유한 해양 구조물 의 위치 정보를 헬기로 제공할 수 있다. 또한, 해양 구조물의 작업 목적 기능(헬기 이착륙, Separator, 액화공정 등)에 맞춰 평형을 유지할 수 있도록 트림(trim) 등의 6자유도의 각도를 조절하여 상기 해양 구조물 의 무게 중심을 변화 시킬 수 있고, 평형 상태를 유지 시킬 수 있고, 또는 충격을 완화 한다. 특히, 헬기 이착륙시 해양 구조물 또는 헬리덱과 헬기의 지지구조기능과의 충격을 완화한다.
또한, 상기 제 1단계 및 제 2단계에서, 상기 유체의 흐름이 해양 구조물 에 미치는 내외력에 대한 데이터는, 상기 해양 구조물의 측면에 설치된 압력센서에 의해 측정되는, 해류 및 조류의 벡터에 대한 데이터일 수 있다.
또한, 도 14를 참조하여 본 발명의 또 다른 실시예를 설명하면, 상기 압력센서는 복수개로 구비되며, 상기 해양 구조물의 측면에 일정 간격으로 설치될 수 있다. 한편, 상기 해양 구조물에 작용하는 파도에 대한 모니터링은 측면에 3차원압력센서모듈을 설치하여 측정된 데이터를 분석하여 해류 및 조류의 벡터를 추출하며, 가장 큰 수치가 나오는 센서의 설치 위치에 파도가 오고 있다는 것을 알 수 있다. 이를 통하여 공간 및 시간에 따른 파도의 방향뿐만 아니라 파도에 의한 스트레인 값을 계산하여 파도의 속도를 유추해낼 수 있다.
또한, 상기 제 2단계는 기상측정장비에 의해 상기 해양 구조물 로부터 원거리의 파랑, 파고, 파도의 주기, 파도의 속도 또는 파도의 방향 중 적어도 하나 이상을 계측하고 상기 데이터베이스에 저장하는 제 2-1단계를 더 포함하되, 상기 기상측정장비는 웨이브레이더(wave radar), directional waverider, sea level monitor, 초음파 조위계, 풍향풍속계 또는 초음파 파고계 중 적어도 어느 하나 이상으로 이루어질 수 있다.
또한, 도 14를 참조하여 본 발명의 또 다른 실시예를 설명하면, 상기 압력센서는 복수개로 구비되며, 상기 해양 구조물의 측면에 높이 차이를 두어 설치될 수 있다. 상기 압력센서로부터의 데이터 측정 유무를 분석하여, 가장 높은 곳에 위치한 압력센서로부터의 데이터를 통해 파고 데이터를 획득할 수 있다. 그리고, 상기 측정데이터의 주기를 측정하여 파도의 주기 또한 계산할 수 있다.
한편, 도 8을 참조하여 본 발명의 또 다른 실시예를 설명하면, 상기 제 2단계는 웨이브 레이더(310)(wave radar)에 의해 상기 해양 구조물 로부터 원거리의 파랑, 파고, 파도의 주기, 파도의 속도 또는 파도의 방향 중 적어도 하나 이상을 계측하고 상기 데이터베이스 에 저장하는 제 2-1단계를 더 포함할 수 있다. 상기 웨이브 레이더(310)를 활용하면 수백m 거리의 파랑, 파고, 파도의 주기, 파도의 속도 및 파도의 방향을 측정하여 상기 해양 구조물에 미치게 될 유체역학을 계산할 수 있다.
IMU, 시간과 공간정보 및 형상 취득 기법, X-band/S-band를 감지할 수 있는 레이더를 이용하여 위험물과의 충돌 방지뿐만 아니라 파랑, 파고을 포함하는 파도의 움직임을 예측하고, IMU를 1개 이상 이용하여 상기 해양 구조물 의 6자유도 운동 뿐만 아니라 호깅(hogging), 새깅(sagging), 비틀림(tortion)까지 측정하고, 시간과 공간정보 취득 기법을 이용하여 상기 해양 구조물의 이동 거리 및 좌표 계측 위성의 환경내외력 데이터를 레이더 및 IMU 데이터와 연동하여 해양 구조물 의 피로를 최소화 한다.
또한, 상기 웨이브 레이터의 Polar 이미지 수집은 32개로 한정되지 않으며, 실시간 동적 이미지 프로세싱을 하기 위해서 새로운 Polar 이미지를 받는 동시에 첫번째 또는 가장 오래된 Polar 이미지를 삭제하여 실시간 동적 이미지 프로세싱을 한다. 이를 통하여, 실시간으로 위험물과의 충돌 방지, 파랑과 파고를 포함하는 파도의 움직임을 예측할 수 있다. 또한, RF 1x2 Splitter 또는 RF 증폭기를 활용하여 기존의 X-band 또는 S-band 충돌방지용 radar를 이용한다. 또한, 웨이브레이터의 측정 데이터에 대하여 6자유도 운동에 의한 영향을 보상하고, Time of Flight method, 영상이음(image overlay) 방식을 이용한다.
또한, 도 10을 참조하여 본 발명의 또 다른 실시예를 설명하면, 상기 해양 구조물 은 발라스트 탱크 를 구비하며, 상기 발라스트 탱크 내부의 슬로싱 현상을 감소시키기 위하여, 상기 발라스트 탱크의 양 측면 각각에 구비되는 슬로싱 억제부 를 포함할 수 있다. 그리고, 상기 슬로싱 억제부는 상기 발라스트 탱크의 일 수평 단면에 있어서 상기 단면의 개방 면적을 좁힘으로써 슬로싱 현상을 억제한다.
또한, 도 11을 참조하여 본 발명의 또 다른 실시예를 설명하면, 상기 제4단계는, 상기 기울기가 발생한 경우, 기울어진 방향의 반대쪽으로 상기 발라스트 탱크 에 적재된 발라스트 수(水)를 이동시켜 상기 해양 구조물의 자세를 제어할 수 있다. 그리고, 상기 발라스트 탱크는, 상기 발라스트 탱크 는, 상기 발라스트 탱크 내부에 구획을 나누는 격벽을 구비하며, 상기 격벽에는 타 구획으로 상기 발라스트 수(水)를 이동시키기 위한 개폐부를 설치하고, 상기 개폐부 의 내부에는 상기 발라스트 수의 이동 속도 및 이동 방향을 제어하는 펌프 가 설치될 수 있다. 또한, 상기 발라스트 탱크 와 수위계(water gauge)를 연결하여 상기 발라스트 탱크의 수위를 모니터링하고 피드백(feed back) 및/또는 피드포워드(feed forward)를 통해 액티브 제어(active control)를 할 수 있다.
또한, 상기 2단계에서의 내외력의 측정 데이터를 외부 기상정보서버에 전송하고, 상기 기상정보서버는 인공위성으로부터 수신된 기상정보를 상기 내외력의 측정 데이터와 비교하여 오차를 수정한 기상정보수정데이터를 저장할 수 있다.
또한, 상기 기상정보서버에 접속된 외부 사용자단말기의 요청에 따라, 상기 기상정보수정데이터를 상기 외부 사용자단말기에 제공할 수 있다.
한편, 전술한 목적을 달성하기 위한 본 발명의 또 다른 일 측면에 따르면, 수조 또는 풍동에서 선형 시험을 통하여 해양 구조물 외부 유체의 흐름이 해양 구조물 에 미치는 내외력에 대한 데이터 및 상기 내외력에 따른 해양 구조물 의 반응에 대한 데이터를 축적하여 룩업테이블 을 생성하는 제 1단계, 해양 구조물 의 실제 항해에 있어서 비행시간법(Time-of-Flight Method)을 이용하여 상기 내외력을 측정하는 제 2단계, 제2단계의 내외력의 측정 데이터를 제 1단계의 룩업테이블 에 축적된 내외력에 대한 데이터와 비교하여 해양 구조물의 반응에 대한 데이터를 예측하는 제 3단계, 실제 해양 구조물의 반응을 측정하는 제3-1단계, 상기 제3-1단계에서 측정된 해양 구조물의 반응에 대한 데이터와 제3단계에서 예측된 해양 구조물 의 반응에 대한 데이터를 비교하여, 그 차이가 발생된 경우 제3-1단계의 해양 구조물 의 반응에 대한 데이터로 제1단계에서 생성된 룩업테이블 에 있어서의 해양 구조물 의 반응에 대한 데이터를수정하는 제3-2단계 및 상기 룩업테이블 에 축적된 데이터를 가상의 시뮬레이션을 통하여 해양 구조물 에 대한 유지보수 데이터를 획득하는 제 4단계가 포함된다.
도 12를 참조하면, 본 발명의 실시예에 따라 상기 유지보수 데이터가 시뮬레이션을 통하여 획득된 내용을 확인할 수 있다. 예를 들어, 유지보수 데이터는 상기 해양 구조물 에 구비된 개별 구조물의 중요도 순서로 각각에 대한 위치정보, 유지보수 비용 정보, 유지보수 소요시간 정보, 잔여수명 정보 등을 포함하여 출력될 수 있다.
또한, 상기 해양 구조물의 반응에 대한 데이터는, 스트레인, 변형, 균열, 진동, 주파수, 부식, 침식 중 적어도 어느 하나를 포함할 수 있다. 상기 주파수는 고유주파수(natural frequency), 조화주파수(harmonic frequency)를 포함하며, 구조해석 방식과 연동하여 상기 해양 구조물 에 가해지는 주파수를 회피하여 피로를 최소화하고 수명 연장을 위한 데이터로 활용된다.
또한, 상기 제 4단계의 유지보수 데이터는, 상기 해양 구조물에 구비된 개별 구조물의 미리 설정된 중요도에 따라 구별되어 획득될 수 있다.
DP 또는 DM Boundary 조건을 충족하여 제어 시, 상기 해양 구조물에 구비된 개별 구조물들에 대하여 피로 최소화에 대한 우선 순위를 결정하고, EEOI/EEDI/DMS/DPS의 효율이 적절히 크게 되도록 긴급, 시급, 우선 등의 순위로 운영할 수 있다.
또한, 상기 유지보수 데이터는, 유지보수가 필요한 위치정보, 유지보수 비용 정보, 유지보수 소요시간 정보 또는 구조물별 잔여수명 정보 중 적어도 어느 하나를 포함할 수 있다.
플로팅 매트 결합체의 하나 이상의 지점에 전기식 또는 광학방식의 센서를 인입하여 슬로싱(sloshing)에 의해 발생하는 상기 플로팅 매트 결합체의 부하, 스트레인, 변형, 변위, 피로, 미세 균열(micro crack), 진동, 주파수를 측정한다. 유체 저장 탱크의 벽사이에도 전기식 또는 광학방식의 센서를 인입하여 유체의 슬로싱에 의한 플로팅 매트와 유체 저장 탱크 벽사이의 충격에 의한 부하, 스트레인, 변형, 변위, 미세 균열(micro crack), 진동, 주파수를 측정한다.
플로팅 매트 단위체는 LNG를 포함한 액체 내에서 부유 가능한 구조 또는 재질로 이루어지며, LNG 탱크, 발라스트 탱크 등에 적용 가능하며, 상기 플로팅 매트의 크기는 상기 탱크안에 채워지는 물질의 최대량을 고려하여 결정되어 슬로싱을 최소화 하는 동시에 상기 매트와 탱크의 슬로싱에 의한 충격 또한 최소화 한다.
해양 구조물과 탱크에 대한 측정도 중요하지만 슬래밍(slamming)에 의한 해양 구조물 의 반응은 동일하지 않으므로, 전기식 또는 광학방식의 센서를 인입하여 슬로싱(sloshing)에 의해 발생하는 상기 플로팅 매트 결합체의 부하, 스트레인, 변형, 변위, 피로, 미세 균열(micro crack), 진동, 주파수를 측정하여 안전 진단과 제어를 통해 상기 해양 구조물과 탱크 사이의 충격을 최소화하는 데이터로 활용한다.
상기 측정된 슬래밍에 의한 해양 구조물의 반응과 슬로싱에 의한 발라스트 탱크 를 포함하는 저장탱크의 반응에 대한 데이터는 수치산술모델(mathmatical models)과 연동하여 최적화&인공지능 알고리즘을 얻어내고, 그 결과가 룩업테이블 형태로 항해기록장치(VDR) 또는 별도의 서버에 저장되어 해양 구조물의 자세를 제어하여 손상을 최소화 한다. 또한 상기 저장된 데이터는 실시간 상황인식, 과거기록의 상황재현, 경우의 수에 대한 상황예측을 구현하기 위해 필요한 상황인식용 기준 데이터(reference data)로 활용한다. 또한, 저장된 데이터를 이용하여 가상의 시뮬레이션을 통하여 구조 진단 및 작업 평가 기능을 수행할 수 있다.
상기 알고리즘 또는 시뮬레이터에 실제 측정 데이터의 지속적으로 반영 및 룩업테이블 의 수정을 통하여 최적화된 예측 시뮬레이터를 구현한다. Risers(SCR, TTR, Tendon)/ROV/Drill rig등을 포함하는 해양 구조물 에 상기 알고리즘 또는 시뮬레이터를 반영하여 자동학습 기법을 활용한 자동화를 구현할 수 있다.
본 발명의 실시예에 따른 실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치의 모니터링을 통한 제어 방법은 Radar, IMU, GPS 계측 기법, X-band Radar를 이용하여 충돌 방지뿐만 아니라 파랑, 파고를 측정 및 Wave motion을 예측하고, 적어도 하나 이상의 IMU를 이용하여 해양 구조물의 6자유도 모션 뿐만 아니라 Hogging, Sagging, Torsion까지 계측하며, 시간과 공간정보 취득 도구를 이용하여 해양 구조물의 이동 거리 및 좌표 계측 위성의 환경외력 데이터를 Radar 및 IMU의 데이터와 연동하여 해양 구조물의 피로 최소화하고, EEOI/EEDI/DP Boundary/DM Boundary/Risers(SCR, TTR, Tendon) /Lowering/ROV/Drill Rig에 반영하여 예측 프로시저의 알고리즘과 시뮬레이터로 대체할 수 있다. 또한, Radar를 이용하여 파고, 파랑, 주기, 파도의 속도 및 방향을 측정하되, Radar의 Polar 이미지 수집은 32개로 한정되지 않으며, 실시간 동적 이미지 프로세싱을 하기 위해서 새로운 Polar 이미지를 받는 동시에 첫번째 혹은 제일 오래된 Polar 이미지를 삭제하여 실시간 동적 이미지 프로세싱을 할 수 있다. 그리고, 충돌 방지, 파랑/파고 측정 및 Wave motion 예측 기능을 연동할 수 있다. 아울러, 기존의 X-Band 또는 S-Band 충돌방지용 Radar를 이용하고, RF 1x2 Splitter, RF 증폭기 또는 광신호 전송 및 증폭기능을 활용하여 파랑, 파고, 주기, 발향계측 결과를 추출할 수 있다. 또한, 6자유도 Motion Compensated X/S-Band Wave Radar, Wave Height Measuring Sensor, Doppler, Time of Flight 및 영상 이음(Image Overlay)방식을 이용할 수 있다.
1. 시간과 공간정보 취득 도구 (예, RF & Microwave- GPS, DGPS, RTK, 광- Lidar, PIV, PIT, 간섭계 등, 수중에서는 음파, 초음파, 광/Lidar 등을 활용) & Smart IMU (전기식/광전기식의 자이로 + 광격자, MEM, 등의 전기식 가속도 + 환경외력 계측의 연동, 간접 연동 혹은 무연동 (직간접 경험)의 인공지능 포함과 상황인식의 DB )를 연동을 본 구조물의 하여 상황인식화 한 6자유도 모션/반응자세 (response) 계측 및 DB 로 연동시키어, 예측 Control을 하여 환경 외력 계측 연동 혹은 무연동 하는 인공지능의 EEOI (Energy Efficiency Operating Indicator) / DPS (Dynamic Positioning System)/DMS (Dynamic Motioning System)용 예측 Monitoring, 예측 Adviser System, and/or 예측 Automated Control System을 활용한다.
(1) DP 또는 DM Boundary 조건 충족 제어시, 상기 본/복합 구조물들 중에 우선 대상 구조물들의 순위를 반영하여(예, Subsea Structure/Riser/Drill Rig, Hawser Line &/or Mooring Line 우선, 다음 non-subsea structure/Flare Tower, Top-side, & Hull, ..) 피로 최소화 우선 순위를 결정하고, DPS, DMS 또는 EEOI의 control 효율이 가장 크게 되도록 운영한다.
(2) EEOI/EEDI 조건 충족 제어 시, 상기 본/복합 구조물들 중에 우선 대상 구조물들의 순위를 반영하여(예, Rudder, Thruster, Propeller RPM, Ballistic, Fuel &/or Storage Tank, Wind Sail, Mooring Line Tensioner, Riser &/or its Tensioner ) 피로 최소화 우선 순위를 결정하고, DPS 혹은 EEOI/의 control 효율이 가장 크게 되도록 운영 혹은 정량적인 EEDI를 계측 한다.
(3) Drill Rig/Riser 모니터링을 통하여 해양 구조물의 가장 편한 자세를 설정 및 예측한 제어를 수행하되, 필요한 시간에 필요한 6자유도를 감안한 댐핑을 수행한다(예: 연결부위에서 Heave 위주 모션 댐핑을 하는데, 예측모션을 감안하여 유압모터를 미리 제어해서 필요한 6자유도를 감안한 댐핑을 수행함).
2. 구조물에 가해지는 Hydro- & Aero-Dynamic의 영향에 반응하는 각 개별적 혹은 통합적인 조선해양 복합 구조물들의 고유 응답주파수 (Natural 혹은 Harmonic Frequency) 를 회피 또는 환경외력이 구조물에 가해지는 조건을 변경하여 구조물의 수명을 연장한다.
(1) 구조물에 가해지는 환경외력, 복합구조물로 인가되는 복합에너지와 보유되어 있는 관성+탄성 운동에너지를 실시간 피로 실 계측 혹은 산술의 수치 결과를 6자유도 모션 (예, Hogging, Sagging & Torsion)의 움직임계측과 연동을 통하여 상황판단의 우선순위 혹은 중요도에 의거되는 구조물의 독립적 혹은 복합적으로 인가되는 Yield Stress를 최소화하고 요구되는 구조물의 독립적 혹은 복합적으로 인가되는 피로를 최소화하여 구조물의 수명을 연장한다.
3. 계류라인의 결함 (Integrity)을 계측 (예, 텐션, Strain, Elongation, 진동, 등의 정-동적 수치 및 변화 속도와 가속도활용)하여 실시간으로 측출하고 나아가 계류라인의 수명을 정확히 예측함으로써 Condition Based Maintenance 를 할 수 있고, 이상 추위를 반영하여 수/자동으로 적절한 해양 구조물의 정적 및 동적 포지셔닝 제어 및 잔류 피로를 반영한 운영 관리를 한다.
(1) 계류시, Mooring Line Tension Monitoring 을 연계하여, 환경외력을 반영한 DP(Dynamic Positioning) 예측 모니터링 및 예측 제어, DM(Dynamic Motioning) 예측 모니터링 및 예측 제어와 EEOI(Energy Efficiency Operating Indicator) 를 감안하는 구조물의 운동 및 자세 제어를 한다.
(2) 해저 구조물 (예, 계류라인/Mooring Line, Risers, Umbilical Line 구조물) 에 광계측방식의 진동 (예, DAS) 계측접목 하여, 구조물의 진동 계측과, 기존 스트레인 혹은 가속도계측을 통한 구조의 변형률, 변형상태와 연동하여 가해지는 환경외력 (예, 조류, 해류의 외력의 vector) 와 이에 인한 구조물의 Response의 vector를 축출한다.
(3) 환경외력 계측과 연동할 경우, CFD, FEA &/or FSI 입력 조건을 최대로 상황인식 기능의 계측 & DB화하고, CFD, FEA와 Coupled response Model, & FSI (환경외력과 환경외력에 반응한 구조물 운동 model) 를 활용한다.
4. 실시간 상황인식, 과거기록의 상황재현과 향후 예측기록 경우 수 대비의 상황예측을 구현하기 위해 필요한 상황인식용 계측기기 구축 및 결과 취득과 DB저장 방식을 구현한다.
(1)상황인식 미들웨어와 웹기반 상황인식 모니터링 프로그램을 활용한 실시간 윕기반 시스템을 구축한다.
(2)상황인식 미들웨어 혹은 유사한 기능의 소프트워어 연동을 모든 상황인식 기능의 계측결과를 실시간 Mathematical Models (예, CFD, FEA &/or FSI...) 연동하여 최적화하는 기반 Tool로 할용할 수 있고, 또한 이 최적화한 Mathematical Models을 실 계측을 반영한 알고리즘화 및 Simulation으로 진화시킨다.
(3) 단순 계측된 Monitoring 기능 이외에도, 실 계측 반영 혹은 수치계산 반영 완성된 알고리즘을 연동하여 인공지능으로 가공된 Monitoring기능 및 예측 제어시스템 혹은 Simulation을 구현한다.
(4) 통합 계측된 상황인식하는 Database 를 VDR (Voyage Data Recorder)에 저장 혹은 연동하여, Hydro-Dynamic &/or Aero-Dynamic Energy (예, 파도의 방향 및 속도 혹은 풍향과 풍속의 vector 와 이에 인한 구조물의 Response의 vector) 을 축출한다.
5. Radar + IMU + GPS 계측 기법, X-band 혹은 S-band Radar를 이용하여 충돌 방지뿐만 아니라, 파랑/파고 측정 및 Wave motion을 예측하고, IMU 1개 혹은 그 이상을 이용하여 선체의 6자유도 모션 뿐만 아니라 Hogging, Sagging, Torsion까지 계측하고, 시간과 공간정보 취득 도구 (예, RF & Microwave- GPS, DGPS, RTK, 광- Lidar, PIV, PIT, 간섭계 등, 수중에서는 음파, 초음파, 광/Lidar 등을 활용)를 이용하여 선박의 이동 거리 및 좌표 계측 위성의 환경외력 data를 Radar 및 IMU data와 연동하여 Hull의 피로 최소화하고, EEOI/EEDI/ DP Boundary /DM Boundry / Risers (SCR, TTR, Tendon) /Lowering / ROV/ Drill Rig 에 반영하여 예측 프로시져의 알고리즘 &/or Simulator로 대체한다.
(1) Radar를 이용하여 파고, 파랑, 주기, 파도의 속도 및 방향을 측정하되, Radar의 Polar 이미지 수집은 32개로 한정되지 않으며, 실시간 동적 이미지 프로세싱을 하기 위해서 새로운 Polar 이미지를 받고, 대신 첫번째 혹은 제일 오래된 Polar 이미지를 버리고 실시간 동적 이미지 프로세싱을 한다.
(2) 충돌 방지, 파랑/파고 측정 및 Wave motion 예측 기능을 연동한다.
(3) RF 1x2 Splitter 혹은 RF 증폭기를 활용하여 기존의 X-Band 혹은 S-Band 충돌방지용 Radar를 이용한다.
(4) 6DOF Motion Compensated X-Band Wave Radar Doppler, Time of Flight & 영상 이음(Image Overlay) 방식 을 이용한다.
6. Mathematical Modeling, Mathematical Models (예, CFD, FEA &/or FSI...) Simulation 결과 (Hydro & Aero-dynamic 정보에 의한)를 CDF 해석에 반영하여 CDF Model 최적화 & Algorithm으로 진화하고, 해석 & 진화된 결과는 Look-up Table로 VDR 혹은 별도의 서버에 축적하고, 축적된 data는 가상의 Simulation을 통하여 구조 진단 및 작업 평가 기능을 수행한다.
(1) Experienced Reference data를 활용하여 prediction 제어를 수행한다.
(2) Black Box 기능을 추가하여 유무선 네트워크를 구성한다.
(3) 보정된 Time Tag 기능을 추가한다.
(4) 축적된 인공지능을 포함한 EMS & MMS 계측된 data 대비 구조해석 Algorithm 기능을 추가한다.
(5) 단순 계측된 Monitoring기능 이외에도, 실계측 반영완성된 알고리즘을 인공지능으로 반영하여 가공된 Monitoring기능 및 예측 제어시스템(예, Utilize the resulted influence to 6 DoF Motion & Displacement for DPS, DMS, & EEOI/EEDI (Energy Efficiency Design Index))을 저장 기록한다.
7. Hydro-Elastic에 의한 Slamming &/or Sloshing과 Aero-Elastic에 의한 화재/폭파 계측기법으로 Optical & Electric Extensometer, PIV, PTV, BP Filter Energy intensity, Strain Gage, Pressure Sensor, Ultrasonic 계측 방식/DAS- excitation & monitoring을 활용한다.
(1) Strain Sensor로 격벽의 변형을 측정하고, Global 계측을 위해서 Ultrasonic 계측 혹은 DAS- excitation 방식으로 monitoring한다.
(2) Wave에 의한 선체 격벽의 Response를 계측하고, 계측된 센서의 위치를 확인하여 Wave Height를 추출한다.
8. 구조물의 Embedded Sensor(Strain, Acceleration, Temperature)를 이용한 Monitoring 기술로서, 교량, 하수도, 상수도, 가스관, 기름관, 터널, 구조물 지지대 등의 구조물에 Tensioner를 인입하고, Tensioner에 인입된 Sensor를 통해 진동, 가속도, 위치, 연중/계절별 온도, 물성(stress 또는 stiffness)을 계측하여 구조물 안전 진단, 지진, 누수, 도난방지에 대한 Monitoring을 한다.
9. 지하철, 지하차도 건설 등 타공사 영향으로 일정기간 노출되는 구조물 및 배관의 안전성확보를 위한 누출사고 영향평가 해석 기술로서, CFD 이론을 이용한 밀폐 및 부분개방공간에서 가스폭발 피해예측을 해석한다.

Claims (124)

  1. 해양 구조물의 물리적 변화를 모니터링하는 시스템에 있어서,
    광섬유 브래그 격자를 이용한 적어도 하나 이상의 광학센서를 이용하여, 상기 해양 구조물의 거동 및 구조적 변화를 감지하는 복합광계측기기 ;
    를 포함하는
    해양 구조물의 물리적 변화를 모니터링하는 시스템
  2. 제1항에 있어서,
    상기 복합광계측기기는,
    상기 해양 구조물 외부에 설정된 적어도 하나 이상의 기준점과 상기 해양 구조물 상에 설정된 지점 사이의 거리 변화를 상기 광학센서를 이용하여 측정하는 신장계 ;
    를 포함하여 구성되는 것을 특징으로 하는
    해양 구조물의 물리적 변화를 모니터링하는 시스템
  3. 제2항에 있어서,
    상기 광학센서 는,
    상기 거리 변화로 인하여 광섬유에 인가되는 응력 변화에 대응하여 상기 광학센서를 통과하는 광신호의 파장을 변화시키는 것을 특징으로 하는
    해양 구조물의 물리적 변화를 모니터링하는 시스템
  4. 제2항에 있어서,
    상기 신장계 는,
    상기 기준점과 상기 해양 구조물 상에 설정된 지점 사이를 연결하는 적어도 하나 이상의 와이어 를 포함하여 구성되는 것을 특징으로 하는
    해양 구조물의 물리적 변화를 모니터링하는 시스템
  5. 제4항에 있어서,
    상기 와이어는, 인바(invar)를 포함하여 이루어지는 것을 특징으로 하는
    해양 구조물의 물리적 변화를 모니터링하는 시스템
  6. 제4항에 있어서,
    상기 신장계 는,
    상기 와이어를 일정 장력으로 권취하는 와인딩부 ;
    광학센서를 이용하여 상기 와인딩부의 회전수를 측정하는 감지부 ;
    를 더 포함하는 것을 특징으로 하는
    해양 구조물의 물리적 변화를 모니터링하는 시스템
  7. 제6항에 있어서,
    상기 신장계는,
    상기 감지부로부터 측정된 회전수에 상응하여 주기적으로 상기 광학센서를 자극하는 자극부 ;
    를 더 포함하는 것을 특징으로 하는
    해양 구조물의 물리적 변화를 모니터링하는 시스템
  8. 제1항에 있어서,
    상기 복합광계측기기는
    상기 해양 구조물 상의 적어도 1개 이상의 지점을 상호 연결하는 광섬유와이어(320)가 구비되어 상기 해양 구조물의 길이변화를 측정하는 신장계 ;를 포함하여 구성되며,
    상기 광섬유 와이어(320)는,
    상기 해양 구조물 상의 거리 변화로 인하여 광학센서에 인가되는 응력 변화에 대응하여 상기 광섬유를 통과하는 광신호의 파장을 변화시키는 것을 특징으로 하는
    해양 구조물의 물리적 변화를 모니터링하는 시스템
  9. 제2항에 있어서,
    상기 신장계 는,
    상기 해양 구조물 상의 동일한 지점에 적어도 1개 이상 설치되며, 광섬유로 이루어지는 와이어 를 포함하여 구성되며,
    상기 와이어 는,
    상기 해양 구조물 상의 거리 변화로 인하여 광섬유에 인가되는 응력 변화에 대응하여 상기 광섬유를 통과하는 광신호의 파장을 변화시키는 것을 특징으로 하는
    해양 구조물의 물리적 변화를 모니터링하는 시스템
  10. 제7항 또는 제9항에 있어서,
    상기 신장계 는,
    상기 삼각측정법을 이용하여 상기 와이어 각각의 인장 정도를 환산하여 상기 지점의 절대적인 위치 정보를 제공하는 것을 특징으로 하는,
    해양 구조물의 물리적 변화를 모니터링하는 시스템
  11. 제1항에 있어서,
    상기 복합광계측기기 는
    상기 해양 구조물 상의 복수 지점 간의 경사변화를 상기 광학센서를 이용하여 측정하는 경사계;를 포함하여 구성되는 것을 특징으로 하는,
    해양 구조물의 물리적 변화를 모니터링하는 시스템
  12. 제11항에 있어서,
    상기 경사계는,
    중력방향으로 설치된 무게추;
    상기 무게추에 연결된 적어도 하나 이상의 광섬유로 이루어진 광학센서 ;를 포함하며,
    상기 경사계가 설치된 해양 구조물 상의 지점의 경사변화로 인하여, 상기 무게추에 의해 상기 광섬유에 인가되는 응력 변화에 대응하여 상기 광섬유를 통과하는 광신호의 파장을 변화시키는 것을 특징으로 하는,
    해양 구조물의 물리적 변화를 모니터링하는 시스템
  13. 제2항, 제8항 또는 제11항 중 어느 한 항에 있어서,
    상기 복합광계측기기는,
    상기 기준점의 위치 변화를 측정하기 위한 지진계 ;
    를 더 포함하는 것을 특징으로 하는
    해양 구조물의 물리적 변화를 모니터링하는 시스템
  14. 제13항에 있어서,
    상기 복합광계측기기 는,
    상기 해양 구조물 의 진동을 측정하는 진동계 ;
    를 더 포함하는 것을 특징으로 하는
    해양 구조물의 물리적 변화를 모니터링하는 시스템
  15. 제1항에 있어서,
    상기 복합광계측기기로부터 광신호의 파장 변화를 감지하는 측정장치 ;
    를 더 포함하는 것을 특징으로 하는,
    해양 구조물의 물리적 변화를 모니터링하는 시스템
  16. 제15항에 있어서,
    상기 측정장치 는,
    데이터 로거 또는 인터로게이터인 것을 특징으로 하는,
    해양 구조물의 물리적 변화를 모니터링하는 시스템
  17. 제15항에 있어서,
    상기 측정장치는 산란된 광신호를 취합하는 기능을 갖추되,
    파장을 제어할 수 있는 레이저가 구비된 광학부;
    상기 광학부에 의해 반사된 광신호의 파장을 광학센서 별로 구별하는 광참조기;
    상기 광참조기로부터 출력된 각 광학센서의 광섬유 브래그 격자를 다수로 연결하고, 브래그 반사 파장을 채널별로 분배하는 광 결합기(optical coupler); 및
    상기 광 결합기로부터 전달받은 브래그 반사 파장을 전기신호로 변환하는 포토다이오드(photo diode);
    를 포함하는 것을 특징으로 하는,
    해양 구조물의 물리적 변화를 모니터링하는 시스템
  18. 제1항에 있어서,
    상기 복합광계측기기는 OTDR(Optical Time-Domain Reflectometer), 라만스텍트럼법(Raman), 브릴루앙 산란(Brillouin scattering), 레일리파(Rayleigh wave), DAS(Distributed Acoustic Sensing), 음향방출법(Acoustic Emission), 간섭법(Interferometry) 중 적어도 어느 하나를 이용하는 것을 특징으로 하는,
    해양 구조물의 물리적 변화를 모니터링하는 시스템
  19. 해양 구조물 또는 기준점에 설치된 적어도 하나 이상의 복합광계측기기를 이용하여, 상기 해양 구조물의 거동 또는 구조적 변화에 따라 상기 광학센서 를 통과하는 광신호의 파장 또는 광량을 변화시키는 (a)단계;
    상기 복합광계측기기가 상기 파장 또는 광량이 변화된 상기 광신호를 상기 측정장치 로 전달하는 (b)단계;
    상기 측정장치에 의해 상기 광신호의 파장 또는 광량의 변화를 감지하는 (c)단계;
    를 포함하며,
    상기 복합광계측기기는 광섬유 브래그 격자를 이용한 적어도 하나 이상의 광학센서 를 포함하는 것을 특징으로 하는,
    해양 구조물 의 물리적 변화를 모니터링하는 방법
  20. 제19항에 있어서,
    상기 복합광계측기기 는,
    상기 해양 구조물 외부에 설정된 적어도 하나 이상의 기준점과 상기 해양 구조물 의 설정된 위치 사이의 거리 변화를 측정하는 신장계 ;
    인 것을 특징으로 하는,
    해양 구조물의 물리적 변화를 모니터링하는 방법
  21. 제20항에 있어서,
    상기 신장계는
    상기 기준점과 상기 해양 구조물 상에 설정된 지점 사이를 연결하는 적어도 하나 이상의 와이어 ;
    상기 와이어 를 일정 장력으로 권취하는 와인딩부 ;
    광섬유를 이용하여 상기 와인딩부 의 회전수를 측정하는 감지부; 및
    상기 감지부 로부터 측정된 회전수에 상응하여 주기적으로 상기 광섬유를 자극하는 자극부;
    를 포함하여 이루어지는 것을 특징으로 하는,
    해양 구조물의 물리적 변화를 모니터링 하는 방법
  22. 제20항에 있어서,
    상기 신장계 는,
    상기 해상 구조물 상의 적어도 1개 이상의 지점을 상호 연결하는 광섬유와이어 가 구비되어 상기 해양 구조물의 길이변화를 측정하며,
    상기 광섬유 와이어는,
    상기 해양 구조물 상의 거리 변화로 인한 응력 변화에 대응하여 상기 광섬유를 통과하는 광신호의 파장을 변화시키는 것을 특징으로 하는,
    해양 구조물의 물리적 변화를 모니터링 하는 방법
  23. 제20항에 있어서,
    상기 신장계는,
    상기 해양 구조물 상의 동일한 지점에 적어도 1개 이상 연결되며, 광섬유로 이루어지는 와이어 를 포함하여 구성되며,
    상기 와이어는,
    상기 해양 구조물 상의 거리 변화로 인하여 상기 광섬유에 인가되는 응력 변화에 대응하여 상기 광섬유를 통과하는 광신호의 파장을 변화시키는 것을 특징으로 하는,
    해양 구조물의 물리적 변화를 모니터링 하는 방법
  24. 제 21항 또는 제 23항에 있어서,
    상기 신장계는,
    상기 삼각측정법을 이용하여 상기 와이어 각각의 인장 정도를 환산하여 상기 지점의 절대적인 위치 정보를 제공하는 것을 특징으로 하는,
    해양 구조물의 물리적 변화를 모니터링 하는 방법.
  25. 제19항에 있어서,
    상기 복합광계측기기는
    상기 해양 구조물 상의 복수 지점 간의 경사변화를 상기 광학센서 를 이용하여 측정하는 경사계 ;
    를 포함하여 구성되는 것을 특징으로 하는,
    해양 구조물의 물리적 변화를 모니터링하는 방법
  26. 제25항에 있어서,
    상기 경사계는,
    중력방향으로 설치된 무게추와 상기 무게추에 연결된 광섬유를 포함하며,
    상기 (a)단계는,
    상기 해양 구조물 에 발생한 경사변화에 따라 상기 무게추가 상기 광섬유를 자극하여 응력 변화를 발생시키고, 발생 된 응력 변화를 광신호로 변환하는 것을 특징으로 하는,
    해양 구조물의 물리적 변화를 모니터링하는 방법
  27. 제19항, 제21항 또는 제25항 중 어느 한 항에 있어서,
    상기 복합광계측기기 는
    상기 해양 구조물 외부에 설정된 적어도 하나 이상의 기준점의 위치 변화를 상기 광학센서 를 이용하여 측정하는 지진계 ;
    를 더 포함하는 것을 특징으로 하는,
    해양 구조물의 물리적 변화를 모니터링하는 방법
  28. 제27항에 있어서,
    상기 복합광계측기기는,
    상기 해양 구조물 의 진동을 측정하는 진동계 ;
    를 더 포함하는 것을 특징으로 하는,
    해양 구조물의 물리적 변화를 모니터링 하는 방법
  29. 해양 구조물 의 실시간 물리적 변화 모니터링을 통한 제어 방법에 있어서,
    수조 또는 풍동에서 실험에 의한 해양 구조물 의 물리적 변화에 대한 데이터를 획득하고, 상기 획득된 데이터를 축적하여 룩업테이블(Lookup table)을 생성하는 (a)단계;
    측정장치 로부터 출력된 해양 구조물 의 실제 물리적 변화에 대한 데이터를 획득하는 (b)단계;
    상기 (b)단계에서 획득한 데이터를 상기(a)단계의 룩업테이블에 축적된 데이터와 비교하여, 해양 구조물 의 물리적 변화에 대한 예측데이터를 생성하는 (c)단계;
    상기 예측데이터를 전달받은 3차원 수치해석(numerical analysis) 프로그램에 의하여 구조물 제어 동작정보, 유지보수가 필요한 위치정보, 유지보수비용정보, 유지보수소요시간 중 적어도 어느 하나를 포함하는 유지보수정보 및 해양 구조물 에서의 가스 누출, 화재 또는 폭발에 대한 경고정보를 생성하는 (d)단계;
    를 포함하며,
    상기 물리적 변화는, 상기 해양 구조물 상의 적어도 하나 이상의 지점에 대한 길이변화, 경사변화, 온도변화, 압력변화, 비체적변화 중 적어도 어느 하나를 포함하는 것을 특징으로 하는
    해양 구조물에 대한 물리적 변화의 실시간 모니터링을 통한 제어 방법
  30. 제29항에 있어서,
    상기 (c)단계 이후에,
    상기 예측데이터와 해양 구조물 의 실제 물리적 변화에 대한 데이터를 비교하여, 룩업테이블을 수정하는 (c-1)단계;
    를 더 포함하는 것을 특징으로 하는,
    해양 구조물에 대한 물리적 변화의 실시간 모니터링을 통한 제어 방법
  31. 제29항에 있어서,
    상기(d)단계 이후에, FSI프로그램(Fluid Structure Interaction)에 의해 상기 해양 구조물 제어정보를 시뮬레이터로 생성하고, 상황인식 미들웨어에 의해 상기 시뮬레이터를 상기 (b)단계에서 획득한 상기 해양 구조물 의 실제 물리적 변화량에 대한 데이터와 실시간으로 연동시켜, 상기 해양 구조물 을 자동으로 제어하는 알고리즘을 생성하는 단계;
    를 더 포함하는 것을 특징으로 하는,
    해양 구조물에 대한 물리적 변화의 실시간 모니터링을 통한 제어 방법
  32. 제29항에 있어서,
    상기 (d)단계의 3차원 수치해석(numerical analysis) 프로그램은 유한요소해석법(FEM) 및 전산유체역학(CFD)를 이용하는 것을 특징으로 하는,
    해양 구조물에 대한 물리적 변화의 실시간 모니터링을 통한 제어 방법
  33. 제29항에 있어서,
    상기 (d)단계는, 상기 3차원 수치해석(numerical analysis) 프로그램이, 상기 해양 구조물 의 거동 및 구조적 변화에 따라 발생할 수 있는 가스 누출, 확산, 화재 또는 폭파 등의 가상위험상황 및 상기 가상위험상황에 따른 대응방안에 대한 데이터가 저장된 상황해석모듈과 연동되어, 유지보수정보를 생성하는 것을 특징으로 하는,
    해양 구조물에 대한 물리적 변화의 실시간 모니터링을 통한 제어 방법
  34. 제29항에 있어서,
    (e)구조물 자동제어부 가 상기 제어 동작 정보에 따라 상기 해양 구조물 의 위치 또는 각도를 변화시켜 제어하는 단계;를 더 포함하되,
    상기 구조물 자동제어부 는,
    상기 해양 구조물 상의 적어도 하나의 지점에 연결되는 결합수단 ;
    상기 결합수단 과 연결되어 상기 해양 구조물 을 상하좌우로 이동시키는 변위조절수단 ;
    을 포함하는 것을 특징으로 하는,
    해양 구조물에 대한 물리적 변화의 실시간 모니터링을 통한 제어 방법
  35. 제29항에 있어서,
    상기 경고정보는,
    상기 측정장치 가 TDLAS, DTS, DAS, FBG 또는 RMLD 중 적어도 어느 하나를 이용하여 측정한 상기 해양 구조물 의 실제 물리적 변화에 대한 데이터를 이용하여 생성되는 것을 특징으로 하는,
    해양 구조물에 대한 물리적 변화의 실시간 모니터링을 통한 제어 방법
  36. 수조 또는 풍동에서 선형 시험을 통하여 해양 구조물 외부 기체의 흐름이 해양 구조물에 미치는 내외력에 대한 데이터 및 상기 내외력에 따른 상기 해양 구조물의 반응에 대한 데이터를 축적하여 룩업테이블을 생성하고 상기 룩업테이블을 데이터베이스에 저장하는 제 1단계;
    해양 구조물의 실제 항해에 있어서 비행시간법(Time-of-Flight Method)을 이용하여 상기 내외력을 측정하여 상기 데이터베이스에 저장하는 제 2단계;
    제 2단계의 내외력의 측정 데이터를 제 1단계의 룩업테이블에 축적된 내외력에 대한 데이터와 비교하여, 해양 구조물의 반응에 대한 데이터를 예측하는 제3단계;
    상기 해양 구조물의 예측된 반응에 대한 데이터를 이용하여 해양 구조물의 자세 또는 항해 경로를 실시간으로 제어하는 제 4단계;
    를 포함하는
    실시간 해양 구조물에 대한 기체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  37. 제 36항에 있어서,
    상기 제3단계는,
    상기 해양 구조물의 실제 반응을 측정하는 제3-1단계; 및
    상기 제3-1단계에서 측정된 상기 해양 구조물의 반응에 대한 데이터와 제3단계에서 예측된 상기 해양 구조물의 반응에 대한 데이터가 불일치하는 경우, 제3-1단계의 해양 구조물의 반응에 대한 데이터로 제1단계에서 생성된 상기 룩업테이블에 있어서의 상기 해양 구조물의 반응에 대한 데이터를 수정 또는 상기 수정된 데이터를 반영하여 수치모델을 수정 및 보완하는 3-2단계;
    를 더 포함하는 것을 특징으로 하는,
    실시간 해양 구조물에 대한 기체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  38. 제 37항에 있어서,
    상기 해양 구조물의 반응에 대한 데이터의 수정은,
    CFD, 유한요소법(FEA), IFEM(Finite Element Method) 또는 FSI를 포함하는 수치모델 기반의 시뮬레이터에 의하여 이루어지는 것을 특징으로 하는,
    실시간 해양 구조물에 대한 기체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  39. 제 36항에 있어서,
    상기 제 2단계는,
    상기 해양 구조물에 구비된 계측기기를 통하여 기체에 의한 내외력을 측정하되,
    상기 계측기기는 전기식 센서 또는 광학 센서인 것을 특징으로 하는,
    실시간 해양 구조물에 대한 기체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  40. 제 39항에 있어서,
    상기 계측기기는 풍향, 풍속, 기압, 기온, 습도 및 분진을 고도별로 측정하는 것을 특징으로 하는,
    실시간 해양 구조물에 대한 기체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  41. 제 36항에 있어서,
    상기 제 2단계는,
    IMU를 이용하여 기체의 흐름이 해양 구조물에 미치는 내외력을 실제로 측정하는 것을 특징으로 하는,
    실시간 해양 구조물에 대한 기체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  42. 제 36항에 있어서,
    상기 제 3단계에서의 상기 해양 구조물의 반응에 대한 데이터는,
    상기 해양 구조물이 선박인 경우 상기 선박의 진행방향, 전후좌우 기울기, 흘수 또는 트림 중 적어도 하나 이상을 포함하는 것 특징으로 하는,
    실시간 해양 구조물에 대한 기체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  43. 제 36항에 있어서,
    제 3단계에서의,
    상기 해양 구조물의 반응에 대한 데이터는,
    상기 해양 구조물이 일시적 고정 구조물인 경우 상기 구조물의 이동방향, 전후좌우 기울기, 흘수 중 적어도 하나 이상을 포함하는 것 특징으로 하는,
    실시간 해양 구조물에 대한 기체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  44. 제 36항에 있어서,
    제 2단계는,
    기체의 흐름에 의한 해양 구조물의 고유주파수, 조화주파수 및 기체특성을 포함하는 데이터를 측정하는 것을 특징으로 하는,
    실시간 해양 구조물에 대한 기체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  45. 제 36항에 있어서,
    제 1단계는,
    상기 룩업테이블이 저장되는 데이터베이스는, 상기 해양 구조물에 구비된 항해기록장치(VDR)인 것을 특징으로 하는,
    실시간 해양 구조물에 대한 기체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  46. 제 36항에 있어서,
    상기 해양 구조물이 일시적 고정 구조물인 경우,
    상기 룩업테이블은 1년 단위의 시(時)계열적 데이터로 기록되며,
    전년도까지의 축적된 1년 단위의 시(時)계열적 데이터와의 비교를 통해 상기 룩업테이블을 수정하는 것을 특징으로 하는,
    실시간 해양 구조물에 대한 기체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  47. 제 36항에 있어서,
    상기 제 4단계는
    러더(rudder), 트러스터(thruster), 프로펠러, 돛, 연 또는 풍선 중 적어도 어느 하나를 이용하여 해양 구조물의 자세 또는 항해 경로를 실시간으로 제어하는 것을 특징으로 하는,
    실시간 해양 구조물에 대한 기체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  48. 제 36항에 있어서,
    상기 제 4단계는,
    상기 해양 구조물이 선박인 경우,
    상기 예측된 해양 구조물의 반응에 대한 데이터에 따라, 추진력과 상기 내외력과의 합력이 목표하는 진행방향이 될 수 있도록 러더의 방향 및 트러스터와 프로펠러의 RPM을 제어하는 것을 특징으로 하는,
    실시간 해양 구조물에 대한 기체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  49. 제 36항에 있어서,
    상기 해양 구조물이 일시적 고정 구조물인 경우,
    상기 예측된 해양 구조물의 반응에 대한 데이터에 따라, 상기 내외력과의 합력이 최소가 되어 현 위치를 유지하도록 트러스터를 제어하는 것을 특징으로 하는,
    실시간 해양 구조물에 대한 기체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  50. 제 36항에 있어서,
    상기 해양 구조물는, 헬리덱(helideck)을 구비하되,
    상기 제 4단계는,
    상기 헬리덱의 평형을 유지 또는 헬기 이착륙시 충격을 완화할 수 있도록 DP(Dynamic Positioning) 및 DM(Dynamic Motion)을 통해 상기 해양 구조물의 자세를 제어하거나, 6자유도의 각도를 조절하여 상기 해양 구조물의 무게 중심을 변화 시키고, 상기 헬리덱의 평형 상태 정보를 상기 데이터베이스에 저장하고,
    해양 구조물의 작업 목적 기능(헬기 이착륙, Separator, 액화공정 등)에 맞춰 평형을 유지할 수 있도록 트림(trim)을 포함하는 6자유도의 각도를 조절하여 상기 해양 구조물의 무게 중심을 변화시키고 평형 상태를 유지 시키는 것을 특징으로 하는 실시간 해양 구조물에 대한 기체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  51. 제 50항에 있어서,
    상기 데이터베이스는 통신부를 통하여 외부의 구조정보서버로 상기 헬리덱의 평형 상태 정보를 송신하며,
    상기 구조정보서버는 복수의 해양 구조물 중에서 헬기가 이착륙할 수 있는 헬리덱의 평형 상태 정보를 보유한 해양 구조물의 위치 정보를 헬기로 제공하는 것을 특징으로 하는,
    실시간 해양 구조물에 대한 기체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  52. 제 36항에 있어서,
    상기 제 2단계는,
    계측기기에 의해 상기 해양 구조물로부터 원거리의 풍향, 풍속, 기온, 습도, 기압, 태양복사선, 무기이온, 이산화탄소, 분진, 방사능 또는 오존 중 적어도 하나 이상을 계측하고 상기 데이터베이스에 저장하는 제 2-1단계를 더 포함하되
    상기 계측기기는 풍속계, 풍향계, 습도계, 온도계, 기압계, 일사계, 대기gassol 자동채취기, CO2flux측정장비, 대기분진채집기, air sampler 또는 오존분석기 중 적어도 어느 하나 이상인 것을 특징으로 하는,
    실시간 해양 구조물에 대한 기체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  53. 제 36항에 있어서,
    상기 해양 구조물는 발라스트 탱크를 구비하며,
    상기 발라스트 탱크 내부의 슬로싱 현상을 감소시키기 위하여, 상기 발라스트 탱크의 양 측면 각각에 구비되는 슬로싱억제부를 포함하는 것을 특징으로 하는,
    실시간 해양 구조물에 대한 기체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  54. 제 53항에 있어서
    상기 슬로싱억제부는 상기 발라스트 탱크의 일 수평 단면에 있어서 상기 단면의 개방 면적을 좁힘으로써 슬로싱 현상을 억제하는 것을 특징으로 하는
    실시간 해양 구조물에 대한 기체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  55. 제 36항에 있어서,
    상기 해양 구조물는 발라스트 탱크를 구비하며,
    상기 제4단계는,
    상기 기울기가 발생한 경우, 기울어진 방향의 반대쪽으로 상기 발라스트 탱크에 적재된 발라스트 수(水)를 이동시켜 상기 해양 구조물의 자세를 제어하는 것을 특징으로 하는
    실시간 해양 구조물에 대한 기체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  56. 제 55항에 있어서,
    상기 발라스트 탱크는,
    상기 발라스트 탱크 내부에 구획을 나누는 격벽을 구비하며,
    상기 격벽에는 타 구획으로 상기 발라스트 수(水)를 이동시키기 위한 개폐부를 설치하고, 상기 개폐부의 내부에는 상기 발라스트 수의 이동 속도 및 이동 방향을 제어하는 펌프가 설치된 것을 특징으로 하는,
    실시간 해양 구조물에 대한 기체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  57. 제 36항에 있어서,
    상기 2단계에서의 내외력의 측정 데이터를 외부 기상정보서버에 전송하고, 상기 기상정보서버는 인공위성으로부터 수신된 기상정보를 상기 내외력의 측정 데이터와 비교하여 오차를 수정한 기상정보수정데이터를 저장하는 것을 특징으로 하는
    실시간 해양 구조물에 대한 기체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  58. 제 57항에 있어서,
    상기 기상정보서버에 접속된 외부 사용자단말기의 요청에 따라, 상기 기상정보수정데이터를 상기 외부 사용자단말기에 제공하는 것을 특징으로 하는
    실시간 해양 구조물에 대한 기체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  59. 수조 또는 풍동에서 선형 시험을 통하여 해양 구조물 외부 기체의 흐름이 해양 구조물에 미치는 내외력에 대한 데이터 및 상기 내외력에 따른 상기 해양 구조물의 반응에 대한 데이터를 축적하여 룩업테이블을 생성하고 상기 룩업테이블을 데이터베이스에 저장하는 제 1단계;
    해양 구조물의 실제 항해에 있어서 비행시간법(Time-of-Flight Method)을 이용하여 상기 내외력을 측정하여 상기 데이터베이스에 저장하는 제 2단계;
    제 2단계의 내외력의 측정 데이터를 제 1단계의 룩업테이블에 축적된 내외력에 대한 데이터와 비교하여, 해양 구조물의 반응에 대한 데이터를 예측하는 제3단계;
    실제 해양 구조물의 반응을 측정하는 제3-1단계;
    상기 제3-1단계에서 측정된 해양 구조물의 반응에 대한 데이터와 제3단계에서 예측된 해양 구조물의 반응에 대한 데이터를 비교하여, 그 차이가 발생된 경우 제3-1단계의 해양 구조물의 반응에 대한 데이터로 제1단계에서 생성된 룩업테이블에 있어서의 해양 구조물의 반응에 대한 데이터를 수정하는 제3-2단계;
    상기 룩업테이블에 축적된 데이터를 가상의 시뮬레이션을 통하여 해양 구조물에 대한 유지보수 데이터를 획득하는 제 4단계; 및
    상기 가상의 시뮬레이션의 실계측 데이터를 반영하여, 상기 가상 시뮬레이션의 결과인 반응결과수치를 실시간 해양 구조물의 반응 실계측 수치와 비교하고, 상기 해양 구조물의 반응에 대한 데이터를 수정하거나 상기 수정된 데이터를 반영하여 수치모델을 수정 및 보완하는 제 5단계;를 포함하는 것을 특징으로 하는,
    실시간 해양 구조물에 대한 기체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치의 예측 모니터링을 통한 유지보수정보 제공 방법
  60. 제 59항에 있어서,
    상기 제 4단계 이후에, FSI프로그램(Fluid Structure Interaction)에 의해 상기 해양 구조물 제어정보를 시뮬레이터로 생성하고, 상황인식 미들웨어에 의해 상기 시뮬레이터를 상기 제3-1단계에서 획득한 상기 해양 구조물의 실제 반응에 대한 데이터와 실시간으로 연동시켜, 상기 해양 구조물을 자동으로 제어하는 알고리즘을 생성하는 단계;를 더 포함하고,
    상기 해양 구조물의 반응에 대한 데이터는,
    스트레인, 변형, 균열, 진동, 주파수, 부식, 침식 중 적어도 어느 하나를 포함하며,
    상기 제 4단계는, 유한요소해석법(FEM) 및 전산유체역학(CFD)를 이용한 3차원 수치해석(numerical analysis)프로그램이, 상기 해양 구조물의 거동 및 구조적 변화에 따라 발생할 수 있는 가스 누출, 가스 확산, 화재 또는 폭파 등의 가상상황 및 상기 가상상황에 따른 대응방안에 대한 데이터가 저장된 상황해석모듈과 연동되어 유지보수정보를 생성하는 것을 특징으로 하는,
    실시간 해양 구조물에 대한 기체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치의 예측 모니터링을 통한 유지보수정보 제공 방법
  61. 제 59항에 있어서,
    상기 제 4단계의 유지보수 데이터는,
    상기 해양 구조물에 구비된 개별 구조물의 미리 설정된 중요도에 따라 구별되어 획득되는 것을 특징으로 하는,
    실시간 해양 구조물에 대한 기체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치의 예측 모니터링을 통한 유지보수정보 제공 방법
  62. 제 59항에 있어서,
    상기 유지보수 데이터는,
    유지보수가 필요한 위치정보, 유지보수 비용 정보, 유지보수 소요시간 정보 또는 구조물별 잔여수명 정보 중 적어도 어느 하나를 포함하는 것을 특징으로 하는,
    실시간 해양 구조물에 대한 기체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치의 예측 모니터링을 통한 유지보수정보 제공 방법.
  63. 수조 또는 풍동에서 선형 시험을 통하여 해양 구조물 외부 유체의 흐름이 해양 구조물에 미치는 내외력에 대한 데이터 및 상기 내외력에 따른 상기 해양 구조물의 반응에 대한 데이터를 축적하여 룩업테이블을 생성하고 상기 룩업테이블을 데이터베이스에 저장하는 제 1단계;
    해양 구조물의 실제 항해에 있어서 비행시간법(Time-of-Flight Method)을 이용하여 상기 내외력을 측정하여 상기 데이터베이스에 저장하는 제 2단계;
    제 2단계의 내외력의 측정 데이터를 제 1단계의 룩업테이블에 축적된 내외력에 대한 데이터와 비교하여, 해양 구조물의 반응에 대한 데이터를 예측하는 제3단계;
    상기 해양 구조물의 예측된 반응에 대한 데이터를 이용하여 해양 구조물의 자세 또는 항해 경로를 실시간으로 제어하는 제 4단계;
    를 포함하는
    실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  64. 제 63항에 있어서,
    상기 제3단계는,
    상기 해양 구조물의 실제 반응을 측정하는 제3-1단계; 및
    상기 제3-1단계에서 측정된 상기 해양 구조물의 반응에 대한 데이터와 제3단계에서 예측된 상기 해양 구조물의 반응에 대한 데이터가 불일치하는 경우, 제3-1단계의 해양 구조물의 반응에 대한 데이터로 제1단계에서 생성된 상기 룩업테이블에 있어서의 상기 해양 구조물의 반응에 대한 데이터를 수정 또는 상기 수정된 데이터를 반영하여 수치모델을 수정 및 보완하는 3-2단계;
    를 더 포함하는 것을 특징으로 하는,
    실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  65. 제 64항에 있어서,
    상기 해양 구조물의 반응에 대한 데이터의 수정은,
    CFD, 유한요소법(FEA), IFEM(Finite Element Method) 또는 FSI를 포함하는 수치모델 기반의 시뮬레이터에 의하여 이루어지는 것을 특징으로 하는,
    실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  66. 제 63항에 있어서,
    상기 제 2단계는,
    상기 해양 구조물의 측면에 마련된 계측기기를 통하여 유체에 의한 내외력을 측정하되,
    상기 계측기기는 전기식 센서 또는 광학 센서인 것을 특징으로 하는,
    실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  67. 제 63항에 있어서,
    상기 제 2단계는,
    IMU를 이용하여 유체의 흐름이 해양 구조물에 미치는 내외력을 실제로 측정하는 것을 특징으로 하는,
    실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  68. 제 63항에 있어서,
    상기 제 3단계에서의 상기 해양 구조물의 반응에 대한 데이터는,
    상기 해양 구조물이 선박인 경우 상기 선박의 진행방향, 전후좌우 기울기, 흘수 또는 트림 중 적어도 하나 이상을 포함하는 것 특징으로 하는,
    실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  69. 제 63항에 있어서,
    제 3단계에서의,
    상기 해양 구조물의 반응에 대한 데이터는,
    상기 해양 구조물이 일시적 고정 구조물인 경우 상기 구조물의 운용방향, 전후 좌우 기울기, 흘수 중 적어도 하나 이상을 포함하는 것 특징으로 하는,
    실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  70. 제 63항에 있어서,
    제 2단계는,
    수심 별로 조류 및 해류의 공간 및 시간에 따른 방향과 속도를 측정하는 것을 특징으로 하는,
    실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  71. 제 63항에 있어서,
    제 2단계는,
    유체의 흐름에 의한 해양 구조물의 고유주파수, 조화주파수 및 유체특성을 포함하는 데이터를 측정하는 것을 특징으로 하는,
    실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  72. 제 63항에 있어서,
    제 1단계는,
    상기 룩업테이블이 저장되는 데이터베이스는, 상기 해양 구조물에 구비된 항해기록장치(VDR)인 것을 특징으로 하는,
    실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  73. 제 63항에 있어서,
    상기 해양 구조물이 일시적 고정 구조물인 경우,
    상기 룩업테이블은 1년 단위의 시(時)계열적 데이터로 기록되며,
    전년도까지의 축적된 1년 단위의 시(時)계열적 데이터와의 비교를 통해 상기 룩업테이블을 수정하는 것을 특징으로 하는,
    실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  74. 제 63항에 있어서,
    상기 제 4단계는
    러더(rudder), 트러스터(thruster), 프로펠러, 돛, 연 또는 풍선 중 적어도 어느 하나를 이용하여 해양 구조물의 자세 또는 항해 경로를 실시간으로 제어하는 것을 특징으로 하는,
    실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  75. 제 63항에 있어서,
    상기 제 4단계는,
    상기 해양 구조물이 선박인 경우,
    상기 예측된 해양 구조물의 반응에 대한 데이터에 따라, 추진력과의 상기 내외력과의 합력이 목표하는 진행방향이 될 수 있도록 러더의 방향을 제어하는 것을 특징으로 하는,
    실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  76. 제 63항에 있어서,
    상기 해양 구조물이 일시적 고정 구조물인 경우,
    상기 예측된 해양 구조물의 반응에 대한 데이터에 따라, 상기 내외력과의 합력이 최소가 되어 현 위치를 유지하도록 트러스터를 제어하는 것을 특징으로 하는,
    실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  77. 제 63항에 있어서,
    상기 해양 구조물은, 헬리덱(helideck)을 구비하되,
    상기 제 4단계는,
    상기 헬리덱의 평형을 유지 또는 헬기 이착륙시 충격을 완화할 수 있도록 DP(Dynamic Positioning) 및 DM(Dynamic Motioning)을 통해 상기 해양 구조물의 자세를 제어하거나, 6자유도의 각도를 조절하여 상기 해양 구조물의 무게 중심을 변화 시키고, 상기 헬리덱의 평형 상태 정보를 상기 데이터베이스에 저장하고,
    해양 구조물의 작업 목적 기능(헬기 이착륙, Separator, 액화공정 등)에 맞춰 평형을 유지할 수 있도록 트림(trim)을 포함하는 6자유도의 각도를 조절하여 상기 해양 구조물의 무게 중심을 변화시키고, 평형 상태를 유지 시키는 것을 특징으로 하는 실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  78. 제 77항에 있어서,
    상기 해양 구조물의 자세를 제어함에 따른 상기 헬리덱의 평형 상태 정보를 상기 데이터베이스에 저장하되,
    상기 데이터베이스는 통신부를 통하여 외부의 구조정보서버로 상기 헬리덱의 평형 상태 정보를 송신하며,
    상기 구조정보서버는 복수의 해양 구조물 중에서 헬기가 이착륙할 수 있는 헬리덱의 평형 상태 정보를 보유한 해양 구조물의 위치 정보를 헬기로 제공하는 것을 특징으로 하는,
    실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  79. 제 63항에 있어서,
    상기 유체의 흐름이 해양 구조물에 미치는 내외력에 대한 데이터는,
    상기 해양 구조물의 측면에 설치된 압력센서에 의해 측정되는, 해류 및 조류의 벡터에 대한 데이터인 것을 특징으로 하는,
    실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  80. 제 79항에 있어서,
    상기 압력센서는 복수개로 구비되며, 상기 해양 구조물의 측면에 일정 간격으로 설치되는 것을 특징으로 하는,
    실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  81. 제 79항에 있어서,
    상기 압력센서는 복수개로 구비되며, 상기 해양 구조물의 측면에 높이 차이를 두어 설치하되,
    상기 압력센서로부터의 데이터 측정 유무를 분석하여, 최상단에 위치한 압력센서로부터의 데이터를 통해 파고 데이터를 획득하는 것을 특징으로 하는,
    실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  82. 제 81항에 있어서,
    상기 복수 개의 압력센서 중 적어도 3개 이상의 압력센서를 하나의 3차원압력센서모듈로 형성하되,
    상기 3차원압력센서모듈은 해류 및 조류의 3차원 벡터 정보를 획득하는 것을 특징으로 하는
    실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  83. 제 63항에 있어서,
    상기 제 2단계는,
    기상측정장비에 의해 상기 해양 구조물로부터 원거리의 파랑, 파고, 파도의 주기, 파도의 속도 또는 파도의 방향 중 적어도 하나 이상을 계측하고 상기 데이터베이스에 저장하는 제 2-1단계를 더 포함하되
    상기 기상측정장비는 웨이브레이더(wave radar), directional waverider, sea level monitor, 초음파 조위계, 풍향풍속계 또는 초음파 파고계 중 적어도 어느 하나 이상인 것을 특징으로 하는,
    실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  84. 제 63항에 있어서,
    상기 해양 구조물은 발라스트 탱크를 구비하며,
    상기 발라스트 탱크 내부의 슬로싱 현상을 감소시키기 위하여, 상기 발라스트 탱크의 양 측면 각각에 구비되는 슬로싱억제부를 포함하는 것을 특징으로 하는,
    실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  85. 제 84항에 있어서
    상기 슬로싱억제부는 상기 발라스트 탱크의 일 수평 단면에 있어서 상기 단면의 개방 면적을 좁힘으로써 슬로싱 현상을 억제하는 것을 특징으로 하는
    실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  86. 제 63항에 있어서,
    상기 해양 구조물은 발라스트 탱크를 구비하며,
    상기 제4단계는,
    상기 기울기가 발생한 경우, 기울어진 방향의 반대쪽으로 상기 발라스트 탱크에 적재된 발라스트 수(水)를 이동시켜 상기 해양 구조물의 자세를 제어하는 것을 특징으로 하는
    실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  87. 제 86항에 있어서,
    상기 발라스트 탱크는,
    상기 발라스트 탱크 내부에 구획을 나누는 격벽을 구비하며,
    상기 격벽에는 타 구획으로 상기 발라스트 수(水)를 이동시키기 위한 개폐부를 설치하고, 상기 개폐부의 내부에는 상기 발라스트 수의 이동 속도 및 이동 방향을 제어하는 펌프가 설치된 것을 특징으로 하는,
    실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  88. 제 63항에 있어서,
    상기 2단계에서의 내외력의 측정 데이터를 외부 기상정보서버에 전송하고, 상기 기상정보서버는 인공위성으로부터 수신된 기상정보를 상기 내외력의 측정 데이터와 비교하여 오차를 수정한 기상정보수정데이터를 저장하는 것을 특징으로 하는
    실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  89. 제 88항에 있어서,
    상기 기상정보서버에 접속된 외부 사용자단말기의 요청에 따라, 상기 기상정보수정데이터를 상기 외부 사용자단말기에 제공하는 것을 특징으로 하는
    실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감 및 안전운용 방법
  90. 수조 또는 풍동에서 선형 시험을 통하여 해양 구조물 외부 유체의 흐름이 해양 구조물에 미치는 내외력에 대한 데이터 및 상기 내외력에 따른 상기 해양 구조물의 반응에 대한 데이터를 축적하여 룩업테이블을 생성하고 상기 룩업테이블을 데이터베이스에 저장하는 제 1단계;
    해양 구조물의 실제 항해에 있어서 비행시간법(Time-of-Flight Method)을 이용하여 상기 내외력을 측정하여 상기 데이터베이스에 저장하는 제 2단계;
    제 2단계의 내외력의 측정 데이터를 제 1단계의 룩업테이블에 축적된 내외력에 대한 데이터와 비교하여, 해양 구조물의 반응에 대한 데이터를 예측하는 제3단계;
    실제 해양 구조물의 반응을 측정하는 제3-1단계;
    상기 제3-1단계에서 측정된 해양 구조물의 반응에 대한 데이터와 제3단계에서 예측된 해양 구조물의 반응에 대한 데이터를 비교하여, 그 차이가 발생된 경우 제3-1단계의 해양 구조물의 반응에 대한 데이터로 제1단계에서 생성된 룩업테이블에 있어서의 해양 구조물의 반응에 대한 데이터를수정하는 제3-2단계;
    상기 룩업테이블에 축적된 데이터를 가상의 시뮬레이션을 통하여 해양 구조물에 대한 유지보수 데이터를 획득하는 제 4단계; 및
    상기 가상의 시뮬레이션의 실계측 데이터를 반영하여, 상기 가상 시뮬레이션의 결과인 반응결과수치를 실시간 해양 구조물의 반응 실계측 수치와 비교하고, 상기 해양 구조물의 반응에 대한 데이터를 수정하거나 상기 수정된 데이터를 반영하여 수치모델을 수정 및 보완하는 제 5단계;를 포함하는 것을 특징으로 하는,
    실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치의 예측 모니터링을 통한 유지보수정보 제공 방법
  91. 제 90항에 있어서,
    상기 제 4단계 이후에, FSI프로그램(Fluid Structure Interaction)에 의해 상기 해양 구조물 제어정보를 시뮬레이터로 생성하고, 상황인식 미들웨어에 의해 상기 시뮬레이터를 상기 제3-1단계에서 획득한 상기 해양 구조물의 실제 반응에 대한 데이터와 실시간으로 연동시켜, 상기 해양 구조물을 자동으로 제어하는 알고리즘을 생성하는 단계;를 더 포함하고,
    상기 해양 구조물의 반응에 대한 데이터는,
    스트레인, 변형, 균열, 진동, 주파수, 부식, 침식 중 적어도 어느 하나를 포함하며,
    상기 제 4단계는, 유한요소해석법(FEM) 및 전산유체역학(CFD)를 이용한 3차원 수치해석(numerical analysis)프로그램이, 상기 해양 구조물의 거동 및 구조적 변화에 따라 발생할 수 있는 가스 누출, 가스 확산, 화재 또는 폭파 등의 가상상황 및 상기 가상상황에 따른 대응방안에 대한 데이터가 저장된 상황해석모듈과 연동되어 유지보수정보를 생성하는 것을 특징으로 하는,
    실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치의 예측 모니터링을 통한 유지보수정보 제공 방법
  92. 제 90항에 있어서,
    상기 제 4단계의 유지보수 데이터는,
    상기 해양 구조물에 구비된 개별 구조물의 미리 설정된 중요도에 따라 구별되어 획득되는 것을 특징으로 하는,
    실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치의 예측 모니터링을 통한 유지보수정보 제공 방법
  93. 제 90항에 있어서,
    상기 유지보수 데이터는,
    유지보수가 필요한 위치정보, 유지보수 비용 정보, 유지보수 소요시간 정보 또는 구조물별 잔여수명 정보 중 적어도 어느 하나를 포함하는 것을 특징으로 하는,
    실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치의 예측 모니터링을 통한 유지보수정보 제공 방법
  94. Radar, IMU, GPS 계측 기법, X-band Radar를 이용하여 충돌 방지뿐만 아니라 파랑, 파고를 측정 및 Wave motion을 예측하고, 적어도 하나 이상의 IMU를 이용하여 해양 구조물의 6자유도 모션 뿐만 아니라 Hogging, Sagging, Torsion까지 계측하며, 시간과 공간정보 취득 도구를 이용하여 해양 구조물의 이동 거리 및 좌표 계측 위성의 환경외력 데이터를 Radar 및 IMU의 데이터와 연동하여 해양 구조물의 피로 최소화하고, EEOI/EEDI/DP Boundary/MC Boundary/Risers(SCR, TTR, Tendon) /Lowering/ROV/Drill Rig에 반영하여 예측 프로시저의 알고리즘과 시뮬레이터로 대체하는 것을 특징으로 하는, 실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치의 예측 모니터링을 통한 제어 방법
  95. 제 94 항에 있어서,
    Radar를 이용하여 파고, 파랑, 주기, 파도의 속도 및 방향을 측정하되, Radar의 Polar 이미지 수집은 32개로 한정되지 않으며, 실시간 동적 이미지 프로세싱을 하기 위해서 새로운 Polar 이미지를 받는 동시에 첫번째 혹은 제일 오래된 Polar 이미지를 삭제하여 실시간 동적 이미지 프로세싱을 하는 것을 특징으로 하는, 실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치의 예측 모니터링을 통한 제어 방법
  96. 제 94 항에 있어서,
    충돌 방지, 파랑/파고 측정 및 Wave motion 예측 기능을 연동하는 것을 특징으로 하는, 실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치의 예측 모니터링을 통한 제어 방법
  97. 제 94 항에 있어서,
    기존의 X-Band 또는 S-Band 충돌방지용 Radar를 이용하고, RF 1x2 Splitter, RF 증폭기 또는 광신호 전송 및 증폭기능을 활용하여 파랑, 파고, 주기, 발향계측 결과를 추출하는 것을 특징으로 하는, 실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치의 예측 모니터링을 통한 제어 방법
  98. 제 94 항에 있어서,
    6자유도 Motion Compensated X/S-Band Wave Radar, Wave Height Measuring Sensor, Doppler, Time of Flight 및 영상 이음(Image Overlay)방식을 이용하는 것을 특징으로 하는, 실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치의 예측 모니터링을 통한 제어 방법
  99. 시간과 공간정보 취득 도구, Smart IMU를 해양 구조물의 상황인식화 한 6자유도 모션/반응자세(response) 계측 및 DB로 연동시키어, motion Control을 하여, 환경외력계측 연동 혹은 무연동하는 인공지능의 EEOI/DPS/DMS 용 예측 Monitoring, 예측 Adviser System, and/or 예측 Automated Control System을 활용 또는 정량적인 EEDI의 계측 및 검증하는 것을 특징으로 하는, 환경 외력의 통합 모니터링을 통한 해양 구조물의 우선순위에 따른 제어 방법
  100. 제 99 항에 있어서,
    DP Boundary 조건 충족 제어시, 상기 해양 구조물들 중에 우선 대상 구조물의 운영요구상 긴급 및 중요도의 우선 순위를 반영하여 피로 혹은 6자유도 운동 최소화의 운영요구상 긴급 및 중요도의 우선 순위를 결정하고, DPS 또는 EEOI의 제어 효율이 가장 크게 되도록 운용하고, 정량적인 EEDI의 검증 및 계측하는 것을 특징으로 하는, 환경 외력의 통합 모니터링을 통한 해양 구조물의 우선순위에 따른 제어 방법
  101. 제 99 항에 있어서,
    EEOI/EEDI 조건 충족 제어 시, 상기 해양 구조물 중에 우선 대상 구조물들의 순위를 반영하여 피로 최소화 등의 긴급성과 중요도의 우선 순위를 결정하고, DPS/MCS 또는 EEOI의 제어 효율이 가장 크게 되도록 운영 또는 정량적인 EEDI의 계측 및 검증 하는 것을 특징으로 하는, 환경 외력의 통합 모니터링을 통한 해양 구조물의 우선순위에 따른 제어 방법
  102. 구조물에 가해지는 유체역학, 기체역학의 영향에 반응한 각 개별적 혹은 통합적인 조선해양 복합 구조물들의 고유주파수 및 조화주파수를 회피 또는 환경외력이 구조물에 가해지는 조건을 변경하여 구조물의 수명을 연장하는 것을 특징으로 하는, 환경 외력의 통합 모니터링을 통한 해양 구조물의 우선순위에 따른 제어 방법
  103. 제 102 항에 있어서,
    구조물에 가해지는 환경외력, 복합구조물로 인가되는 복합에너지와 보유되어 있는 관성 및 탄성 운동에너지를 실시간 피로 실 계측 혹은 산술의 수치 결과를 6자유도 모션의 움직임계측과 연동을 통하여 상황판단의 긴급성과 중요도 등의 우선순위 혹은 중요도에 의거되는 구조물의 독립적 혹은 복합적으로 인가되는 Yield Stress를 최소화하고 요구되는 구조물의 독립적 혹은 복합적으로 인가되는 피로를 최소화하여 구조물의 수명을 연장하는 것을 특징으로 하는, 환경 외력의 통합 모니터링을 통한 해양 구조물의 우선순위에 따른 제어 방법
  104. 대상 구조물의 결함(Integrity)을 계측하여 실시간으로 측출하고, 대상 구조물의 수명을 정확히 예측함으로써 Condition Based Maintenance를 할 수 있고, 이상 추위을 반영하여 수동 또는 자동으로 적절한 해양 구조물의 정적 및 동적 포지셔닝 제어 및 잔류 피로를 반영한 운영 관리를 하는 것을 특징으로 하는,환경 외력의 통합 모니터링을 통한 해양 구조물의 우선순위에 따른 제어 방법
  105. 제 104 항에 있어서,
    계류시, Mooring Line Tension Monitoring 을 연계하여, 환경외력을 반영한 DP예측 모니터링 및 예측 제어, MC 예측 모니터링 및 예측 제어와 EEOI를 감안하는 구조물의 운동 및 자세 제어 혹은 정량적인 EEDI를 계측하는 것을 특징으로 하는, 환경 외력의 통합 모니터링을 통한 해양 구조물의 우선순위에 따른 제어 방법
  106. 제 104 항에 있어서,
    해저 구조물에 광계측방식의 진동 (예, DAS) 계측접목 하여, 구조물의 진동 계측과, 기존 스트레인 혹은 가속도계측을 통한 구조의 변형률, 변형상태와 연동하여 가해지는 환경외력 (예, 조류, 해류의 외력의 vector) 와 이에 인한 구조물의 Response의 vector를 축출하는 것을 특징으로 하는, 환경 외력의 통합 모니터링을 통한 해양 구조물의 우선순위에 따른 제어 방법
  107. 제 104 항에 있어서,
    환경외력 계측과 연동할 경우, CFD, FEA &/or FSI 입력 조건을 최대로 상황인식 기능의 계측 & DB화하고, CFD, FEA와 Coupled response Model, & FSI (환경외력과 환경외력에 반응한 구조물 운동 model) 를 활용하는 것을 특징으로 하는,
    환경 외력의 통합 모니터링을 통한 해양 구조물의 우선순위에 따른 제어 방법
  108. 실시간 상황인식, 과거기록의 상황재현과 향우 예측기록 경우 수 대비의 상황예측을 구현하기 위해 필요한 상황인식용 계측결과 취득과 DB저장 방식을 구현하는 것을 특징으로 하는, 환경 외력의 통합 모니터링을 통한 해양 구조물의 우선순위에 따른 제어 방법
  109. 제 108 항에 있어서,
    상황인식 미들웨어와 웹기반 상황인식 모니터링 프로그램을 활용한 실시간 윕기반 시스템을 구축하는 것을 특징으로 하는, 환경 외력의 통합 모니터링을 통한 해양 구조물의 우선순위에 따른 제어 방법
  110. 제 108 항에 있어서,
    상황인식 미들웨어 또는 유사한 기능의 소프트워어 연동을 모든 상황인식 기능의 계측결과를 실시간 Mathematical Models (예, CFD, FEA &/or FSI...) 연동하여 최적화하는 기반 Tool로 할용할 수 있고, 또한 이 최적화한 Mathematical models을 실 계측을 반영한 알고리즘화 및 Simulation으로 진화시키는 것을 특징으로 하는, 환경 외력의 통합 모니터링을 통한 해양 구조물의 우선순위에 따른 제어 방법
  111. 제 108 항에 있어서,
    단순 계측된 Monitoring기능 이외에도, 실 계측 반영 혹은 수치계산 반영 완성된 알고리즘을 연동하여 인공지능으로 가공된 예측 Monitoring기능 및 예측 제어시스템 혹은 Simulation 을 구현하는 것을 특징으로 하는, 환경 외력의 통합 모니터링을 통한 해양 구조물의 우선순위에 따른 제어 방법
  112. 제 108 항에 있어서,
    통합 계측된 상황인식하는 Database 를 VDR (Voyage Data Recorder)에 저장 혹은 연동하여, Hydro-Dynamic &/or Aero-Dynamic Energy (예, 파도의 방향 및 속도 혹은 풍향과 풍속의 vector 와 이에 인한 구조물의 Response의 vector)을 축출하는 것을 특징으로 하는,
    환경 외력의 통합 모니터링을 통한 해양 구조물의 우선순위에 따른 제어 방법
  113. Mathematical Modeling, Mathematical Models (예, CFD, FEA &/or FSI) Simulation 결과 (Hydro & Aero-dynamic 정보에 의한)를 CDF 해석에 반영하여 CDF Model 최적화 & Algorithm으로 진화하고, 해석 & 진화된 결과는 Look-up Table로 VDR 혹은 별도의 서버에 축적하고, 축적된 data는 가상의 Simulation을 통하여 구조 진단 및 작업 평가 기능을 수행하는 것을 특징으로 하는, 환경 외력의 통합 모니터링을 통한 해양 구조물의 우선순위에 따른 제어 방법
  114. 제 113 항에 있어서,
    Experienced Reference data를 활용하여 예측 (prediction) 제어를 수행하는 것을 특징으로 하는, 환경 외력의 통합 모니터링을 통한 해양 구조물의 우선순위에 따른 제어 방법
  115. 제 113 항에 있어서,
    Black Box 기능을 추가하여 유무선 네트워크를 구성하는 것을 특징으로 하는,
    환경 외력의 통합 모니터링을 통한 해양 구조물의 우선순위에 따른 제어 방법
  116. 제 113 항에 있어서,
    보정된 Time Tag 기능을 추가하는 것을 특징으로 하는, 환경 외력의 통합 모니터링을 통한 해양 구조물의 우선순위에 따른 제어 방법
  117. 제 113 항에 있어서,
    축적된 인공지능을 포함한 EMS (Environment Monitoring System; 환경외력 모니터링 시스템) & MMS (Motion Monitoring System; 운동 모니터링 시스템) 에서 계측된 data 대비 구조해석 Algorithm 기능을 추가하는 것을 특징으로 하는, 환경 외력의 통합 모니터링을 통한 해양 구조물의 우선순위에 따른 제어 방법
  118. 제 113 항에 있어서,
    단순 계측된 Monitoring기능 이외에도, 실계측 반영완성된 알고리즘을 인공지능으로 반영하여 가공된 예측 Monitoring기능 및 예측 제어시스템(예, Utilize the resulted influence to 6 DoF Motion & Displacement for DPS & EEOI)을 저장 기록하는 것을 특징으로 하는, 환경 외력의 통합 모니터링을 통한 해양 구조물의 우선순위에 따른 제어 방법
  119. Hydro-Elastic에 의한 Slamming &/or Sloshing과 Aero-Elastic에 의한 화재/폭파 계측기법으로 Optical & Electric Extensometer, PIV, PTV, BP Filter Energy intensity, Strain Gage, Pressure Sensor, Ultrasonic 계측 방식/DAS- excitation & monitoring을 활용하는 것을 특징으로 하는,
    환경 외력의 통합 모니터링을 통한 해양 구조물의 우선순위에 따른 제어 방법
  120. 제 119 항에 있어서,
    Strain Sensor로 격벽구조의 변형을 측정하고, Global 계측을 위해서 Ultrasonic 계측 혹은 DAS- excitation 방식으로 monitoring하는 것을 특징으로 하는,
    환경 외력의 통합 모니터링을 통한 해양 구조물의 우선순위에 따른 제어 방법
  121. 제 119 항에 있어서,
    Wave에 의한 선체 격벽구조의 Response를 계측하고, 계측된 센서의 위치를 확인하여 Wave Height를 추출하는 것을 특징으로 하는, 환경 외력의 통합 모니터링을 통한 해양 구조물의 우선순위에 따른 제어 방법
  122. 구조물의 Embedded Sensor(Strain, Acceleration, Temperature)를 이용한 Monitoring 기술로서, 교량, 하수도, 상수도, 가스관, 기름관, 터널, 구조물 지지대 등의 구조물에 Tensioner를 인입하고, Tensioner에 인입된 Sensor를 통해 진동, 가속도, 위치, 연중/계절별 온도, 물성(stress 또는 stiffness)을 계측하여 구조물 안전 진단, 지진, 누수, 도난방지에 대한 Monitoring을 하는 것을 특징으로 하는, 환경 외력의 통합 모니터링을 통한 해양 구조물의 우선순위에 따른 제어 방법
  123. 해저, 지하철, 지하차도 건설 등 타공사 영향으로 일정기간 노출되는 구조물 및 배관의 안전성확보를 위한 누출사고 영향평가 해석 기술로서,
    CFD 이론을 이용한 밀폐 및 부분개방공간에서 가스폭발 피해예측을 해석하는 것을 특징으로 하는, 환경 외력의 통합 모니터링을 통한 해양 구조물의 우선순위에 따른 제어 방법
  124. 제 99 항에 있어서,
    Drill Rig/Riser 모니터링을 통하여 해양구조물의 가장 편한 자세를 설정 및 예측한 제어를 수행하되, 필요한 시간에 필요한 6자유도를 감안한 댐핑을 수행하는 것을 특징으로 하는,
    환경 외력의 통합 모니터링을 통한 해양 구조물의 우선순위에 따른 제어 방법
PCT/KR2013/004777 2012-05-12 2013-05-30 실시간 해양 구조물에 대한 기체역학적, 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감, 안전운용 및 유지보수정보 제공 시스템 및 방법 WO2013180496A2 (ko)

Priority Applications (12)

Application Number Priority Date Filing Date Title
AU2013268170A AU2013268170B2 (en) 2012-05-30 2013-05-30 System and method for providing information on fuel savings, safe operation, and maintenance by real-time predictive monitoring and predictive controlling of aerodynamic and hydrodynamic environmental internal/external forces, hull stresses, motion with six degrees of freedom, and the location of marine structure
EP13796337.7A EP2860489A4 (en) 2012-05-30 2013-05-30 SYSTEM AND METHOD FOR PROVIDING INFORMATION RELATED TO FUEL SAVING, SAFE OPERATION AND MAINTENANCE BY PREDICTIVE MONITORING AND PREDICTIVE CONTROL OF AERODYNAMIC AND HYDRODYNAMIC INTERNAL / EXTERNAL ENVIRONMENTAL ENGINES, HULL CAPACITIES, SIX-DEGREE FREEDOM MOVEMENT AND THE LOCATION OF A MARINE STRUCTURE
EP23156944.3A EP4239283A3 (en) 2012-05-30 2013-05-30 System and method for providing information on fuel savings, safe operation, and maintenance by real-time predictive monitoring and predictive controlling of aerodynamic and hydrodynamic environmental internal/external forces, hull stresses, motion with
EP20176395.0A EP3722744A1 (en) 2012-05-30 2013-05-30 System and method for providing information on fuel savings, safe operation, and maintenance by real-time predictive monitoring and predictive controlling of aerodynamic and hydrodynamic environmental internal/external forces, hull stresses, motion with six degrees of freedom, and the location of marine structure
JP2015514905A JP6223436B2 (ja) 2012-05-30 2013-05-30 海洋構造物の物理的変化をモニタリングするシステム、海洋構造物の物理的変化をモニタリングする方法、及び、海洋構造物に対する物理的変化の実時間モニタリングを通した制御方法
CN201380040663.XA CN104508422B (zh) 2012-05-30 2013-05-30 监视海洋结构物的物理变化的系统及方法
US14/555,928 US9580150B2 (en) 2012-05-30 2014-11-28 System and method for fuel savings and safe operation of marine structure
US15/407,849 US11034418B2 (en) 2012-05-30 2017-01-17 System and method for fuel savings and safe operation of marine structure
AU2017279830A AU2017279830B2 (en) 2012-05-30 2017-12-28 System and method for providing information on fuel savings, safe operation, and maintenance by real-time predictive monitoring and predictive controlling of aerodynamic and hydrodynamic environmental internal/external forces, hull stresses, motion with six degrees of freedom, and the location of marine structure
AU2020204051A AU2020204051B2 (en) 2012-05-30 2020-06-17 System and method for providing information on fuel savings, safe operation, and maintenance by real-time predictive monitoring and predictive controlling of aerodynamic and hydrodynamic environmental internal/external forces, hull stresses, motion with six degrees of freedom, and the location of marine structure
US17/315,289 US11976917B2 (en) 2012-05-12 2021-05-08 System and method for providing information on fuel savings, safe operation, and maintenance by real-time predictive monitoring and predictive controlling of aerodynamic and hydrodynamic environmental internal/external forces, hull stresses, motion with six degrees of freedom, and the location of marine structure
AU2022241564A AU2022241564A1 (en) 2012-05-30 2022-09-29 System and method for providing information on fuel savings, safe operation, and maintenance by real-time predictive monitoring and predictive controlling of aerodynamic and hydrodynamic environmental internal/external forces, hull stresses, motion with six degrees of freedom, and the location of marine structure

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
KR10-2012-0057754 2012-05-12
KR20120057755 2012-05-30
KR10-2012-0057753 2012-05-30
KR10-2012-0057755 2012-05-30
KR20120057754 2012-05-30
KR20120057753 2012-05-30
KR10-2012-0129441 2012-11-15
KR20120129441 2012-11-15
KR1020120149411A KR20130135721A (ko) 2012-05-30 2012-12-20 항해 또는 계류 중인 선박의 유체역학적 환경 내-외력, 선체 응력, 6자유도운동 및 표류 위치를 실시간 모니터링 및 제어 함을 통한 선박의 연료절감 및 안전운항 방법
KR10-2012-0149411 2012-12-20
KR1020120149412A KR20130135024A (ko) 2012-05-30 2012-12-20 항해 또는 계류 중인 선박의 공기역학적 환경 내-외력, 선체 응력, 6자유도운동 및 표류 위치를 실시간 모니터링 및 제어 함을 통한 선박의 연료절감 및 안전운항 방법
KR10-2012-0149412 2012-12-20
KR1020130061477A KR101472827B1 (ko) 2012-05-30 2013-05-30 해양 구조물의 물리적 변화를 실시간 모니터링 및 제어하는 시스템 및 그 방법
KR10-2013-0061759 2013-05-30
KR1020130061754A KR101529377B1 (ko) 2012-05-30 2013-05-30 실시간 해양 구조물에 대한 기체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감, 안전운용 및 유지보수정보 제공 방법
KR10-2013-0061477 2013-05-30
KR1020130061759A KR101529378B1 (ko) 2012-05-30 2013-05-30 실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치를 예측 모니터링 및 제어함을 통한 연료절감, 안전운용 및 유지보수정보 제공 방법
KR10-2013-0061754 2013-05-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/555,928 Continuation US9580150B2 (en) 2012-05-30 2014-11-28 System and method for fuel savings and safe operation of marine structure

Publications (2)

Publication Number Publication Date
WO2013180496A2 true WO2013180496A2 (ko) 2013-12-05
WO2013180496A3 WO2013180496A3 (ko) 2014-01-16

Family

ID=52464051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/004777 WO2013180496A2 (ko) 2012-05-12 2013-05-30 실시간 해양 구조물에 대한 기체역학적, 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감, 안전운용 및 유지보수정보 제공 시스템 및 방법

Country Status (6)

Country Link
US (3) US9580150B2 (ko)
EP (3) EP3722744A1 (ko)
JP (2) JP6223436B2 (ko)
CN (4) CN110422272A (ko)
AU (4) AU2013268170B2 (ko)
WO (1) WO2013180496A2 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104092727A (zh) * 2014-06-12 2014-10-08 中国石油集团东方地球物理勘探有限责任公司 一种基于3g虚拟专用网络的地震仪器远程支持系统及方法
US20150088346A1 (en) * 2012-05-30 2015-03-26 Cytroniq, Ltd. System and method for providing information on fuel savings, safe operation, and maintenance by real-time predictive monitoring and predictive controlling of aerodynamic and hydrodynamic environmental internal/external forces, hull stresses, motion with six degrees of freedom, and the location of marine structure
US20160055280A1 (en) * 2014-08-20 2016-02-25 Matthews-Daniel Company System for predictive failure analysis of offshore platform placement and safe recovery from rapid leg penetration incidents
WO2018199356A1 (ko) * 2017-04-26 2018-11-01 쎄딕 주식회사 웹기반 가상풍동을 이용한 유동장 자동해석 방법 및 시스템
CN111017258A (zh) * 2019-12-25 2020-04-17 中国航空工业集团公司西安飞机设计研究所 一种飞机疲劳验证谱试验的固定支持及状态设置方法
CN111814610A (zh) * 2020-06-24 2020-10-23 中海石油(中国)有限公司天津分公司 一种基于振动监测的海洋平台作业状态可视化方法
CN112329307A (zh) * 2020-11-06 2021-02-05 大唐环境产业集团股份有限公司 一种脱硝反应器结构智能设计系统的智能计算模块和方法
CN113998070A (zh) * 2021-11-22 2022-02-01 浙江欧佩亚海洋工程有限公司 一种海洋漂浮式风电机组模拟实验台

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102122771B1 (ko) * 2013-10-25 2020-06-26 삼성전자주식회사 인공지능 오디오 장치 및 그 동작 방법
US20170010180A1 (en) * 2014-04-03 2017-01-12 Halliburton Energy Services, Inc. Composite slickline cable integrity testing
AU2014224154B8 (en) * 2014-07-09 2015-07-02 Woodside Energy Technologies Pty Ltd System and method for heading control of a floating lng vessel using a set of real-time monitored cargo containment system strain data
AU2014224153B8 (en) * 2014-07-09 2015-07-02 Woodside Energy Technologies Pty Ltd System and method for heading control of a floating lng vessel using a set of real-time monitored hull integrity data
EP2993116B1 (en) * 2014-09-08 2020-10-28 Eniram OY A sensor device for providing marine vessel data
US10095817B2 (en) * 2014-11-13 2018-10-09 Autodesk, Inc. Determining wind loading of structures through wind flow simulation
WO2016085769A1 (en) * 2014-11-24 2016-06-02 Sikorsky Aircraft Corporation Multispectral sensor fusion system for platform state estimation
US10850813B2 (en) * 2015-01-20 2020-12-01 Saipem S.P.A. Supporting system for a floating vessel in shallow or very shallow water
WO2016166812A1 (ja) * 2015-04-14 2016-10-20 日本郵船株式会社 舶用機器の保守を支援する装置、プログラムおよび記録媒体
WO2016205550A1 (en) * 2015-06-16 2016-12-22 Aviation Communication & Surveillance Systems Llc Helideck surveillance transceiver
CN105203296B (zh) * 2015-09-18 2018-01-16 天津大学 倾角均匀来流海洋立管涡激‑参激耦合振动试验装置
CN105674895B (zh) * 2016-04-19 2018-11-27 福州大学 非接触测量拉索非线性动应变的计算方法
JP7030104B2 (ja) * 2016-07-06 2022-03-04 サイトロニック カンパニー リミテッド 冷熱を利用するシステム
CN106197784B (zh) * 2016-07-14 2019-01-29 中国科学院化学研究所 掺杂硫化锌在力致发光传感器中的应用及力致发光传感器及其制备方法以及它们的应用
CN109963778B (zh) * 2016-09-16 2021-08-06 应用物理技术公司 具有滚动预报显示的用于感测波浪和预报船舶运动的系统和方法
NO20161706A1 (en) * 2016-10-27 2018-04-30 7Waves As Motion tool
CN106768472A (zh) * 2016-12-06 2017-05-31 中国地质大学(武汉) 车载式钻机及井下光纤测温测气系统
CN106679761B (zh) * 2017-01-06 2019-04-02 国家海洋信息中心 海域综合水位实时预报的实现方法及系统
WO2018175663A2 (en) 2017-03-21 2018-09-27 Zora Energy Systems, Llc Systems and methods for shipyard manufactured and ocean delivered nuclear platform
CN109110073B (zh) * 2017-06-23 2020-05-12 上海交通大学 海洋浮式结构物参数共振运动的预警方法、装置及设备
US11443850B2 (en) 2017-06-27 2022-09-13 General Electric Company Max-margin temporal transduction for automatic prognostics, diagnosis and change point detection
KR101999732B1 (ko) * 2017-07-12 2019-07-15 (주)오트로닉스 초음파해류계와 연결되는 무선로거장치 및 그 동작 방법
CN107340090A (zh) * 2017-08-02 2017-11-10 中国计量大学 挡泥布状态监测系统和监测方法
US10920389B2 (en) * 2017-08-02 2021-02-16 Rowan Companies, Inc. Multi-stage coming off location technology
MX2020002445A (es) * 2017-09-08 2020-11-25 Maersk Drilling As Control de posicionamiento dinamico.
US11155324B2 (en) * 2017-09-13 2021-10-26 Hefring ehf. Methods and systems for wave slam monitoring of water vessels
CN108829717B (zh) * 2018-05-07 2021-10-08 西南石油大学 一种基于地震数据进行深水水道构型量化分析和形态模拟的数据库系统及方法
CN108828954B (zh) * 2018-08-15 2021-11-02 苏州佐竹冷热控制技术有限公司 气候风洞自适应预测控制系统及其控制方法
WO2020045756A1 (ko) * 2018-08-26 2020-03-05 주식회사 아이티공간 계선주 예지 보전 시스템 및 계선주 예지 보전 방법
EP3627479A1 (en) * 2018-09-19 2020-03-25 Offshore Certification Ltd. A system for simulating a maritime environment
US10872238B2 (en) 2018-10-07 2020-12-22 General Electric Company Augmented reality system to map and visualize sensor data
FR3088406B1 (fr) * 2018-11-12 2021-05-07 Naval Group Procédé de contrôle d'un réservoir cryogénique, réservoir cryogénique et bâtiment sous-marin correspondants
FR3088613B1 (fr) * 2018-11-15 2021-01-01 Gaztransport Et Technigaz Procede de gestion de la maintenance pour un navire
DK181059B1 (en) * 2018-11-16 2022-10-24 Maersk Drilling As Dynamic positioning control
CN109490906B (zh) * 2018-11-30 2022-12-16 武汉大学 一种基于激光雷达的船载波浪动态测量装置
CN110309521A (zh) * 2018-12-27 2019-10-08 大连船舶重工集团有限公司 一种基于流固耦合模拟的硬质风帆风振响应计算方法
CN109580057A (zh) * 2019-01-09 2019-04-05 武汉理工大学 基于埋入式光纤传感器的直升机旋翼载荷监测系统和方法
DE102019103305A1 (de) 2019-02-11 2020-08-13 Innogy Se Ankerseilsystem für eine Offshore-Vorrichtung
WO2020180818A1 (en) * 2019-03-01 2020-09-10 Re Vision Consulting, Llc System and method for wave prediction
JP6618063B1 (ja) * 2019-03-25 2019-12-11 華南理工大学 石油汚染水域を処理する現場制御設備
DE102019110506A1 (de) * 2019-04-23 2020-10-29 Innogy Se Gründung eines Offshore-Bauwerks mit einem Übertragungskabel und einem Schutzelement
US10852132B1 (en) * 2019-05-17 2020-12-01 Chunwei Zhang Fiber bragg grating inclination sensor
CN110488812A (zh) * 2019-07-25 2019-11-22 天津大学青岛海洋技术研究院 一种基于轴线车的海洋平台大型结构物模块移位搬运方法
CN110533005B (zh) * 2019-09-08 2022-07-12 东南大学 一种复杂海况下船体形变测量方法
JP2021075101A (ja) * 2019-11-06 2021-05-20 ヤマハ発動機株式会社 船体の姿勢制御システム及び船舶
KR102317411B1 (ko) * 2019-11-07 2021-10-27 삼성중공업 주식회사 디지털 트윈 시스템을 이용한 해양 구조물의 위험 예측 방법
CN110937082B (zh) * 2019-11-28 2021-11-09 哈尔滨工程大学 一种基于随机风场和海浪的船舶倾覆风险测试方法
TWI725677B (zh) * 2019-12-20 2021-04-21 財團法人船舶暨海洋產業研發中心 自航船舶的模擬系統及其運作方法
SE544356C2 (en) * 2020-01-15 2022-04-19 Saab Ab Arrangement and method for obtaining a quantity related to a temperature along a part of an optical fibre
CN111220308B (zh) * 2020-03-09 2021-05-25 大连理工大学 一种测量液体晃荡力装置
US11698323B2 (en) * 2020-03-17 2023-07-11 Palo Alto Research Center Incorporated Methods and system for determining a control load using statistical analysis
FR3110691B1 (fr) * 2020-05-20 2022-05-20 Gaztransport Et Technigaz Estimation d’une réponse en ballottement d’une cuve par un modèle statistique entraîné par apprentissage automatique
CN112241561A (zh) * 2020-06-30 2021-01-19 同恩(上海)工程技术有限公司 一种构件宏观应力指标的监测方法,系统以及存储介质
GB2597978B (en) * 2020-08-13 2023-01-25 Aker Solutions As Method of monitoring the loading of a subsea production system
CN112450924B (zh) * 2020-08-24 2023-06-23 杭州微策生物技术股份有限公司 一种涡旋检测装置
CN112027018A (zh) * 2020-08-30 2020-12-04 哈尔滨工程大学 一种水下核爆大型靶标模型实验装置
CN112163364B (zh) * 2020-10-29 2022-04-29 浙江大学 一种海洋环境下鱼群运动的流固耦合模拟方法
RU202702U1 (ru) * 2020-11-03 2021-03-03 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Имитатор морской качки
JP2022080529A (ja) 2020-11-18 2022-05-30 三菱造船株式会社 推定装置、推定方法及びプログラム
RU205463U1 (ru) * 2020-12-01 2021-07-15 Али Саламех Установка для испытаний соединений судовых корпусных конструкций на циклическую долговечность
KR102413399B1 (ko) * 2020-12-22 2022-06-28 전북대학교산학협력단 기계 학습 기반의 해양 플랜트 파이프라인 누출 진단 시스템
CN112857462A (zh) * 2021-02-26 2021-05-28 西南石油大学 一种海洋水合物固态流化开采中地质风险监测系统及方法
WO2022194852A1 (en) 2021-03-16 2022-09-22 Line Sandager Remote vessel-elevation survey system and method related thereto
CN113297810B (zh) * 2021-05-13 2022-10-11 中国海洋大学 一种检验海面高度的现场观测设备布放方法和系统
RU206964U1 (ru) * 2021-05-21 2021-10-04 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Имитатор морской качки
CN113682453A (zh) * 2021-09-07 2021-11-23 中国舰船研究设计中心 钛合金弹性梁式舷间压载水舱和潜水系统
EP4148387A1 (en) * 2021-09-10 2023-03-15 Furuno Electric Co., Ltd. Predicted course display device and method
CN114675051B (zh) * 2022-03-08 2022-10-28 中国水利水电科学研究院 一种基于压差测量的河流流速监测装置、系统和方法
CN114664118B (zh) * 2022-03-18 2023-04-07 陕西正整数科技有限公司 一种智能船舶避碰自动测试场景生成方法及系统
CN114715331B (zh) * 2022-06-02 2022-09-09 中国海洋大学 一种浮式海洋平台动力定位控制方法及系统
KR102534117B1 (ko) * 2022-06-28 2023-05-19 김민석 인공 신경망을 사용하는 센서-통합 해저 케이블 고정장치
US20240071205A1 (en) * 2022-08-25 2024-02-29 Honeywell International Inc. Maintenance prediction for devices of a fire system
CN115165298B (zh) * 2022-09-09 2022-12-23 中国航空工业集团公司哈尔滨空气动力研究所 一种旋转轴天平实时动态载荷监控系数的监测方法
KR102646560B1 (ko) * 2022-12-12 2024-03-12 한국해양과학기술원 해상 감시 시스템
US12019960B1 (en) * 2023-06-26 2024-06-25 Harbin Engineering University Method for constructing six-degree-of-freedom ROV operation simulation platform
KR102666504B1 (ko) * 2023-12-27 2024-05-16 주식회사 알엠택 해양 방사능 측정장비용 수평유지장치
CN118033629B (zh) * 2024-04-12 2024-06-11 国家海洋局北海海洋工程勘察研究院 一种基于多波束探测的海洋探测方法及系统

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4843575A (en) * 1982-10-21 1989-06-27 Crane Harold E Interactive dynamic real-time management system
US4604016A (en) * 1983-08-03 1986-08-05 Joyce Stephen A Multi-dimensional force-torque hand controller having force feedback
JPS61248200A (ja) * 1985-04-26 1986-11-05 社団法人 日本造船研究協会 船舶用外乱予測システム
US4996419A (en) * 1989-12-26 1991-02-26 United Technologies Corporation Distributed multiplexed optical fiber Bragg grating sensor arrangeement
DE69513937T2 (de) * 1994-11-17 2000-07-20 Alcatel, Paris Verfahren zum Messen und Detektieren physikalischer Grössen unter Verwendung eines Mehrpunktsensors
US6190091B1 (en) * 1997-08-26 2001-02-20 Novellent Technologies Llc Tension control device for tensile elements
US5967071A (en) * 1997-12-02 1999-10-19 Wipper; Daniel J. Energy efficient system and method for reducing water friction on the hull of a marine vessel
JP2001004375A (ja) * 1999-06-24 2001-01-12 Ono Sokki Co Ltd 位置測定装置
JP4010753B2 (ja) * 2000-08-08 2007-11-21 株式会社リコー 形状計測システムと撮像装置と形状計測方法及び記録媒体
JP2002131022A (ja) * 2000-10-23 2002-05-09 Oki Electric Ind Co Ltd 光ファイバセンサシステムおよびレーザ光の波長測定方法
FR2823299B1 (fr) * 2001-04-04 2003-09-19 Commissariat Energie Atomique Extensometre a longue base, a fibre optique tendue et reseau de bragg, et procede de fabrication de cet extensometre
US6999641B2 (en) * 2002-05-03 2006-02-14 Jerry Gene Williams Measurement of large strains in ropes using plastic optical fibers
JP2004063653A (ja) * 2002-07-26 2004-02-26 Nikon Corp 防振装置、ステージ装置及び露光装置
NO320692B1 (no) * 2002-12-30 2006-01-16 Stiftelsen Det Norske Veritas Fremgangsmate og system for testing av datamaskinbaserte styre- og overvakningssystemer i et fartoy via en kommunikasjonskanal
KR100505019B1 (ko) * 2003-01-14 2005-08-01 한국과학기술원 미소구조물의 변형률 측정방법
US7277162B2 (en) * 2003-01-23 2007-10-02 Jerry Gene Williams Dynamic performance monitoring of long slender structures using optical fiber strain sensors
WO2005012804A2 (en) * 2003-07-31 2005-02-10 Maxitrol Company A method and controller for determining carbon dioxide emissions
US7005630B2 (en) * 2004-02-09 2006-02-28 National Taiwan University Energy-modulating fiber grating sensor
NO320465B1 (no) * 2004-02-16 2005-12-12 Egeland Olav Fremgangsmate og system for testing av et reguleringssystem tilhorende et marint fartoy
CA2600196A1 (en) * 2004-03-29 2005-10-20 Peter T. German Systems and methods to determine elastic properties of materials
US20050283276A1 (en) * 2004-05-28 2005-12-22 Prescott Clifford N Real time subsea monitoring and control system for pipelines
KR100625077B1 (ko) * 2004-07-29 2006-09-20 손혁진 선박의 뉴메틱 자가진단시스템 및 그 방법 및 상기 방법을실현시키기 위한 프로그램을 기록한 컴퓨터로 읽을 수있는 기록매체
US7089099B2 (en) * 2004-07-30 2006-08-08 Automotive Technologies International, Inc. Sensor assemblies
MX2007007292A (es) * 2004-12-16 2007-10-19 Independent Natural Resource I Sistema de generacion de energia de bomba flotante.
JP2006250647A (ja) * 2005-03-09 2006-09-21 Jfe Koken Corp ワイヤケーブル、並びに張力測定システム及び張力測定方法
JP4709975B2 (ja) * 2005-04-15 2011-06-29 三井造船株式会社 自動船位保持制御方法及び自動船位保持制御装置
US20090043436A1 (en) * 2005-04-15 2009-02-12 Kazuyuki Igarashi Automatic Vessel Position Holding Control Method and Controller
US20060256653A1 (en) * 2005-05-05 2006-11-16 Rune Toennessen Forward looking systems and methods for positioning marine seismic equipment
JP4660645B2 (ja) * 2005-10-26 2011-03-30 特定非営利活動法人リアルタイム地震情報利用協議会 光ファイバによる地震・津波計、地震・津波観測システム
KR20060018910A (ko) * 2006-02-02 2006-03-02 (재) 한국건설품질연구원 구조물 감시, 진단을 위한 이미지 프로세싱에 기반한구조물의 정적영상변위계측시스템
US8157205B2 (en) * 2006-03-04 2012-04-17 Mcwhirk Bruce Kimberly Multibody aircrane
EP2054697B1 (en) * 2006-08-09 2019-10-02 LEE, Geum-Suk Apparatus and method for measuring convergence using fiber bragg grating sensor
US8614633B1 (en) * 2007-01-08 2013-12-24 Lockheed Martin Corporation Integrated smart hazard assessment and response planning (SHARP) system and method for a vessel
US20110055746A1 (en) * 2007-05-15 2011-03-03 Divenav, Inc Scuba diving device providing underwater navigation and communication capability
JP2009061901A (ja) * 2007-09-06 2009-03-26 Universal Shipbuilding Corp モニタリング方法、その装置及びプログラム
US7698024B2 (en) * 2007-11-19 2010-04-13 Integrated Power Technology Corporation Supervisory control and data acquisition system for energy extracting vessel navigation
US7836633B2 (en) * 2008-01-31 2010-11-23 Brian And Cynthia Wilcox Trust Method and apparatus for robotic ocean farming for food and energy
JP4970346B2 (ja) * 2008-05-28 2012-07-04 三井造船株式会社 船舶の運航支援システムと船舶の運航支援方法
JP5408523B2 (ja) * 2008-05-28 2014-02-05 独立行政法人海上技術安全研究所 構造物の調和設計システム及び調和設計方法並びに調和設計用コンバートシステム、プログラム
US8547539B2 (en) * 2008-09-08 2013-10-01 Schlumberger Technology Corporation System and method for detection of flexible pipe armor wire ruptures
WO2010118342A1 (en) * 2009-04-09 2010-10-14 Schlumberger Technology Corporation Method and system for detection of fluid invasion in an annular space of flexible pipe
KR101125466B1 (ko) * 2009-05-20 2012-03-28 (주) 유식스 광섬유센서 위치측정 장치
CN101943568B (zh) * 2009-06-10 2012-06-27 香港纺织及成衣研发中心 用于检测大的反复形变的纤维应变传感器以及测量系统
CA2767689C (en) * 2009-08-07 2018-01-02 Exxonmobil Upstream Research Company Drilling advisory systems and methods based on at least two controllable drilling parameters
KR101083360B1 (ko) * 2009-10-06 2011-11-15 (주)카이센 광섬유 변형률 센서를 이용한 경사계
JP2011095386A (ja) * 2009-10-28 2011-05-12 Astro Design Inc ルックアップテーブル作成方法
JP5173989B2 (ja) * 2009-11-12 2013-04-03 三菱重工業株式会社 航走トリム自動変更システム
US8964298B2 (en) * 2010-02-28 2015-02-24 Microsoft Corporation Video display modification based on sensor input for a see-through near-to-eye display
US20130278631A1 (en) * 2010-02-28 2013-10-24 Osterhout Group, Inc. 3d positioning of augmented reality information
JP2012051500A (ja) * 2010-09-02 2012-03-15 Universal Shipbuilding Corp 荒天時警報発令システム
SG188587A1 (en) * 2010-09-22 2013-04-30 Jon E Khachaturian Articulated multiple buoy marine platform apparatus and method of installation
KR101149018B1 (ko) * 2010-10-12 2012-05-24 삼성중공업 주식회사 선박 상태 판정 및 제어 시스템 및 방법
FR2966175B1 (fr) * 2010-10-18 2012-12-21 Doris Engineering Dispositif de support d'une eolienne de production d'energie electrique en mer, installation de production d'energie electrique en mer correspondante.
JP5619571B2 (ja) * 2010-11-05 2014-11-05 三菱重工業株式会社 ライザー管及びライザー管の応答分布計測システム
CN102323024A (zh) * 2011-05-31 2012-01-18 上海交通大学 深海柔性立管模型涡激振动试验测量分析系统
CN110422272A (zh) * 2012-05-30 2019-11-08 赛创尼克株式会社 通过对海洋结构物的实时测量监视的控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2860489A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150088346A1 (en) * 2012-05-30 2015-03-26 Cytroniq, Ltd. System and method for providing information on fuel savings, safe operation, and maintenance by real-time predictive monitoring and predictive controlling of aerodynamic and hydrodynamic environmental internal/external forces, hull stresses, motion with six degrees of freedom, and the location of marine structure
US9580150B2 (en) * 2012-05-30 2017-02-28 Cytroniq Co., Ltd. System and method for fuel savings and safe operation of marine structure
CN104092727A (zh) * 2014-06-12 2014-10-08 中国石油集团东方地球物理勘探有限责任公司 一种基于3g虚拟专用网络的地震仪器远程支持系统及方法
CN104092727B (zh) * 2014-06-12 2018-10-19 中国石油集团东方地球物理勘探有限责任公司 一种基于3g虚拟专用网络的地震仪器远程支持系统及方法
US20160055280A1 (en) * 2014-08-20 2016-02-25 Matthews-Daniel Company System for predictive failure analysis of offshore platform placement and safe recovery from rapid leg penetration incidents
WO2018199356A1 (ko) * 2017-04-26 2018-11-01 쎄딕 주식회사 웹기반 가상풍동을 이용한 유동장 자동해석 방법 및 시스템
CN111017258A (zh) * 2019-12-25 2020-04-17 中国航空工业集团公司西安飞机设计研究所 一种飞机疲劳验证谱试验的固定支持及状态设置方法
CN111017258B (zh) * 2019-12-25 2023-01-13 中国航空工业集团公司西安飞机设计研究所 一种飞机疲劳验证谱试验的固定支持及状态设置方法
CN111814610A (zh) * 2020-06-24 2020-10-23 中海石油(中国)有限公司天津分公司 一种基于振动监测的海洋平台作业状态可视化方法
CN111814610B (zh) * 2020-06-24 2022-09-06 中海石油(中国)有限公司天津分公司 一种基于振动监测的海洋平台作业状态可视化方法
CN112329307A (zh) * 2020-11-06 2021-02-05 大唐环境产业集团股份有限公司 一种脱硝反应器结构智能设计系统的智能计算模块和方法
CN113998070A (zh) * 2021-11-22 2022-02-01 浙江欧佩亚海洋工程有限公司 一种海洋漂浮式风电机组模拟实验台
CN113998070B (zh) * 2021-11-22 2024-03-22 浙江欧佩亚海洋工程有限公司 一种海洋漂浮式风电机组模拟实验台

Also Published As

Publication number Publication date
WO2013180496A3 (ko) 2014-01-16
EP2860489A4 (en) 2016-07-20
AU2017279830B2 (en) 2020-03-19
AU2013268170A1 (en) 2015-01-29
AU2020204051B2 (en) 2022-06-30
CN110435812A (zh) 2019-11-12
EP4239283A2 (en) 2023-09-06
AU2017279830A1 (en) 2018-01-25
US20170183062A1 (en) 2017-06-29
US20150088346A1 (en) 2015-03-26
AU2022241564A1 (en) 2022-10-27
JP2015520699A (ja) 2015-07-23
AU2020204051A1 (en) 2020-07-09
US11034418B2 (en) 2021-06-15
US11976917B2 (en) 2024-05-07
CN110422271A (zh) 2019-11-08
JP2016166001A (ja) 2016-09-15
AU2013268170B2 (en) 2017-09-28
US20190308693A9 (en) 2019-10-10
CN104508422B (zh) 2019-05-21
US9580150B2 (en) 2017-02-28
CN104508422A (zh) 2015-04-08
EP2860489A2 (en) 2015-04-15
EP3722744A1 (en) 2020-10-14
EP4239283A3 (en) 2023-11-15
CN110422272A (zh) 2019-11-08
JP6223436B2 (ja) 2017-11-01
JP6223496B2 (ja) 2017-11-01
US20240011766A1 (en) 2024-01-11

Similar Documents

Publication Publication Date Title
WO2013180496A2 (ko) 실시간 해양 구조물에 대한 기체역학적, 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감, 안전운용 및 유지보수정보 제공 시스템 및 방법
Wang et al. A review of the state-of-the-art developments in the field monitoring of offshore structures
WO2013154231A1 (ko) 계류라인의 실시간 모니터링을 이용한 해양 구조물의 정적 및 동적 포지셔닝 시스템 및 방법
KR101529377B1 (ko) 실시간 해양 구조물에 대한 기체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 위치를 예측 모니터링 및 예측 제어함을 통한 연료절감, 안전운용 및 유지보수정보 제공 방법
WO2013154337A1 (ko) 해양 구조물의 정적 및 동적 포지셔닝 또는 모션 제어 시스템 및 방법
WO2013154242A1 (ko) 해양환경의 실시간 모니터링을 이용한 해양 구조물의 정적 및 동적 포지셔닝 시스템 및 방법
KR101529378B1 (ko) 실시간 해양 구조물에 대한 유체역학적 환경 내외력, 선체 응력, 6자유도 운동 및 운용 위치를 예측 모니터링 및 제어함을 통한 연료절감, 안전운용 및 유지보수정보 제공 방법
KR20130135721A (ko) 항해 또는 계류 중인 선박의 유체역학적 환경 내-외력, 선체 응력, 6자유도운동 및 표류 위치를 실시간 모니터링 및 제어 함을 통한 선박의 연료절감 및 안전운항 방법
JP2015520061A5 (ko)
KR101472827B1 (ko) 해양 구조물의 물리적 변화를 실시간 모니터링 및 제어하는 시스템 및 그 방법
Gill et al. NOAA/National Ocean Service platform harvest instrumentation
CN113447188A (zh) 一种海上波浪砰击载荷实测装置及方法
Machado et al. Monitoring program for the first steel catenary riser installed in a moored floating platform in deep water
Zeng et al. An effective bidirectional solving method for the motion and mooring tension of moored floaters
Edwards et al. Cascade/Chinook Disconnectable FPSO: Free Standing Hybrid Risers Monitoring via Acoustic Control/Communications
Zhu et al. Experimental Study on the Coupled Motions of Floating Crane Vessel LANJING and the Topside Module during Lifting Operations in Following Waves
Qi et al. Single Point Mooring FPSO Monitoring and Forecast System Design
NO20161706A1 (en) Motion tool
Ledgard et al. Integrated Marine and Integrity Monitoring of FPSOs in Hostile Environments-The Importance of Observed Data
Snyder et al. ON THE PROBLEM OF IMPLANTING COMPLEX SYSTEMS AT SEA

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13796337

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2015514905

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013796337

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013268170

Country of ref document: AU

Date of ref document: 20130530

Kind code of ref document: A