WO2012005201A1 - プラズマ生成装置 - Google Patents

プラズマ生成装置 Download PDF

Info

Publication number
WO2012005201A1
WO2012005201A1 PCT/JP2011/065252 JP2011065252W WO2012005201A1 WO 2012005201 A1 WO2012005201 A1 WO 2012005201A1 JP 2011065252 W JP2011065252 W JP 2011065252W WO 2012005201 A1 WO2012005201 A1 WO 2012005201A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
amplifier
integrated
radiator
plasma
Prior art date
Application number
PCT/JP2011/065252
Other languages
English (en)
French (fr)
Inventor
池田 裕二
實 牧田
Original Assignee
イマジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イマジニアリング株式会社 filed Critical イマジニアリング株式会社
Priority to EP11803535.1A priority Critical patent/EP2592911B1/en
Priority to JP2012523851A priority patent/JPWO2012005201A1/ja
Publication of WO2012005201A1 publication Critical patent/WO2012005201A1/ja
Priority to US13/735,441 priority patent/US8873216B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/48Generating plasma using an arc
    • H05H1/50Generating plasma using an arc and using applied magnetic fields, e.g. for focusing or rotating the arc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/01Electric spark ignition installations without subsequent energy storage, i.e. energy supplied by an electrical oscillator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/466Radiofrequency discharges using capacitive coupling means, e.g. electrodes

Definitions

  • the present invention relates to a plasma generator for generating plasma by supplying a high frequency to a target space.
  • Patent Document 1 a plasma generating apparatus for generating plasma by supplying a high frequency to a target space.
  • Patent Document 1 This type of plasma generation apparatus is disclosed in Patent Document 1, for example.
  • Patent Document 1 describes a high-frequency ignition plug that generates free plasma in an air-fuel mixture by an electric field structure protruding into a combustion chamber.
  • the HF-generator serves as a microwave source, and the microwave is supplied to a high-frequency spark plug through an amplifier.
  • the entire high frequency generator is installed near the target where the high frequency radiator is provided. You may not be able to.
  • the present invention has been made in view of the above points, and an object of the present invention is to limit the installation space in the vicinity of a target in which a high-frequency radiator is provided in a plasma generation apparatus that generates a plasma by supplying a high frequency to the target space. Even in this case, the electrical loss in the transmission line between the high-frequency generator and the high-frequency radiator is reduced.
  • a first invention includes a high frequency generator that generates a high frequency, and a high frequency radiator that radiates a high frequency output from the high frequency generator to a target space, and the high frequency energy is transmitted from the high frequency radiator to the target space.
  • a plasma generating apparatus that generates plasma by supplying is assumed.
  • the plasma generator includes an oscillator that oscillates a high frequency, and an amplifier that amplifies the high frequency oscillated from the oscillator and outputs the amplified high frequency to the high-frequency radiator. Of these, only the amplifier is integrated into the high-frequency radiator.
  • the transmission line between the amplifier and the high frequency oscillator can be shortened.
  • the electric power loss per unit length is larger in the latter where the high-frequency power to be transmitted is large.
  • the part integrated with the high-frequency radiator in the high-frequency generator is limited to the amplifier, and the transmission line with a relatively large electric loss can be shortened.
  • the amplifier includes a plurality of stages of amplifying elements, and among the plurality of stages of amplifying elements, a rear stage amplifying element is integrated with the high-frequency radiator.
  • the second invention when only the amplifier of the oscillator and the amplifier is integrated with the high-frequency radiator, not the entire amplifier but a part of the amplifier is integrated with the high-frequency radiator. Amplifying elements on the rear stage side among the plural stages of amplifying elements are integrated with the high-frequency radiator. Therefore, it is possible to shorten the transmission line between the amplifier and the high-frequency radiator.
  • the high-frequency radiator is an ignition plug in which a tip side where a discharge gap is formed faces the target space.
  • the spark plug has an antenna for radiating a high frequency to the target space, separately from the electrode forming the discharge gap.
  • an ignition coil is provided for outputting a high voltage pulse for generating a discharge in the discharge gap to the ignition plug, and the amplifier includes the ignition coil and the ignition It is integrated in the ignition unit that is integrated with the plug.
  • the amplifier is integrated with an ignition unit in which an ignition coil and an ignition plug (high-frequency radiator) are integrated.
  • the amplifier includes a plurality of stages of amplification elements
  • the latter stage amplification element of the plurality of stages of amplification elements is integrated with the ignition unit.
  • a sixth invention is the mixer according to the fifth invention, wherein the mixer is integrated with the ignition coil, and a high voltage pulse generated by the ignition coil and a high frequency amplified by the amplifier are mixed and output to the ignition plug.
  • the amplifier is attached to the mixer and is integrated with the ignition unit via the mixer.
  • the high voltage pulse and the amplified high frequency are mixed in the mixer and then supplied to the spark plug.
  • the amplifier is integrated with the high-frequency radiator of the ignition unit via a mixer.
  • a plurality of the high-frequency radiators are provided, and a plurality of the amplifiers are provided corresponding to the high-frequency radiators.
  • a high-frequency switch integrated with a high-frequency radiator is provided for switching a supply destination of a high-frequency output from the oscillator between a plurality of amplifiers.
  • an amplifier is integrated with each high-frequency radiator for a plurality of high-frequency radiators.
  • the high frequency output from the oscillator is supplied to the high frequency radiator selected as the high frequency supply destination in the high frequency switch.
  • it is possible to selectively radiate a high frequency from a plurality of high frequency radiators even if the number of oscillators is smaller than that of an amplifier and a high frequency radiator.
  • a plurality of the high-frequency radiators are provided, and a plurality of the rear-stage amplifying elements are provided corresponding to the high-frequency radiators.
  • a high-frequency switch that switches a supply destination of a high-frequency output from the preceding-stage amplifying element between a plurality of succeeding-stage amplifying elements.
  • the amplifying elements on the rear stage side are integrated with each of the high frequency radiators for the plurality of high frequency radiators.
  • the high frequency output from the amplifying element on the front stage is supplied to the high frequency radiator via the amplifying element on the rear stage selected as a high frequency supply destination in the high frequency switching device.
  • a power supply circuit for supplying high frequency power to the high frequency oscillation device is provided, and the oscillator is housed in the same casing as the power supply circuit. Yes.
  • the oscillator is housed in the same casing as the power supply circuit.
  • the amplifier according to any one of the first to ninth aspects is integrated with the high-frequency radiator in a state where the amplifier is housed in a metal casing for blocking high-frequency leakage to the outside.
  • the heat generated by the amplifier is radiated to the outside through the metal casing.
  • the amplifier radiates heat to the outside by using a metal casing that houses the amplifier.
  • the component integrated with the high-frequency radiator in the high-frequency generator is limited to the amplifier, and the transmission line between the amplifier and the high-frequency oscillator having a relatively large electrical loss can be shortened. Since the components integrated with the high-frequency radiator are limited to the amplifier, it is possible to suppress an increase in size of the unit in which the high-frequency generator is integrated with the high-frequency radiator. Therefore, even if the installation space in the vicinity of the target where the high-frequency radiator is provided is small, the electrical loss in the transmission line between the high-frequency generator and the high-frequency radiator can be reduced.
  • the components integrated with the high-frequency radiator in the amplifier of the high-frequency generator are limited to the amplifying elements on the rear stage side. Accordingly, it is possible to further suppress an increase in the size of the unit in which the amplifier is integrated with the high frequency radiator.
  • a high frequency can be selectively emitted from a plurality of high frequency radiators even if the number of oscillators is smaller than that of the high frequency radiator. Therefore, the high frequency generator can be simplified as compared with the case where an oscillator is individually provided corresponding to the high frequency radiator.
  • the configuration for accommodating the oscillator and the power supply circuit can be simplified.
  • the amplifier radiates heat to the outside using a metal casing that accommodates itself, it is possible to simplify the heat radiation component of the amplifier.
  • FIG. 1 is a longitudinal sectional view of an internal combustion engine in an embodiment.
  • FIG. 2 is a block diagram of the plasma generation apparatus in the embodiment.
  • FIG. 3 is a schematic configuration diagram of a main part of the ignition unit in the embodiment.
  • FIG. 4 is a block diagram of an electromagnetic wave oscillation device according to another embodiment.
  • FIG. 5 is a block diagram of another electromagnetic wave oscillation device according to another embodiment.
  • This embodiment is a plasma generation apparatus 30 according to the present invention.
  • the plasma generator 30 is an ignition device that ignites an air-fuel mixture in the combustion chamber 10 of the internal combustion engine 20 by generating non-equilibrium plasma by absorbing electromagnetic wave (microwave) energy in spark discharge by the spark plug 15. Constitute.
  • This plasma generator 30 is an example of the present invention.
  • the internal combustion engine 20 will be described before describing the plasma generation apparatus 30.
  • the internal combustion engine 20 of the present embodiment is a reciprocating type engine in which a piston 23 reciprocates.
  • the internal combustion engine 20 includes a cylinder block 21, a cylinder head 22, and a piston 23.
  • a plurality of cylinders 24 having a circular cross section are formed in the cylinder block 21.
  • a piston 23 is slidably provided in each cylinder 24, a piston 23 is slidably provided.
  • the piston 23 is connected to the crankshaft via a connecting rod (connecting rod) (not shown).
  • the crankshaft is rotatably supported by the cylinder block 21.
  • the cylinder head 22 is placed on the cylinder block 21 with the gasket 18 in between.
  • the cylinder head 22 partitions the combustion chamber 10 together with the cylinder 24 and the piston 23.
  • the cylinder head 22 is provided with one spark plug 15 for each cylinder 24.
  • the spark plug 15 is attached to a plug attachment hole 19 formed in the cylinder head 22.
  • the intake port 25 is provided with an intake valve 27 that opens and closes an opening of the intake port 25 and an injector 29 (fuel injection device) that injects fuel.
  • the exhaust port 26 is provided with an exhaust valve 28 for opening and closing the opening of the exhaust port 26.
  • the nozzle 29 a of the injector 29 is exposed to the intake port 25, and the fuel injected from the injector 29 is supplied to the air flowing through the intake port 25.
  • An air-fuel mixture in which fuel and air are mixed is introduced into the combustion chamber 10.
  • the plasma generation device 30 includes a discharge device 31 that generates a discharge in the combustion chamber 10 (target space), an electromagnetic wave oscillation device 37 (high frequency generation device) that oscillates electromagnetic waves, and the electromagnetic wave oscillation device 37. And an electromagnetic wave radiator 15 (high frequency radiator) that radiates the electromagnetic wave oscillated from the electromagnetic wave oscillation device 37 to the combustion chamber 10.
  • the plasma generation device 30 generates non-equilibrium plasma in the combustion chamber 10 by causing the discharge device 31 to discharge and radiating electromagnetic waves using the electromagnetic wave oscillation device 37 and the electromagnetic wave radiator 15.
  • the plasma generation device 30 is connected to an electronic control device 32 (Electronic Control Unit) (so-called ECU) for controlling the internal combustion engine 20.
  • ECU Electronic Control Unit
  • the plasma generating device 30 is controlled by an electronic control device 32.
  • the discharge device 31 includes a spark plug 15 having a discharge gap formed at a front end thereof facing the combustion chamber 10 and an ignition coil 35 that generates a high voltage pulse to be applied to the spark plug 15.
  • the ignition plug 15 and the ignition coil 35 are integrated to form an ignition unit 40.
  • the discharge device 31 includes the same number of ignition units 40 as the cylinders 24.
  • the plasma generation apparatus 30 further includes a mixer 38.
  • a plurality of mixers 38 are provided corresponding to each cylinder 24 of the internal combustion engine 20.
  • Each mixer 38 receives the high voltage pulse output from the ignition coil 35 and the electromagnetic wave output from the electromagnetic wave oscillation device 37 at separate input terminals, and receives the high voltage pulse and the electromagnetic wave from the same output terminal by an ignition plug. 15 is output.
  • the mixer 38 is configured to be able to mix high voltage pulses and electromagnetic waves.
  • the spark plug 15 functions as an electromagnetic wave radiator.
  • the ignition coil 35 has an input terminal connected to the electronic control device 32 and an output terminal connected to the mixer 38.
  • the ignition coil 35 is connected to an automobile battery (not shown). When the ignition coil 35 receives a high voltage output signal from the electronic control device 32, it outputs a high voltage pulse to the mixer 38.
  • the electromagnetic power supply circuit 36 has an input terminal connected to the electronic control device 32 and an output terminal connected to the electromagnetic wave oscillation device 37.
  • the electromagnetic wave power supply circuit 36 is connected to the automobile battery. When receiving an electromagnetic wave output signal from the electronic control device 32, the electromagnetic wave power supply circuit 36 supplies power to the electromagnetic wave oscillation device 37.
  • the electromagnetic wave oscillation device 37 is composed of a semiconductor element (solid element), and is configured to output an electromagnetic wave (microwave) of 2.45 GHz, for example.
  • the electromagnetic wave oscillation device 37 includes an oscillator 41 that oscillates an electromagnetic wave, and an amplifier 42 that amplifies the electromagnetic wave oscillated from the oscillator 41 and outputs the amplified electromagnetic wave to a spark plug 15 (electromagnetic wave radiator).
  • a spark plug 15 electromagnet wave radiator
  • one oscillator 41 is provided, and a plurality of amplifiers 42 are provided corresponding to each spark plug 15.
  • Each amplifier 42 is integrated with a corresponding spark plug 15.
  • the plasma generation apparatus 30 includes a high-frequency switch 60 that switches the supply destination of the electromagnetic wave output from the oscillator 41 among the plurality of amplifiers 42.
  • the oscillator 41 includes an oscillating element (for example, a field effect transistor) composed of a semiconductor element.
  • the oscillator 41 is accommodated in the same casing 39 as the electromagnetic wave power supply circuit 36.
  • the oscillator 41 has an input terminal connected to the electromagnetic wave power supply circuit 36 and an output terminal connected to the high frequency switching device 60 via a coaxial cable.
  • the oscillator 41 When power is supplied from the electromagnetic wave power supply circuit 36, the oscillator 41 outputs a low-power electromagnetic wave to the high-frequency switch 60.
  • the high frequency switching device 60 outputs the electromagnetic wave received from the oscillator 41 to one amplifier 42 selected from the plurality of amplifiers 42.
  • the amplifier 42 is composed of an amplifying element 43 (for example, a field effect transistor) composed of a semiconductor element.
  • the amplification element 43 is attached to the substrate 44.
  • the amplifying element 43 is composed of a wide band gap semiconductor element such as silicon carbide or gallium nitride.
  • the amplifier 42 has an input terminal connected to the electromagnetic wave power supply circuit 36 and the high frequency switch 60, and an output terminal connected to the mixer 38.
  • the amplifier 42 is connected to the electronic control device 32.
  • the amplifier 42 is switched by the electronic control device 32, thereby amplifying the electromagnetic wave input from the high frequency switching device 60 and outputting a large current electromagnetic wave to the mixer 38.
  • Each amplifier 42 is attached to the mixer 38 and integrated with the ignition coil 35 via the mixer 38.
  • Each amplifier 42 is integrated with the spark plug 15 via a mixer 38.
  • the mixer 38 is configured to be able to mix high voltage pulses and electromagnetic waves.
  • the output terminal of the mixer 38 is connected to the center electrode 15 a of the spark plug 15.
  • the spark plug 15 is supplied with the high voltage pulse output from the ignition coil 35 and the electromagnetic wave amplified by the amplifier 42.
  • each ignition unit 40 is a unit in which an ignition coil 35, a spark plug 15, a mixer 38, and an amplifier 42 are integrated.
  • the mixer 38 is formed in a cylindrical shape.
  • the mixer 38 has one end integrated with the ignition coil 35 and the other end integrated with the spark plug 15.
  • each ignition unit 40 the input terminal 50 of the ignition coil 35 and the input terminal 51 of the amplifier 42 are provided on the same side. Inside each ignition unit 40, the output terminal of the ignition coil 35 and the first input terminal of the mixer 38 are connected, and the output terminal of the amplifier 42 and the second input terminal of the mixer 38 are connected.
  • the other end of the mixer 38 is provided with an output terminal of the mixer 38.
  • Each ignition unit 40 is fitted in the plug attachment hole 19 on the output terminal side in a state where the output terminal of the mixer 38 is connected to the center electrode 15 a of the spark plug 15.
  • an amplifier 42 is integrated with the outer peripheral surface of the mixer 38.
  • the amplifier 42 is accommodated in a box-shaped metal casing 45 fixed to the outer peripheral surface of the mixer 38 via a substrate 44.
  • the metal casing 45 prevents leakage of electromagnetic waves amplified by the amplifier 42.
  • a metal first cooling member 46 that contacts the amplifying element 43 is attached to the metal casing 45.
  • the first cooling member 46 is in contact with the metal casing 45.
  • the heat generated in the amplifying element 43 is transmitted to the metal casing 45 through the first cooling member 46 and is radiated to the air that contacts the metal casing 45.
  • the amplifier 42 radiates heat to the outside using the metal casing 45.
  • a metal second cooling member 47 for increasing the amount of heat transferred from the amplifier 42 is attached to the metal casing 45.
  • the operation of the plasma generation device 30 and the electronic control device 32 will be described in connection with the operation of the internal combustion engine 20.
  • the internal combustion engine 20 performs a plasma ignition operation for generating plasma in each cylinder 24 using the plasma generation device 30.
  • the intake valve 27 is opened and the intake stroke is started. Then, immediately after the piston 23 passes through the top dead center, the exhaust valve 28 is closed, and the exhaust stroke ends.
  • the electronic control device 32 outputs an injection signal to the injector 29 immediately after the exhaust stroke ends, and causes the injector 29 to inject fuel.
  • the intake valve 27 is closed and the intake stroke is completed.
  • a compression stroke for compressing the air-fuel mixture in the combustion chamber 10 is started.
  • the electronic control device 32 outputs a high voltage output signal to the ignition coil 35 immediately before the piston 23 reaches top dead center.
  • the high voltage pulse boosted in the ignition coil 35 is output to the mixer 38.
  • the electronic control device 32 In the compression stroke, the electronic control device 32 outputs an electromagnetic wave output signal to the electromagnetic wave power supply circuit 36 immediately before the piston 23 reaches top dead center.
  • the electronic control device 32 outputs an electromagnetic wave output signal before the high voltage pulse is output from the ignition coil 35.
  • power is supplied from the electromagnetic wave power supply circuit 36 to the oscillator 41, and an electromagnetic wave is output from the oscillator 41.
  • the electronic control device 32 outputs a switching signal to the high-frequency switching device 60, and supplies the electromagnetic wave from the plurality of amplifiers 42 to the amplifier 42 belonging to the ignition unit 40 in which the ignition coil 35 receives the high voltage output signal.
  • a control signal is output to the amplifier 42 to switch the amplifier 42.
  • the amplifier 42 amplifies the electromagnetic wave output from the oscillator 41 and outputs the amplified electromagnetic wave to the mixer 38.
  • the mixer 38 the high voltage pulse from the ignition coil 35 and the electromagnetic wave from the amplifier 42 are input, and the high voltage pulse and the electromagnetic wave are supplied to the center electrode 15 a of the ignition plug 15.
  • a spark discharge is generated by a high voltage pulse in the discharge gap between the center electrode 15a and the ground electrode 15b of the spark plug 15, and a small-scale plasma is formed.
  • electromagnetic waves are radiated from the center electrode 15a of the spark plug 15 toward a small-scale plasma.
  • Small-scale plasma expands by absorbing electromagnetic energy.
  • the air-fuel mixture undergoes volume ignition by the expanded plasma, and combustion of the air-fuel mixture is started.
  • the electromagnetic waves are radiated from before the spark discharge until after the spark discharge.
  • the piston 23 When combustion of the air-fuel mixture is started, the piston 23 is moved to the bottom dead center side by the expansion force when the air-fuel mixture burns. Then, before the piston 23 reaches bottom dead center, the exhaust valve 28 is opened, and the exhaust stroke is started. As described above, the exhaust stroke ends immediately after the start of the intake stroke.
  • the amplifier 42 of the ignition unit 40 provided in the cylinder 24 immediately before the piston 23 reaches the top dead center in the compression stroke is selected as the amplifier 42 that amplifies the electromagnetic wave.
  • the electromagnetic wave amplified by the amplifier 42 is radiated to the combustion chamber 10 from the center electrode 15a of the ignition plug 15 of the ignition unit 40 to which the amplifier 42 belongs.
  • the component integrated with the spark plug 15 in the electromagnetic wave oscillation device 37 is limited to the amplifier 42, and the transmission line between the amplifier 42 and the spark plug 15 that has a relatively large electrical loss is shortened. . Since the component integrated with the spark plug 15 is limited to the amplifier 42, the size of the ignition unit 40 can be suppressed. Therefore, even if the installation space for the ignition unit 40 is small, the electrical loss in the transmission line between the electromagnetic wave oscillation device 37 and the ignition plug 15 can be reduced.
  • the plasma generation device 30 can be downsized.
  • microwaves can be selectively radiated from the plurality of spark plugs 15 even if the number of oscillators 41 is smaller than that of the spark plug 15. Therefore, the electromagnetic wave oscillation device 37 can be simplified as compared with the case where the oscillator 41 is individually provided corresponding to the spark plug 15.
  • the configuration for accommodating the oscillator 41 and the electromagnetic wave power supply circuit 36 can be simplified.
  • the amplifier 42 radiates heat to the outside using the metal casing 45 in which the amplifier 42 is housed, so that the heat radiation component of the amplifier 42 can be simplified.
  • the embodiment may be configured as follows.
  • the amplifier 42 may include a plurality of stages of amplifying elements 43a and 43b.
  • the amplifier 42 includes a primary amplification element 43a that amplifies the electromagnetic wave input from the oscillator 41, and a secondary amplification element 43b that amplifies the electromagnetic wave output from the primary amplification element 43a.
  • a plurality of secondary amplifying elements 43b are provided in parallel to the primary amplifying elements 43a, and the electromagnetic waves amplified by the respective secondary amplifying elements 43b are synthesized by the power combiner 34.
  • the entire amplifier 42 may be integrated with the spark plug 15, or only the secondary amplification element 43 b on the rear stage side may be integrated with the spark plug 15.
  • the high-frequency switch 60 shown in FIG. 5 switches the supply destination of the electromagnetic wave output from the primary amplification element 43a among the plurality of secondary amplification elements 43b.
  • the amplifier 42 includes three or more stages of amplification elements 43, the number of the subsequent stage amplification elements 43 integrated with the spark plug 15 may be two or more.
  • the amplifying element 43 may dissipate heat to the cooling water for cooling the internal combustion engine 20.
  • a metal plate extending from the cooling water flow passage of the internal combustion engine 20 may be brought into contact with the metal casing 45.
  • the location where the high voltage pulse is applied and the location where the electromagnetic wave oscillates may be separate.
  • an antenna is provided on the spark plug 15 separately from the center electrode 15a.
  • the mixer 38 is not necessary, the ignition coil 35 and the center electrode 15a of the ignition plug 15 are directly connected, and the amplifier 42 and the antenna are directly connected.
  • the antenna is integrated with the spark plug 15 by penetrating the insulator.
  • the antenna may be provided separately from the spark plug 15 and provided on the cylinder head.
  • the present invention is useful for a plasma generation apparatus that generates a plasma by supplying a high frequency to a target space.
  • Spark plug electromagnetic wave emitter
  • Plasma generator Discharge device 35
  • Ignition coil Electromagnetic wave power supply circuit
  • Electromagnetic wave oscillation device 38
  • Mixer 40
  • Ignition unit 41
  • Oscillator 42 Amplifier

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Plasma Technology (AREA)

Abstract

 プラズマ生成装置30は、高周波を発生させる高周波発生装置37と、高周波発生装置37から出力された高周波を対象空間10に放射する高周波放射器15とを備え、高周波放射器15から対象空間10へ高周波のエネルギーを供給することによりプラズマを生成する。プラズマ生成装置30では、高周波発生装置37が、高周波を発振する発振器41と、発振器41から発振された高周波を増幅して高周波放射器15に出力する増幅器42とを備えている。高周波発生装置37では、発振器41及び増幅器42のうち増幅器42だけが前記高周波放射器15に一体化されている。

Description

プラズマ生成装置
 本発明は、対象空間に高周波を供給してプラズマを生成するプラズマ生成装置に関するものである。
 従来から、対象空間に高周波を供給してプラズマを生成するプラズマ生成装置が知られている。この種のプラズマ生成装置が、例えば特許文献1に開示されている。
 特許文献1には、燃焼室内に突出する電界構造によって混合気内にフリーなプラズマを生じさせる高周波点火プラグが記載されている。HF-ジェネレータがマイクロ波源となり、マイクロ波は、増幅器を経て高周波点火プラグへ供給される。
特開2005-183396号公報
 ところで、この種のプラズマ生成装置では、高周波発生装置と高周波放射器との間の伝送線路が短いほど電気損失が少なくなる。しかし、例えば、高周波放射器を設けるエンジンに設ける場合など、高周波放射器を設ける対象の近傍の設置スペースに制約がある場合には、高周波放射器を設ける対象の近傍に、高周波発生装置全体を設置することができない場合がある。
 本発明は、かかる点に鑑みてなされたものであり、その目的は、対象空間に高周波を供給してプラズマを生成するプラズマ生成装置において、高周波放射器を設ける対象近傍の設置スペースに制約がある場合でも、高周波発生装置と高周波放射器との間の伝送線路における電気損失を低減させることにある。
 第1の発明は、高周波を発生させる高周波発生装置と、前記高周波発生装置から出力された高周波を対象空間に放射する高周波放射器とを備え、前記高周波放射器から前記対象空間へ高周波のエネルギーを供給することによりプラズマを生成するプラズマ生成装置を前提とする。そして、このプラズマ生成装置は、前記高周波発生装置は、高周波を発振する発振器と、該発振器から発振された高周波を増幅して前記高周波放射器に出力する増幅器とを備え、前記発振器及び前記増幅器のうち増幅器だけが前記高周波放射器に一体化されている。
 第1の発明では、発振器及び増幅器のうち増幅器のみが、高周波放射器に一体化されている。増幅器と高周波発振器は一体化されているので、増幅器と高周波発振器との間の伝送線路を短くすることが可能である。ここで、発振器と増幅器との間の伝送線路と、増幅器と高周波発振器との間の伝送線路とを比較すると、伝送する高周波の電力が大きい後者の方が単位長さ当たりの電気損失は大きくなる。第1の発明では、高周波発生装置のうち高周波放射器に一体化する部品を増幅器に限定しつつ、電気損失が比較的大きい伝送線路を短くできるようにしている。
 第2の発明は、第1の発明において、前記増幅器が、複数段の増幅素子を備え、該複数段の増幅素子のうち後段側の増幅素子が前記高周波放射器に一体化されている。
 第2の発明では、発振器及び増幅器のうち増幅器だけを高周波放射器に一体化する場合において、増幅器全体ではなく、増幅器の一部が高周波放射器に一体化されている。複数段の増幅素子のうち後段側の増幅素子が、高周波放射器に一体化されている。そのため、増幅器と高周波放射器との間の伝送線路を短くすることが可能である。
 第3の発明は、第1又は第2の発明において、前記高周波放射器が、放電ギャップが形成された先端側が前記対象空間に臨む点火プラグである。
 第4の発明は、第3の発明において、前記点火プラグが、放電ギャップを形成する電極とは別途に、前記対象空間へ高周波を放射するためのアンテナを有する。
 第5の発明は、第3又は第4の発明において、前記放電ギャップにおいて放電を発生させるための高電圧パルスを前記点火プラグへ出力する点火コイルを備え、前記増幅器は、前記点火コイルと前記点火プラグとが一体化された点火ユニットに一体化されている。
 第5の発明では、増幅器が、点火コイルと点火プラグ(高周波放射器)とが一体化された点火ユニットに一体化されている。なお、増幅器が複数段の増幅素子を備える場合は、複数段の増幅素子のうち後段側の増幅素子が、点火ユニットに一体化される。
 第6の発明は、第5の発明において、前記点火コイルに一体化され、該点火コイルで発生した高電圧パルスと前記増幅器で増幅された高周波とを混合して前記点火プラグに出力する混合器を備え、前記増幅器は、前記混合器に取り付けられ、該混合器を介して前記点火ユニットに一体化されている。
 第6の発明では、高電圧パルスと増幅後の高周波が、混合器において混合された後に点火プラグへ供給される。増幅器は、混合器を介して点火ユニットの高周波放射器に一体化されている。
 第7の発明は、第1乃至第6の何れか1つの発明において、前記高周波放射器を複数備える一方、前記増幅器は、前記高周波放射器に対応して複数設けられ、各増幅器は、対応する高周波放射器に一体化され、複数の増幅器の間で、前記発振器から出力された高周波の供給先を切り替える高周波切替器を備えている。
 第7の発明では、複数の高周波放射器に対して、各高周波放射器に増幅器が一体化されている。発振器から出力された高周波は、高周波切替器において高周波の供給先に選択された高周波放射器へ供給される。第7の発明では、増幅器及び高周波放射器より発振器を少数にしても、複数の高周波放射器から選択的に高周波を放射することが可能である。
 第8の発明は、第2の発明において、前記高周波放射器を複数備える一方、前記後段側の増幅素子が、前記高周波放射器に対応して複数設けられ、各後段側の増幅素子は、対応する高周波放射器に一体化され、複数の後段側の増幅素子の間で、前記前段側の増幅素子から出力された高周波の供給先を切り替える高周波切替器を備えている。
 第8の発明では、複数の高周波放射器に対して、各高周波放射器に後段側の増幅素子が一体化されている。前段側の増幅素子から出力された高周波は、高周波切替器において高周波の供給先に選択された後段側の増幅素子を経て、高周波放射器へ供給される。第8の発明では、発振器及び前段側の増幅素子を高周波放射器より少数にしても、複数の高周波放射器から選択的に高周波を放射することが可能である。
 第9の発明は、第1乃至第8の何れか1つの発明において、前記高周波発振装置に高周波用の電力を供給する電源回路を備え、前記発振器は、前記電源回路と同じケーシングに収容されている。
 第9の発明では、発振器が、電源回路と同じケーシングに収容されている。
 第10の発明は、第1乃至第9の何れか1つの発明において、前記増幅器が、高周波が外部へ漏洩することを遮断するための金属ケーシングに収容された状態で前記高周波放射器に一体化され、前記増幅器で発生した熱が前記金属ケーシングを介して外部へ放熱される。
 第10の発明では、増幅器が、自らを収容する金属ケーシングを利用して、外部へ放熱する。
 本発明では、高周波発生装置において高周波放射器に一体化する部品を増幅器に限定しつつ、電気損失が比較的大きい、増幅器と高周波発振器との間の伝送線路を短くできるようにしている。高周波放射器に一体化する部品を増幅器に限定しているので、高周波発生装置を高周波放射器に一体化したユニットの大型化を抑制できる。従って、高周波放射器を設ける対象近傍の設置スペースが小さい場合であっても、高周波発生装置と高周波放射器との間の伝送線路における電気損失を低減させることができる。
 また、第2の発明では、高周波発生装置の増幅器において高周波放射器に一体化する部品を後段側の増幅素子に限定している。従って、増幅器を高周波放射器に一体化したユニットの大型化をさらに抑制できる。
 また、第7乃至第8の各発明では、高周波切替器を設けることで、高周波放射器より発振器を少数にしても、複数の高周波放射器から選択的に高周波を放射できるようにしている。従って、高周波放射器に対応して個別に発振器を設ける場合に比べて、高周波発生装置の簡素化を図ることができる。
 また、第9の発明では、発振器が電源回路と同じケーシングに収容されているので、発振器及び電源回路を収容する構成を簡素化することができる。
 また、第10の発明では、増幅器が自らを収容する金属ケーシングを利用して外部へ放熱するので、増幅器の放熱用部品を簡素化することができる。
図1は、実施形態における内燃機関の縦断面図である。 図2は、実施形態におけるプラズマ生成装置のブロック図である。 図3は、実施形態における点火ユニットの要部の概略構成図である。 図4は、その他の実施形態における電磁波発振装置のブロック図である。 図5は、その他の実施形態における別の電磁波発振装置のブロック図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 本実施形態は、本発明に係るプラズマ生成装置30である。このプラズマ生成装置30は、点火プラグ15によるスパーク放電に電磁波(マイクロ波)のエネルギーを吸収させて非平衡プラズマを生成することにより、内燃機関20の燃焼室10の混合気を点火する点火装置を構成する。このプラズマ生成装置30は、本発明の一例である。以下では、プラズマ生成装置30について説明する前に、内燃機関20について説明する。
  -内燃機関の構成-
 本実施形態の内燃機関20は、ピストン23が往復動するレシプロタイプのエンジンである。この内燃機関20は、図1に示すように、シリンダブロック21とシリンダヘッド22とピストン23とを備えている。シリンダブロック21には、横断面が円形のシリンダ24が複数形成されている。
 各シリンダ24内には、ピストン23が摺動自在に設けられている。ピストン23は、コンロッド(コネクティングロッド)を介して、クランクシャフトに連結されている(図示省略)。クランクシャフトは、シリンダブロック21に回転自在に支持されている。各シリンダ24内においてシリンダ24の軸方向にピストン23が往復運動すると、コンロッドがピストン23の往復運動をクランクシャフトの回転運動に変換する。
 シリンダヘッド22は、ガスケット18を挟んで、シリンダブロック21上に載置されている。シリンダヘッド22は、シリンダ24及びピストン23と共に、燃焼室10を区画している。シリンダヘッド22には、各シリンダ24に対して、点火プラグ15が1つ設けられている。点火プラグ15は、シリンダヘッド22に形成されたプラグ取付孔19に取り付けられている。
 シリンダヘッド22には、各シリンダ24に対して、吸気ポート25及び排気ポート26が1つ又は複数形成されている。吸気ポート25には、該吸気ポート25の開口を開閉する吸気バルブ27と、燃料を噴射するインジェクター29(燃料噴射装置)とが設けられている。一方、排気ポート26には、該排気ポート26の開口を開閉する排気バルブ28が設けられている。本実施形態では、インジェクター29のノズル29aが吸気ポート25に露出しており、インジェクター29から噴射された燃料が吸気ポート25を流れる空気に供給される。燃焼室10には、燃料と空気とが混合された混合気が導入される。
  -プラズマ生成装置の構成-
 プラズマ生成装置30は、図2に示すように、燃焼室10(対象空間)において放電を生じさせる放電装置31と、電磁波を発振する電磁波発振装置37(高周波発生装置)と、該電磁波発振装置37に電力を供給する電磁波用電源回路36と、該電磁波発振装置37から発振された電磁波を燃焼室10に放射する電磁波放射器15(高周波放射器)とを備えている。プラズマ生成装置30は、放電装置31により放電を生じさせると共に電磁波発振装置37及び電磁波放射器15を用いて電磁波を放射することにより燃焼室10に非平衡プラズマを生成する。
 プラズマ生成装置30は、内燃機関20を制御するための電子制御装置32(Electronic Control Unit)(いわゆるECU)に接続されている。プラズマ生成装置30は、電子制御装置32より制御される。
 放電装置31は、放電ギャップが形成された先端側が燃焼室10に臨む点火プラグ15と、該点火プラグ15に印加する高電圧パルスを発生させる点火コイル35とを備えている。点火プラグ15及び点火コイル35は、一体化されて点火ユニット40を構成している。放電装置31は、シリンダ24と同じ数の点火ユニット40を備えている。
 本実施形態では、プラズマ生成装置30が、さらに混合器38を備えている。混合器38は、内燃機関20の各シリンダ24に対応して複数設けられている。各混合器38は、点火コイル35から出力された高電圧パルスと電磁波発振装置37から出力された電磁波とを別々の入力端子で受けて、高電圧パルスと電磁波とを、同じ出力端子から点火プラグ15に出力する。混合器38は、高電圧パルスと電磁波を混合可能に構成されている。本実施形態では、点火プラグ15が電磁波放射器として機能する。
 点火コイル35は、入力端子が電子制御装置32に接続され、出力端子が混合器38に接続されている。また、点火コイル35は、自動車用のバッテリー(図示省略)に接続されている。点火コイル35は、電子制御装置32から高電圧出力信号を受けると、混合器38に高電圧パルスを出力する。
 電磁波用電源回路36は、入力端子が電子制御装置32に接続され、出力端子が電磁波発振装置37に接続されている。電磁波用電源回路36は、前記自動車用バッテリーに接続されている。電磁波用電源回路36は、電子制御装置32から電磁波出力信号を受けると、電磁波発振装置37に電力を供給する。
 電磁波発振装置37は、半導体素子(固体素子)により構成され、例えば2.45GHzの電磁波(マイクロ波)を出力するように構成されている。電磁波発振装置37は、電磁波を発振する発振器41と、該発振器41から発振された電磁波を増幅して点火プラグ15(電磁波放射器)に出力する増幅器42とを備えている。電磁波発振装置37では、発振器41が1つ設けられる一方で、各点火プラグ15に対応して増幅器42が複数設けられている。各増幅器42は、対応する点火プラグ15に一体化されている。プラズマ生成装置30は、複数の増幅器42の間で、発振器41から出力された電磁波の供給先を切り替える高周波切替器60を備えている。
 発振器41は、半導体素子により構成された発振素子(例えば、電界効果トランジスタ)を備えている。発振器41は、電磁波用電源回路36と同じケーシング39に収容されている。発振器41は、入力端子が電磁波用電源回路36に接続され、出力端子が同軸ケーブルを介して高周波切替器60に接続されている。発振器41は、電磁波用電源回路36から電力が供給されると、小電力の電磁波を高周波切替器60へ出力する。高周波切替器60は、発振器41から受けた電磁波を、複数の増幅器42から選択された1つの増幅器42へ出力する。
 増幅器42は、半導体素子により構成された増幅素子43(例えば、電界効果トランジスタ)により構成されている。増幅素子43は、基板44に取り付けられている。増幅素子43は、炭化珪素や窒化ガリウム等のワイドバンドギャップ半導体素子により構成されている。増幅器42は、入力端子が電磁波用電源回路36及び高周波切替器60に接続され、出力端子が混合器38に接続されている。また、増幅器42は、電子制御装置32に接続されている。増幅器42は、電子制御装置32によりスイッチングされることによって、高周波切替器60から入力された電磁波を増幅し、大電流の電磁波を混合器38へ出力する。
 各増幅器42は、混合器38に取り付けられ、混合器38を介して点火コイル35に一体化されている。各増幅器42は、混合器38を介して点火プラグ15に一体化されている。
 混合器38は、高電圧パルスと電磁波とを混合可能に構成されている。混合器38の出力端子は、点火プラグ15の中心電極15aに接続されている。点火プラグ15には、点火コイル35から出力された高電圧パルスと、増幅器42において増幅後の電磁波とが供給される。
 各点火ユニット40は、図2及び図3に示すように、点火コイル35、点火プラグ15、混合器38、及び増幅器42が一体化されたユニットである。各点火ユニット40では、混合器38が円筒状に形成されている。混合器38は、一端が点火コイル35に一体化され、他端が点火プラグ15に一体化されている。
 また、各点火ユニット40では、点火コイル35の入力端子50と増幅器42の入力端子51とが同じ側に設けられている。各点火ユニット40の内部では、点火コイル35の出力端子と混合器38の第1入力端子が接続され、増幅器42の出力端子と混合器38の第2入力端子が接続されている。
 混合器38の他端には、混合器38の出力端子が設けられている。各点火ユニット40は、混合器38の出力端子が点火プラグ15の中心電極15aに接続された状態で、その出力端子側がプラグ取付孔19に嵌め込まれている。
 また、点火ユニット40では、混合器38の外周面に増幅器42が一体化されている。増幅器42は、基板44を介して混合器38の外周面に固定された箱状の金属ケーシング45に収容されている。金属ケーシング45は、増幅器42で増幅された電磁波の漏洩を阻止する。金属ケーシング45には、増幅素子43に当接する金属製の第1冷却部材46が取り付けられている。第1冷却部材46は、金属ケーシング45に当接している。増幅素子43で発生した熱は、第1冷却部材46を介して金属ケーシング45に伝達され、その金属ケーシング45に接触する空気に放熱される。増幅器42は、金属ケーシング45を利用して外部へ放熱する。また、金属ケーシング45には、増幅器42から伝達された熱の伝達量を増大させるための金属製の第2冷却部材47が取り付けられている。
  -プラズマ生成装置の動作-
 内燃機関20の動作を絡めてプラズマ生成装置30及び電子制御装置32の動作を説明する。内燃機関20は、プラズマ生成装置30を用いて各シリンダ24内においてプラズマを生成するプラズマ着火運転を行う。
 プラズマ着火運転中の内燃機関20では、ピストン23が上死点を達する直前に、吸気バルブ27が開かれて、吸気行程が開始される。そして、ピストン23が上死点を通過した直後に、排気バルブ28が閉じられて、排気行程が終了する。電子制御装置32は、排気行程の終了直後にインジェクター29に噴射信号を出力し、該インジェクター29に燃料を噴射させる。
 続いて、ピストン23が下死点を通過した直後に、吸気バルブ27が閉じられて、吸気行程が終了する。吸気行程が終了すると、燃焼室10において混合気を圧縮する圧縮行程が開始される。圧縮行程では、ピストン23が上死点に達する直前に電子制御装置32が点火コイル35に高電圧出力信号を出力する。これにより、点火コイル35において昇圧された高電圧パルスが混合器38へ出力される。
 また、圧縮行程では、ピストン23が上死点に達する直前に電子制御装置32が電磁波用電源回路36に電磁波出力信号を出力する。電子制御装置32は、点火コイル35から高電圧パルスが出力される前に、電磁波出力信号を出力する。これにより、電磁波用電源回路36から発振器41へ電力が供給され、発振器41から電磁波が出力される。
 また、電子制御装置32は、高周波切替器60に切替信号を出力し、複数の増幅器42の中から電磁波の供給先を、点火コイル35が高電圧出力信号を受ける点火ユニット40に属する増幅器42に設定すると共に、その増幅器42に制御信号を出力し、その増幅器42をスイッチングする。その結果、その増幅器42が、発振器41から出力された電磁波を増幅し、増幅後の電磁波を混合器38へ出力する。混合器38では、点火コイル35からの高電圧パルスと増幅器42からの電磁波とが入力され、高電圧パルスと電磁波とが、点火プラグ15の中心電極15aに供給される。
 その結果、点火プラグ15の中心電極15aと接地電極15bとの間の放電ギャップで、高電圧パルスによりスパーク放電が生じ、小規模のプラズマが形成される。また、電磁波が、点火プラグ15の中心電極15aから小規模のプラズマに向けて放射されている。小規模のプラズマは、電磁波のエネルギーを吸収して拡大する。燃焼室10では、拡大したプラズマにより混合気が体積着火し、混合気の燃焼が開始される。なお、電磁波は、スパーク放電前からスパーク放電後まで放射される。
 混合気の燃焼が開始されると、混合気が燃焼するときの膨張力によりピストン23が下死点側へ動かされる。そして、ピストン23が下死点に達する前に、排気バルブ28が開かれて、排気行程が開始される。上述したように、排気行程は吸気行程の開始直後に終了する。
 本実施形態では、電磁波を増幅させる増幅器42として、圧縮行程においてピストン23が上死点に達する直前のシリンダ24に設けられた点火ユニット40の増幅器42が選択される。そして、その増幅器42で増幅された電磁波は、その増幅器42が属する点火ユニット40の点火プラグ15の中心電極15aから燃焼室10に放射される。
  -実施形態の効果-
 本実施形態では、電磁波発振装置37において点火プラグ15に一体化する部品を増幅器42に限定しつつ、電気損失が比較的大きい、増幅器42と点火プラグ15との間の伝送線路を短くしている。点火プラグ15に一体化する部品を増幅器42に限定しているので、点火ユニット40の大型化を抑制することができる。従って、点火ユニット40用の設置スペースが小さい場合であっても、電磁波発振装置37と点火プラグ15との間の伝送線路における電気損失を低減させることができる。
 また、本実施形態では、マグネトロンに比べて小さい半導体素子を用いた電磁波発振装置37が用いられているので、プラズマ生成装置30の小型化を図ることができる。
 また、本実施形態では、高周波切替器60を設けることで、点火プラグ15より発振器41を少数にしても、複数の点火プラグ15から選択的にマイクロ波を放射できるようにしている。従って、点火プラグ15に対応して個別に発振器41を設ける場合に比べて、電磁波発振装置37の簡素化を図ることができる。
 また、本実施形態では、発振器41が電磁波用電源回路36と同じケーシング39に収容されているので、発振器41及び電磁波用電源回路36を収容する構成を簡素化することができる。
 また、本実施形態では、増幅器42が自らを収容する金属ケーシング45を利用して外部へ放熱するので、増幅器42の放熱用部品を簡素化することができる。
 《その他の実施形態》
 前記実施形態は、以下のように構成してもよい。
 前記実施形態において、増幅器42が、複数段の増幅素子43a,43bを備えていてもよい。例えば、増幅器42は、発振器41から入力された電磁波を増幅する一次増幅素子43aと、その一次増幅素子43aから出力された電磁波を増幅する二次増幅素子43bとを備えている。この場合、図4に示すように、一次増幅素子43aに対して複数の二次増幅素子43bを並列に設け、各二次増幅素子43bで増幅された電磁波が、電力合成器34で合成される。増幅器42は、全体を点火プラグ15に一体化してもよいし、後段側の二次増幅素子43bだけを点火プラグ15に一体化してもよい。後者の場合は、図5に示す高周波切替器60が、複数の二次増幅素子43bの間で、一次増幅素子43aから出力された電磁波の供給先を切り替える。なお、増幅器42が、3段以上の増幅素子43を有する場合は、点火プラグ15に一体化する後段側の増幅素子43の数を2以上にしてもよい。
 また、前記実施形態において、増幅素子43が、内燃機関20を冷却するための冷却水に放熱してもよい。例えば、内燃機関20の冷却水の流通路から延びる金属板を金属ケーシング45に当接させてもよい。
 また、前記実施形態において、高電圧パルスの印加箇所と電磁波の発振箇所とが別々であってもよい。その場合、点火プラグ15に、中心電極15aとは別にアンテナが設けられる。混合器38は必要なく、点火コイル35と点火プラグ15の中心電極15aとが直接接続され、増幅器42とアンテナとが直接接続される。アンテナは、碍子を貫通させることにより点火プラグ15と一体化される。また、アンテナを点火プラグ15と別体にして、アンテナをシリンダヘッドに設けてもよい。
 以上説明したように、本発明は、対象空間に高周波を供給してプラズマを生成するプラズマ生成装置について有用である。
 15   点火プラグ(電磁波放射器)
 30   プラズマ生成装置
 31   放電装置
 35   点火コイル
 36   電磁波用電源回路
 37   電磁波発振装置
 38   混合器
 40   点火ユニット
 41   発振器
 42   増幅器

Claims (10)

  1.  高周波を発生させる高周波発生装置と、
     前記高周波発生装置から出力された高周波を対象空間に放射する高周波放射器とを備え、
     前記高周波放射器から前記対象空間へ高周波のエネルギーを供給することによりプラズマを生成するプラズマ生成装置であって、
     前記高周波発生装置は、高周波を発振する発振器と、該発振器から発振された高周波を増幅して前記高周波放射器に出力する増幅器とを備え、前記発振器及び前記増幅器のうち増幅器だけが前記高周波放射器に一体化されている
    ことを特徴とするプラズマ生成装置。
  2.  請求項1において、
     前記増幅器は、複数段の増幅素子を備え、該複数段の増幅素子のうち後段側の増幅素子が前記高周波放射器に一体化されている
    ことを特徴とするプラズマ生成装置。
  3.  請求項1又は2において、
     前記高周波放射器は、放電ギャップが形成された先端側が前記対象空間に臨む点火プラグである
    ことを特徴とするプラズマ生成装置。
  4.  請求項3において、
     前記点火プラグは、放電ギャップを形成する電極とは別途に、前記対象空間へ高周波を放射するためのアンテナを有する
    ことを特徴とするプラズマ生成装置。
  5.  請求項3又は4において、
     前記放電ギャップにおいて放電を発生させるための高電圧パルスを前記点火プラグへ出力する点火コイルを備え、
     前記増幅器は、前記点火コイルと前記点火プラグとが一体化された点火ユニットに一体化されている
    ことを特徴とするプラズマ生成装置。
  6.  請求項5において、
     前記点火コイルに一体化され、該点火コイルで発生した高電圧パルスと前記増幅器で増幅された高周波とを混合して前記点火プラグに出力する混合器を備え、
     前記増幅器は、前記混合器に取り付けられ、該混合器を介して前記点火ユニットに一体化されている
    ことを特徴とするプラズマ生成装置。
  7.  請求項1乃至6の何れか1つにおいて、
     前記高周波放射器を複数備える一方、
     前記増幅器は、前記高周波放射器に対応して複数設けられ、各増幅器は、対応する高周波放射器に一体化され、
     複数の増幅器の間で、前記発振器から出力された高周波の供給先を切り替える高周波切替器を備えている
    ことを特徴とするプラズマ生成装置。
  8.  請求項2において、
     前記高周波放射器を複数備える一方、
     前記後段側の増幅素子が、前記高周波放射器に対応して複数設けられ、各後段側の増幅素子は、対応する高周波放射器に一体化され、
     複数の後段側の増幅素子の間で、前記前段側の増幅素子から出力された高周波の供給先を切り替える高周波切替器を備えている
    ことを特徴とするプラズマ生成装置。
  9.  請求項1乃至8の何れか1つにおいて、
     前記高周波発振装置に高周波用の電力を供給する電源回路を備え、
     前記発振器は、前記電源回路と同じケーシングに収容されている
    ことを特徴とするプラズマ生成装置。
  10.  請求項1乃至9の何れか1つにおいて、
     前記増幅器は、高周波が外部へ漏洩することを遮断するための金属ケーシングに収容された状態で前記高周波放射器に一体化され、前記増幅器で発生した熱が前記金属ケーシングを介して外部へ放熱される
    ことを特徴とするプラズマ生成装置。
PCT/JP2011/065252 2010-07-07 2011-07-04 プラズマ生成装置 WO2012005201A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11803535.1A EP2592911B1 (en) 2010-07-07 2011-07-04 Plasma-generating apparatus
JP2012523851A JPWO2012005201A1 (ja) 2010-07-07 2011-07-04 プラズマ生成装置
US13/735,441 US8873216B2 (en) 2010-07-07 2013-01-07 Plasma generation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-155293 2010-07-07
JP2010155293 2010-07-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/735,441 Continuation US8873216B2 (en) 2010-07-07 2013-01-07 Plasma generation device

Publications (1)

Publication Number Publication Date
WO2012005201A1 true WO2012005201A1 (ja) 2012-01-12

Family

ID=45441180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065252 WO2012005201A1 (ja) 2010-07-07 2011-07-04 プラズマ生成装置

Country Status (4)

Country Link
US (1) US8873216B2 (ja)
EP (1) EP2592911B1 (ja)
JP (1) JPWO2012005201A1 (ja)
WO (1) WO2012005201A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161231A1 (ja) * 2011-05-24 2012-11-29 イマジニアリング株式会社 電磁波放射装置
WO2015030247A3 (ja) * 2013-09-02 2015-04-23 イマジニアリング株式会社 プラズマ発生装置及び内燃機関
JP2015109647A (ja) * 2013-12-04 2015-06-11 フリースケール セミコンダクター インコーポレイテッド Rf電力増幅および分配システム、プラズマ点火システム、ならびにそれらの動作方法
WO2015119162A3 (ja) * 2014-02-04 2015-10-08 イマジニアリング株式会社 点火装置
US9695794B2 (en) 2015-08-07 2017-07-04 Fujitsu Ten Limited Control device of plasma ignition apparatus and plasma ignition apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6082881B2 (ja) * 2013-08-21 2017-02-22 イマジニアリング株式会社 内燃機関の点火装置及び内燃機関
WO2015157294A1 (en) 2014-04-08 2015-10-15 Plasma Igniter, Inc. Dual signal coaxial cavity resonator plasma generation
JP6739348B2 (ja) * 2014-11-24 2020-08-12 イマジニアリング株式会社 点火ユニット、点火システム、及び内燃機関
JP6157677B1 (ja) 2016-04-07 2017-07-05 三菱電機株式会社 高周波放電点火装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004064460A1 (ja) * 2003-01-16 2004-07-29 Japan Science And Technology Agency 高周波電力供給装置およびプラズマ発生装置
JP2005183396A (ja) 2003-12-20 2005-07-07 Robert Bosch Gmbh 内燃機関で混合気を点火するための装置
JP2005536684A (ja) * 2002-08-28 2005-12-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 内燃機関における空気燃料混合気の点火装置
JP2008175197A (ja) * 2006-12-20 2008-07-31 Denso Corp プラズマ式点火装置
JP2009036198A (ja) * 2007-07-12 2009-02-19 Imagineering Kk 点火またはプラズマ発生装置
JP2009085038A (ja) * 2007-09-28 2009-04-23 Denso Corp プラズマ式点火装置
JP2009537730A (ja) * 2006-05-18 2009-10-29 ノース−ウエスト ユニヴァーシティ 点火装置
JP2009281188A (ja) * 2008-05-20 2009-12-03 Aet Inc 火花放電点火方式とマイクロ波プラズマ点火方式を併用する点火装置
JP2010001827A (ja) * 2008-06-20 2010-01-07 Mitsubishi Electric Corp 内燃機関用点火装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3934566A (en) * 1974-08-12 1976-01-27 Ward Michael A V Combustion in an internal combustion engine
US4392082A (en) * 1980-08-15 1983-07-05 Hitachi, Ltd. Pressure-sensitive ignition plug
US5361737A (en) * 1992-09-30 1994-11-08 West Virginia University Radio frequency coaxial cavity resonator as an ignition source and associated method
US7005921B2 (en) * 2004-03-17 2006-02-28 Micrel, Incorporated Common-mode feedback circuit
US7387115B1 (en) 2006-12-20 2008-06-17 Denso Corporation Plasma ignition system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005536684A (ja) * 2002-08-28 2005-12-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 内燃機関における空気燃料混合気の点火装置
WO2004064460A1 (ja) * 2003-01-16 2004-07-29 Japan Science And Technology Agency 高周波電力供給装置およびプラズマ発生装置
JP2005183396A (ja) 2003-12-20 2005-07-07 Robert Bosch Gmbh 内燃機関で混合気を点火するための装置
JP2009537730A (ja) * 2006-05-18 2009-10-29 ノース−ウエスト ユニヴァーシティ 点火装置
JP2008175197A (ja) * 2006-12-20 2008-07-31 Denso Corp プラズマ式点火装置
JP2009036198A (ja) * 2007-07-12 2009-02-19 Imagineering Kk 点火またはプラズマ発生装置
JP2009085038A (ja) * 2007-09-28 2009-04-23 Denso Corp プラズマ式点火装置
JP2009281188A (ja) * 2008-05-20 2009-12-03 Aet Inc 火花放電点火方式とマイクロ波プラズマ点火方式を併用する点火装置
JP2010001827A (ja) * 2008-06-20 2010-01-07 Mitsubishi Electric Corp 内燃機関用点火装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2592911A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161231A1 (ja) * 2011-05-24 2012-11-29 イマジニアリング株式会社 電磁波放射装置
WO2015030247A3 (ja) * 2013-09-02 2015-04-23 イマジニアリング株式会社 プラズマ発生装置及び内燃機関
JPWO2015030247A1 (ja) * 2013-09-02 2017-03-02 イマジニアリング株式会社 プラズマ発生装置及び内燃機関
JP2015109647A (ja) * 2013-12-04 2015-06-11 フリースケール セミコンダクター インコーポレイテッド Rf電力増幅および分配システム、プラズマ点火システム、ならびにそれらの動作方法
WO2015119162A3 (ja) * 2014-02-04 2015-10-08 イマジニアリング株式会社 点火装置
JPWO2015119162A1 (ja) * 2014-02-04 2017-03-30 イマジニアリング株式会社 点火装置
US9695794B2 (en) 2015-08-07 2017-07-04 Fujitsu Ten Limited Control device of plasma ignition apparatus and plasma ignition apparatus

Also Published As

Publication number Publication date
EP2592911A4 (en) 2014-09-17
EP2592911B1 (en) 2017-05-10
EP2592911A1 (en) 2013-05-15
JPWO2012005201A1 (ja) 2013-09-02
US20130119865A1 (en) 2013-05-16
US8873216B2 (en) 2014-10-28

Similar Documents

Publication Publication Date Title
WO2012005201A1 (ja) プラズマ生成装置
US8813717B2 (en) Internal combustion engine
US10132286B2 (en) Ignition system for internal combustion engine, and internal combustion engine
US9903337B2 (en) Plasma generator and internal combustion engine
JP6086446B2 (ja) 内燃機関
JP2010096109A (ja) 点火装置
JP2011134636A (ja) 高周波プラズマ点火装置
JP6082877B2 (ja) プラズマ生成装置、及び内燃機関
JP6082880B2 (ja) 高周波放射用プラグ
WO2012111700A2 (ja) 内燃機関
WO2013011968A1 (ja) プラズマ生成装置、及び内燃機関
JP6298961B2 (ja) 電磁波放射装置
WO2013005772A1 (ja) 火花点火式内燃機関
JP6064138B2 (ja) 内燃機関、及びプラズマ生成装置
JP6179004B2 (ja) 電磁波放射装置
KR101537763B1 (ko) 점화 플러그 및 내연 기관
JP6086443B2 (ja) 内燃機関
WO2013021993A1 (ja) 内燃機関
WO2015119162A2 (ja) 点火装置
JP2012159033A (ja) エンジン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803535

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012523851

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011803535

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011803535

Country of ref document: EP