WO2013005772A1 - 火花点火式内燃機関 - Google Patents

火花点火式内燃機関 Download PDF

Info

Publication number
WO2013005772A1
WO2013005772A1 PCT/JP2012/067083 JP2012067083W WO2013005772A1 WO 2013005772 A1 WO2013005772 A1 WO 2013005772A1 JP 2012067083 W JP2012067083 W JP 2012067083W WO 2013005772 A1 WO2013005772 A1 WO 2013005772A1
Authority
WO
WIPO (PCT)
Prior art keywords
spark
combustion chamber
electromagnetic wave
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2012/067083
Other languages
English (en)
French (fr)
Inventor
毅 芹澤
宏明 尾井
池田 裕二
淳 西山
Original Assignee
イマジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イマジニアリング株式会社 filed Critical イマジニアリング株式会社
Priority to US14/129,692 priority Critical patent/US9587618B2/en
Priority to EP12807365.7A priority patent/EP2730775A4/en
Publication of WO2013005772A1 publication Critical patent/WO2013005772A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays
    • F02P23/045Other physical ignition means, e.g. using laser rays using electromagnetic microwaves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/01Electric spark ignition installations without subsequent energy storage, i.e. energy supplied by an electrical oscillator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • F02P9/007Control of spark intensity, intensifying, lengthening, suppression by supplementary electrical discharge in the pre-ionised electrode interspace of the sparking plug, e.g. plasma jet ignition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/50Sparking plugs having means for ionisation of gap

Definitions

  • the present invention relates to a spark ignition internal combustion engine that reacts an electric field generated in a combustion chamber with a spark discharge by an ignition plug to generate plasma and ignite an air-fuel mixture.
  • the internal combustion engine disclosed in Japanese Patent Application Laid-Open No. 2011-7155 generates an electric field by a microwave and causes the electric field to react with a spark discharge.
  • the spark discharge by the spark plug becomes plasma in the electric field.
  • the flame kernel which is the beginning of flame propagation combustion, is larger than the spark ignition alone.
  • the conventional spark ignition type internal combustion engine can reduce the pumping loss and improve the fuel consumption by diluting the air-fuel mixture.
  • the flame propagation speed decreases as the air-fuel mixture becomes leaner, the amount of fuel that is discharged unburned increases.
  • the fuel efficiency is improved by reducing the pumping loss, the degree of improvement in the fuel efficiency of the internal combustion engine is reduced by the amount of unburned fuel.
  • the present invention has been made in view of such a point, and an object thereof is a spark ignition type in which an electric field generated in a combustion chamber and a spark discharge by a spark plug are reacted to generate plasma and ignite an air-fuel mixture.
  • the fuel that is discharged without being burned is reduced to improve the fuel consumption of the internal combustion engine.
  • the first invention is directed to a spark ignition internal combustion engine that reacts an electric field generated in a combustion chamber and spark discharge by a spark plug to generate plasma and ignite an air-fuel mixture.
  • the spark ignition type internal combustion engine includes an electromagnetic wave radiation device that radiates electromagnetic waves to the combustion chamber when an air-fuel mixture is burned, and at least a part of a conductor, and protrudes from a section screen that partitions the combustion chamber. Projecting member.
  • the electromagnetic wave radiation device radiates electromagnetic waves to the combustion chamber. Then, an induced current flows through the conductor of the protruding member due to the electromagnetic wave, the electric field concentrates in the vicinity of the protruding member, and plasma is generated in the vicinity of the protruding member. In the first invention, plasma is generated in a region other than the region where the spark discharge and the electric field react.
  • the electromagnetic wave radiation device radiates an electromagnetic wave when performing the spark discharge.
  • the electromagnetic wave emission device when the spark discharge is performed, the electromagnetic wave emission device emits an electromagnetic wave, so that the plasma is more efficiently generated in the vicinity of the projecting member at the time when the plasma is generated by the reaction between the spark discharge and the electric field. Is generated.
  • the electromagnetic wave emission device radiates an electromagnetic wave after an air-fuel mixture is ignited by plasma generated by a reaction between an electric field and a spark discharge.
  • plasma is efficiently generated in the vicinity of the projecting member after the air-fuel mixture is ignited due to the reaction between the spark discharge and the electric field.
  • the projecting member has a relatively large flame propagation in the combustion chamber that spreads from a position where plasma is generated by a reaction between an electric field and a spark discharge. Located in a slow area.
  • the protruding member is arranged in a region where the propagation of the flame is relatively slow in the combustion chamber. In the region where the propagation of the flame is relatively slow in the combustion chamber, plasma is generated by the electric field concentrated on the protruding member.
  • the conductor of the projecting member is a metal wire having a length of a quarter of the wavelength of the electromagnetic wave emitted by the electromagnetic wave emission device. .
  • the electric field can be effectively concentrated on the projecting member by using the conductor of the projecting member as a metal wire having a length of a quarter of the wavelength of the electromagnetic wave radiated to the combustion chamber. it can.
  • the plurality of projecting members are arranged on the section screen at an interval within a quarter of the wavelength of the electromagnetic wave radiated by the electromagnetic wave radiation device. ing.
  • the electric field strength can be further increased by setting the interval between the plurality of protruding members to be within a quarter of the wavelength of the electromagnetic wave radiated to the combustion chamber.
  • a seventh aspect of the present invention is the ignition according to any one of the first to sixth aspects, wherein the combustion chamber is formed in a cylindrical cylinder, and the spark discharge is generated at a center portion of a ceiling surface of the combustion chamber. While the plug is disposed, the protruding member is disposed on the ceiling surface of the combustion chamber between the spark plug and the wall surface of the combustion chamber.
  • a spark plug is disposed at the center of the ceiling surface of the combustion chamber, and a protruding member is disposed between the spark plug and the wall surface of the combustion chamber. Plasma is generated in the vicinity of the spark plug and in the vicinity of the protruding member outside the spark plug.
  • the electric field of the electromagnetic wave is concentrated in the vicinity of the protruding member protruding from the section screen of the combustion chamber, so that plasma is generated in addition to the region where the spark discharge and the electric field react. To be. In the region where plasma is generated, the oxidation reaction of the air-fuel mixture is promoted and combustion is accelerated. Accordingly, it is possible to improve the fuel consumption of the internal combustion engine by reducing the fuel discharged without being burned.
  • FIG. 1 is a schematic configuration diagram of a spark ignition internal combustion engine according to an embodiment. It is a front view of the ceiling surface of the combustion chamber of the spark ignition type internal combustion engine which concerns on embodiment. It is a block diagram of the ignition device which concerns on embodiment. It is a block diagram of an ignition device and an electromagnetic wave emission device according to Modification 1 of the embodiment. It is a schematic block diagram of the spark ignition type internal combustion engine which concerns on the modification 1 of embodiment. It is a front view of the ceiling surface of the combustion chamber of the spark ignition type internal combustion engine which concerns on the modification 2 of embodiment.
  • the present embodiment is a spark ignition internal combustion engine 10 (hereinafter referred to as “internal combustion engine”) that ignites an air-fuel mixture by plasma generated by a reaction between an electric field generated by a microwave and spark discharge.
  • the internal combustion engine 10 includes an internal combustion engine body 11 in which a combustion chamber 20 is formed, and an ignition device 30 that ignites an air-fuel mixture in the combustion chamber 20 using plasma.
  • the internal combustion engine main body 11 includes a cylinder block 21, a cylinder head 22, and a piston 23 as shown in FIG.
  • a plurality of cylinders 24 having a circular cross section are formed in the cylinder block 21.
  • a piston 23 is provided in each cylinder 24 so as to reciprocate.
  • the piston 23 is connected to the crankshaft via a connecting rod (not shown).
  • the crankshaft is rotatably supported by the cylinder block 21.
  • the cylinder head 22 is placed on the cylinder block 21 with the gasket 18 in between.
  • the cylinder head 22 defines the combustion chamber 20 together with the cylinder 24 and the piston 23.
  • a surface that divides the combustion chamber 20 is a section screen on which a protruding member 50 described later is provided.
  • the cylinder head 22 is provided with one ignition plug 15 that constitutes a part of the ignition device 30 for each cylinder 24.
  • the spark plug 15 is provided at the center of the ceiling surface 51 of the combustion chamber 20 (the surface defining the combustion chamber 20 in the cylinder head 22).
  • a center electrode 16 and a ground electrode 17 that form a discharge gap are provided at the tip of the spark plug 15.
  • an intake port 25 and an exhaust port 26 are formed for each cylinder 24.
  • the intake port 25 is provided with an intake valve 27 that opens and closes an opening 25a of the intake port 25, and a fuel injection valve 29 that injects fuel.
  • the exhaust port 26 is provided with an exhaust valve 28 that opens and closes an opening 26 a of the exhaust port 26.
  • a plurality of protruding members 50 are provided on the ceiling surface 51 of the combustion chamber 20 in the cylinder head 22. As shown in FIG. 2, in the ceiling surface 51 of the combustion chamber 20, among the openings 25 a of the intake port 25 and the openings 26 a of the exhaust port 26, a plurality of inter-port regions 52 between adjacent openings 25 a and 26 a are provided. Projecting members 50 (in this embodiment, three projecting members 50) are provided. In each inter-port region 52, a plurality of protruding members 50 are arranged at equal intervals in the radial direction of the combustion chamber 20.
  • the distance L between the tips of the adjacent projecting members 50 is set to a value within a quarter of the wavelength ⁇ of the microwave radiated to the combustion chamber 20 (for example, ⁇ / 16).
  • Each protruding member 50 is formed in a conical shape.
  • Each protruding member 50 is entirely made of a conductor.
  • the intake port 25 is designed so that a strong tumble flow 35 is formed in the combustion chamber 20.
  • the air-fuel mixture flowing in from the intake port 25 flows toward the exhaust port 26 along the ceiling surface of the combustion chamber 20, and the flow hits the wall surface of the cylinder 24 and the upper surface of the piston 23 and swirls in the vertical direction. become.
  • the tumble flow 35 is formed from the intake stroke to the compression stroke.
  • the ignition device 30 includes a discharge device 12, an electromagnetic wave emission device 13, and a mixer 33 as shown in FIG.
  • the ignition device 30 reacts the spark discharge generated by the discharge device 12 with the electric field formed by the microwave radiated from the electromagnetic wave emission device 13 to generate microwave plasma.
  • the discharge device 12 is provided for each combustion chamber 20.
  • the discharge device 12 includes an ignition coil 14 that outputs a high voltage pulse, and an ignition plug 15 that generates a discharge when the high voltage pulse from the ignition coil 14 is applied.
  • the ignition coil 14 is connected to a DC power source (not shown). When the ignition coil 14 receives the ignition signal from the electronic control unit 35, the ignition coil 14 boosts the voltage applied from the DC power source and outputs the boosted high voltage pulse to the spark plug 15. A high voltage pulse is supplied to the spark plug 15 via the mixer 33. In the spark plug 15, when a high voltage pulse is supplied, spark discharge occurs in the discharge gap.
  • the electromagnetic wave radiation device 13 includes an electromagnetic wave generator 31, an electromagnetic wave switch 32, and a radiation antenna 16.
  • the center electrode 16 of the spark plug 15 functions as the radiation antenna 16.
  • the electromagnetic wave generation device 31 and the electromagnetic wave switch 32 are provided one by one, and the radiation antenna 16 is provided for each combustion chamber 20.
  • the electromagnetic wave generator 31 When receiving the electromagnetic wave drive signal from the electronic control device 35, the electromagnetic wave generator 31 repeatedly outputs a microwave pulse with a predetermined duty ratio.
  • the electromagnetic wave drive signal is a pulse signal, and the electromagnetic wave generator 31 repeatedly outputs the microwave pulse over the time of the pulse width of the electromagnetic wave drive signal.
  • a semiconductor oscillator In the electromagnetic wave generator 31, a semiconductor oscillator generates a microwave pulse. In place of the semiconductor oscillator, another oscillator such as a magnetron may be used.
  • the electromagnetic wave switch 32 includes one input terminal and a plurality of output terminals provided for each radiation antenna 16.
  • the input terminal is connected to the electromagnetic wave generator 31.
  • Each output terminal is connected to a corresponding radiation antenna 16.
  • the electromagnetic wave switch 32 switches the antenna that supplies the microwaves output from the electromagnetic wave generator 31 among the plurality of radiation antennas 16.
  • the electromagnetic wave switch 32 is controlled by the electronic control device 35.
  • the mixer 33 receives the high voltage pulse from the ignition coil 14 and the microwave pulse from the electromagnetic wave generator 31 at separate input terminals, and outputs the high voltage pulse and the microwave pulse from the same output terminal to the ignition plug 15. Output. -Ignition operation-
  • an intake stroke is started immediately before the piston 23 reaches top dead center. Then, immediately after the piston 23 passes through the top dead center, the exhaust stroke ends.
  • the electronic control unit 35 outputs an injection signal to the fuel injection valve 29 corresponding to the cylinder 24 during the intake stroke, and causes the fuel injection valve 29 to inject fuel.
  • the intake stroke ends immediately after the piston 23 passes the bottom dead center after fuel injection.
  • the electronic control unit 35 outputs an ignition signal to the ignition coil 14 corresponding to the cylinder 24 during the compression stroke immediately before the piston 23 reaches the top dead center.
  • the high voltage pulse output from the ignition coil 14 is supplied to the spark plug 15, and spark discharge is performed in the discharge gap of the spark plug 15.
  • the electronic control device 35 outputs an electromagnetic wave drive signal to the electromagnetic wave generator 31 immediately before the high voltage pulse is output from each ignition coil 14.
  • the electromagnetic wave switch 32 Prior to the output of the electromagnetic wave drive signal, the electromagnetic wave switch 32 is switched so that the center electrode 16 of the spark plug 15 that receives the high voltage pulse is the microwave supply destination. Thereby, the microwave pulse output from the electromagnetic wave generator 31 is radiated from the center electrode 16 of the spark plug 15 that receives the high voltage pulse to the combustion chamber 20. The microwave pulse is repeatedly emitted immediately before and after the spark discharge is generated.
  • a relatively large microwave plasma is generated.
  • the electric field generated by the microwave pulse is concentrated not only in the vicinity of the center electrode 16 serving as a radiation antenna but also in the vicinity of the protruding member 50.
  • microwave plasma is also generated in the vicinity of the protruding member 50.
  • the air-fuel mixture is ignited at multiple points by the microwave plasma, and combustion of the air-fuel mixture is started.
  • the piston 23 is moved to the bottom dead center side by the expansion force when the air-fuel mixture burns.
  • the exhaust stroke is started immediately before the piston 23 reaches bottom dead center. As described above, the exhaust stroke ends immediately after the start of the intake stroke.
  • the electromagnetic wave emission device 13 radiates microwaves after the air-fuel mixture is ignited by plasma generated by the reaction between the electric field and the spark discharge.
  • the ignition device 30 generates plasma in the vicinity of the ignition plug 15 by causing an electric field generated by a high frequency having a frequency lower than the microwave to react with the spark discharge.
  • the ignition device 30 includes a discharge device 12 and a high-frequency generator 60.
  • the high frequency generator 60 outputs a high voltage high frequency at the same time as the ignition coil 14 outputs a high voltage pulse.
  • the high voltage and high frequency are supplied to the spark plug 15 via the mixer 33.
  • a relatively large plasma is generated by the reaction between the electric field generated by the high frequency and the spark discharge, and the mixture is ignited by the plasma.
  • the electromagnetic wave radiation device 13 does not constitute a part of the ignition device 30.
  • the electromagnetic wave radiation device 13 includes an electromagnetic wave generator 31, an electromagnetic wave switch 32, and a radiation antenna 61.
  • the electromagnetic wave generator 31 and the electromagnetic wave switch 32 are the same as in the above embodiment.
  • a radiation antenna 61 is provided at the tip of the spark plug 15 separately from the center electrode 16 of the spark plug 15.
  • a microwave transmission line connecting the electromagnetic wave switch 32 and the radiation antenna 61 is provided so as to penetrate the outer conductor of the spark plug 15 (not shown).
  • the radiating antenna 61 may be provided at a location other than the spark plug 15 (for example, the ceiling surface 51 of the combustion chamber 20).
  • the electromagnetic wave emission device 13 radiates microwaves after the air-fuel mixture is ignited by the plasma generated by the ignition device 30.
  • the electromagnetic wave emission device 13 radiates a microwave before the flame spreading from the ignition position of the ignition device 30 passes through the protruding member 50 closest to the ignition plug 15. Then, an induced current flows through the conductor of each projecting member 50 by the microwave, an electric field concentrates in the vicinity of the projecting member 50, and microwave plasma is generated in the vicinity of the projecting member 50. In the region where the microwave plasma is generated, the oxidation reaction of the air-fuel mixture is promoted and the combustion is accelerated. That is, the propagation speed of the flame spreading from the discharge gap is improved by the microwave plasma.
  • the electromagnetic wave emission device 13 continues to emit microwaves until the flame spreading from the ignition position of the ignition device 30 passes through the projecting member 50 farthest from the ignition plug 15.
  • the electromagnetic wave emission device 13 may emit microwaves when performing spark discharge. In other words, microwaves may be emitted when the air-fuel mixture is ignited by the plasma generated by the ignition device 30.
  • microwaves may be further radiated after the air-fuel mixture is ignited by plasma generated in the vicinity of the center electrode 16 and in the vicinity of the protruding member 50.
  • the protruding member 50 is disposed in a region where the propagation of the flame spreading from the position where the plasma is generated by the ignition device 30 is relatively slow in the combustion chamber 20.
  • the projecting member 50 includes an inter-port region 52 between the openings 25a of the two intake ports 25 (an inter-port region 52a on the intake side) and an inter-port region between the opening 25a of the intake port 25 and the opening 26a of the exhaust port 26. It is arranged in a region 52 (inter-port region 52b between intake and exhaust). More projecting members 50 are arranged in the inter-port region 52a on the intake side than in the inter-port region 52b between intake and exhaust.
  • the protruding member 50 is not disposed in the inter-port region 52 (exhaust-side inter-port region 52c) between the openings 26a of the two exhaust ports 26.
  • a protruding member 50 is also arranged on the exposed surface of the combustion chamber 20 in the umbrella portion of each intake valve 27.
  • each protruding member 50 may be a conductor, and the protruding member 50 may be, for example, a surface of a conical conductor covered with an insulating layer. In this case, the durability of the protruding member 50 can be improved. Further, each protruding member 50 may be one in which a metal wire is embedded in a conical insulator. In this case, by setting the length of the metal wire to 1 ⁇ 4 of the wavelength of the microwave radiated to the combustion chamber 20, the electric field can be effectively concentrated on the protruding member 50.
  • each protruding member 50 may have a shape other than a cone (for example, a cylinder or a line).
  • each projecting member 50 may be arranged at a location other than the ceiling surface of the combustion chamber 20 (for example, the top surface of the piston 23) in the section screen that divides the combustion chamber 20.
  • the present invention is useful for a spark ignition internal combustion engine that reacts an electric field generated in a combustion chamber with a spark discharge generated by a spark plug to generate plasma and ignite an air-fuel mixture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Plasma Technology (AREA)

Abstract

 本発明は、燃焼室内に生成される電界と点火プラグによる火花放電とを反応させ、プラズマを生成して混合気に着火する火花点火式内燃機関において、未燃のまま排出される燃料を低減させて内燃機関の燃費を向上させることを課題とする。本発明は、燃焼室内に生成される電界と点火プラグによる火花放電とを反応させ、プラズマを生成して混合気に着火する火花点火式内燃機関であって、混合気を燃焼させる際に燃焼室へ電磁波を放射する電磁波放射装置と、少なくとも一部が導電体により構成され、燃焼室を区画する区画面から突出する突出部材とを設けることを特徴とする。

Description

火花点火式内燃機関
 本発明は、燃焼室内に生成される電界と点火プラグによる火花放電とを反応させ、プラズマを生成して混合気に着火する火花点火式内燃機関に関するものである。
 従来から、燃焼室内に生成される電界と点火プラグによる火花放電とを反応させ、プラズマを生成して混合気に着火する火花点火式内燃機関が知られている。この種の内燃機関は、電界と火花放電とを反応させてプラズマを生成することにより良好な着火が得られるようにしている。この種の内燃機関が、例えば特開2011-7155号公報に開示されている。
 特開2011-7155号公報の内燃機関は、マイクロ波により電界を発生させ、その電界と火花放電とを反応させている。点火プラグによる火花放電は、電界中でプラズマになる。火炎伝播燃焼の始まりとなる火炎核は、火花放電のみの点火に比べて大きくなる。
特開2011-7155号公報
 従来の火花点火式内燃機関は、混合気を希薄化することで、ポンピングロスを減少させて、燃費を向上させることが可能である。しかし、混合気を希薄にするほど火炎の伝播速度が低下するので、未燃のまま排出される燃料が増加する。ポンピングロスの減少により燃費は向上するものの、未燃の燃料が増加する分だけ、内燃機関の燃費の向上度合いが低下する。
 本発明は、かかる点に鑑みてなされたものであり、その目的は、燃焼室内に生成される電界と点火プラグによる火花放電とを反応させ、プラズマを生成して混合気に着火する火花点火式内燃機関において、未燃のまま排出される燃料を低減させて、内燃機関の燃費を向上させることにある。
 第1の発明は、燃焼室内に生成される電界と点火プラグによる火花放電とを反応させ、プラズマを生成して混合気に着火する火花点火式内燃機関を対象とする。そして、この火花点火式内燃機関は、混合気を燃焼させる際に前記燃焼室へ電磁波を放射する電磁波放射装置と、少なくとも一部が導電体により構成され、前記燃焼室を区画する区画面から突出する突出部材とを備えている。
 第1の発明では、混合気を燃焼させる際に、電磁波放射装置が燃焼室へ電磁波を放射する。そうすると、電磁波により突出部材の導電体に誘導電流が流れ、突出部材の近傍に電界が集中して、突出部材の近傍にプラズマが生成される。第1の発明では、火花放電と電界とが反応する領域以外にも、プラズマが生成される。
 第2の発明は、第1の発明において、前記電磁波放射装置が、前記火花放電を行う際に電磁波を放射する。
 第2の発明では、火花放電を行う際に、前記電磁波放射装置が、電磁波を放射するため、火花放電と電界との反応によりプラズマが生成される時期に、突出部材の近傍により効率的にプラズマが生成される。
 第3の発明は、第1又は第2の発明において、前記電磁波放射装置が、電界と火花放電との反応により生成されたプラズマにより混合気が着火された後に電磁波を放射する。
 第3の発明では、火花放電と電界の反応に起因する混合気の着火後に、突出部材の近傍により効率的にプラズマが生成される。
 第4の発明は、第1、第2又は第3の発明において、前記突出部材が、電界と火花放電との反応によりプラズマが生成される位置から広がる火炎の伝播が前記燃焼室において相対的に遅い領域に配置されている。
 第4の発明では、火炎の伝播が燃焼室において相対的に遅い領域に、突出部材が配置されている。火炎の伝播が燃焼室において相対的に遅い領域において、突出部材に集中する電界によりプラズマが生成される。
 第5の発明は、第1から第4の何れか1つの発明において、前記突出部材の導電体が、前記電磁波放射装置が放射する電磁波の波長の4分の1の長さの金属線である。
 第5の発明では、突出部材の導電体を、燃焼室へ放射される電磁波の波長の4分の1の長さの金属線とすることで、突出部材に効果的に電界を集中させることができる。
 第6の発明は、第1から第5の何れか1つの発明において、前記区画面では、前記電磁波放射装置が放射する電磁波の波長の4分の1以内の間隔で複数の突出部材が配置されている。
 第6の発明では、複数の突出部材の配置間隔を、燃焼室へ放射される電磁波の波長の4分の1以内とすることで、電界強度をより高めることができる。
 第7の発明は、第1から第6の何れか1つの発明において、前記燃焼室が、円筒状のシリンダ内に形成され、前記燃焼室の天井面の中心部に、前記火花放電が生じる点火プラグが配置される一方、前記突出部材は、前記燃焼室の天井面において前記点火プラグと前記燃焼室の壁面との間に配置されている。
 第7の発明では、燃焼室の天井面の中心部に点火プラグが配置され、点火プラグと燃焼室の壁面との間に突出部材が配置されている。プラズマは、点火プラグの近傍と、点火プラグより外側の突出部材の近傍とに生成される。
 本発明では、混合気を燃焼させる際に、燃焼室の区画面から突出する突出部材の近傍に電磁波の電界を集中させることで、火花放電と電界とが反応する領域以外にも、プラズマが生成されるようにしている。プラズマが生成される領域では、混合気の酸化反応が促進され、燃焼が早期化される。従って、未燃のまま排出される燃料を低減させて、内燃機関の燃費を向上させることができる。
実施形態に係る火花点火式内燃機関の概略構成図である。 実施形態に係る火花点火式内燃機関の燃焼室の天井面の正面図である。 実施形態に係る点火装置のブロック図である。 実施形態の変形例1に係る点火装置及び電磁波放射装置のブロック図である。 実施形態の変形例1に係る火花点火式内燃機関の概略構成図である。 実施形態の変形例2に係る火花点火式内燃機関の燃焼室の天井面の正面図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
《実施形態》
 本実施形態は、マイクロ波による電界と火花放電との反応により生成されるプラズマにより混合気に点火する火花点火式内燃機関10(以下、「内燃機関」という。)である。内燃機関10は、燃焼室20が形成された内燃機関本体11と、プラズマにより燃焼室20の混合気に点火する点火装置30とを備えている。
 -内燃機関本体-
 内燃機関本体11は、図1に示すように、シリンダブロック21とシリンダヘッド22とピストン23とを備えている。シリンダブロック21には、横断面が円形のシリンダ24が複数形成されている。各シリンダ24内には、ピストン23が往復自在に設けられている。ピストン23は、コネクティングロッドを介して、クランクシャフトに連結されている(図示省略)。クランクシャフトは、シリンダブロック21に回転自在に支持されている。各シリンダ24内においてシリンダ24の軸方向にピストン23が往復運動すると、コネクティングロッドがピストン23の往復運動をクランクシャフトの回転運動に変換する。
 シリンダヘッド22は、ガスケット18を挟んで、シリンダブロック21上に載置されている。シリンダヘッド22は、シリンダ24及びピストン23と共に、燃焼室20を区画している。シリンダヘッド22、シリンダ24及びピストン23のうち燃焼室20を区画する面が、後述する突出部材50が設けられる区画面となる。
 シリンダヘッド22には、各シリンダ24に対して、点火装置30の一部を構成する点火プラグ15が1つずつ設けられている。点火プラグ15は、燃焼室20の天井面51(シリンダヘッド22において燃焼室20を区画する面)の中心部に設けられている。点火プラグ15の先端部には、放電ギャップを形成する中心電極16及び接地電極17が設けられている。
 シリンダヘッド22には、各シリンダ24に対して、吸気ポート25及び排気ポート26が形成されている。吸気ポート25には、吸気ポート25の開口25aを開閉する吸気弁27と、燃料を噴射する燃料噴射弁29とが設けられている。一方、排気ポート26には、排気ポート26の開口26aを開閉する排気弁28が設けられている。
 本実施形態では、シリンダヘッド22における燃焼室20の天井面51に、複数の突出部材50が設けられている。図2に示すように、燃焼室20の天井面51では、吸気ポート25の開口25a及び排気ポート26の開口26aのうち、隣り合う開口25a,26aの間のポート間領域52の各々に、複数の突出部材50(本実施形態では、3つの突出部材50)が設けられている。各ポート間領域52では、複数の突出部材50が燃焼室20の径方向に等間隔で並んでいる。隣り合う突出部材50における先端間の距離Lは、燃焼室20へ放射されるマイクロ波の波長λの4分の1以内の値(例えば、λ/16)に設定されている。各突出部材50は、円錐状に形成されている。各突出部材50は、全体が導電体により構成されている。
 内燃機関10は、燃焼室20において強いタンブル流35が形成されるように吸気ポート25が設計されている。燃焼室20では、吸気ポート25から流入した混合気が、燃焼室20の天井面に沿って排気ポート26側へ流れ、その流れがシリンダ24の壁面およびピストン23の上面に当たって縦方向に旋回する渦になる。タンブル流35は、吸気行程から圧縮行程に亘って形成される。
 -点火装置-
 点火装置30は、図3に示すように、放電装置12と電磁波放射装置13と混合器33とを備えている。点火装置30は、放電装置12により生成される火花放電と、電磁波放射装置13が放射するマイクロ波により形成される電界とを反応させて、マイクロ波プラズマを生成する。
 具体的に、放電装置12は、燃焼室20毎に設けられている。放電装置12は、高電圧パルスを出力する点火コイル14と、該点火コイル14からの高電圧パルスが印加されると放電が生じる点火プラグ15とを備えている。
 点火コイル14は、直流電源(図示省略)に接続されている。点火コイル14は、電子制御装置35から点火信号を受けると、直流電源から印加された電圧を昇圧し、昇圧後の高電圧パルスを点火プラグ15に出力する。点火プラグ15には、混合器33を介して高電圧パルスが供給される。点火プラグ15では、高電圧パルスが供給されると、放電ギャップでスパーク放電が生じる。
 電磁波放射装置13は、電磁波発生装置31と電磁波切替器32と放射アンテナ16とを備えている。本実施形態では、点火プラグ15の中心電極16が放射アンテナ16として機能する。電磁波放射装置13では、電磁波発生装置31と電磁波切替器32が1つずつ設けられ、燃焼室20毎に放射アンテナ16が設けられている。
 電磁波発生装置31は、電子制御装置35から電磁波駆動信号を受けると、所定のデューティー比でマイクロ波パルスを繰り返し出力する。電磁波駆動信号はパルス信号であり、電磁波発生装置31は、電磁波駆動信号のパルス幅の時間に亘って、マイクロ波パルスを繰り返し出力する。電磁波発生装置31では、半導体発振器がマイクロ波パルスを生成する。なお、半導体発振器の代わりに、マグネトロン等の他の発振器を使用してもよい。
 電磁波切替器32は、1つの入力端子と、放射アンテナ16毎に設けられた複数の出力端子とを備えている。入力端子は、電磁波発生装置31に接続されている。各出力端子は、対応する放射アンテナ16に接続されている。電磁波切替器32は、複数の放射アンテナ16の間で、電磁波発生装置31から出力されたマイクロ波を供給するアンテナを切り替える。電磁波切替器32は、電子制御装置35により制御される。
 混合器33は、点火コイル14からの高電圧パルスと電磁波発生装置31からのマイクロ波パルスとを別々の入力端子で受けて、同じ出力端子から点火プラグ15へ高電圧パルスとマイクロ波パルスとを出力する。
 -点火動作-
 点火装置30の動作について説明する。以下では、1つのシリンダ24に対する点火装置30の動作を説明する。
 シリンダ24では、ピストン23が上死点を達する直前に、吸気行程が開始される。そして、ピストン23が上死点を通過した直後に、排気行程が終了する。電子制御装置35は、吸気行程中のシリンダ24に対応する燃料噴射弁29に対して噴射信号を出力し、その燃料噴射弁29に燃料を噴射させる。
 吸気行程は、燃料噴射後においてピストン23が下死点を通過した直後に終了する。吸気行程が終了すると、圧縮行程が開始される。電子制御装置35は、圧縮行程中のシリンダ24に対応する点火コイル14に対して、ピストン23が上死点に達する直前に点火信号を出力する。これにより、点火コイル14から出力された高電圧パルスが点火プラグ15へ供給され、点火プラグ15の放電ギャップでスパーク放電が行われる。
 また、電子制御装置35は、各点火コイル14から高電圧パルスが出力される直前に、電磁波発生装置31に電磁波駆動信号を出力する。なお、電磁波駆動信号の出力に先立って、高電圧パルスを受ける点火プラグ15の中心電極16がマイクロ波の供給先になるように、電磁波切替器32が切り替えられている。これにより、電磁波発生装置31から出力されたマイクロ波パルスは、高電圧パルスを受ける点火プラグ15の中心電極16から燃焼室20へ放射される。マイクロ波パルスは、スパーク放電が生成される直前から直後に亘って繰り返し放射される。
 スパーク放電は、マイクロ波パルスによる電界と反応して拡大する。その結果、比較的大きなマイクロ波プラズマが生成される。他方、マイクロ波パルスによる電界は、放射アンテナとなる中心電極16の近傍だけでなく、突出部材50の近傍にも集中する。その結果、突出部材50の近傍にもマイクロ波プラズマが生成される。燃焼室20では、マイクロ波プラズマにより多点で混合気が着火され、混合気の燃焼が開始される。
 シリンダ24では、混合気が燃焼するときの膨張力により、ピストン23が下死点側へ動かされる。そして、ピストン23が下死点に達する直前に、排気行程が開始される。上述したように、排気行程は、吸気行程の開始直後に終了する。
  -実施形態の効果-
 本実施形態では、混合気を燃焼させる際に、燃焼室20の天井面51から突出する突出部材50の近傍にマイクロ波の電界を集中させることで、火花放電と電界とが反応する領域以外にも、マイクロ波プラズマが生成されるようにしている。マイクロ波プラズマが生成される領域では、混合気の酸化反応が促進され、燃焼が早期化される。従って、未燃のまま排出される燃料を低減させて、内燃機関10の燃費を向上させることができる。
  -実施形態の変形例1-
 変形例1では、電磁波放射装置13が、電界と火花放電との反応により生成されたプラズマにより混合気が着火された後にマイクロ波を放射する。また、点火装置30は、マイクロ波より低い周波数の高周波による電界と火花放電とを反応させて、点火プラグ15の近傍にプラズマを生成する。
 具体的に、図4に示すように、点火装置30は、放電装置12と高周波発生装置60とを備えている。高周波発生装置60は、点火コイル14が高電圧パルスを出力するのと同時期に、高電圧の高周波を出力する。高電圧の高周波は、混合器33を介して点火プラグ15へ供給される。点火プラグ15の放電ギャップでは、高周波による電界と火花放電が反応して比較的大きなプラズマが生成され、そのプラズマにより混合気が着火される。
 電磁波放射装置13は、前記実施形態とは異なり、点火装置30の一部を構成していない。電磁波放射装置13は、電磁波発生装置31と電磁波切替器32と放射アンテナ61とを備えている。電磁波発生装置31と電磁波切替器32とは、前記実施形態と同じである。変形例1では、点火プラグ15の先端に、点火プラグ15の中心電極16とは別途に放射アンテナ61が設けられている。電磁波切替器32と放射アンテナ61とを接続するマイクロ波の伝送線路は、点火プラグ15の外側導体を貫通するように設けられている(図示省略)。なお、放射アンテナ61は、点火プラグ15以外の箇所(例えば、燃焼室20の天井面51)に設けてもよい。
 電磁波放射装置13は、点火装置30が生成するプラズマにより混合気が着火された後にマイクロ波を放射する。電磁波放射装置13は、点火装置30の着火位置から広がる火炎が点火プラグ15に最も近い突出部材50を通過する前にマイクロ波を放射する。そうすると、マイクロ波により各突出部材50の導電体に誘導電流が流れ、突出部材50の近傍に電界が集中して、突出部材50の近傍にマイクロ波プラズマが生成される。マイクロ波プラズマが生成された領域では、混合気の酸化反応が促進され、燃焼が早期化される。つまり、放電ギャップから広がる火炎の伝播速度が、マイクロ波プラズマにより向上する。変形例1によれば、未燃のまま排出される燃料を低減させて、内燃機関の燃費を向上させることができる。なお、電磁波放射装置13は、点火装置30の着火位置から広がる火炎が点火プラグ15から最も離れた突出部材50を通過するまでマイクロ波の放射を継続する。
 変形例1において、電磁波放射装置13が、火花放電を行う際にもマイクロ波を放射してもよい。つまり、点火装置30が生成するプラズマにより混合気を着火する際にもマイクロ波を放射してもよい。
 また、変形例1を前記実施形態に適用してもよい。つまり、前記実施形態において、中心電極16の近傍及び突出部材50の近傍に生成されたプラズマにより混合気が着火された後に、マイクロ波をさらに放射してもよい。
  -実施形態の変形例2-
 変形例2では、突出部材50が、点火装置30によりプラズマが生成される位置から広がる火炎の伝播が燃焼室20において相対的に遅い領域に配置されている。
 具体的に、火炎の伝播速度は、タンブル流の影響により、排気ポート26の開口26a側ほど速く、吸気ポート25の開口25a側ほど遅い。突出部材50は、2つの吸気ポート25の開口25aの間のポート間領域52(吸気側のポート間領域52a)と、吸気ポート25の開口25aと排気ポート26の開口26aとの間のポート間領域52(吸排気間のポート間領域52b)とに配置されている。吸気側のポート間領域52aの方が吸排気間のポート間領域52bよりも、多くの突出部材50が配置されている。突出部材50は、2つの排気ポート26の開口26aの間のポート間領域52(排気側のポート間領域52c)には配置されていない。また、各吸気バルブ27の傘部における燃焼室20の露出面にも、突出部材50が配置されている。
 変形例2によれば、火炎の伝播が燃焼室20において相対的に遅い領域の突出部材50の近傍にプラズマが生成される。そのため、燃焼室20では火炎の伝播速度が均一化されるので、未燃のまま排出される燃料を効率的に低減させることができる。
 -その他の実施形態-
 前記実施形態は、以下のように構成してもよい。
 前記実施形態において、各突出部材50の一部が導電体であればよく、突出部材50は、例えば、円錐状の導電体の表面を絶縁層により被覆したものであってもよい。この場合、突出部材50の耐久性を向上させることができる。また、各突出部材50が、円錐状の絶縁体に金属線を埋設したものであってもよい。この場合、金属線の長さを燃焼室20へ放射されるマイクロ波の波長の4分の1にすることで、突出部材50に効果的に電界を集中させることができる。
 また、前記実施形態において、各突出部材50が、円錐以外の形状(例えば、円柱、線状)であってもよい。
 また、前記実施形態において、各突出部材50が、燃焼室20を区画する区画面のうち、燃焼室20の天井面以外の場所(例えば、ピストン23の頂面)に配置されていてもよい。
 以上説明したように、本発明は、燃焼室内に生成される電界と点火プラグによる火花放電とを反応させ、プラズマを生成して混合気に着火する火花点火式内燃機関について有用である。
              10       火花点火式内燃機関
              12       放電装置
              13       電磁波放射装置
              20       燃焼室
              30       点火装置
              50       突出部材
 

Claims (7)

  1.  燃焼室内に生成される電界と点火プラグによる火花放電とを反応させ、プラズマを生成して混合気に着火する火花点火式内燃機関であって、
     混合気を燃焼させる際に前記燃焼室へ電磁波を放射する電磁波放射装置と、
     少なくとも一部が導電体により構成され、前記燃焼室を区画する区画面から突出する突出部材とを備えている
    ことを特徴とする火花点火式内燃機関。
  2.  請求項1において、
     前記電磁波放射装置は、前記火花放電を行う際に電磁波を放射する
    ことを特徴とする火花点火式内燃機関。
  3.  請求項1又は請求項2において、
     前記電磁波放射装置は、電界と火花放電との反応により生成されたプラズマにより混合気が着火された後に電磁波を放射する
    ことを特徴とする火花点火式内燃機関。
  4.  請求項1、請求項2又は請求項3において、
     前記突出部材は、電界と火花放電との反応によりプラズマが生成される位置から広がる火炎の伝播が前記燃焼室において相対的に遅い領域に配置されている
    ことを特徴とする火花点火式内燃機関。
  5.  請求項1から請求項4の何れか1項において、
     前記突出部材の導電体は、前記電磁波放射装置が放射する電磁波の波長の4分の1の長さの金属線である
    ことを特徴とする火花点火式内燃機関。
  6.  請求項1から請求項5の何れか1項において、
     前記区画面では、前記電磁波放射装置が放射する電磁波の波長の4分の1以内の間隔で複数の突出部材が配置されている
    ことを特徴とする火花点火式内燃機関。
  7.  請求項1から請求項6の何れか1項において、
     前記燃焼室は、円筒状のシリンダ内に形成され、
     前記燃焼室の天井面の中心部に、前記点火プラグが配置される一方、
     前記突出部材は、前記燃焼室の天井面において前記点火プラグと前記燃焼室の壁面との間に配置されている
    ことを特徴とする火花点火式内燃機関。
PCT/JP2012/067083 2011-07-04 2012-07-04 火花点火式内燃機関 WO2013005772A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/129,692 US9587618B2 (en) 2011-07-04 2012-07-04 Spark ignition internal combustion engine
EP12807365.7A EP2730775A4 (en) 2011-07-04 2012-07-04 GASOLINE ENGINE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011148396A JP6014864B2 (ja) 2011-07-04 2011-07-04 火花点火式内燃機関
JP2011-148396 2011-07-04

Publications (1)

Publication Number Publication Date
WO2013005772A1 true WO2013005772A1 (ja) 2013-01-10

Family

ID=47437119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067083 WO2013005772A1 (ja) 2011-07-04 2012-07-04 火花点火式内燃機関

Country Status (4)

Country Link
US (1) US9587618B2 (ja)
EP (1) EP2730775A4 (ja)
JP (1) JP6014864B2 (ja)
WO (1) WO2013005772A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2672104A4 (en) * 2011-01-31 2018-07-11 Imagineering, Inc. Signal processing device
EP3043627B1 (en) * 2013-09-02 2018-11-14 Imagineering, Inc. Plasma generator and internal combustion engine
JP6635341B2 (ja) * 2014-08-20 2020-01-22 イマジニアリング株式会社 圧縮着火式内燃機関の修理方法
US20170306918A1 (en) * 2014-08-21 2017-10-26 Imagineering, Inc. Compression-ignition type internal combustion engine, and internal combustion engine
EP3109459B1 (de) * 2015-06-23 2021-01-06 MWI Micro Wave Ignition AG Rotationskolben-verbrennungsmotor
CN112377322B (zh) * 2020-05-26 2021-10-22 北京礴德恒激光科技有限公司 用于等离子云激励均质均燃发动机的活塞放电结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073920A (ja) * 1999-09-07 2001-03-21 Honda Motor Co Ltd マイクロ波点火装置
JP2008082286A (ja) * 2006-09-28 2008-04-10 Toyota Central R&D Labs Inc 内燃機関及びその点火装置
WO2009113692A1 (ja) * 2008-03-14 2009-09-17 イマジニアリング株式会社 複数放電のプラズマ装置
JP2011007163A (ja) * 2009-06-29 2011-01-13 Daihatsu Motor Co Ltd 火花点火式内燃機関
JP2011007155A (ja) 2009-06-29 2011-01-13 Daihatsu Motor Co Ltd 火花点火式内燃機関の点火プラグ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4525335B2 (ja) * 2004-10-07 2010-08-18 株式会社豊田中央研究所 内燃機関及びその点火装置
US7182076B1 (en) * 2005-12-20 2007-02-27 Minker Gary A Spark-based igniting system for internal combustion engines
JP5061310B2 (ja) 2008-03-14 2012-10-31 イマジニアリング株式会社 バルブを用いたプラズマ装置
JP5137778B2 (ja) * 2008-10-17 2013-02-06 ダイハツ工業株式会社 火花点火式内燃機関
EP2450560A1 (en) * 2009-06-29 2012-05-09 Daihatsu Motor Co., Ltd. Method for controlling spark-ignition internal combustion engine and spark plug

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073920A (ja) * 1999-09-07 2001-03-21 Honda Motor Co Ltd マイクロ波点火装置
JP2008082286A (ja) * 2006-09-28 2008-04-10 Toyota Central R&D Labs Inc 内燃機関及びその点火装置
WO2009113692A1 (ja) * 2008-03-14 2009-09-17 イマジニアリング株式会社 複数放電のプラズマ装置
JP2011007163A (ja) * 2009-06-29 2011-01-13 Daihatsu Motor Co Ltd 火花点火式内燃機関
JP2011007155A (ja) 2009-06-29 2011-01-13 Daihatsu Motor Co Ltd 火花点火式内燃機関の点火プラグ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2730775A4

Also Published As

Publication number Publication date
EP2730775A1 (en) 2014-05-14
EP2730775A4 (en) 2016-05-11
JP6014864B2 (ja) 2016-10-26
JP2013015077A (ja) 2013-01-24
US20140224203A1 (en) 2014-08-14
US9587618B2 (en) 2017-03-07

Similar Documents

Publication Publication Date Title
WO2012124671A2 (ja) 内燃機関
WO2013005772A1 (ja) 火花点火式内燃機関
JP6002893B2 (ja) 内燃機関
JP6040362B2 (ja) 内燃機関
JP6229121B2 (ja) 内燃機関
JP6086446B2 (ja) 内燃機関
JP6023956B2 (ja) 内燃機関
JP6298961B2 (ja) 電磁波放射装置
JP6064138B2 (ja) 内燃機関、及びプラズマ生成装置
US9447768B2 (en) Internal combustion engine
JP6191030B2 (ja) プラズマ生成装置、及び内燃機関
JP5957726B2 (ja) 点火プラグ、及び内燃機関
JP6086443B2 (ja) 内燃機関
JP6023966B2 (ja) 内燃機関

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012807365

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14129692

Country of ref document: US