WO2012005119A1 - ガス吹き込みノズル - Google Patents

ガス吹き込みノズル Download PDF

Info

Publication number
WO2012005119A1
WO2012005119A1 PCT/JP2011/064477 JP2011064477W WO2012005119A1 WO 2012005119 A1 WO2012005119 A1 WO 2012005119A1 JP 2011064477 W JP2011064477 W JP 2011064477W WO 2012005119 A1 WO2012005119 A1 WO 2012005119A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
gas
refractory
metal thin
furnace
Prior art date
Application number
PCT/JP2011/064477
Other languages
English (en)
French (fr)
Inventor
忍 今井
Original Assignee
品川リフラクトリーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 品川リフラクトリーズ株式会社 filed Critical 品川リフラクトリーズ株式会社
Priority to KR1020137000249A priority Critical patent/KR20130116065A/ko
Priority to US13/808,292 priority patent/US9109838B2/en
Priority to CA2803908A priority patent/CA2803908A1/en
Priority to EP11803455.2A priority patent/EP2592160A1/en
Publication of WO2012005119A1 publication Critical patent/WO2012005119A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/48Bottoms or tuyéres of converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • B22D1/002Treatment with gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/34Blowing through the bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/20Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/20Arrangements of heating devices
    • F27B3/205Burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/22Arrangements of air or gas supply devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/22Arrangements of air or gas supply devices
    • F27B3/225Oxygen blowing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/12Casings; Linings; Walls; Roofs incorporating cooling arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a gas blowing nozzle that is attached to an electric furnace, a converter, or the like and is used for blowing gas into molten metal.
  • this gas blowing nozzle is required to have heat spalling resistance, wear resistance, and corrosion resistance against hot metal, molten steel, slag, etc.
  • one or a plurality of carbon refractories such as MgO-C brick is generally used.
  • a metal thin tube for gas blowing (for example, stainless steel) is installed and embedded so as to penetrate the refractory.
  • the gas blowing nozzle used for the purpose of blowing a large amount of gas a single tube type having a large diameter is used, and it is not particularly necessary to blow a lot of gas, and it is desirable to blow a gas of dense bubbles
  • a thin tube type in which a plurality of metal thin tubes are embedded so as to penetrate the refractory is used.
  • the temperature of the nozzle itself rises, and the melting point of the metal thin tube is lowered and melted due to the carburizing phenomenon in which carbon in the carbon-containing refractory penetrates into the metal thin tube.
  • the metal thin tube is melted, the molten steel flow generated by the blowing of the gas directly hits the carbon-containing refractory and is easily worn out. For this reason, the lifetime of the gas blowing nozzle itself is shortened.
  • Patent Document 1 proposes a gas blowing nozzle in which a metal thin tube for gas blowing is covered with a refractory such as castable that does not contain carbon and then embedded in the carbon-containing refractory.
  • a refractory material having poor heat resistance and corrosion resistance such as castable that does not contain carbon is worn out in advance, and the castable portion becomes life rate limiting. If the length is kept, there is a problem that the service life cannot be further extended.
  • Patent Document 2 a slurry liquid mainly composed of MgO-based fine powder is applied to the outer periphery of a plurality of gas blowing metal thin tubes provided in an alumina-carbon refractory, and an MgO coating layer is applied.
  • an alumina-carbonaceous gas blowing plug adapted to form the above.
  • the coating layer is peeled off, and as a result, carburization occurs at the peeled portion, which is a sufficient effect. Therefore, there is a problem that the service life cannot be further extended if the nozzle is kept at a predetermined length.
  • Patent Document 3 proposes a gas blowing nozzle in which a refractory sintered body is disposed between a carbon-containing refractory and a gas blowing metal thin tube to prevent carburization.
  • a mortar between the metal thin tube for gas blowing and the fireproof sintered body, which is inferior in wear resistance and corrosion resistance.
  • the mortar is worn out in advance, and damage is expanded from the mortar portion.
  • Patent Document 3 there is a problem that the service life cannot be further extended if the nozzle length is kept at a predetermined length.
  • Patent Document 4 proposes a gas blowing nozzle in which alumina or magnesia is sprayed on a metal thin tube for gas introduction to prevent carburization.
  • the gas blowing nozzle of Patent Document 4 since the thermal expansion coefficients of the gas introducing metal thin tube and the thermal spray material are different, there is a problem that the thermal spray material peels off due to the difference in expansion and is carburized at the peeling portion. Therefore, even in the configuration of Patent Document 4, there is a problem that it is not possible to further extend the service life if the nozzle is kept at a predetermined length.
  • Patent Documents 1 to 4 relate to a technique intended to increase the number of operations of the refining vessel by improving the durability of the nozzle body, which is limited in life, but repair or switch the gas blowing nozzle.
  • a technique for increasing the number of operating refining containers by this method has also been proposed.
  • Patent Document 5 discloses a bottom blowing converter in which nozzles for gas blowing installed at a plurality of locations are embedded in advance in the furnace bottom refractory, and the distance from the furnace bottom refractory surface to the nozzle tip is varied. Has been.
  • Patent Document 6 a gas blowing nozzle having a gas introduction pipe opened from the beginning of use of the molten metal smelting vessel to the bottom or side wall of the molten metal smelting vessel, and a tip surface thereof is in contact with the molten metal at the start of use of the vessel.
  • a molten metal refining vessel provided with a gas blowing nozzle in which the gas introduction pipe is closed to the tip and the gas introduction pipe is opened by a rapid exchange method.
  • Patent Document 6 in refining molten metal in this molten metal refining vessel, after using either one of the two gas blowing nozzles in advance, the other two were used by a quick replacement method, A method for operating a molten metal refining vessel has been proposed in which two are used alternately as a set according to the number of times the refining vessel is used.
  • an object of the present invention is to provide a gas blowing nozzle that can extend the service life and can be applied to existing refining equipment without major modification.
  • Damage to the gas blowing nozzle is mainly due to wear of the refractory due to the molten metal flow generated by gas stirring.
  • the gas discharge hole is largely damaged in a mortar shape.
  • the remaining life of the refractory (nozzle refractory) is reduced and the service life is determined.
  • the gas blowing nozzle of the present invention is A gas for injecting gas into the molten metal in the furnace, comprising a plurality of metal thin tubes for gas introduction, a surge tank for pooling the gas before blowing, and a refractory for protecting the metal thin tubes and the surge tank
  • a blowing nozzle A plurality of first metal capillaries in which a furnace inner tip is open, the furnace inner tip is exposed in the furnace, and gas can be blown into the molten metal in the furnace, and the first metal capillary
  • a first nozzle part comprising a first surge tank communicating with the first metal tubule and a first refractory for protecting the first surge tank;
  • the first metal thin tube and the second metal thin tube are disposed at an interval of 100 to 1000 mm in the closest portion. .
  • the second metal thin tube is embedded at a depth where the distance from the refractory surface to the furnace inner tip is 14% or more of the nozzle effective length.
  • the gas blowing nozzle of the present invention is In the furnace, comprising a plurality of metal thin tubes for gas introduction, a surge tank that communicates with the plurality of metal thin tubes, pools the gas before blowing, and a refractory that protects the metal thin tubes and the surge tank.
  • a gas blowing nozzle for blowing gas into molten metal The metal thin tube is embedded in a refractory so that the furnace inner tip is located at a predetermined depth, and the furnace inner tip is closed.
  • the metal thin tube is embedded at a depth at which the distance from the refractory surface to the furnace inner tip is 14% or more of the nozzle effective length.
  • the gas blowing nozzle of the present invention is (a) A plurality of first metal capillaries in which the open front end of the furnace is exposed in the furnace and gas can be blown into the molten metal in the furnace, and a first surge tank communicating with the first metal capillaries
  • a first nozzle part comprising: (b) a plurality of second metal tubules embedded in the refractory and closed at the front end of the furnace, and a second nozzle portion including a second surge tank communicating with the second metal tubules.
  • the second refractory wears up to the furnace inner end of the second metal thin tube by continuously blowing the gas from the first nozzle portion, the closed second metal thin tube furnace Since the inner tip is opened and gas blowing from the second metal thin tube of the second nozzle portion is started, the first metal thin tube constituting the first nozzle portion that has been blowing gas until then, and
  • the gas blowing path starts from the second nozzle portion where the wear of the refractory is lighter than the vicinity of the discharge port of the first nozzle portion (specifically, the second metal Switch to gas injection (from inside the furnace inside the narrow tube) Is therefore, by effectively utilizing the wear difference of the refractory due to the position of the above, it is possible to extend the service life.
  • both the first nozzle portion and the second nozzle portion include a surge tank communicating with the metal thin tube, a gas supply line is connected to each surge tank. Accordingly, when the ventilation from the second nozzle portion is confirmed, the gas supply path can be easily and reliably switched without performing a particularly complicated process.
  • the gas blowing nozzle provided with the first nozzle portion and the second nozzle portion is defined, but buried in a deeper position in the refractory than the furnace inner tip of the second metal thin tube,
  • a third nozzle having a third metal thin tube and a third surge tank and a third refractory that communicate with the third metal thin tube; a fourth metal thin tube embedded at a deeper position; a fourth surge tank that communicates with the fourth metal thin tube; It can also be set as the structure provided with the nozzle part after the 3rd nozzle part like the 4th nozzle part provided with the 4th refractory. That is, the present invention requires that at least the first and second nozzle portions are provided, and does not exclude the configuration including the nozzle portions after the third nozzle portion.
  • the furnace inner tip of the second metal thin tube embedded in the refractory is closed, but the furnace inner tip is configured to be closed by being embedded in the refractory.
  • a second metal thin tube whose end is closed in advance may be embedded in the refractory.
  • the first metal thin tube constituting the first nozzle portion and the second metal thin tube constituting the second nozzle portion are spaced at an interval of 100 to 1000 mm at the closest portion. By disposing them, the wear resistance of the refractory depending on the position can be used more reliably, and the durability can be further improved.
  • the first metal thin tube and the second metal thin tube here are metal thin tubes that communicate with the surge tank and allow the gas to actually flow.
  • the gas blowing nozzle Not only deteriorates the workability of the steel, but also reduces the refining efficiency or significantly deteriorates the damage form of the refractory in the entire refining furnace, so the closest part of the first metal thin tube and the second metal thin tube Is preferably in the range of 100 to 1000 mm.
  • the distance between the first metal thin tube and the second metal thin tube is a metal thin tube that forms the first metal thin tube and a metal thin tube that forms the second metal thin tube when the metal thin tube is viewed from the axial direction.
  • the distance between the closest metal capillaries is a metal thin tube that forms the first metal thin tube and a metal thin tube that forms the second metal thin tube when the metal thin tube is viewed from the axial direction.
  • the second metal thin tube constituting the second nozzle portion is embedded at a depth (embedding depth) where the distance from the surface of the second refractory to the tip inside the furnace is 14% or more of the nozzle effective length.
  • the difference in wear of the refractory depending on the position (M in FIG. 5) can be used more reliably, and the present invention can be more effectively realized.
  • the effective nozzle length is not the total length of the first and second refractories, but a length that can be used safely with a safe remaining thickness, and will be described with reference to FIG.
  • the distance from the upper ends of the first and second surge tanks 12 and 22 to the surfaces (upper end surfaces) 13a and 23a of the first and second refractories 13 and 23 is the total length of the first and second refractories 13 and 23.
  • L (mm) is a value obtained by subtracting 300 mm from this L (mm) as a safe remaining thickness, that is, a value represented by the following formula (1).
  • Nozzle effective length (mm) L (mm)-300mm (1)
  • the embedding depth of the second metal thin tube constituting the second nozzle portion (D in FIG. 1) is shorter than 14% of the effective nozzle length, gas blowing from the first nozzle portion to the second nozzle portion is performed.
  • the effective nozzle length of the first nozzle portion cannot be fully utilized, and the life of the gas blowing nozzle as a whole cannot be sufficiently extended. Furthermore, the refractory surface in the initial stage of operation may be cracked or peeled off due to thermal spalling or thermal expansion stress. If the embedded depth of the second metal thin tube is shorter than 14% of the nozzle effective length, this The tip of the second metal thin tube may be exposed at the initial stage of operation due to cracking or peeling. Therefore, it is desirable that the embedding depth of the second metal thin tube constituting the second nozzle portion is 14% or more of the nozzle effective length.
  • the gas blowing nozzle of the present invention comprises a plurality of metal thin tubes for gas introduction, a surge tank for pooling the gas before blowing, and a refractory for protecting the metal thin tube for gas introduction and the surge tank,
  • a gas injection nozzle for injecting gas into molten metal in a furnace has a structure in which a metal thin tube is embedded in a refractory so that the furnace inner tip is located at a predetermined depth, and the furnace inner tip is closed. Yes.
  • the gas blowing nozzle of the present invention is a known gas blowing nozzle, that is, a plurality of metal thin tubes in which the open front end of the furnace is exposed in the furnace and gas can be blown into the molten metal in the furnace.
  • a gas blowing nozzle provided with a surge tank communicating with the metal thin tube the same configuration as that of the gas blowing nozzle including the first nozzle portion and the second nozzle portion described above is provided, and is equivalent. It is possible to configure a gas blowing nozzle that exhibits the above-described effects.
  • the metal thin tube is embedded at a depth where the distance from the refractory surface to the tip inside the furnace is 14% or more of the effective nozzle length, the difference in wear of the refractory depending on the position is more reliably utilized. The durability can be further improved.
  • FIG. 1 is a front sectional view schematically showing a state where the gas blowing nozzle according to the first embodiment of the present invention is incorporated in the bottom of a molten metal refining vessel (smelting furnace).
  • FIG. 2 is an enlarged front sectional view of the gas blowing nozzle according to the first embodiment of the present invention incorporated in the bottom of the refining furnace.
  • FIG. 3 is a diagram showing a mode of use of the gas blowing nozzle according to the first embodiment of the present invention, and is a front sectional view showing a state in which gas ventilation from the second nozzle portion has started.
  • FIG. 1 is a front sectional view schematically showing a state where the gas blowing nozzle according to the first embodiment of the present invention is incorporated in the bottom of a molten metal refining vessel (smelting furnace).
  • FIG. 2 is an enlarged front sectional view of the gas blowing nozzle according to the first embodiment of the present invention incorporated in the bottom of the refining furnace.
  • FIG. 4 is a diagram illustrating a mode of use of the gas blowing nozzle according to the first embodiment of the present invention, and after switching to gas blowing from the second nozzle portion, the gas blowing from the first nozzle portion is stopped. It is front sectional drawing which shows the state which filled the discharge outlet vicinity with the amorphous refractory.
  • FIG. 5 is a diagram showing an aspect of use of the gas blowing nozzle according to the first embodiment of the present invention, and shows a state where the first refractory and the second refractory are worn and the final life line is reached. It is front sectional drawing.
  • FIG. 6 is a diagram showing the configuration of the gas blowing nozzle according to the first embodiment of the present invention.
  • FIG. 6A is a plan view showing the configuration of the gas blowing nozzle according to the first embodiment
  • FIG. I is a plan view showing a modification
  • FIG. 6C is a plan view showing still another modification.
  • FIG. 7 is a diagram for explaining a distance (distance) between the first metal thin tube and the second metal thin tube of the gas blowing nozzle according to the first embodiment of the present invention.
  • FIG. 8 is a front cross-sectional view showing a configuration of a gas blowing nozzle prepared for comparison in Embodiment 1 of the present invention.
  • FIG. 9 is a diagram schematically showing a state in which the gas blowing nozzle according to the second embodiment of the present invention is incorporated in the bottom of a molten metal refining vessel (smelting furnace).
  • FIG. 1 is a front sectional view schematically showing a state in which a gas blowing nozzle according to one embodiment (Embodiment 1) of the present invention is incorporated in the bottom of a molten metal refining vessel (smelting furnace), and FIGS. It is front sectional drawing which shows the structure of the gas blowing nozzle concerning Embodiment 1 of this invention, and the mode of use. Moreover, FIG. 7 is the figure which looked at the 1st metal thin tube and 2nd metal thin tube of the gas blowing nozzle concerning Embodiment 1 of this invention from the upper direction. As shown in FIG.
  • the gas blowing nozzle A of Embodiment 1 is a gas blowing nozzle for blowing gas into a molten metal 2 in a refining furnace 1 such as an electric furnace or a converter.
  • the gas blowing nozzle has a plurality of first metals in which the furnace inner tip 11a is open, the furnace inner tip 11a is exposed in the furnace, and gas can be blown into the molten metal 2 in the furnace.
  • a first nozzle portion 10 is provided that includes a thin tube 11, a first surge tank 12 that communicates with the first metal thin tube 11, and a first refractory 13 that protects the first metal thin tube 11 and the first surge tank 12. .
  • the second metal capillaries 21 include a plurality of second metal capillaries 21, a second surge tank 22 communicating with the second metal capillaries 21, and a second refractory 23 that protects the second metal capillaries 21 and the second surge tank 22. And a nozzle portion 20. And in the 2nd nozzle part 20, while the 2nd metal thin tube 21 is embed
  • the first nozzle portion 10 and the second nozzle portion 20 are integrally held by a support refractory 31.
  • the support refractory 31 in the first embodiment is, for example, a structure in which a plurality of support bricks are assembled into one unit so as to surround the first nozzle unit 10 and the second nozzle unit 20.
  • FIG. 6A the planar configuration (planar surface) of the gas blowing nozzle A according to Embodiment 1 of the present invention in which the first nozzle portion 10 and the second nozzle portion 20 are integrally held by the support refractory 31. Figure).
  • FIG. 6B shows such an example.
  • the refractory member 31a having a square shape divided into a plurality of planes is combined, and the nozzle portion 10 and the nozzle portion 20 having the same planar shape are integrated.
  • An example in which the structure (support refractory 31) is held is shown.
  • the assembly of the structure can be performed simultaneously with construction in the refining furnace.
  • FIG. 6C shows still another example of the gas blowing nozzle according to the present invention.
  • the first nozzle part 10 and the second nozzle part 20 having a square planar shape are arranged in the same plane.
  • the structure is joined by a support refractory 31 having a square shape.
  • FIG. 6A shows a case where the first nozzle portion 10 and the second nozzle portion 20 have a circular planar shape (that is, a cylindrical shape in a three-dimensional shape), and FIG. 6B and FIG. c) shows the case where the first nozzle portion 10 and the second nozzle portion 20 have a substantially square planar shape (that is, a quadrangular prism shape in a three-dimensional shape).
  • the gas blowing nozzle of the present invention There are no particular restrictions on the specific shapes of the first nozzle portion 10 and the second nozzle portion 20.
  • the first metal thin tube 11 of the first nozzle portion 10 and the second metal thin tube 21 of the second nozzle portion 20 are shown in FIG.
  • 146.5 mm preferable range in the present invention is 100 to 1000 mm
  • the distance between the center (center) of the first nozzle part 10 and the center (center) of the second nozzle part is 250 mm.
  • L () in the distance (embedding depth) from the surface of the second refractory 23 to the furnace inner tip 21a
  • (mm) -300 mm) FIG. 5
  • the distance (D) from the surface of the second refractory to the furnace inner tip is 145 mm
  • the nozzle effective length is about 350 mm
  • the distance from the refractory surface to the furnace inner tip is the nozzle effective length. About 41%.
  • Gas supply lines 3a and 3b are connected to the first surge tank 12 and the second surge tank 22, respectively, and the gas supply lines 3a and 3b are connected to the gas pipe 5 via the pipe joint 4 ( Figure 2).
  • Each surge tank must be connected to a gas supply line (gas piping for gas introduction), but the piping attached to each surge tank can be bent or bent. Almost connect the gas supply line (gas piping for gas introduction) to the surge tank without greatly remodeling the existing nozzle installation holes in the furnace or complicated construction work. Can do.
  • the gas blowing nozzle of the present invention can be attached to an existing smelting furnace to improve its durability.
  • the specific configuration of the first surge tank 12 and the second surge tank 22 the specific connection mode of the line for supplying gas to each surge tank, or the like.
  • the 1st and 2nd metal thin tubes 11, 21 it is possible to use stainless steel, ordinary steel, heat resistant steel, etc. Among them, stainless steel is particularly preferable.
  • the inner diameters of the first and second metal thin tubes 11 and 21 are preferably about 1 to 4 mm, and the wall thickness is preferably about 1 to 2 mm. If the inner diameters of the first and second metal thin tubes 11 and 21 are less than 1 mm, the first and second metal thin tubes 11 and 21 may be blocked, and there is a possibility that sufficient gas supply to the molten metal may not be possible. This is because molten metal may be inserted into the metal thin tubes 11 and 21 to cause steel leakage.
  • the first and second metal capillaries 11 and 21 adopt a known configuration such as, for example, spraying an oxide layer or coating a coating material such as MgO. Is also possible.
  • the refractory for protecting the metal thin tube is not particularly limited as long as it has fire resistance, and preferably MgO—C, Al 2 O 3 —C, Al 2 O 3 —SIC—C, Carbon-containing refractories such as MgO—CaO—C and MgO—Al 2 O 3 —C can be used. It is more preferable to use MgO—C brick containing 10 to 25% by weight of graphite as a carbon content.
  • this carbon-containing refractory may be the same as the conventional manufacturing method, adding a carbonaceous raw material to the refractory aggregate, adding metal powder and other additives as necessary, phenol resin, Binders that form carbon bonds such as pitch and tar are added at 1 to 15% by weight, preferably 3 to 8% by weight, kneaded, molded, and then heat treated at 100 to 500 ° C, preferably 150 to 400 ° C. Unfired bricks. Alternatively, a fired brick which is fired in a reducing atmosphere at 500 to 1500 ° C., preferably 800 to 1300 ° C. after molding can be used.
  • gas is applied from the first metal thin tube 11 constituting the first nozzle portion 10 to the closed second metal thin tube 21 constituting the second nozzle portion 20 in a state where gas pressure is also applied. Infuse.
  • the first metal thin tube 11 and the first refractory 13 constituting the first nozzle portion 10 are gradually worn out, and accordingly the second nozzle 20 is constituted.
  • the refractory 23 is also worn out more gently than the first refractory 13.
  • FIG. 3 when the wear of the second refractory 23 proceeds to the position of the closed furnace inner tip 21 a of the second metal tubule 21, the second metal tubule blocked by the second refractory 23.
  • the inner tip 21 of the furnace 21 is opened, and the blowing of gas from the second metal thin tube 21 of the second nozzle portion 20 starts.
  • the refractory wear line at this time becomes the wear line at the time of switching.
  • the start of gas blowing (venting) from the second metal thin tube 21 where the furnace inner tip 21a was blocked may be caused by, for example, pressure detection by a pressure gauge or residual hot water (melting) in the refining furnace 1.
  • the movement of the metal 2) can be easily and reliably detected by a method of visually confirming the movement. Furthermore, if the system is constructed so that the pressure drop of the pressure gauge is sensed and an alarm is sounded, it is possible to more reliably detect the start of gas blowing.
  • the supply of gas to the first thin metal tube 11 of the first nozzle unit 10 that has been blowing gas is stopped.
  • a valve (not shown) for stopping the gas supply to the gas supply line 3a to the first metal thin tube 11 is manually operated, or
  • the second metal thin tube 21 of the second nozzle section 20 having a remaining thickness can be easily obtained by automatically operating and stopping the gas supply to the gas supply line 3a while maintaining the supply to the gas supply line 3b. It is possible to switch to gas injection from
  • the gas can be switched over in a short time by temporarily stopping the gas during periodic repairs, removing the piping of the gas supply line 3a to the first nozzle portion 10 side, and capping the fitting 4 side. Work can be done.
  • repair is performed by filling the concave portion near the gas discharge portion on the upper surface of the first refractory 13 constituting the first nozzle portion 10 with the irregular refractory 7.
  • it may be left as it is without repairing it with an irregular refractory.
  • the refining furnace 1 can be continuously operated.
  • FIG. 5 shows a state in which the second refractory 23 of the second nozzle portion 20 is worn out until it reaches the final life line.
  • the final life line when switching is performed and switching is performed As shown in FIG. 5, by switching the first nozzle unit 10 and the second nozzle unit 20 as in the case of the first embodiment, the final life line when switching is performed and switching is performed. It can be seen that the useful life can be extended by effectively utilizing the difference in the final life line when not performed, that is, the wear difference (residual thickness difference) M.
  • the existing piping on the refining furnace 1 side can be divided into two or more hands with commercially available pipe joints and can be used as they are. It is possible to attach the gas blowing nozzle A without greatly remodeling the above equipment, and the durability can be improved without requiring a large remodeling cost. (Embodiment 2)
  • FIG. 9 is a view schematically showing a state in which the gas blowing nozzle A1 according to another embodiment (Embodiment 2) of the present invention is incorporated in the bottom of a molten metal refining vessel (smelting furnace).
  • the gas blowing nozzle A1 according to the second embodiment includes a plurality of metal thin tubes 51 for gas introduction, a surge tank 52 that pools the gas before blowing, and a refractory that protects the metal thin tubes 51 and the surge tank 52 for gas introduction. 53, the metal thin tube 51 is embedded in the refractory 53 so that the furnace inner tip 51a is located at a predetermined depth, and the furnace inner tip 51a is closed.
  • the gas blowing nozzle A1 of the second embodiment has the same configuration as the second nozzle portion 20 in the gas blowing nozzle A of the first embodiment.
  • the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
  • the gas blowing nozzle A1 of the second embodiment is a gas blowing nozzle having the same configuration as the first nozzle portion 10 (FIGS. 2 to 4) constituting the gas blowing nozzle A of the first embodiment.
  • the metal thin tube 61, the surge tank 62 and the refractory 63 are provided, and the metal thin tube 61 is used in combination with the gas blowing nozzle C having a structure penetrating the refractory 63 and disposed at the bottom of the smelting furnace 1. It is configured to be.
  • the gas blowing nozzle C performs the function of the 1st nozzle part 10 in the gas blowing nozzle A of the said Embodiment 1, and the gas blowing nozzle A1 of this Embodiment 2 is the said.
  • the function of the 2nd nozzle part 20 in the gas blowing nozzle A of Embodiment 1 is fulfilled. As a result, the same effect as in the first embodiment can be obtained.
  • the gas blowing nozzle A1 is used in combination with the gas blowing nozzle C having the same configuration as the first nozzle portion 10 constituting the gas blowing nozzle A of the first embodiment.
  • the blowing nozzle A1 (corresponding to the second nozzle portion) and the gas blowing nozzle C can be arranged at a separated position or arranged adjacent to each other so as to have an arbitrary positional relationship.
  • the degree of freedom of the arrangement mode can be improved.
  • the case where argon gas is blown from the gas blowing nozzle has been described as an example.
  • the type of gas there is no particular limitation on the type of gas, and the gas blowing nozzle of the present invention uses other gas such as nitrogen gas. It can also be used when blowing.
  • Example> As in Embodiment 1 above, the service life was examined using a gas blowing nozzle configured as shown in FIGS. 1 to 5 in the refining furnace 1.
  • a gas blowing nozzle A for investigating the service life specifically, as the first nozzle portion 10, a first stainless steel pipe having an inner diameter of 1.5 mm and a wall thickness of 1 mm penetrating the first refractory 13 is used. Seven metal thin tubes 11 connected to the first surge tank 12 were used.
  • the second nozzle portion 20 is made of a stainless steel tube having an inner diameter of 1.5 mm and a wall thickness of 1 mm, and has seven second metal thin tubes 21 shorter than the first metal thin tube 11 and the position of the furnace inner tip 21a.
  • This depth is about 41% of the nozzle effective length (about 350 mm).
  • the distance between the first metal thin tube 11 constituting the first nozzle portion 10 and the second metal thin tube 21 constituting the second nozzle portion 20 that is closest to each other was set to 146.5 mm.
  • MgO—C refractories containing 15% by weight of graphite were used.
  • the gas injection nozzle B of the comparative example is a known gas injection nozzle that does not include the second nozzle portion in the present invention, and protects the plurality of metal thin tubes 41, the surge tank 42, the first metal thin tube, and the first surge tank.
  • the refractory 43 what consists of the same material as what was used in the gas blowing nozzle A concerning Embodiment 1 of the said invention was used. That is, the gas blowing nozzle B of the comparative example corresponds to the first nozzle portion 10 in the blowing nozzle A of Embodiment 1 of the present invention.
  • the nozzle effective length of the gas blowing nozzle B of the comparative example is 350 mm.
  • the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
  • the gas blowing nozzle A of the above example and the gas blowing nozzle B of the comparative example are installed at the bottom of an electric furnace having a molten steel amount of 100 ton, and argon gas is blown at a flow rate of 100 NL / min, and the respective service life is examined. It was.
  • the service life was measured using a known measurement method. That is, the life of the nozzle was determined by detecting the temperature of a thermocouple embedded in the nozzle refractory.
  • the above measurement method is a mechanism in which when the refractory is worn and the remaining size is reduced, the distance between the working surface and the embedded thermocouple is reduced, and the temperature sensed by the thermocouple is increased.
  • the scrap is melted in an electric furnace in which the nozzle of the example and the nozzle of the comparative example are respectively installed, the process of blowing argon gas is performed, and the process of transferring to a molten metal container is 1ch (Charge), The above steps were repeated. The number of times the above process was repeated when the temperature sensed by the thermocouple reached about 1,000 ° C. was defined as the useful life of the nozzle.
  • the service life of the gas blowing nozzle of the comparative example was about 700 ch.
  • the gas blowing by the second nozzle part was switched from the gas blowing by the first nozzle part at 500 ch, and then the nozzle effective length was reached at 319 ch. That is, when the gas blowing nozzle of the comparative example is used, the service life is about 700 ch.
  • the service life is extended to 819 ch, and the service life is improved by about 17%. confirmed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

ノズル自体の長さを延ばしたり、ノズルを交換したり、さらには既存の精錬設備を大きく改造したりすることを必要とせず、また、ガス吹き切り換え時に待機ノズルを開口させることが不要で、かつ、耐用寿命をさらに延ばすことが可能なガス吹き込みノズルを提供する。炉内側先端が炉内に露出し、炉内の溶融金属にガスを吹き込むことが可能な状態にある複数の第1金属細管11と、第1サージタンク12と、第1耐火物13とを備えた第1ノズル部10と、耐火物中に埋設され、炉内側先端が閉塞した複数の第2金属細管21と、第2サージタンク22と、第2耐火物23とを備える第2ノズル部20とを備えた構成とし、第2ノズル部の第2金属細管の炉内側先端に達するまで耐火物23の損耗が進むと、第2ノズル部20の第2金属細管21からのガスの吹き込みを開始させる一方、第1ノズル部10からのガスの吹き込みを停止させる。

Description

ガス吹き込みノズル
 本発明は、電気炉や転炉などに取り付けられ、溶融金属にガスを吹き込むために用いるガス吹き込みノズルに関する。
 電気炉や転炉などの溶融金属精錬容器の底または側壁には、窒素ガス、アルゴンガスなどの不活性ガス、あるいは一酸化炭素ガス、炭酸ガスなどを、精錬炉内の溶融金属中に吹き込むためのガス吹き込みノズルが設置されているのが一般的である。
 このガス吹き込みノズルは、耐熱スポーリング性、耐摩耗性、および溶銑、溶鋼、スラグなどに対する耐食性が要求されるため、一般に、例えばMgO-Cれんがなどの、炭素含有耐火物に、一本または複数本のガス吹き込み用金属細管(例えばステンレス鋼など)を、上記耐火物を貫通するように埋め込んだ形で設置して作製される。
 なお、大量にガスを吹き込む用途に用いられるガス吹き込みノズルとしては、単管タイプの径の大きいものが用いられ、特に多くのガスを吹き込む必要がなく、緻密な気泡のガスを吹き込むことが望ましい用途には、複数の金属細管を耐火物を貫通するように埋め込んだ形の細管タイプのものが用いられる。
 また、ガス吹き込みノズルは、使用時にはノズルそのものの温度が上昇し、炭素含有耐火物中の炭素が金属細管に浸透する浸炭現象により、金属細管の融点が低下して溶融する。
 金属細管が溶融すると、ガスの吹き込みによって生じる溶鋼流が直接に炭素含有耐火物に当たり、損耗し易くなる。このため、ガス吹き込みノズル自体の寿命が短くなる。
 そこで、かかる問題点を解決するために、以下の特許文献1~6のような技術が提案されている。
 まず、特許文献1には、炭素を含まないキャスタブルなどの耐火物でガス吹き込み用の金属細管を被覆した後、炭素含有耐火物に埋め込むようにしたガス吹き込みノズルが提案されている。
 しかしながら、この特許文献1のガス吹き込みノズルの場合、炭素を含まないキャスタブルなどの耐熱スポーリング性および耐食性に劣る耐火物が先行的に損耗し、キャスタブル部分が寿命律速となるため、ノズルを所定の長さに保ったままでは、さらなる耐用寿命の延長を図ることができないという問題点がある。
 また、特許文献2には、アルミナ-カーボン質耐火物中に内設される複数個のガス吹き込み用金属細管の外周にMgO質超微粉を主成分とするスラリー液を塗布して、MgOコーティング層を形成するようにしたアルミナ-カーボン質ガス吹き込み用プラグが提案されている。
 しかしながら、この特許文献2のガス吹き込みプラグの場合、MgOコーティングされた金属細管を炭素含有耐火物内部に設置する際に、コーティング層が剥離し、結果的に剥離部分で浸炭が生じて十分な効果が得られないため、ノズルを所定の長さに保ったままでは、さらなる耐用寿命の延長を図ることはできないという問題点がある。
 さらに、特許文献3には、炭素含有耐火物とガス吹き込み用金属細管の間に耐火性焼結体を配設して、浸炭を防止するようにしたガス吹き込みノズルが提案されている。
 しかしながら、この特許文献3のガス吹き込みノズルの場合、通常は、ガス吹き込み用の金属細管と耐火性焼結体との間にモルタルを介在させることが必要になり、耐磨耗性および耐食性に劣るモルタルが先行的に損耗され、モルタル部分から損傷が拡大するという問題点がある。また、この特許文献3の場合も、ノズル長さを所定の長さに保ったままでは、さらなる耐用寿命の延長を図ることはできないという問題点がある。
 また、特許文献4には、ガス導入用の金属細管にアルミナまたはマグネシアを溶射して、浸炭を防止するようにしたガス吹き込みノズルが提案されている。
 しかしながら、この特許文献4のガス吹き込みノズルの場合、ガス導入用金属細管と溶射材の熱膨張係数が異なるため、膨張差で溶射材が剥離し、剥離部分で浸炭されるという問題点がある。したがって、この特許文献4の構成の場合も、ノズルを所定の長さに保ったままでは、さらなる耐用寿命の延長を図ることはできないという問題点がある。
 上述の特許文献1~4は、いずれも浸炭を抑制することにより耐用性の向上を図っており、浸炭が抑制される分だけ耐用期間を延ばすことが可能になるが、さらに耐用期間を延ばそうとすると、ノズルをさらに長くすることが必要になる。
 しかしながら、仮に目標耐用寿命が得られるまでノズルを長くした場合、ガス吐出孔から溶鋼表面までの距離が短くなり、攪拌効率の悪化により精錬効率が低下するという問題が生じる。
 また、精錬炉内の炉床面から過度にノズルが突き出た場合、加熱される面が増え、熱スポーリングまたは構造スポーリングが生じ易くなる。
 また、ノズルが長くなった分だけ精錬炉内の炉床全体を上昇させると、耐火物コストを引き上げるだけでなく、所定の溶鋼量を精錬できなくなるという問題が生じる。
 したがって、特許文献1~4の構成において、ノズルを長くすることで耐用寿命をさらに延長させるということは困難であるのが実情である。
 ところで、上述の特許文献1~4は、寿命律速となるノズル本体の耐用性を向上させることにより精錬容器の稼働数を上げることを意図する技術に関するものであるが、ガス吹き込みノズルの補修あるいは切り換えの方法により、精錬容器の稼働数を上げる技術も提案されている。
 例えば、特許文献5には、複数箇所に設置したガス吹き込み用ノズルを予め炉底耐火物中に埋設し、炉底耐火物表面からノズル先端までの距離をそれぞれ異ならせた底吹転炉が開示されている。
 しかしながら、この特許文献5では、待機中のガス吹き込み用ノズルはガスを通気していないため残厚管理が難しく、タイミングよくガス吹きを切り換えることが困難であり、タイミングを間違えるとノズル内に溶鋼が侵入し、漏鋼事故を引き起こす危険性がある。なお、特許文献5では、細管タイプではなく径の大きな管を使用した単管タイプのものであるため、さらに漏鋼の危険性が高いという問題点もある。
 また、ノズルの炉内側先端に盲キャップれんがや、盲キャップ受けれんがを設置するなど、施工が複雑で手間が掛かるという問題点がある。
 さらに、ガス吹きの切り換え時に、切り換え羽口の開口作業や使用済み羽口の閉塞作業などに手間が掛かるという問題点がある。
 また、特許文献6には、溶融金属精錬容器の底または側壁に溶融金属精錬容器の使用開始時からガス導入管が開口したガス吹き込みノズルと、容器の使用開始時にはその先端面が溶融金属に接しかつ先端部までガス導入管が閉塞していて迅速交換方法によってガス導入管を開口するようにしたガス吹き込みノズルを配設した溶融金属精錬容器が提案されている。
 また、特許文献6には、この溶融金属精錬容器にて溶融金属を精錬するにあたって、ガス吹き込みノズルいずれか2個を先行使用後、迅速交換方法により他の2個を使用し、先行使用したノズルは閉塞させ、精錬容器の使用回数に従って概ね2個を1組として交互に使用するようにした溶融金属精錬容器の操業方法が提案されている。
 しかしながら、この特許文献6の溶融金属精錬容器およびその操業方法の場合、例えば、ノズルを切り換えるにあたっては、盲れんがをドリルなどで解体し羽口を開口する必要があり、また初回ガス吹きノズル側の鉄皮を取り外し、ノズルを受けている耐火物を解体し、さらにはその隙間に不定形耐火物を詰める作業が発生するなど、一連の交換作業に手間がかかり、効率が悪いという問題点がある。さらに、羽口の開口と差し込んだガス吹きノズルに隙間が生じる可能性があり、この隙間から溶鋼が侵入して漏鋼するおそれもあり、信頼性が低いという問題点がある。
日本国実開平02-61950号公報 日本国特開平10-265829号公報 日本国特開2003-231912号公報 日本国特開2000-212634号公報 日本国特開昭56-58918号公報 日本国特開平05-98337号公報
 本発明は、上記実情に鑑みてなされたものであり、ノズル自体の長さを延ばすことを必要とせず、また、ノズルを交換したり、ガス吹き切り換え時に待機ノズルを開口させたりすることを必要とすることなく、耐用寿命を延ばすことが可能で、しかも、大きな改造を行わずに既存の精錬設備に適用することが可能なガス吹き込みノズルを提供することを目的とする。
 上記課題を解決するため、発明者等は、ガス吹き込みノズルの損傷形態について検討を行い、
 (1)ガス吹き込みノズルの損傷は、ガス攪拌によって生じる溶融金属流による耐火物の磨耗が主体で、一般的にはガス吐出孔部がすり鉢状に大きく凹んだ損傷となり、最終的に吐出孔部の耐火物(ノズル耐火物)の残厚が少なくなることで耐用寿命が決まる、
 (2)一方、吐出孔部中心から約200mm以上離れた部位においては、摩耗の程度は軽く、比較的ノズル耐火物の残厚は大きい
 という知見を得た。
 そして、位置によるノズル耐火物の損耗差を有効利用することによりノズルの耐用寿命が改善されることに着眼し、さらに検討、実験を行って本発明を完成するに至った。
 すなわち、本発明のガス吹き込みノズルは、
 ガス導入用の複数の金属細管と、吹き込み前のガスをプールするサージタンクと、前記金属細管および前記サージタンクを保護する耐火物とを備えた、炉内の溶融金属にガスを吹き込むためのガス吹き込みノズルであって、
 炉内側先端が開口しているとともに、前記炉内側先端が炉内に露出し、炉内の溶融金属にガスを吹き込むことが可能な状態にある複数の第1金属細管と、前記第1金属細管と連通する第1サージタンクと、前記第1金属細管および前記第1サージタンクを保護する第1耐火物とを備える第1ノズル部と、
 複数の第2金属細管と、前記第2金属細管と連通する第2サージタンクと、前記第2金属細管および前記第2サージタンクを保護する第2耐火物とを備え、前記第2金属細管の炉内側先端が所定の深さに位置するように前記第2耐火物中に埋設され、閉塞している第2ノズル部と
 を具備し、
 前記第2ノズル部にガスの圧力をかけた状態で、前記第1ノズル部からのガスの吹き込みが継続して行われ、前記第2耐火物中に埋設された前記第2金属細管の前記炉内側先端に達するまで前記第2耐火物の損耗が進むと、閉塞していた前記第2金属細管の前記炉内側先端が開口し、前記第2金属細管からのガスの吹き込みが開始するように構成されていること
 を特徴としている。
 また、本発明のガス吹き込みノズルにおいては、前記第1金属細管と、前記第2金属細管とが、最も近接している部分において、100~1000mmの間隔をおいて配設されていることが望ましい。
 さらに、前記第2金属細管は、前記耐火物表面から前記炉内側先端までの距離がノズル有効長の14%以上となる深さに埋設されていることが望ましい。
 また、本発明のガス吹き込みノズルは、
 ガス導入用の複数の金属細管と、前記複数の金属細管と連通し、吹き込み前のガスをプールするサージタンクと、前記金属細管および前記サージタンクを保護する耐火物とを備えた、炉内の溶融金属にガスを吹き込むためのガス吹き込みノズルであって、
 前記金属細管は、炉内側先端が所定の深さに位置するように耐火物中に埋設され、前記炉内側先端が閉塞していること
 を特徴としている。
 また、前記金属細管は、前記耐火物表面から前記炉内側先端までの距離がノズル有効長の14%以上となる深さに埋設されていることが望ましい。
 本発明のガス吹き込みノズルは、
 (a)開口した炉内側先端が炉内に露出し、炉内の溶融金属にガスを吹き込むことが可能な状態にある複数の第1金属細管と、第1金属細管と連通する第1サージタンクとを備える第1ノズル部と、
 (b)耐火物中に埋設され、炉内側先端が閉塞している複数の第2金属細管と、第2金属細管と連通する第2サージタンクとを備える第2ノズル部と
 を具備しており、第1ノズル部からのガスの吹き込みが継続して行われることにより、第2金属細管の炉内側先端に達するまで第2耐火物の損耗が進むと、閉塞していた第2金属細管の炉内側先端が開口し、第2ノズル部の第2金属細管からのガスの吹き込みが開始するように構成されているので、それまでガスを吹いていた第1ノズル部を構成する第1金属細管および第1耐火物が所定のラインまで損耗した時点で、ガス吹き込みの経路が、第1ノズル部の吐出口近傍より耐火物の損耗の程度が軽微な第2ノズル部から(詳しくは、第2金属細管の炉内側先端から)のガス吹き込みに切り換えられるため、上述の位置による耐火物の損耗差を有効に利用して、耐用寿命を延ばすことが可能になる。
 なお、本発明のガス吹き込みノズルの場合、第1ノズル部および第2ノズル部のいずれもが、金属細管に連通するサージタンクを備えているため、各サージタンクにガス供給ラインを接続しておくことにより、第2ノズル部からの通気が確認された時点で、特に複雑な処理をすることなく、容易かつ確実にガスの供給経路を切り換えることできる。
 なお、本発明では、第1ノズル部と第2ノズル部を備えたガス吹き込みノズルについて規定しているが、第2金属細管の炉内側先端部よりも耐火物中の深い位置に埋設された、第3金属細管とそれに連通する第3サージタンクおよび第3耐火物を備えた第3ノズル部、さらにはそれよりもさらに深い位置に埋設された第4金属細管とそれに連通する第4サージタンクおよび第4耐火物を備えた第4ノズル部というように、第3ノズル部以降のノズル部を備えた構成とすることも可能である。
 すなわち、本発明は少なくとも第1および第2ノズル部を備えていることを要件とするものであり、第3ノズル部以降のノズル部を備えた構成を排除するものではない。
 また、本発明において、耐火物中に埋設された第2金属細管の炉内側先端は閉塞しているが、炉内側先端は、耐火物中に埋設されることにより閉塞されるように構成されていてもよく、また、予め炉内側先端を閉塞させた第2金属細管を耐火物中に埋設するようにしてもよい。
 なお、耐火物中に埋設されることにより閉塞されるように構成した場合には、耐火物の損耗が第2金属細管の炉内側先端に達すると、その時点でガスの吹き込みが開始される。一方、予め炉内側先端を閉塞させた第2金属細管を耐火物中に埋設するようにした場合も、炉内側先端が溶融金属に接することにより開口し、その時点でガスの吹き込みが始まる。
 また、本発明のガス吹き込みノズルにおいて、第1ノズル部を構成する第1金属細管と、第2ノズル部を構成する第2金属細管とを、最も近接している部分において、100~1000mmの間隔をおいて配設することにより、位置による耐火物の損耗差をより確実に利用して、耐用性をさらに向上させることができる。
 なお、ここでいう第1金属細管および第2金属細管は、いずれも、サージタンクと連通し、実際にガスを通気させる金属細管をいう。
 なお、第1金属細管と第2金属細管の最も近接している部分の間隔が100mm未満になると、耐火物の損耗差を十分に利用することが困難になり、1000mmを超えると、ガス吹き込みノズルの施工性を悪化させるだけでなく、精錬効率の低下あるいは精錬炉内全体の耐火物の損傷形態を著しく悪化させることになるため、第1金属細管と第2金属細管の最も近接している部分の間隔は、100~1000mmの範囲とすることが望ましい。
 また、第1金属細管と第2金属細管の間隔とは、金属細管を軸方向からみた場合における、第1金属細管を構成する金属細管と、第2金属細管を構成する金属細管のうちの、最も近接している金属細管どうしの間の距離をいう。
 また、第2ノズル部を構成する第2金属細管を、第2耐火物表面から炉内側先端までの距離がノズル有効長の14%以上となる深さ(埋設深さ)に埋設するようにした場合、位置による耐火物の損耗差(図5のM)をさらに確実に利用することが可能になり、本発明をより実効あらしめることができる。
 なお、本発明において、ノズル有効長とは、第1、第2耐火物の全長ではなく、安全な残厚を残して安全に使用できる長さのことであり、図5を参照して説明すると、第1、第2サージタンク12,22の上端から第1、第2耐火物13,23の表面(上端面)13a,23aまでの距離を、第1、第2耐火物13,23の全長L(mm)としたときに、安全な残厚としてこのL(mm)から300mmを差し引いた値、すなわち、下記の式(1)で表される値をいう。
 ノズル有効長(mm)=L(mm)-300mm ……(1)
 なお、第2ノズル部を構成する第2金属細管の埋設深さ(図1のD)が、ノズル有効長の14%より短い場合には、第1ノズル部から第2ノズル部へのガス吹き切り換え時期が早すぎて、第1ノズル部のノズル有効長を十分に活用することができず、ガス吹き込みノズル全体としての寿命を十分に延ばすことができなくなる。
 さらに、稼働初期の耐火物表面は熱スポーリングや熱膨張応力などにより亀裂・剥離が生じることがあり、第2金属細管の埋設深さが、ノズル有効長の14%より短い場合には、この亀裂・剥離により稼働初期に第2金属細管の先端が露出してしまう場合がある。
 したがって、第2ノズル部を構成する第2金属細管の埋設深さは、ノズル有効長の14%以上であることが望ましい。
 また、本発明のガス吹き込みノズルは、ガス導入用の複数の金属細管と、吹き込み前のガスをプールするサージタンクと、ガス導入用の金属細管とサージタンクを保護する耐火物とを備えた、炉内の溶融金属にガスを吹き込むためのガス吹き込みノズルにおいて、金属細管が、炉内側先端が所定の深さに位置するように耐火物中に埋設され、炉内側先端が閉塞した構成を備えている。
 したがって、本発明のガス吹き込みノズルは、公知のガス吹き込みノズル、すなわち、開口した炉内側先端が炉内に露出し、炉内の溶融金属にガスを吹き込むことが可能な状態にある複数の金属細管と、金属細管と連通するサージタンクとを備えるガス吹き込みノズルとを組み合わせて用いることにより、上述の第1ノズル部及び第2ノズル部を備えたガス吹き込みノズルと同様の構成を備え、かつ、同等の作用効果を奏するガス吹き込みノズルを構成することが可能になる。
 また、金属細管を、耐火物表面から炉内側先端までの距離がノズル有効長の14%以上となる深さに埋設するようにした場合、位置による耐火物の損耗差をより確実に利用して、耐用性をさらに向上させることができる。
図1は、本発明の実施形態1にかかるガス吹き込みノズルを溶融金属精錬容器(精錬炉)の底部に組み込んだ状態を模式的に示す正面断面図である。 図2は、精錬炉の底部に組み込んだ本発明の実施形態1にかかるガス吹き込みノズルを拡大して示す正面断面図である。 図3は、本発明の実施形態1にかかるガス吹き込みノズルの使用の態様を示す図であり、第2ノズル部からのガスの通気がはじまった状態を示す正面断面図である。 図4は、本発明の実施形態1にかかるガス吹き込みノズルの使用の態様を示す図であり、第2ノズル部からのガス吹き込みに切り換えた後、第1ノズル部からのガスの吹き込みを停止し、吐出口近傍を不定形耐火物で埋めた状態を示す正面断面図である。 図5は、本発明の実施形態1にかかるガス吹き込みノズルの使用の態様を示す図であり、第1耐火物および第2耐火物が損耗して、最終的な寿命ラインに達した状態を示す正面断面図である。 図6は、本発明の実施形態1にかかるガス吹き込みノズルの構成を示す図であり、図6(a)は実施形態1のガス吹き込みノズルの構成を示す平面図であり、図6(b)は変形例を示す平面図、図6(c)はさらに他の変形例を示す平面図である。 図7は、本発明の実施形態1にかかるガス吹き込みノズルの、第1金属細管と第2金属細管との間の間隔(距離)を説明する図である。 図8は、本発明の実施形態1において、比較のために用意したガス吹き込みノズルの構成を示す正面断面図である。 図9は、本発明の実施形態2にかかるガス吹き込みノズルを溶融金属精錬容器(精錬炉)の底部に組み込んだ状態を模式的に示す図である。
 以下に本発明の実施形態を示して、本発明の特徴とするところをさらに詳しく説明する。
(実施形態1)
 図1は本発明の一実施形態(実施形態1)にかかるガス吹き込みノズルを溶融金属精錬容器(精錬炉)の底部に組み込んだ状態を模式的に示す正面断面図、図2~図5は、本発明の実施形態1にかかるガス吹き込みノズルの構成および使用の態様を示す正面断面図である。また、図7は本発明の実施形態1にかかるガス吹き込みノズルの第1金属細管と第2金属細管を上方から見た図である。
 図1に示すように、この実施形態1のガス吹き込みノズルAは、電気炉や転炉などの精錬炉1内の溶融金属2にガスを吹き込むためのガス吹き込みノズルである。このガス吹き込みノズルは、炉内側先端11aが開口しているとともに、炉内側先端11aが炉内に露出し、炉内の溶融金属2にガスを吹き込むことが可能な状態にある複数の第1金属細管11と、第1金属細管11と連通する第1サージタンク12と、第1金属細管11および第1サージタンク12を保護する第1耐火物13とを備える第1ノズル部10を備えている。
 さらに、複数の第2金属細管21と、第2金属細管21と連通する第2サージタンク22と、第2金属細管21および第2サージタンク22を保護する第2耐火物23とを備える第2ノズル部20とを備えている。
 そして、第2ノズル部20において、第2金属細管21は、炉内側先端21aが所定の深さに位置するように第2耐火物23中に埋設されているとともに、第2耐火物23中に埋設されることにより炉内側先端21aが閉塞した状態とされている。
 そして、第1ノズル部10および第2ノズル部20は、サポート耐火物31により一体に保持されている。この実施形態1における、サポート耐火物31は、例えば、第1ノズル部10および第2ノズル部20の周囲を取り囲むように、複数のサポートれんがを一つのユニットに組んだ構造体である。なお、図6(a)に、このサポート耐火物31により、第1ノズル部10および第2ノズル部20を一体に保持した、本発明の実施形態1にかかるガス吹き込みノズルAの平面構成(平面図)を示す。
 ただし、複数に分割された耐火物部材を組み合わせて、第1および第2ノズル部を一体に保持する構造体(サポート耐火物31)とすることも可能である。図6(b)はそのような例を示すものであり、複数に分割された平面形状が方形の耐火物部材31aを組み合わせて、同じく平面形状が保形のノズル部10およびノズル部20を一体に保持する構造体(サポート耐火物31)とした例を示している。なお、構造体の組み立ては、精錬炉内に施工する際に同時に行うことが可能である。
 また、図6(c)は、本発明のガス吹き込みノズルのさらに他の例を示すものであり、この例では、平面形状が方形の第1ノズル部10および第2ノズル部20を、同じく平面形状が方形のサポート耐火物31により接合して一体の構造体としている。
 なお、図6(a)では、第1ノズル部10,第2ノズル部20は平面形状が円形(すなわち、3次元形状では円柱形状)である場合を示し、図6(b)および図6(c)では、第1ノズル部10,第2ノズル部20は平面形状が略正方形(すなわち、3次元形状では四角柱形状)である場合を示しているが、本発明のガス吹き込みノズルにおいて、第1ノズル部10,第2ノズル部20の具体的な形状に特別の制約はない。
 なお、図1~4に示すこの実施形態1のガス吹き込みノズルAにおいて、第1ノズル部10の第1金属細管11と、第2ノズル部20の第2金属細管21とは、図7に示すように、最も近接している部分において、146.5mm(本発明において好ましい範囲は100~1000mm)の間隔(図1のG)をおいて配設されている。なお、この場合、図7に示すように、第1ノズル部10の中央(中心)と第2ノズル部の中央(中心)の間隔は250mmとされている。
 また、第2ノズル部を構成する第2金属細管21は、第2耐火物23の表面から炉内側先端21aまでの距離(埋設深さ)(図1におけるD)がノズル有効長(=L(mm)-300mm)(図5)の14%以上となる深さに埋設されている。なお、後述の実施例では、第2耐火物の表面から炉内側先端までの距離(D)が145mm、ノズル有効長が約350mmで、耐火物表面から炉内側先端までの距離がノズル有効長の約41%とされている。
 また、第1サージタンク12と第2サージタンク22にはそれぞれ、ガス供給ライン3a,3bが接続され、各ガス供給ライン3a,3bは管継手4を介してガス配管5に接続されている(図2)。
 なお、第1ノズル部10と第2ノズル部20に同時にガス圧力をかけて運転し、切り換え時に第2ノズル部にだけガスを供給できるようにするためには、上述のように、第1および第2ノズル部10および20が、それぞれサージタンクを備えていることが必要であるが、場合によっては、1つのサージタンクを仕切り部材で仕切ることで対応することも可能である。
 また、各サージタンクには、ガス供給ライン(ガス導入用のガス配管)を接続する必要があるが、それぞれのサージタンクに取り付けられる配管は、湾曲あるいは曲折させることが可能であることから、精錬炉に設けられた既設のノズル設置用の穴を大きく改造したり、複雑な施工の手間をかけたりすることなく、サージタンクに容易にガス供給ライン(ガス導入用のガス配管)を接続することができる。
 したがって、本発明のガス吹き込みノズルは、既存の精錬炉に取り付けて、その耐用性を向上させることができる。
 なお、第1サージタンク12と第2サージタンク22の具体的な構成や、各サージタンクへのガス供給のためのラインの具体的な接続態様などに特別の制約はない。
 また、第1および第2金属細管11,21を構成する材料としては、ステンレス鋼、普通鋼、耐熱鋼などを用いることが可能で、その中でもステンレス鋼が特に好ましい。
 また、第1および第2金属細管11,21の内径は1~4mm程度が好ましく、その肉厚は1~2mm程度とすることが望ましい。これは、第1および第2金属細管11,21の内径が1mm未満であると、閉塞され、溶融金属へ十分なガス供給ができなくなるおそれがあり、内径が4mmを超えると第1および第2金属細管11,21内に溶融金属が差し込み、漏鋼するおそれがあることによる。
 また、第1および第2金属細管11,21には浸炭現象を抑制するために、例えば酸化物層を溶射したり、MgOなどのコーティング材をコーティングしたりするなどの公知の構成を採用することも可能である。
 また、金属細管を保護する耐火物としては、耐火性があれば特に制限されるものではなく、好ましくはMgO-C系、Al23-C系、Al23-SIC-C系、MgO-CaO-C系、MgO-Al23-C系などの炭素含有耐火物を用いることができる。炭素分として黒鉛を10~25重量%含有するMgO-Cれんがを用いることがさらに好ましい。
 また、この炭素含有耐火物の製造方法は、従来の製造方法と同じでよく、耐火性骨材に炭素質原料を加え、必要に応じて金属粉末やその他の添加物を添加し、フェノール樹脂、ピッチ、タール等の炭素結合を形成する結合材を1~15重量%、好ましくは3~8重量%加えて混錬し、成形した後100~500℃、好ましくは150~400℃の熱処理をして不焼成れんがとする。
 あるいは、成形後500~1500℃、好ましくは800~1300℃の還元雰囲気で焼成した焼成れんがとすることもできる。
 次に、上述のように構成されたガス吹き込みノズルAを配設した精錬炉1の溶融金属2にガスを吹き込む場合の操作について説明する。
 まず、図2に示すように、第2ノズル部20を構成する閉塞した第2金属細管21にもガスの圧力をかけた状態で、第1ノズル部10を構成する第1金属細管11からガスを吹き込む。
 この状態で精錬炉1が継続して稼働すると、第1ノズル部10を構成する第1金属細管11および第1耐火物13が徐々に損耗し、それに伴って第2ノズル20を構成する第2耐火物23も、第1耐火物13よりも穏やかにではあるが損耗する。
 そして、図3に示すように、第2金属細管21の、閉塞した炉内側先端21aの位置まで第2耐火物23の損耗が進むと、第2耐火物23により閉塞していた第2金属細管21の炉内側先端21が開口し、第2ノズル部20の第2金属細管21からのガスの吹き込みが始まる。このときの耐火物の損耗ラインが切り換え時の損耗ラインとなる。
 ここで、炉内側先端21aが閉塞していた第2金属細管21からのガスの吹き込み(通気)が開始したことは、例えば、圧力計器による圧力の検出や、精錬炉1内の残湯(溶融金属2)の動きを目視確認する方法などにより、容易かつ確実に検出することができる。
 さらには、圧力計器の圧力低下を感知し、アラームが鳴るようシステム化すれば、より確実にガスの吹き込みが開始したこと検出することができる。
 第2金属細管21からの通気を確認した後、それまでガスを吹いていた第1ノズル部10の第1金属細管11へのガスの供給を停止する。
 このときの第1金属細管11へのガスの供給を停止するにあたっては、例えば、第1金属細管11へのガス供給ライン3aへのガスの供給停止を行う弁(図示せず)を手動、あるいは、自動で操作して、ガス供給ライン3bへの供給は維持したまま、ガス供給ライン3aへのガス供給を停止することにより、容易に残厚のある第2ノズル部20の第2金属細管21からのガスの吹き込みに切り換えることができる。
 また、特に図示しないが、定期修理時に一時的にガスを止め、第1ノズル部10側へのガス供給ライン3aの配管を取り外し、管継手4側にキャップをすることによっても、短時間で切り換え作業を行うことができる。
 それから、図4に示すように、第1ノズル部10を構成する第1耐火物13の上面の、ガス吐出部近傍の凹み部を不定形耐火物7で埋める補修を行う。ただし、場合によっては、不定形耐火物で埋める補修はせずに、そのままにしておいてもよい。
 その後、第2ノズル部20の第2金属細管21からのガスの吹き込みを行うことにより、第1耐火物13および第2耐火物23が損耗して、いずれかの表面が最終的な寿命ラインに達するまで(図5参照)、精錬炉1を継続して稼働することが可能になる。
 なお、図5は、第2ノズル部20の第2耐火物23が、最終的な寿命ラインに達するまで損耗した状態を示している。なお、図5には、
 (1)第1ノズル部10と第2ノズル部20の切り換え時の損耗ライン、
 (2)第1ノズル部10と第2ノズル部20の切り換えを行わない場合の寿命ライン(従来のガス吹き込みノズルを用いた場合の寿命ライン)、
 (3)第1ノズル部10と第2ノズル部20の切り換えを行った場合の寿命ライン、
 (4)第1、第2耐火物13,23の全長(L)、
 (5)位置による耐火物の損耗差(M)
 を併せて示している。
 図5に示すように、この実施形態1の場合のように、第1ノズル部10と第2ノズル部20の切り換えを行うことにより、切り換えを行った場合の最終的な寿命ラインと、切り換えを行わない場合の最終的な寿命ラインの差、すなわち損耗差(残厚差)Mを有効利用して、耐用寿命を延ばすことが可能になることがわかる。
 また、この実施形態1のガス吹き込みノズルAを用いる場合、例えば、精錬炉1側の既設配管などは、市販の管継手で二手以上に分けることが可能で、そのまま利用することができるため、既存の設備を大きく改造することなくガス吹き込みノズルAを取り付けることが可能となり、大きな改造費用を必要とすることなく、耐用性を改善することができる。
(実施形態2)
 図9は、本発明の他の実施形態(実施形態2)にかかるガス吹き込みノズルA1を溶融金属精錬容器(精錬炉)の底部に組み込んだ状態を模式的に示す図である。
 この実施形態2のガス吹き込みノズルA1は、ガス導入用の複数の金属細管51と、吹き込み前のガスをプールするサージタンク52と、ガス導入用の金属細管51とサージタンク52を保護する耐火物53とを備えており、金属細管51は、炉内側先端51aが所定の深さに位置するように耐火物53中に埋設され、炉内側先端51aが閉塞した構成を備えている。
 すなわち、この実施形態2のガス吹き込みノズルA1は、上記実施形態1のガス吹き込みノズルAにおける第2ノズル部20と同様の構成を備えている。
 なお、図9において、図1と同一符号を付した部分は同一または相当する部分を示す。
 この実施形態2のガス吹き込みノズルA1は、図9に示すように、実施形態1のガス吹き込みノズルAを構成する第1ノズル部10(図2~4)と同様の構成を備えたガス吹き込みノズル、すなわち、金属細管61とサージタンク62と、耐火物63を備え、金属細管61が耐火物63を貫通した構造を有するガス吹き込みノズルCと組み合わせて精錬炉1の底部に配設することにより用いられるように構成されている。
 そして、図9に示すような構成の場合、ガス吹き込みノズルCが、上記実施形態1のガス吹き込みノズルAにおける第1ノズル部10の機能を果たし、この実施形態2のガス吹き込みノズルA1が、上記実施形態1のガス吹き込みノズルAにおける第2ノズル部20の機能を果たす。その結果、実施形態1の場合と同様の効果を得ることができる。
 なお、実施形態2のように、ガス吹き込みノズルA1を、実施形態1のガス吹き込みノズルAを構成する第1ノズル部10と同様の構成を備えたガス吹き込みノズルCと組み合わせて用いることにより、ガス吹き込みノズルA1(第2ノズル部に相当)とガス吹き込みノズルCとを任意の位置関係となるように、離れた位置に配設したり、隣接して配設したりすることが可能になり、配設態様の自由度を向上させることができる。
 ただし、ガス配管および切り換え機構の簡略化の見地からは、隣接するように配設することが望ましい。
 なお、上記実施形態1では、ガス吹き込みノズルからアルゴンガスを吹き込む場合を例にとって説明したが、ガスの種類に特別の制約はなく、本発明のガス吹き込みノズルは、窒素ガスなどの他のガスを吹き込む場合にも用いることが可能である。
<実施例>
 上記実施形態1のように、図1~5に示すように構成されたガス吹き込みノズルを精錬炉1に用いて耐用寿命を調べた。なお、耐用寿命を調べるためのガス吹き込みノズルAとしては、具体的には、第1ノズル部10として、第1耐火物13を貫通した内径1.5mm、肉厚1mmのステンレス鋼管からなる第1金属細管11を7本、第1サージタンク12に接続した構成のものを用いた。
 また、第2ノズル部20としては、内径1.5mm、肉厚1mmのステンレス鋼管からなり、長さが第1金属細管11よりも短い第2金属細管21を7本、炉内側先端21aの位置が、第2耐火物23の表面から145mmの深さ位置となるように第2サージタンク22に接続した構成のものを用いた。なお、この深さは、ノズル有効長(約350mm)の約41%となる。
 また、第1ノズル部10を構成する第1金属細管11と、第2ノズル部20を構成する第2金属細管21の、最も近接している部分の間隔は146.5mmとなるようにした。
 また、第1耐火物13および第2耐火物23としては、黒鉛15重量%含有するMgO-C耐火物を用いた。
<比較例>
 比較のため、図8に示すような、本発明の実施形態1のガス吹き込みノズルAの第1ノズル部に相当する構成を備えたガス吹き込みノズルBを用意し、これを用いた場合の耐用寿命を調べた。
 比較例のガス吹き込みノズルBは、本発明における第2ノズル部を備えていない公知のガス吹き込みノズルであり、複数の金属細管41、サージタンク42、第1金属細管および第1サージタンクを保護する耐火物43としては、上記本発明の実施形態1にかかるガス吹き込みノズルAにおいて用いたものと同じ材料からなるものを用いた。すなわち、比較例のガス吹き込みノズルBは、本発明の実施形態1の吹き込みノズルAにおける、第1ノズル部10に相当するものである。なお、比較例のガス吹き込みノズルBのノズル有効長は350mmである。なお、図8において、図1と同一符号を付した部分は同一または相当する部分を示す。
 上述の、実施例のガス吹き込みノズルAおよび比較例のガス吹き込みノズルBを、溶鋼量100tonの電気炉の炉底に設置し、アルゴンガスを流量100NL/minで吹き込んで、それぞれの耐用寿命を調べた。耐用寿命は、公知の測定方法を用いて行った。即ち、ノズル耐火物中に埋設された熱電対の温度検知によってノズルの寿命を判定した。上記測定方法は、耐火物が損耗され残寸が少なくなると稼動面と埋設された熱電対との距離が近くなり、熱電対が感知する温度が上昇するという仕組みである。具体的には、実施例のノズルおよび比較例のノズルをそれぞれ設置した電気炉でスクラップを溶解し、アルゴンガスを吹き込んで処理を行い、溶融金属用容器へと移す工程を1ch(Charge)とし、上記工程を繰り返し行った。そして熱電対が感知する温度が約1,000℃に達したときの上記工程の繰り返し回数をノズルの耐用寿命とした。
(試験結果)
 試験の結果、比較例のガス吹き込みノズルの耐用寿命は700ch程度であった。
 これに対し、実施例のガス吹き込みノズルでは、500chで第1ノズル部によるガス吹き込みから、第2ノズル部によるガス吹き込み切り換え、その後319chでノズル有効長に達した。
 すなわち、比較例のガス吹き込みノズルを用いた場合には700ch程度であった耐用寿命が、実施例のガス吹き込みノズルを用いた場合には819chにまで延び、耐用寿命が約17%向上することが確認された。
 本発明はさらにその他の点においても上記実施形態及び実施例に限定されるものではなく、発明の範囲内において種々の応用、変形を加えることが可能である。
本出願は、2010年7月6日出願の日本特許出願2010-153958に基づくものであり、その内容はここに参照として取り込まれる。
 1     精錬炉
 2     溶融金属
 3a,3b ガス供給ライン
 4     管継手
 5     ガス配管
 7     不定形耐火物
 10    第1ノズル部
 11a   第1金属細管の炉内側先端
 11    第1金属細管
 12    第1サージタンク
 13    第1耐火物
 13a   第1耐火物の表面
 20    第2ノズル部
 21a   第2金属細管の炉内側先端
 21    第2金属細管
 22    第2サージタンク
 23    第2耐火物
 23a   第2耐火物の表面
 31    サポート耐火物
 31a   平面形状が方形の耐火物部材
 41    比較用のガス吹き込みノズルBを構成する複数の金属細管
 42    比較用のガス吹き込みノズルBを構成するサージタンク
 43    比較用のガス吹き込みノズルBを構成する耐火物
 51    実施形態2のガス吹き込みノズルを構成する複数の金属細管
 52    実施形態2のガス吹き込みノズルを構成するサージタンク
 53    実施形態2のガス吹き込みノズルを構成する耐火物
 51a   実施形態2のガス吹き込みノズルを構成する金属細管の炉内側先端
 61    ガス吹き込みノズルCを構成する金属細管
 62    ガス吹き込みノズルCを構成するサージタンク
 63    ガス吹き込みノズルCを構成する耐火物
 A     ガス吹き込みノズル
 A1    実施形態2のガス吹き込みノズル
 B     比較用のガス吹き込みノズル
 C     第1ノズル部に相当するガス吹き込みノズル
 G     第1金属細管と第2金属細管の間隔
 D     第2耐火物の表面から炉内側先端までの距離(埋設深さ)
 L     第1、第2耐火物の全長
 M     位置による耐火物の損耗差

Claims (5)

  1.  ガス導入用の複数の金属細管と、吹き込み前のガスをプールするサージタンクと、前記金属細管および前記サージタンクを保護する耐火物とを備えた、炉内の溶融金属にガスを吹き込むためのガス吹き込みノズルであって、
     炉内側先端が開口しているとともに、前記炉内側先端が炉内に露出し、炉内の溶融金属にガスを吹き込むことが可能な状態にある複数の第1金属細管と、前記第1金属細管と連通する第1サージタンクと、前記第1金属細管および前記第1サージタンクを保護する第1耐火物とを備える第1ノズル部と、
     複数の第2金属細管と、前記第2金属細管と連通する第2サージタンクと、前記第2金属細管および前記第2サージタンクを保護する第2耐火物とを備え、前記第2金属細管の炉内側先端が所定の深さに位置するように前記第2耐火物中に埋設され、閉塞している第2ノズル部と
     を具備し、
     前記第2ノズル部にガスの圧力をかけた状態で、前記第1ノズル部からのガスの吹き込みが継続して行われ、前記第2耐火物中に埋設された前記第2金属細管の前記炉内側先端に達するまで前記第2耐火物の損耗が進むと、閉塞していた前記第2金属細管の前記炉内側先端が開口し、前記第2金属細管からのガスの吹き込みが開始するように構成されていること
     を特徴とするガス吹き込みノズル。
  2.  前記第1金属細管と、前記第2金属細管とが、最も近接している部分において、100~1000mmの間隔をおいて配設されていることを特徴とする請求項1記載のガス吹き込みノズル。
  3.  前記第2金属細管は、前記第2耐火物表面から前記炉内側先端までの距離がノズル有効長の14%以上となる深さに埋設されていることを特徴とする請求項1または2記載のガス吹き込みノズル。
  4.  ガス導入用の複数の金属細管と、前記複数の金属細管と連通し、吹き込み前のガスをプールするサージタンクと、前記金属細管および前記サージタンクを保護する耐火物とを備えた、炉内の溶融金属にガスを吹き込むためのガス吹き込みノズルであって、
     前記金属細管は、炉内側先端が所定の深さに位置するように耐火物中に埋設され、前記炉内側先端が閉塞していること
     を特徴とするガス吹き込みノズル。
  5.  前記金属細管は、前記耐火物表面から前記炉内側先端までの距離がノズル有効長の14%以上となる深さに埋設されていることを特徴とする請求項4記載のガス吹き込みノズル。
PCT/JP2011/064477 2010-07-06 2011-06-23 ガス吹き込みノズル WO2012005119A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137000249A KR20130116065A (ko) 2010-07-06 2011-06-23 가스 취입 노즐
US13/808,292 US9109838B2 (en) 2010-07-06 2011-06-23 Gas blowing nozzle
CA2803908A CA2803908A1 (en) 2010-07-06 2011-06-23 Gas blowing nozzle
EP11803455.2A EP2592160A1 (en) 2010-07-06 2011-06-23 Gas blowing nozzle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010153958A JP5230693B2 (ja) 2010-07-06 2010-07-06 ガス吹き込みノズル
JP2010-153958 2010-07-06

Publications (1)

Publication Number Publication Date
WO2012005119A1 true WO2012005119A1 (ja) 2012-01-12

Family

ID=45441104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064477 WO2012005119A1 (ja) 2010-07-06 2011-06-23 ガス吹き込みノズル

Country Status (6)

Country Link
US (1) US9109838B2 (ja)
EP (1) EP2592160A1 (ja)
JP (1) JP5230693B2 (ja)
KR (1) KR20130116065A (ja)
CA (1) CA2803908A1 (ja)
WO (1) WO2012005119A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105377471A (zh) * 2013-06-07 2016-03-02 维苏威坩埚公司 保持铅的透气塞

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5463374B2 (ja) * 2012-01-05 2014-04-09 品川リフラクトリーズ株式会社 ガス吹き込みノズル
EP2868404A1 (de) * 2013-10-29 2015-05-06 Refractory Intellectual Property GmbH & Co. KG Gasspülsystem für Hochtemperaturschmelzen
CN103898273B (zh) * 2014-04-22 2016-04-20 北京科技大学 一种提高电弧炉底吹透气砖寿命的控制方法
KR102135761B1 (ko) * 2018-10-25 2020-07-20 주식회사 포스코 용융물 처리 장치 및 처리 방법
WO2020165795A1 (en) * 2019-02-13 2020-08-20 Sabic Global Technologies B.V. Steel decarburization using carbon dioxide

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658918A (en) 1979-10-15 1981-05-22 Nippon Steel Corp Bottom blowing converter
JPS63100117A (ja) * 1986-10-15 1988-05-02 Nkk Corp 底吹ノズルによる溶湯の吹錬方法
JPH0261950U (ja) 1988-10-26 1990-05-09
JPH04120211A (ja) * 1990-09-11 1992-04-21 Nkk Corp 底吹きノズルを有する転炉
JPH0598337A (ja) 1991-10-04 1993-04-20 Nippon Steel Corp 溶融金属精錬容器及び操業方法
JPH10265829A (ja) 1997-03-24 1998-10-06 Tokyo Yogyo Co Ltd アルミナ−カーボン質ガス吹き込み用プラグ
JP2000212634A (ja) 1999-01-21 2000-08-02 Asahi Glass Co Ltd 精錬炉用ガス吹き込みノズル
JP2003231912A (ja) 2002-02-07 2003-08-19 Kawasaki Refract Co Ltd ガス吹き込みノズル

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3854932A (en) * 1973-06-18 1974-12-17 Allegheny Ludlum Ind Inc Process for production of stainless steel
GB1586762A (en) * 1976-05-28 1981-03-25 British Steel Corp Metal refining method and apparatus
US4198230A (en) * 1977-05-04 1980-04-15 Eisenwerk-Gesellschaft Maximilianshutte Mbh Steelmaking process
US4334921A (en) * 1979-04-16 1982-06-15 Nippon Steel Corporation Converter steelmaking process
JPS5658918U (ja) 1979-10-12 1981-05-20
AU544858B2 (en) * 1981-06-03 1985-06-13 Nippon Kokan Kabushiki Kaisha Gas blowing nozzle
JP2566859B2 (ja) * 1991-10-08 1996-12-25 日本鋼管株式会社 精錬装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658918A (en) 1979-10-15 1981-05-22 Nippon Steel Corp Bottom blowing converter
JPS63100117A (ja) * 1986-10-15 1988-05-02 Nkk Corp 底吹ノズルによる溶湯の吹錬方法
JPH0261950U (ja) 1988-10-26 1990-05-09
JPH04120211A (ja) * 1990-09-11 1992-04-21 Nkk Corp 底吹きノズルを有する転炉
JPH0598337A (ja) 1991-10-04 1993-04-20 Nippon Steel Corp 溶融金属精錬容器及び操業方法
JPH10265829A (ja) 1997-03-24 1998-10-06 Tokyo Yogyo Co Ltd アルミナ−カーボン質ガス吹き込み用プラグ
JP2000212634A (ja) 1999-01-21 2000-08-02 Asahi Glass Co Ltd 精錬炉用ガス吹き込みノズル
JP2003231912A (ja) 2002-02-07 2003-08-19 Kawasaki Refract Co Ltd ガス吹き込みノズル

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105377471A (zh) * 2013-06-07 2016-03-02 维苏威坩埚公司 保持铅的透气塞

Also Published As

Publication number Publication date
US20130106035A1 (en) 2013-05-02
US9109838B2 (en) 2015-08-18
JP2012017482A (ja) 2012-01-26
JP5230693B2 (ja) 2013-07-10
EP2592160A1 (en) 2013-05-15
KR20130116065A (ko) 2013-10-22
CA2803908A1 (en) 2012-01-12

Similar Documents

Publication Publication Date Title
WO2012005119A1 (ja) ガス吹き込みノズル
Nelson et al. The tap-hole-key to furnace performance
JP4308288B2 (ja) 溶解炉の出銑口構造およびその補修方法
CN106702073A (zh) 一种转炉底吹元件热更换方法
AU2014363701B2 (en) Tap-hole refurbishing
CN204108250U (zh) 具有熔池厚度在线智能预警功能的冶炼钢包
CN206887148U (zh) 一种炼钢用转炉炉底
CN107130080B (zh) 一种转炉出钢口外口砖破损的修补方法
WO1999020966A1 (fr) Structure de four metallurgique et procede d'exploitation utilisant ledit four metallurgique
JP5489568B2 (ja) ガス吹込みノズル
JP5483848B2 (ja) 簡易精錬装置用浸漬管
CN211438081U (zh) 一种包底
JP3613816B2 (ja) 高炉炉壁のステーブによる補修方法
CN216729532U (zh) 一种金属硅出炉及精炼硅包整体内衬结构
JP5685974B2 (ja) 高炉樋
CN211311513U (zh) 一种rh浸渍管用复合衬结构
CN103045807B (zh) 真空循环脱气插入管
KR101753639B1 (ko) 전로 바닥부 유지 보수 방법 및 전로
JP4516934B2 (ja) 精錬容器の補修方法
CN114317895A (zh) 一种rh炉浸渍管浸蚀监测装置及其使用方法
JPH0332511Y2 (ja)
CN108130399B (zh) 一种可保护出钢的电炉及电炉保护出钢的方法
KR20000018815A (ko) 코렉스 용융로용 노즐
KR200316238Y1 (ko) 용선예비처리시 불순물 제거를 위한 버블링 파이프
KR20120032940A (ko) 래들의 습식 보수재 및 이를 이용한 보수방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803455

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2803908

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20137000249

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13808292

Country of ref document: US

Ref document number: 2011803455

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE