WO2012005112A1 - 燃料電池用セパレータ材料、それを用いた燃料電池用セパレータ及び燃料電池スタック - Google Patents

燃料電池用セパレータ材料、それを用いた燃料電池用セパレータ及び燃料電池スタック Download PDF

Info

Publication number
WO2012005112A1
WO2012005112A1 PCT/JP2011/064257 JP2011064257W WO2012005112A1 WO 2012005112 A1 WO2012005112 A1 WO 2012005112A1 JP 2011064257 W JP2011064257 W JP 2011064257W WO 2012005112 A1 WO2012005112 A1 WO 2012005112A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
plating layer
separator material
separator
cell separator
Prior art date
Application number
PCT/JP2011/064257
Other languages
English (en)
French (fr)
Inventor
紀充 渋谷
久田 建男
正義 布藤
Original Assignee
Jx日鉱日石金属株式会社
大同特殊鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社, 大同特殊鋼株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to CA2804774A priority Critical patent/CA2804774A1/en
Priority to CN2011800300814A priority patent/CN103026538A/zh
Priority to US13/805,265 priority patent/US20130244129A1/en
Priority to EP11803448.7A priority patent/EP2592680A4/en
Priority to KR1020127034018A priority patent/KR101420561B1/ko
Publication of WO2012005112A1 publication Critical patent/WO2012005112A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/48Electroplating: Baths therefor from solutions of gold
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/625Discontinuous layers, e.g. microcracked layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell separator material in which an Au plating layer is formed on the surface of a thin metal plate, a fuel cell separator using the same, and a fuel cell stack.
  • Solid polymer fuel cell separators have electrical conductivity, and each unit cell of the fuel cell is electrically connected to collect energy (electricity) generated in each unit cell and to each unit cell.
  • a flow path for supplying fuel gas (fuel liquid) and air (oxygen) is formed.
  • This separator is also called an interconnector, a bipolar plate, or a current collector.
  • a fuel cell separator having a gas flow path formed on a carbon plate has been used, but there is a problem that the material cost and processing cost are high.
  • a metal plate is used instead of the carbon plate, the metal corrodes in the power generation environment, and the eluted ions are taken into the membrane electrode assembly, resulting in a problem that the power generation performance is reduced.
  • the generation of the passivated film has a problem that the contact resistance between the gas diffusion film and the separator is increased and power generation performance is lowered. For this reason, a technique for coating the top of a corrugated separator made of stainless steel with 0.01 to 0.06 ⁇ m of Au plating (Patent Documents 1 and 2), Au, Ru, Rh, Pd, A technique (Patent Document 3) for forming a conductive portion by sputtering a noble metal selected from Os, Ir, Pt, and the like is known.
  • Patent Document 4 a technique of applying a gold plating of about 10 nm (0.019 mg / cm 2 ) in the form of dots or islands on the surface of a stainless steel plate (Patent Document 4), or gold plating after forming an oxide film on the surface of a stainless steel plate A technique to be applied (Patent Document 5) has been reported.
  • Japanese Patent Laid-Open No. 10-228914 Japanese Patent Laid-Open No. 9-22708 JP 2001-297777 A JP 2004-296281 A (0007) JP 2007-257883 A
  • an object of the present invention is to provide a fuel cell separator material that is excellent in corrosion resistance and reduced in cost even if the Au plating layer formed on the surface of the thin metal plate is thin, and a fuel cell stack using the material. Furthermore, in the case of a bipolar type separator in which two molded separator materials are bonded together, fuel gas is supplied to one side, oxidizing gas is supplied to the other, and cooling water is supplied to the intermediate part, the cooling is performed on the gas side. Although the required corrosion resistance is different on the water side, the present invention provides a fuel cell separator material with reduced cost by attaching a minimum gold film to the surface of a thin metal plate, and a fuel cell stack using the same The purpose is to provide.
  • a first Au plating layer having a thickness of 0.5 to 4 nm is formed on one surface of a metal thin plate, and the other surface of the metal thin plate is thicker than the first Au plating layer.
  • a second Au plating layer is formed, and the coverage when each of the cross sections of the first Au plating layer and the second Au plating layer is observed with a transmission electron microscope is 80% or more.
  • the first Au plating layer and the second Au plating layer are preferably electroplated with an Au plating bath having a pH of 1.0 or less containing sodium hydrogen sulfate as a conductive salt.
  • the thickness of the second Au plating layer is preferably 7 nm or more. It is preferable that the first Au plating layer and the second Au plating layer are wet-plated using electrodes opposed to both surfaces of the metal thin plate, and are plated by flowing different currents on the both surfaces.
  • Each of the first Au plating layer and the second Au plating layer may be formed on a part of the surface of the metal thin plate.
  • the metal thin plate is preferably made of stainless steel, more preferably austenitic stainless steel.
  • the thickness of the metal thin plate is preferably 0.05 to 0.3 mm.
  • the Au plating layer is preferably sealed. The sealing treatment is preferably performed by electrolytic treatment of the Au plating layer in a mercapto-based aqueous solution.
  • the separator material for a fuel cell of the present invention is preferably used for a polymer electrolyte fuel cell or a direct methanol type polymer electrolyte fuel cell.
  • the fuel cell separator of the present invention uses the fuel cell separator material, and the second Au plating layer side faces the air electrode and the fuel electrode side.
  • the fuel cell stack of the present invention uses the fuel cell separator material, and the second Au plating layer side faces the air electrode and the fuel electrode side.
  • the corrosion resistance can be improved and the cost can be reduced.
  • the “fuel cell separator” has electrical conductivity, electrically connects the single cells, collects energy (electricity) generated in the single cells, and collects the single cells.
  • a fuel gas (fuel liquid) or air (oxygen) flow path is formed.
  • the separator is also referred to as an interconnector, a bipolar plate, or a current collector.
  • a separator for a fuel cell in addition to a separator having an uneven flow path on a plate-like substrate surface, a plate-like substrate surface such as the above-described passive DMFC separator is used. It includes a separator with gas and methanol passage holes.
  • the separator material for fuel cells is required to have corrosion resistance and conductivity, and the base material (metal thin plate) is required to have corrosion resistance. For this reason, it is preferable to use stainless steel having good corrosion resistance and relatively low cost, more preferably austenitic stainless steel, for the metal thin plate.
  • the type of austenitic stainless steel is not particularly limited, and examples thereof include SUS304, SUS316L, and SUS301 that are compliant with JIS.
  • the shape of the metal thin plate is not particularly limited as long as it can be plated with Au, but is preferably a plate material because it is press-formed into a separator shape, and particularly a plate material having a thickness of 0.05 to 0.3 mm. It is preferable.
  • the thickness of the metal thin plate is less than 0.05 mm, the rigidity of the separator after molding is low, the separator is likely to be deformed during assembly of the fuel cell stack, and the assembly man-hours and separator loss may be increased.
  • the thickness of the thin metal plate is increased, the rigidity of the separator is improved.
  • the required rigidity of the separator is saturated and the weight of the stack may be increased.
  • the surface of the metal thin plate should be smoothed and cleaned.
  • finish annealing may be subjected to bright annealing.
  • the feed rolls of the annealing furnace is normally a carbon rolls may the Ru with ceramic roll for carbon deposition from a carbon roll to sheet is concerned during annealing, so that the surface of the thin plate is not oxidized, the furnace inner atmosphere was hydrogen and nitrogen, the ratio is for example 9: 1 and the result good.
  • the first Au plating layer is a uniform layer having a thickness of 0.5 to 4 nm.
  • the surface exposed to the power generation environment air electrode side, fuel electrode side
  • this surface is subjected to corrosion-resistant gold plating.
  • a cooling medium such as tap water
  • the present inventors have examined the thinnest Au plating thickness necessary for preventing such gradual corrosion on the cooling medium side, and found that a uniform layer having a thickness of 0.5 nm or more may be used. It was. Therefore, the thickness of the first Au plating layer is 0.5 nm or more from the viewpoint of corrosion resistance and 4 nm or less from the viewpoint of cost. Even if the thickness of the first Au plating layer exceeds 4 nm, the effect of preventing the above-described mild corrosion is saturated.
  • the thickness of the first Au plating layer is as thin as 4 nm or less, the Au plating layer becomes dot-like or island-like, and the exposed portion of the metal thin plate increases.
  • the exposed portion of the metal thin plate is large, the amount of ions eluted from the stainless steel thin plate increases, and there is a problem that power generation performance is lowered. For this reason, it is necessary to form the first Au plating layer uniformly.
  • the thicknesses of the first Au plating layer and the second Au plating layer to be described later can be calculated by an electrolysis method, a fluorescent X-ray film thickness meter, and a cross-sectional TEM (transmission electron microscope) image.
  • FIG. 1 shows a cross-sectional TEM image (magnification: 139000 times) of the first Au plating layer of Example 1 of the present invention.
  • the fact that the first Au plating layer and the second Au plating layer described later are “uniform” means that the cross-sectional observation of the plating layer by a TEM (transmission electron microscope) (100,000 times or more, usually, 139000 times) ). Specifically, in the TEM image of the cross section of the plating layer, if the gold coverage expressed by (area of the unexposed portion of the metal thin plate as the substrate) / (total measurement area) is 80% or more Suppose that the Au plating layer is “uniform”. When the gold coating state (TEM image) on the metal thin plate is schematically shown in FIG.
  • the exposed portions of the metal thin plate are regions B and D, and the portions where the metal thin plate is not exposed are Regions A, C, and E. Accordingly, the total length (A + C + E) in the horizontal direction of the regions A, C, and E in the TEM image is regarded as the area of the unexposed portion of the metal thin plate, and the total length (A + B + C + D + E) of all the measurement regions is defined as the total measurement area.
  • the gold coverage can be calculated by ⁇ (A + C + E) / (A + B + C + D + E) ⁇ ⁇ 100 (%).
  • a method for uniformly forming the first Au plating layer includes electroplating with an Au plating bath having a pH of 1.0 or less containing sodium hydrogen sulfate as a conductive salt.
  • an Au plating bath having a pH of 1.0 or less containing sodium hydrogen sulfate as a conductive salt.
  • the composition of the Au plating bath one containing Au salt, sodium hydrogen sulfate, and other additives as required can be used.
  • the Au salt a gold cyanide salt, a non-cyanide gold salt (such as gold chloride) can be used, and the gold concentration of the Au salt can be about 1 to 100 g / L.
  • the concentration of sodium hydrogen sulfate can be about 50 to 100 g / L.
  • the gold concentration in the plating solution is preferably 1 to 4 g / L, more preferably 1.3 to 1.7 g / L. When the gold concentration is less than 1 g / L, the current efficiency is lowered and the plating layer tends not to be uniform.
  • the first Au plating layer is formed only on a portion that requires conductivity, such as a portion that becomes a contact surface with the electrode when the fuel cell separator material is processed into a fuel cell separator. It is also possible to apply a second Au plating layer.
  • a second Au plating layer is formed on the surface of the metal thin plate opposite to the surface on which the first Au plating layer is formed.
  • the second Au plating layer is a uniform layer thicker than the first Au plating layer.
  • the thickness of the second Au plating layer needs to be larger than that of the first Au plating layer, and can be, for example, 5 nm or more, but is preferably 7 nm or more from the viewpoint of corrosion resistance.
  • the thickness of the second Au plating layer is preferably 40 nm or less from the viewpoint of cost. Moreover, even if the thickness of the second Au plating layer exceeds 40 nm, the effect of preventing corrosion is saturated.
  • the second Au plating layer a uniform layer, the portion where the Au plating layer becomes dotted or island-like and the metal thin plate is exposed is reduced. In particular, the amount of ions eluted from the stainless steel thin plate is reduced. Can be reduced.
  • the method of forming the first Au plating layer and the second Au plating layer on both surfaces of the metal thin plate is not particularly limited, but wet electric current is caused by flowing different currents on both surfaces (the current value of the second Au plating layer is higher than that of the first Au plating layer). Plating is preferred.
  • the Au plating layer is preferably sealed. Even if a film defect exists in the Au plating layer, the defect can be filled by the sealing treatment and the corrosion resistance can be maintained.
  • Various methods are known for sealing the Au plating, but it is preferable to electrolyze the Au plating layer in a mercapto-based aqueous solution.
  • the mercapto aqueous solution is obtained by dissolving a mercapto group-containing compound in water. Examples of the mercapto group-containing compound include mercaptobenzothiazole derivatives described in JP-A No. 2004-265695.
  • the fuel cell separator is formed by processing the above-described fuel cell separator material into a predetermined shape, and a reaction gas flow path for flowing fuel gas (hydrogen) or fuel liquid (methanol), air (oxygen), cooling water, and the like. Alternatively, a reaction liquid channel (a groove or an opening) is formed.
  • the second Au plating layer side faces the air electrode and the fuel electrode side.
  • FIG. 3 is a cross-sectional view of a single cell of a stacked (active) fuel cell.
  • current collector plates 140A and 140B are respectively arranged outside the separator 10 described later.
  • the separator 10 has electrical conductivity, has a current collecting action in contact with an MEA described later, and has a function of electrically connecting each single cell. Further, as will be described later, the separator 10 is formed with a groove serving as a flow path for fuel gas and air (oxygen).
  • a membrane electrode assembly (MEA) 80 is configured by laminating an anode electrode 40 and a cathode electrode 60 on both sides of the solid polymer electrolyte membrane 20, respectively.
  • An anode side gas diffusion film 90A and a cathode side gas diffusion film 90B are laminated on the surfaces of the anode electrode 40 and the cathode electrode 60, respectively.
  • the membrane electrode assembly may be a laminate including the gas diffusion films 90A and 90B.
  • the separator 10 On both sides of the MEA 80, the separator 10 is disposed so as to face the gas diffusion films 90A and 90B, respectively, and the separator 10 holds the MEA 80 therebetween.
  • a flow path 10L is formed on the surface of the separator 10 on the MEA 80 side, and gas can enter and leave the interior space 20 surrounded by a gasket 12, a flow path 10L, and a gas diffusion film 90A (or 90B) described later. .
  • a fuel gas (hydrogen or the like) flows in the internal space 20 on the anode electrode 40 side, and an oxidizing gas (oxygen, air or the like) flows in the internal space 20 on the cathode electrode 60 side, so that an electrochemical reaction occurs. It has become.
  • the outer periphery of the periphery of the anode electrode 40 and the gas diffusion film 90 ⁇ / b> A is surrounded by a frame-shaped seal member 31 having substantially the same thickness as the laminated thickness.
  • a substantially frame-shaped gasket 12 is interposed between the seal member 31 and the peripheral edge of the separator 10 so as to contact the separator, and the gasket 12 surrounds the flow path 10L.
  • a current collector plate 140A (or 140B) is laminated on the outer surface of the separator 10 (the surface opposite to the MEA 80 side) in contact with the separator 10, and between the current collector plate 140A (or 140B) and the periphery of the separator 10 is stacked.
  • a substantially frame-shaped sealing member 32 is interposed between the two.
  • the seal member 31 and the gasket 12 form a seal that prevents fuel gas or oxidizing gas from leaking out of the cell.
  • a gas different from the space 20 (when oxidizing gas flows in the space 20) is formed in the space 21 between the outer surface of the separator 10 and the current collector plate 140A (or 140B).
  • Hydrogen flows in the space 21). Therefore, the seal member 32 is also used as a member for preventing gas from leaking outside the cell.
  • the fuel cell is configured to include the MEA 80 (and the gas diffusion films 90A and 90B), the separator 10, the gasket 12, and the current collector plates 140A and 140B, and a fuel cell stack is configured by stacking a plurality of fuel cells.
  • the bipolar separator has a structure in which the contact portions of two formed separator materials are bonded to each other by laser welding or the like, and fuel gas is flowed to one side and oxidizing gas is flowed to the other. In the middle part, cooling water is flowed.
  • the stacked (active) fuel cell shown in FIG. 3 can be applied not only to the above-described fuel cell using hydrogen as a fuel, but also to a DMFC using methanol as a fuel.
  • FIG. 5 shows a cross-sectional view of a single cell of a planar (passive type) fuel cell.
  • current collector plates 140 are arranged on the outer sides of the separator 100, but in general, when a stack is formed by stacking the single cells, a pair of current collector plates is arranged only at both ends of the stack.
  • the configuration of the MEA 80 is the same as that of the fuel cell of FIG. 3, so that the same reference numerals are given and description thereof is omitted (in FIG. 5, the description of the gas diffusion films 90A and 90B is omitted. Gas diffusion films 90A and 90B may be included).
  • the separator 100 has electrical conductivity, has a current collecting action in contact with the MEA, and has a function of electrically connecting each single cell.
  • the separator 100 is formed with holes serving as fuel liquid and air (oxygen) flow paths.
  • the separator 100 is formed with a step portion 100s in the vicinity of the center of the long flat plate-like base material so that the cross section has a crank shape, an upper piece 100b positioned above the step portion 100s, and a step portion 100s. And a lower piece 100a located below.
  • the step portion 100 s extends in a direction perpendicular to the longitudinal direction of the separator 100.
  • a plurality of separators 100 are arranged in the longitudinal direction, and a space is formed between the lower piece 100a and the upper piece 100b of the adjacent separators 100, and the MEA 80 is interposed in this space.
  • a structure in which the MEA 80 is sandwiched between the two separators 100 is a single cell 300. In this manner, a stack in which a plurality of MEAs 80 are connected in series via the separator 100 is configured.
  • the planar (passive) fuel cell shown in FIG. 5 can be applied not only to the above-described DMFC using methanol as a fuel, but also to a fuel cell using hydrogen as a fuel. Further, the shape and number of openings of the planar (passive type) fuel cell separator are not limited, and the openings may be slits in addition to the holes described above, or the entire separator may be net-like.
  • the fuel cell stack of the present invention uses the fuel cell separator material of the present invention.
  • the fuel cell stack is formed by connecting a plurality of cells in which an electrolyte is sandwiched between a pair of electrodes, and a fuel cell separator is interposed between the cells to block fuel gas and air.
  • the electrode in contact with the fuel gas (H 2 ) is the fuel electrode (anode), and the electrode in contact with the air (O 2 ) is the air electrode (cathode).
  • the configuration example of the fuel cell stack is as already described with reference to FIGS. 3 and 5, but is not limited thereto.
  • An iridium oxide electrode is arranged opposite to both surfaces of the metal thin plate, and different currents are caused to flow through each iridium oxide electrode so that different currents flow on both surfaces of the metal thin plate (second Au rather than the first Au plating layer).
  • the current value of the plating layer is high).
  • the Au plating layer of the thickness shown in Table 1 and Table 2 was electroplated on each surface of the metal thin plate. In this way, a separator material for a fuel cell was produced.
  • each separator material for fuel cells of Table 1 Au plating layer was formed in the whole surface of each surface of a metal thin plate, respectively.
  • an Au plating layer was formed only on a portion of the metal thin plate corresponding to the active area during power generation. Therefore, the evaluation of each fuel cell separator material in Table 2 was performed by cutting out a portion where the Au plating layer was formed.
  • the uniformity of the coating on the surface of the fuel cell separator material produced as described above and the corrosion resistance were measured as follows. ⁇ Uniformity of film> The cross section of the sample was observed with a TEM (transmission electron microscope) (139000 times) and judged.
  • the Au plating layer was determined to be “uniform”. Specifically, in the TEM image of the cross section of the sample, the total length L1 in the horizontal direction of the unexposed portion of the thin metal plate is regarded as the area of the unexposed portion of the thin metal plate, and the total length of all measurement regions L2 was regarded as the total measurement area, and the gold coverage was calculated by (L1 / L2) ⁇ 100 (%).
  • a typical characteristic required for a fuel cell separator is corrosion resistance in the environment of use (no leaching of harmful metal ions).
  • the corrosion resistance on the first Au plating layer side and the corrosion resistance on the second Au plating layer side are preferably such that elution of metal ions is 0.05 mg / L or less. If the corrosion resistance on the first Au plating layer side exceeds 0.05 mg / L, leakage of electricity to the cooling water due to the eluted metal ions (because the conductivity of the cooling water is improved as the metal ions are eluted) When the corrosion resistance on the second Au plating layer side exceeds 0.05 mg / L, the eluted ions are taken into the membrane electrode assembly, thereby reducing the power generation performance.
  • ⁇ Appropriate thickness of thin metal plate> As shown in Table 3, a stainless steel metal plate having a thickness changed from 0.03 to 0.3 mm was used, and a separator having a width of 100 mm and a length of 500 mm (groove shape; pitch 2.5 mm, depth 0. 0 mm). 5 mm straight grooves) were press molded. Assuming a fuel cell continuous assembly line for mass production, the time required to perform 100 sheets of work to move 1 m from the right to the left by grabbing the molded separator one by one and the separator generated at that time The deformation (breaking, bending) of was visually determined. In order to suppress the occurrence of deformation as much as possible, we moved carefully and calculated the percentage of deformation that was still inevitable. The obtained results are shown in Tables 1 to 3.
  • a uniform first Au plating layer having a thickness of 0.5 nm or more is formed on one surface (front surface) of the metal thin plate, and the first Au plating layer is formed on the other surface (back surface) of the metal thin plate.
  • the metal elution amount was small and the corrosion resistance was excellent.
  • the contact resistance is remarkably small (50 m ⁇ or less).
  • bipolar separators are assembled by laser welding or the like, and the welded portion serves as an electrical path.
  • the separator material of the present invention has a low surface resistance, it is easier for electricity to pass, leading to improved fuel cell performance.
  • Comparative Examples 1, 3, 4, 6, and 8 in which the first Au plating layer was not formed on one surface (surface) of the metal thin plate, the metal elution amount increased and the corrosion resistance deteriorated. Further, in Comparative Examples 2, 7, and 10 in which the thickness of the first Au plating layer on one side (surface) of the metal thin plate was less than 0.5 nm, the metal elution amount increased and the corrosion resistance deteriorated. In Comparative Examples 5, 9, and 11 in which the first Au plating layer was formed unevenly, the metal elution amount increased and the corrosion resistance deteriorated. In addition, Comparative Examples 5, 9, and 11 were produced with reference to Examples in Patent Document 4.
  • the ratio of the deformed separators generated in the assembly of the fuel cell is 0, and the work time required for the assembly is short. Also achieved.
  • FIG. 6 shows test conditions and output voltage with respect to time.
  • the cell using the separator material of Invention Example 8 stably generated power for 1000 hours, whereas the cell using the separator material of Comparative Example 2 deteriorated in output voltage (power generation performance) with time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

金属薄板の一方の面に厚み0.5~4nmの均一な第1Auめっき層が形成され、該金属基材の他の面に第1Auめっき層より厚い均一な第2Auめっき層が形成され、第1Auめっき層と第2Auめっき層の断面をそれぞれ透過電子顕微鏡で観察した場合の被覆率がいずれも80%以上である燃料電池用セパレータ材料とすることにより、基材表面に形成するAuめっき層の厚みが薄くても耐食性に優れ、かつコストを低減した燃料電池用セパレータ材料、それを用いた燃料電池用セパレータ及び燃料電池スタックを提供する。

Description

燃料電池用セパレータ材料、それを用いた燃料電池用セパレータ及び燃料電池スタック
 本発明は、金属薄板の表面にAuめっき層が形成された燃料電池用セパレータ材料、それを用いた燃料電池用セパレータ及び燃料電池スタックに関する。
 固体高分子型の燃料電池用セパレータは電気伝導性を有し、燃料電池の各単セルを電気的に接続し、各単セルで発生したエネルギー(電気)を集電すると共に、各単セルへ供給する燃料ガス(燃料液体)や空気(酸素)の流路が形成されている。このセパレータは、インターコネクタ、バイポーラプレート、集電体とも称される。
 このような燃料電池用セパレータとして、従来はカーボン板にガス流通路を形成したものが使用されていたが、材料コストや加工コストが大きいという問題がある。一方、カーボン板の代わりに金属板を用いる場合、発電環境下で金属が腐食し、その溶出イオンが膜電極接合体に取り込まれることで発電性能を低下させるという問題や、金属表面に絶縁性の不動態化被膜が生成することでガス拡散膜とセパレータ間の接触抵抗が増大し発電性能を低下させる問題があった。このようなことから、ステンレス鋼板製の波形セパレータの頂部にAuめっきを0.01~0.06μm被覆する技術や(特許文献1、2)、ステンレス鋼板の表面にAu,Ru、Rh、Pd、Os、Ir及びPt等から選ばれる貴金属をスパッタ成膜して導電部分を形成する技術(特許文献3)が知られている。
 又、ステンレス鋼板の表面に、点状又は島状に10nm(0.019mg/cm)程度の金めっきを施す技術(特許文献4)や、ステンレス鋼板の表面に酸化被膜を形成後に金めっきを施す技術(特許文献5)が報告されている。
特開平10-228914号公報 特開平9-22708号公報 特開2001-297777号公報 特開2004-296381号公報(0007) 特開2007-257883号公報
 しかしながら、コスト低減のために金めっきの厚みが20nm未満に薄くなると、被膜欠陥が生じ易くなり、燃料電池用セパレータの耐食性を十分に確保できないという問題がある。特に、燃料電池用セパレータは酸性雰囲気に置かれるため、耐食性の点で厳しい環境下にある。
 又、特許文献4記載の技術は、ステンレス鋼と金との間で異種金属間接触腐食が起こらないように、90℃、pH3の硫酸に対するステンレス鋼単体の自然電位を0.48Vとすることから、金の重量を1.76mg/cm以下にしている。その結果、金めっき皮膜を均一でなく、あえて島状に形成しているが、一般的にはステンレス鋼等の金属薄板の露出部分が多いと、薄板からの溶出イオン量が多くなり、発電性能を低下させる問題がある。
 すなわち、本発明は、金属薄板表面に形成するAuめっき層の厚みが薄くても耐食性に優れ、コストを低減した燃料電池用セパレータ材料、それを用いた燃料電池スタックの提供を目的とする。更に、成形した2枚のセパレータ材料を張り合わせ、一方に燃料ガスを流し、他方には酸化性ガスを流し、さらに張り合わせた中間部には冷却水を流すバイポーラ型のセパレータの場合、ガス側と冷却水側では必要とする耐食性が異なっているが、本発明は、金属薄板表面に必要最小限の金の膜をつけることで、コストを低減した燃料電池用セパレータ材料、それを用いた燃料電池スタックの提供も目的とする。
 本発明の燃料電池用セパレータ材料は、金属薄板の一方の面に、厚み0.5~4nmの第1Auめっき層が形成され、該金属薄板の他の面に前記第1Auめっき層より厚い均一な第2Auめっき層が形成され、前記第1Auめっき層と前記第2Auめっき層の断面をそれぞれ透過電子顕微鏡で観察した場合の被覆率がいずれも80%以上である。
 前記第1Auめっき層と前記第2Auめっき層とは、硫酸水素ナトリウムを伝導塩として含むpH1.0以下のAuめっき浴により電気めっきされていることが好ましい。
 前記第2Auめっき層の厚みが7nm以上であることが好ましい。
 前記第1Auめっき層と前記第2Auめっき層とは、前記金属薄板の両面にそれぞれ対向する電極を用いて湿式めっきされ、該両面で異なる電流を流してめっきされていることが好ましい。
 前記第1Auめっき層と前記第2Auめっき層とは、それぞれ前記金属薄板の表面の一部に形成されていてもよい。
 前記金属薄板がステンレス鋼からなることが好ましく、オーステナイト系ステンレス鋼からなることがより好ましい。
 前記金属薄板の厚さが0.05~0.3mmであることが好ましい。
 前記Auめっき層が封孔処理されていることが好ましい。
 前記封孔処理は、メルカプト系水溶液中で前記Auめっき層を電解処理してなることが好ましい。
 本発明の燃料電池用セパレータ材料は固体高分子形燃料電池又はダイレクトメタノール型固体高分子形燃料電池に用いられることが好ましい。
 本発明の燃料電池用セパレータは、前記燃料電池用セパレータ材料を用い、前記第2Auめっき層側が空気極及び燃料極側に向いているものである。
 本発明の燃料電池スタックは、前記燃料電池用セパレータ材料を用い、前記第2Auめっき層側が空気極及び燃料極側に向いているものである。
 本発明によれば、金属薄板表面に形成するAuめっき層の厚みが薄くても耐食性を向上させ、コストを低減することができる。
第1Auめっき層の断面のTEM像を示す図である。 金属薄板上の金の被覆状態(TEM像)を模式的に表した図である。 本発明の実施形態に係る燃料電池スタック(単セル)の断面図である。 バイポーラ型セパレータの構造を示す断面図である。 本発明の実施形態に係る平面型燃料電池スタックの断面図である。 燃料電池用セパレータ材料を用いた単セルによる発電試験を行ったときの、時間に対する出力電圧を示す図である。
 以下、本発明の実施形態に係る燃料電池用セパレータ材料について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。
 又、本発明において「燃料電池用セパレータ」とは、電気伝導性を有し、各単セルを電気的に接続し、各単セルで発生したエネルギー(電気)を集電すると共に、各単セルへ供給する燃料ガス(燃料液体)や空気(酸素)の流路が形成されたものをいう。セパレータは、インターコネクタ、バイポーラプレート、集電体とも称される。
 従って、詳しくは後述するが、燃料電池用セパレータとして、板状の基材表面に凹凸状の流路を設けたセパレータの他、上記したパッシブ型DMFC用セパレータのように板状の基材表面にガスやメタノールの流路孔が開口したセパレータを含む。
<金属薄板>
 燃料電池用セパレータ材料は耐食性と導電性が要求され、その基材(金属薄板)には耐食性が求められる。このため金属薄板には耐食性が良好で比較的低コストなステンレス鋼、より好ましくはオーステナイト系ステンレス鋼を用いることが好ましい。
 オーステナイト系ステンレス鋼の種類は特に制限されないが、例えば、JISに規格するSUS304、SUS316L、SUS301を挙げることができる。
 金属薄板の形状も特に制限されず、Auをめっきできる形状であればよいが、セパレータ形状にプレス成形することから板材であることが好ましく、特に厚みが0.05~0.3mmの板材であることが好ましい。金属薄板の厚みが0.05mm未満の場合、成形後のセパレータの剛性が低く、燃料電池スタック組み立て時にセパレータの変形が起こりやすく、組み立て工数の増大やセパレータロスが大きくなる場合がある。一方、金属薄板の厚みが厚くなるとセパレータの剛性は向上するが、厚みが0.3mmを超えても必要とされるセパレータの剛性は飽和すると共にスタックの重量増につながる場合がある。
 又、Auめっき層を平滑に成膜する観点から、金属薄板の表面も平滑化,清浄化すべきであるするとよい。
 金属薄板の表面を平滑化するために、例えばロール表面粗さをRa≦0.05μmにしたロール用いて仕上げ圧延をし、清浄化するために、仕上げ焼鈍は光輝焼鈍を施したすとよい。さらに、焼鈍炉内の送りロールは、通常はカーボンロールであるが、焼鈍時にカーボンロールから薄板へのカーボン付着が懸念されるためセラミックロールを用いるとよく、薄板の表面が酸化しないよう、炉内雰囲気は水素と窒素とし、その比率は例えば9:1としたするとよい
<第1Auめっき層>
 本発明においては、金属薄板の両面にAuめっき層が形成されている。そのうち、第1Auめっき層は厚み0.5~4nmの均一な層である。
 燃料電池用セパレータのうち、発電環境下に晒される面(空気極側、燃料極側)の腐食が激しく、この面に耐食性の金めっきを施している。しかしながら、燃料電池用セパレータにおいて、空気極及び燃料極側と反対面も徐々に腐食が進行することが判明した。この反対面には、例えば反応熱を低下させる冷却媒体(水道水等)が流れる。
 そこで、本発明者らは、冷却媒体側のかかる緩やかな腐食を防止するのに必要な最も薄いAuめっき厚さを検討したところ、厚み0.5nm以上の均一な層とすればよいことを見出した。従って、第1Auめっき層の厚みは、耐食性の観点から0.5nm以上とし、コストの点から4nm以下とする。又、第1Auめっき層の厚みが4nmを超えても上記した緩やかな腐食を防止する効果が飽和する。
 又、第1Auめっき層の厚みが4nm以下と薄い場合、Auめっき層が点状や島状となって金属薄板の露出部分が多くなる。一般に金属薄板の露出部分が多いと、ステンレス鋼製の薄板からの溶出イオン量が多くなり、発電性能を低下させる問題がある。このようなことから、第1Auめっき層を均一に形成する必要がある。
 第1Auめっき層、及び後述する第2Auめっき層の厚みは、電解法、蛍光X線膜厚計および断面のTEM(透過型電子顕微鏡)像で算出することができる。蛍光X線膜厚計としては、例えばエスアイアイ・ナノテクノロジー株式会社製のSEA5100を用いることができる。図1に本発明例1の第1Auめっき層の断面TEM像(倍率139000倍)を示す。
 ここで、本発明において、第1Auめっき層、及び後述する第2Auめっき層が「均一」であることは、TEM(透過型電子顕微鏡)によるめっき層の断面観察(100000倍以上、通常、139000倍)で判定することができる。具体的には、めっき層の断面のTEM像において、(素地である金属薄板の露出していない部分の面積)/(全測定面積)で表される金の被覆率が80%以上であれば、Auめっき層が「均一」であるとする。
 図2のように金属薄板上の金の被覆状態(TEM像)を模式的に表した場合、金属薄板の露出している部分が領域B、Dであり、金属薄板の露出していない部分が領域A,C,Eである。従って、TEM像における領域A,C,Eの水平方向の合計長さ(A+C+E)を金属薄板の露出していない部分の面積とみなし、全測定領域の合計長さ(A+B+C+D+E)を全測定面積とみなし、{(A+C+E)/(A+B+C+D+E)}×100(%)によって金の被覆率を算出することができる。
 第1Auめっき層を均一に形成する方法としては、硫酸水素ナトリウムを伝導塩として含むpH1.0以下のAuめっき浴により電気めっきすることが挙げられる。この場合、Auめっき浴の組成としては、Au塩、硫酸水素ナトリウム、及び必要に応じてその他の添加剤を含むものを用いることができる。Au塩としては、シアン化金塩、非シアン系の金塩(塩化金等)等を用いることができ、Au塩の金濃度は1~100g/L程度とすることができる。又、硫酸水素ナトリウムの濃度は、50~100g/L程度とすることができる。
 pH1.0以下の酸性Auめっき浴を用いると、金属薄板としてステンレス鋼を用いた場合に、表面のCr酸化皮膜が除去されやすく、Auめっき層の密着性が向上する。さらにめっきの際に水素が多量に発生してステンレス表面が活性化され、Auが付着しやすくなる。
 また、酸性Auめっき浴を用い、ステンレス鋼等の金属薄板表面に直接(ダイレクトに)Auめっきすることが好ましい。従来からコネクタ材では基材にNi下地めっきを行った後、Auめっきを施しているが、発電環境下ではNiが腐食するため、Ni下地めっきなしに基材に直接Auめっきすることが望ましい。
 Auめっきの条件としては、電流密度が低いと金属薄板の凸部に電流が集中してめっき層が均一になり難く、又、めっき浴温が低いとめっき層が均一になり難い傾向にある。
 又、めっき液中の金濃度は1~4g/Lが好ましく、より好ましくは1.3~1.7g/Lである。金濃度が1g/L未満であると、電流効率が低下してめっき層が均一になり難い傾向にある。
 又、省金化の観点から、燃料電池用セパレータ材料を燃料電池用セパレータに加工した際に電極との接触面となる部分等、導電性が必要となる部分のみに第1Auめっき層、及び後述する第2Auめっき層を施すことも可能である。
<第2Auめっき層>
 金属薄板のうち第1Auめっき層の形成面と反対側の面に第2Auめっき層が形成されている。第2Auめっき層は、第1Auめっき層より厚い均一な層である。
 燃料電池用セパレータにおいて、空気極及び燃料極側の面は発電環境下に晒されるために腐食が激しく、第1Auめっき層より厚いAuめっきを施す必要がある。
 第2Auめっき層の厚みは第1Auめっき層より厚くする必要があり、例えば5nm以上とすることができるが、耐食性の観点から7nm以上とすることが好ましい。一方、コストの点から第2Auめっき層の厚みを40nm以下とするのが好ましい。又、第2Auめっき層の厚みが40nmを超えても腐食を防止する効果が飽和する。
 第2Auめっき層についても均一な層とすることで、Auめっき層が点状や島状となって金属薄板が露出するような部分を減少させ、特にステンレス鋼製の薄板からの溶出イオン量を低下させることができる。
 金属薄板の両面に第1Auめっき層及び第2Auめっき層を形成する方法は特に限定されないが、両面で異なる電流を流して(第1Auめっき層よりも第2Auめっき層の電流値が高い)湿式電気めっきすることが好ましい。
<封孔処理>
 Auめっき層が封孔処理されていることが好ましい。Auめっき層に被膜欠陥が存在しても、封孔処理によってこの欠陥を埋め、耐食性を維持することができる。Auめっきの封孔処理は各種の方法が知られているが、メルカプト系水溶液中でAuめっき層を電解処理するのが好ましい。メルカプト系水溶液は、メルカプト基含有化合物を水に溶解したものであり、メルカプト基含有化合物としては、例えば特開2004-265695号公報に記載されたメルカプトベンゾチアゾール誘導体が挙げられる。
<燃料電池用セパレータ>
 次に、本発明の燃料電池用セパレータ材料を用いた燃料電池用セパレータについて説明する。燃料電池用セパレータは、上記した燃料電池用セパレータ材料を所定形状に加工してなり、燃料ガス(水素)又は燃料液体(メタノール)、空気(酸素)、冷却水等を流すための反応ガス流路又は反応液体流路(溝や開口)が形成されている。
 そして、上記した燃料電池用セパレータ材料のうち、第2Auめっき層側が空気極及び燃料極側に向いている。
<積層型(アクティブ型)燃料電池用セパレータ>
 図3は、積層型(アクティブ型)燃料電池の単セルの断面図を示す。なお、図3では後述するセパレータ10の外側にそれぞれ集電板140A,140Bが配置されているが、通常、この単セルを積層してスタックを構成した場合、スタックの両端にのみ一対の集電板が配置される。
 そして、セパレータ10は電気伝導性を有し、後述するMEAに接して集電作用を有し、各単セルを電気的に接続する機能を有する。又、後述するように、セパレータ10には燃料ガスや空気(酸素)の流路となる溝が形成されている。
 図3において、固体高分子電解質膜20の両側にそれぞれアノード電極40とカソード電極60とが積層されて膜電極接合体(MEA;Membrane Electrode Assembly)80が構成されている。又、アノード電極40とカソード電極60の表面には、それぞれアノード側ガス拡散膜90A、カソード側ガス拡散膜90Bがそれぞれ積層されている。本発明において膜電極接合体という場合、ガス拡散膜90A、90Bを含んだ積層体としてもよい。
 MEA80の両側には、ガス拡散膜90A、90Bにそれぞれ対向するようにセパレータ10が配置され、セパレータ10がMEA80を挟持している。MEA80側のセパレータ10表面には流路10Lが形成され、後述するガスケット12、流路10L、及びガス拡散膜90A(又は90B)で囲まれた内部空間20内をガスが出入可能になっている。
 そして、アノード電極40側の内部空間20には燃料ガス(水素等)が流れ、カソード電極60側の内部空間20に酸化性ガス(酸素、空気等)が流れることにより、電気化学反応が生じるようになっている。
 アノード電極40とガス拡散膜90Aの周縁の外側は、これらの積層厚みとほぼ同じ厚みの枠状のシール部材31で囲まれている。又、シール部材31とセパレータ10の周縁との間には、セパレータに接して略枠状のガスケット12が介装され、ガスケット12が流路10Lを囲むようになっている。さらに、セパレータ10の外面(MEA80側と反対側の面)にはセパレータ10に接して集電板140A(又は140B)が積層され、集電板140A(又は140B)とセパレータ10の周縁との間に略枠状のシール部材32が介装されている。
 シール部材31及びガスケット12は、燃料ガス又は酸化ガスがセル外に漏れるのを防止するシールを形成する。又、単セルを複数積層してスタックにした場合、セパレータ10の外面と集電板140A(又は140B)との間の空間21には空間20と異なるガス(空間20に酸化性ガスが流れる場合、空間21には水素が流れる)が流れる。従って、シール部材32もセル外にガスが漏れるのを防止する部材として使われる。
 そして、MEA80(及びガス拡散膜90A、90B)、セパレータ10、ガスケット12、集電板140A、140Bを含んで燃料電池セルが構成され、複数の燃料電池セルを積層して燃料電池スタックが構成される。
 バイポーラ型セパレータの構造は、図3、図4に示すように、成形した2枚のセパレータ材料の接触部同士をレーザー溶接等により張り合わせ、一方に燃料ガス、他方には酸化性ガスを流し、張り合わせた中間部には冷却水を流す構造になっている。
 図3に示す積層型(アクティブ型)燃料電池は、上記した水素を燃料として用いる燃料電池のほか、メタノールを燃料として用いるDMFCにも適用することができる。
<平面型(パッシブ型)燃料電池用セパレータ>
 図5は、平面型(パッシブ型)燃料電池の単セルの断面図を示す。なお、図5ではセパレータ100の外側にそれぞれ集電板140が配置されているが、通常、この単セルを積層してスタックを構成した場合、スタックの両端にのみ一対の集電板が配置される。
 なお,図5において、MEA80の構成は図3の燃料電池と同一であるので同一符号を付して説明を省略する(図5では、ガス拡散膜90A、90Bの記載を省略しているが、ガス拡散膜90A、90Bを有していてもよい)。
 図5において、セパレータ100は電気伝導性を有し、MEAに接して集電作用を有し、各単セルを電気的に接続する機能を有する。又、後述するように、セパレータ100には燃料液体や空気(酸素)の流路となる孔が形成されている。
 セパレータ100は、断面がクランク形状になるよう、長尺平板状の基材の中央付近に段部100sを形成してなり、段部100sを介して上方に位置する上側片100bと、段部100sを介して下方に位置する下側片100aとを有する。段部100sはセパレータ100の長手方向に垂直な方向に延びている。
 そして、複数のセパレータ100を長手方向に並べ、隣接するセパレータ100の下側片100aと上側片100bとの間に空間を形成させ、この空間にMEA80を介装する。2つのセパレータ100でMEA80が挟まれた構造体が単セル300となる。このようにして、複数のMEA80がセパレータ100を介して直列に接続されたスタックが構成される。
 図5に示す平面型(パッシブ型)燃料電池は、上記したメタノールを燃料として用いるDMFCのほか、水素を燃料として用いる燃料電池にも適用することができる。又、平面型(パッシブ型)燃料電池用セパレータの開口部の形状や個数は限定されず、開口部として上記した孔の他、スリットとしてもよく、セパレータ全体が網状であってもよい。
<燃料電池用スタック>
 本発明の燃料電池用スタックは、本発明の燃料電池用セパレータ材料を用いてなる。
 燃料電池用スタックは、1対の電極で電解質を挟み込んだセルを複数個直列に接続したものであり、各セルの間に燃料電池用セパレータが介装されて燃料ガスや空気を遮断する。燃料ガス(H2)が接触する電極が燃料極(アノード)であり、空気(O2) が接触する電極が空気極(カソード)である。
 燃料電池用スタックの構成例は、既に図3及び図5で説明した通りであるが、これに限定されない。
<試料の作製>
 表1、表2に示す各金属薄板を平滑化するためにロール表面粗さをRa=0.03μmにしたロールを用いて仕上げ圧延した後、清浄化するために光輝焼鈍を施して作製した。さらに焼鈍炉内の送りロールはセラミックロールを用い、炉内雰囲気は水素と窒素とし、その比率は9:1とした。
 こうして作製した各金属薄板を市販の脱脂液パクナ105を用いて電解脱脂後、pH0.5の硫酸水溶液中で酸洗して前処理した。
 次に、以下のAuめっき浴を用い、酸洗後の各金属薄板に直接Auめっきを行った。金属薄板の両面にそれぞれ対向して酸化イリジウム電極を配置し、各酸化イリジウム電極に異なる電流を流すことで、該金属薄板の両面に異なる電流が流れるようにした(第1Auめっき層よりも第2Auめっき層の電流値が高い)。そして、金属薄板のそれぞれの面に、表1、表2に示す厚みのAuめっき層を電気めっきした。このようにして、燃料電池用セパレータ材料を作製した。
  Auめっき液(シアン系)の組成;シアン化金塩(金濃度:1.5g/L)、硫酸水素ナトリウム70g/L、pH0.9
 なお、表1の各燃料電池用セパレータ材料は、金属薄板の各面の全面にそれぞれAuめっき層を形成させた。一方、表2の各燃料電池用セパレータ材料は、金属薄板のうち発電時のアクティブエリアに相当する部分にのみAuめっき層を形成させた。従って、表2の各燃料電池用セパレータ材料の評価は、Auめっき層の形成されている部分を切出して行った。
 以上のようにして作製した燃料電池用セパレータ材料表面の皮膜の均一性および耐食性を以下のように測定した。
 <皮膜の均一性>
 TEM(透過型電子顕微鏡)により試料の断面を観察して(139000倍)判定した。素地を被覆する金の被覆率が80%以上であればAuめっき層が「均一」であるとした。具体的には、試料の断面のTEM像において、金属薄板の露出していない部分の水平方向の合計長さL1を金属薄板の露出していない部分の面積とみなし、全測定領域の合計長さL2を全測定面積とみなし、(L1/L2)×100(%)によって金の被覆率を算出した。
 <第1Auめっき層側の耐食性>
 固体高分子型燃料電池の発電時の冷却水側の腐食環境を想定して、以下の加速試験を行った。90℃、600mlのpH5に調整した10質量ppm塩素水溶液を用い、pHは硫酸で調整し、塩素濃度は塩化ナトリウムで調整した。40mm×50mmに切り出した各燃料電池用セパレータ材料を上記塩素水溶液に168時間浸漬した後引き上げた。その後、水溶液中のFe、Ni、CrイオンをICP分析にて定量し、金属溶出量を測定した。
 <第2Auめっき層側の耐食性>
 固体高分子型燃料電池の発電環境下の腐食環境を基に、以下の加速試験を行った。95℃、600mlのpH1硫酸水溶液に、40×50mmに切り出した各燃料電池用セパレータ材料を168時間浸漬した後、引き上げた。その後、水溶液中のFe、Ni、CrイオンをICP分析にて定量し、金属溶出量を測定した。
 <接触抵抗>
 電気接点シミュレータ(山崎精機研究所製のCRS-1)を用い、電圧レンジ200mV、荷重10gf、測定モードを一定荷重、測定長さ1mmで各Auめっき層の接触抵抗分布を測定した。サンプリング数は600点で、その平均値を接触抵抗値として用いた。
 燃料電池用セパレータに求められる代表的な特性は、使用環境での耐食性(有害な金属イオンの溶出がない)である。具体的には、第1Auめっき層側の耐食性と第2Auめっき層側の耐食性は金属イオンの溶出が0.05mg/L以下であるこが望ましい。第1Auめっき層側の耐食性が0.05mg/Lを超えると、溶出した金属イオンによる冷却水への漏電(金属イオンの溶出に伴い冷却水の導電性が良くなることに起因して水中に電気が流れる)が生じ、又、第2Auめっき層側の耐食性が0.05mg/Lを超えると、溶出イオンが膜電極接合体に取り込まれることで、それぞれ発電性能を低下させる。
 <金属薄板の適正板厚>
 表3に示すように、厚みを0.03~0.3mmまで変化させたステンレス鋼製の金属薄板を用い、巾100mm、長さ500mmのセパレータ(溝形状;ピッチ2.5mm、深さ0.5mmのストレート溝)をプレス成形した。量産時の燃料電池連続組立ラインを想定して、成形したセパレータを1枚ずつ、手で掴んで右から左に1m移動させる作業を100枚分行うのに必要な時間と、その時に発生するセパレータの変形(折れ、曲がり)を目視で判定した。できる限り変形発生を抑えるため慎重に移動を行い、それでも不可避となった変形品の割合を算出した。
 得られた結果を表1~表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1、表2から明らかなように、金属薄板の片面(表面)に厚み0.5nm以上の均一な第1Auめっき層が形成され、金属薄板の他の面(裏面)に第1Auめっき層より厚い均一な第2Auめっき層が形成されている各本発明例の場合、金属溶出量が少なく耐食性に優れるものとなった。
 又、各本発明例は表面に金の皮膜が存在するため、接触抵抗が顕著に小さい(50mΩ以下)。一般にバイポーラセパレータはレーザー溶接等で組み立てられ、溶接部は電気の通路となるが、本発明例のセパレータ材料は表面抵抗が小さいために電気がさらに通りやすくなり、燃料電池の性能向上につながる。
 一方、金属薄板の片面(表面)に第1Auめっき層を形成しなかった比較例1、3、4、6、8の場合、金属溶出量が増大して耐食性が劣化した。
 又、金属薄板の片面(表面)の第1Auめっき層の厚みが0.5nm未満である比較例2、7,10の場合も、金属溶出量が増大して耐食性が劣化した。
 第1Auめっき層を不均一に形成した比較例5、9、11の場合も、金属溶出量が増大して耐食性が劣化した。なお、比較例5、9、11は、特許文献4の実施例を参考にして作製した。
 さらに、表3より、板厚が0.05mm以上の金属薄板を用いた本発明例の場合、燃料電池の組立で発生するセパレータの変形品の割合は0となり、組立に要する作業時間の短時間化も達成できた。
 次に、本発明例8と比較例2の各セパレータ材料をセパレータに成形した後、図3に示す単セルをそれぞれ作製し、この単セルによる発電試験を行なった。試験条件、及び時間に対する出力電圧を図6に示す。本発明例8のセパレータ材料を用いたセルは1000hr安定して発電されたのに対し、比較例2のセパレータ材料を用いたセルは時間と共に出力電圧(発電性能)が劣化した。
 10、100         セパレータ
 12、12B         ガスケット
 20             固体高分子電解質膜
 40             アノード電極
 60             カソード電極
 80             膜電極接合体(MEA)

Claims (14)

  1. 金属薄板の一方の面に、厚み0.5~4nmの第1Auめっき層が形成され、該金属薄板の他の面に前記第1Auめっき層より厚い均一な第2Auめっき層が形成され、
     前記第1Auめっき層と前記第2Auめっき層の断面をそれぞれ透過電子顕微鏡で観察した場合の被覆率がいずれも80%以上である燃料電池用セパレータ材料。
  2. 前記第1Auめっき層と前記第2Auめっき層とは、硫酸水素ナトリウムを伝導塩として含むpH1.0以下のAuめっき浴により電気めっきされている請求項1に記載の燃料電池用セパレータ材料。
  3. 前記第2Auめっき層の厚みが7nm以上である請求項1又は2に記載の燃料電池用セパレータ材料。
  4. 前記第1Auめっき層と前記第2Auめっき層とは、前記金属薄板の両面にそれぞれ対向する電極を用いて湿式めっきされ、該両面で異なる電流を流してめっきされている請求項1~3のいずれかに記載の燃料電池用セパレータ材料。
  5. 前記第1Auめっき層と前記第2Auめっき層とは、それぞれ前記金属薄板の表面の一部に形成されている請求項1~4のいずれかに記載の燃料電池セパレータ材料。
  6. 前記金属薄板がステンレス鋼からなる請求項1~5のいずれかに記載の燃料電池用セパレータ材料。
  7. 前記ステンレス鋼がオーステナイト系ステンレス鋼である請求項6に記載の燃料電池用セパレータ材料。
  8. 前記金属薄板の厚さが0.05~0.3mmである請求項1~7のいずれかに記載の燃料電池用セパレータ材料。
  9. 前記Auめっき層が封孔処理されている請求項1~8のいずれかに記載の燃料電池用セパレータ材料。
  10. 前記封孔処理は、メルカプト系水溶液中で前記Auめっき層を電解処理して行われる請求項9に記載の燃料電池用セパレータ材料。
  11. 固体高分子形燃料電池に用いられる請求項1~10のいずれかに記載の燃料電池用セパレータ材料。
  12. ダイレクトメタノール型固体高分子形燃料電池に用いられる請求項11記載の燃料電池用セパレータ材料。
  13. 請求項1~12のいずれかに記載のセパレータ材料を用い、前記第2Auめっき層側が空気極及び燃料極側に向いている燃料電池用セパレータ。
  14. 請求項1~12のいずれかに記載の燃料電池用セパレータ材料を用い、前記第2Auめっき層側が空気極及び燃料極側に向いている燃料電池スタック。
PCT/JP2011/064257 2010-07-09 2011-06-22 燃料電池用セパレータ材料、それを用いた燃料電池用セパレータ及び燃料電池スタック WO2012005112A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2804774A CA2804774A1 (en) 2010-07-09 2011-06-22 Fuel cell separator material, and fuel cell stack using the same
CN2011800300814A CN103026538A (zh) 2010-07-09 2011-06-22 燃料电池用隔板材料、使用其的燃料电池用隔板和燃料电池组件
US13/805,265 US20130244129A1 (en) 2010-07-09 2011-06-22 Fuel cell separator material, and fuel cell stack using the same
EP11803448.7A EP2592680A4 (en) 2010-07-09 2011-06-22 SEPARATOR MATERIAL FOR FUEL CELL, SEPARATOR FOR FUEL CELL, AND FUEL CELL BATTERY COMPRISING EACH SAME
KR1020127034018A KR101420561B1 (ko) 2010-07-09 2011-06-22 연료 전지용 세퍼레이터 재료, 그것을 사용한 연료 전지용 세퍼레이터 및 연료 전지 스택

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-156523 2010-07-09
JP2010156523A JP5419816B2 (ja) 2010-07-09 2010-07-09 燃料電池用セパレータ材料、それを用いた燃料電池用セパレータ及び燃料電池スタック

Publications (1)

Publication Number Publication Date
WO2012005112A1 true WO2012005112A1 (ja) 2012-01-12

Family

ID=45441098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064257 WO2012005112A1 (ja) 2010-07-09 2011-06-22 燃料電池用セパレータ材料、それを用いた燃料電池用セパレータ及び燃料電池スタック

Country Status (7)

Country Link
US (1) US20130244129A1 (ja)
EP (1) EP2592680A4 (ja)
JP (1) JP5419816B2 (ja)
KR (1) KR101420561B1 (ja)
CN (1) CN103026538A (ja)
CA (1) CA2804774A1 (ja)
WO (1) WO2012005112A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5313264B2 (ja) 2008-11-28 2013-10-09 Jx日鉱日石金属株式会社 燃料電池用セパレータ材料、それを用いた燃料電池用セパレータ、及び燃料電池スタック
CN103703597B (zh) 2011-08-09 2016-02-10 Jx日矿日石金属株式会社 燃料电池用隔离物材料、使用它的燃料电池用隔离物及燃料电池堆、以及燃料电池用隔离物材料的制造方法
US10431832B2 (en) 2014-04-15 2019-10-01 Jfe Steel Corporation Stainless-steel foil for separator of polymer electrolyte fuel cell
CN107851813B (zh) * 2015-08-12 2021-06-18 杰富意钢铁株式会社 固体高分子型燃料电池的隔板用金属板及其制造用金属板
RU206382U1 (ru) * 2021-05-11 2021-09-08 Федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский государственный энергетический университет» Устройство оперативного мониторинга технического состояния высоковольтных линий электропередачи

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922708A (ja) 1995-07-03 1997-01-21 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
JPH10228914A (ja) 1997-02-13 1998-08-25 Aisin Takaoka Ltd 燃料電池用セパレータ
JP2001297777A (ja) 2000-04-13 2001-10-26 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池
JP2004265695A (ja) 2003-02-28 2004-09-24 Nikko Metal Manufacturing Co Ltd 燃料電池用セパレーター
JP2004296381A (ja) 2003-03-28 2004-10-21 Honda Motor Co Ltd 燃料電池用金属製セパレータおよびその製造方法
JP2005100933A (ja) * 2003-08-19 2005-04-14 Daido Steel Co Ltd 燃料電池用金属セパレータ、燃料電池用金属セパレータの製造方法及び燃料電池
JP2007018998A (ja) * 2005-06-08 2007-01-25 Daikin Ind Ltd 燃料電池用セパレータ、燃料電池、燃料電池用セパレータの製造方法及び燃料電池用セパレータのめっき装置
JP2007257883A (ja) 2006-03-20 2007-10-04 Aisin Takaoka Ltd 燃料電池セパレータ及びその製造方法
JP2009289511A (ja) * 2008-05-28 2009-12-10 Kobe Steel Ltd 燃料電池セパレータ用チタン基材、および、燃料電池セパレータ、ならびに燃料電池セパレータの製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000059055A2 (de) * 1999-03-29 2000-10-05 Siemens Aktiengesellschaft Bauteil wie zellrahmen und/oder polplatte für eine pem-brennstoffzelle mit reduziertem übergangswiderstand und verfahren zur reduzierung des übergangswiderstands
US7597987B2 (en) * 2002-08-20 2009-10-06 Daido Tokushuko Kabushiki Kaisha Metal component for fuel cell and method of manufacturing the same, austenitic stainless steel for polymer electrolyte fuel cell and metal component for fuel cell material and method of manufacturing the same, corrosion-resistant conductive component and method of manufacturing the same, and fuel cell
US7446311B1 (en) * 2005-02-07 2008-11-04 The Board Of Trustees Of The Leland Stanford Junior University Method of coating an electrospray emitter
JP4551429B2 (ja) * 2006-09-29 2010-09-29 株式会社神戸製鋼所 燃料電池用セパレータの製造方法、燃料電池用セパレータおよび燃料電池
DE102007032116A1 (de) * 2007-07-09 2009-01-15 Thyssenkrupp Steel Ag Bipolarplatte für eine Brennstoffzelle und Brennstoffzellen-Stack
EP2063480B1 (en) * 2007-11-26 2010-09-15 Daido Tokushuko Kabushiki Kaisha Metallic bipolar plate for fuel cells and method for manufacturing the same
JP2009152177A (ja) * 2007-11-26 2009-07-09 Daido Steel Co Ltd 燃料電池用バイポーラ金属セパレータおよびその製造方法
JP2009295343A (ja) * 2008-06-03 2009-12-17 Hitachi Cable Ltd 金属セパレータ用板材及びその製造方法、並びに燃料電池用金属セパレータ
JP2009295346A (ja) * 2008-06-03 2009-12-17 Hitachi Cable Ltd 電気接点層付金属材及びその製造方法
JP5353205B2 (ja) * 2008-11-27 2013-11-27 日産自動車株式会社 導電部材、その製造方法、ならびにこれを用いた燃料電池用セパレータおよび固体高分子形燃料電池
US8182963B2 (en) * 2009-07-10 2012-05-22 GM Global Technology Operations LLC Low-cost manganese-stabilized austenitic stainless steel alloys, bipolar plates comprising the alloys, and fuel cell systems comprising the bipolar plates

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922708A (ja) 1995-07-03 1997-01-21 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
JPH10228914A (ja) 1997-02-13 1998-08-25 Aisin Takaoka Ltd 燃料電池用セパレータ
JP2001297777A (ja) 2000-04-13 2001-10-26 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池
JP2004265695A (ja) 2003-02-28 2004-09-24 Nikko Metal Manufacturing Co Ltd 燃料電池用セパレーター
JP2004296381A (ja) 2003-03-28 2004-10-21 Honda Motor Co Ltd 燃料電池用金属製セパレータおよびその製造方法
JP2005100933A (ja) * 2003-08-19 2005-04-14 Daido Steel Co Ltd 燃料電池用金属セパレータ、燃料電池用金属セパレータの製造方法及び燃料電池
JP2007018998A (ja) * 2005-06-08 2007-01-25 Daikin Ind Ltd 燃料電池用セパレータ、燃料電池、燃料電池用セパレータの製造方法及び燃料電池用セパレータのめっき装置
JP2007257883A (ja) 2006-03-20 2007-10-04 Aisin Takaoka Ltd 燃料電池セパレータ及びその製造方法
JP2009289511A (ja) * 2008-05-28 2009-12-10 Kobe Steel Ltd 燃料電池セパレータ用チタン基材、および、燃料電池セパレータ、ならびに燃料電池セパレータの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2592680A4

Also Published As

Publication number Publication date
KR20130030777A (ko) 2013-03-27
CA2804774A1 (en) 2012-01-12
CN103026538A (zh) 2013-04-03
US20130244129A1 (en) 2013-09-19
EP2592680A1 (en) 2013-05-15
JP5419816B2 (ja) 2014-02-19
EP2592680A4 (en) 2014-03-12
KR101420561B1 (ko) 2014-07-17
JP2012018864A (ja) 2012-01-26

Similar Documents

Publication Publication Date Title
JP2007311069A (ja) 燃料電池スタックおよび燃料電池セパレータ並びにその製造方法
KR101266096B1 (ko) 연료 전지용 세퍼레이터 및 그 제조 방법
JP5419816B2 (ja) 燃料電池用セパレータ材料、それを用いた燃料電池用セパレータ及び燃料電池スタック
JP5455204B2 (ja) 燃料電池用セパレータ材料、それを用いた燃料電池スタック
JP5275530B1 (ja) 燃料電池用セパレータ材料、それを用いた燃料電池用セパレータ及び燃料電池スタック、並びに燃料電池用セパレータ材料の製造方法
JPWO2009041135A1 (ja) 燃料電池用セパレータ材料、及び燃料電池スタック
JP2010238577A (ja) 燃料電池用セパレータ材料、それを用いた燃料電池スタック
WO2011122282A1 (ja) 燃料電池用セパレータ材料、それを用いた燃料電池用セパレータ及び燃料電池スタック、並びに燃料電池用セパレータ材料の製造方法
CN107210455B (zh) 固体高分子型燃料电池的隔离件用不锈钢板
JP5535102B2 (ja) 燃料電池用金属セパレータ材料の製造方法及び燃料電池用金属セパレータ材料
JP5419271B2 (ja) 燃料電池用セパレータ材料、それを用いた燃料電池用セパレータ、燃料電池スタック及び燃料電池用セパレータ材料の製造方法
TWI627790B (zh) 燃料電池之分隔件用不銹鋼鋼板及其製造方法
JP2021051860A (ja) 防錆プレート
JP2011175901A (ja) 燃料電池用セパレータ材料、それを用いた燃料電池用セパレータ、及び燃料電池スタック
JP2024078739A (ja) アノード側セパレータ及び水電解装置
JP2021051970A (ja) 防錆プレート
JP2011202216A (ja) 燃料電池用セパレータ材料、それを用いた燃料電池用セパレータ及び燃料電池スタック、並びに燃料電池用セパレータ材料の製造方法
JP2010123330A (ja) 燃料電池用セパレータ材料、それを用いた燃料電池用セパレータ、及び燃料電池スタック

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180030081.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803448

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011803448

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127034018

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2804774

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13805265

Country of ref document: US