WO2012003698A1 - 一种led集成结构 - Google Patents

一种led集成结构 Download PDF

Info

Publication number
WO2012003698A1
WO2012003698A1 PCT/CN2010/079763 CN2010079763W WO2012003698A1 WO 2012003698 A1 WO2012003698 A1 WO 2012003698A1 CN 2010079763 W CN2010079763 W CN 2010079763W WO 2012003698 A1 WO2012003698 A1 WO 2012003698A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
positioning
hole
substrate
plastic
Prior art date
Application number
PCT/CN2010/079763
Other languages
English (en)
French (fr)
Inventor
杨东佐
Original Assignee
Yang Dongzuo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yang Dongzuo filed Critical Yang Dongzuo
Publication of WO2012003698A1 publication Critical patent/WO2012003698A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/90Methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • F21Y2113/13Combination of light sources of different colours comprising an assembly of point-like light sources
    • F21Y2113/17Combination of light sources of different colours comprising an assembly of point-like light sources forming a single encapsulated light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Definitions

  • the utility model relates to an LED integrated structure for illumination, a backlight module, a television, an LED dot matrix display, a projection device, etc., in particular to a high-power LED integrated structure.
  • the semiconductor LED is an in-line structure in which an LED chip is encapsulated by an epoxy resin and the LED chip is electrically connected to the lead.
  • a surface book was adopted.
  • LED light source especially high-power LED light source
  • the heat is concentrated when the light is emitted. If the heat generated by the LED chip is not released in time, the temperature of the LED light source is too high, which will lead to reduced light efficiency and low life of the LED, so how to The heat generated by the LED chip is quickly and effectively dissipated and becomes a bottleneck for popularizing LED light sources. How to improve the light transmittance of LED light sources and how to improve the heat dissipation performance of LED light sources to prolong the service life is an important technical problem in the industry.
  • the light emitting diode package device comprises: a light emitting diode die and a high thermal conductive material A heat dissipation base, an electrode holder, a positioning unit and a covering body which are formed and placed in contact with the die.
  • the heat sink base is made of a highly thermally conductive material such as metal or ceramic, and includes a recessed portion of the chassis, the body, and the top surface of the body. The crystal grains are placed on the bottom surface of the depressed portion.
  • the electrode holder is punched out from a metal material, and includes a substrate and a positioning wall extending axially from the periphery of the hollow portion of the substrate and defining an accommodation space.
  • the positioning unit is disposed on at least one of the heat dissipation base and the electrode holder, so that the heat dissipation base is embedded and fixed in the accommodating space of the electrode holder.
  • the positioning unit may be at least one card-bumping protrusion protruding from the inner wall surface of the positioning wall of the electrode holder, or may include a flange protruding radially outward from the top surface of the heat-dissipating base.
  • the covering body is formed by injection molding, and the heat-dissipating base fixed to each other is combined with the electrode holder portion.
  • the die passes through the stepped column-shaped heat sink base as the first heat sink. Since the columnar heat sink base does not directly contact the air to dissipate heat, and has a certain solid metal length, it requires a long metal conduction heat dissipation distance. The heat is emitted to the air, and the contact area of the heat dissipation base with the air is small, so the heat generated when the crystal grains emit light has a heat accumulation effect. In order to improve the heat dissipation performance, the heat sink base generally needs to design other heat dissipation metal or ceramic heat sinks that are in direct thermal conduction contact with the heat sink base, and finally dissipate heat through the heat sink.
  • this method increases the distance of heat conduction and heat dissipation.
  • the heat dissipation base and the heat sink are divided into two parts, the two are bonded together with the thermal conductive glue, and there is still a huge thermal resistance.
  • the temperature of the heat sink base is kept high, and the temperature of the heat sink is similar to the ambient temperature.
  • the heat on the heat sink base is not quickly dissipated, and the heat dissipation effect is poor.
  • Application No. 200720172030 discloses a package structure of a pin-type high-power LED device, including an LED chip, a lens, a printed PCB board, a metal heat sink body, a gold wire and a lead;
  • the metal heat sink body includes a base and the base a boss on the seat, and the upper surface area of the base is at least twice the area of the upper surface of the boss;
  • the printed PCB board is glued to the base; and the through hole is disposed on the base below the printed PCB board.
  • the through-hole pin is electrically connected to the printed PCB board; the lens cover LED chip and the printed PCB board are adhered to the printed PCB board by a potting process.
  • This high-power pin-type high-power LED device although increasing the base area of the metal heat sink body, has a poor heat dissipation effect. Even if a heat sink is additionally disposed, the heat on the LED chip must be conducted due to heat dissipation.
  • the bump and the base are transferred to the metal heat sink body, and then transferred to the heat sink by the metal heat sink body, which increases the intermediate link due to heat conduction and the long heat transfer path corresponding to the thick metal heat transfer body. Therefore, the thermal resistance is high and the thermal conductivity is very poor.
  • the pin is electrically connected to the layout circuit above the printed PCB board and passes through the printed PCB board and the metal heat sink body. The processing is complicated and the process is difficult.
  • the electrical connection between the LED chip and the layout circuit on the printed PCB needs to pass through the electrode.
  • the bracket has a complicated structure and many thermal resistances in the middle part.
  • COB (Chip on Board) package design for LED integrated structure.
  • the thermal resistance of the intermediate link can be minimized, thereby reducing the LED chip pn junction.
  • the thermal resistance of the external environment improves heat dissipation efficiency and luminous efficiency.
  • the advantage of this COB (Chip on Board) package design is that the electrodes of each LED chip form an ohmic contact directly with the metal pad through the bonding electrode leads, and the formation of the multi-channel LED chip array is through the heat dissipation substrate and the LED chip.
  • the outer shape is small, the thickness is thin, and the assembly is easy, and it can be used for lighting, display, etc., where the light source assembly size is high.
  • a device for high-power LED street light of a C0B package which comprises a lens, a silicone, a gold wire, a chip, a heat sink, etc., and 5-50 pieces are arranged on the heat dissipation plate.
  • the boss, the chip is directly fixed on the boss of the heat sink, and then radiated through the heat sink and the heat sink on the heat sink.
  • the high-power LED street lamp of this structure has better heat dissipation effect, but since there is no plastic lens for locating the lens or forming the lens, the positioning of the lens is not accurate, and the silicon dioxide is pre-pointed in the lens to encapsulate the chip, and on the one hand, the amount of the silicone is large.
  • this packaging method bubbles are generated after the packaged silica gel is solidified, which seriously affects the light-emitting quality of the LED chip, which causes the emitted light to have spots, shadows and other optical congenital defects, which is not conducive to the optical secondary optimization development of the LED light source.
  • a high-power LED package structure with high-efficiency heat-dissipating illumination which comprises a lens, a substrate and an LED light-emitting chip.
  • the lens is fixed on the upper surface of the substrate, and the lower surface of the lens is provided with an upward convex surface.
  • the mounting recess is disposed on the upper surface of the substrate and is mounted with a recessed cover.
  • the upper surface of the substrate that is fastened by the mounting recess is provided with positive and negative light emitting electrodes, and the light emitting electrode and the LED light emitting chip are connected by a metal wire.
  • the surface is provided with positive and negative connecting electrodes connected to the light emitting electrodes, and the lower surface of the lens outside the mounting recess and the upper surface of the substrate are connected
  • the annular adhesive layer is bonded, and the inner cavity of the adhesive layer and the cavity formed by the mounting recess are filled with silica gel, and the inner hole of the adhesive layer is opened on the substrate to communicate with the cavity formed by the mounting recess.
  • the glue injection channel, and the lens and the substrate are made of crystal crystal crystal.
  • the high-power LED package structure of this structure has the disadvantage that the fixing of the lens and the substrate is adhered by the adhesive layer, and the bonding is not firmly fixed; the second disadvantage is that the positioning mechanism of the positioning lens is not positioned when the lens is bonded to the substrate.
  • the positioning is not accurate, and the position of the lens is easily deviated during the filling;
  • the third disadvantage is that the lens is fixed on the substrate through the adhesive layer, the adhesive layer is easy to block the injection passage, affecting the injection of the silica gel;
  • the disadvantage is that the LED is electrically connected to the LED light-emitting chip.
  • the metal wire is electrically connected to the light-emitting electrode fixed on the substrate and disposed in the mounting recess of the lens, and the light-emitting electrode is electrically connected to the connecting electrode, and the connecting electrode is electrically connected to the conductive layer of the layout circuit, and the intermediate link is More thermal resistance, affecting heat dissipation efficiency and luminous efficiency.
  • a high-power LED light-emitting diode which comprises an aluminum substrate, a silver paste, a wafer, a gold wire, a reflective cover, and the aluminum substrate has a convex-concave cup shape, that is, at the center thereof.
  • the bottom surface has a circular groove, and a corresponding cup-shaped boss is arranged on the upper surface thereof, the plastic frame is arranged on the boss, the plastic frame is circular, the center is provided with a circular hole, and two grooves are concentrically opened with the circular hole.
  • the inner and outer parts are composed of two high and low convex edges.
  • the bottom surface is symmetrically provided with two cylindrical legs, and is installed in the circular holes on both sides of the cup-shaped boss.
  • the curved surface of the reflective cover is smaller than the flat cover, and the lower edge is coated with glue.
  • glue Glue water, packed in the groove of the plastic frame.
  • the bottom of the plastic frame is coated with adhesive glue filled with glue.
  • the distance between the illuminant wafer and the bottom surface of the reflective cover is small.
  • the aluminum substrate may be in the shape of a plum or a circle. The assembly procedure of the patent is to first place the silver glue into the cup-shaped cup of the aluminum substrate, fix the wafer on the silver glue, and bake it in the oven for 145 C ° for 1 hour, then solder the gold wire to fix the lens.
  • the negative electrode is respectively soldered on the positive and negative electrodes of the aluminum substrate with gold wire, the bottom surface of the plastic frame is coated with adhesive glue, inserted into the positioning hole of the aluminum substrate, the glue is filled into the plastic frame for baking, and the reflective cover is coated and bonded.
  • Glue can be used by placing it in the groove of the plastic frame.
  • the plastic frame and the aluminum substrate need to be fixed by the adhesive glue, which is not resistant to high temperature in the subsequent packaging process, and the reliability of the fixing under the high temperature condition is greatly affected; There is no glue filling channel on the plastic frame. Fill the glue before filling the reflector. If the mold is not used, the shape of the glue cannot be controlled. If the mold is used to fill the glue, the cost is high.
  • the third disadvantage is that the glue will be filled.
  • the reflective cover is coated with adhesive glue and fixed in the groove of the plastic frame, so that the fixing on the one hand is unreliable. The positional relationship is fixed inaccurately.
  • There will be air in the gap that is, there will be air in the reflective cover, which greatly affects the luminous effect of the LED.
  • the aluminum substrate in the utility model patent has the shape of a bowl cup, and has only one boss on the upper surface thereof, and the gold wire is electrically connected to the positive and negative electrodes of the aluminum substrate, and the positive and negative of the aluminum substrate are seen from the contents of the text and the figure. It is not a conductive layer of the layout circuit, but a light-emitting electrode or a bracket type pin as disclosed in the 200820214808.
  • Utility model content is not a conductive layer of the layout circuit, but a light-emitting electrode or a bracket type pin as disclosed in the 200820214808.
  • the problem of the optical effect of the LED chip integrated structure is not good.
  • the technical problem to be solved by the utility model is to provide a small thermal resistance of the intermediate link, good heat dissipation, direct electrical connection of the conductive layer of the chip to the layout circuit, no reflow soldering or peaking
  • the welding and encapsulant can be made of resin or silica gel.
  • the LED and the chip have precise positional relationship, high luminous flux, simple structure, simple assembly, good heat dissipation effect and good optical effect.
  • the LED integrated structure comprises a heat dissipating substrate, an LED chip, a lens, a plastic part of a positioning lens or a molding lens, a conductive layer electrically connecting the wires of the LED chip electrode and the layout circuit of the electrical connection wire, and is characterized in that: a positioning lens or a molding lens
  • the plastic member is provided with one or more first through holes, and a fixing post extends on an end surface of the positioning member or the plastic member of the molding lens, and a second through hole is formed on the heat dissipation substrate to cooperate with the fixing column.
  • the fixing post passes through the second through hole of the heat dissipation substrate, and the end portion of the fixing column is provided with a resisting portion; the plastic piece of the positioning lens or the forming lens is fixed to the heat dissipating substrate through the fixing post and the resisting portion; the LED chip is directly fixed by the die bonding process On the heat dissipation substrate, and placed in the corresponding first through hole; the conductive layer of the layout circuit extends between the sidewall of the first through hole and the LED chip, the wire is placed in the first through hole, and one end of the wire and the LED chip Electrical connection of the electrode, the other end of the wire is electrically connected with the conductive layer of the layout circuit between the first through hole and the LED chip; the side of the heat dissipation substrate facing away from the boss and the heat dissipation Or in direct contact with cooling liquid.
  • one or more bosses integrally formed with the heat dissipation substrate are disposed on the heat dissipation substrate, and the LED chip is directly fixed on the end surface of the boss by a die bonding process; the boss is placed in the corresponding first pass Inside the hole.
  • the side of the heat-dissipating substrate facing away from the boss is in direct contact with the heat-dissipating gas;
  • the side of the heat substrate facing away from the boss is provided with a heat dissipation blind hole or a heat dissipation stepped through hole in the boss, and the LED chip completely covers the small hole of the heat dissipation stepped through hole; at the periphery of the heat dissipation blind hole or at the big end of the heat dissipation stepped through hole
  • the heat dissipation substrate on the side facing away from the boss is provided with a heat dissipation rib integrally formed with the substrate;
  • the boss is cylindrical, and a recessed portion for placing the LED chip is disposed on the top of the boss, and the bottom surface of the recess is for placing the LED
  • the plane of the chip; the number of the bosses is plural; the conductive layers of the layout circuit are distributed in the same plane.
  • a recessed portion integrally formed with the heat dissipation substrate is disposed on the heat dissipation substrate, and the LED chip is directly fixed on the bottom surface of the recessed portion by a die bonding process.
  • the surface of the heat dissipation substrate facing the conductive layer of the layout circuit is a plane, and the LED chip is directly fixed to the plane by a die bonding process.
  • the circuit board further comprises a PCB board, and the conductive layer of the layout circuit is directly disposed on the PCB board, and the third through hole is matched with the fixing column on the PCB board, and the PCB board is provided with the cloth.
  • the fixing pillar sequentially passes through the third through hole on the PCB board and the fourth through hole on the heat dissipation substrate, and then forms a resisting portion by hot melt or
  • the heat dissipating substrate and the PCB board are placed in the mold of the plastic part forming the positioning lens or the molding lens, and when forming the positioning lens or the plastic part of the molding lens, the mold which is formed by the resisting part positioning the plastic part is formed when the positioning lens or the plastic part of the forming lens is formed.
  • the heat dissipation substrate is a non-metal thermal insulation insulating plate, and the conductive layer of the layout circuit is directly disposed on the heat dissipation substrate and faces the plastic part of the positioning lens or the molded lens; and is formed by heat fusion.
  • the resisting portion of the end of the column or the heat dissipating substrate is placed in the mold of the plastic part forming the positioning lens or the molding lens. When the positioning lens or the plastic part of the molding lens is molded, the abutting portion of the end of the fixing column is formed.
  • the heat dissipating substrate is a metal substrate, and the conductive layer of the layout circuit is directly disposed on the heat dissipating substrate and faces the positioning lens or the plastic part of the molding lens, and the positioning lens or the molding lens An insulating layer is disposed between the plastic member and the metal substrate; the resisting portion of the fixing column end portion is formed by hot melt or the heat dissipating substrate is placed in the mold of the plastic part forming the positioning lens or the molding lens to form the positioning lens or the molding lens When the plastic part is formed, the resisting portion of the end of the fixing column is formed.
  • the package colloid for encapsulating the LED chip and the wire is included; the lens is fixed to the plastic of the positioning lens or the molding lens by tight fitting with the first through hole or by a crimper.
  • a glue injection channel for injecting the encapsulation colloid is disposed at a position corresponding to the first through hole, and the plastic port of the injection passage is placed in the positioning lens or the plastic part of the molding lens is away from the resisting portion.
  • the glue port and the glue injection channel communicate with the inner side wall of the first through hole; after the encapsulant is injected, the encapsulant further fixes the lens; forming a resisting portion of the end of the fixing post by heat fusion or dissolving the heat dissipating substrate
  • the resisting portion of the end of the fixing post is formed in the mold of the plastic part forming the positioning lens or the molding lens when forming the positioning lens or the plastic part of the molding lens.
  • the lens is an encapsulation colloid for encapsulating the LED chip and the wire; the resisting portion of the end portion of the fixing post is formed by hot-melting or the plastic substrate is placed on the plastic forming the positioning lens or the molding lens The mold of the piece is formed by forming a positioning lens or a plastic part of the molded lens to form a resisting portion at the end of the fixing column.
  • the plastic part of the positioning lens or the molding lens is a plastic ring, and two or more plastic rings independently of each other are fixed on the heat dissipation substrate.
  • the plastic part of the positioning lens or the forming lens comprises a plastic ring and a connecting rib formed by injection molding together with the plastic ring connecting the set number of plastic rings, positioning lens or molding
  • the plastic part of the lens comprises two or more plastic rings as described above.
  • the plastic component of the positioning lens or the molding lens is a plate shape, and two or more first through holes are formed on the plastic component of the positioning lens or the molding lens;
  • the lens is tightly fitted with the corresponding first through hole or is heat-pressed by a presser and a plastic part of the positioning lens or the molded lens.
  • An LED integrated structure comprising a heat dissipating substrate, an LED chip, a lens, a positioning lens or a plastic part of a molded lens, a conductive layer electrically connecting the wires of the LED chip electrode and the wiring of the electrical connection wire, a positioning lens or a plastic part of the forming lens
  • the utility model comprises a plastic ring and a connecting rib for connecting the plastic ring together with the plastic ring; a first through hole of the positioning lens or the forming lens is arranged on the plastic ring; the number of the lens and the first through hole is one-to-one correspondence;
  • the LED chip is placed in the corresponding first through hole, the conductive layer of the layout circuit extends into the first through hole, the wire is placed in the first through hole, and one end of the wire and the LED chip
  • the electrode is electrically connected, and the other end of the wire is electrically connected to the conductive layer of the layout circuit extending into the first through hole; and a positioning mechanism for accurately positioning the heat dissipating substrate
  • the PCB board is further disposed on a side of the heat dissipation substrate provided with the chip fixing boss, the conductive layer of the layout circuit is directly disposed on the PCB board, and the PCB board is provided with a side of the conductive layer of the layout circuit facing away from the contact
  • the contact surface of the heat dissipating substrate, the positioning mechanism accurately positions the heat dissipating substrate, the PCB board and the positioning lens or the plastic part of the forming lens, and the fastener fixes the heat dissipating substrate, the PCB board and the positioning lens or the plastic part of the forming lens.
  • An LED integrated structure comprising a heat dissipating substrate, an LED chip, a lens, a positioning lens or a plastic part of a molded lens, a conductive layer electrically connecting the wires of the LED chip electrode and the wiring of the electrical connection wire, a positioning lens or a plastic part of the forming lens
  • two or more first through holes are provided on the plastic part of the positioning lens or the molded lens, and the number of the lens and the first through hole are one-to-one correspondence; the LED chip is placed corresponding to the first In a through hole, a conductive layer of the layout circuit protrudes into the first through hole, and the wire is placed in the first through hole, and one end of the wire is electrically connected to the electrode of the LED chip, and the other end of the wire extends into the first through hole.
  • the conductive layer of the layout circuit is electrically connected; the positioning mechanism for accurately positioning the heat dissipating substrate and the positioning lens or the plastic part of the molding lens and the fastener for fixing the heat dissipating substrate and the plastic part together; the heat dissipating substrate facing away from the chip fixing boss One side is in direct contact with the heat radiating gas or the heat dissipating liquid.
  • the first advantage is that the LED chip is directly fixed on the chip fixing boss by a die bonding process, and the side of the heat dissipation substrate facing away from the chip fixing boss is in direct contact with the heat dissipating gas or the heat dissipating liquid.
  • the COB (Chip on Board) package design of the LED integrated structure is compared with the existing LED integrated structure, because the LED chip is directly fixed on the chip fixing boss of the substrate by silver glue or eutectic solder or the like.
  • the heat generated by the operation of the LED chip passes through the thin heat-conducting layer of the chip fixing boss of the heat-dissipating substrate to directly contact the heat-dissipating gas such as air or contact with the heat-dissipating liquid, and the heat contacting the heat-dissipating substrate is caused by the difference in density of the hot-cold gas or liquid. It is quickly taken away, thus taking away the heat of the substrate, which can minimize the thermal resistance of the intermediate link, and greatly reduce the heat transfer path distance from the pn junction heating portion of the LED chip to the external air environment or the heat dissipating liquid, thereby greatly reducing the thermal resistance.
  • the plate is a thin plate, and the thickness of the heat dissipation substrate is generally in the range of 0.2 mm to 5 mm.
  • the main application is to integrally form a plurality of chip fixing bosses on the heat dissipation substrate and the heat dissipation substrate, and the area of the substrate is much larger than the area of the top of the chip fixing boss. .
  • the heat generated by the LED chip is greatly reduced in the intermediate path distance of the heat dissipating gas, that is, in the air or the heat dissipating liquid, and the contact area with the heat dissipating liquid and the dissipating gas is greatly increased, the heat accumulation effect is greatly reduced, and the heat dissipation can be greatly improved.
  • the chip fixing boss and the heat dissipation substrate are integrally formed, so the heat generated by the chip is directly emitted into the air through the heat dissipation substrate, so the heat resistance is small, the heat dissipation speed is fast, and the heat dissipation is not required by the other heat sink, and the heat dissipation effect is quite good.
  • the LED chip is directly fixed on the chip fixing boss by the die bonding method, and the LED chip is directly connected to the conductive layer of the layout circuit through the wire. Because of the chip fixing boss, the electrical connection wire resists the shadow of the light emitted by the LED chip.
  • the existing LED bracket is omitted, that is, the heat-dissipating metal parts in the LED bracket and the multi-layer intermediate parts such as the electrode metal legs are omitted, especially the two parts between the heat-dissipating metal parts and the heat-dissipating board are avoided.
  • High thermal resistance so the thermal resistance is small, the heat conduction has a fast heat dissipation effect, and the structure is simple and reliable.
  • the chip fixing boss and the heat dissipation substrate are integrally formed, which is more advantageous for the design and assembly process of the light source, and saves cost. Therefore, the utility model has the advantages of simple and reliable structure, few parts, thin thickness and easy assembly, and is particularly suitable for occasions requiring high power for the light source.
  • the second advantage is that the conductive layer of the layout circuit can extend into the plastic part of the positioning lens or the molding lens due to the plastic parts which are all provided with the positioning lens or the molding lens, and the wire can be directly connected to the conductive layer of the layout circuit. It is no longer necessary to connect the wire to the conductive layer of the layout circuit through the conductive metal bracket or to the conductive layer of the layout circuit from the heat dissipation substrate facing away from the chip fixing boss through the wiring leg, thereby simplifying the structure and minimizing the intermediate link.
  • the encapsulant can be made of resin or silica gel;
  • the LED chip, the electrical connection wires and their two soldered ends are not exposed to the air, which is advantageous for long life.
  • reflow soldering or wave soldering since the temperature of reflow soldering or wave soldering is generally 250C or 280C, the encapsulant cannot be used.
  • the utility model can further save the cost and improve the optical performance of the LED chip.
  • This COB package design The advantage is that the electrodes of each LED chip 2 directly form an ohmic contact with the conductive layer of the layout circuit through the bonding wires, and the formation of the multi-channel LED chip array is electrically interconnected by the electrical connection device between the heat dissipation substrate and the LED chip. Achieving series and parallel connection of LED chips can improve product reliability and production yield.
  • the third advantage is that the plastic part of the positioning lens or the molding lens is positioned and fixed by the hot-melt fixing column and the heat-dissipating substrate, or the positioning lens or the molding lens is formed by placing the heat-dissipating substrate in the mold of the plastic part forming the positioning lens or the molding lens.
  • the plastic part is shaped and resisted to position and fix the heat dissipating substrate, or is fixed by the positioning mechanism and the heat dissipating substrate, and fixed by the fastener and the heat dissipating substrate, and is fixed and reliable, and can withstand high temperature in the subsequent packaging process, under high temperature conditions
  • the reliability of the fixing is not affected; compared with the fixing by the fastener, the technical solution does not need to design a fixing hole on the positioning lens or the plastic part of the forming lens, and can be reduced for the first through hole of the same size.
  • the plastic part of the positioning lens or the forming lens is fixed to the heat dissipating substrate by injection molding the positioning lens or the plastic part of the molding lens, thereby eliminating the installation process of mounting the positioning lens or the plastic part of the molding lens on the heat dissipating substrate.
  • the plastic parts of the positioning lens or the molding lens and the heat dissipating substrate are in the axial direction and the radial direction.
  • the fourth advantage is that the heat dissipation blind hole or the heat dissipation stepped through hole increases the heat dissipation area of the heat dissipation substrate, and the distance between the LED chip and the air is greatly reduced, that is, the distance between the heat dissipation of the LED chip and the air is greatly reduced, thereby greatly reducing the distance.
  • the heat accumulation effect so there is a better heat dissipation hole than the non-porous heat dissipation effect.
  • the fifth advantage is that the ribs further increase the area of the heat-dissipating substrate in contact with the air, so that the heat dissipation effect is better. Because the air in the blind hole is not circulated when the LED chip emits light, the heat insulating blind hole has a heat insulating effect on the heat generated by the LED chip, so that the heat generated by the LED chip is mainly distributed along the chip fixing boss and the heat dissipation rib. Into the air.
  • the sixth advantage is that the recessed portion facilitates the mounting and positioning of the LED chip, so that the positioning of the LED chip is more precise, and the light emitted from the chip is preferentially concentrated to increase the light efficiency.
  • the seventh advantage is that the heat dissipation substrate is an insulated non-metal plate, and the conductive layer of the layout circuit is directly disposed on the heat dissipation substrate, and the structure is simple and the heat dissipation effect is good.
  • the heat-dissipating substrate is made of an insulating and heat-conductive non-metal material, so that low thermal resistance can be obtained, the short circuit of the conductive layer of the layout circuit can be avoided, and the heat generated by the chip during operation can be conducted through the insulating and thermally conductive material substrate, and good heat conduction makes the high density large. Power LED integrated chip package can be realized.
  • the eighth advantage is that the heat dissipating substrate is made of a metal material, so that a low thermal resistance can be obtained, and the conductive layer on the layout circuit is separated by a relatively small insulating layer, which can avoid short circuit of the metal substrate and can The heat generated by the chip during operation is conducted through the metal substrate, and good heat conduction enables the high-density and high-power LED integrated chip package to be realized.
  • the ninth advantage is that when the conductive layer of the layout circuit is disposed on the PCB, the positioning lens or the plastic part of the molded lens can fix the heat dissipation substrate and the PCB board together.
  • the use of the PCB board facilitates the layout design of the circuit of the conductive layer of the layout circuit, which omits the complicated manufacturing process of the original circuit layout on the heat dissipation substrate, and uses a very mature PCB board, which greatly saves cost and simplifies The process further improves the reliability and design flexibility of the conductive layer of the layout circuit.
  • the PCB board has a heat insulating effect, which is advantageous for the heat on the heat dissipating substrate to be radiated along the side in contact with the air.
  • the tenth advantage is that the chip is placed in the plastic lens positioning ring, and the plastic dosage is greatly reduced when the positioning lens or the plastic part of the lens is molded, thereby reducing the cost.
  • the lens is fixed on the plastic part of the positioning lens or the forming lens by tight fitting or hot pressing, so that the lens is first fixed and repackaged, and the lens is not displaced when the LED chip is packaged, which is beneficial to the filling and curing process, especially It is much more reliable to fix the lens only by the adhesion of silicone or the like.
  • the eleventh advantage is that all the plastic positioning rings on a heat dissipating substrate can be connected into an integral positioning lens or a molded plastic piece through a connecting rib during injection molding; or a part of the lens positioning ring on a heat dissipating substrate can be connected.
  • a chip fixing boss corresponds to a plastic lens positioning ring, and the plastic dosage is small when the plastic lens positioning ring is formed, and the cost is low.
  • the plastic lens positioning ring is connected as a whole by connecting ribs.
  • the first is that when molding a positioning lens or a plastic part of a molded lens, the mold gate can be placed on the plastic lens positioning ring or the connecting rib, which facilitates the arrangement of the mold gate and is more conducive to plastic filling in the mold during injection molding. Balanced, and the plastic flow between different plastic lens positioning rings is realized by connecting ribs, which can reduce the number of mold gates and facilitate the design of the mold flow path. Two or more plastic lens positioning can be formed by one mold gate.
  • the second is to reduce the number of fixed columns, and does not need to be in each
  • There are two or more fixing posts on the plastic positioning ring which can reduce the manufacturing cost of the mold on the one hand, and reduce the amount of plastic when molding the positioning lens or the plastic part of the molded lens on the other hand
  • the same size of the plastic lens positioning ring, the fixed column can be designed at the junction of the plastic lens positioning ring and the connecting rib, so the fixed column can be added
  • the fourth section is for the same size of the plastic lens positioning ring, because the cavity of the cavity forming the adjacent lens positioning ring is connected to form the cavity of the connecting rib, so more plastic lenses can be arranged in a unit area.
  • the positioning ring has a longer service life of the mold; the fifth is that the positional relationship between the plastic lens positioning ring and the plastic lens positioning ring is more precise and more reliable, thereby making the positional relationship between the lenses more precise and improving the optical effect.
  • the lens is fixed on the plastic part of the positioning lens or the forming lens by tight fitting or hot pressing, so that the lens is first fixed and repackaged, and the lens is not displaced when the LED chip is packaged, which is beneficial to the filling and curing process, especially It is much more reliable to fix the lens only by the adhesion of silicone or the like.
  • the twelfth advantage is that only one plate-shaped positioning lens or plastic lens for forming the lens can be provided on one heat-dissipating substrate; or two or more plate-shaped positioning lenses or molding can be provided on one heat-dissipating substrate.
  • Plastic parts for the lens The plastic part of the positioning lens or the forming lens is plate-shaped. The first is that when the positioning lens or the plastic part of the forming lens is injection molded, the mold gate design is more flexible, and the layout of the mold gate is facilitated and the mold is more favorable in the injection molding.
  • the lens is fixed on the plastic part of the positioning lens or the forming lens by tight fitting or hot pressing, so that the lens is first fixed and repackaged, and the lens is not displaced when the LED chip is packaged, which is beneficial to the filling and curing process, especially It is much more reliable to fix the lens only by the adhesion of silicone or the like.
  • a thirteenth advantage is that the plastic part of the positioning lens or the forming lens is plate-shaped, and the fixing post is placed at the center of every four adjacent first through holes.
  • the distance between adjacent first through holes can be minimized, so that more lenses can be arranged in a maximum area per unit area, which can be maximized when applied to a dot matrix display.
  • the fourteenth advantage is that the silicon carbide coating on the surface of the heat dissipating substrate has the advantages of high thermal conductivity and high thermal emissivity. In the application field without forced fan convection, such as LED lighting, the heat dissipation function can be more apparent. Silicon carbide has excellent thermal conductivity (1 30 ⁇ 1 60W / m. K), good insulation, and has a thermal emissivity 5 to 8 times higher than metals such as copper and aluminum, and is a non-metallic application. For example, after the aluminum fins are sprayed with the silicon carbide heat-dissipating paint, the temperature is effectively reduced by 5 degrees to 7 degrees, and the overall heat dissipation efficiency is further increased by 10% to 15%.
  • the fifteenth advantage is that the glue port of the glue injection channel is placed on the end surface of the plastic lens positioning member away from the resisting portion, and the glue injection channel communicates with the inner side wall of the plastic lens positioning member to facilitate the injection; since the plastic lens positioning member is Plastic parts, so the glue and injection channels are easy to form.
  • the lens Before injecting the encapsulant, the lens is tightly fitted or fixed by the plastic lens positioning member, so that the lens is first fixed and repackaged, and the lens is not displaced when the LED chip is packaged, which is beneficial to the filling and curing process, especially Some are much more reliable by fixing the lens only by the adhesion of silicone or the like.
  • the plastic lens positioning member can realize the precise installation of the lens position during packaging, and fix the lens, the LED chip, the electrical connection wire and the two soldering ends thereof, the heat dissipation substrate and the chip thereof after vacuuming and injection molding.
  • the bumps are solidified together, especially when the package is packaged, such that no encapsulation occurs when the encapsulant is solidified in a vacuum environment, which plays an important role in ensuring the illumination quality of the LED chip, and does not cause the emitted light to have a spot.
  • Optical congenital defects such as shadows; optical congenital defects of LED chip illumination quality without bubble generation, which is more conducive to optical secondary optimization development of LED light source, plastic lens positioning member facilitates lens installation and accurate lens mounting position and Fixed and reliable, the aggregation of light effect is conducive to the secondary optimization of optics, and finally Now the optical effect is good, and the plastic lens positioning member and the lens make the filling amount of the silica gel less during the injection, which can reduce the cost.
  • DRAWINGS BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a front elevational view of a first embodiment of the present invention.
  • Figure 2 is a cross-sectional view taken along line A-A of Figure 1.
  • Figure 3 is a perspective exploded view of Embodiment 1 of the present invention.
  • Fig. 4 is a perspective exploded view showing the projection of the embodiment 1 of the present invention from another direction.
  • Figure 5 is a perspective exploded view of Embodiment 2 of the present invention.
  • Figure 6 is a front elevational view of Embodiment 3 of the present invention.
  • Figure 7 is a cross-sectional view taken along line B-B of Figure 6 .
  • Figure 8 is a perspective exploded view of Embodiment 3 of the present invention.
  • Figure 9 is a perspective exploded view of Embodiment 4 of the present invention.
  • Fig. 10 is an enlarged view of a portion I of Fig. 9.
  • Figure 11 is a perspective exploded view of Embodiment 5 of the present invention.
  • Figure 12 is a perspective exploded view of Embodiment 6 of the present invention.
  • Figure 13 is a perspective exploded view of Embodiment 7 of the present invention.
  • Figure 14 is a perspective view of a plastic lens positioning plate according to Embodiment 8 of the present invention.
  • Figure 15 is a perspective view of Embodiment 9 of the present invention.
  • Figure 16 is a perspective view of Embodiment 10 of the present invention.
  • Figure 17 is a perspective view showing the projection of the embodiment 10 of the present invention from another direction.
  • Figure 18 is a perspective view showing the integrated structure of the LED of Embodiment 10 of the present invention.
  • Figure 19 is a perspective view of Embodiment 11 of the present invention.
  • Figure 20 is a perspective view of Embodiment 12 of the present invention.
  • Figure 21 is a perspective view of Embodiment 13 of the present invention.
  • Figure 22 is a front elevational view of Embodiment 14 of the present invention.
  • Figure 23 is a cross-sectional view taken along line C-C of Figure 22 .
  • Figure 24 is a perspective exploded view of Embodiment 14 of the present invention.
  • Figure 25 is a perspective exploded view of Embodiment 15 of the present invention.
  • Figure 26 is a perspective exploded view of Embodiment 16 of the present invention.
  • Figure 27 is a perspective exploded view of Embodiment 17 of the present invention.
  • Fig. 28 is an enlarged view of a portion II of Fig. 27;
  • Figure 29 is a perspective exploded view of Embodiment 18 of the present invention.
  • Figure 30 is a perspective exploded view of Embodiment 19 of the present invention.
  • Figure 31 is a perspective exploded view of Embodiment 20 of the present invention.
  • Figure 32 is a perspective view showing the plastic lens positioning plate of Embodiment 21 of the present invention.
  • Figure 33 is a front elevational view of Embodiment 22 of the present invention.
  • Figure 34 is a cross-sectional view taken along line D-D of Figure 33.
  • Figure 35 is a front elevational view of Embodiment 23 of the present invention.
  • Figure 36 is a cross-sectional view taken along line E-E of Figure 35.
  • an LED integrated structure includes a heat dissipation substrate 1, a PCB board 2, an LED chip 3, a lens 4, a lens positioning ring 5, a gold wire 6 electrically connecting the electrodes of the LED chip 3, and an electrical connection.
  • the patterned circuit conductive layer 7 of the gold wire 6 is used to encapsulate the LED chip 3 and the encapsulant 8 of the gold wire 6.
  • the lens positioning ring 5 is made of high temperature resistant PPA plastic.
  • a positioning lens 4 and a first through hole 23 covering the encapsulating body 8 are disposed on the lens positioning ring 5, and a fixing post 9 is extended on the lens positioning ring 5, and the heat dissipating substrate 1 is placed at the end of the fixing post 9.
  • the resisting portion 10 is formed in the mold of the molded lens positioning ring 5 when the plastic positioning ring is formed.
  • a glue injection channel 11 for injecting the encapsulation body 8 is disposed on the lens positioning ring 5, and the glue port 12 of the glue injection channel 11 is placed on the end surface of the lens positioning ring 5 away from the resisting portion, the glue port 12 and the glue injection channel 11 It communicates with the sidewall of the first through hole 23.
  • the heat dissipating substrate 1 is stamped from a thin metal or metal alloy of high thermal conductivity, and the material thereof may be stainless steel, copper, tungsten, aluminum, aluminum nitride, chromium or the like or an alloy thereof.
  • the heat dissipating substrate 1 includes a flat bottom plate 13 , and a plurality of chip fixing bosses 14 protruding from the heat dissipating substrate 1 .
  • the chip fixing boss 14 is provided with a second pass corresponding to the fixing post 9 . Hole 15.
  • the cross section of the chip fixing boss 14 is circular, and the area of the cross section of the bottom plate 13 is much larger than the area of the cross section of the chip fixing boss 13, at least three times or three of the area of the cross section of the chip fixing boss 13.
  • a recess portion 16 on which the LED chip 3 is placed concentrically with the chip fixing boss 14 is provided on the top of the chip fixing boss 14, and the bottom surface of the recess portion 16 is a plane on which the LED chip 3 is placed.
  • the side of the heat dissipation substrate 1 facing away from the chip fixing boss 14 is disposed in the chip fixing boss 14 and the chip fixing boss 14
  • the concentric heat dissipation stepped through hole has a large hole 17 and a small hole 22.
  • a heat dissipating rib 18 integrally formed with the heat dissipating substrate 1 is disposed on the heat dissipating substrate 1 on the side of the large hole 17 of the stepped through hole facing away from the chip fixing boss 14 , and a heat insulating blind hole 19 is disposed in the heat dissipating rib 18 .
  • the side of the heat insulating blind hole 19 facing the chip fixing boss 14 communicates with the bottom plate 13 of the heat dissipation substrate 1 toward the chip fixing boss 14 side.
  • the side of the heat dissipation substrate 1 facing away from the chip fixing boss 14 is in direct contact with the heat releasing gas.
  • the conductive layer 7 of the layout circuit is directly disposed on the PCB 2, and the conductive layers 7 of the layout circuit are distributed on the same plane.
  • Each of the chip fixing bosses 14 on the PCB board 2 is provided with a fourth through hole 20 that cooperates with the chip fixing boss 14 and a third through hole 21 that cooperates with the fixing post 9.
  • the PCB board 2 is disposed on the heat dissipating substrate 1 One side of the chip fixing boss 14 is in direct contact with the heat dissipation substrate 1, and the PCB board 2 is provided with a side on which the conductive layer 7 of the layout circuit faces away from the contact surface contacting the heat dissipation substrate 1.
  • the chip fixing boss 14 of the heat dissipation substrate 1 passes through the fourth through hole 20 of the PCB board 2.
  • the fixing post 9 of the lens positioning ring 5 passes through the third through hole 21 on the PCB board 2, and the second through hole of the heat dissipation substrate 1. 15.
  • the resisting portion 10 at the end of the fixing post 9 is fixed to the PCB board 2 and the heat dissipating substrate 1, so that the PCB board 2 and the heat dissipating substrate 1 are fixed to the lens positioning ring 5.
  • the chip fixing boss 14 is disposed in the first through hole 23 of the corresponding lens positioning ring 5, and the conductive layer 7 of the layout circuit extends between the inner side wall of the first through hole 23 and the outer side wall of the chip fixing boss 14, the LED chip 3 is directly fixed on the end surface of the chip fixing boss 14 by a die bonding process, the gold wire 6 is placed in the lens positioning ring 5, and the gold wire 6-end is electrically connected with the electrode of the LED chip 3, and the other end of the gold wire 6 is extended.
  • the patterned circuit conductive layer 7 entering the lens positioning ring 5 is electrically connected; the lens 4 is mounted on the lens positioning ring 5 and is tightly coupled to the lens positioning ring 5.
  • the encapsulant 8 injected through the glue port 12 and the injection channel 11 further secures the lens 4.
  • an LED integrated structure includes a heat dissipation substrate 50, an LED chip 51, a lens 52, a lens positioning ring 53, a wire 54 electrically connecting the electrodes of the LED chip 51, and an electrical connection wire.
  • a patterned circuit conductive layer 55 of 54 is used to encapsulate the LED chip 51 and the encapsulant 56 of the wire 54.
  • the lens positioning ring 53 is made of high temperature resistant PP0+GF plastic, and the number of lens positioning rings is six. No heat dissipation ribs and heat insulating blind holes are provided on the heat dissipation substrate 50.
  • the heat dissipation substrate 50 is die-cast from a ceramic of high thermal conductivity.
  • the patterned circuit conductive layer 55 is disposed directly on the heat dissipation substrate 50, and the layout circuit conductive layers 55 are distributed on the same plane.
  • the fixing post 57 of the lens positioning ring 53 is fixed to the heat dissipating substrate 50 through the fixing post 57 and the resisting portion 58 at the end of the fixing post 57 through the heat dissipating substrate 50, so that the heat dissipating substrate 50 and the lens positioning ring 53 are fixed together.
  • the heat dissipation substrate 100 is stamped from a thin metal or metal alloy of high thermal conductivity, and the material thereof may be stainless steel, copper, tungsten, aluminum, aluminum nitride, or the like.
  • a chrome or the like or an alloy thereof is provided with a silicon carbide coating (not shown) on the surface of the heat dissipation substrate 100, and the number of the lens positioning rings is three.
  • a heat dissipation blind hole 102 disposed in the chip fixing boss 101 concentric with the chip fixing boss 101 is provided.
  • a fixing post 104 is extended on the lens positioning ring 106, and a resisting portion 105 is formed by heat fusion at the end of the fixing post 104.
  • the fixing post 104 of the lens positioning ring 106 is fixed to the heat dissipating substrate 100 through the heat dissipating substrate 100 through the end portion of the fixing post 104, so that the heat dissipating substrate 100 and the lens positioning ring 106 are fixed together.
  • the plastic lens positioning ring 201 is integrally connected by the connecting ribs 202.
  • An R color LED chip 208, a G color LED chip 209, and a B color LED chip 210 are fixed in the top recess portion 204 of the chip fixing boss 203 by a die bonding process.
  • the chip fixing boss 203 is placed in the first through hole 224 of the corresponding plastic lens positioning ring 201, and the circuit conductive layers 212, 214, 216 are arranged.
  • the anode of the R color LED chip 208 is electrically connected to the first patterned circuit conductive layer 212 between the inner sidewall of the first through hole 224 and the outer sidewall of the chip fixing boss 203 through the gold wire 211, and the R color LED
  • the negative electrode of the chip 208 is electrically connected to the patterned circuit conductive layer 214 between the inner side wall of the first through hole 224 and the outer side wall of the chip fixing boss 203 through the gold wire 213.
  • the positive electrode of the G color LED chip 209 is electrically connected to the patterned circuit conductive layer 216 between the inner side wall of the first through hole 224 and the outer side wall of the chip fixing boss 203 through the gold wire 215, and the G color LED chip 209.
  • Negative The pole is electrically connected to the patterned circuit conductive layer 218 between the inner side wall of the first through hole 224 and the outer side wall of the chip fixing boss 203 through the gold wire 217.
  • the positive electrode of the B color LED chip 210 is electrically connected to the patterned circuit conductive layer 220 extending between the inner side wall of the first through hole 224 and the outer side wall of the chip fixing boss 203 through the gold wire 219, and the B color LED chip 210
  • the negative electrode is electrically connected to the patterned circuit conductive layer 222 between the inner side wall of the first through hole 224 and the outer side wall of the chip fixing boss 203 through the gold wire 221 .
  • the plastic lens positioning member is a lens positioning plastic plate 250, and the number of the lens positioning plastic plates 250 is one.
  • the lens positioning plastic plate 250 is provided with six chip fixing bosses 252 for the heat dissipating substrate 251, and a first through hole 253 for positioning the lens 254 and covering the encapsulant 258.
  • the lens 254 is fixed in the first through hole 253 by a tight fit.
  • a fixing post 255 is extended on the end surface of the lens positioning plastic plate 250. The end of the fixing post 255 is placed in the mold of the molding lens positioning plastic plate 250 by positioning the heat dissipating substrate 251 and the PCB board 256 in the mold positioning plastic plate 250.
  • a resisting portion 257 is formed.
  • the lens positioning plastic plate 250 is provided with a glue injection channel 259 for injecting the encapsulant 258.
  • the glue port 260 of the glue injection channel 259 is placed on the end surface of the lens positioning plastic plate 250 away from the resisting portion, the glue port 260 and the glue injection channel. 259 is in communication with the sidewall of the first through hole 253.
  • Connecting ribs 281, 282, 283, and 284 are additionally connected between the plastic lens positioning rings 280.
  • a positioning post 291 is disposed on the end surface of the plastic lens positioning ring 280, and a positioning hole 286 is disposed on the heat dissipation substrate 285.
  • the positioning hole 288 is matched with the positioning post 291 on the PCB board 287.
  • the plate 287 and the heat dissipation substrate 285 are accurately positioned by the positioning post 291.
  • the PCB board 287, the heat sink substrate 285, and the plastic lens positioning member 289 are fixed together by screws 290 instead of being fixed together by the fixing post and the resisting portion.
  • a fixing hole 292 in the plastic lens positioning member 289 is placed at the joint of the connecting rib and the plastic lens positioning ring 280.
  • the positioning post 301 is convexly disposed on the heat dissipation substrate 300 , and the positioning hole 304 is matched with the positioning post 301 on the plastic lens positioning member 303 .
  • the positioning hole 306 is matched with the positioning post 301.
  • the plastic lens positioning member 303 and the PCB board 305 are accurately positioned by the positioning post 301 and the heat dissipation substrate 300.
  • the PCB board 305, the heat dissipation substrate 300, and the plastic lens positioning member 303 are fixed together by screws 302 instead of being fixed together by the fixing post and the resisting portion.
  • the number of the first through holes 311 on the plastic lens positioning plate 310 is 24.
  • the fixing posts 312 are evenly distributed around the center of each of the four adjacent first through holes 311 and the outside of the first through holes 311.
  • the LED integrated structure includes a lamp cover 321 and an LED integrated structure.
  • the lamp cover 321 and the heat dissipation substrate 322 of the LED integrated structure are fixed together, and the heat dissipation substrate 322 is directly in direct contact with the outside air.
  • the LED integrated structure is the same as that of the fourth embodiment.
  • an LED dot matrix display includes a top cover, a transparent plate 332, and an LED integrated structure.
  • the transparent plate 332 is mounted with the top cover 331, and the top cover 331 is mounted with the heat dissipation substrate 333 of the LED integrated structure.
  • the LED integrated structure further includes an imaging controller 334, and the patterned circuit conductive layer of each chip is electrically connected to the imaging controller 334 individually.
  • a direct type backlight device includes a light guide plate 340 mounted together and
  • the LED backlight module 341, the LED backlight module 341 includes an LED integrated structure, and the LED integrated structure is the same as the implementation 5.
  • an edge-lit backlight device includes a light guide plate 350 and an LED backlight module 351 mounted together.
  • the LED backlight module 351 includes an LED integrated structure, and the LED integrated structure is the same as that of the implementation 5.
  • the LED light source 360 includes an LED integrated structure, and the LED integrated structure is the same as the implementation 5.
  • an LED integrated structure includes a heat dissipation substrate 401, a PCB board 402, an LED chip 403, a lens 404, a plastic lens molding ring 405, and an LED chip 403.
  • the gold wire 406 of the electrode and the patterned circuit conductive layer 407 of the gold wire 406 are electrically connected.
  • the first through hole 408 is a tapered hole of the molded lens 404.
  • the lens fixing 404 and the gold wire 406 are encapsulated by molding the lens 404 to the mold of the molding lens 404, and the chip fixing ring 414, the lens forming ring 405, the LED chip 403, the gold wire 406, and the chip fixing boss 414 of the heat dissipation substrate 401 are glued.
  • the PCB board 402 is fixed.
  • the side wall of the lens 404 is formed by a first through hole 408 which is tapered, and the top of the lens 404 is formed by a mold of the forming lens 404 and is curved.
  • an LED integrated structure includes a heat dissipation substrate 450, an LED chip 451, a lens 452, a plastic lens molding ring 453, a wire 454 electrically connecting the electrodes of the LED chip 451, and an electrical connection.
  • the top of lens 452 is planar.
  • the heat dissipation substrate 450 is die-cast from a ceramic of high thermal conductivity.
  • the heat dissipating substrate 450 includes a flat bottom plate 461, and a plurality of bosses 462 of the protruding bottom plate 461 formed integrally with the heat dissipating substrate 450.
  • Each of the bosses 462 is provided with a second through hole 463 that cooperates with the fixing post 457.
  • the patterned circuit conductive layer 455 is disposed directly on the heat dissipation substrate 450, and the patterned circuit conductive layers 455 are distributed on the same plane.
  • the heat dissipation substrate 500 is stamped from a thin metal or a metal alloy of high thermal conductivity, and the material thereof may be stainless steel, copper, tungsten, aluminum, aluminum nitride, chromium, or the like.
  • the alloy has a silicon carbide coating (not shown) on the surface of the heat dissipation substrate 500, and the number of lens positioning rings is six.
  • a heat dissipation blind hole disposed in the boss 501 concentric with the boss 501 is provided. The side of the heat dissipation substrate 500 facing away from the boss 501 is in direct contact with the heat releasing gas.
  • the fixing post 504 of the lens forming ring 506 is fixed to the heat dissipating substrate 500 through the heat dissipating substrate 500 through the end portion of the fixing post 504, so that the heat dissipating substrate 500 and the lens forming ring 506 are fixed together.
  • the top of the lens 503 is a spherical surface.
  • the plastic lens molding ring 521 is joined as a unitary molded plastic piece 519 by a connecting rib 522.
  • An R color LED chip 528, a G color LED chip 529, and a B color LED chip 530 are fixed in the top cavity 524 of the boss 523 by a die bonding process.
  • the boss 523 is placed in the first through hole 544 corresponding to the plastic lens forming ring 521, and the conductive layers 532, 534, 536 of the layout circuit are arranged.
  • the anode of the R color LED chip 528 is electrically connected to the first patterned circuit conductive layer 532 between the inner side wall of the first through hole 544 and the outer side wall of the boss 523 through the gold wire 531, and the R color LED chip 528.
  • the negative electrode is electrically connected to the patterned circuit conductive layer 534 between the inner side wall of the first through hole 544 and the outer side wall of the boss 523 through the gold wire 533.
  • the positive electrode of the G-color LED chip 529 is electrically connected to the patterned circuit conductive layer 536 between the inner side wall of the first through hole 544 and the outer side wall of the boss 523 through the gold wire 535, and the negative electrode of the G-color LED chip 529
  • the patterned circuit conductive layer 538 between the inner side wall of the first through hole 544 and the outer side wall of the boss 523 is electrically connected by a gold wire 537.
  • the positive electrode of the B-color LED chip 530 is electrically connected to the patterned circuit conductive layer 540 extending between the inner side wall of the first through hole 544 and the outer side wall of the boss 523 via the gold wire 539, and the negative electrode of the B-color LED chip 530.
  • the patterned circuit conductive layer 542 between the inner side wall of the first through hole 544 and the outer side wall of the boss 523 is electrically connected by a wire 541.
  • a reinforcing stud 527 is provided on the lens 525 that mates with a hole 526 in the plastic member 519 of the forming lens.
  • the lens-molded plastic member is a lens-molded plastic plate 600, and the number of the lens-shaped plastic sheets 600 is one.
  • a first through hole 603 for molding the lens 604 is provided on the lens molding plastic plate 600 in cooperation with the boss 602 of the heat dissipation substrate 601.
  • a fixing post 605 is extended on the end surface of the lens molding plastic plate 600, and the heat dissipating substrate 601 and the PCB board 606 are placed in the mold of the molded lens molding plastic plate 600 at the end of the fixing post 605.
  • a resisting portion 607 is formed.
  • Connecting ribs 621, 622, 623, and 624 are additionally connected between the plastic lens positioning rings 620.
  • a positioning post 631 is disposed on the end surface of the plastic lens positioning ring 620, and a positioning hole 626 is disposed on the heat dissipation substrate 625.
  • the positioning hole 628 is matched with the positioning post 631 on the PCB board 627.
  • the plate 627 and the heat dissipation substrate 625 are precisely positioned by the positioning post 631.
  • the PCB board 627, the heat sink substrate 625, and the plastic lens positioning member 629 are fixed together by screws 630 instead of being fixed together by the fixing post and the resisting portion.
  • a fixing hole 632 in the plastic lens positioning member 629 is placed at the joint of the connecting rib and the plastic lens positioning ring 620.
  • the positioning post 651 is protruded from the heat dissipating substrate 650, and the positioning hole 654 is matched with the positioning post 651.
  • the plastic lens positioning member 653 is provided on the PCB board 655.
  • the positioning hole 656 is matched with the positioning post 651, and the plastic lens positioning member 653 and the PCB board 655 are accurately positioned by the positioning post 651 and the heat dissipation substrate 650.
  • the PCB board 655, the heat sink substrate 650, and the plastic lens positioning member 653 are fixed together by screws 652 instead of being fixed together by the fixing post and the resisting portion.
  • the number of the first through holes 671 on the plastic lens positioning plate 670 is 24.
  • the fixing posts 672 are evenly distributed around the center of each of the four adjacent first through holes 671 and the outside of the first through holes 671.
  • a recess 683 formed integrally with the heat dissipation substrate 681 is disposed on a side of the heat dissipation substrate 681 facing the conductive layer 682 of the layout circuit, and the recess 683 is opposite to the recess 683.
  • One side of the conductive layer 682 of the layout circuit is a protrusion 684, and the LED chip 685 is directly fixed in the recess 683 by a die bonding process.
  • the heat dissipation substrate 690 is a flat plate, and the LED chip 691 is directly fixed on the plane of the end portion of the heat dissipation substrate 690 by a die bonding process.
  • the invention is not limited to the above embodiments.
  • the shape of the heat dissipation substrate of the utility model can be designed according to the needs of various shapes, and can even be designed as a product appearance component.
  • the utility model only intercepts the LED chip unit therein, so the mold parting surface of the utility model is only schematically illustrated, and can be based on the substrate. Shape to determine the parting surface.
  • the number of chip fixing bosses in the utility model can be from one to many, and the utility model only exemplifies several LED integrated structural units.
  • the conductive layer of the layout circuit in the present invention is only illustrative. On one chip fixing boss, one LED chip can be fixed, or two different color LED chips can be fixed, three R, G, B different color chips, or more than three chips.
  • the design of the conductive layer of the layout circuit is modified accordingly, which belongs to the prior art, and the present invention will not be described in detail.
  • the heat dissipating substrate is in direct contact with the heat dissipating liquid, and only the heat dissipating substrate does not leak liquid, so the embodiment will not be described in the present invention.

Abstract

LED集成结构,包括散热基板,LED芯片,透镜,定位透镜或成型透镜的塑胶件,在定位透镜或成型透镜的塑胶件上设有第一通孔,定位透镜或成型透镜的塑胶件与散热基板固定;LED芯片通过固晶工艺直接固定在散热基板上,并置于对应的第一通孔内;布图电路导电层伸入第一通孔的侧壁与LED芯片之间,导线置于第一通孔内,导线一端与LED芯片的电极电连接,导线的另一端与第一通孔与LED芯片之间的布图电路导电层电连接;散热基板背离凸台的一侧与散热气体或散热液体直接接触;优点是中间环节热阻小、散热性好、透镜和芯片的位置关系精确、具有高光通量、结构简单、装配简单、散热效果好、光学效果好的LED集成结构。

Description

一种 LED集成结构
技术领域
本实用新型涉及一种用于照明、背光源模组、电视机、 LED点阵显示屏、 投影设备等的 LED集成结构, 特别是涉及一种大功率的 LED集成结构。
背景技术 说
半导体 LED作为新型固体光源,其传统封装是以环氧树脂包封 LED芯片、 引脚电性连接 LED芯片这样的直插结构, 到上世纪 80年代, 开始采用表面 书
贴着技术。 LED光源, 特别是大功率的 LED光源, 发光时热量集中, 如果 LED 芯片产生的热量不及时散发出去, LED光源的温度过高, 就会导致 LED的光 效降低、 寿命低等, 因此如何将 LED芯片发光时产生的热量迅速有效的散发 出去成了普及应用 LED光源的瓶颈。 如何提高 LED光源的透光率, 以及如何 提高 LED光源的散热性能从而延长使用寿命,是目前行业上的重要技术难题。
现有常用的大功率 LED集成结构通常采用支架封装成的单一个体 LED发 光管再集成的方式。
申请号为 200810135621. 5的实用新型专利中, 公开了一种发光二极管 封装装置、散热基座与电极支架组合及其方法,该发光二极管封装装置包含: 一发光二极管晶粒、 一由高导热材质制成且供晶粒接触放置的散热基座、 一 电极支架、 一定位单元及一包覆体。 散热基座由金属或陶瓷等高导热材质制 成, 包括底盘、 本体及本体顶面的凹陷部。 晶粒置于凹陷部的底面。 电极支 架由金属材质冲出成型,包括一基板及一自基板的镂空区周缘轴向延伸且界 定出一容置空间的定位壁。定位单元设于散热基座与电极支架至少其中之一, 用以使散热基座嵌卡固定于该电极支架的容置空间中。该定位单元可以是包 括至少一个自该电极支架的定位壁内壁面凸出的卡樺凸点, 也可以是包括一 自该散热基座近顶面处径向向外凸伸的凸缘。 包覆体以射出成型方式制成, 将相互嵌卡固定的散热基座与电极支架部分包覆结合。 现有的这种发光二极管封装装置、 散热基座与电极支架组合及其方法, 存在以下缺陷和不足:
1 ) 晶粒通过阶梯柱状的散热基座作第一散热体, 由于柱状的散热基座不直 接接触空气来散热, 而且其具有一定的金属实心长度, 由于需要较长的金属 传导散热距离才能将热散发于空气, 且散热基座与空气的接触面积小, 因此 晶粒发光时产生的热量会起到热聚集效应。 为了提高散热性能, 该散热基座 一般还需设计与散热基座直接热传导接触的其它高散热性能的金属或陶瓷 等散热件, 透过散热件来最终散热。 这种方式一方面增加了热传导散热的距 离, 另一方面由于散热基座与散热件分属两个零件, 两者就是使用导热胶粘 合在一起也还是有巨大的热阻, 晶粒发光时基本上会保持散热基座这边温度 很高, 散热件这边温度与环境温度差不多的现象, 达不到将散热基座上的热 量迅速散发出去的目的, 散热效果很差。
2 ) 由于多了柱状的散热基座及电极支架等, 与散热件又是不同的零件, 所 以零件多结构复杂, 厚度较厚, 不利于装配, 成本也高; 发光二极管与布图 电路导电层的电性连接需经过电极支架, 结构复杂, 中间环节的热阻多, 降 低了 LED芯片的发光效率及散热效率。
申请号为 200720172030公开了一种引脚式大功率 L E D器件的封装结 构, 包括 L E D晶片、 透镜、 印刷 PCB板、 金属热沉体、 金线和引脚; 金属 热沉体包括基座和该基座上的凸台, 而且基座的上表面面积至少是凸台的上 表面面积的 2倍; 印刷 PCB板与基座胶粘在一起; 在印刷 PCB板下方的基座 上设置有通孔, 借助该通孔引脚与印刷 PCB板电连接; 透镜罩扣 L E D晶片 和印刷 PCB板并借助灌胶工艺粘固在印刷 PCB板上。这种大功率的引脚式大 功率 L E D器件,虽然增大了金属热沉体的基座面积,但散热效果还是较差, 即使另外配置散热器, 由于散热时须将 LED芯片上的热量传导给凸台和基座 上, 再传给金属热沉体, 再由金属热沉体传导给散热器, 由于热传导增加了 中间环节, 以及很厚的金属传热体对应的很长的传热路径, 因此热阻很高, 导热效果很差。 还有透镜要先靠罩扣在印刷 PCB板上, 再由灌胶来粘固是很 难实现的, 因为透镜先靠罩扣在印刷 PCB板上时很难定位准确, 以及灌胶时 会使透镜移位, 透镜位置无法准确定义。 引脚要与印刷 PCB板上方的布图电 路电连接并穿过印刷 PCB板和金属热沉体, 加工复杂, 工艺难度大, LED晶 片与印刷 PCB上的布图电路的电性连接需经过电极支架, 结构复杂, 中间环 节的热阻多。
为了解决现有的大功率 LED的集成结构的散热问题,现有技术中提出了
LED集成结构的 COB ( Chip on Board ) 封装设计。 与现有的支架式 LED集成 结构相比, 由于该实用新型直接将芯片通过银胶或共晶焊料等固定在基板上, 可以最大限度的减少中间环节的热阻,从而减少 LED芯片 p-n结到外部环境 的热阻, 可提高散热效率和发光效率。 这种 COB (Chip on Board ) 封装设计 的优点在于每个 LED 芯片的电极都通过键合电极引线直接与金属焊盘形成 欧姆接触, 多路 LED芯片阵列的形成是通过散热基板与 LED芯片的电连接装 置实现电性互联, 即可实现 LED芯片的串并联, 又可提高产品的可靠性和合 格率。 而且外形尺寸小, 厚度薄, 易于装配, 可用于照明、 显示仪等对光源 装配尺寸要求较高的场合。 这种封装设计主要有以下几种方式:
申请号为 200920112089. 5的实用新型专利中, 公开了一种 C0B封装的 大功率 LED路灯用装置, 包括透镜、 硅胶、 金线、 芯片、 散热板等, 在散热 板上设置有 5— 50个凸台, 芯片直接固定在散热板的凸台上,再通过散热板 和散热板上的散热片散发出去。 这种结构的大功率 LED路灯, 虽然散热效果 较好, 但由于没有定位透镜或成型透镜的塑胶件, 透镜的定位不准, 在透镜 内预点上硅胶来封装芯片, 一方面硅胶用量大, 特别是用这种封装方式, 封 装硅胶固化后有气泡产生, 严重影响 LED芯片的发光质量, 会导致散发出来 的光线有光斑,阴影等光学先天缺陷,不利于 LED光源的光学二次优化开发。
申请号为 200820214808. X的实用新型专利中, 公开了一种高效散热发 光的大功率 LED封装结构, 包括透镜、 基板与 LED发光芯片, 透镜固定于基 板上表面, 透镜下表面设有向上凸起的安装凹陷, LED发光芯片置于基板上 表面并被安装凹陷扣盖, 在安装凹陷所扣盖的基板上表面设有正、 负发光电 极, 发光电极与 LED发光芯片通过金属线连接, 基板上表面设有与发光电极 相连的正、 负连接电极, 在安装凹陷外侧的透镜下表面与基板上表面之间通 过环形的胶粘层相粘结,在胶粘层的内孔与安装凹陷所形成的腔体内注满硅 胶,在基板上开设有向胶粘层的内孔与安装凹陷所形成的腔体内连通的注胶 通道, 且透镜与基板均由水晶晶体制成。 这种结构的大功率 LED封装结构, 缺点一是透镜与基板的固定靠胶粘层粘结, 粘结固定不牢; 缺点二是无定位 透镜的定位机构, 透镜靠与基板粘结时来定位, 定位不准确, 灌胶时容易 使透镜位置偏离; 缺点三是透镜通过粘结层固定在基板上, 粘结层容易将注 胶通道堵塞, 影响注射硅胶; 缺点四是电性连接 LED发光芯片的金属线需与 固定在基板上并置于透镜的安装凹陷部内的发光电极电性连接, 发光电极再 与连接电极电性连接, 连接电极再与布图电路导电层电性连接, 中间环节的 热阻多, 影响散热效率和发光效率。
申请号为 200420112507. 8 的实用新型专利中, 公开了一种大功率 LED 发光二极管, 包括铝基板、 银胶、 晶片、 金线、 反射盖, 铝基板为凸凹型碗 杯形状, 即在其中心处的底面有一圆形凹槽, 与其对应的上面有一碗杯状凸 台, 凸台上装有塑胶框架, 塑胶框架为圆形, 中心设有圆孔, 与圆孔同心开 有两道凹槽, 内外构成低高两道凸沿, 底面对称设有两个圆柱脚, 并装在碗 杯状凸台两边的圆孔中, 反射盖弧面较小接近于平盖, 其下沿口涂有粘合胶 水, 装之于塑胶框架的凹槽内。 塑胶框架底面涂有粘合胶水, 其内填充有胶 水。 发光体晶片与反射盖底面距离 H值较小。 铝基板可以是梅花形状, 也可 以是圆形。 该专利的组装步骤是, 先将银胶点入铝基板凸台形碗杯内, 再将 晶片固定在银胶上, 放入烤箱内烘烤 145C° 1小时, 然后焊接金线, 将镜片 的正负极分别用金线焊接在铝基板正负极上,将塑胶框架底面涂上粘合胶水, 插入铝基板定位孔内, 将胶水填充进塑胶框架内烘烤, 再将反射盖涂上粘合 胶水, 装入塑胶框架的凹槽内即可使用。 该专利的缺点一是需要通过粘合胶 水将塑胶框架与铝基板固定, 在后续的封装工艺过程中, 不耐高温, 在高温 条件下其固定的可靠性会受很大的影响;缺点二是在塑胶框架上没有注入填 充胶水的通道, 在装反射盖前就需填充胶水, 如果不使用模具, 胶水的形状 无法控制, 如果使用模具填充胶水, 成本高; 缺点三是是填充胶水后再将反 射盖上涂上粘合胶水装入塑胶框架的凹槽内固定, 这样一方面固定不可靠, 位置关系固定不准确, 另外反射盖与胶水间会有间隙, 间隙内会有空气, 也 就是反射盖内会有空气, 大大影响发光二极管的发光效果。 还有该实用新型 专利中的铝基板为碗杯形状, 其上只有一个凸台, 金线电性连接铝基板的正 负极, 从其文字和图公开的内容来看, 铝基板的正负极不会是布图电路导电 层, 而是为如 200820214808. X专利中公开的发光电极或支架式引脚等。 实用新型内容
为了解决现有 LED集成结构中间环节热阻过多而造成的散热不畅,寿命 短,发光效率低下, 及芯片电气互连的可靠性不高造成的良率低等和 C 0 B 技术封装的 L E D芯片集成结构光学效果不好的问题,本实用新型要解决的 技术问题在于提供一种中间环节热阻小、 散热性好、 芯片到布图电路导电层 直接电连接、 不需要回流焊或波峰焊、 封装胶体可以用树脂或硅胶等, 透镜 和芯片的位置关系精确、具有高光通量、结构简单、装配简单、散热效果好、 光学效果好的 LED集成结构。
LED集成结构, 包括散热基板, LED芯片, 透镜, 定位透镜或成型透 镜的塑胶件,电连接 LED芯片电极的导线和电连接导线的布图电路导电层, 其特征在于:在定位透镜或成型透镜的塑胶件上设有一个或一个以上的第一 通孔, 在定位透镜或成型透镜的塑胶件的端面上延伸设有固定柱, 在散热基 板上设有与固定柱配合的第二通孔, 固定柱穿过散热基板的第二通孔, 在固 定柱的端部设有抵挡部; 定位透镜或成型透镜的塑胶件通过固定柱和抵挡部 与散热基板固定; LED芯片通过固晶工艺直接固定在散热基板上, 并置于对 应的第一通孔内; 布图电路导电层伸入第一通孔的侧壁与 LED芯片之间, 导线置于第一通孔内, 导线一端与 LED芯片的电极电连接, 导线的另一端与 第一通孔与 LED芯片之间的布图电路导电层电连接; 散热基板背离凸台的 一侧与散热气体或散热液体直接接触。
作为第一种改进,在散热基板上设有与散热基板一体成型的一个或一个 以上的凸台, LED芯片通过固晶工艺直接固定在凸台的端面上; 凸台置于对 应的第一通孔内。
作为进一步改进, 散热基板背离凸台的一侧与散热气体直接接触; 在散 热基板背离凸台的一侧设有置于凸台内的散热盲孔或散热阶梯通孔, LED芯 片完全覆盖散热阶梯通孔的小孔; 在散热盲孔的周边或散热阶梯通孔大端的 周边背离凸台的一侧的散热基板上设有与基板一体成型的散热凸筋; 凸台为 圆柱形, 在凸台的顶部设有置放 LED芯片的凹陷部, 凹陷部的底面为放置 LED芯片的平面; 凸台的个数为复数个; 布图电路导电层分布在同一个平面 内。
作为第二种改进, 在散热基板上设有与散热基板一体成型的凹陷部, LED芯片通过固晶工艺直接固定在凹陷部的底面上。
作为第三种改进, 散热基板朝向布图电路导电层的面为一平面, LED芯 片通过固晶工艺直接固定该平面上。
作为方案一至方案五的第一种共同改进, 还包括 PCB板, 布图电路导 电层直接设置在 PCB板上,在 PCB板上设有与固定柱配合的第三通孔, PCB 板设有布图电路导电层的一侧背离接触散热基板的接触面, 固定柱依次穿过 PCB板上的第三通孔和散热基板上的第四通孔,再通过热熔的方式成型有抵 挡部或将散热基板、 PCB板置于成型定位透镜或成型透镜的塑胶件的模具内 在成型定位透镜或成型透镜的塑胶件时成型有抵挡部定位塑胶件的模具内 在成型定位透镜或成型透镜的塑胶件时成型固定柱端部的抵挡部。
作为方案一至方案五的第二种共同改进, 散热基板为非金属导热绝缘板, 布图电路导电层直接设置在散热基板上并朝向定位透镜或成型透镜的塑胶 件;通过热熔的方式成型固定柱端部的抵挡部或将散热基板置于成型定位透 镜或成型透镜的塑胶件的模具内在成型定位透镜或成型透镜的塑胶件时成 型固定柱端部的抵挡部。
作为方案一至方案五的第三种共同改进, 所述的散热基板为金属基板, 布图电路导电层直接设置在散热基板上并朝向定位透镜或成型透镜的塑胶 件, 在定位透镜或成型透镜的塑胶件与金属基板之间设有一绝缘层; 通过热 熔的方式成型固定柱端部的抵挡部或将散热基板置于成型定位透镜或成型 透镜的塑胶件的模具内在成型定位透镜或成型透镜的塑胶件时成型固定柱 端部的抵挡部。 作为方案一至方案五的第四种共同改进, 还包括用来封装 LED芯片和 导线的封装胶体;透镜通过与第一通孔紧配合或通过压边机热压固定在定位 透镜或成型透镜的塑胶件上; 在定位透镜或成型透镜的塑胶件上对应第一通 孔的位置设有注入封装胶体的注胶通道,注胶通道的胶口置于定位透镜或成 型透镜的塑胶件远离抵挡部一侧的端面上,胶口和注胶通道与第一通孔的内 侧壁连通; 注入封装胶体后, 封装胶体进一步将透镜固定; 通过热熔的方式 成型固定柱端部的抵挡部或将散热基板置于成型定位透镜或成型透镜的塑 胶件的模具内在成型定位透镜或成型透镜的塑胶件时成型固定柱端部的抵 挡部。
作为方案一至方案五的第五种共同改进, 透镜为封装 LED芯片和导线 的封装胶体; 通过热熔的方式成型固定柱端部的抵挡部或将散热基板置于成 型定位透镜或成型透镜的塑胶件的模具内在成型定位透镜或成型透镜的塑 胶件时成型固定柱端部的抵挡部。
作为方案一至方案五的第六种共同改进, 定位透镜或成型透镜的塑胶件 为塑胶环, 在散热基板上固定有两个或两个以上相互独立的所述的塑胶环。
作为方案一至方案五的第七种共同改进, 定位透镜或成型透镜的塑胶件 包括塑胶环和将设定个数的塑胶环连接在一起的与塑胶环一起注塑成型的 连接筋, 定位透镜或成型透镜的塑胶件包括两个或两个以上所述的塑胶环。
作为方案一至方案五的第八种共同改进, 定位透镜或成型透镜的塑胶件 为板状,在定位透镜或成型透镜的塑胶件上设有两个或两个以上所述的第一 通孔; 透镜与对应的第一通孔紧配合或通过压边机与定位透镜或成型透镜的 塑胶件热压固定。
一种 LED集成结构, 包括散热基板, LED芯片, 透镜, 定位透镜或成 型透镜的塑胶件, 电连接 LED芯片电极的导线和电连接导线的布图电路导 电层, 定位透镜或成型透镜的塑胶件包括塑胶环和将塑胶环连接在一起与塑 胶环一起注塑成型的连接筋; 在塑胶环上设有定位透镜或成型透镜的第一通 孔; 透镜、 第一通孔的个数一一对应; LED芯片置于对应的第一通孔内, 布 图电路导电层伸入第一通孔内, 导线置于第一通孔内, 导线一端与 LED芯片 的电极电连接, 导线的另一端与伸入第一通孔内的布图电路导电层电连接; 还设有将散热基板与定位透镜或成型透镜的塑胶件精确定位的定位机构和 将散热基板与塑胶件固定在一起的紧固件; 散热基板背离芯片固定凸台的一 侧与散热气体或散热液体直接接触。
作为改进, 还包括 PCB板, PCB板置于散热基板设有芯片固定凸台的 一侧, 布图电路导电层直接设置在 PCB板上, PCB板设有布图电路导电层 的一侧背离接触散热基板的接触面, 定位机构将散热基板、 PCB板和定位透 镜或成型透镜的塑胶件精确定位, 紧固件将散热基板、 PCB板和定位透镜或 成型透镜的塑胶件固定在一起。
一种 LED集成结构, 包括散热基板, LED芯片, 透镜, 定位透镜或成 型透镜的塑胶件, 电连接 LED芯片电极的导线和电连接导线的布图电路导 电层, 定位透镜或成型透镜的塑胶件为板状, 在定位透镜或成型透镜的塑胶 件上设有两个或两个以上所述的第一通孔,透镜、第一通孔的个数一一对应; LED芯片置于对应的第一通孔内,布图电路导电层伸入第一通孔内, 导线置 于第一通孔内, 导线一端与 LED芯片的电极电连接, 导线的另一端与伸入第 一通孔内的布图电路导电层电连接; 还设有将散热基板与定位透镜或成型透 镜的塑胶件精确定位的定位机构和将散热基板与塑胶件固定在一起的紧固 件; 散热基板背离芯片固定凸台的一侧与散热气体或散热液体直接接触。
本实用新型的有益效果是:
第一个优点是 LED芯片直接通过固晶工艺固定在芯片固定凸台上,散热 基板背离芯片固定凸台的一侧与散热气体或散热液体直接接触。这种 LED集 成结构的 COB (Chip on Board) 封装设计, 与现有的 LED集成结构相比, 由 于本实用新型直接将 LED芯片通过银胶或共晶焊料等固定在基板的芯片固定 凸台上, LED芯片工作时产生的热量经过散热基板的芯片固定凸台薄薄的导 热层就直接与散热气体如空气接触或与散热液体接触,接触散热基板的热量 因为热冷气体或液体密度差流动效应迅速被带走, 从而带走基板的热量,可 以最大限度的减少中间环节的热阻, 大大减少 LED芯片 p-n结发热部到外部 空气环境或散热液体的传热路径距离, 从而大大减少热阻。本结构的散热基 板为薄板, 散热基板的厚度范围一般在 0. 2mm至 5mm内, 主要应用为在散热 基板上与散热基板一体成型多个芯片固定凸台,基板的面积大大的大于芯片 固定凸台顶部的面积。这样一方面大大减少 LED芯片产生的热量散发于散热 气体即空气中或散热液体中的中间路径距离和大大增加了与散热液体和散 热气体的接触面积, 大大减少了热积聚效应,可大大提高散热效率和使芯片 保持于合适的工作温度,从而保持芯片的长寿命及有效发光效率。 芯片固定 凸台与散热基板一体成型, 因此芯片产生的热量只透过散热基板就直接散发 于空气中,故热阻小, 散热速度快,不须借助其它散热件来散热, 散热效果便 相当好。 LED芯片通过固晶方式直接固定在芯片固定凸台上, LED芯片通过 导线直接与布图电路导电层电连接, 由于有芯片固定凸台,使得电连接导线 对 LED芯片发出的光线的抵挡阴影降到最低 ,利于光学二次优化!省去了现 有的 LED支架,也就是省去了 LED支架中的散热金属件, 及其电极金属脚等 多层中间环节, 尤其避免了散热金属件与散热基板的两个零件之间产生的高 热阻,因此热阻小, 导热快散热效果好, 结构简单可靠, 尤其芯片固定凸台 与散热基板一体成型更有利于光源的设计与装配工艺, 又节省成本。 因此本 实用新型结构简单可靠,零件少,厚度薄, 易于装配, 特别适用于对光源要求 大功率的场合。
第二个优点是由于均设有定位透镜或成型透镜的塑胶件,布图电路导电 层可伸入定位透镜或成型透镜的塑胶件内, 一方面导线可直接与布图电路导 电层电连接,不再需要通过导电金属支架将导线与布图电路导电层连接或通 过接线脚从背离芯片固定凸台的散热基板穿出与布图电路导电层连接,简化 了结构和最大限度的减少中间环节的热阻, 散热效果好; 另一方面不再需要 焊接金属支架或接线脚与布图电路导电层电连接, 不需要回流焊或波峰焊, 因此封装胶体可以用树脂或硅胶等; 而且还可保证 LED芯片、 电连接导线及 其两个焊接端不会暴露于空气中, 有利于使用的长寿命。 而需要回流焊或波 峰焊时, 由于回流焊或波峰焊的温度一般在 250C°或 280C°, 封装胶体就不 可以使用树脂。 由于硅胶的价格远远高于树脂, 透光性比树脂差, 因此本实 用新型可以进一步节省成本, 提高 LED芯片的光学性能。 这种 COB封装设计 的优点在于每个 LED 芯片 2 的电极都通过键合导线直接与布图电路导电层 形成欧姆接触, 多路 LED芯片阵列的形成是通过散热基板与 LED芯片的电连 接装置实现电气互联, 即可实现 LED芯片的串并联, 又可提高产品的可靠性 和生产合格率。
第三个优点是定位透镜或成型透镜的塑胶件通过热熔固定柱与散热基板 定位和固定, 或通过将散热基板置于成型定位透镜或成型透镜的塑胶件的模 具内在成型定位透镜或成型透镜的塑胶件时成型抵挡部将散热基板定位和 固定, 或通过定位机构与散热基板定位和通过紧固件和散热基板固定, 固定 可靠, 在后续的封装工艺过程中, 能耐高温, 在高温条件下其固定的可靠性 也不会受影响; 相对于用紧固件固定, 本技术方案因不需在定位透镜或成型 透镜的塑胶件上设计固定孔, 对于同样大小的第一通孔, 可以减少相邻第一 通孔之间的距离, 因此可在单位面积内布置更多的透镜。 特别是定位透镜或 成型透镜的塑胶件通过在注塑成形定位透镜或成型透镜的塑胶件时与散热 基板固定,一方面省去了将定位透镜或成型透镜的塑胶件安装到散热基板上 的安装工序,对于一个散热基板上设有多个定位透镜或成型透镜的塑胶件的 情况下, 大大节约了生产成本, 另一方面定位透镜或成型透镜的塑胶件与散 热基板在轴向、 径向方向均不存在间隙, 固定非常可靠, 散热基板与定位透 镜或成型透镜的塑胶件之间的位置关系可以非常精确, 定位透镜或成型透镜 的塑胶件上的透镜安装位置尺寸可以非常精确,从而提高 LED集成结构的光 学效果。
第四个优点是散热盲孔或散热阶梯通孔增大散热基板的散热面积,大大 减少 LED芯片与空气之间的距离, 也就是大大减少 LED芯片热量散发于空气 的中间路径距离, 从而大大减少热积聚效应, 所以有散热孔比无孔的散热效 果好。
第五个优点是凸筋进一步增加散热基板与空气接触的面积, 使散热效果 更好。 因为在 LED芯片发光时, 隔热盲孔内的空气不流通, 因此隔热盲孔对 LED芯片产生的热量具有隔热作用, 使 LED芯片产生的热量主要沿芯片固定 凸台和散热凸筋散发到空气中。 第六个优点是凹陷部便于 LED芯片的安装和定位,使 LED芯片的定位更 精确, 更有利于把芯片发出来的光先行定向集聚, 提高光效。
第七个优点是散热基板为绝缘的非金属板, 将布图电路导电层直接设置 在散热基板上, 结构简单, 散热效果好。 散热基板用绝缘导热非金属材料, 因此可以获得低热阻, 能够避免布图电路导电层短路, 且又能使芯片在工作 期间产生的热量通过绝缘导热材质基板传导出去, 良好的热传导使得高密度 大功率 LED集成芯片封装能够实现。
第八个优点是散热基板采用金属材料, 因此可以获得低热阻, 其上面的 布图电路导电层采用一个厚度相当小的绝缘层进行分隔, 此绝缘层能够避免 金属质基板短路,且又能使芯片在工作期间产生的热量通过金属基板传导出 去, 良好的热传导使得高密度大功率 LED集成芯片封装能够实现。
第九个优点是布图电路导电层设置于 PCB板上时, 定位透镜或成型透镜 的塑胶件又可实现把散热基板、 PCB板固定在一起。 使用 PCB板, 便于布图 电路导电层的电路的布图设计,省掉了原来电路布图于散热基板上的复杂的 制造工艺, 使用了非常成熟的 PCB板, 大大节省了成本, 既简化了工艺又提 高了布图电路导电层的可靠性和设计灵活性。 同时 PCB板具有隔热作用, 更 利于散热基板上的热量沿与空气接触的一侧散发出去。
第十个优点是芯片置于塑胶透镜定位环内,在成型定位透镜或成型透镜 的塑胶件时塑胶用量大大减少, 降低成本。 透镜通过紧配合或热压方式固定 在定位透镜或成型透镜的塑胶件上, 这样透镜先固定再封装, 在封装 LED芯 片时, 透镜不会移位, 有利于灌胶和固化工序, 特别是比现有的只通过靠硅 胶等的粘结力来固定透镜可靠得多。
第十一个优点是在一块散热基板上的全部塑胶定位环可在注塑时通过 连接筋连接成一个整体的定位透镜或成型透镜的塑胶件; 也可将一块散热基 板上的部分透镜定位环连接为一个整体的定位透镜或成型透镜的在注塑时 塑胶件,在一块散热基板上设有两个或两个以上这种定位透镜或成型透镜的 塑胶件。 一个芯片固定凸台对应一个塑胶透镜定位环, 在成型塑胶透镜定位 环时塑胶用量少, 成本低。 通过连接筋将塑胶透镜定位环连接为一个整体, 第一是在注塑成型定位透镜或成型透镜的塑胶件时, 其模具浇口可以设置在 塑胶透镜定位环上或连接筋上,便于模具浇口的布置和在注塑时更利于模具 内的塑胶充填平衡,而且不同塑胶透镜定位环之间的塑胶流动通过连接筋来 实现, 可减少模具浇口的数量和便于模具流道的设计, 可用一个模具浇口成 型两个或两个以上的塑胶透镜定位环, 如在塑胶透镜定位环个数较少的情况 下可只直接设计一个直浇口就可成型多个塑胶透镜定位环; 第二是可减少固 定柱的个数, 并不需要在每个塑胶定位环上设有两个或两个以上的固定柱, 这样一方面可降低模具制造成本, 另一方面可在注塑成型定位透镜或成型透 镜的塑胶件时减少塑胶的用量; 第三是对于同样大小的塑胶透镜定位环, 可 将固定柱设计在塑胶透镜定位环和连接筋交界的位置, 因此可增加固定柱的 横截面; 第四是对于同样大小的塑胶透镜定位环, 因为成型相邻的透镜定位 环的模腔薄壁被连通为成型连接筋的型腔, 因此在单位面积内可排列更多的 塑胶透镜定位环, 模具的使用寿命更长; 第五是塑胶透镜定位环与塑胶透镜 定位环之间的位置关系更精确、 固定更可靠, 从而使透镜之间的位置关系更 精确, 提高光学效果。 透镜通过紧配合或热压方式固定在定位透镜或成型透 镜的塑胶件上,这样透镜先固定再封装,在封装 LED芯片时,透镜不会移位, 有利于灌胶和固化工序,特别是比现有的只通过靠硅胶等的粘结力来固定透 镜可靠得多。
第十二个优点是在一块散热基板可只设有一个板状的定位透镜或成型 透镜的塑胶件; 也可在一块散热基板上设有两个或两个以上的板状的定位透 镜或成型透镜的塑胶件。 定位透镜或成型透镜的塑胶件为板状, 第一是在注 塑成型定位透镜或成型透镜的塑胶件时, 其模具浇口设计更灵活, 便于模具 浇口的布置和在注塑时更利于模具内的塑胶充填平衡;第二是可减少固定柱 的个数和可增加固定柱的横截面; 第三是单位面积内可布设更多的透镜; 第 四是透镜之间的位置关系更精确, 提高光学效果。 透镜通过紧配合或热压方 式固定在定位透镜或成型透镜的塑胶件上, 这样透镜先固定再封装, 在封装 LED芯片时, 透镜不会移位, 有利于灌胶和固化工序, 特别是比现有的只通 过靠硅胶等的粘结力来固定透镜可靠得多。 第十三个优点是, 定位透镜或成型透镜的塑胶件为板状, 固定柱置于每 四个相邻的第一通孔的中心。 对于同样大小的第一通孔, 可以最大限度地减 少相邻第一通孔之间的距离, 因此可在单位面积内最大限度地布置更多的透 镜, 应用于点阵显示屏时, 可最大限度实现高清图像显示。
第十四个优点是设在散热基板表面的碳化硅涂层, 同时具有高热传导率 以及高热辐射率等优点,在无强制风扇对流的应用领域下,例如 LED照明, 更能显现其散热功能。碳化硅具有优异之热传导特性(1 30 ~ 1 60W/ m . K), 良好的绝缘性, 并具有比铜、 铝等金属高 5~ 8倍之热辐射率, 且为非金属 等的应用。 例如将铝鰭片喷上碳化硅散热涂料之后, 不但有效将温度降低 5 度〜 7度, 整体散热效率更增加 1 0 %~ 1 5 %。
第十五个优点是注胶通道的胶口置于塑胶透镜定位件远离抵挡部一侧的端 面上, 注胶通道与塑胶透镜定位件的内侧壁连通, 便于注胶; 由于塑胶透镜 定位件是塑胶件, 因此胶口和注胶通道易成型。 在注入封装胶体前, 透镜与 塑胶透镜定位件紧配合或热压固定, 这样透镜先固定再封装, 在封装 LED芯 片时, 透镜不会移位, 有利于灌胶和固化工序, 特别是比现有的只通过靠硅 胶等的粘结力来固定透镜可靠得多。 当封装 LED芯片时, 先把芯片通过固晶 方式固定在散热基板芯片固定凸台上,再焊接电连接导线,然后再安装透镜, 在抽真空环境中通过塑胶透镜定位件上的注胶口进行注胶, 因此, 塑胶透镜 定位件可实现封装时的透镜位置的精确安装, 以及通过抽真空及注胶后把透 镜、 LED芯片、 电连接导线及其两个焊接端、 散热基板及其芯片固定凸台固 化在一起,特别是封装时这种结构可实现在抽真空环境下封装胶体固化时无 气泡产生, 对 LED芯片的发光质量起到重要的保证作用, 不会导致散发出来 的光线有光斑, 阴影等光学先天缺陷; 由于没有了气泡产生的 LED芯片发光 质量的光学先天缺陷, 更有利于 LED光源的光学二次优化开发, 塑胶透镜定 位件使透镜安装方便和实现透镜安装位置精确固定和固定可靠,对光效的聚 集利于光学的二次优化, 最终实现光学效果好, 同时塑胶透镜定位件和透镜 又使注胶时硅胶的填充量少, 可降低成本。
附图说明 图 1是本实用新型实施例 1的主视图。
图 2是沿图 1的 A-A的剖视图。
图 3是本实用新型实施例 1的立体分解示意图。
图 4是本实用新型实施例 1从另一个方向投影的立体分解示意图。 图 5是本实用新型实施例 2的立体分解示意图。
图 6是本实用新型实施例 3的主视图。
图 7是沿图 6的 B-B的剖视图。
图 8是本实用新型实施例 3的立体分解示意图。
图 9是本实用新型实施例 4的立体分解示意图。
图 10是图 9的 I部放大图。
图 11是本实用新型实施例 5的立体分解示意图。
图 12是本实用新型实施例 6的立体分解示意图。
图 13是本实用新型实施例 7的立体分解示意图。
图 14是本实用新型实施例 8的塑胶透镜定位板的立体示意图。 图 15是本实用新型实施例 9的立体示意图。
图 16是本实用新型实施例 10的立体示意图。
图 17是本实用新型实施例 10从另一个方向投影的立体示意图。 图 18是本实用新型实施例 10的 LED集成结构的立体示意图。 图 19是本实用新型实施例 11的立体示意图。
图 20是本实用新型实施例 12的立体示意图。
图 21是本实用新型实施例 13的立体示意图。
图 22是本实用新型实施例 14的主视图。
图 23是沿图 22的 C-C的剖视图。
图 24是本实用新型实施例 14的立体分解示意图。
图 25是本实用新型实施例 15的立体分解示意图。
图 26是本实用新型实施例 16的立体分解示意图。
图 27是本实用新型实施例 17的立体分解示意图。
图 28是图 27的 II部放大图。 图 29是本实用新型实施例 18的立体分解示意图。
图 30是本实用新型实施例 19的立体分解示意图。
图 31是本实用新型实施例 20的立体分解示意图。
图 32是本实用新型实施例 21的塑胶透镜定位板的立体示意图。
图 33是本实用新型实施例 22的主视图。
图 34是沿图 33的 D-D的剖视图。
图 35是本实用新型实施例 23的主视图。
图 36是沿图 35的 E-E的剖视图。
实施例 1
如图 1至图 4所示,一种 LED集成结构,包括散热基板 1, PCB板 2、 LED 芯片 3, 透镜 4, 透镜定位环 5, 电连接 LED芯片 3的电极的金线 6和电连接 金线 6的布图电路导电层 7, 用来封装 LED芯片 3和金线 6的封装胶体 8。 透镜定位环 5选用耐高温的 PPA塑料。
在透镜定位环 5上设有定位透镜 4和包覆封装胶体 8的第一通孔 23,透 镜定位环 5上延伸设有固定柱 9, 在固定柱 9的端部通过将散热基板 1置于 成型透镜定位环 5的模具内在成型塑胶定位环时成型有抵挡部 10。在透镜定 位环 5上设有注入封装胶体 8的注胶通道 11,注胶通道 1 1的胶口 12置于透 镜定位环 5远离抵挡部一侧的端面上,胶口 12和注胶通道 11与第一通孔 23 的侧壁连通。
散热基板 1由高导热材质的薄板金属或金属合金冲压而成, 其材料可以 是不锈钢、 铜、 钨、 铝、 氮化铝、 铬等或其合金。 散热基板 1包括一平板状 的底板 13,与散热基板 1一体成型的凸出底板 13的复数个芯片固定凸台 14, 对应每个芯片固定凸台 14设有与固定柱 9配合的第二通孔 15。 芯片固定凸 台 14的横截面为圆形,底板 13的横截面的面积大大的大于芯片固定凸台 13 的横截面的面积, 至少是芯片固定凸台 13 的横截面的面积的三倍或三倍以 上。在芯片固定凸台 14的顶部设有与芯片固定凸台 14同心的置放 LED芯片 3的凹陷部 16, 凹陷部 16的底面为放置 LED芯片 3的平面。 在散热基板 1 背离芯片固定凸台 14的一侧设有置于芯片固定凸台 14内与芯片固定凸台 14 同心的散热阶梯通孔的大孔 17、 小孔 22。 在阶梯通孔的大孔 17的周边背离 芯片固定凸台 14一侧的散热基板 1上设有与散热基板 1一体成型的散热凸 筋 18, 在散热凸筋 18内设有隔热盲孔 19, 隔热盲孔 19朝向芯片固定凸台 14的一侧与散热基板 1的底板 13朝向芯片固定凸台 14一侧连通。散热基板 1背离芯片固定凸台 14的一侧与散热气体直接接触。
布图电路导电层 7直接设置在 PCB板 2上,布图电路导电层 7分布在同 一个平面上。 在 PCB板 2上对应每个芯片固定凸台 14设有与芯片固定凸台 14配合的第四通孔 20和与固定柱 9配合的第三通孔 21, PCB板 2置于散热 基板 1设有芯片固定凸台 14的一侧并与散热基板 1直接接触, PCB板 2设有 布图电路导电层 7的一侧背离接触散热基板 1的接触面。
散热基板 1的芯片固定凸台 14穿过 PCB板 2的第四通孔 20, 透镜定位 环 5的固定柱 9穿过 PCB板 2上的第三通孔 21、散热基板 1的第二通孔 15, 通过固定柱 9的端部的抵挡部 10与 PCB板 2、 散热基板 1固定, 这样 PCB 板 2和散热基板 1与透镜定位环 5固定在一起。 芯片固定凸台 14置于对应 的透镜定位环 5的第一通孔 23内,布图电路导电层 7伸入第一通孔 23的内 侧壁与芯片固定凸台 14外侧壁之间, LED芯片 3通过固晶工艺直接固定在芯 片固定凸台 14的端面上, 金线 6置于透镜定位环 5内, 金线 6—端与 LED 芯片 3的电极电连接, 金线 6的另一端与伸入透镜定位环 5内的布图电路导 电层 7电连接; 透镜 4安装在透镜定位环 5上与透镜定位环 5紧配合固定。 通过胶口 12和注胶通道 11注入的封装胶体 8进一步将透镜 4固定。
实施例 2
如图 5所示, 与实施例 1不同的是, 一种 LED集成结构, 包括散热基板 50, LED芯片 51, 透镜 52, 透镜定位环 53, 电连接 LED芯片 51电极的导线 54和电连接导线 54的布图电路导电层 55, 用来封装 LED芯片 51和导线 54 的封装胶体 56。 透镜定位环 53选用耐高温的 PP0+GF塑料, 透镜定位环的 个数为六个。 在散热基板 50上不设有散热凸筋和隔热盲孔。
散热基板 50由高导热材质的陶瓷等压铸而成。布图电路导电层 55直接 设置在散热基板 50上, 布图电路导电层 55分布在同一个平面上。 透镜定位环 53的固定柱 57穿过散热基板 50通过固定柱 57和固定柱 57 端部的抵挡部 58与散热基板 50固定,这样散热基板 50与透镜定位环 53固 定在一起。
实施例 3
如图 6至图 8所示, 与实施例 2不同的是, 散热基板 100由高导热材质 的薄板金属或金属合金冲压而成, 其材料可以是不锈钢、 铜、 钨、 铝、 氮化 铝、 铬等或其合金,在散热基板 100表面设有一层碳化硅涂层 (未示出) , 透镜定位环的个数为三个。在散热基板 100背离芯片固定凸台 101的一侧设 有置于芯片固定凸台 101内与芯片固定凸台 101同心的散热盲孔 102。
在透镜定位环 106上延伸设有固定柱 104, 在固定柱 104的端部通过热 熔的方式成型有抵挡部 105。
透镜定位环 106的固定柱 104穿过散热基板 100通过固定柱 104端部热 熔抵挡部与散热基板 100固定,这样散热基板 100与透镜定位环 106固定在 一起。
实施例 4
如图 9、 图 10所示, 与实施例 1不同的是, 塑胶透镜定位环 201通过连 接筋 202连结为一个整体。在芯片固定凸台 203的顶部凹陷部 204内通过固 晶工艺固定有 R色 LED芯片 208、 G色 LED芯片 209、 B色 LED芯片 210。 当 散热基板 200、 PCB板 223和塑胶透镜定位环 201固定在一起时, 芯片固定 凸台 203置于对应塑胶透镜定位环 201的第一通孔 224内,布图电路导电层 212、 214、 216、 218、 220、 222伸入第一通孔 224的内侧壁与芯片固定凸台 203的外侧壁之间并彼此独立, 金线 21 1、 213、 215、 217、 219、 221置于第 一通孔 224内。R色的 LED芯片 208的正极通过金线 211与伸入第一通孔 224 的内侧壁与芯片固定凸台 203的外侧壁之间的第一布图电路导电层 212电连 接, R色的 LED芯片 208的负极通过金线 213与伸入第一通孔 224的内侧壁 与芯片固定凸台 203的外侧壁之间的布图电路导电层 214电连接。 G色的 LED 芯片 209的正极通过金线 215与伸入第一通孔 224的内侧壁与芯片固定凸台 203的外侧壁之间的布图电路导电层 216电连接, G色的 LED芯片 209的负 极通过金线 217与伸入第一通孔 224的内侧壁与芯片固定凸台 203的外侧壁 之间的布图电路导电层 218电连接。 B色的 LED芯片 210的正极通过金线 219 与伸入第一通孔 224的内侧壁与芯片固定凸台 203的外侧壁之间的布图电路 导电层 220电连接, B色的 LED芯片 210的负极通过金线 221与伸入第一通 孔 224的内侧壁与芯片固定凸台 203的外侧壁之间的布图电路导电层 222电 连接。
实施例 5
如图 11所示, 与实施例 4不同的是, 塑胶透镜定位件为透镜定位塑胶 板 250, 透镜定位塑胶板 250的个数为一个。 在透镜定位塑胶板 250上设有 六个与散热基板 251的芯片固定凸台 252—一配合的用来定位透镜 254和包 覆封装胶体 258的第一通孔 253。 透镜 254通过紧配合固定在第一通孔 253 内。 在透镜定位塑胶板 250的端面上延伸设有固定柱 255, 在固定柱 255的 端部通过将散热基板 251、 PCB板 256置于成型透镜定位塑胶板 250的模具 内在成型透镜定位塑胶板 250时成型有抵挡部 257。 在透镜定位塑胶板 250 上设有注入封装胶体 258的注胶通道 259, 注胶通道 259的胶口 260置于透 镜定位塑胶板 250远离抵挡部一侧的端面上,胶口 260和注胶通道 259与第 一通孔 253的侧壁连通。
实施例 6
如图 12所示, 与实施例 4不同的是。 在塑胶透镜定位环 280间还另外 连接有连接筋 281、 282、 283、 284。在塑胶透镜定位环 280的端面上设有定 位柱 291, 在散热基板 285上设有与定位柱 291配合的定位孔 286, 在 PCB 板 287上设有与定位柱 291配合的定位孔 288, PCB板 287、 散热基板 285 通过定位柱 291精确定位。 PCB板 287、 散热基板 285、 塑胶透镜定位件 289 通过螺钉 290固定在一起, 而不是通过固定柱和抵挡部固定在一起。在塑胶 透镜定位件 289上的固定孔 292置于连接筋和塑胶透镜定位环 280的连接处。 实施例 7
如图 13所示, 与实施例 5不同的是, 在散热基板 300上凸设有定位柱 301, 在塑胶透镜定位件 303设有与定位柱 301配合的定位孔 304, 在 PCB 板 305上设有与定位柱 301配合的定位孔 306, 塑胶透镜定位件 303、 PCB 板 305通过定位柱 301与散热基板 300精确定位。 PCB板 305、散热基板 300、 塑胶透镜定位件 303通过螺钉 302固定在一起, 而不是通过固定柱和抵挡部 将固定在一起。
实施例 8
如图 14所示, 与实施例 5不同的是, 在塑胶透镜定位板 310上的第一 通孔 311的个数为 24个。固定柱 312均匀分布在每四个相邻的第一通孔 311 的中心和第一通孔 311的外侧。
实施例 9
Figure imgf000021_0001
包括灯盖 321和 LED集成结构。 灯盖 321 和 LED集成结构的散热基板 322固定在一起,散热基板 322直接与外部的空 气直接接触。 LED集成结构与实施例 4同。
实施例 10
如图 16至图 18所示, 一种 LED点阵显示屏, 包括顶盖 331, 透明板 332和 LED集成结构。 透明板 332与顶盖 331安装在一起、 顶盖 331与 LED 集成结构的散热基板 333安装在一起。 与实施例 6不同的是, LED集成结构 还包括成像控制器 334, 每个芯片的布图电路导电层与成像控制器 334单独 电连接。
实施例 11
如图 19所示, 一种直下式背光装置, 包括安装在一起的导光板 340和
LED背光源模组 341, LED背光源模组 341包括 LED集成结构, LED集成结构 与实施 5相同。
实施例 12
如图 20所示, 一种侧光式背光装置, 包括安装在一起的导光板 350和 LED背光源模组 351, LED背光源模组 351包括 LED集成结构, LED集成结构 与实施 5相同。
实施例 13
种投影装置, 包括 LED光源 360、 成像系统 361和投 影成像屏幕 362, LED光源 360包括 LED集成结构, LED集成结构与实施 5 相同。
实施例 14
如图 22至图 24所示, 与实施例 1不同的是, 一种 LED集成结构, 包 括散热基板 401, PCB板 402、 LED芯片 403, 透镜 404, 塑胶透镜成型环 405, 电连接 LED芯片 403的电极的金线 406和电连接金线 406的布图电路 导电层 407。
第一通孔 408为成型透镜 404的锥形孔。通过向成型透镜 404的模具灌 胶成型透镜 404并对 LED芯片 403和金线 406封装,胶固化透镜 404与透镜 成型环 405、 LED芯片 403、金线 406和散热基板 401的芯片固定凸台 414、 PCB板 402固定。 透镜 404的侧壁由第一通孔 408成型, 为锥形, 透镜 404 的顶部由成形透镜 404的模具成型, 为弧形。
实施例 15
如图 25所示, 与实施例 4不同的是, 一种 LED集成结构, 包括散热基 板 450, LED芯片 451, 透镜 452, 塑胶透镜成型环 453, 电连接 LED芯片 451电极的导线 454和电连接导线 454的布图电路导电层 455。
透镜 452的顶部为平面。
散热基板 450由高导热材质的陶瓷等压铸而成。散热基板 450包括一平 板状的底板 461,与散热基板 450—体成型的凸出底板 461的复数个凸台 462, 对应每个凸台 462设有与固定柱 457配合的第二通孔 463。 布图电路导电层 455直接设置在散热基板 450上,布图电路导电层 455分布在同一个平面上。 实施例 16
如图 26所示, 与实施例 15不同的是, 散热基板 500由高导热材质的薄 板金属或金属合金冲压而成, 其材料可以是不锈钢、 铜、 钨、 铝、 氮化铝、 铬等或其合金, 在散热基板 500表面设有一层碳化硅涂层 (未示出) , 透镜 定位环的个数为六个。在散热基板 500背离凸台 501的一侧设有置于凸台 501 内与凸台 501同心的散热盲孔。散热基板 500背离凸台 501的一侧与散热气 体直接接触。 透镜成型环 506的固定柱 504穿过散热基板 500通过固定柱 504端部热 熔抵挡部 505与散热基板 500固定,这样散热基板 500与透镜成型环 506固 定在一起。
透镜 503的顶部为球面。
实施例 17
如图 27、 图 28所示, 与实施例 14不同的是, 塑胶透镜成型环 521通过 连接筋 522连结为一个整体的成形透镜的塑胶件 519。 在凸台 523的顶部凹 腔 524内通过固晶工艺固定有 R色 LED芯片 528、 G色 LED芯片 529、 B 色 LED芯片 530。 当散热基板 520、 PCB板 543和成形透镜的塑胶件 519固 定在一起时, 凸台 523置于对应塑胶透镜成型环 521的第一通孔 544内, 布 图电路导电层 532、 534、 536、 538、 540、 542伸入第一通孔 544的内侧壁 与凸台 523的外侧壁之间并彼此独立, 金线 531、 533、 535、 537、 539、 541 置于第一通孔 544内。 R色的 LED芯片 528的正极通过金线 531与伸入第 一通孔 544的内侧壁与凸台 523的外侧壁之间的第一布图电路导电层 532电 连接, R色的 LED芯片 528的负极通过金线 533与伸入第一通孔 544的内 侧壁与凸台 523的外侧壁之间的布图电路导电层 534电连接。 G色的 LED 芯片 529的正极通过金线 535与伸入第一通孔 544的内侧壁与凸台 523的外 侧壁之间的布图电路导电层 536电连接, G色的 LED芯片 529的负极通过 金线 537与伸入第一通孔 544的内侧壁与凸台 523的外侧壁之间的布图电路 导电层 538电连接。 B色的 LED芯片 530的正极通过金线 539与伸入第一 通孔 544的内侧壁与凸台 523的外侧壁之间的布图电路导电层 540电连接, B色的 LED芯片 530的负极通过导线 541与伸入第一通孔 544的内侧壁与 凸台 523的外侧壁之间的布图电路导电层 542电连接。在透镜 525上设有与 成形透镜的塑胶件 519上的孔 526配合的加强固定柱 527。
实施例 18
如图 29所示, 与实施例 14不同的是, 透镜成型塑胶件为透镜成型塑胶 板 600, 透镜成型塑胶板 600的个数为一个。 在透镜成型塑胶板 600上设有 与散热基板 601的凸台 602—一配合的用来成型透镜 604的第一通孔 603。 在透镜成型塑胶板 600的端面上延伸设有固定柱 605, 在固定柱 605的端部 通过将散热基板 601、 PCB板 606置于成型透镜成型塑胶板 600的模具内在 成型透镜成型塑胶板 600时成型有抵挡部 607。
实施例 19
如图 30所示, 与实施例 17不同的是。在塑胶透镜定位环 620间还另外 连接有连接筋 621、 622、 623、 624。在塑胶透镜定位环 620的端面上设有定 位柱 631, 在散热基板 625上设有与定位柱 631配合的定位孔 626, 在 PCB 板 627上设有与定位柱 631配合的定位孔 628, PCB板 627、 散热基板 625 通过定位柱 631精确定位。 PCB板 627、 散热基板 625、 塑胶透镜定位件 629 通过螺钉 630固定在一起, 而不是通过固定柱和抵挡部固定在一起。在塑胶 透镜定位件 629上的固定孔 632置于连接筋和塑胶透镜定位环 620的连接处。 实施例 20
如图 31所示, 与实施例 18不同的是, 在散热基板 650上凸设有定位柱 651, 在塑胶透镜定位件 653设有与定位柱 651配合的定位孔 654, 在 PCB 板 655上设有与定位柱 651配合的定位孔 656, 塑胶透镜定位件 653、 PCB 板 655通过定位柱 651与散热基板 650精确定位。 PCB板 655、散热基板 650、 塑胶透镜定位件 653通过螺钉 652固定在一起, 而不是通过固定柱和抵挡部 将固定在一起。
实施例 21
如图 32所示, 与实施例 18不同的是, 在塑胶透镜定位板 670上的第一 通孔 671的个数为 24个。固定柱 672均匀分布在每四个相邻的第一通孔 671 的中心和第一通孔 671的外侧。
实施例 22
如图 33、 34所示, 与实施例 1不同的是, 在散热基板 681上朝向布图 电路导电层 682的一侧设有与散热基板 681—体成型的凹孔 683, 凹孔 683 对应背离布图电路导电层 682的一侧为凸出部 684, LED芯片 685通过固晶 工艺直接固定在凹孔 683内。 如图 35、 36所示, 与实施例 3不同的是, 散热基板 690为一平板, LED 芯片 691通过固晶工艺直接固定在散热基板 690端部的平面上。
本实用新型并不限于上述实施例。 本实用新型散热基板的形状可根据需 要设计各种形状, 甚至可设计为产品外观件, 本实用新型只是截取其中 LED 芯片单元, 故本实用新型的模具分型面只是示意说明, 可以根据基板的形状 来确定分型面。 本实用新型中的芯片固定凸台个数可从一个到很多个, 本实 用新型只是例举几种 LED集成结构单元。本实用新型中的布图电路导电层只 是示意说明。 在一个芯片固定凸台上, 可固定一个 LED芯片, 也可固定两个 不同颜色的 LED芯片, 三个 R、 G、 B不同颜色的芯片, 或者是三个以上的芯 片。 当芯片个数不同时, 布图电路导电层的设计相应修改, 属现有技术, 本 实用新型不再详细说明。 本实用新型中的散热基板与散热液体直接接触, 只 需散热基板不漏液体即可, 故在本实用新型中不再用实施例说明。

Claims

权 利 要 求 书
1、 LED集成结构, 包括散热基板, LED芯片, 透镜, 定位透镜或成型透镜 的塑胶件, 电连接 LED芯片电极的导线和电连接导线的布图电路导电层, 其特征在于:在定位透镜或成型透镜的塑胶件上设有一个或一个以上的第一 通孔, 在定位透镜或成型透镜的塑胶件的端面上延伸设有固定柱, 在散热基 板上设有与固定柱配合的第二通孔, 固定柱穿过散热基板的第二通孔, 在固 定柱的端部设有抵挡部; 定位透镜或成型透镜的塑胶件通过固定柱和抵挡部 与散热基板固定; LED芯片通过固晶工艺直接固定在散热基板上, 并置于对 应的第一通孔内; 布图电路导电层伸入第一通孔的侧壁与 LED芯片之间, 导线置于第一通孔内, 导线一端与 LED芯片的电极电连接, 导线的另一端与 第一通孔与 LED芯片之间的布图电路导电层电连接; 散热基板背离凸台的 一侧与散热气体或散热液体直接接触。
2、 如权利要求 1所述的 LED集成结构, 其特征在于: 在散热基板上设有与 散热基板一体成型的一个或一个以上的凸台, LED芯片通过固晶工艺直接固 定在凸台的端面上; 凸台置于对应的第一通孔内。
3、 如权利要求 2所述的 LED集成结构, 其特征在于: 散热基板背离凸台的 一侧与散热气体直接接触; 在散热基板背离凸台的一侧设有置于凸台内的散 热盲孔或散热阶梯通孔, LED芯片完全覆盖散热阶梯通孔的小孔; 在散热盲 孔的周边或散热阶梯通孔大端的周边背离凸台的一侧的散热基板上设有与 基板一体成型的散热凸筋; 凸台为圆柱形, 在凸台的顶部设有置放 LED芯 片的凹陷部,凹陷部的底面为放置 LED芯片的平面;凸台的个数为复数个; 布图电路导电层分布在同一个平面内。
4、 如权利要求 1所述的 LED集成结构, 其特征在于: 在散热基板上设有与 散热基板一体成型的凹陷部, LED芯片通过固晶工艺直接固定在凹陷部的底 面上。
5、 如权利要求 1所述的 LED集成结构, 其特征在于: 散热基板朝向布图电 路导电层的面为一平面, LED芯片通过固晶工艺直接固定该平面上。
6、 如权利要求 1至 5任意一项所述的 LED集成结构, 其特征在于: 还包括 PCB板, 布图电路导电层直接设置在 PCB板上, 在 PCB板上设有与固定柱 配合的第三通孔, PCB板设有布图电路导电层的一侧背离接触散热基板的接 触面, 固定柱依次穿过 PCB 板上的第三通孔和散热基板上的第四通孔, 再 通过热熔的方式成型有抵挡部或将散热基板、 PCB板置于成型定位透镜或成 型透镜的塑胶件的模具内在成型定位透镜或成型透镜的塑胶件时成型有抵 挡部定位塑胶件的模具内在成型定位透镜或成型透镜的塑胶件时成型固定 柱端部的抵挡部。
7、 如权利要求 1至 5任意一项所述的 LED集成结构, 其特征在于: 散热基 板为非金属导热绝缘板,布图电路导电层直接设置在散热基板上并朝向定位 透镜或成型透镜的塑胶件; 通过热熔的方式成型固定柱端部的抵挡部或将散 热基板置于成型定位透镜或成型透镜的塑胶件的模具内在成型定位透镜或 成型透镜的塑胶件时成型固定柱端部的抵挡部。
8、 如权利要求 1至 5任意一项所述的 LED集成结构, 其特征在于: 所述的 散热基板为金属基板,布图电路导电层直接设置在散热基板上并朝向定位透 镜或成型透镜的塑胶件,在定位透镜或成型透镜的塑胶件与金属基板之间设 有一绝缘层; 通过热熔的方式成型固定柱端部的抵挡部或将散热基板置于成 型定位透镜或成型透镜的塑胶件的模具内在成型定位透镜或成型透镜的塑 胶件时成型固定柱端部的抵挡部。
9、 如权利要求 1至 5任意一项所述的 LED集成结构, 其特征在于: 还包括 用来封装 LED芯片和导线的封装胶体; 透镜通过与第一通孔紧配合或通过 压边机热压固定在定位透镜或成型透镜的塑胶件上; 在定位透镜或成型透镜 的塑胶件上对应第一通孔的位置设有注入封装胶体的注胶通道,注胶通道的 胶口置于定位透镜或成型透镜的塑胶件远离抵挡部一侧的端面上,胶口和注 胶通道与第一通孔的内侧壁连通; 注入封装胶体后, 封装胶体进一步将透镜 固定; 通过热熔的方式成型固定柱端部的抵挡部或将散热基板置于成型定位 透镜或成型透镜的塑胶件的模具内在成型定位透镜或成型透镜的塑胶件时 成型固定柱端部的抵挡部。
10、 如权利要求 1至 5任意一项所述的 LED集成结构, 其特征在于: 透镜 为封装 LED芯片和导线的封装胶体; 通过热熔的方式成型固定柱端部的抵 挡部或将散热基板置于成型定位透镜或成型透镜的塑胶件的模具内在成型 定位透镜或成型透镜的塑胶件时成型固定柱端部的抵挡部。
11、 如权利要求 1至 5任意一项所述的一种 LED集成结构, 其特征在于: 定位透镜或成型透镜的塑胶件为塑胶环,在散热基板上固定有两个或两个以 上相互独立的所述的塑胶环。
12、 如权利要求 1至 5任意一项所述的一种 LED集成结构, 其特征在于: 定位透镜或成型透镜的塑胶件包括塑胶环和将设定个数的塑胶环连接在一 起的与塑胶环一起注塑成型的连接筋, 定位透镜或成型透镜的塑胶件包括两 个或两个以上所述的塑胶环。
13、 如权利要求 1至 5任意一项所述的一种 LED集成结构, 其特征在于: 定位透镜或成型透镜的塑胶件为板状,在定位透镜或成型透镜的塑胶件上设 有两个或两个以上所述的第一通孔; 透镜与对应的第一通孔紧配合或通过压 边机与定位透镜或成型透镜的塑胶件热压固定。
14、 一种 LED集成结构, 包括散热基板, LED芯片, 透镜, 定位透镜或成 型透镜的塑胶件, 电连接 LED芯片电极的导线和电连接导线的布图电路导 电层, 其特征在于: 定位透镜或成型透镜的塑胶件包括塑胶环和将塑胶环连 接在一起与塑胶环一起注塑成型的连接筋; 在塑胶环上设有定位透镜或成型 透镜的第一通孔; 透镜、第一通孔的个数一一对应; LED芯片置于对应的第 一通孔内, 布图电路导电层伸入第一通孔内, 导线置于第一通孔内, 导线一 端与 LED芯片的电极电连接, 导线的另一端与伸入第一通孔内的布图电路导 电层电连接; 还设有将散热基板与定位透镜或成型透镜的塑胶件精确定位的 定位机构和将散热基板与塑胶件固定在一起的紧固件; 散热基板背离芯片固 定凸台的一侧与散热气体或散热液体直接接触。
15、 如权利要求 14所述的一种 LED集成结构, 其特征在于: 还包括 PCB 板, PCB板置于散热基板设有芯片固定凸台的一侧, 布图电路导电层直接设 置在 PCB板上, PCB板设有布图电路导电层的一侧背离接触散热基板的接 触面, 定位机构将散热基板、 PCB板和定位透镜或成型透镜的塑胶件精确定 位,紧固件将散热基板、 PCB板和定位透镜或成型透镜的塑胶件固定在一起。
16、 一种 LED集成结构, 包括散热基板, LED芯片, 透镜, 定位透镜或成 型透镜的塑胶件, 电连接 LED芯片电极的导线和电连接导线的布图电路导 电层, 其特征在于: 定位透镜或成型透镜的塑胶件为板状, 在定位透镜或成 型透镜的塑胶件上设有两个或两个以上所述的第一通孔, 透镜、 第一通孔的 个数一一对应; LED芯片置于对应的第一通孔内,布图电路导电层伸入第一 通孔内, 导线置于第一通孔内, 导线一端与 LED芯片的电极电连接, 导线的 另一端与伸入第一通孔内的布图电路导电层电连接; 还设有将散热基板与定 位透镜或成型透镜的塑胶件精确定位的定位机构和将散热基板与塑胶件固 定在一起的紧固件; 散热基板背离芯片固定凸台的一侧与散热气体或散热液 体直接接触。
17、 如权利要求 16所述的一种 LED集成结构, 其特征在于: 还包括 PCB 板, PCB板置于散热基板设有芯片固定凸台的一侧, 布图电路导电层直接设 置在 PCB板上, PCB板设有布图电路导电层的一侧背离接触散热基板的接 触面, 定位机构将散热基板、 PCB板和定位透镜或成型透镜的塑胶件精确定 位,紧固件将散热基板、 PCB板和定位透镜或成型透镜的塑胶件固定在一起。
18、 一种具有如权利要求 1至 5任意一项所述的 LED集成结构的 LED灯。
19、 一种具有如权利要求 1至 5任意一项所述的 LED点阵显示屏, 在所述 的 LED点阵显示屏内包括所述的 LED集成结构, 所述的 LED集成结构还 包括成像控制器, 每个芯片的布图电路导电层与成像控制器单独电连接。
20、一种具有如权利要求 1至 5任意一项所述的 LED集成结构的背光装置, 包括安装在一起的导光板和 LED背光源, LED背光源包括所述的 LED集成 结构。
21、一种具有如权利要求 1至 5任意一项所述的 LED集成结构的投影装置, 包括光源、成像系统和投影成像屏幕, LED光源包括所述的 LED集成结构。
PCT/CN2010/079763 2010-07-07 2010-12-14 一种led集成结构 WO2012003698A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201020262611.0 2010-07-07
CN2010202626110U CN201803228U (zh) 2010-07-07 2010-07-07 一种led集成结构

Publications (1)

Publication Number Publication Date
WO2012003698A1 true WO2012003698A1 (zh) 2012-01-12

Family

ID=43872726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079763 WO2012003698A1 (zh) 2010-07-07 2010-12-14 一种led集成结构

Country Status (2)

Country Link
CN (1) CN201803228U (zh)
WO (1) WO2012003698A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ304890B6 (cs) * 2013-09-03 2015-01-07 Pavel Dvořák Optimalizovaný panel LED diod

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102682673A (zh) * 2011-09-30 2012-09-19 杨东佐 Led点阵显示屏及组合式点阵显示屏
CN102682672B (zh) * 2011-09-30 2014-08-27 杨东佐 Led点阵显示屏
WO2013044601A1 (zh) * 2011-09-30 2013-04-04 Yang Dongzuo 一种led点阵显示屏及组合式点阵显示屏
CN103366645A (zh) * 2013-03-22 2013-10-23 美的集团武汉制冷设备有限公司 一种发光显示装置
CN103486504A (zh) * 2013-09-30 2014-01-01 青岛海信电器股份有限公司 一种背光模组及显示装置、电视机
CN104676399A (zh) * 2013-11-30 2015-06-03 鸿富锦精密工业(深圳)有限公司 Led路灯
CN104676377B (zh) * 2015-02-12 2018-01-30 深圳市华星光电技术有限公司 液晶显示装置及其背光模组
CN108333856B (zh) * 2017-01-19 2023-07-07 奥比中光科技集团股份有限公司 光学投影装置及应用其的深度相机
CN108761913A (zh) * 2018-05-31 2018-11-06 江苏聚泰科技有限公司 一种具有良好散热性能的密封背光模组
CN108758450A (zh) * 2018-07-30 2018-11-06 湖州明朔光电科技有限公司 石墨烯散热led四眼模组
CN109637356A (zh) * 2019-01-07 2019-04-16 成都中电熊猫显示科技有限公司 背板及使用该背板的显示装置
US11402733B2 (en) * 2020-05-29 2022-08-02 Mega1 Company Ltd. Projecting apparatus
CN112923248B (zh) * 2021-02-26 2022-12-23 同辉电子科技股份有限公司 一种均匀出光的cob光源
CN113470544B (zh) * 2021-06-23 2023-02-14 深圳市奥蕾达科技有限公司 一种户外格栅屏

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1787242A (zh) * 2004-12-10 2006-06-14 北京大学 一种倒装led芯片的封装方法
CN200982585Y (zh) * 2006-09-06 2007-11-28 武汉盟信科技有限责任公司 基于led光源系统的合光模块
CN101123286A (zh) * 2006-08-09 2008-02-13 刘胜 发光二极管封装结构和方法
US20080061314A1 (en) * 2006-09-13 2008-03-13 Tsung-Jen Liaw Light emitting device with high heat-dissipating capability
JP2009302202A (ja) * 2008-06-11 2009-12-24 Panasonic Electric Works Co Ltd 発光装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1787242A (zh) * 2004-12-10 2006-06-14 北京大学 一种倒装led芯片的封装方法
CN101123286A (zh) * 2006-08-09 2008-02-13 刘胜 发光二极管封装结构和方法
CN200982585Y (zh) * 2006-09-06 2007-11-28 武汉盟信科技有限责任公司 基于led光源系统的合光模块
US20080061314A1 (en) * 2006-09-13 2008-03-13 Tsung-Jen Liaw Light emitting device with high heat-dissipating capability
JP2009302202A (ja) * 2008-06-11 2009-12-24 Panasonic Electric Works Co Ltd 発光装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ304890B6 (cs) * 2013-09-03 2015-01-07 Pavel Dvořák Optimalizovaný panel LED diod

Also Published As

Publication number Publication date
CN201803228U (zh) 2011-04-20

Similar Documents

Publication Publication Date Title
WO2012003698A1 (zh) 一种led集成结构
WO2012034332A1 (zh) 一种带有冷却装置的led集成结构
WO2012003699A1 (zh) Led集成结构及制造方法
TWI528508B (zh) 高功率發光二極體陶瓷封裝之製造方法
WO2012027937A1 (zh) 带有冷却装置的led集成结构
TWI331380B (en) Power surface mount light emitting die package
WO2012003700A1 (zh) 一种led集成结构的制造方法
JP4841836B2 (ja) フリップチップ式発光ダイオードの発光装置製造方法
KR101778867B1 (ko) 호환성 및 통용성이 높은 led 벌브 구성 방법과 일체식 led 벌브 및 램프
JP2004207367A (ja) 発光ダイオード及び発光ダイオード配列板
US20120043886A1 (en) Integrated Heat Conductive Light Emitting Diode (LED) White Light Source Module
CN101672441A (zh) 低热阻led光源模块
WO2013044601A1 (zh) 一种led点阵显示屏及组合式点阵显示屏
CN102130111A (zh) 液体封装的大功率led装置以及led装置的封装方法
JP2008130735A (ja) 発光装置の製造方法
CN203503708U (zh) 蓝宝石基led封装结构
CN109659418A (zh) Led倒装集成封装模组
JP3243787U (ja) Ledブラケット、ledランプビーズ、電気ベース、及び発光ユニットモジュール
CN107204393B (zh) 一种焊接式散热器与芯片一体化封装光源结构
CN202651190U (zh) 一种led散热封装结构和led灯
CN102297356A (zh) Led集成组合的单颗大功率光源筒灯
CN220652039U (zh) 半导体发光单元
CN104319337A (zh) 无基板的led器件及其制造方法
CN103165792A (zh) 一种led散热封装结构、led灯及其制造方法
CN212874540U (zh) 一种热电分离式大功率贴片凸头led灯珠

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10854357

Country of ref document: EP

Kind code of ref document: A1