WO2012003700A1 - 一种led集成结构的制造方法 - Google Patents

一种led集成结构的制造方法 Download PDF

Info

Publication number
WO2012003700A1
WO2012003700A1 PCT/CN2010/079794 CN2010079794W WO2012003700A1 WO 2012003700 A1 WO2012003700 A1 WO 2012003700A1 CN 2010079794 W CN2010079794 W CN 2010079794W WO 2012003700 A1 WO2012003700 A1 WO 2012003700A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
hole
heat dissipation
positioning
plastic part
Prior art date
Application number
PCT/CN2010/079794
Other languages
English (en)
French (fr)
Inventor
杨东佐
Original Assignee
Yang Dongzuo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yang Dongzuo filed Critical Yang Dongzuo
Publication of WO2012003700A1 publication Critical patent/WO2012003700A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • F21V17/005Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages with keying means, i.e. for enabling the assembling of component parts in distinctive positions, e.g. for preventing wrong mounting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48111Disposition the wire connector extending above another semiconductor or solid-state body
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/021Components thermally connected to metal substrates or heat-sinks by insert mounting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0323Working metal substrate or core, e.g. by etching, deforming

Definitions

  • the present invention relates to a method of fabricating an LED integrated structure for illumination, a backlight module, a television, an LED dot matrix display, a projection device, etc., and more particularly to a method of manufacturing a high power LED integrated structure.
  • the pin is electrically connected to the in-line structure of the LED chip, and by the 1980s, surface mount technology was adopted.
  • LED light source especially high-power LED light source
  • the heat is concentrated when the light is emitted. If the heat generated by the LED chip is not released in time, the temperature of the LED light source is too high, which will lead to reduced light efficiency and low life of the LED, so how to The heat generated by the LED chip is quickly and effectively dissipated and becomes a bottleneck for popularizing LED light sources. How to improve the light transmittance of LED light sources and how to improve the heat dissipation performance of LED light sources to prolong the service life is an important technical problem in the industry.
  • the light emitting diode package device comprises: a light emitting diode die, and a high thermal conductive material And a heat dissipation base for the die contact, an electrode holder, a positioning unit and a covering body.
  • the heat sink base is made of a highly thermally conductive material such as metal or ceramic, and includes a recessed portion of the chassis, the body, and the top surface of the body. The crystal grains are placed on the bottom surface of the depressed portion.
  • the electrode holder is punched out from a metal material, and includes a substrate and a positioning wall extending axially from the periphery of the hollow portion of the substrate and defining an accommodation space.
  • the positioning unit is disposed on at least one of the heat dissipation base and the electrode holder, so that the heat dissipation base is embedded and fixed in the accommodating space of the electrode holder.
  • the positioning unit may be at least one card-bumping protrusion protruding from the inner wall surface of the positioning wall of the electrode holder, or may include a flange protruding radially outward from the top surface of the heat-dissipating base.
  • the production method includes the following steps: Step (A): providing a heat sink base;
  • the existing LED package device, heat sink base and electrode holder combination and method thereof have the following defects and deficiencies:
  • the die passes through the stepped column-shaped heat sink base as the first heat sink. Since the columnar heat sink base does not directly contact the air to dissipate heat, and has a certain solid metal length, it requires a long metal conduction heat dissipation distance. The heat is emitted to the air, and the contact area of the heat dissipation base with the air is small, so the heat generated when the crystal grains emit light has a heat accumulation effect. In order to improve the heat dissipation performance, the heat sink base generally needs to design other heat dissipation metal or ceramic heat sinks that are in direct thermal conduction contact with the heat sink base, and finally dissipate heat through the heat sink.
  • this method increases the distance of heat conduction and heat dissipation.
  • the heat dissipation base and the heat sink are divided into two parts, the two are bonded together with the thermal conductive glue, and there is still a huge thermal resistance.
  • the temperature of the heat sink base is kept high, and the temperature of the heat sink is similar to the ambient temperature.
  • the heat on the heat sink base is not quickly dissipated, and the heat dissipation effect is poor.
  • the heat-dissipating pedestal and the electrode holder need to be separately formed in the manufacturing method.
  • multiple steps are required to punch out the formed electrode holder, and the stamping die structure of the electrode holder is complicated, and the electrode holder and the heat dissipation are also required to be added. Since the substrate is mounted together, the number of steps in the manufacturing method is complicated, the process is complicated, the mold structure is complicated, and the manufacturing cost is high.
  • Application No. 200720172030 discloses a package structure of a pin-type high-power LED device, including an LED chip, a lens, a printed PCB board, a metal heat sink body, a gold wire and a lead;
  • the metal heat sink body includes a base and the base a boss on the seat, and the upper surface area of the base is at least twice the area of the upper surface of the boss;
  • the printed PCB board is glued to the base; and the through hole is disposed on the base below the printed PCB board.
  • the through-hole pin is electrically connected to the printed PCB board; the lens cover LED chip and the printed PCB board are adhered to the printed PCB board by a potting process.
  • This high-power pin-type high-power LED device although increasing the base area of the metal heat sink body, has a poor heat dissipation effect. Even if a heat sink is additionally disposed, the heat on the LED chip must be conducted due to heat dissipation.
  • the bump and the base are transferred to the metal heat sink body, and then transferred to the heat sink by the metal heat sink body, which increases the intermediate link due to heat conduction and the long heat transfer path corresponding to the thick metal heat transfer body. Therefore, the thermal resistance is high and the thermal conductivity is very poor.
  • the pin is electrically connected to the layout circuit above the printed PCB board and passes through the printed PCB board and the metal heat sink body. The processing is complicated and the process is difficult; the electrical connection between the LED chip and the layout circuit on the printed PCB needs to pass through the electrode.
  • the bracket has a complicated structure and many thermal resistances in the middle part.
  • a white LED integrated array illumination source based on the C 0 B technology package which comprises a substrate and a plurality of LED chips, wherein the substrate is provided with a plurality of grooves thereon
  • the wiring forms an electronic circuit, and the electronic circuit cooperates with the chip component disposed on the substrate to form a printed PCB board having a specific function and electrical connection; the LED chip is bonded to the bottom of the groove of the substrate, and the electrode wire is bonded to the specified solder
  • the circuit forms a circuit with the electronic circuit and the chip component, and the LED chip is further coated with phosphor; and the transparent light-emitting layer is disposed above the LED light-emitting area on the substrate.
  • One of the disadvantages of the above C 0 B packaging technology is that the LED chip is bonded to the base. At the bottom of the groove of the board, when the LED chip is packaged, a large amount of silica gel needs to be filled. Since the price of the silica gel is expensive, the cost is increased.
  • the disadvantage is that the LED chip is difficult to achieve the distance required according to the lens focus.
  • the disadvantage is that the package electrode lead must be The LED chip at the bottom of the pedestal is electrically connected to the layout circuit on the upper surface of the pedestal. The light emitted by the LED chip may cause shadows due to the obstruction of the excessively long leads, which affects the optical effect, and is particularly disadvantageous for secondary optical optimization development.
  • the utility model does not disclose how to electrically connect the electronic circuit and the patch component. Since the electronic circuit is all placed in the reflector, the electronic circuit and the patch are seen from the figure, especially the content disclosed in FIG. The electrical connection between the components also needs to be connected by pins from the back of the substrate.
  • a device for high-power LED street lamp with COB package which comprises a lens, a silica gel, a gold wire, a chip, a heat sink, etc., and 5-50 pieces are arranged on the heat dissipation plate.
  • the boss, the chip is directly fixed on the boss of the heat sink, and then radiated through the heat sink and the heat sink on the heat sink.
  • the high-power LED street lamp of this structure has better heat dissipation effect, but since there is no plastic lens for locating the lens or forming the lens, the positioning of the lens is not accurate, and the silicon dioxide is pre-pointed in the lens to encapsulate the chip, and on the one hand, the amount of the silicone is large.
  • this packaging method bubbles are generated after the packaged silica gel is solidified, which seriously affects the light-emitting quality of the LED chip, which causes the emitted light to have spots, shadows and other optical congenital defects, which is not conducive to the optical secondary optimization development of the LED light source.
  • a high-power LED package structure with high-efficiency heat-dissipating illumination which comprises a lens, a substrate and an LED light-emitting chip.
  • the lens is fixed on the upper surface of the substrate, and the lower surface of the lens is provided with an upward convex surface.
  • the mounting recess is disposed on the upper surface of the substrate and is mounted with a recessed cover.
  • the upper surface of the substrate that is fastened by the mounting recess is provided with positive and negative light emitting electrodes, and the light emitting electrode and the LED light emitting chip are connected by a metal wire.
  • the surface is provided with positive and negative connecting electrodes connected to the light emitting electrodes, and the lower surface of the lens outside the mounting recess and the upper surface of the substrate are bonded by an annular adhesive layer, and formed in the inner hole of the adhesive layer and the mounting recess.
  • the cavity is filled with silica gel, and a glue injection channel is formed on the substrate to communicate with the inner hole of the adhesive layer and the cavity formed by the mounting recess, and the lens and the substrate are both made of crystal crystal.
  • the high-power LED package structure of this structure has the disadvantage that the fixing of the lens and the substrate is adhered by the adhesive layer, and the bonding is not firmly fixed; the second disadvantage is that the positioning mechanism of the positioning lens is not positioned when the lens is bonded to the substrate.
  • the positioning is not accurate, and the position of the lens is easily deviated during the filling;
  • the third disadvantage is that the lens is fixed on the substrate through the adhesive layer, and the adhesive layer is easy to be injected. The rubber channel is blocked, which affects the injection of silica gel.
  • the disadvantage is that the metal wire electrically connected to the LED light-emitting chip is electrically connected to the light-emitting electrode fixed on the substrate and placed in the mounting recess of the lens, and the light-emitting electrode is electrically connected to the connecting electrode.
  • the connecting electrode is electrically connected to the conductive layer of the layout circuit, and the thermal resistance of the intermediate link is much, which affects the heat dissipation efficiency and the luminous efficiency.
  • the disadvantage is that the distance between the LED light emitting chip and the concave portion of the lens is large, the light refractive loss is large, and the luminous efficiency is low. .
  • a light-emitting diode chip package structure using a ceramic substrate which comprises: a ceramic substrate, a conductive unit, a hollow ceramic shell, a plurality of light-emitting diode chips, and an encapsulant.
  • the ceramic substrate has a body, a plurality of bumps, a plurality of through holes penetrating the bumps, and a plurality of semi-perforations formed on the side of the body and between each of the two bumps;
  • the conductive unit has a plurality of respectively a first conductive layer formed on the surface of the bumps, a plurality of second conductive layers respectively formed on the inner surfaces of the semi-perforations and a bottom surface of the body, and a plurality of third conductive layers respectively filling the through holes
  • the hollow ceramic housing is fixed on the top surface of the body to form an accommodating space; the LED chips are respectively disposed in the accommodating space; and the encapsulant is filled in the accommodating space.
  • the manufacturing method of the ceramic substrate-based LED chip package structure comprises the following steps:
  • a plurality of LED chips are respectively disposed in the accommodating space, and the positive and negative ends of each of the LED chips are electrically connected to different first conductive layers respectively; and an encapsulant is filled in the accommodating space to Covering the light emitting diode chips.
  • a disadvantage of the invention is that the electrical connection of the LED chip to the external circuit needs to pass through the first conductive layer of the bump surface and the through hole. The third conductive layer, the second conductive layer in the semi-through hole, the bottom pin, etc.
  • the electrical connection of the LED chip is complicated, and the thermal resistance of the intermediate link is excessive; It is a light-emitting diode chip that requires two bumps, and all the bumps are placed in the accommodating space of the ceramic housing, so that the distance between the light-emitting diodes is relatively large, and the individual package of each light-emitting diode chip cannot be realized. There are many encapsulants required, and the optical effect is not good.
  • the production of the through holes is difficult in sintering the ceramic; the conductive layers in the through holes and the semi-through holes are difficult to manufacture.
  • a high-power LED light-emitting diode which comprises an aluminum substrate, a silver paste, a wafer, a gold wire, a reflective cover, and the aluminum substrate has a convex-concave cup shape, that is, at the center thereof.
  • the bottom surface has a circular groove, and a corresponding cup-shaped boss is arranged on the upper surface thereof, the plastic frame is arranged on the boss, the plastic frame is circular, the center is provided with a circular hole, and two grooves are concentrically opened with the circular hole.
  • the inner and outer parts are composed of two high and low convex edges.
  • the bottom surface is symmetrically provided with two cylindrical legs, and is installed in the circular holes on both sides of the cup-shaped boss.
  • the curved surface of the reflective cover is smaller than the flat cover, and the lower edge is coated with glue.
  • glue Glue water, packed in the groove of the plastic frame.
  • the bottom of the plastic frame is coated with adhesive glue filled with glue.
  • the distance between the illuminant wafer and the bottom surface of the reflective cover is small.
  • the aluminum substrate may be in the shape of a plum or a circle.
  • the technology disclosed in this patent is closest to the present invention. The assembly procedure of the patent is that the silver glue is first placed into the aluminum substrate boss cup, and then the wafer is fixed on the silver glue and baked in the oven.
  • the plastic frame and the aluminum substrate need to be fixed by adhesive glue, which is not resistant to high temperature in the subsequent packaging process, and the reliability of the fixing under high temperature conditions is greatly affected; There is no channel for filling the glue on the plastic frame. Before the reflector is installed, the glue needs to be filled. If the mold is not used, the shape of the glue cannot be controlled.
  • the disadvantage is that the glue is filled.
  • the reflective cover is coated with adhesive glue and fixed in the groove of the plastic frame.
  • the fixing is unreliable, the positional relationship is fixed inaccurately, and there is a gap between the reflective cover and the glue, and there is air in the gap, that is, reflection.
  • the aluminum substrate in the utility model patent is in the shape of a bowl, and only There is a boss, the gold wire is electrically connected to the positive and negative electrodes of the aluminum substrate. From the contents of the text and the disclosure of the figure, the positive and negative electrodes of the aluminum substrate are not the conductive layer of the layout circuit, but are, for example, 200820214808.
  • the manufacturing process is complicated, the process is large, and the heat resistance of the intermediate part of the LED integrated structure produced is too low, the heat dissipation is poor, the life is short, the luminous efficiency is low, and the chip is electrically interconnected.
  • the problem of low yield due to low reliability and poor optical performance of the LED chip integrated structure of the C 0 B technology package, the technical problem to be solved by the present invention is to provide a method for manufacturing an LED integrated structure, which is simple in process.
  • the steps of the LED integrated structure manufactured by the method are small, the heat dissipation is good, the conductive layer of the chip-to-pattern circuit is directly electrically connected, the reflow soldering or the wave soldering is not required, and the encapsulant can be made of resin or silica gel.
  • the positional relationship between the lens and the chip is precise, the luminous flux is high, the structure is simple, the assembly is simple, the heat dissipation effect is good, and the optical effect is good.
  • all the technical solutions of the present invention improve the heat dissipating substrate, and one or more chip fixing bosses integrally formed with the heat dissipating substrate are disposed on the heat dissipating substrate, and the LED chip is directly fixed by a die bonding process.
  • the side of the heat-dissipating substrate facing away from the chip fixing boss is in direct contact with the heat-dissipating gas or the heat-dissipating liquid; and each of the plastic parts of the positioning lens or the forming lens is provided on the plastic part of the positioning lens or the molded lens.
  • the first fixing hole of the chip fixing boss, the positioning lens or the molding lens, the number of the lens, the chip fixing boss and the first through hole are one-to-one correspondence, and the plastic piece of the positioning lens or the forming lens passes through the heat-melting fixing column and dissipates heat Positioning and fixing the substrate, or positioning the resisting portion to position and fix the heat dissipating substrate by placing the heat dissipating substrate in the mold of the plastic part forming the positioning lens or the forming lens; forming a conductive layer on the layout circuit; Improved, the conductive layer of the layout circuit extends into the inner sidewall of the first through hole and the chip fixing boss Between the outer wall.
  • the first technical solution provided by the present invention is a manufacturing method of an LED integrated structure, which comprises a heat dissipating substrate, an LED chip, a lens, a positioning lens or a plastic part of a molded lens, and electrically connecting the LED chip.
  • the plastic part of the molded lens is provided with a first through hole, and a fixing column is extended on the end surface of the plastic part of the positioning lens or the forming lens, and a resisting part is arranged at the end of the fixing column; the process includes:
  • a heat dissipating substrate comprising one or more bosses on the shaped heat dissipating substrate, and forming a second through hole that cooperates with the fixing post on the positioning lens or the plastic member of the forming lens;
  • the conductive layer of the patterned layout circuit is greater than the distance from the outer sidewall of the boss to the center of the boss is smaller than the distance from the sidewall of the first through hole to the center of the first through hole;
  • Forming the positioning lens or the plastic part of the forming lens placing the heat dissipating substrate in a set position in the plastic mold of the plastic part forming the positioning lens or the forming lens, injecting the plastic part of the positioning lens or the molding lens, and molding the positioning lens or a first through hole, a fixing post and a resisting portion of the plastic part of the molded lens; when the positioning lens or the plastic part of the molded lens is injection molded, the fixing post of the positioning lens or the plastic part of the forming lens passes through the second pass on the heat dissipating substrate And fixing the plastic part of the positioning lens or the molding lens to the heat dissipation substrate through the resisting portion;
  • the LED chip is fixed on the top surface of the boss by a die bonding process
  • the conductive layer of the layout circuit insulated from the heat dissipation substrate is formed directly on the heat dissipation substrate.
  • the LED integrated structure further includes a PCB board, and the conductive layer of the layout circuit is formed on the PCB board; the process further includes molding and positioning the lens or the molding lens on the PCB before forming the conductive layer of the layout circuit.
  • the distance of the conductive layer of the layout circuit from the center of the fourth through hole is larger than the center of the fourth through hole to the center of the fourth through hole The distance is smaller than the distance from the sidewall of the first through hole to the center of the first through hole; when forming the positioning lens or molding the plastic part of the lens, the heat dissipation substrate and the PCB board are placed on the plastic part of the molding lens or the molded lens.
  • the PCB board and the heat sink substrate are fixed.
  • the LED integrated structure further comprises an encapsulant for encapsulating the LED chip and the wire;
  • the plastic part of the positioning lens or the molded lens is provided with a glue injection channel for injecting the encapsulant, and the glue port of the glue injection channel is placed
  • the plastic part of the positioning lens or the forming lens is away from the end surface of the resisting portion, and the glue opening and the glue injection passage are connected with the side wall of the first through hole;
  • the plastic mouth and the injection passage are plastic parts of the injection molding positioning lens or the molding lens
  • the plastic part of the positioning lens or the molding lens is integrally formed; the process of packaging the LED chip and the wire includes:
  • the lens After soldering the wire, the lens is mounted on the plastic part of the positioning lens or the molding lens by tight fitting or heat pressing;
  • the lens cavity is filled through the glue port and the glue injection channel, and the LED chip and the wire are packaged, and the lens is further fixed by the curing of the package gel.
  • the process of packaging the LED chip and the wire comprises: after soldering the wire, molding the lens through the mold of the molded lens and packaging the LED chip and the wire, the plastic curing lens and the positioning lens or the plastic part of the forming lens, the LED chip , the wire and the heat sink substrate are fixed.
  • the heat dissipation substrate is a metal thin plate, and the boss and the second through hole on the heat dissipation substrate are stamped; the process further includes stamping the protrusion in the front of the conductive layer of the patterned layout circuit.
  • the heat dissipation blind hole, the side of the heat dissipation blind hole facing away from the boss is in communication with the heat dissipation substrate.
  • the plastic component of the positioning lens or the molding lens is a plastic component of a positioning lens or a molding lens, and the number of the bosses on the heat dissipation substrate is plural, and one boss corresponds to an independent positioning lens or A plastic part of a molded lens.
  • two or more bosses are formed on the heat dissipation substrate; one boss corresponds to a positioning lens or a molded plastic part, and the plastic part of the positioning lens or the molded lens includes positioning A plastic member of a lens or a molded lens and a connecting rib that is injection molded together with a plastic member that positions the lens or the molded lens that connects the positioning lens or the plastic member of the molded lens.
  • the plastic part of the positioning lens or the forming lens is a plate shape, and the number of the bosses on the heat dissipation substrate is plural, and the first through hole on the plastic plate is matched with the boss one by one, and convex The table is placed in the corresponding first through hole.
  • the process further includes placing a recess of the LED chip on top of the stamping boss prior to forming the conductive layer of the patterned circuit.
  • the process further includes: before the conductive layer of the patterned circuit, the heat-dissipating small through hole communicating with the heat dissipation hole is formed, and the diameter of the small heat dissipation hole is smaller than the diameter of the heat dissipation hole, and the heat dissipation hole and the heat dissipation small through hole form heat dissipation.
  • Stepped through hole the side of the large hole of the heat dissipation stepped through hole is away from the boss and communicates with the heat dissipation substrate, and the small hole of the heat dissipation stepped through hole communicates with the top surface of the boss.
  • the process further comprises: laser cutting and forming a heat dissipation small through hole in contact with the heat dissipation hole before forming the conductive layer of the layout circuit, the heat dissipation hole and the heat dissipation small through hole forming a heat dissipation step through hole, and the large hole of the heat dissipation step through hole is away from the convex
  • One side of the stage is in communication with the heat dissipation substrate, and the small hole of the heat dissipation stepped through hole communicates with the top surface of the boss, and the LED chip completely covers the small hole of the heat dissipation stepped through hole.
  • the process further includes stamping and forming a heat-dissipating rib in the heat-dissipating rib of the heat-dissipating rib before the conductive layer of the forming pattern circuit, and the heat-dissipating rib is disposed on the heat-dissipating substrate on the side of the heat-dissipating hole facing away from the boss The side of the heat insulating blind hole facing the boss communicates with the bottom plate of the heat dissipation substrate toward the boss side.
  • the heat dissipating substrate is a metal plate, and the heat dissipating substrate is formed by die casting, and the second through hole of the boss on the heat dissipating substrate and the fixing post of the positioning lens or the plastic part of the molded lens is die-cast.
  • the common heat-dissipating substrate is a ceramic plate, and the heat-dissipating substrate is formed by sintering, and at the same time, the boss on the molded heat-dissipating substrate is sintered, and the second through hole is matched with the fixing post of the positioning lens or the plastic member of the molded lens.
  • a manufacturing method of an LED integrated structure the LED integrated structure comprises a heat dissipating substrate, an LED chip, a lens, a positioning lens or a plastic part of a molded lens, a conductive layer electrically connecting the wire of the LED chip electrode and the layout circuit of the electrical connection wire, in the heat dissipation a protrusion formed integrally with the heat dissipation substrate is disposed on the substrate, and a first through hole is disposed on the plastic part of the positioning lens or the molded lens, and a fixing column is extended on the end surface of the positioning part of the positioning lens or the plastic part of the molded lens, and is fixed The end of the column is provided with a resisting portion; Includes:
  • Forming the heat dissipating substrate comprising forming one or more bosses on the heat dissipating substrate, forming a second through hole that matches the fixing post on the positioning lens or the plastic part of the forming lens; forming the positioning lens or the plastic part of the forming lens: Injection molding a positioning lens or a plastic part of a molded lens, and simultaneously forming a first through hole of the positioning lens or the plastic part of the molding lens, and a fixing column, wherein the length of the fixing column is greater than the thickness of the heat dissipation substrate;
  • the conductive layer of the patterned layout circuit is greater than the distance from the outer sidewall of the boss to the center of the boss is smaller than the distance from the sidewall of the first through hole to the center of the first through hole;
  • the LED chip is fixed on the top surface of the boss by a die bonding process
  • a patterned circuit conductive layer insulated from the heat dissipation substrate is formed directly on the heat dissipation substrate.
  • the LED integrated structure further includes a PCB board, and the conductive layer of the layout circuit is formed on the PCB board, and the distance of the conductive layer of the layout circuit from the center of the fourth through hole is greater than the distance from the sidewall of the fourth through hole to the center of the fourth through hole a distance smaller than a distance from a sidewall of the first through hole to a center of the first through hole; the process further includes: before forming the conductive layer of the layout circuit, forming a matching portion of the plastic part of the positioning lens or the molded lens on the PCB board a through hole and a fourth through hole that cooperates with the boss; when the plastic part of the positioning lens or the molded lens is fixed together with the heat dissipation substrate, the fixing post of the positioning lens or the plastic part of the molded lens passes through the heat dissipation substrate and the PCB a
  • the LED integrated structure further comprises an encapsulant for encapsulating the LED chip and the wire;
  • the plastic part of the positioning lens or the molded lens is provided with a glue injection channel for injecting the encapsulant, and the glue port of the injection channel is placed on the positioning lens or
  • the plastic part of the molded lens is away from the end surface on the side of the resisting portion, the glue port and
  • the glue injection channel is connected with the sidewall of the first through hole;
  • the glue port and the glue injection channel are integrally formed with the plastic part of the positioning lens or the molding lens when injection molding the positioning lens or the plastic part of the molding lens;
  • the process of packaging the LED chip and the wire includes :
  • the lens After soldering the wire, the lens is mounted on the plastic part of the positioning lens or the molding lens by tight fitting or heat pressing;
  • the lens cavity is filled through the glue port and the glue injection channel, and the LED chip and the wire are packaged, and the lens is further fixed by the curing of the package gel.
  • the process of packaging the LED chip and the wire comprises: after soldering the wire, molding the lens through the mold of the molding lens and packaging the LED chip and the wire, the glue is solidified to form a lens, the lens and the positioning lens or the plastic part of the molded lens, the LED The chip, the wire and the heat sink substrate are fixed.
  • the D LED chip is directly fixed on the chip fixing boss by a die bonding process, and the side of the heat dissipation substrate facing away from the chip fixing boss is in direct contact with the heat dissipating gas or the heat dissipating liquid.
  • the COB (Chip on Board) package design of the LED integrated structure is compared with the existing LED integrated structure, because the LED chip is directly fixed on the chip fixing boss of the substrate by silver glue or eutectic solder or the like.
  • the heat generated by the operation of the LED chip passes through the thin heat-conducting layer of the chip fixing boss of the heat-dissipating substrate, and is directly in contact with the heat-dissipating gas such as air or the heat-dissipating liquid, and the heat contacting the heat-dissipating substrate is rapidly flowed due to the difference in density of the hot-cold gas or liquid. Being taken away, thereby taking away the heat of the substrate, can minimize the thermal resistance of the intermediate link, and greatly reduce the heat transfer path distance of the pn junction heating portion of the LED chip to the external air environment or the heat dissipating liquid, thereby greatly reducing the thermal resistance.
  • the heat dissipating substrate of the structure is a thin plate, and the thickness of the heat dissipating substrate is generally in the range of 0.2 mm to 5 mm.
  • the main application is to integrally form a plurality of chip fixing bosses on the heat dissipating substrate and the heat dissipating substrate, and the area of the substrate is much larger than the chip fixing convex. The area at the top of the table.
  • the heat generated by the LED chip is greatly reduced in the intermediate path distance of the heat dissipating gas, that is, in the air or the heat dissipating liquid, and the contact area with the heat dissipating liquid and the dissipating gas is greatly increased, the heat accumulation effect is greatly reduced, and the heat dissipation can be greatly improved.
  • Efficiency and keeping the chip at the proper operating temperature maintains long life and efficient luminous efficiency of the chip.
  • the chip fixing boss and the heat dissipation substrate are integrally formed, so the heat generated by the chip is directly emitted into the air through the heat dissipation substrate, so The heat resistance is small, the heat dissipation speed is fast, and it is not necessary to use other heat sinks for heat dissipation, and the heat dissipation effect is quite good.
  • the LED chip is directly fixed on the chip fixing boss by the die bonding method, and the LED chip is directly connected to the conductive layer of the layout circuit through the wire. Because of the chip fixing boss, the electrical connection wire resists the shadow of the light emitted by the LED chip. To the lowest, it is conducive to optical secondary optimization!
  • the existing LED bracket which eliminates the need for multiple layers of intermediate parts such as heat-dissipating metal parts in the LED bracket and its electrode metal legs, especially to avoid heat-dissipating metal parts and heat dissipation.
  • the high thermal resistance generated between the two parts of the substrate so the thermal resistance is small, the heat conduction has a fast heat dissipation effect, and the structure is simple and reliable.
  • the chip fixing boss and the heat dissipation substrate are integrally formed, which is more advantageous for the design and assembly process of the light source, and saves cost. . Therefore, the invention has simple and reliable structure, few parts, thin thickness and easy assembly, and is particularly suitable for occasions requiring high power for the light source.
  • the conductive layer of the layout circuit can be inserted into the plastic part of the positioning lens or the forming lens, and the wire can be directly connected to the conductive layer of the layout circuit, and is no longer needed.
  • the conductive wire is connected to the conductive layer of the layout circuit through the conductive metal bracket or through the wiring substrate from the heat dissipation substrate facing away from the chip fixing boss to connect with the conductive layer of the layout circuit, thereby simplifying the structure and minimizing the thermal resistance of the intermediate link.
  • the heat dissipation effect is good; on the other hand, it is no longer necessary to solder the metal bracket or the wiring pin to electrically connect with the conductive layer of the layout circuit, and no reflow or wave soldering is required, so the encapsulant can be made of resin or silica gel; The electrical connecting wires and their two soldered ends are not exposed to the air, which is advantageous for long life.
  • reflow soldering or wave soldering since the temperature of reflow soldering or wave soldering is generally 250C or 280C, the encapsulant cannot be used.
  • the present invention can further save the cost and improve the optical performance of the LED chip.
  • the advantage of this COB package design is that the electrodes of each LED chip 2 directly form an ohmic contact with the conductive layer of the layout circuit through the bonding wires, and the formation of the multi-channel LED chip array is realized by the electrical connection device between the heat dissipation substrate and the LED chip. Electrical interconnection can realize series and parallel connection of LED chips, and can improve product reliability and production yield.
  • the plastic part of the positioning lens or the forming lens is positioned and fixed by the hot-melt fixing column and the heat-dissipating substrate, or the plastic part of the forming lens or the forming lens is formed by placing the heat-dissipating substrate in the mold of the plastic part forming the positioning lens or the molding lens.
  • the forming resisting portion fixes and fixes the heat dissipating substrate, or is positioned by the positioning mechanism and the heat dissipating substrate, and is fixed by the fastener and the heat dissipating substrate, and is fixed and reliable, and can withstand high temperature in the subsequent packaging process, and is fixed under high temperature conditions.
  • the technical solution does not need to design a fixing hole on the positioning lens or the plastic part of the forming lens, and the distance between the adjacent first through holes can be reduced for the first through hole of the same size. Therefore, more lenses can be arranged in a unit area.
  • the plastic part of the positioning lens or the forming lens is fixed to the heat dissipating substrate by injection molding the positioning lens or the plastic part of the molding lens, thereby eliminating the installation process of mounting the positioning lens or the plastic part of the molding lens on the heat dissipating substrate.
  • the production cost is greatly saved, and on the other hand, the plastic parts of the positioning lens or the molding lens and the heat dissipating substrate are in the axial direction and the radial direction. There is no gap, the fixing is very reliable, the positional relationship between the heat dissipating substrate and the positioning lens or the plastic part of the forming lens can be very precise, and the lens mounting position on the plastic part of the positioning lens or the forming lens can be very precise, thereby improving LED integration.
  • the optical effect of the structure is very reliable, the positional relationship between the heat dissipating substrate and the positioning lens or the plastic part of the forming lens can be very precise, and the lens mounting position on the plastic part of the positioning lens or the forming lens can be very precise, thereby improving LED integration.
  • the heat dissipation blind hole or the heat dissipation stepped through hole increases the heat dissipation area of the heat dissipation substrate, and greatly reduces the distance between the LED chip and the air, that is, greatly reduces the distance between the heat dissipation of the LED chip and the air, thereby greatly reducing the heat accumulation effect. Therefore, there is a heat dissipation hole that is better than a non-porous heat dissipation effect.
  • the rib further increases the area of the heat-dissipating substrate in contact with the air, so that the heat dissipation effect is better. Because the air in the blind hole is not circulated when the LED chip emits light, the heat insulating blind hole has a heat insulating effect on the heat generated by the LED chip, so that the heat generated by the LED chip is mainly distributed along the chip fixing boss and the heat dissipation rib. Into the air.
  • the recessed part facilitates the installation and positioning of the LED chip, so that the positioning of the LED chip is more precise, and it is more advantageous to concentrate the light emitted by the chip first, thereby improving the light efficiency.
  • the heat dissipation substrate is an insulated non-metal plate, and the conductive layer of the layout circuit is directly disposed on the heat dissipation substrate, and the structure is simple and the heat dissipation effect is good.
  • the heat-dissipating substrate is made of an insulating and heat-conductive non-metal material, so that low thermal resistance can be obtained, the short circuit of the conductive layer of the layout circuit can be avoided, and the heat generated by the chip during operation can be conducted through the insulating and thermally conductive material substrate, and good heat conduction makes the high density large. Power LED integrated chip package can be realized.
  • the heat dissipating substrate is made of a metal material, so that a low thermal resistance can be obtained, and the conductive layer on the layout circuit is separated by a relatively small insulating layer, which can avoid short circuit of the metal substrate and can make the chip work.
  • the heat generated during the conduction is conducted through the metal substrate, and good heat conduction enables the high-density and high-power LED integrated chip package to be realized.
  • the plastic part of the positioning lens or the molding lens can fix the heat dissipation substrate and the PCB board together.
  • the use of the PCB board facilitates the layout design of the circuit of the conductive layer of the layout circuit, saves the complicated manufacturing process of the original circuit layout on the heat dissipation substrate, and uses a very mature PCB board, which greatly saves cost and simplifies The process further improves the reliability and design flexibility of the conductive layer of the layout circuit.
  • the PCB board has an insulation function, which is more favorable for the heat on the heat dissipation substrate to be radiated along the side in contact with the air.
  • a chip fixing boss corresponds to a plastic lens positioning ring.
  • the lens is fixed on the plastic part of the positioning lens or the molding lens by tight fitting or hot pressing, so that the lens is first fixed and repackaged, and the lens is not displaced when the LED chip is packaged, which is beneficial to the filling and curing process, especially It is much more reliable to fix the lens only by the adhesion of silicone or the like.
  • the glue port of the glue injection channel is placed on the end surface of the plastic lens positioning member away from the resisting portion, and the glue injection channel communicates with the inner side wall of the plastic lens positioning member to facilitate the injection; since the plastic lens positioning member is a plastic piece, The glue and glue injection channels are easy to form.
  • the lens Before injecting the encapsulant, the lens is tightly fitted or fixed by the plastic lens positioning member, so that the lens is first fixed and repackaged, and the lens is not displaced when the LED chip is packaged, which is beneficial to the filling and curing process, especially Some are much more reliable by fixing the lens only by the adhesion of silicone or the like.
  • the plastic lens positioning member can realize the precise installation of the lens position during packaging, and fix the lens, the LED chip, the electrical connection wire and the two soldering ends thereof, the heat dissipation substrate and the chip thereof after vacuuming and injection molding.
  • the bosses are solidified together, especially when the package is packaged, the bubble can be generated when the package colloid is solidified in a vacuum environment, which plays an important role in ensuring the light quality of the LED chip, and does not cause the emitted light to have a spot.
  • plastic lens positioning member facilitates lens installation and accurate lens mounting position and Fixed and reliable, the aggregation of light effects facilitates the secondary optimization of optics, ultimately achieving optics If good, while the plastic lens and the lens positioning member and the filling time of dispensing a small amount of silica gel, cost can be reduced. 12)
  • the manufacturing method of the LED integrated structure of the invention has fewer processes and simple process
  • FIG. 1 is a front elevational view of Embodiment 1 of the present invention.
  • Figure 2 is a cross-sectional view taken along line A-A of Figure 1.
  • Figure 3 is a perspective exploded view of Embodiment 1 of the present invention.
  • Fig. 4 is a perspective exploded perspective view showing the projection of the embodiment 1 of the present invention from another direction.
  • Fig. 5 is a perspective exploded perspective view showing a third embodiment of the present invention.
  • Figure 6 is a front elevational view of Embodiment 4 of the present invention.
  • Figure 7 is a cross-sectional view taken along line B-B of Figure 6 .
  • Figure 8 is a perspective exploded view of Embodiment 4 of the present invention.
  • Figure 9 is a perspective exploded view of Embodiment 5 of the present invention.
  • Fig. 10 is an enlarged view of a portion I of Fig. 9.
  • Figure 11 is a perspective exploded view of Embodiment 6 of the present invention.
  • Figure 12 is a front elevational view of Embodiment 7 of the present invention.
  • Figure 13 is a cross-sectional view taken along line C-C of Figure 12 .
  • Figure 14 is a perspective exploded view of Embodiment 7 of the present invention.
  • Figure 15 is a perspective exploded view of Embodiment 9 of the present invention.
  • Figure 16 is a perspective exploded view of Embodiment 10 of the present invention.
  • an LED integrated structure including a heat dissipation substrate 1,? 8 plate 2, 1 ⁇ 0 chip 3, lens 4, lens positioning ring 5, gold wire 6 electrically connecting the electrodes of the LED chip 3, and a patterned circuit conductive layer 7 electrically connecting the gold wire 6 for packaging the LED chip 3 and The encapsulant 8 of the gold wire 6.
  • the lens positioning ring 5 is made of high temperature resistant PPA plastic.
  • a positioning lens 4 and a first through hole 23 covering the encapsulating body 8 are disposed on the lens positioning ring 5, and a fixing post 9 is extended on the lens positioning ring 5, and the heat dissipating substrate 1 is placed at the end of the fixing post 9.
  • the resisting portion 10 is formed in the mold of the molded lens positioning ring 5 when the plastic positioning ring is formed.
  • a glue injection channel 11 for injecting the encapsulation body 8 is disposed on the lens positioning ring 5, and the glue port 12 of the glue injection channel 11 is placed on the end surface of the lens positioning ring 5 away from the resisting portion, the glue port 12 and the glue injection channel 11 With the first through hole 23
  • the side walls are connected.
  • the heat dissipating substrate 1 is stamped from a sheet metal or a metal alloy of a high thermal conductivity material, and may be made of stainless steel, copper, tungsten, aluminum, aluminum nitride, chromium or the like or an alloy thereof.
  • the heat dissipating substrate 1 includes a flat bottom plate 13 , and a plurality of chip fixing bosses 14 protruding from the heat dissipating substrate 1 .
  • the chip fixing boss 14 is provided with a second pass corresponding to the fixing post 9 . Hole 15.
  • the cross section of the chip fixing boss 14 is circular, and the area of the cross section of the bottom plate 13 is much larger than the area of the cross section of the chip fixing boss 13, at least three times or three of the area of the cross section of the chip fixing boss 13. More than double.
  • a recessed portion 16 in which the LED chip 3 is placed concentrically with the chip fixing boss 14 is provided.
  • the bottom surface of the recessed portion 16 is a plane on which the LED chip 3 is placed.
  • a large hole 17 and a small hole 22 which are disposed in the chip fixing boss 14 and which are concentric with the chip fixing boss 14 are provided.
  • a heat dissipating rib 18 integrally formed with the heat dissipating substrate 1 is disposed on the heat dissipating substrate 1 on the side of the large hole 17 of the stepped through hole facing away from the chip fixing boss 14 , and a heat insulating blind hole 19 is disposed in the heat dissipating rib 18 .
  • the side of the heat insulating blind hole 19 facing the chip fixing boss 14 communicates with the bottom plate 13 of the heat dissipation substrate 1 toward the chip fixing boss 14 side.
  • the side of the heat dissipating substrate 1 facing away from the chip fixing boss 14 is in direct contact with the heat dissipating gas.
  • the conductive layer 7 of the layout circuit is directly disposed on the PCB 2, and the conductive layers of the layout circuit are distributed on the same plane.
  • Each of the chip fixing bosses 14 on the PCB board 2 is provided with a fourth through hole 20 that cooperates with the chip fixing boss 14 and a third through hole 21 that cooperates with the fixing post 9.
  • the PCB board 2 is disposed on the heat dissipating substrate 1 One side of the chip fixing boss 14 is in direct contact with the heat dissipation substrate 1, and the PCB board 2 is provided with a side on which the conductive layer 7 of the layout circuit faces away from the contact surface contacting the heat dissipation substrate 1.
  • the chip fixing boss 14 of the heat dissipation substrate 1 passes through the fourth through hole 20 of the PCB board 2.
  • the fixing post 9 of the lens positioning ring 5 passes through the third through hole 21 on the PCB board 2, and the second through hole of the heat dissipation substrate 1. 15.
  • the resisting portion 10 at the end of the fixing post 9 is fixed to the PCB board 2 and the heat dissipating substrate 1, so that the PCB board 2 and the heat dissipating substrate 1 are fixed to the lens positioning ring 5.
  • the chip fixing boss 14 is disposed in the first through hole 23 of the corresponding lens positioning ring 5, and the conductive layer 7 of the layout circuit extends between the inner side wall of the first through hole 23 and the outer side wall of the chip fixing boss 14, the LED chip 3 is directly fixed on the end surface of the chip fixing boss 14 by a die bonding process, the gold wire 6 is placed in the lens positioning ring 5, and the gold wire 6-end is electrically connected with the electrode of the LED chip 3, and the other end of the gold wire 6 is extended.
  • Layout circuit into the lens positioning ring 5 The electrical layer is electrically connected; the lens 4 is mounted on the lens positioning ring 5 and is tightly coupled to the lens positioning ring 5.
  • the lens 4 is further fixed by the encapsulant 8 injected through the glue port 12 and the glue injection channel 11.
  • the above manufacturing method of the LED integrated structure includes:
  • the distance of the conductive layer 7 of the layout circuit from the center of the fourth through hole is greater than the distance from the sidewall of the fourth through hole 20 to the center of the fourth through hole 20 is smaller than the first pass a distance from an inner side wall of the hole 23 to a center of the first through hole 23;
  • the inner cavity of the lens 4 is filled through the rubber port 12 and the glue injection passage 11, and the LED chip 3 and the gold wire 6 are further fixed to the lens 4 by the curing of the encapsulant 8.
  • the manufacturing method of the LED integrated structure includes the following steps: 1) injection molding the lens positioning ring 5, and simultaneously forming a fixing post 9, a glue port 12 and a glue injection channel 11 extending from one end surface of the lens positioning ring 5, the length of the fixing column 9 being larger than the heat dissipation substrate 1 and the PCB board 2 The sum of the thicknesses;
  • the distance of the conductive layer 7 of the layout circuit from the center of the fourth through hole 20 is greater than the distance from the sidewall of the fourth through hole 20 to the center of the fourth through hole 20 is smaller than the lens positioning The distance from the inner side wall of the ring 5 to the center of the lens positioning ring 5;
  • the inner cavity of the lens 4 is filled through the rubber port 12 and the glue injection channel 11, and the LED chip 3 and the gold wire 6 are packaged, and the lens 4 is further fixed by the curing of the encapsulant 8.
  • an LED integrated structure includes a heat dissipation substrate 50, an LED chip 51, a lens 52, a lens positioning ring 53, a wire 54 electrically connecting the electrodes of the LED chip 51, and an electrical connection wire.
  • 54 layout circuit conductive layer 55 for packaging LED chip 51 and wire 54 Encapsulant 56.
  • the lens positioning ring 53 is made of high temperature resistant PP0+GF plastic, and the number of lens positioning rings is six. No heat dissipation ribs and heat insulation blind holes are provided on the heat dissipation substrate 50.
  • the heat dissipation substrate 50 is die-cast from a ceramic of high thermal conductivity.
  • the conductive layer 55 of the layout circuit is directly disposed on the heat dissipation substrate 50, and the conductive layers 55 of the layout circuit are distributed on the same plane.
  • the fixing post 57 of the lens positioning ring 53 passes through the heat dissipating substrate 50 and is fixed to the heat dissipating substrate 50 through the fixing portion 57 and the resisting portion 58 at the end of the fixing post 57, so that the heat dissipating substrate 50 and the lens positioning ring 53 are fixed together.
  • the above manufacturing method of the LED integrated structure includes:
  • the distance of the layout circuit conductive layer 55 from the center of the chip fixing boss 62 is greater than the distance from the outer side wall of the chip fixing boss 62 to the center of the chip fixing boss 62 is smaller than the lens a distance from an inner side wall of the positioning ring 53 to a center of the lens positioning ring 53;
  • the wire 54 is electrically connected to the conductive layer 55 of the layout circuit extending between the inner wall of the first through hole 61 and the outer side wall of the chip fixing boss 62;
  • the heat dissipation substrate 100 is stamped from a thin metal or metal alloy of high thermal conductivity, and the material thereof may be stainless steel, copper, tungsten, aluminum, aluminum nitride, or the like.
  • a chrome or the like or an alloy thereof is provided with a silicon carbide coating (not shown) on the surface of the heat dissipation substrate 100, and the number of the lens positioning rings is three.
  • a heat dissipation blind hole 102 disposed in the chip fixing boss 101 concentric with the chip fixing boss 101 is provided.
  • a fixing post 104 is extended on the lens positioning ring 106, and a resisting portion 105 is formed by heat fusion at the end of the fixing post 104.
  • the fixing post 104 of the lens positioning ring 106 is fixed to the heat dissipating substrate 100 through the heat dissipating substrate 100 through the end portion of the fixing post 104, so that the heat dissipating substrate 100 and the lens positioning ring 106 are fixed together.
  • the above manufacturing method of the LED integrated structure includes:
  • the distance of the layout circuit conductive layer 107 from the center of the chip fixing boss 101 is greater than the distance from the outer side wall of the chip fixing boss 101 to the center of the chip fixing boss 101 is smaller than the first a distance from an inner side wall of a through hole 103 to a center of the first through hole 103;
  • the fixing post 104 of the lens positioning ring 106 passes through the second through hole 115 of the heat dissipating substrate 100 that cooperates with the lens positioning ring fixing post 104, and the end portion 105 of the fixing post 104 of the thermal melting lens positioning ring 106 is formed. Fixing the lens positioning ring 106 and the heat dissipation substrate 100;
  • the encapsulant 114 is filled into the inner cavity of the lens 113 through the glue port 108 and the glue injection channel 109 in a vacuum environment, and the LED chip 110 and the gold wire 112 are encapsulated, and the lens 113 is further fixed by the curing of the encapsulant 114.
  • the plastic lens positioning ring 201 is integrally joined by the connecting ribs 202.
  • An R color LED chip 208, a G color LED chip 209, and a B color LED chip 210 are fixed in the top depressed portion 204 of the chip fixing boss 203 by a die bonding process.
  • the chip fixing boss 203 is placed in the first through hole 224 of the corresponding plastic lens positioning ring 201, and the circuit conductive layers 212, 214, 216 are arranged.
  • the anode of the R color LED chip 208 is electrically connected to the first patterned circuit conductive layer 212 between the inner sidewall of the first through hole 224 and the outer sidewall of the chip fixing boss 203 through the gold wire 211, and the R color LED
  • the negative electrode of the chip 208 is electrically connected to the patterned circuit conductive layer 214 between the inner side wall of the first through hole 224 and the outer side wall of the chip fixing boss 203 through the gold wire 213.
  • the positive electrode of the G color LED chip 209 is electrically connected to the patterned circuit conductive layer 216 between the inner side wall of the first through hole 224 and the outer side wall of the chip fixing boss 203 through the gold wire 215, and the G color LED chip 209.
  • the negative electrode is electrically connected to the patterned circuit conductive layer 218 between the inner side wall of the first through hole 224 and the outer side wall of the chip fixing boss 203 through the gold wire 217.
  • the positive electrode of the B color LED chip 210 is electrically connected to the patterned circuit conductive layer 220 extending between the inner side wall of the first through hole 224 and the outer side wall of the chip fixing boss 203 through the gold wire 219, and the B color LED chip 210
  • the negative electrode is electrically connected to the patterned circuit conductive layer 222 between the inner side wall of the first through hole 224 and the outer side wall of the chip fixing boss 203 through the gold wire 221 .
  • the plastic lens positioning member is a lens positioning plastic plate 250, and the number of the lens positioning plastic plates 250 is one.
  • the lens positioning plastic plate 250 is provided with six first through holes 253 for positioning the lens 254 and covering the encapsulant 258, which are matched with the chip fixing bosses 252 of the heat dissipation substrate 251.
  • the lens 254 is fixed in the first through hole 253 by a tight fit.
  • a fixing post 255 is extended on the end surface of the lens positioning plastic plate 250. The end of the fixing post 255 is placed in the mold of the molding lens positioning plastic plate 250 by positioning the heat dissipating substrate 251 and the PCB board 256 in the mold positioning plastic plate 250.
  • a resisting portion 257 is formed.
  • the lens positioning plastic plate 250 is provided with a glue injection channel 259 for injecting the encapsulant 258.
  • the glue port 260 of the glue injection channel 259 is placed on the end surface of the lens positioning plastic plate 250 away from the resisting portion, the glue port 260 and the glue injection channel. 259 is in communication with the sidewall of the first through hole 253.
  • an LED integrated structure includes a heat dissipation substrate 401 , a PCB board 402 , an LED chip 403 , a lens 404 , a plastic lens molding ring 405 , and an LED chip 403 .
  • the gold wire 406 of the electrode and the patterned circuit conductive layer 407 of the gold wire 406 are electrically connected.
  • the first through hole 408 is a tapered hole of the molded lens 404.
  • the lens fixing 404 and the gold wire 406 are encapsulated by molding the lens 404 to the mold of the molding lens 404, and the chip fixing ring 414, the lens forming ring 405, the LED chip 403, the gold wire 406, and the chip fixing boss 414 of the heat dissipation substrate 401 are glued.
  • the PCB board 402 is fixed.
  • the side wall of the lens 404 is formed by a first through hole 408 which is tapered, and the top of the lens 404 is formed by a mold of the forming lens 404 and is curved.
  • the above manufacturing method of the LED integrated structure includes:
  • the PCB board 402 and the heat dissipation substrate 401 are placed at the set position of the plastic mold of the molded lens forming ring 405, and the chip fixing boss 414 on the heat dissipation substrate 401 passes through the boss fourth through hole 420 of the PCB board 402, and is injection molded.
  • the manufacturing method of the LED integrated structure includes the following steps:
  • the distance of the patterned circuit conductive layer 407 from the center of the fourth through hole 420 of the boss is greater than the sidewall of the fourth through hole 420 of the boss to the fourth through hole 420 of the boss.
  • the distance of the center is smaller than the distance from the inner side wall of the lens forming ring 405 to the center of the lens forming ring 405;
  • the chip fixing boss 414 on the heat dissipation substrate 401 is passed through the fourth through hole 420 of the PCB board 402 to mount the PCB board 402 on the heat dissipation substrate 401, and the fixing post 409 of the lens molding ring 405 is sequentially passed through the PCB board 402.
  • a third through hole 421, a second through hole 415 on the heat dissipation substrate 401, and an end portion of the heat-fusible fixing column 409 is formed by the resisting portion 410, and the lens forming ring 405 is fixed to the PCB board 402 and the heat dissipation substrate 401 through the resisting portion 410;
  • an LED integrated structure includes a heat dissipation substrate 450, an LED chip 451, a lens 452, a plastic lens molding ring 453, a wire 454 electrically connecting the electrodes of the LED chip 451, and an electrical connection.
  • the top of lens 452 is planar.
  • the heat dissipation substrate 450 is die-cast from a ceramic of high thermal conductivity.
  • the heat dissipating substrate 450 includes a flat bottom plate 461, and a plurality of bosses 462 of the protruding bottom plate 461 formed integrally with the heat dissipating substrate 450.
  • Each of the bosses 462 is provided with a second through hole 463 that cooperates with the fixing post 457.
  • the patterned circuit conductive layer 455 is disposed directly on the heat dissipation substrate 450, and the patterned circuit conductive layers 455 are distributed on the same plane.
  • the above manufacturing method of the LED integrated structure includes:
  • the lens 452 is molded by the mold of the molding lens 452, and the LED chip 451 and the wire 454 are packaged, and the glue curing lens 452 is fixed to the lens forming ring 453, the LED chip 451, the wire 454, and the heat dissipation substrate 450.
  • the heat dissipation substrate 500 is stamped from a thin metal or a metal alloy of high thermal conductivity, and the material thereof may be stainless steel, copper, tungsten, aluminum, aluminum nitride, chromium, or the like.
  • the alloy has a silicon carbide coating (not shown) on the surface of the heat dissipation substrate 500, and the number of lens positioning rings is six.
  • a heat dissipation blind hole disposed in the boss 501 concentric with the boss 501 is provided. The side of the heat dissipation substrate 500 facing away from the boss 501 is in direct contact with the heat dissipating gas.
  • the fixing post 504 of the lens forming ring 506 passes through the heat dissipating substrate 500 and is fixed to the heat dissipating substrate 500 through the end portion of the fixing post 504, so that the heat dissipating substrate 500 and the lens forming ring 506 are fixed together.
  • the top of the lens 503 is a spherical surface.
  • the above manufacturing method of the LED integrated structure includes: 1) an injection molding lens forming ring 506, and a fixing post 504 extending from one end surface of the lens forming ring 506, the length of the fixing post 504 being greater than the thickness of the heat dissipating substrate 500;
  • the distance of the layout circuit conductive layer 507 from the center of the boss 501 is greater than the distance from the outer sidewall of the boss 501 to the center of the boss 501 is smaller than the inner sidewall of the lens forming ring 506 The distance to the center of the lens forming ring 506;
  • the fixing post 504 of the lens forming ring 506 passes through the second through hole 515 of the heat dissipating substrate 500 that is engaged with the lens forming ring fixing post 504, and the end portion 505 is formed by the fixing post 504 of the hot melt lens forming ring 506. Fixing the lens forming ring 506 and the heat dissipation substrate 500;
  • the lens 503 is molded by the mold of the molding lens 503, and the LED chip 510 and the gold wire 512 are packaged, and the glue curing lens 503 is fixed to the lens molding ring 506, the LED chip 510, the gold wire 512, and the heat dissipation substrate 500.

Abstract

33????LED???????????????????????,?????????,??????????????????????LED?????????????LED????????????????????5???????LED?????????????????????????????????????????????????????????LED?????

Description

一种 LED集成结构的制造方法
技术领域
本发明涉及一种用于照明、 背光源模组、 电视机、 LED点阵显示屏、 投 影设备等的 LED集成结构的制造方法,特别是涉及一种大功率的 LED集成结 构的制造方法。 说
背景技术
半导体 LED作为新型固体光源,其传统封装是以环氧树脂包封 LED芯片、 书
引脚电性连接 LED芯片这样的直插结构, 到上世纪 80年代, 开始采用表面 贴着技术。 LED光源, 特别是大功率的 LED光源, 发光时热量集中, 如果 LED 芯片产生的热量不及时散发出去, LED光源的温度过高, 就会导致 LED的光 效降低、 寿命低等, 因此如何将 LED芯片发光时产生的热量迅速有效的散发 出去成了普及应用 LED光源的瓶颈。 如何提高 LED光源的透光率, 以及如何 提高 LED光源的散热性能从而延长使用寿命,是目前行业上的重要技术难题。
现有常用的大功率 LED集成结构通常采用支架封装成的单一个体 LED发 光管再集成的方式。
申请号为 200810135621. 5的发明专利中, 公开了一种发光二极管封装 装置、 散热基座与电极支架组合及其方法, 该发光二极管封装装置包含: 一 发光二极管晶粒、 一由高导热材质制成且供晶粒接触放置的散热基座、 一电 极支架、一定位单元及一包覆体。散热基座由金属或陶瓷等高导热材质制成, 包括底盘、 本体及本体顶面的凹陷部。 晶粒置于凹陷部的底面。 电极支架由 金属材质冲出成型,包括一基板及一自基板的镂空区周缘轴向延伸且界定出 一容置空间的定位壁。 定位单元设于散热基座与电极支架至少其中之一, 用 以使散热基座嵌卡固定于该电极支架的容置空间中。该定位单元可以是包括 至少一个自该电极支架的定位壁内壁面凸出的卡樺凸点, 也可以是包括一自 该散热基座近顶面处径向向外凸伸的凸缘。 该制作方法包含以下步骤: 步骤 (A) : 提供一散热基座;
步骤(B) :冲出成型一电极支架,使该电极支架包括一中央镂空的基板, 及一自该基板的镂空区周缘轴向延伸的定位壁, 该定位壁界定出一容置空 间;
步骤(C) : 通过一设于该散热基座与该电极支架至少其中之一的定位单 元, 使该散热基座嵌卡固定于该电极支架的容置空间中;
步骤(D) : 以射出成型方式将该相互嵌卡固定的散热基座及电极支架部 分包覆结合。现有的这种发光二极管封装装置、 散热基座与电极支架组合及 其方法, 存在以下缺陷和不足:
1 ) 晶粒通过阶梯柱状的散热基座作第一散热体, 由于柱状的散热基座不直 接接触空气来散热, 而且其具有一定的金属实心长度, 由于需要较长的金属 传导散热距离才能将热散发于空气, 且散热基座与空气的接触面积小, 因此 晶粒发光时产生的热量会起到热聚集效应。 为了提高散热性能, 该散热基座 一般还需设计与散热基座直接热传导接触的其它高散热性能的金属或陶瓷 等散热件, 透过散热件来最终散热。 这种方式一方面增加了热传导散热的距 离, 另一方面由于散热基座与散热件分属两个零件, 两者就是使用导热胶粘 合在一起也还是有巨大的热阻, 晶粒发光时基本上会保持散热基座这边温度 很高, 散热件这边温度与环境温度差不多的现象, 达不到将散热基座上的热 量迅速散发出去的目的, 散热效果很差。
2 ) 由于多了柱状的散热基座及电极支架等, 与散热件又是不同的零件, 零 件多, 支架结构复杂, 厚度较厚, 不利于装配, 成本也高; 发光二极管与布 图电路的电性连接需经过电极支架, 结构复杂, 中间环节的热阻多, 降低了
LED芯片的发光效率及散热效率。
3 ) 其制作方法中需分别成型散热基座和电极支架, 特别是因电极支架结构 复杂, 冲出成型电极支架需要多道工序, 电极支架的冲压模结构复杂, 还需 增加将电极支架与散热基板安装在一起的工序, 因此其制作方法中工序多, 工艺复杂, 模具结构复杂, 制作成本高。
4 ) 射出成型成型包覆体并将该相互嵌卡固定的散热基座及电极支架部分包 覆结合时, 由于电极支架复杂, 因此包覆体于电极支架配合的成型面复杂, 注塑模内容置散热基座和电极支架的容置空间复杂, 注塑模的分型面复杂, 射出成型时将组合的散热基座和电极支架置放在设定位置的定位机构复杂, 当布图电路导电层置于 PCB板上时, 无法在射出成型时将 PCB板、 散热基座 和电极支架固定在一起。
申请号为 200720172030公开了一种引脚式大功率 L E D器件的封装结 构, 包括 L E D晶片、 透镜、 印刷 PCB板、 金属热沉体、 金线和引脚; 金属 热沉体包括基座和该基座上的凸台, 而且基座的上表面面积至少是凸台的上 表面面积的 2倍; 印刷 PCB板与基座胶粘在一起; 在印刷 PCB板下方的基座 上设置有通孔, 借助该通孔引脚与印刷 PCB板电连接; 透镜罩扣 L E D晶片 和印刷 PCB板并借助灌胶工艺粘固在印刷 PCB板上。这种大功率的引脚式大 功率 L E D器件,虽然增大了金属热沉体的基座面积,但散热效果还是较差, 即使另外配置散热器, 由于散热时须将 LED芯片上的热量传导给凸台和基座 上, 再传给金属热沉体, 再由金属热沉体传导给散热器, 由于热传导增加了 中间环节, 以及很厚的金属传热体对应的很长的传热路径, 因此热阻很高, 导热效果很差。 还有透镜要先靠罩扣在印刷 PCB板上, 再由灌胶来粘固是很 难实现的, 因为透镜先靠罩扣在印刷 PCB板上时很难定位准确, 以及灌胶时 会使透镜移位, 透镜位置无法准确定义。 引脚要与印刷 PCB板上方的布图电 路电连接并穿过印刷 PCB板和金属热沉体, 加工复杂, 工艺难度大; LED晶 片与印刷 PCB上的布图电路的电性连接需经过电极支架, 结构复杂, 中间环 节的热阻多。
申请号为 200920136646. 7的实用新型专利中, 公开了一种基于 C 0 B 技术封装的白光 L E D集成阵列照明光源, 包括一基板及若干 L E D芯片, 该基板上设有若干凹槽, 其上通过布线形成电子线路, 该电子线路与设置于 基板上的贴片元件配合形成具有特定功能和电气连接的印刷 PCB板; L E D 芯片粘接在基板的凹槽底部, 其电极引线键合在指定的焊盘上与电子线路及 贴片元件形成回路, 该 L E D芯片上还涂覆有荧光粉; 基板上的 L E D发光 区域上方设有透明硅胶。上述 C 0 B封装技术的缺点一是 LED芯片粘接在基 板的凹槽底部, 封装 LED芯片时, 需填充大量的硅胶, 由于硅胶价格昂贵, 因此增加了成本, 缺点二是 LED芯片很难实现据透镜焦点需要的距离; 缺点 三是封装电极引线须从基座底部的 LED芯片电连接到基座上表面的布图电路 上, LED芯片发出的光线会因为过长的引线的阻碍产生阴影,影响光学效果, 尤其不利于二次光学优化开发。还有该实用新型并没有公开电子线路与贴片 元件间如何电性连接, 由于电子线路全部置于反射罩内, 从其图中特别是图 一公开的内容来看,其电子线路与贴片元件间的电性连接还需从基板背面通 过引脚连接。
申请号为 200920112089. 5的实用新型专利中, 公开了一种 COB封装的 大功率 LED路灯用装置, 包括透镜、 硅胶、 金线、 芯片、 散热板等, 在散热 板上设置有 5— 50个凸台, 芯片直接固定在散热板的凸台上,再通过散热板 和散热板上的散热片散发出去。 这种结构的大功率 LED路灯, 虽然散热效果 较好, 但由于没有定位透镜或成型透镜的塑胶件, 透镜的定位不准, 在透镜 内预点上硅胶来封装芯片, 一方面硅胶用量大, 特别是用这种封装方式, 封 装硅胶固化后有气泡产生, 严重影响 LED芯片的发光质量, 会导致散发出来 的光线有光斑,阴影等光学先天缺陷,不利于 LED光源的光学二次优化开发。
申请号为 200820214808. X的实用新型专利中, 公开了一种高效散热发 光的大功率 LED封装结构, 包括透镜、 基板与 LED发光芯片, 透镜固定于基 板上表面, 透镜下表面设有向上凸起的安装凹陷, LED发光芯片置于基板上 表面并被安装凹陷扣盖, 在安装凹陷所扣盖的基板上表面设有正、 负发光电 极, 发光电极与 LED发光芯片通过金属线连接, 基板上表面设有与发光电极 相连的正、 负连接电极, 在安装凹陷外侧的透镜下表面与基板上表面之间通 过环形的胶粘层相粘结,在胶粘层的内孔与安装凹陷所形成的腔体内注满硅 胶,在基板上开设有向胶粘层的内孔与安装凹陷所形成的腔体内连通的注胶 通道, 且透镜与基板均由水晶晶体制成。 这种结构的大功率 LED封装结构, 缺点一是透镜与基板的固定靠胶粘层粘结, 粘结固定不牢; 缺点二是无定位 透镜的定位机构, 透镜靠与基板粘结时来定位, 定位不准确, 灌胶时容易 使透镜位置偏离; 缺点三是透镜通过粘结层固定在基板上, 粘结层容易将注 胶通道堵塞, 影响注射硅胶; 缺点四是电性连接 LED发光芯片的金属线需与 固定在基板上并置于透镜的安装凹陷部内的发光电极电性连接, 发光电极再 与连接电极电性连接, 连接电极再与布图电路导电层电性连接, 中间环节的 热阻多, 影响散热效率和发光效率; 缺点五是 LED发光芯片与透镜凹陷部的 距离大, 光折射损失大, 发光效率低。
申请号为 200710143495.3 的发明专利中, 提供了一种以陶瓷为基板的 发光二极管芯片封装结构, 其包括: 陶瓷基板、 导电单元、 中空陶瓷壳体、 复数个发光二极管芯片及封装胶体。 该陶瓷基板具有一本体、 复数个凸块、 复数个贯穿该等凸块的贯穿孔及复数个分别形成于该本体侧面及每两个凸 块之间的半穿孔; 该导电单元具有复数个分别成形于该等凸块表面的第一导 电层、复数个分别成形于该等半穿孔的内表面及该本体的底面的第二导电层 及复数个分别填充满该等贯穿孔的第三导电层; 该中空陶瓷壳体固定于该本 体的顶面上以形成一容置空间; 该等发光二极管芯片分别设置于该容置空间 内; 该封装胶体填充于该容置空间内。 该发明的以陶瓷为基板的发光二极管 芯片封装结构的制作方法包括下列步骤:
提供一陶瓷基板, 并具有一本体, 复数个彼此分开且分别从该本体的顶 面延伸的凸块、 复数个分别贯穿该等相对应凸块的贯穿孔、 及复数个分别形 成于该本体侧面及每个凸块间之间的半穿孔;
分别成形复数个第一导电层于该等凸块的表面, 并且分别成形复数个第 二导电层于该等半贯穿孔的内表面及该本体的底面;
分别填充满复数个第三导电层于该等贯穿孔内, 以电性连接于该第一导 电层及该第二导电层之间;
固定一中空陶瓷体于该陶瓷基板的本体的顶面上以形成一容置空间, 并 且该容置空间暴露出该等第一导电层的顶面;
分别设置复数个发光二极管芯片于该容置空间内, 并且每一个发光二极 管芯片的正、 负极端分别电性连接于不同的第一导电层; 以及填充一封装胶 体于该容置空间内, 以覆盖该等发光二极管芯片。 该发明中的缺点一是发光 二极管芯片于外部电路的电性连接需经凸块表面的第一导电层、贯穿孔内的 第三导电层、 半贯穿孔内的第二导电层、 底面接脚等才可与外部布图电路导 电层电性连接, 发光二极管芯片的电性连接复杂, 中间环节热阻过多; 缺点 二是一个发光二极管芯片需二个凸块,所有的凸块均置于陶瓷壳体的容置空 间内, 这样导致发光二极管之间的距离会比较大, 无法实现每个发光二极管 芯片的单独封装,需要的封装胶体多,光学效果不好。该发明的制作方法中, 在烧结陶瓷时贯穿孔的制作很困难; 贯穿孔和半贯穿孔内的导电层制作困 难。
申请号为 200420112507. 8 的实用新型专利中, 公开了一种大功率 LED 发光二极管, 包括铝基板、 银胶、 晶片、 金线、 反射盖, 铝基板为凸凹型碗 杯形状, 即在其中心处的底面有一圆形凹槽, 与其对应的上面有一碗杯状凸 台, 凸台上装有塑胶框架, 塑胶框架为圆形, 中心设有圆孔, 与圆孔同心开 有两道凹槽, 内外构成低高两道凸沿, 底面对称设有两个圆柱脚, 并装在碗 杯状凸台两边的圆孔中, 反射盖弧面较小接近于平盖, 其下沿口涂有粘合胶 水, 装之于塑胶框架的凹槽内。 塑胶框架底面涂有粘合胶水, 其内填充有胶 水。 发光体晶片与反射盖底面距离 H值较小。 铝基板可以是梅花形状, 也可 以是圆形。 该专利公开的技术与本发明最接近。 该专利的组装步骤是, 先将 银胶点入铝基板凸台形碗杯内, 再将晶片固定在银胶上, 放入烤箱内烘烤
145C° 1小时, 然后焊接金线, 将镜片的正负极分别用金线焊接在铝基板正 负极上, 将塑胶框架底面涂上粘合胶水, 插入铝基板定位孔内, 将胶水填充 进塑胶框架内烘烤, 再将反射盖涂上粘合胶水, 装入塑胶框架的凹槽内即可 使用。 该专利的缺点一是需要通过粘合胶水将塑胶框架与铝基板固定, 在后 续的封装工艺过程中, 不耐高温, 在高温条件下其固定的可靠性会受很大的 影响; 缺点二是在塑胶框架上没有注入填充胶水的通道, 在装反射盖前就需 填充胶水,如果不使用模具,胶水的形状无法控制,如果使用模具填充胶水, 成本高; 缺点三是是填充胶水后再将反射盖上涂上粘合胶水装入塑胶框架的 凹槽内固定, 这样一方面固定不可靠, 位置关系固定不准确, 另外反射盖与 胶水间会有间隙, 间隙内会有空气, 也就是反射盖内会有空气, 大大影响发 光二极管的发光效果。 还有该实用新型专利中的铝基板为碗杯形状, 其上只 有一个凸台,金线电性连接铝基板的正负极,从其文字和图公开的内容来看, 铝基板的正负极不会是布图电路导电层, 而是为如 200820214808. X专利中 公开的发光电极或支架式引脚等。
发明内容
为了解决现有的 LED集成结构的制造方法制造工艺复杂、工序多及生产 出来的 LED集成结构中间环节热阻过多而造成的散热不畅, 寿命短,发光效 率低下,及芯片电气互连的可靠性不高造成的良率低等和 C 0 B技术封装的 L E D芯片集成结构光学效果不好等的问题,本发明要解决的技术问题在于 提供一种 LED集成结构的制造方法, 工艺简单、 工序少及通过该方法制造出 来的 LED集成结构中间环节热阻小、 散热性好、 芯片到布图电路导电层直接 电连接、 不需要回流焊或波峰焊、 封装胶体可以用树脂或硅胶等, 透镜和芯 片的位置关系精确、 具有高光通量、 结构简单、 装配简单、 散热效果好、 光 学效果好。
为了解决上述技术问题, 本发明所有的技术方案均对散热基板进行了改 进,在散热基板上设有与散热基板一体成型的一个或一个以上的芯片固定凸 台, LED芯片直接通过固晶工艺固定在凸台上, 散热基板背离芯片固定凸台 的一侧与散热气体或散热液体直接接触; 均设有定位透镜或成型透镜的塑胶 件, 在定位透镜或成型透镜的塑胶件上、 设有与芯片固定凸台配合、 定位透 镜或成型透镜的第一通孔,透镜、芯片固定凸台、第一通孔的个数一一对应, 定位透镜或成型透镜的塑胶件通过热熔固定柱与散热基板定位和固定,或通 过将散热基板置于成型定位透镜或成型透镜的塑胶件的模具内在成型定位 透镜或成型透镜的塑胶件时成型抵挡部将散热基板定位和固定; 对布图电路 导电层进行了改进,布图电路导电层伸入第一通孔的内侧壁与芯片固定凸台 的外侧壁之间。
为了解决上述技术问题, 本发明提供的第一种技术方案是一种 LED集 成结构的制造方法, LED集成结构包括散热基板, LED芯片, 透镜, 定位透 镜或成型透镜的塑胶件, 电连接 LED芯片电极的导线和电连接导线的布图 电路导电层, 在散热基板上设有与散热基板一体成型的凸台, 在定位透镜或 成型透镜的塑胶件上设有第一通孔,在定位透镜或成型透镜的塑胶件的端面 上延伸设有固定柱, 在固定柱的端部设有抵挡部; 工艺过程包括:
1) 成型散热基板: 包括成型散热基板上的一个或一个以上凸台, 成型与定 位透镜或成型透镜的塑胶件上的固定柱配合的第二通孔;
2)成型布图电路导电层: 布图电路导电层距凸台中心的距离大于凸台外侧壁 到凸台中心的距离小于第一通孔的侧壁到第一通孔中心的距离;
3)成型定位透镜或成型透镜的塑胶件: 将散热基板放置在成型定位透镜或成 型透镜的塑胶件塑胶模具内的设定位置,注塑成型定位透镜或成型透镜的塑 胶件,同时成型定位透镜或成型透镜的塑胶件的第一通孔、固定柱和抵挡部; 在注塑成型定位透镜或成型透镜的塑胶件时, 定位透镜或成型透镜的塑胶件 的固定柱穿过散热基板上的第二通孔并通过抵挡部将定位透镜或成型透镜 的塑胶件与散热基板固定;
4)固晶: 通过固晶工艺将 LED芯片固定在凸台的顶面上;
5 ) 电连接 LED芯片与布图电路导电层: 焊导线, 导线的一端与 LED芯片电 极电连接, 导线的另一端与与伸入第一通孔侧壁与凸台外侧壁之间的布图电 路导电层电连接;
6 ) 封装 LED芯片和导线。
作为第一种改进, 直接在散热基板上成型与散热基板绝缘的布图电路导 电层。
作为第二种改进, LED集成结构还包括 PCB板, 布图电路导电层成型在 PCB板上; 工艺过程还包括在成型布图电路导电层前, 在 PCB板上成型与定 位透镜或成型透镜的塑胶件的固定柱配合的第三通孔和与避空凸台配合的 第四通孔;布图电路导电层距第四通孔中心的距离大于第四通孔侧壁到第四 通孔中心的距离小于第一通孔的侧壁到第一通孔中心的距离; 在成型定位透 镜或成型透镜的塑胶件时,将散热基板和 PCB板放置在成型定位透镜或成型 透镜的塑胶件塑胶模具内的设定位置; 在注塑成型定位透镜或成型透镜的塑 胶件时, 定位透镜或成型透镜的塑胶件的固定柱依次穿过 PCB板上的第三通 孔、散热基板上的第二通孔并通过抵挡部将定位透镜或成型透镜的塑胶件与 PCB板、 散热基板固定。
作为第三种改进, LED集成结构还包括用来封装 LED芯片和导线的封装 胶体; 在定位透镜或成型透镜的塑胶件上设有注入封装胶体的注胶通道, 注 胶通道的胶口置于定位透镜或成型透镜的塑胶件远离抵挡部一侧的端面上, 胶口和注胶通道与第一通孔的侧壁连通;胶口和注胶通道在注塑成型定位透 镜或成型透镜的塑胶件时与定位透镜或成型透镜的塑胶件一体成型; 封装 LED芯片和导线的工艺包括:
1 ) 在焊接导线后,将透镜通过紧配合或热压固定的方式安装在定位透镜 或成型透镜的塑胶件上;
2 ) 将初步组合的 LED集成结构置于特定环境中抽真空;
3 ) 于真空环境中通过胶口、 注胶通道向透镜内腔灌胶, 封装 LED芯片和 导线, 通过封装胶体的固化进一步对透镜固定。
作为第四种改进, 封装 LED芯片和导线工艺包括: 在焊接导线后, 通过 成型透镜的模具灌胶成型透镜并封装 LED芯片和导线,胶固化透镜与定位透 镜或成型透镜的塑胶件、 LED芯片、 导线和散热基板固定。
作为上述方案的第一种共同改进, 散热基板为金属薄板, 散热基板上的 凸台、 第二通孔通过冲压而成; 工艺过程还包括在成型布图电路导电层前冲 压成型凸台内的散热盲孔, 散热盲孔背离凸台的一侧与散热基板连通。
作为上述方案的第二种共同改进, 定位透镜或成型透镜的塑胶件为定位 透镜或成型透镜的塑胶件, 散热基板上凸台的个数为复数个, 一个凸台对应 一个独立的定位透镜或成型透镜的塑胶件。
作为上述方案的第三种共同改进,在散热基板上成型有两个或两个以上 的凸台; 一个凸台对应一个定位透镜或成型透镜的塑胶件, 定位透镜或成型 透镜的塑胶件包括定位透镜或成型透镜的塑胶件和将定位透镜或成型透镜 的塑胶件连接在一起的与定位透镜或成型透镜的塑胶件一起注塑成型的连 接筋。 作为上述方案的第四种共同改进, 定位透镜或成型透镜的塑胶件为板 状,散热基板上凸台的个数为复数个,塑胶板上的第一通孔与凸台一一配合, 凸台置于对应的第一通孔内。
作为改进,工艺过程还包括在成型布图电路导电层前冲压成型凸台顶部 置放 LED芯片的凹陷部。
作为改进, 工艺过程还包括在成型布图电路导电层前, 冲压成型与散热 孔连通的散热小通孔, 散热小通孔的直径小于散热孔的直经, 散热孔和散热 小通孔形成散热阶梯通孔, 散热阶梯通孔的大孔背离凸台的一侧与散热基板 连通, 散热阶梯通孔的小孔与凸台顶面连通。
作为改进,工艺过程还包括在成型布图电路导电层前激光切割成型与散 热孔连通的散热小通孔, 散热孔和散热小通孔形成散热阶梯通孔, 散热阶梯 通孔的大孔背离凸台的一侧与散热基板连通,散热阶梯通孔的小孔与凸台顶 面连通, LED芯片完全覆盖散热阶梯通孔的小孔。
作为改进, 工艺过程还包括在成型布图电路导电层前冲压成型散热凸 筋、 散热凸筋内的隔热盲孔, 散热凸筋设置在散热孔的周边背离凸台的一侧 的散热基板上, 隔热盲孔朝向凸台的一侧与散热基板的底板朝向凸台一侧连 通。
作为共同改进, 散热基板为金属板, 散热基板通过压铸成型, 同时压铸 成型散热基板上的凸台、与定位透镜或成型透镜的塑胶件的固定柱配合的第 二通孔。
作为共同改进散热基板为陶瓷板, 散热基板通过烧结成型, 同时烧结成 型散热基板上的凸台、与定位透镜或成型透镜的塑胶件的固定柱配合的第二 通孔。
一种 LED集成结构的制造方法, LED集成结构包括散热基板, LED芯片, 透镜, 定位透镜或成型透镜的塑胶件, 电连接 LED芯片电极的导线和电连 接导线的布图电路导电层, 在散热基板上设有与散热基板一体成型的凸台, 在定位透镜或成型透镜的塑胶件上设有第一通孔,在定位透镜或成型透镜的 塑胶件的端面上延伸设有固定柱, 在固定柱的端部设有抵挡部; 工艺过程包 括:
1)成型散热基板: 包括在散热基板上成型一个或一个以上凸台, 成型与定位 透镜或成型透镜的塑胶件上的固定柱配合的第二通孔; 成型定位透镜或成型 透镜的塑胶件: 注塑成型定位透镜或成型透镜的塑胶件, 同时成型定位透镜 或成型透镜的塑胶件的第一通孔、 固定柱, 固定柱的长度大于散热基板的厚 度;
2)成型布图电路导电层: 布图电路导电层距凸台中心的距离大于凸台外侧壁 到凸台中心的距离小于第一通孔的侧壁到第一通孔中心的距离;
3) 将定位透镜或成型透镜的塑胶件与散热基板固定在一起: 将定位透镜或 成型透镜的塑胶件的固定柱穿过散热基板上的避空通孔并热熔固定柱端部 成型抵挡部, 通过抵挡部将定位透镜或成型透镜的塑胶件与散热基板固定;
4)固晶: 通过固晶工艺将 LED芯片固定在凸台的顶面上;
5)电连接 LED芯片与布图电路导电层:焊导线,导线的一端与 LED芯片电极 电连接, 导线的另一端与与伸入第一通孔侧壁与凸台外侧壁之间的布图电路 导电层电连接;
6 ) 封装 LED芯片和导线。
作为改进, 直接在散热基板上成型与散热基板绝缘的布图电路导电层。 作为改进, LED集成结构还包括 PCB板, 布图电路导电层成型在 PCB板 上,布图电路导电层距第四通孔中心的距离大于第四通孔侧壁到第四通孔中 心的距离小于第一通孔的侧壁到第一通孔中心的距离; 工艺过程还包括在成 型布图电路导电层前,在 PCB板上成型与定位透镜或成型透镜的塑胶件的固 定柱配合的第二通孔和与凸台配合的第四通孔;在将定位透镜或成型透镜的 塑胶件与散热基板固定在一起时,将定位透镜或成型透镜的塑胶件的固定柱 穿过散热基板和 PCB板上的避空通孔并热熔固定柱端部成型抵挡部,通过抵 挡部将定位透镜或成型透镜的塑胶件与散热基板固定;
作为改进, LED集成结构还包括用来封装 LED芯片和导线的封装胶体; 在定位透镜或成型透镜的塑胶件上设有注入封装胶体的注胶通道,注胶通道 的胶口置于定位透镜或成型透镜的塑胶件远离抵挡部一侧的端面上,胶口和 注胶通道与第一通孔的侧壁连通; 胶口和注胶通道在注塑成型定位透镜或成 型透镜的塑胶件时与定位透镜或成型透镜的塑胶件一体成型; 封装 LED芯片 和导线工艺包括:
1 ) 在焊接导线后, 将透镜通过紧配合或热压固定的方式安装在定位透镜 或成型透镜的塑胶件上;
2 ) 将初步组合的 LED集成结构置于特定环境中抽真空;
3 ) 于真空环境中通过胶口、 注胶通道向透镜内腔灌胶, 封装 LED芯片和 导线, 通过封装胶体的固化进一步对透镜固定。
作为改进, 封装 LED芯片和导线的工艺包括: 在焊接导线后, 通过成型 透镜的模具灌胶成型透镜并封装 LED芯片和导线, 胶固化形成透镜, 透镜与 定位透镜或成型透镜的塑胶件、 LED芯片、 导线和散热基板固定。
本发明的有益效果是:
D LED芯片直接通过固晶工艺固定在芯片固定凸台上, 散热基板背离芯片固 定凸台的一侧与散热气体或散热液体直接接触。 这种 LED 集成结构的 COB (Chip on Board ) 封装设计, 与现有的 LED集成结构相比, 由于本发明直 接将 LED芯片通过银胶或共晶焊料等固定在基板的芯片固定凸台上, LED芯 片工作时产生的热量经过散热基板的芯片固定凸台薄薄的导热层就直接与 散热气体如空气接触或与散热液体接触,接触散热基板的热量因为热冷气体 或液体密度差流动效应迅速被带走, 从而带走基板的热量,可以最大限度的 减少中间环节的热阻, 大大减少 LED芯片 p-n结发热部到外部空气环境或散 热液体的传热路径距离, 从而大大减少热阻。 本结构的散热基板为薄板, 散 热基板的厚度范围一般在 0. 2mm至 5mm内, 主要应用为在散热基板上与散热 基板一体成型多个芯片固定凸台, 基板的面积大大的大于芯片固定凸台顶部 的面积。这样一方面大大减少 LED芯片产生的热量散发于散热气体即空气中 或散热液体中的中间路径距离和大大增加了与散热液体和散热气体的接触 面积, 大大减少了热积聚效应,可大大提高散热效率和使芯片保持于合适的 工作温度,从而保持芯片的长寿命及有效发光效率。 芯片固定凸台与散热基 板一体成型, 因此芯片产生的热量只透过散热基板就直接散发于空气中,故 热阻小, 散热速度快,不须借助其它散热件来散热, 散热效果便相当好。 LED 芯片通过固晶方式直接固定在芯片固定凸台上, LED芯片通过导线直接与布 图电路导电层电连接, 由于有芯片固定凸台,使得电连接导线对 LED芯片发 出的光线的抵挡阴影降到最低 ,利于光学二次优化!省去了现有的 LED支架, 也就是省去了 LED支架中的散热金属件, 及其电极金属脚等多层中间环节, 尤其避免了散热金属件与散热基板的两个零件之间产生的高热阻,因此热阻 小, 导热快散热效果好, 结构简单可靠, 尤其芯片固定凸台与散热基板一体 成型更有利于光源的设计与装配工艺, 又节省成本。 因此本发明结构简单可 靠,零件少,厚度薄, 易于装配, 特别适用于对光源要求大功率的场合。
2)由于均设有定位透镜或成型透镜的塑胶件,布图电路导电层可伸入定位透 镜或成型透镜的塑胶件内, 一方面导线可直接与布图电路导电层电连接, 不 再需要通过导电金属支架将导线与布图电路导电层连接或通过接线脚从背 离芯片固定凸台的散热基板穿出与布图电路导电层连接, 简化了结构和最大 限度的减少中间环节的热阻, 散热效果好; 另一方面不再需要焊接金属支架 或接线脚与布图电路导电层电连接, 不需要回流焊或波峰焊, 因此封装胶体 可以用树脂或硅胶等; 而且还可保证 LED芯片、 电连接导线及其两个焊接端 不会暴露于空气中, 有利于使用的长寿命。 而需要回流焊或波峰焊时, 由于 回流焊或波峰焊的温度一般在 250C°或 280C°,封装胶体就不可以使用树脂。 由于硅胶的价格远远高于树脂, 透光性比树脂差, 因此本发明可以进一步节 省成本,提高 LED芯片的光学性能。这种 COB封装设计的优点在于每个 LED 芯 片 2的电极都通过键合导线直接与布图电路导电层形成欧姆接触, 多路 LED 芯片阵列的形成是通过散热基板与 LED芯片的电连接装置实现电气互联, 即 可实现 LED芯片的串并联, 又可提高产品的可靠性和生产合格率。
3)定位透镜或成型透镜的塑胶件通过热熔固定柱与散热基板定位和固定, 或 通过将散热基板置于成型定位透镜或成型透镜的塑胶件的模具内在成型定 位透镜或成型透镜的塑胶件时成型抵挡部将散热基板定位和固定,或通过定 位机构与散热基板定位和通过紧固件和散热基板固定, 固定可靠, 在后续的 封装工艺过程中, 能耐高温, 在高温条件下其固定的可靠性也不会受影响; 相对于用紧固件固定, 本技术方案因不需在定位透镜或成型透镜的塑胶件上 设计固定孔,对于同样大小的第一通孔,可以减少相邻第一通孔之间的距离, 因此可在单位面积内布置更多的透镜。特别是定位透镜或成型透镜的塑胶件 通过在注塑成形定位透镜或成型透镜的塑胶件时与散热基板固定,一方面省 去了将定位透镜或成型透镜的塑胶件安装到散热基板上的安装工序,对于一 个散热基板上设有多个定位透镜或成型透镜的塑胶件的情况下, 大大节约了 生产成本, 另一方面定位透镜或成型透镜的塑胶件与散热基板在轴向、 径向 方向均不存在间隙, 固定非常可靠, 散热基板与定位透镜或成型透镜的塑胶 件之间的位置关系可以非常精确, 定位透镜或成型透镜的塑胶件上的透镜安 装位置尺寸可以非常精确, 从而提高 LED集成结构的光学效果。
4)散热盲孔或散热阶梯通孔增大散热基板的散热面积, 大大减少 LED芯片与 空气之间的距离,也就是大大减少 LED芯片热量散发于空气的中间路径距离, 从而大大减少热积聚效应, 所以有散热孔比无孔的散热效果好。
5)凸筋进一步增加散热基板与空气接触的面积,使散热效果更好。因为在 LED 芯片发光时, 隔热盲孔内的空气不流通, 因此隔热盲孔对 LED芯片产生的热 量具有隔热作用,使 LED芯片产生的热量主要沿芯片固定凸台和散热凸筋散 发到空气中。
6)凹陷部便于 LED芯片的安装和定位, 使 LED芯片的定位更精确, 更有利于 把芯片发出来的光先行定向集聚, 提高光效。
7)散热基板为绝缘的非金属板, 将布图电路导电层直接设置在散热基板上, 结构简单, 散热效果好。 散热基板用绝缘导热非金属材料, 因此可以获得低 热阻, 能够避免布图电路导电层短路, 且又能使芯片在工作期间产生的热量 通过绝缘导热材质基板传导出去, 良好的热传导使得高密度大功率 LED集成 芯片封装能够实现。
8)散热基板采用金属材料, 因此可以获得低热阻, 其上面的布图电路导电层 采用一个厚度相当小的绝缘层进行分隔, 此绝缘层能够避免金属质基板短 路, 且又能使芯片在工作期间产生的热量通过金属基板传导出去, 良好的热 传导使得高密度大功率 LED集成芯片封装能够实现。 9)布图电路导电层设置于 PCB板上时, 定位透镜或成型透镜的塑胶件又可实 现把散热基板、 PCB板固定在一起。 使用 PCB板, 便于布图电路导电层的电 路的布图设计, 省掉了原来电路布图于散热基板上的复杂的制造工艺, 使用 了非常成熟的 PCB板, 大大节省了成本, 既简化了工艺又提高了布图电路导 电层的可靠性和设计灵活性。 同时 PCB板具有隔热作用, 更利于散热基板上 的热量沿与空气接触的一侧散发出去。
10)—个芯片固定凸台对应一个塑胶透镜定位环, 在成型定位透镜或成型透 镜的塑胶件时塑胶用量大大减少, 降低成本。透镜通过紧配合或热压方式固 定在定位透镜或成型透镜的塑胶件上, 这样透镜先固定再封装, 在封装 LED 芯片时, 透镜不会移位, 有利于灌胶和固化工序, 特别是比现有的只通过靠 硅胶等的粘结力来固定透镜可靠得多。
11)注胶通道的胶口置于塑胶透镜定位件远离抵挡部一侧的端面上,注胶通道 与塑胶透镜定位件的内侧壁连通,便于注胶;由于塑胶透镜定位件是塑胶件, 因此胶口和注胶通道易成型。 在注入封装胶体前, 透镜与塑胶透镜定位件紧 配合或热压固定, 这样透镜先固定再封装, 在封装 LED芯片时, 透镜不会移 位, 有利于灌胶和固化工序, 特别是比现有的只通过靠硅胶等的粘结力来固 定透镜可靠得多。 当封装 LED芯片时, 先把芯片通过固晶方式固定在散热基 板芯片固定凸台上, 再焊接电连接导线, 然后再安装透镜, 在抽真空环境中 通过塑胶透镜定位件上的注胶口进行注胶, 因此, 塑胶透镜定位件可实现封 装时的透镜位置的精确安装, 以及通过抽真空及注胶后把透镜、 LED芯片、 电连接导线及其两个焊接端、 散热基板及其芯片固定凸台固化在一起, 特别 是封装时这种结构可实现在抽真空环境下封装胶体固化时无气泡产生, 对 LED芯片的发光质量起到重要的保证作用,不会导致散发出来的光线有光斑, 阴影等光学先天缺陷; 由于没有了气泡产生的 LED芯片发光质量的光学先天 缺陷, 更有利于 LED光源的光学二次优化开发, 塑胶透镜定位件使透镜安装 方便和实现透镜安装位置精确固定和固定可靠,对光效的聚集利于光学的二 次优化, 最终实现光学效果好, 同时塑胶透镜定位件和透镜又使注胶时硅胶 的填充量少, 可降低成本。 12)本发明 LED集成结构的制造方法, 工序少, 工艺简单
附图说明
图 1是本发明实施例 1的主视图。
图 2是沿图 1的 A-A的剖视图。
图 3是本发明实施例 1的立体分解示意图。
图 4是本发明实施例 1从另一个方向投影的立体分解示意图。
图 5是本发明实施例 3的立体分解示意图。
图 6是本发明实施例 4的主视图。
图 7是沿图 6的 B-B的剖视图。
图 8是本发明实施例 4的立体分解示意图。
图 9是本发明实施例 5的立体分解示意图。
图 10是图 9的 I部放大图。
图 11是本发明实施例 6的立体分解示意图。
图 12是本发明实施例 7的主视图。
图 13是沿图 12的 C-C的剖视图。
图 14是本发明实施例 7的立体分解示意图。
图 15是本发明实施例 9的立体分解示意图。
图 16是本发明实施例 10的立体分解示意图。
实施例 1
如图 1至图 4所示,一种 LED集成结构,包括散热基板 1,? 8板2、 1^0 芯片 3, 透镜 4, 透镜定位环 5, 电连接 LED芯片 3的电极的金线 6和电连接 金线 6的布图电路导电层 7, 用来封装 LED芯片 3和金线 6的封装胶体 8。 透镜定位环 5选用耐高温的 PPA塑料。
在透镜定位环 5上设有定位透镜 4和包覆封装胶体 8的第一通孔 23,透 镜定位环 5上延伸设有固定柱 9, 在固定柱 9的端部通过将散热基板 1置于 成型透镜定位环 5的模具内在成型塑胶定位环时成型有抵挡部 10。在透镜定 位环 5上设有注入封装胶体 8的注胶通道 11,注胶通道 1 1的胶口 12置于透 镜定位环 5远离抵挡部一侧的端面上,胶口 12和注胶通道 11与第一通孔 23 的侧壁连通。
散热基板 1由高导热材质的薄板金属或金属合金冲压而成, 其材料可以 是不锈钢、 铜、 钨、 铝、 氮化铝、 铬等或其合金。 散热基板 1包括一平板状 的底板 13,与散热基板 1一体成型的凸出底板 13的复数个芯片固定凸台 14, 对应每个芯片固定凸台 14设有与固定柱 9配合的第二通孔 15。 芯片固定凸 台 14的横截面为圆形,底板 13的横截面的面积大大的大于芯片固定凸台 13 的横截面的面积, 至少是芯片固定凸台 13 的横截面的面积的三倍或三倍以 上。在芯片固定凸台 14的顶部设有与芯片固定凸台 14同心的置放 LED芯片 3的凹陷部 16, 凹陷部 16的底面为放置 LED芯片 3的平面。 在散热基板 1 背离芯片固定凸台 14的一侧设有置于芯片固定凸台 14内与芯片固定凸台 14 同心的散热阶梯通孔的大孔 17、 小孔 22。 在阶梯通孔的大孔 17的周边背离 芯片固定凸台 14一侧的散热基板 1上设有与散热基板 1一体成型的散热凸 筋 18, 在散热凸筋 18内设有隔热盲孔 19, 隔热盲孔 19朝向芯片固定凸台 14的一侧与散热基板 1的底板 13朝向芯片固定凸台 14一侧连通。散热基板 1背离芯片固定凸台 14的一侧与散热气体直接接触。
布图电路导电层 7直接设置在 PCB板 2上,布图电路导电层 Ί分布在同 一个平面上。 在 PCB板 2上对应每个芯片固定凸台 14设有与芯片固定凸台 14配合的第四通孔 20和与固定柱 9配合的第三通孔 21, PCB板 2置于散热 基板 1设有芯片固定凸台 14的一侧并与散热基板 1直接接触, PCB板 2设有 布图电路导电层 7的一侧背离接触散热基板 1的接触面。
散热基板 1的芯片固定凸台 14穿过 PCB板 2的第四通孔 20, 透镜定位 环 5的固定柱 9穿过 PCB板 2上的第三通孔 21、散热基板 1的第二通孔 15, 通过固定柱 9的端部的抵挡部 10与 PCB板 2、 散热基板 1固定, 这样 PCB 板 2和散热基板 1与透镜定位环 5固定在一起。 芯片固定凸台 14置于对应 的透镜定位环 5的第一通孔 23内,布图电路导电层 7伸入第一通孔 23的内 侧壁与芯片固定凸台 14外侧壁之间, LED芯片 3通过固晶工艺直接固定在芯 片固定凸台 14的端面上, 金线 6置于透镜定位环 5内, 金线 6—端与 LED 芯片 3的电极电连接, 金线 6的另一端与伸入透镜定位环 5内的布图电路导 电层 Ί电连接; 透镜 4安装在透镜定位环 5上与透镜定位环 5紧配合固定。 通过胶口 12和注胶通道 11注入的封装胶体 8进一步将透镜 4固定。
上述的 LED集成结构的制造方法, 工艺过程包括:
1 ) 在散热基板 1上通过冲压成型散热基板 1上的芯片固定凸台 14、散热 阶梯孔的大孔 17、 小孔 22、 散热凸筋 18、 散热凸筋 18内的隔热盲孔 19、 与透镜定位环 5的固定柱 9配合的第二通孔 15;
2 ) 在 PCB板 2上成型与透镜定位环 5的固定柱 9配合的第三通孔 21和 与芯片固定凸台 14配合的第四通孔 20 ;
3 ) 在 PCB板 2上成型布图电路导电层 7, 布图电路导电层 7距第四通孔 中心的距离大于第四通孔 20侧壁到第四通孔 20中心的距离小于第一通孔 23 的内侧壁到第一通孔 23中心的距离;
4 ) 将 PCB板 2、 散热基板 1放置在成型透镜定位环 5的注塑模具的设定 位置, 散热基板 1上的芯片固定凸台 14穿过 PCB的第四通孔 20, 注塑成型 透镜定位环 5, 同时成型透镜定位环 5的固定柱 9和抵挡部 10、 胶口 12和 注胶通道 1 1 ;在注塑成型透镜定位环 5时,透镜定位环 5的固定柱 9依次穿 过 PCB板 2上的第三通孔 21、散热基板 1上的第二通孔 15并通过抵挡部 10 将透镜定位环 5与 PCB板 2、 散热基板 1固定;
5 ) 通过固晶工艺将 LED芯片 3固定在芯片固定凸台 14的顶面上;
6 ) 焊与 LED芯片 3的电极电连接的金线 6, 金线 6与伸入第一通孔 23 的内侧壁与芯片固定凸台 14的外侧壁之间内的布图电路导电层 7电连接;
7 ) 将透镜 4通过紧配合方式安装在透镜定位环 5上;
8 ) 将透镜 4、 散热基板 1、 透镜定位环 5、 LED芯片 3、 金线 6、 PCB板 2 置于特定环境中抽真空;
9 ) 于真空环境中通过胶口 12、 注胶通道 11向透镜 4内腔灌胶, 对 LED 芯片 3和金线 6, 通过封装胶体 8的固化进一步对透镜 4固定。
实施例 2
如图 1至图 4所示, 与实施例 1不同的是, LED集成结构的制造方法, 工艺过程包括: 1 )注塑成型透镜定位环 5, 同时成型从透镜定位环 5的一个端面上延伸设有 的固定柱 9、胶口 12和注胶通道 11, 固定柱 9的长度大于散热基板 1和 PCB 板 2的厚度之和;
2 ) 在散热基板 1上通过冲压成型散热基板 1上的芯片固定凸台 14、 散热阶 梯通孔的大孔 17、散热凸筋 18、散热凸筋 18内的隔热盲孔 19、 与透镜定位 环 5的固定柱 9配合的第二通孔 15 ;
3 ) 激光切割成型散热阶梯通孔的大孔 17连通的散热阶梯通孔的小孔 22 ;
4 ) 在 PCB板 2上成型与固定柱 9配合的第三通孔 21和与芯片固定凸台 14 配合的第四通孔 20 ;
5 ) 在 PCB板 2上成型布图电路导电层 7, 布图电路导电层 7距第四通孔 20 中心的距离大于第四通孔 20侧壁到第四通孔 20中心的距离小于透镜定位环 5的内侧壁到透镜定位环 5中心的距离;
6 ) 将散热基板 1上的芯片固定凸台 14穿过 PCB2的第四通孔 20使 PCB板 2 安装在散热基板 1上,将透镜定位环 5的固定柱 9依次穿过 PCB板 2的第三 通孔 21、散热基板 1上的第二通孔 15并热熔固定柱 9的端部成型抵挡部 10, 通过抵挡部 10将透镜定位环 5与 PCB板 2、 散热基板 1固定;
7 ) 通过固晶工艺将 LED芯片 3固定在芯片固定凸台 14的顶面上;
8 )焊与 LED芯片 3电极电连接的金线 6,金线 6与伸入透镜定位环 5内侧壁 与芯片固定凸台 14外侧壁之间的布图电路导电层 7电连接;
9 ) 将透镜 4通过热压固定的方式安装在透镜定位环 5上;
10 ) 将透镜 4、 散热基板 1、 透镜定位环 5、 PCB板 2、 LED芯片 3、 金线 6 置于特定环境中抽真空;
11)于真空环境中通过胶口 12、注胶通道 11向透镜 4内腔灌胶,对 LED芯片 3和金线 6封装, 通过封装胶体 8的固化进一步对透镜 4固定。
实施例 3
如图 5所示, 与实施例 1不同的是, 一种 LED集成结构, 包括散热基板 50, LED芯片 51, 透镜 52, 透镜定位环 53, 电连接 LED芯片 51电极的导线 54和电连接导线 54的布图电路导电层 55, 用来封装 LED芯片 51和导线 54 的封装胶体 56。 透镜定位环 53选用耐高温的 PP0+GF塑料, 透镜定位环的 个数为六个。 在散热基板 50上不设有散热凸筋和隔热盲孔。
散热基板 50由高导热材质的陶瓷等压铸而成。布图电路导电层 55直接 设置在散热基板 50上, 布图电路导电层 55分布在同一个平面上。
透镜定位环 53的固定柱 57穿过散热基板 50通过固定柱 57和固定柱 57 端部的抵挡部 58与散热基板 50固定,这样散热基板 50与透镜定位环 53固 定在一起。
上述的 LED集成结构的制造方法, 工艺过程包括:
1 )烧结成型陶瓷散热基板 50, 同时成型散热基板 50上的芯片固定凸台 62、 散热阶梯通孔的大孔、 小孔、 与透镜定位环 53的固定柱 57配合的第二通孔 63, 芯片固定凸台 62顶部固定 LED芯片 51的凹陷部 64;
2 ) 在散热基板 50上绝缘成型布图电路导电层 55, 布图电路导电层 55距芯 片固定凸台 62中心的距离大于芯片固定凸台 62外侧壁到芯片固定凸台 62 中心的距离小于透镜定位环 53的内侧壁到透镜定位环 53中心的距离;
3 ) 将散热基板 50放置在成型透镜定位环 53注塑模具内的设定位置, 注塑 成型透镜定位环 53, 同时成型透镜定位环 53的固定柱 57和抵挡部 58、 胶 口 60和注胶通道 59、 定位透镜和包覆封装胶体的第一通孔 61 ; 在注塑成型 透镜定位环 53时,透镜定位环 53的固定柱 57穿过散热基板 50上的第二通 孔 63并通过抵挡部 58将透镜定位环 53与散热基板 50固定;
4 ) 通过固晶工艺将 LED芯片 51固定在芯片固定凸台 62的顶面的凹陷部 64 上;
5 )焊与 LED芯片 51电极电连接的导线 54, 导线 54与伸入第一通孔 61内侧 壁与芯片固定凸台 62外侧壁之间内的布图电路导电层 55电连接;
6 ) 将透镜 52通过热压固定的方式安装在透镜定位环 53上;
7 ) 将透镜 52、 散热基板 50、 透镜定位环 53、 LED芯片 51、 导线 54置于特 定环境中抽真空;
8 ) 于真空环境中通过胶口 60、 注胶通道 59向透镜 52内腔灌胶, 对 LED芯 片 51和导线 54封装, 通过封装胶体 56的固化进一步对透镜 52固定。 实施例 4
如图 6至图 8所示, 与实施例 3不同的是, 散热基板 100由高导热材质 的薄板金属或金属合金冲压而成, 其材料可以是不锈钢、 铜、 钨、 铝、 氮化 铝、 铬等或其合金,在散热基板 100表面设有一层碳化硅涂层 (未示出) , 透镜定位环的个数为三个。在散热基板 100背离芯片固定凸台 101的一侧设 有置于芯片固定凸台 101内与芯片固定凸台 101同心的散热盲孔 102。
在透镜定位环 106上延伸设有固定柱 104, 在固定柱 104的端部通过热 熔的方式成型有抵挡部 105。
透镜定位环 106的固定柱 104穿过散热基板 100通过固定柱 104端部热 熔抵挡部与散热基板 100固定,这样散热基板 100与透镜定位环 106固定在 一起。
上述的 LED集成结构的制造方法, 工艺过程包括:
1 ) 注塑成型透镜定位环 106, 同时成型定位透镜 113或包覆封装胶体 114 的第一通孔 103、 从透镜定位环 106的一个端面上延伸设有的固定柱 104、 胶口 108和注胶通道 109, 固定柱 104的长度大于散热基板 100的厚度;
2 ) 冲压成型散热基板 100上的芯片固定凸台 101、 芯片固定凸台 101顶 部的凹陷部 111、 散热盲孔 102、 透镜定位环固定柱 104的第二通孔 115、 ;
3 ) 在散热基板 100上绝缘成型布图电路导电层 107,布图电路导电层 107 距芯片固定凸台 101中心的距离大于芯片固定凸台 101外侧壁到芯片固定凸 台 101中心的距离小于第一通孔 103的内侧壁到第一通孔 103中心的距离;
4) 将透镜定位环 106的固定柱 104穿过散热基板 100上的与透镜定位环 固定柱 104配合的第二通孔 115, 通过热熔透镜定位环 106的固定柱 104端 部成型抵挡部 105使透镜定位环 106与散热基板 100固定;
5 ) 通过固晶工艺将 LED芯片 110固定在芯片固定凸台 101顶部的凹陷部 111的底面上;
6 ) 焊与 LED芯片 110电极电连接的金线 112, 金线 112与伸入透镜定位 环 106内侧壁与芯片固定凸台 101外侧壁之间的布图电路导电层 107电连接; 7 ) 将透镜 113通过与透镜定位环 106紧配合的方式将透镜 113安装在透 镜定位环 106上;
8 ) 将透镜 113、 散热基板 100、 透镜定位环 106、 LED芯片 110、 金线 112 置于特定环境中抽真空;
9 ) 于真空环境中通过胶口 108和注胶通道 109向透镜 113内腔灌封装胶 体 114, 对 LED芯片 110和金线 112封装, 通过封装胶体 114的固化进一步 对透镜 113固定。
实施例 5
如图 9、 图 10所示, 与实施例 1不同的是, 塑胶透镜定位环 201通过连 接筋 202连结为一个整体。在芯片固定凸台 203的顶部凹陷部 204内通过固 晶工艺固定有 R色 LED芯片 208、 G色 LED芯片 209、 B色 LED芯片 210。 当 散热基板 200、 PCB板 223和塑胶透镜定位环 201固定在一起时, 芯片固定 凸台 203置于对应塑胶透镜定位环 201的第一通孔 224内,布图电路导电层 212、 214、 216、 218、 220、 222伸入第一通孔 224的内侧壁与芯片固定凸台 203的外侧壁之间并彼此独立, 金线 21 1、 213、 215、 217、 219、 221置于第 一通孔 224内。R色的 LED芯片 208的正极通过金线 211与伸入第一通孔 224 的内侧壁与芯片固定凸台 203的外侧壁之间的第一布图电路导电层 212电连 接, R色的 LED芯片 208的负极通过金线 213与伸入第一通孔 224的内侧壁 与芯片固定凸台 203的外侧壁之间的布图电路导电层 214电连接。 G色的 LED 芯片 209的正极通过金线 215与伸入第一通孔 224的内侧壁与芯片固定凸台 203的外侧壁之间的布图电路导电层 216电连接, G色的 LED芯片 209的负 极通过金线 217与伸入第一通孔 224的内侧壁与芯片固定凸台 203的外侧壁 之间的布图电路导电层 218电连接。 B色的 LED芯片 210的正极通过金线 219 与伸入第一通孔 224的内侧壁与芯片固定凸台 203的外侧壁之间的布图电路 导电层 220电连接, B色的 LED芯片 210的负极通过金线 221与伸入第一通 孔 224的内侧壁与芯片固定凸台 203的外侧壁之间的布图电路导电层 222电 连接。
实施例 6 如图 11所示, 与实施例 5不同的是, 塑胶透镜定位件为透镜定位塑胶 板 250, 透镜定位塑胶板 250的个数为一个。 在透镜定位塑胶板 250上设有 六个与散热基板 251的芯片固定凸台 252—一配合的用来定位透镜 254和包 覆封装胶体 258的第一通孔 253。 透镜 254通过紧配合固定在第一通孔 253 内。 在透镜定位塑胶板 250的端面上延伸设有固定柱 255, 在固定柱 255的 端部通过将散热基板 251、 PCB板 256置于成型透镜定位塑胶板 250的模具 内在成型透镜定位塑胶板 250时成型有抵挡部 257。 在透镜定位塑胶板 250 上设有注入封装胶体 258的注胶通道 259, 注胶通道 259的胶口 260置于透 镜定位塑胶板 250远离抵挡部一侧的端面上,胶口 260和注胶通道 259与第 一通孔 253的侧壁连通。
实施例 7
如图 12至图 14所示, 与实施例 1不同的是, 一种 LED集成结构, 包 括散热基板 401, PCB板 402、 LED芯片 403, 透镜 404, 塑胶透镜成型环 405, 电连接 LED芯片 403的电极的金线 406和电连接金线 406的布图电路 导电层 407。
第一通孔 408为成型透镜 404的锥形孔。通过向成型透镜 404的模具灌 胶成型透镜 404并对 LED芯片 403和金线 406封装,胶固化透镜 404与透镜 成型环 405、 LED芯片 403、 金线 406和散热基板 401的芯片固定凸台 414、 PCB板 402固定。 透镜 404的侧壁由第一通孔 408成型, 为锥形, 透镜 404 的顶部由成形透镜 404的模具成型, 为弧形。
上述的 LED集成结构的制造方法, 工艺过程包括:
1 ) 在散热基板 401上通过冲压成型散热基板 401上的芯片固定凸台 414、 散热阶梯孔的大孔 417、 小孔 422、散热凸筋 418、散热凸筋 418内的隔热盲 孔 419、 与透镜成型环 405的固定柱 409配合的第二通孔 415、 凸台顶部的 凹陷部 416 ;
2 ) 在 PCB板 402上成型与透镜成型环 405的固定柱 409配合的第三通孔 421和与芯片固定凸台 414配合的第四通孔 420; 3 ) 在 PCB板 402上成型布图电路导电层 407, 布图电路导电层 407距第 四通孔 420中心的距离大于凸台第四通孔 420侧壁到第四通孔 420中心的距 离小于透镜成型环 405的内侧壁到透镜成型环 405中心的距离;
4) 将 PCB板 402、 散热基板 401放置在成型透镜成型环 405的塑胶模具 的设定位置, 散热基板 401上的芯片固定凸台 414穿过 PCB板 402的凸台第 四通孔 420, 注塑成型透镜成型环 405, 同时成型透镜成型环 405的固定柱 409和抵挡部 410; 在注塑成型透镜成型环 405时, 透镜成型环 405的固定 柱 409依次穿过 PCB板 402上的第三通孔 421、 散热基板 401上的第二通孔 415并通过抵挡部 410将透镜成型环 405与 PCB板 402、散热基板 401固定; 5 ) 通过固晶工艺将 LED芯片 403固定在芯片固定凸台 414的顶面的凹陷 部 416的底面上;
6 ) 焊与 LED芯片 403的电极电连接的金线 406, 金线 406与伸入透镜成 型环 405内侧壁与芯片固定凸台 414外侧壁之间内的布图电路导电层 407电 连接;
7 ) 通过成型透镜 404的模具灌胶成型透镜 404并对 LED芯片 403和金线 406封装, 胶固化透镜 404与透镜成型环 405、 LED芯片 403、 金线 406和 散热基板 401的芯片固定凸台 414、 PCB板 402固定。
实施例 8
如图 12至 14所示, 与实施例 7不同的是, LED集成结构的制造方法, 工艺过程包括:
1 )注塑成型透镜成型环 405, 同时成型从透镜成型环 405的一个端面上延伸 设有的固定柱 409, 固定柱 409的长度大于散热基板 401和 PCB板 402的厚 度之和;
2 )在散热基板 401上通过冲压成型散热基板 401上的芯片固定凸台 414、散 热阶梯通孔的大孔 417、散热凸筋 418、散热凸筋 418内的隔热盲孔 419、 与 透镜成型环 405的固定柱 409配合的第二通孔 415、 凸台顶部的凹陷部 416;
3 ) 激光切割成型散热阶梯通孔的大孔 417连通的散热阶梯通孔的小孔 422; 4 ) 在 PCB板 402上成型与固定柱 409配合的第三通孔 421和与芯片固定凸 台 414配合的第四通孔 420 ;
5 )在 PCB板 402上成型布图电路导电层 407,布图电路导电层 407距凸台第 四通孔 420中心的距离大于凸台第四通孔 420侧壁到凸台第四通孔 420中心 的距离小于透镜成型环 405的内侧壁到透镜成型环 405中心的距离;
6 ) 将散热基板 401上的芯片固定凸台 414穿过 PCB板 402的第四通孔 420 使 PCB板 402安装在散热基板 401上,将透镜成型环 405的固定柱 409依次 穿过 PCB板 402的第三通孔 421、 散热基板 401上的第二通孔 415并热熔固 定柱 409的端部成型抵挡部 410, 通过抵挡部 410将透镜成型环 405与 PCB 板 402、 散热基板 401固定;
7 ) 通过固晶工艺将 LED芯片 403固定在芯片固定凸台 414的顶面的凹陷部 416内;
8 ) 焊与 LED芯片 403电极电连接的金线 406, 金线 406与伸入透镜成型环 405内侧壁与芯片固定凸台 414外侧壁之间的布图电路导电层 407电连接; 9 )通过成型透镜 404的模具灌胶成型透镜 404并对 LED芯片 403和金线 406 封装, 胶固化透镜 404与透镜成型环 405、 LED芯片 403、 金线 406和散热 基板 401的芯片固定凸台 414、 PCB板 402固定。
实施例 9
如图 15所示, 与实施例 7不同的是, 一种 LED集成结构, 包括散热基 板 450, LED芯片 451, 透镜 452, 塑胶透镜成型环 453, 电连接 LED芯片 451电极的导线 454和电连接导线 454的布图电路导电层 455。
透镜 452的顶部为平面。
散热基板 450由高导热材质的陶瓷等压铸而成。散热基板 450包括一平 板状的底板 461,与散热基板 450—体成型的凸出底板 461的复数个凸台 462, 对应每个凸台 462设有与固定柱 457配合的第二通孔 463。 布图电路导电层 455直接设置在散热基板 450上,布图电路导电层 455分布在同一个平面上。
上述的 LED集成结构的制造方法, 工艺过程包括:
1 ) 烧结成型陶瓷散热基板 450, 同时成型散热基板 450上的凸台 462、散 热阶梯通孔的大孔、 小孔、 与透镜成型环 453的固定柱 457配合的第二通孔 463、 芯片固定凸台 462顶部固定 LED芯片的凹陷部 464;
2 ) 在散热基板 450上绝缘成型布图电路导电层 455,布图电路导电层 455 距凸台 462中心的距离大于凸台 462外侧壁到凸台 462中心的距离小于透镜 成型环 453的内侧壁到透镜成型环 453中心的距离;
3 ) 将散热基板 450放置在成型透镜成型环 453塑胶模具内的设定位置, 注塑成型透镜成型环 453, 同时成型透镜成型环 453的固定柱 457、 抵挡部 458和第一通孔 456; 在注塑成型透镜成型环 453时, 透镜成型环 453的固 定柱 457穿过散热基板 450上的第二通孔 463并通过抵挡部 458将透镜成型 环 453与散热基板 450固定;
4 ) 通过固晶工艺将 LED芯片 451固定在凸台 462的顶面上;
5 ) 焊与 LED芯片 451 电极电连接的导线 454, 导线 454与伸入透镜成型 环 453内侧壁与凸台 462外侧壁之间内的布图电路导电层 455电连接;
6 ) 通过成型透镜 452的模具灌胶成型透镜 452并对 LED芯片 451和导线 454封装, 胶固化透镜 452与透镜成型环 453、 LED芯片 451、 导线 454和 散热基板 450固定。
实施例 10
如图 16所示, 与实施例 9不同的是, 散热基板 500由高导热材质的薄 板金属或金属合金冲压而成, 其材料可以是不锈钢、 铜、 钨、 铝、 氮化铝、 铬等或其合金, 在散热基板 500表面设有一层碳化硅涂层 (未示出) , 透镜 定位环的个数为六个。在散热基板 500背离凸台 501的一侧设有置于凸台 501 内与凸台 501同心的散热盲孔。散热基板 500背离凸台 501的一侧与散热气 体直接接触。
透镜成型环 506的固定柱 504穿过散热基板 500通过固定柱 504端部热 熔抵挡部 505与散热基板 500固定,这样散热基板 500与透镜成型环 506固 定在一起。
透镜 503的顶部为球面。
上述的 LED集成结构的制造方法, 工艺过程包括: 1 ) 注塑成型透镜成型环 506, 同时从透镜成型环 506的一个端面上延伸 设有的固定柱 504, 固定柱 504的长度大于散热基板 500的厚度;
2 ) 冲压成型散热基板 500上的凸台 501、 散热盲孔、 透镜成型环固定柱 504的第二通孔 515;
3 ) 在散热基板 500上绝缘成型布图电路导电层 507,布图电路导电层 507 距凸台 501中心的距离大于凸台 501外侧壁到凸台 501中心的距离小于透镜 成型环 506的内侧壁到透镜成型环 506中心的距离;
4 ) 将透镜成型环 506的固定柱 504穿过散热基板 500上的与透镜成型环 固定柱 504配合的第二通孔 515, 通过热熔透镜成型环 506的固定柱 504端 部成型抵挡部 505使透镜成型环 506与散热基板 500固定;
5 ) 通过固晶工艺将 LED芯片 510固定在凸台 501顶部的凹陷部 511的底 面上;
6 ) 焊与 LED芯片 510电极电连接的金线 512, 金线 512与伸入透镜成型 环 506内侧壁与凸台 501外侧壁之间的布图电路导电层 507电连接;
7 ) 通过成型透镜 503的模具灌胶成型透镜 503并对 LED芯片 510和金线 512封装, 胶固化透镜 503与透镜成型环 506、 LED芯片 510、 金线 512和 散热基板 500固定。

Claims

权 利 要 求 书
1、 一种 LED集成结构的制造方法, LED集成结构包括散热基板, LED芯片, 透镜, 定位透镜或成型透镜的塑胶件, 电连接 LED芯片电极的导线和电连 接导线的布图电路导电层, 其特征在于在散热基板上设有与散热基板一体成 型的凸台, 在定位透镜或成型透镜的塑胶件上设有第一通孔, 在定位透镜或 成型透镜的塑胶件的端面上延伸设有固定柱, 在固定柱的端部设有抵挡部; 工艺过程包括:
1) 成型散热基板: 包括成型散热基板上的一个或一个以上凸台, 成型与定 位透镜或成型透镜的塑胶件上的固定柱配合的第二通孔;
2)成型布图电路导电层: 布图电路导电层距凸台中心的距离大于凸台外侧壁 到凸台中心的距离小于第一通孔的侧壁到第一通孔中心的距离;
3)成型定位透镜或成型透镜的塑胶件: 将散热基板放置在成型定位透镜或成 型透镜的塑胶件塑胶模具内的设定位置,注塑成型定位透镜或成型透镜的塑 胶件,同时成型定位透镜或成型透镜的塑胶件的第一通孔、固定柱和抵挡部; 在注塑成型定位透镜或成型透镜的塑胶件时, 定位透镜或成型透镜的塑胶件 的固定柱穿过散热基板上的第二通孔并通过抵挡部将定位透镜或成型透镜 的塑胶件与散热基板固定;
4)固晶: 通过固晶工艺将 LED芯片固定在凸台的顶面上;
5 ) 电连接 LED芯片与布图电路导电层: 焊导线, 导线的一端与 LED芯片电 极电连接, 导线的另一端与与伸入第一通孔侧壁与凸台外侧壁之间的布图电 路导电层电连接;
6 ) 封装 LED芯片和导线。
2、 如权利要求 1所述的一种 LED集成结构的制造方法, 其特征在于: 直接 在散热基板上成型与散热基板绝缘的布图电路导电层。
3、 如权利要求 1 所述的一种 LED集成结构的制造方法, 其特征在于: LED 集成结构还包括 PCB板, 布图电路导电层成型在 PCB板上; 工艺过程还包括 在成型布图电路导电层前,在 PCB板上成型与定位透镜或成型透镜的塑胶件 的固定柱配合的第三通孔和与避空凸台配合的第四通孔; 布图电路导电层距 第四通孔中心的距离大于第四通孔侧壁到第四通孔中心的距离小于第一通 孔的侧壁到第一通孔中心的距离; 在成型定位透镜或成型透镜的塑胶件时, 将散热基板和 PCB板放置在成型定位透镜或成型透镜的塑胶件塑胶模具内的 设定位置; 在注塑成型定位透镜或成型透镜的塑胶件时, 定位透镜或成型透 镜的塑胶件的固定柱依次穿过 PCB板上的第三通孔、散热基板上的第二通孔 并通过抵挡部将定位透镜或成型透镜的塑胶件与 PCB板、 散热基板固定。
4、 如权利要求 1 所述的一种 LED集成结构的制造方法, 其特征在于: LED 集成结构还包括用来封装 LED芯片和导线的封装胶体; 在定位透镜或成型 透镜的塑胶件上设有注入封装胶体的注胶通道,注胶通道的胶口置于定位透 镜或成型透镜的塑胶件远离抵挡部一侧的端面上,胶口和注胶通道与第一通 孔的侧壁连通; 胶口和注胶通道在注塑成型定位透镜或成型透镜的塑胶件时 与定位透镜或成型透镜的塑胶件一体成型;封装 LED芯片和导线的工艺包括:
1 ) 在焊接导线后, 将透镜通过紧配合或热压固定的方式安装在定位透镜或 成型透镜的塑胶件上;
2 ) 将初步组合的 LED集成结构置于特定环境中抽真空;
3 ) 于真空环境中通过胶口、 注胶通道向透镜内腔灌胶, 封装 LED芯片和导 线, 通过封装胶体的固化进一步对透镜固定。
5、如权利要求 1所述的一种 LED集成结构的制造方法,其特征在于封装 LED 芯片和导线工艺包括: 在焊接导线后, 通过成型透镜的模具灌胶成型透镜并 封装 LED芯片和导线,胶固化透镜与定位透镜或成型透镜的塑胶件、 LED芯 片、 导线和散热基板固定。
6、 如权利要求 1至 5任意一项所述的一种 LED集成结构的制造方法, 其特 征在于散热基板为金属薄板, 散热基板上的凸台、 第二通孔通过冲压而成; 工艺过程还包括在成型布图电路导电层前冲压成型凸台内的散热盲孔,散热 盲孔背离凸台的一侧与散热基板连通。
7、 如权利要求 1至 5任意一项所述的一种 LED集成结构的制造方法, 其特 征在于定位透镜或成型透镜的塑胶件为定位透镜或成型透镜的塑胶件,散热 基板上凸台的个数为复数个, 一个凸台对应一个独立的定位透镜或成型透镜 的塑胶件。
8、 如权利要求 1至 5任意一项所述的一种 LED集成结构的制造方法, 其特 征在于在散热基板上成型有两个或两个以上的凸台; 一个凸台对应一个定位 透镜或成型透镜的塑胶件, 定位透镜或成型透镜的塑胶件包括定位透镜或成 型透镜的塑胶件和将定位透镜或成型透镜的塑胶件连接在一起的与定位透 镜或成型透镜的塑胶件一起注塑成型的连接筋。
9、 如权利要求 1至 5任意一项所述的一种 LED集成结构的制造方法, 其特 征在于定位透镜或成型透镜的塑胶件为板状,散热基板上凸台的个数为复数 个, 塑胶板上的第一通孔与凸台一一配合, 凸台置于对应的第一通孔内。
10、 如权利要求 6所述的一种 LED集成结构的制造方法, 其特征在于: 工艺 过程还包括在成型布图电路导电层前冲压成型凸台顶部置放 LED芯片的凹陷 部。
11、 如权利要求 10所述的一种 LED集成结构的制造方法, 其特征在于: 工 艺过程还包括在成型布图电路导电层前,冲压成型与散热孔连通的散热小通 孔, 散热小通孔的直径小于散热孔的直经, 散热孔和散热小通孔形成散热阶 梯通孔, 散热阶梯通孔的大孔背离凸台的一侧与散热基板连通, 散热阶梯通 孔的小孔与凸台顶面连通。
12、 如权利要求 6所述的一种 LED集成结构的制造方法, 其特征在于: 工艺 过程还包括在成型布图电路导电层前激光切割成型与散热孔连通的散热小 通孔, 散热孔和散热小通孔形成散热阶梯通孔, 散热阶梯通孔的大孔背离凸 台的一侧与散热基板连通, 散热阶梯通孔的小孔与凸台顶面连通, LED芯片 完全覆盖散热阶梯通孔的小孔。
13、 如权利要求 6所述的一种 LED集成结构的制造方法, 其特征在于: 工艺 过程还包括在成型布图电路导电层前冲压成型散热凸筋、散热凸筋内的隔热 盲孔, 散热凸筋设置在散热孔的周边背离凸台的一侧的散热基板上, 隔热盲 孔朝向凸台的一侧与散热基板的底板朝向凸台一侧连通。
14、 如权利要求 1至 5任意一项所述的一种 LED集成结构的制造方法, 其特 征在于散热基板为金属板, 散热基板通过压铸成型, 同时压铸成型散热基板 上的凸台、 与定位透镜或成型透镜的塑胶件的固定柱配合的第二通孔。
15、 如权利要求 1至 5任意一项所述的一种 LED集成结构的制造方法, 其特 征在于散热基板为陶瓷板, 散热基板通过烧结成型, 同时烧结成型散热基板 上的凸台、 与定位透镜或成型透镜的塑胶件的固定柱配合的第二通孔。
16、一种 LED集成结构的制造方法, LED集成结构包括散热基板, LED芯片, 透镜, 定位透镜或成型透镜的塑胶件, 电连接 LED芯片电极的导线和电连 接导线的布图电路导电层, 其特征在于在散热基板上设有与散热基板一体成 型的凸台, 在定位透镜或成型透镜的塑胶件上设有第一通孔, 在定位透镜或 成型透镜的塑胶件的端面上延伸设有固定柱, 在固定柱的端部设有抵挡部; 工艺过程包括:
1)成型散热基板: 包括在散热基板上成型一个或一个以上凸台, 成型与定位 透镜或成型透镜的塑胶件上的固定柱配合的第二通孔; 成型定位透镜或成型 透镜的塑胶件: 注塑成型定位透镜或成型透镜的塑胶件, 同时成型定位透镜 或成型透镜的塑胶件的第一通孔、 固定柱, 固定柱的长度大于散热基板的厚 度;
2)成型布图电路导电层: 布图电路导电层距凸台中心的距离大于凸台外侧壁 到凸台中心的距离小于第一通孔的侧壁到第一通孔中心的距离;
3) 将定位透镜或成型透镜的塑胶件与散热基板固定在一起: 将定位透镜或 成型透镜的塑胶件的固定柱穿过散热基板上的避空通孔并热熔固定柱端部 成型抵挡部, 通过抵挡部将定位透镜或成型透镜的塑胶件与散热基板固定;
4)固晶: 通过固晶工艺将 LED芯片固定在凸台的顶面上;
5)电连接 LED芯片与布图电路导电层:焊导线,导线的一端与 LED芯片电极 电连接, 导线的另一端与与伸入第一通孔侧壁与凸台外侧壁之间的布图电路 导电层电连接;
6 ) 封装 LED芯片和导线。
17、 如权利要求 16所述的一种 LED集成结构的制造方法, 其特征在于: 直 接在散热基板上成型与散热基板绝缘的布图电路导电层。
18、 如权利要求 16所述的一种 LED集成结构的制造方法, 其特征在于: LED 集成结构还包括 PCB板, 布图电路导电层成型在 PCB板上, 布图电路导电层 距第四通孔中心的距离大于第四通孔侧壁到第四通孔中心的距离小于第一 通孔的侧壁到第一通孔中心的距离; 工艺过程还包括在成型布图电路导电层 前,在 PCB板上成型与定位透镜或成型透镜的塑胶件的固定柱配合的第二通 孔和与凸台配合的第四通孔; 在将定位透镜或成型透镜的塑胶件与散热基板 固定在一起时, 将定位透镜或成型透镜的塑胶件的固定柱穿过散热基板和 PCB板上的避空通孔并热熔固定柱端部成型抵挡部, 通过抵挡部将定位透镜 或成型透镜的塑胶件与散热基板固定;
19、 如权利要求 16所述的一种 LED集成结构的制造方法, 其特征在于: LED 集成结构还包括用来封装 LED芯片和导线的封装胶体; 在定位透镜或成型 透镜的塑胶件上设有注入封装胶体的注胶通道,注胶通道的胶口置于定位透 镜或成型透镜的塑胶件远离抵挡部一侧的端面上,胶口和注胶通道与第一通 孔的侧壁连通; 胶口和注胶通道在注塑成型定位透镜或成型透镜的塑胶件时 与定位透镜或成型透镜的塑胶件一体成型; 封装 LED芯片和导线工艺包括:
1 ) 在焊接导线后, 将透镜通过紧配合或热压固定的方式安装在定位透镜或 成型透镜的塑胶件上;
2 ) 将初步组合的 LED集成结构置于特定环境中抽真空;
3 ) 于真空环境中通过胶口、 注胶通道向透镜内腔灌胶, 封装 LED芯片和导 线, 通过封装胶体的固化进一步对透镜固定。
20、 如权利要求 16所述的一种 LED集成结构的制造方法, 其特征在于封装 LED芯片和导线的工艺包括: 在焊接导线后, 通过成型透镜的模具灌胶成型 透镜并封装 LED芯片和导线, 胶固化形成透镜, 透镜与定位透镜或成型透镜 的塑胶件、 LED芯片、 导线和散热基板固定。
PCT/CN2010/079794 2010-07-07 2010-12-15 一种led集成结构的制造方法 WO2012003700A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010102309613A CN101963296B (zh) 2010-07-07 2010-07-07 一种led集成结构的制造方法
CN201010230961.3 2010-07-07

Publications (1)

Publication Number Publication Date
WO2012003700A1 true WO2012003700A1 (zh) 2012-01-12

Family

ID=43516297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079794 WO2012003700A1 (zh) 2010-07-07 2010-12-15 一种led集成结构的制造方法

Country Status (2)

Country Link
CN (1) CN101963296B (zh)
WO (1) WO2012003700A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021134877A1 (zh) * 2020-01-03 2021-07-08 广州光联电子科技有限公司 一种大功率 led 照明装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102314812B (zh) * 2011-08-26 2014-03-12 创维光电科技(深圳)有限公司 Led显示屏
CN103000793A (zh) * 2011-09-14 2013-03-27 华夏光股份有限公司 发光二极管封装结构与封装方法
CN104235663B (zh) * 2014-09-23 2015-12-30 中山市欧曼科技照明有限公司 一种led软灯条的生产工艺
CN108566159B (zh) * 2017-03-10 2019-07-26 江苏通灵电器股份有限公司 太阳能发电组件用芯片低压封装式接线盒的快速加工方法
CN108692261A (zh) * 2017-09-28 2018-10-23 常州星宇车灯股份有限公司 一种车灯用led芯片的安装结构
CN109990241A (zh) * 2017-12-29 2019-07-09 光宝电子(广州)有限公司 车用电子装置
CN109630910A (zh) * 2018-12-26 2019-04-16 江门市品而亮照明有限公司 一种发光体及led灯

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2746538Y (zh) * 2004-11-05 2005-12-14 江珏 大功率led发光二极管
CN101359655A (zh) * 2007-08-01 2009-02-04 宏齐科技股份有限公司 以陶瓷为基板的发光二极管芯片封装结构及其制作方法
CN201225568Y (zh) * 2008-06-30 2009-04-22 东莞市宏磊达电子塑胶有限公司 大功率led透镜组件
US20090162957A1 (en) * 2007-12-21 2009-06-25 Samsung Electro-Mechanics Co., Ltd. Mold for forming molding member and method of manufacturing LED package using the same
CN201336318Y (zh) * 2008-12-16 2009-10-28 王海军 一种高效散热发光的大功率led封装结构
CN201336319Y (zh) * 2008-11-21 2009-10-28 李经武 大功率led芯片焊接铜铝基板及注塑灌封支架结构
CN101626050A (zh) * 2008-07-07 2010-01-13 光宝科技股份有限公司 发光二极管封装装置、散热基座与电极支架组合及其方法
CN101651172A (zh) * 2008-08-14 2010-02-17 上海科学院 一种led器件及其封装方法
CN101666438A (zh) * 2009-09-18 2010-03-10 深圳市华海诚信电子显示技术有限公司 一种led模块及其制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100593945B1 (ko) * 2005-05-30 2006-06-30 삼성전기주식회사 고출력 led 패키지 및 그 제조방법
CN1976069A (zh) * 2006-12-05 2007-06-06 上海纳晶科技有限公司 隔热式封装结构的白光led的制造方法
WO2008137618A1 (en) * 2007-05-07 2008-11-13 Koninklijke Philips Electronics N V Led-based lighting fixtures for surface illumination with improved heat dissipation and manufacturability
CN100508186C (zh) * 2007-05-23 2009-07-01 广州南科集成电子有限公司 贴片式发光二极管及制造方法
JP2010129537A (ja) * 2008-11-28 2010-06-10 Tousui Ltd Led照明灯
CN201434259Y (zh) * 2009-06-08 2010-03-31 国格金属科技股份有限公司 一种led发光模块

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2746538Y (zh) * 2004-11-05 2005-12-14 江珏 大功率led发光二极管
CN101359655A (zh) * 2007-08-01 2009-02-04 宏齐科技股份有限公司 以陶瓷为基板的发光二极管芯片封装结构及其制作方法
US20090162957A1 (en) * 2007-12-21 2009-06-25 Samsung Electro-Mechanics Co., Ltd. Mold for forming molding member and method of manufacturing LED package using the same
CN201225568Y (zh) * 2008-06-30 2009-04-22 东莞市宏磊达电子塑胶有限公司 大功率led透镜组件
CN101626050A (zh) * 2008-07-07 2010-01-13 光宝科技股份有限公司 发光二极管封装装置、散热基座与电极支架组合及其方法
CN101651172A (zh) * 2008-08-14 2010-02-17 上海科学院 一种led器件及其封装方法
CN201336319Y (zh) * 2008-11-21 2009-10-28 李经武 大功率led芯片焊接铜铝基板及注塑灌封支架结构
CN201336318Y (zh) * 2008-12-16 2009-10-28 王海军 一种高效散热发光的大功率led封装结构
CN101666438A (zh) * 2009-09-18 2010-03-10 深圳市华海诚信电子显示技术有限公司 一种led模块及其制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021134877A1 (zh) * 2020-01-03 2021-07-08 广州光联电子科技有限公司 一种大功率 led 照明装置

Also Published As

Publication number Publication date
CN101963296B (zh) 2013-03-20
CN101963296A (zh) 2011-02-02

Similar Documents

Publication Publication Date Title
WO2012003699A1 (zh) Led集成结构及制造方法
WO2012003698A1 (zh) 一种led集成结构
WO2012003700A1 (zh) 一种led集成结构的制造方法
WO2012034332A1 (zh) 一种带有冷却装置的led集成结构
TWI528508B (zh) 高功率發光二極體陶瓷封裝之製造方法
US7607801B2 (en) Light emitting apparatus
US6930332B2 (en) Light emitting device using LED
US7391153B2 (en) Light emitting device provided with a submount assembly for improved thermal dissipation
US7960819B2 (en) Leadframe-based packages for solid state emitting devices
TWI441350B (zh) 樹脂填封發光體及其製造方法
WO2012027937A1 (zh) 带有冷却装置的led集成结构
US20120235553A1 (en) Spherical Light Output LED Lens and Heat Sink Stem System
JP2004207367A (ja) 発光ダイオード及び発光ダイオード配列板
TW201438298A (zh) 發光組件及其製造方法
JP5097372B2 (ja) 大電流高効率の表面実装型発光ダイオードランプおよびその製造方法
KR100875702B1 (ko) 고출력 발광 다이오드 패키지
CN201741711U (zh) 成型led集成结构的定位或成型透镜的塑胶件的注塑模
KR100613066B1 (ko) 일체형 방열판을 갖는 발광 다이오드 패키지 및 그것을제조하는 방법
KR100665182B1 (ko) 고출력 led 패키지 및 그 제조방법
TW200905912A (en) Light emitting diode packaging structure and manufacturing method thereof
CN210110833U (zh) 一种大功率led发光器件封装结构
CN107204393B (zh) 一种焊接式散热器与芯片一体化封装光源结构
KR100878398B1 (ko) 고출력 led 패키지 및 그 제조방법
JP2000235808A (ja) 光源装置
CN220652039U (zh) 半导体发光单元

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10854359

Country of ref document: EP

Kind code of ref document: A1