WO2012003699A1 - Led集成结构及制造方法 - Google Patents

Led集成结构及制造方法 Download PDF

Info

Publication number
WO2012003699A1
WO2012003699A1 PCT/CN2010/079793 CN2010079793W WO2012003699A1 WO 2012003699 A1 WO2012003699 A1 WO 2012003699A1 CN 2010079793 W CN2010079793 W CN 2010079793W WO 2012003699 A1 WO2012003699 A1 WO 2012003699A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
hole
chip
plastic
heat dissipation
Prior art date
Application number
PCT/CN2010/079793
Other languages
English (en)
French (fr)
Inventor
杨东佐
Original Assignee
Yang Dongzuo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yang Dongzuo filed Critical Yang Dongzuo
Publication of WO2012003699A1 publication Critical patent/WO2012003699A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/2602Mould construction elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14065Positioning or centering articles in the mould
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • H05K3/0061Laminating printed circuit boards onto other substrates, e.g. metallic substrates onto a metallic substrate, e.g. a heat sink
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • F21Y2103/10Elongate light sources, e.g. fluorescent tubes comprising a linear array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4899Auxiliary members for wire connectors, e.g. flow-barriers, reinforcing structures, spacers, alignment aids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09218Conductive traces
    • H05K2201/09236Parallel layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10121Optical component, e.g. opto-electronic component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10674Flip chip
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/049Wire bonding

Definitions

  • the invention relates to an LED integrated structure and a manufacturing method for lighting, a backlight module, a television, an LED dot matrix display, a projection device, etc., in particular to a high-power LED integrated structure and a manufacturing method.
  • the present invention also relates to an LED lamp having an LED integrated structure, an LED dot matrix display screen, a backlight device, and a projection device.
  • the present invention also relates to an injection mold for forming a positioning lens of an LED integrated structure or a plastic part of a molded lens.
  • LEDs are made of epoxy-encapsulated LED chips and pins that are electrically connected to LED chips.
  • surface-mounting technology began to be adopted.
  • LED light source especially high-power LED light source
  • the heat is concentrated when the light is emitted. If the heat generated by the LED chip is not released in time, the temperature of the LED light source is too high, which will lead to the LED light reduction and low life, so how to The heat generated by the LED chip is quickly and effectively dissipated and becomes a bottleneck for popularizing LED light sources. How to improve the light transmittance of LED light sources and how to improve the heat dissipation performance of LED light sources to prolong the service life is an important technical problem in the industry.
  • an LED package device comprises: an LED die and a high thermal conductivity material.
  • the heat sink base is made of a highly thermally conductive material such as metal or ceramic, and includes a recessed portion of the chassis, the body, and the top surface of the body. The crystal grains are placed on the bottom surface of the depressed portion.
  • the electrode holder is punched out from a metal material, and includes a substrate and a positioning wall extending axially from the periphery of the hollow portion of the substrate and defining an accommodation space.
  • the positioning unit is disposed on the heat dissipation base and the electrode holder to One of the less is used to fix the heat sink base into the accommodating space of the electrode holder.
  • the positioning unit may be at least one card-bumping protrusion protruding from the inner wall surface of the positioning wall of the electrode holder, or may include a flange protruding radially outward from the top surface of the heat-dissipating base.
  • the existing LED package device, heat sink base and electrode holder combination and method thereof have the following defects and deficiencies:
  • the die passes through the stepped column-shaped heat sink base as the first heat sink. Since the columnar heat sink base does not directly contact the air to dissipate heat, and has a certain solid metal length, it requires a long metal conduction heat dissipation distance. The heat is emitted to the air, and the contact area of the heat dissipation base with the air is small, so the heat generated when the crystal grains emit light has a heat accumulation effect. In order to improve the heat dissipation performance, the heat dissipation base generally needs to design other heat dissipation materials such as metal or ceramics that are in direct thermal conduction contact with the heat dissipation base, and finally dissipate heat through the heat dissipation member.
  • the heat dissipation base In order to improve the heat dissipation performance, the heat dissipation base generally needs to design other heat dissipation materials such as metal or ceramics that are in direct thermal conduction contact with the heat dissipation base, and
  • this method increases the distance of heat conduction and heat dissipation.
  • the heat dissipation base and the heat sink are divided into two parts, the two are bonded together with the thermal conductive glue, and there is still a huge thermal resistance.
  • the temperature of the heat sink base is kept high, and the temperature of the heat sink is similar to the ambient temperature.
  • the heat on the heat sink base is not quickly dissipated, and the heat dissipation effect is poor.
  • the heat-dissipating pedestal and the electrode holder need to be separately formed in the manufacturing method, in particular, because the structure of the electrode holder is complicated, multiple steps are required to punch out the formed electrode holder, and the stamping die structure of the electrode holder is complicated. It is necessary to increase the process of mounting the electrode holder and the heat dissipating substrate. Therefore, the manufacturing method has many processes, complicated processes, complicated mold structure, and high manufacturing cost.
  • Application No. 200720172030 discloses a package structure of a pin-type high-power LED device, including an LED chip, a lens, a printed PCB board, a metal heat sink body, a gold wire and a lead;
  • the metal heat sink body includes a base and the base a boss on the seat, and the upper surface area of the base is at least twice the area of the upper surface of the boss;
  • the printed PCB board is glued to the base; and the through hole is disposed on the base below the printed PCB board.
  • the through-hole pin is electrically connected to the printed PCB board; the lens cover LED chip and the printed PCB board are adhered to the printed PCB board by a potting process.
  • This high-power pin-type high-power LED device although increasing the base area of the metal heat sink body, has a poor heat dissipation effect, even if a heat sink is additionally disposed, the heat on the LED chip must be conducted due to heat dissipation.
  • the bump and the base are transferred to the metal heat sink body, and then transferred to the heat sink by the metal heat sink body, which increases the intermediate link due to heat conduction and the long heat transfer path corresponding to the thick metal heat transfer body. Therefore, the thermal resistance is high and the thermal conductivity is very poor.
  • the pin is electrically connected to the layout circuit above the printed PCB board and passes through the printed PCB board and the metal heat sink body. The processing is complicated and the process is difficult; the electrical connection between the LED chip and the layout circuit on the printed PCB needs to pass through the electrode.
  • the bracket has a complicated structure and many thermal resistances in the middle part.
  • the COB (Chip on Board) package design of the LED integrated structure is proposed in the prior art.
  • the invention directly fixes the chip on the substrate by silver glue or eutectic solder or the like, the thermal resistance of the intermediate link can be minimized, thereby reducing the pn junction of the LED chip to the outside.
  • the thermal resistance of the environment improves heat dissipation efficiency and luminous efficiency.
  • COB Chip on Board
  • the advantage of the package design is that the electrodes of each LED chip directly form an ohmic contact with the metal pad through the bonding electrode lead, and the formation of the multi-channel LED chip array is electrically connected through the electrical connection device of the heat dissipation substrate and the LED chip, that is, It can realize series and parallel connection of LED chips, and can improve product reliability and yield.
  • the outer shape is small, the thickness is thin, and the assembly is easy, and it can be used for occasions where the size of the light source assembly is high, such as illumination, display, and the like.
  • a white LED integrated array illumination source based on the C 0 B technology package which comprises a substrate and a plurality of LED chips, wherein the substrate is provided with a plurality of grooves thereon
  • the wiring forms an electronic circuit, and the electronic circuit cooperates with the chip component disposed on the substrate to form a printed PCB board having a specific function and electrical connection; the LED chip is bonded to the bottom of the groove of the substrate, and the electrode wire is bonded to the specified solder
  • the circuit forms a circuit with the electronic circuit and the chip component, and the LED chip is further coated with phosphor; and the transparent light-emitting layer is disposed above the LED light-emitting area on the substrate.
  • the LED chip is bonded to the bottom of the groove of the substrate.
  • the LED chip is packaged, a large amount of silica gel needs to be filled. Since the price of the silica gel is expensive, the cost is increased, and the disadvantage is that the LED chip is difficult to realize.
  • the third disadvantage is that the package electrode lead must be electrically connected from the LED chip at the bottom of the base to the layout circuit on the upper surface of the base, and the light emitted by the LED chip may be shadowed by the obstruction of the excessive lead. Affecting optical effects, especially for secondary optical optimization development.
  • the utility model does not disclose how to electrically connect the electronic circuit and the patch component. Since the electronic circuit is all placed in the reflector, the electronic circuit and the patch are seen from the figure, especially the content disclosed in FIG. The electrical connection between the components also needs to be connected from the back of the substrate through the bow.
  • a device for high-power LED street lamp with COB package which comprises a lens, a silica gel, a gold wire, a chip, a heat sink, etc., and 5-50 pieces are arranged on the heat dissipation plate.
  • the boss, the chip is directly fixed on the boss of the heat sink, and then radiated through the heat sink and the heat sink on the heat sink.
  • the high-power LED street lamp of this structure has better heat dissipation effect, but since there is no plastic lens for locating the lens or forming the lens, the positioning of the lens is not accurate, and the silicon dioxide is pre-pointed in the lens to encapsulate the chip, and on the one hand, the amount of the silicone is large.
  • bubbles are generated after the packaged silica gel is cured, which seriously affects the light-emitting quality of the LED chip, which causes the emitted light to have spots, shadows and other optical defects, which is not conducive to the optical light of the LED light source. Secondary optimization development.
  • a high-power LED package structure with high-efficiency heat-dissipating illumination which comprises a lens, a substrate and an LED light-emitting chip.
  • the lens is fixed on the upper surface of the substrate, and the lower surface of the lens is provided with an upward convex surface.
  • the mounting recess is disposed on the upper surface of the substrate and is mounted with a recessed cover.
  • the upper surface of the substrate that is fastened by the mounting recess is provided with positive and negative light emitting electrodes, and the light emitting electrode and the LED light emitting chip are connected by a metal wire.
  • the surface is provided with positive and negative connecting electrodes connected to the light emitting electrodes, and the lower surface of the lens outside the mounting recess and the upper surface of the substrate are bonded by an annular adhesive layer, and formed in the inner hole of the adhesive layer and the mounting recess.
  • the cavity is filled with silica gel, and a glue injection channel is formed on the substrate to communicate with the inner hole of the adhesive layer and the cavity formed by the mounting recess, and the lens and the substrate are both made of crystal crystal.
  • the high-power LED package structure of this structure has the disadvantage that the fixing of the lens and the substrate is adhered by the adhesive layer, and the bonding is not firmly fixed; the second disadvantage is that the positioning mechanism of the positioning lens is not positioned when the lens is bonded to the substrate.
  • the positioning is not accurate, and the position of the lens is easily deviated during the filling;
  • the third disadvantage is that the lens is fixed on the substrate through the adhesive layer, the adhesive layer is easy to block the injection passage, affecting the injection of the silica gel;
  • the disadvantage is that the LED is electrically connected to the LED light-emitting chip.
  • the metal wire is electrically connected to the light-emitting electrode fixed on the substrate and disposed in the mounting recess of the lens, and the light-emitting electrode is electrically connected to the connecting electrode, and the connecting electrode is electrically connected to the conductive layer of the layout circuit, and the intermediate link is There are many thermal resistances, which affect the heat dissipation efficiency and luminous efficiency.
  • the disadvantage is that the distance between the LED light-emitting chip and the concave portion of the lens is large, the light refractive loss is large, and the luminous efficiency is low.
  • a light-emitting diode chip package structure using a ceramic substrate which comprises: a ceramic substrate, a conductive unit, a hollow ceramic shell, a plurality of light-emitting diode chips, and an encapsulant.
  • the ceramic substrate has a body, a plurality of bumps, a plurality of through holes penetrating the bumps, and a plurality of semi-perforations formed on the side of the body and between each of the two bumps;
  • the conductive unit has a plurality of respectively a first conductive layer formed on the surface of the bumps, a plurality of second conductive layers respectively formed on the inner surfaces of the semi-perforated surfaces and the bottom surface of the body, and a plurality of third conductive layers respectively filling the through holes
  • the hollow ceramic housing is fixed on the top surface of the body to form an accommodating space; the LED chips are respectively disposed in the accommodating space; and the encapsulant is filled in the accommodating space.
  • the manufacturing method of the ceramic substrate-based LED chip package structure comprises the following steps:
  • a plurality of LED chips are respectively disposed in the accommodating space, and the positive and negative ends of each of the LED chips are electrically connected to different first conductive layers respectively; and an encapsulant is filled in the accommodating space to Covering the light emitting diode chips.
  • a disadvantage of the invention is that the electrical connection of the LED chip to the external circuit requires a first conductive layer on the surface of the bump, a third conductive layer in the through hole, a second conductive layer in the semi-through hole, and a bottom pin. It can be electrically connected to the conductive layer of the external layout circuit. The electrical connection of the LED chip is complicated, and the thermal resistance of the intermediate part is excessive.
  • the disadvantage is that one LED chip requires two bumps, and all the bumps are placed.
  • the distance between the LEDs is relatively large, and the individual packaging of each LED chip cannot be realized, and the required encapsulation is large, and the optical effect is not good.
  • the production of the through holes is difficult in the case of sintering the ceramic; the conductive layers in the through holes and the semi-through holes are difficult to manufacture.
  • a high-power LED light-emitting diode which comprises an aluminum substrate, a silver paste, a wafer, a gold wire, a reflective cover, and the aluminum substrate has a convex-concave cup shape, that is, The bottom surface of the center has a circular groove, and a corresponding cup top has a cup-shaped boss.
  • the boss is provided with a plastic frame, the plastic frame is circular, the center is provided with a circular hole, and the groove is concentric with two grooves.
  • the inner and outer parts form a low and two convex edges, and the bottom surface is symmetrically provided with two cylindrical legs, and is mounted in the circular holes on both sides of the cup-shaped boss.
  • the curved surface of the reflective cover is smaller than the flat cover, and the lower edge is coated with Adhesive glue, packed in the groove of the plastic frame.
  • the bottom of the plastic frame is coated with adhesive glue filled with glue.
  • the distance between the illuminant wafer and the bottom surface of the reflective cover is small.
  • the aluminum substrate may be in the shape of a plum or a circle.
  • the technology disclosed in this patent is closest to the present invention. The assembly step of the patent is to first place the silver glue into the boss cup of the aluminum substrate, and then fix the wafer on the silver glue.
  • the third disadvantage is that the glue will be filled.
  • the reflective cover is coated with adhesive glue and fixed in the groove of the plastic frame.
  • the fixing is unreliable, the positional relationship is fixed inaccurately, and there is a gap between the reflective cover and the glue, and there is air in the gap, that is, reflection.
  • the aluminum substrate in the utility model patent has the shape of a bowl cup, and has only one boss on the upper surface thereof, and the gold wire is electrically connected to the positive and negative electrodes of the aluminum substrate, and the positive and negative of the aluminum substrate are seen from the contents of the text and the figure. It is not a conductive layer of the layout circuit, but a light-emitting electrode or a bracket type pin as disclosed in the 200820214808.
  • the first technical problem to be solved by the present invention is to provide a small thermal resistance of the intermediate link, good heat dissipation, direct electrical connection of the conductive layer of the chip to the layout circuit, and no reflow soldering.
  • wave soldering, encapsulant can be resin or silica gel, lens and chip positional relationship, high luminous flux, simple structure, simple assembly, good heat dissipation, good optical effect LED integrated structure.
  • a second technical problem to be solved by the present invention is to provide a method of manufacturing an LED integrated structure.
  • a third technical problem to be solved by the present invention is to provide an LED lamp having an LED integrated structure.
  • a fourth technical problem to be solved by the present invention is to provide an LED dot matrix display having an LED integrated structure.
  • a fifth technical problem to be solved by the present invention is to provide a backlight device having an LED integrated structure.
  • a sixth technical problem to be solved by the present invention is to provide a projection apparatus having an LED integrated structure.
  • a seventh technical problem to be solved by the present invention is to provide an injection mold for forming a positioning lens of a LED integrated structure or a plastic part of a molded lens.
  • the heat dissipating substrate is provided with two or more chip fixing bosses integrally formed with the heat dissipating substrate, and the cross section of the heat dissipating substrate The area is three times or more than the area of the cross section of a chip fixing boss.
  • the LED chip is directly fixed on the boss by a die bonding process, and the side of the heat dissipation substrate facing away from the chip fixing boss is directly connected with the heat dissipating gas or the heat dissipating liquid.
  • a plastic member having a positioning lens or a molding lens, and a first through hole that cooperates with the chip fixing boss, the positioning lens or the molding lens, and the lens and the chip fixing convex on the plastic part of the positioning lens or the molding lens.
  • the number of the first through holes is one-to-one correspondence, and the plastic parts of the positioning lens or the forming lens are positioned and fixed by the hot-melt fixing column and the heat-dissipating substrate, or the heat-dissipating substrate is placed on the plastic part of the forming positioning lens or the molding lens.
  • the forming resisting portion fixes and fixes the heat dissipating substrate when the positioning part lens or the plastic part of the forming lens is formed in the mold.
  • the conductive layer of the layout circuit is improved, and the conductive layer of the layout circuit extends into the inner sidewall of the first through hole and the outer sidewall of the chip fixing boss between.
  • the first technical solution provided by the present invention is an LED integrated structure, including a heat dissipation substrate, an LED chip, a lens, a plastic lens positioning member, a layout of wires and electrical connection wires electrically connecting the electrodes of the LED chip.
  • the circuit conductive layer is used for encapsulating the LED chip and the encapsulating colloid of the wire.
  • the heat dissipating substrate is provided with two or more chip fixing bosses integrally formed with the heat dissipating substrate, and the cross-sectional area of the heat dissipating substrate is a chip fixing.
  • the LED chip is directly fixed on the end surface of each chip fixing boss by a die bonding process on the end surface of each of the chip fixing bosses; and the chip fixing boss is provided on the plastic lens positioning member Cooperating, positioning the lens and the first through hole covering the encapsulant, the number of the lens, the chip fixing boss and the first through hole are one-to-one correspondence; and extending two or more on the end surface of the plastic lens positioning member a fixing post, a second through hole that is matched with the fixing post on the heat dissipation substrate, and the fixing post passes through the heat dissipation substrate
  • the second through hole is formed by forming a resisting portion by heat fusion at the end of the fixing post or placing the heat dissipating substrate in the mold of the molded plastic lens positioning member.
  • the plastic lens positioning member When the plastic lens positioning member is formed, the resisting portion is formed, and the plastic lens positioning member is formed.
  • the fixing post and the resisting portion are fixed to the heat dissipating substrate;
  • the chip fixing boss is disposed in the corresponding first through hole, and the conductive layer of the layout circuit extends between the inner side wall of the first through hole and the outer side wall of the chip fixing boss;
  • the wire is placed in the first through hole, one end of the wire is electrically connected to the electrode of the LED chip, and the other end of the wire is electrically connected with the conductive layer of the layout circuit extending between the inner side wall of the first through hole and the outer side wall of the chip fixing boss
  • the plastic lens positioning member is provided with a glue injection channel for injecting the package colloid at a position corresponding to the first through hole, and the glue port of the glue injection channel is placed on the end surface of the plastic lens positioning member away from the resisting portion, the glue injection channel and the first
  • the inner side wall of a through hole is connected
  • a heat dissipation blind hole or a heat dissipation stepped through hole disposed in the chip fixing boss is disposed on a side of the heat dissipation substrate facing away from the chip fixing boss, and the LED chip completely covers the small hole of the heat dissipation stepped through hole.
  • a heat dissipating rib integrally formed with the substrate is disposed on the heat dissipation substrate on the side of the heat dissipation blind hole or the side of the large end of the step heat dissipation through hole away from the chip fixing boss, and the heat dissipation rib is provided with heat insulation.
  • the blind hole, the side of the heat insulating blind hole facing the chip fixing boss communicates with the heat dissipation substrate.
  • the chip fixing boss is cylindrical, and a recessed portion on which the LED chip is placed is provided on the top of the chip fixing boss, and the bottom surface of the recessed portion is a plane on which the LED chip is placed.
  • the PCB board is further disposed on a side of the heat dissipation substrate provided with the chip fixing boss, and the conductive layer of the layout circuit is directly disposed on the PCB board, and is disposed on the PCB board a fourth through hole of the chip fixing boss and a third through hole matched with the fixing post; the chip fixing boss of the heat dissipation substrate passes through the fourth through hole, and the side of the PCB board provided with the conductive layer of the layout circuit faces away from the contact heat dissipation substrate
  • the contact surface, the fixing post sequentially passes through the third through hole on the PCB board and the second through hole on the heat dissipation substrate, and then forms a resisting portion by heat fusion or places the heat dissipation substrate and the PCB board in the molded plastic lens.
  • the mold of the piece is formed with a resisting portion when the plastic lens positioning member is formed.
  • the heat dissipation substrate is a non-metal heat conductive insulation board, and the layout is electrically
  • the conductive layer of the road is directly disposed on the heat dissipation substrate and faces the plastic lens positioning member.
  • the heat dissipation substrate is a metal substrate
  • the conductive layer of the layout circuit is directly disposed on the heat dissipation substrate and faces the plastic lens positioning member, and an insulation layer is disposed between the conductive layer of the layout circuit and the metal substrate.
  • the plastic lens positioning member is a plastic lens positioning ring, and a chip fixing boss corresponds to a separate plastic lens positioning ring, and the conductive layers of the layout circuit are distributed on the same plane; the lens and the corresponding The first through hole is tightly fitted or fixed by a presser and a plastic lens positioning member.
  • the plastic lens positioning component comprises a plastic lens positioning ring and a connecting rib formed by injection molding together with the plastic lens positioning ring for connecting the plastic lens positioning ring, and a chip fixing boss corresponds to a plastic lens.
  • the positioning ring, the conductive layer of the layout circuit is distributed on the same plane; the lens is tightly matched with the corresponding first through hole or is heat-fixed by the edger and the plastic lens positioning member.
  • the number of the plastic lens positioning members is one, which is a plate shape, and two or more first through holes are provided on the plastic lens positioning member, and one chip on the heat dissipation substrate is fixed.
  • the boss corresponds to a first through hole on the plastic lens positioning member, and the conductive layer of the layout circuit is distributed on the same plane; the lens is tightly matched with the corresponding first through hole or is fixed by the edger and the plastic lens positioning member .
  • the second technical solution provided by the present invention has the above
  • LED integrated structure LED lights LED integrated structure LED lights.
  • the third technical solution provided by the present invention is an LED dot matrix display having the above LED integrated structure, and an imaging controller is further included in the LED dot matrix display, and the layout circuit of each chip is electrically conductive.
  • the layers are electrically connected separately to the imaging controller.
  • the fourth technical solution provided by the present invention is a backlight device having the above LED integrated structure, comprising a light guide plate and an LED backlight module mounted together, and the LED backlight module includes the above LED integration. structure.
  • the fifth technical solution provided by the present invention is a projection apparatus having the LED integrated structure described above, including an LED light source, an imaging system, and a projection imaging screen, and the LED light source includes the LED integrated structure described above.
  • the sixth technical solution provided by the present invention is a manufacturing method of an LED integrated structure, and the process includes:
  • the distance of the conductive layer of the layout circuit from the center of the chip fixing protrusion is greater than the distance from the outer side wall of the chip fixing protrusion to the center of the chip fixing protrusion is smaller than the inner side wall of the first through hole The distance to the center of the first through hole;
  • the lens cavity is filled through the glue port and the glue injection channel, and the LED chip and the wire are packaged, and the lens is further fixed by the curing of the package gel.
  • the seventh technical solution provided by the present invention provides a method for manufacturing an LED integrated structure, the process comprising:
  • the lens cavity is filled through the glue port and the glue injection channel, and the LED chip and the wire package are sealed, and the lens is further fixed by the curing of the package gel.
  • the eighth technical solution provided by the present invention provides a method for manufacturing an LED integrated structure, the process comprising:
  • the distance of the conductive layer of the layout circuit from the center of the chip fixing protrusion is greater than the distance from the outer side wall of the chip fixing protrusion to the center of the chip fixing protrusion is smaller than the inner side wall of the first through hole The distance to the center of the first through hole;
  • the lens cavity is filled through the glue port and the glue injection channel, and the LED chip and the wire are packaged, and the lens is further fixed by the curing of the package gel.
  • the ninth technical solution provided by the present invention provides a method for manufacturing an LED integrated structure, and the process includes:
  • the distance of the conductive layer of the layout circuit from the center of the fourth through hole is greater than the distance from the sidewall of the fourth through hole to the center of the fourth through hole is smaller than the sidewall of the first through hole The distance from the center of the first through hole;
  • the lens cavity is filled through the glue port and the glue injection channel, and the LED chip and the wire package are further fixed to the lens by the curing of the package gel.
  • the tenth technical solution provided by the present invention is to provide an LED integrated structure, including a heat dissipation substrate, an LED chip, a lens, a wire electrically connecting the electrodes of the LED chip electrode, and a conductive layer of the layout circuit electrically connecting the wires, Further comprising a lens-molded plastic member; two or more chip fixing bosses integrally formed with the heat-dissipating substrate are disposed on the heat-dissipating substrate, and an area of a cross-section of the heat-dissipating substrate is an area of a cross-section of the chip fixing boss Three or more times, the LED chip is directly fixed on the end face of each chip fixing boss by a die bonding process; on the lens molding plastic piece, a first pass for forming a lens is matched with the chip fixing boss The number of the holes, the lens, the chip fixing boss, and the first through hole are one-to-one correspondence; two or more fixing posts are extended on the end surface of the lens
  • the side wall of the first through hole includes a large upper and lower tapered shape, and the upper surface of the lens is a flat surface. After dispensing, it becomes a relatively flat surface under the action of gravity and the sidewall of the first through hole.
  • the lens-molded plastic part is a lens-shaped plastic ring, and one chip fixing boss corresponds to a separate lens-shaped plastic ring, and the conductive layers of the layout circuit are distributed on the same plane.
  • the lens-molded plastic part comprises a lens-molded plastic ring and a connecting rib formed by injection molding a plastic ring with a lens forming plastic ring, and a chip fixing boss corresponds to a lens-shaped plastic ring.
  • the conductive layer of the layout circuit is distributed in the same flat On the surface.
  • the number of lens-molded plastic parts is one, which is a plate shape, and two or more first through holes are provided on the lens-molded plastic parts, and one chip fixing boss on the heat dissipation substrate corresponds to A first through hole in the lens molding plastic member, and the conductive layers of the layout circuit are distributed on the same plane.
  • the eleventh technical solution provided by the present invention provides a method for manufacturing an LED integrated structure, the process comprising:
  • the distance of the conductive layer of the layout circuit from the center of the chip fixing protrusion is greater than the distance from the outer side wall of the chip fixing protrusion to the center of the chip fixing protrusion is smaller than the inner side wall of the first through hole The distance to the center of the first through hole;
  • the twelfth technical solution provided by the present invention is to provide a method for manufacturing an LED integrated structure, the process comprising:
  • the distance of the conductive layer of the layout circuit from the center of the fourth through hole is greater than the distance from the sidewall of the fourth through hole to the center of the fourth through hole is smaller than the sidewall of the first through hole The distance from the center of the first through hole;
  • the injection molding lens forms the plastic part, and simultaneously forms the lens a first through hole, a fixing post and a resisting portion of the molded plastic part;
  • the fixing post of the lens forming plastic part sequentially passes through the third through hole on the PCB board and the second pass on the heat dissipation substrate And fixing the lens molding plastic piece to the PCB board and the heat dissipation substrate through the fixing column and the resisting portion, and the chip fixing boss is placed in the corresponding first through hole;
  • the lens is molded by a molding lens and the LED chip and the wire package are sealed, and the glue curing lens is fixed with the lens molding plastic part, the LED chip, the chip fixing boss of the wire heat dissipation substrate, and the PCB board.
  • the thirteenth technical solution provided by the present invention provides a method for manufacturing an LED integrated structure, the process comprising:
  • the distance of the conductive layer of the layout circuit from the center of the chip fixing boss is greater than the distance from the outer sidewall of the chip fixing boss to the center of the chip fixing boss is smaller than the sidewall of the first through hole The distance from the center of the first through hole;
  • the fourteenth technical solution provided by the present invention provides a method for manufacturing an LED integrated structure, the process comprising:
  • the distance of the conductive layer of the layout circuit from the center of the fourth through hole is greater than the distance between the sidewall of the fourth through hole and the center of the fourth fixed hole of the chip fixing protrusion is smaller than the first The distance from the sidewall of the through hole to the center of the first through hole;
  • the fifteenth technical solution provided by the present invention provides an LED integrated structure, including a heat dissipating substrate, an LED chip, a lens, a positioning lens or a plastic part of a molded lens, and a wire electrically connecting the electrodes of the LED chip and Electrically connecting the conductive layer of the layout circuit of the wire, and providing two or more chip fixing bosses integrally formed with the heat dissipation substrate on the heat dissipation substrate,
  • the cross-sectional area of the heat-dissipating substrate is three or more times the area of the cross-section of one chip fixing boss, and the LED chip is directly fixed on the end surface of each chip fixing boss by a die bonding process;
  • the plastic part of the molded lens comprises a plastic ring and a connecting rib for connecting the plastic ring together with the plastic ring; a first through hole for positioning the lens or the forming lens on the plastic ring; the lens, the first through hole and the chip
  • the number of the fixing bosses is one-
  • the PCB board is further disposed on a side of the heat dissipation substrate provided with the chip fixing boss, the conductive layer of the layout circuit is directly disposed on the PCB board, and the PCB board is provided with a side of the conductive layer of the layout circuit facing away from the contact
  • the contact surface of the heat dissipating substrate, the positioning mechanism precisely positions the heat dissipating substrate, the PCB board and the positioning lens or the plastic part of the forming lens, and the fastener fixes the heat dissipating substrate, the PCB board and the positioning lens or the plastic part of the forming lens.
  • the sixteenth technical solution provided by the present invention provides an LED integrated structure including a heat dissipating substrate, an LED chip, a lens, a positioning lens or a plastic part of a molded lens, and a wire electrically connecting the electrodes of the LED chip and The conductive layer of the layout circuit electrically connecting the wires, wherein the heat dissipation substrate is provided with two or more chip fixing bosses integrally formed with the heat dissipation substrate, and the cross-sectional area of the heat dissipation substrate is a cross section of the chip fixing boss Three or more times the area of the chip, the LED chip is directly fixed on the end face of each chip fixing boss by a die bonding process; the plastic part of the positioning lens or the molding lens is a plate shape, in the positioning lens or the molding lens The plastic member is provided with two or more first through holes, and the number of the lens, the first through hole and the chip fixing boss are in one-to-one correspondence; the chip fixing boss is placed in the corresponding
  • the PCB board is further disposed on a side of the heat dissipation substrate provided with the chip fixing boss, the conductive layer of the layout circuit is directly disposed on the PCB board, and the PCB board is provided with a side of the conductive layer of the layout circuit facing away from the contact
  • the contact surface of the heat dissipating substrate, the positioning mechanism precisely positions the heat dissipating substrate, the PCB board and the positioning lens or the plastic part of the forming lens, and the fastener fixes the heat dissipating substrate, the PCB board and the positioning lens or the plastic part of the forming lens.
  • the seventeenth technical solution provided by the present invention provides an injection mold for forming a positioning lens of a LED integrated structure or a plastic part of a molded lens, and the LED integrated structure includes a heat dissipating substrate, a positioning lens or a molding lens.
  • injection mold includes fixed mold device, dynamic mold device, glue feeding device and ejection device, the feeding device is disposed on one side of the fixed mold device, and is integrally formed with the heat dissipation substrate on the heat dissipation substrate
  • Two or more bosses for fixing the LED chip, the cross-sectional area of the heat-dissipating substrate is three or more times the area of the cross-section of each of the bosses; and is provided on the positioning lens or the molding lens a first through hole that cooperates with the boss, the positioning lens or the molding lens, and the number of the lens, the boss, and the first through hole are one-to-one correspondence; two or two extend on the end surface of the positioning lens or the molding lens
  • the fixing post is provided with a second through hole that is matched with the fixing post on the heat dissipating substrate, and the fixing post passes through the second through hole of the heat dissipating substrate, and passes through the end of the fixing post
  • the heat dissipating substrate is placed
  • the resisting portion is formed.
  • the positioning lens or the forming lens is fixed to the heat dissipating substrate through the fixing post and the resisting portion;
  • the boss is placed corresponding to the first In the through hole, the conductive layer of the layout circuit extends between the inner side wall of the first through hole and the outer side wall of the boss;
  • the injection mold comprises a plastic body body cavity of the molded plastic part body and is protruded in the plastic body body cavity Forming a boss of the first through hole, forming a resisting cavity of the resisting portion, accommodating the receiving cavity of the heat dissipating substrate, and positioning the heat dissipating substrate in a positioning position of the accommodating cavity;
  • the plastic body body cavity and the boss It is disposed on the same side of the parting surface, and the resisting cavity and the plastic body cavity are disposed on the opposite side of the parting surface, and the accommodating cavity is connected with the plastic body cavity or communicates with the resisting cavity;
  • the plastic body body cavity and the boss are arranged in the fixed part, the resisting part type
  • the cavity is disposed in the movable part, the ejection mechanism is disposed in the movable part, and the gate of the feeding device communicates with the bottom of the plastic body cavity; the plastic part body cavity and the boss are demoulded along the molding surface of the demolding direction Large, the resisting portion of the movable part has no demoulding taper or inverted cone along the molding surface in the demolding direction.
  • the plastic body body cavity and the boss are disposed in the fixed mold portion, the resisting portion cavity is disposed in the movable mold portion, the ejector mechanism is disposed in the fixed mold portion, the gate of the feeding device and the plastic member body type The bottom of the chamber is connected.
  • the plastic body body cavity and the boss are disposed in the movable mold portion, the resisting portion cavity is disposed in the fixed mold portion, the ejection mechanism is disposed in the movable mold portion, and the gate and the resisting portion cavity of the feeding device are provided. The bottom is connected.
  • the conductive layer of the layout circuit is directly disposed on the heat dissipation substrate and faces the positioning lens or the plastic part of the molded lens;
  • the positioning mechanism is a positioning hole that cooperates with the chip fixing boss, and the positioning hole and the plastic body body cavity are The same side of the parting surface.
  • a heat dissipation blind hole or a heat dissipation stepped through hole disposed in the chip fixing boss is disposed on a side of the heat dissipation substrate facing away from the chip fixing boss; a periphery of the heat dissipation blind hole or a periphery of the heat dissipation stepped through hole
  • the heat dissipating substrate facing away from the side of the chip fixing boss is provided with a heat dissipating rib integrally formed with the substrate, and a heat insulating blind hole is arranged in the heat dissipating rib; the heat dissipating rib avoiding hole is disposed on the injection mold, and the heat dissipating convex
  • the rib-avoiding hole and the resisting cavity are on the same side of the parting surface, and a gap is avoided between the heat-dissipating rib-avoiding hole and the heat-dissipating rib.
  • the positioning member is a positioning shaft that cooperates with the heat dissipation substrate.
  • the utility model further comprises a PCB board, wherein the conductive layer of the layout circuit is directly disposed on the PCB board, and the PCB board is provided with a conductive layer of the layout circuit facing away from the contact surface contacting the heat dissipation substrate, and the fixing pillar passes through the PCB board in sequence.
  • the positioning member is a positioning shaft, and an opening-shaped positioning groove is arranged on a side surface of the PCB board, and the positioning axis is a ladder
  • the shaft is on the same side of the body cavity of the plastic part, and the small shaft of the positioning shaft cooperates with the heat dissipation substrate, and the axis adjacent to the small axis of the positioning shaft cooperates with the positioning groove on the PCB board.
  • the plastic part of the positioning lens or the forming lens is a lens positioning plastic part of the positioning lens, and the plastic positioning part of the lens positioning plastic part is provided with a glue injection channel for injecting the encapsulation colloid, and the glue opening of the glue injection channel is placed in the lens positioning.
  • the plastic member is away from the end surface of the resisting portion, and the glue injection passage communicates with the inner side wall of the first through hole; and a protruding portion for molding the injection passage is provided on the side wall of the boss.
  • the plastic part of the positioning lens or the forming lens is a plastic ring, and two or more independent plastic rings are fixed on the heat dissipating substrate;
  • the gate of the feeding device is a dot gate, each The plastic ring corresponds to one or two point gates.
  • the plastic part of the positioning lens or the forming lens comprises a plastic ring and a connecting rib formed by injection molding together with a plastic ring connecting the set number of plastic rings, and the plastic part of the positioning lens or the forming lens comprises Two or more plastic rings; a connecting rib forming cavity communicating with the plastic body body cavity on the mold; the gate of the feeding device is connected with the plastic body body cavity and/or the connecting rib cavity; The gate of the device is a point gate or sprue.
  • the plastic part of the positioning lens or the forming lens is plate-shaped, and two or more first through holes are provided on the plastic part of the positioning lens or the forming lens, and the gate of the feeding device is a point. Gate or sprue.
  • the fixed part also includes a hot runner system.
  • the first advantage is that the LED chip is directly fixed on the chip fixing boss by a die bonding process, and the side of the heat dissipation substrate facing away from the chip fixing boss is in direct contact with the heat dissipating gas or the heat dissipating liquid.
  • the COB (Chip on Board) package design of the LED integrated structure is compared with the existing LED integrated structure, because the LED chip is directly fixed on the chip fixing boss of the substrate by silver glue or eutectic solder or the like.
  • the heat generated by the operation of the LED chip passes through the thin heat-conducting layer of the chip fixing boss of the heat-dissipating substrate, and is directly in contact with the heat-dissipating gas such as air or the heat-dissipating liquid, and the heat contacting the heat-dissipating substrate is rapidly flowed due to the difference in density of the hot-cold gas or liquid.
  • Being taken away, thereby taking away the heat of the substrate can minimize the thermal resistance of the intermediate link, greatly reducing the heat transfer path distance of the pn junction heating portion of the LED chip to the external air environment or the heat dissipating liquid, thereby greatly reducing the thermal resistance.
  • the heat dissipating substrate of the structure is a thin plate, and the thickness of the heat dissipating substrate is generally in the range of 0.2 mm to 5 mm.
  • the main application is to integrally form a plurality of chip fixing bosses on the heat dissipating substrate and the heat dissipating substrate, and the area of the substrate is much larger than the chip fixing convex. The area at the top of the table.
  • the heat generated by the LED chip is greatly reduced in the intermediate path distance of the heat dissipating gas, that is, in the air or the heat dissipating liquid, and the contact area with the heat dissipating liquid and the dissipating gas is greatly increased, the heat accumulation effect is greatly reduced, and the heat dissipation can be greatly improved.
  • Efficiency and keeping the chip at the proper operating temperature maintains long life and efficient luminous efficiency of the chip.
  • the chip fixing boss is integrally formed with the heat dissipation substrate, so the heat generated by the chip is only transmitted through the heat
  • the hot substrate is directly emitted in the air, so the thermal resistance is small, the heat dissipation speed is fast, and the heat dissipation is not required by the other heat sinks, and the heat dissipation effect is quite good.
  • the LED chip is directly fixed on the chip fixing boss by the die bonding method, and the LED chip is directly connected to the conductive layer of the layout circuit through the wire. Because of the chip fixing boss, the electrical connection wire resists the shadow of the light emitted by the LED chip. To the lowest, it is conducive to optical secondary optimization!
  • the existing LED bracket which saves the need for multiple layers of intermediate parts such as heat-dissipating metal parts in the LED bracket and its electrode metal legs, especially to avoid heat-dissipating metal parts and heat dissipation.
  • the high thermal resistance generated between the two parts of the substrate so the thermal resistance is small, the heat conduction has a fast heat dissipation effect, and the structure is simple and reliable.
  • the chip fixing boss and the heat dissipation substrate are integrally formed, which is more advantageous for the design and assembly process of the light source, and saves cost. . Therefore, the invention has simple and reliable structure, few parts, thin thickness and easy assembly, and is particularly suitable for occasions requiring high power for the light source.
  • the second advantage is that the conductive layer of the layout circuit can extend into the plastic part of the positioning lens or the forming lens due to the plastic parts which are all provided with the positioning lens or the forming lens.
  • the wire can be directly connected to the conductive layer of the layout circuit. It is no longer necessary to connect the wire to the conductive layer of the layout circuit through the conductive metal bracket or to the conductive layer of the layout circuit from the heat dissipation substrate facing away from the chip fixing boss through the wiring leg, thereby simplifying the structure and minimizing the intermediate link.
  • the encapsulant can be made of resin or silica gel;
  • the LED chip, the electrical connection wires and their two soldered ends are not exposed to the air, which is advantageous for long life.
  • reflow soldering or wave soldering since the temperature of reflow soldering or wave soldering is generally 250C or 280C, the encapsulant cannot be used.
  • the present invention can further save the cost and improve the optical performance of the LED chip.
  • the advantage of this COB package design is that the electrodes of each LED chip 2 directly form an ohmic contact with the conductive layer of the layout circuit through the bonding wires, and the formation of the multi-channel LED chip array is realized by the electrical connection device between the heat dissipation substrate and the LED chip. Electrical interconnection can realize series and parallel connection of LED chips, and can improve product reliability and production yield.
  • the third advantage is that the plastic part of the positioning lens or the molding lens is positioned and fixed by the hot-melt fixing column and the heat-dissipating substrate, or the positioning lens or the molding lens is formed by placing the heat-dissipating substrate in the mold of the plastic part forming the positioning lens or the molding lens.
  • the plastic part is shaped and resisted to position and fix the heat dissipating substrate, or is positioned by the positioning mechanism and the heat dissipating substrate and fixed by the fastener and the heat dissipating substrate. It is fixed and reliable, can withstand high temperature during the subsequent packaging process, and its reliability will not be affected under high temperature conditions. Compared with fixing with fasteners, this technical solution does not need to be in the positioning lens or molding lens.
  • the fixing hole is designed on the plastic part, and the distance between the adjacent first through holes can be reduced for the first through hole of the same size, so that more lenses can be arranged in a unit area.
  • the plastic part of the positioning lens or the forming lens is fixed to the heat dissipating substrate by injection molding the positioning lens or the plastic part of the molding lens, thereby eliminating the installation process of mounting the positioning lens or the plastic part of the molding lens on the heat dissipating substrate.
  • the plastic parts of the positioning lens or the molding lens and the heat dissipating substrate are in the axial direction and the radial direction.
  • the fourth advantage is that the heat dissipation blind hole or the heat dissipation stepped through hole increases the heat dissipation area of the heat dissipation substrate, and the distance between the LED chip and the air is greatly reduced, that is, the distance between the LED chip and the air is greatly reduced, thereby greatly reducing the distance between the LED chips and the air.
  • the heat accumulation effect so there is a better heat dissipation hole than the non-porous heat dissipation effect.
  • the fifth advantage is that the ribs further increase the area of the heat-dissipating substrate in contact with the air, so that the heat dissipation effect is better. Because the air in the blind hole is not circulated when the LED chip emits light, the heat insulating blind hole has a heat insulating effect on the heat generated by the LED chip, so that the heat generated by the LED chip is mainly distributed along the chip fixing boss and the heat dissipation rib. Into the air.
  • the sixth advantage is that the recessed portion facilitates the mounting and positioning of the LED chip, so that the positioning of the LED chip is more precise, and the light emitted from the chip is preferentially concentrated to improve the light efficiency.
  • the seventh advantage is that the heat dissipation substrate is an insulated non-metal plate, and the conductive layer of the layout circuit is directly disposed on the heat dissipation substrate, and the structure is simple and the heat dissipation effect is good.
  • the heat-dissipating substrate is made of an insulating and heat-conductive non-metal material, so that low thermal resistance can be obtained, the short circuit of the conductive layer of the layout circuit can be avoided, and the heat generated by the chip during operation can be conducted through the insulating and thermally conductive material substrate, and good heat conduction makes the high density large. Power LED integrated chip package can be realized.
  • the eighth advantage is that the heat dissipating substrate is made of a metal material, so that a low thermal resistance can be obtained, and the conductive layer of the layout circuit on the top is separated by an insulating layer having a relatively small thickness, and the insulating layer can The short circuit of the metal substrate is avoided, and the heat generated by the chip during operation can be conducted through the metal substrate, and good heat conduction enables the high-density and high-power LED integrated chip package to be realized.
  • the ninth advantage is that when the conductive layer of the layout circuit is disposed on the PCB, the positioning lens or the plastic member of the molding lens can fix the heat dissipation substrate and the PCB board together.
  • the use of the PCB board facilitates the layout design of the circuit of the conductive layer of the layout circuit, saves the complicated manufacturing process of the original circuit layout on the heat dissipation substrate, and uses a very mature PCB board, which greatly saves cost and simplifies The process further improves the reliability and design flexibility of the conductive layer of the layout circuit.
  • the PCB board has a heat insulating effect, which is more favorable for the heat on the heat dissipating substrate to be emitted along the side in contact with the air.
  • the tenth advantage is that a chip fixing boss corresponds to a plastic lens positioning ring, and the plastic amount is greatly reduced when the positioning lens or the plastic part of the lens is molded, thereby reducing the cost.
  • the lens is fixed on the plastic part of the positioning lens or the forming lens by tight fitting or hot pressing, so that the lens is first fixed and repackaged, and the lens is not displaced when the LED chip is packaged, which is beneficial to the filling and curing process, especially It is much more reliable to fix the lens only by the adhesion of silicone or the like.
  • the eleventh advantage is that all the plastic positioning rings on a heat dissipating substrate can be connected into an integral positioning lens or a molded plastic piece through a connecting rib during injection molding; or a part of the lens positioning ring on a heat dissipating substrate can be connected.
  • a chip fixing boss corresponds to a plastic lens positioning ring, and the plastic dosage is small when the plastic lens positioning ring is formed, and the cost is low.
  • the plastic lens positioning ring is connected as a whole through the connecting rib.
  • the first is that when the plastic part of the positioning lens or the molding lens is injection molded, the mold gate can be disposed on the plastic lens positioning ring or the connecting rib to facilitate the mold gate.
  • the arrangement is more favorable for the plastic filling balance in the mold during injection molding, and the plastic flow between the different plastic lens positioning rings is realized by the connecting ribs, which can reduce the number of mold gates and facilitate the design of the mold flow path, and a mold can be used.
  • Two or more plastic lens positioning rings are formed by gates. For example, when the number of plastic lens positioning rings is small, only one plastic spline can be directly designed to form a plurality of plastic lens positioning rings.
  • the second is Reducing the number of fixed columns does not require two or more fixing posts on each plastic positioning ring, which can reduce the manufacturing cost of the mold on the one hand, and can be used to form a positioning lens or a molded lens on the other hand.
  • the plastic parts reduce the amount of plastic;
  • the third is the same size of the plastic lens positioning ring, the fixed column can be designed in the plastic lens Locating ring and connecting ribs The position of the boundary, so that the cross section of the fixed column can be increased;
  • the fourth is for the plastic lens positioning ring of the same size, because the cavity of the cavity forming the adjacent lens positioning ring is connected to form the cavity of the connecting rib, so More plastic lens positioning rings can be arranged per unit area, and the service life of the mold is longer;
  • Fifth the positional relationship between the plastic lens positioning ring and the plastic lens positioning ring is more precise and more reliable, so that the lens is The positional relationship is more precise and the optical effect is improved.
  • the lens is fixed on the plastic part of the positioning lens or the forming lens by tight fitting or hot pressing, so that the lens is first fixed and repackaged, and the lens is not displaced when the LED chip is packaged, which is beneficial to the filling and curing process, especially It is much more reliable to fix the lens only by the adhesion of silicone or the like.
  • the twelfth advantage is that only one plate-shaped positioning lens or plastic lens for forming the lens can be provided on one heat-dissipating substrate; or two or more plate-shaped positioning lenses or molding can be provided on one heat-dissipating substrate.
  • Plastic parts for the lens The plastic part of the positioning lens or the forming lens is plate-shaped. The first is that when the positioning lens or the plastic part of the forming lens is injection molded, the mold gate design is more flexible, and the layout of the mold gate is facilitated and the mold is more favorable in the injection molding.
  • the lens is fixed on the plastic part of the positioning lens or the forming lens by tight fitting or hot pressing, so that the lens is first fixed and repackaged, and the lens is not displaced when the LED chip is packaged, which is beneficial to the filling and curing process, especially It is much more reliable to fix the lens only by the adhesion of silicone or the like.
  • a thirteenth advantage is that the plastic part of the positioning lens or the forming lens is in the form of a plate, and the fixing post is placed in the center of every four adjacent first through holes. For the first through hole of the same size, the distance between adjacent first through holes can be minimized, so that more lenses can be arranged in a maximum area per unit area, which can be maximized when applied to a dot matrix display. Limit the realization of high-definition image display.
  • the fourteenth advantage is that the silicon carbide coating on the surface of the heat dissipating substrate has the advantages of high thermal conductivity and high thermal emissivity. In the field of application without forced fan convection, such as LED illumination, the heat dissipation function can be more apparent. Silicon carbide has excellent thermal conductivity (1 30-1 60 W/m. K), good insulation, and has a thermal emissivity 5 to 8 times higher than metals such as copper and aluminum, and is a non-metallic application. For example, after the aluminum fins are sprayed with the silicon carbide heat-dissipating paint, the temperature is effectively reduced by 5 degrees to 7 degrees, and the overall heat dissipation efficiency is further increased by 10% to 15%.
  • the glue injection channel in the first technical solution provided by the present invention The glue port is placed on the end surface of the plastic lens positioning member away from the resisting portion, and the glue injection passage communicates with the inner side wall of the plastic lens positioning member to facilitate the injection; since the plastic lens positioning member is a plastic member, the glue mouth and the glue injection The channel is easy to form.
  • the lens Before injecting the encapsulant, the lens is tightly fitted or fixed by the plastic lens positioning member, so that the lens is first fixed and repackaged, and the lens is not displaced when the LED chip is packaged, which is beneficial to the filling and curing process, especially Some are much more reliable by fixing the lens only by the adhesion of silicone or the like.
  • the plastic lens positioning member can achieve precise mounting of the lens position during packaging, and the lens, the LED chip, the electrical connection wire and the two soldering ends thereof, the heat dissipation substrate and the chip thereof are fixed by vacuuming and injection molding.
  • the bumps are solidified together, especially when the package is packaged, the bubble can be generated when the package colloid is solidified in a vacuum environment, which plays an important role in ensuring the light quality of the LED chip, and does not cause the emitted light to have a spot.
  • plastic lens positioning member facilitates lens installation and accurate lens mounting position and Fixed and reliable, the aggregation of light effect facilitates the secondary optimization of optics, ultimately achieving optics If good, while the plastic lens and the lens positioning member and the filling time of dispensing a small amount of silica gel, cost can be reduced.
  • the seventeenth technical solution provided by the present invention provides an injection mold for forming a positioning lens of a LED integrated structure or a plastic part of a molded lens, and the advantages are as follows: 1) accommodating in an injection mold The accommodating cavity of the heat dissipating substrate, when the plastic part of the locating lens or the forming lens is injection-molded, the positioning mechanism limits the heat dissipating substrate to a set position in the injection mold, and the positioning lens is used when forming the locating lens or the plastic part of the forming lens Or the plastic part of the molded lens is fixed to the heat dissipation substrate, the installation process of the plastic part of the positioning lens or the molding lens is omitted, and the plastic part of the positioning lens or the molding lens and the heat dissipation substrate have no gap in the axial direction and the radial direction.
  • the fixing method is very reliable, and the positional relationship between the heat dissipating substrate and the positioning lens or the plastic part of the molding lens can be very precise, and the positional relationship of the lens of the positioning lens or the plastic part of the molding lens is very precise, thereby improving the optical effect of the LED integrated structure.
  • the plastic body body cavity and the resisting cavity are placed on the opposite sides of the parting surface to facilitate demolding of the product.
  • a gap between the chip fixing boss avoidance hole and the chip fixing boss is provided, which can reduce the processing precision of the chip fixing boss avoiding hole, and ensure that the heat dissipation substrate is placed
  • the chip fixing boss does not interfere with the mold when it is inside the mold.
  • the plastic body body cavity and the boss are placed in the fixed mold part to facilitate the setting of the gate of the feeding device and the filling balance of the plastic during injection molding.
  • the ejector mechanism is disposed in the movable mold portion to make the mold structure simple. Since the molding surface in the demolding direction of the fixed mold portion is larger than the molding surface in the demolding direction of the movable mold portion, the molding surface of the plastic part body and the boss of the fixed mold portion in the demolding direction are demolded in the mold removing direction.
  • the forming surface of the resisting portion of the movable mold portion has no demolding taper or inverted cone along the molding direction of the demolding direction, thereby ensuring that the product remains on the movable mold side when the movable mold portion and the fixed mold portion are divided.
  • the plastic body body cavity and the boss are arranged in the fixed mold part, which facilitates the setting of the gate of the feeding device and the filling balance of the injection plastic. Since the molding surface in the demolding direction of the fixed mold portion is larger than the molding surface in the demolding direction of the movable mold portion, the product will remain on the fixed mold side when the movable mold portion and the fixed mold portion are divided, and the ejection mechanism is set in the fixed mold. On one side, that is, the flip-chip is used to facilitate the ejection of the product, and the mold forming surface in the demolding direction does not need special design.
  • the molding surface in the demolding direction of the movable mold part is larger than the molding surface in the demolding direction of the fixed mold part, and the mold part and the fixed mold part can be separated to ensure that the product will remain on the side of the movable mold, which is convenient for the top of the product.
  • the ejector mechanism is arranged on the side of the movable mold, and the mold structure is simple.
  • the chip fixing boss and the positioning hole are positioned, and the structure is simple. In the case where there are many chip fixing bosses on the heat sink substrate, it is only necessary to provide two to four positioning holes that cooperate with the chip fixing bosses, and the rest are designed to avoid holes.
  • the heat dissipation rib avoidance hole has a relatively regular shape, which facilitates the processing of the heat dissipation rib avoidance hole.
  • the positioning shaft can be matched with the outer periphery of the heat dissipation substrate, or the positioning hole on the heat dissipation substrate, or the positioning groove on the heat dissipation substrate.
  • the positioning axis is used to position the heat dissipation substrate, and the structure is simple.
  • a positioning axis can be positioned from the two directions by using the positioning groove and the positioning shaft.
  • the point gates facilitate the splitting of the glue ejected from the nozzles into the separate molding chambers.
  • the gate of the feeding device may be connected only to the body cavity of the plastic part, or may only be connected to the connecting rib cavity, or may include a gate of the feeding device that communicates with the body cavity of the plastic part and versus The gate of the feeding device that connects the rib cavity.
  • the gate is generally a point gate. In the case of a small number of plastic rings, a sprue can also be used, which makes the mold structure simple.
  • the gate is generally a point gate.
  • a sprue can also be used, which makes the mold structure simple.
  • FIG. 1 is a front elevational view of Embodiment 1 of the present invention.
  • Figure 2 is a cross-sectional view taken along line A-A of Figure 1.
  • Figure 3 is a perspective exploded view of Embodiment 1 of the present invention.
  • Fig. 4 is a perspective exploded perspective view showing the projection of the embodiment 1 of the present invention from another direction.
  • Fig. 5 is a perspective exploded perspective view showing a third embodiment of the present invention.
  • Figure 6 is a front elevational view of Embodiment 4 of the present invention.
  • Figure 7 is a cross-sectional view taken along line B-B of Figure 6 .
  • Figure 8 is a perspective exploded view of Embodiment 4 of the present invention.
  • Figure 9 is a perspective exploded view of Embodiment 5 of the present invention.
  • Fig. 10 is an enlarged view of a portion I of Fig. 9.
  • Figure 11 is a perspective exploded view of Embodiment 6 of the present invention.
  • Figure 12 is a perspective exploded view of Embodiment 7 of the present invention.
  • Figure 13 is a perspective exploded view of Embodiment 8 of the present invention.
  • Figure 14 is a perspective view of a plastic lens positioning plate in accordance with a ninth embodiment of the present invention.
  • Figure 15 is a perspective view showing a tenth embodiment of the present invention.
  • Figure 16 is a perspective view showing the eleventh embodiment of the present invention.
  • Figure 17 is a perspective view showing the projection 11 of the present invention from another direction.
  • Figure 18 is a perspective view showing the integrated structure of the LED of the eleventh embodiment of the present invention.
  • Figure 19 is a perspective view of Embodiment 12 of the present invention.
  • Figure 20 is a perspective view showing a thirteenth embodiment of the present invention.
  • Figure 21 is a perspective view showing a fourteenth embodiment of the present invention.
  • Figure 22 is a front elevational view of Embodiment 15 of the present invention.
  • Figure 23 is a cross-sectional view taken along line C-C of Figure 22 .
  • Figure 24 is a perspective exploded view of Embodiment 15 of the present invention.
  • Figure 25 is a perspective exploded view of Embodiment 17 of the present invention.
  • Figure 26 is a perspective exploded view of Embodiment 18 of the present invention.
  • Figure 27 is a perspective exploded view of Embodiment 19 of the present invention.
  • Figure 28 is an enlarged view of a portion II of Figure 27 .
  • Figure 29 is a perspective exploded view of Embodiment 20 of the present invention.
  • Figure 30 is a perspective exploded view of Embodiment 21 of the present invention.
  • Figure 31 is a perspective exploded view of Embodiment 22 of the present invention.
  • Figure 32 is a perspective view showing the plastic lens positioning plate of Embodiment 23 of the present invention.
  • Figure 33 is a front elevational view showing the embodiment 24 of the present invention.
  • Figure 34 is a perspective exploded perspective view showing a movable mold insert, a fixed mold insert, an LED integrated structure, and a positioning structure in Embodiment 24 of the present invention.
  • Fig. 35 is a perspective exploded perspective view showing the movable mold insert, the fixed mold insert, the LED integrated structure, and the positioning structure projected from the other direction in the twenty-fourth embodiment of the present invention.
  • Figure 36 is an enlarged view of a portion III of Figure 34.
  • Figure 37 is a perspective view showing the integrated structure of the positioning mechanism and the LED of Embodiment 24 of the present invention.
  • Figure 38 is a right side view showing the embodiment 25 of the present invention.
  • Figure 39 is a perspective exploded perspective view showing a movable mold insert, a fixed mold insert, an LED integrated structure, and a positioning structure according to Embodiment 25 of the present invention.
  • Figure 40 is a perspective exploded view showing the movable mold insert, the fixed mold insert, the LED integrated structure, and the positioning structure projected from the other direction in Embodiment 25 of the present invention.
  • Figure 41 is a perspective exploded perspective view showing a movable mold insert, a fixed mold insert, an LED integrated structure, and a positioning structure in Embodiment 26 of the present invention.
  • Figure 42 is a perspective exploded perspective view showing the movable mold insert, the fixed mold insert, the LED integrated structure, and the positioning structure projected from the other direction in Embodiment 26 of the present invention.
  • Figure 43 is a perspective exploded perspective view showing a movable mold insert, a fixed mold insert, an LED integrated structure, and a positioning structure according to Embodiment 27 of the present invention.
  • Figure 44 is a perspective exploded view showing the movable mold insert, the fixed mold insert, the LED integrated structure, and the positioning mechanism projected from the other direction in Embodiment 27 of the present invention.
  • Figure 45 is a perspective exploded view showing the movable mold insert, the fixed mold insert, the LED integrated structure, and the positioning mechanism of Embodiment 28 of the present invention.
  • Figure 46 is a perspective exploded view showing the movable mold insert, the fixed mold insert, the LED integrated structure, and the positioning mechanism of Embodiment 29 of the present invention.
  • an LED integrated structure includes a heat dissipation substrate 1, a PCB board 2, an LED chip 3, a lens 4, a lens positioning ring 5, a gold wire 6 electrically connecting the electrodes of the LED chip 3, and an electrical connection.
  • the patterned circuit conductive layer 7 of the gold wire 6 is used to encapsulate the LED chip 3 and the encapsulant 8 of the gold wire 6.
  • the lens positioning ring 5 is made of high temperature resistant PPA plastic.
  • a positioning lens 4 and a first through hole 23 covering the encapsulating body 8 are disposed on the lens positioning ring 5, and a fixing post 9 is extended on the lens positioning ring 5, and the heat dissipating substrate 1 is placed at the end of the fixing post 9.
  • the resisting portion 10 is formed in the mold of the molded lens positioning ring 5 when the plastic positioning ring is formed.
  • a glue injection channel 11 for injecting the encapsulation body 8 is disposed on the lens positioning ring 5, and the glue port 12 of the glue injection channel 11 is placed on the end surface of the lens positioning ring 5 away from the resisting portion, and the glue port 12 and the glue injection channel 11 are The side walls of the first through holes 23 communicate.
  • the heat dissipating substrate 1 is stamped from a sheet metal or a metal alloy of high thermal conductivity, and the material thereof may be stainless steel, copper, tungsten, aluminum, aluminum nitride, chromium or the like or an alloy thereof.
  • the heat dissipating substrate 1 includes a flat bottom plate 13 and a plurality of chip fixing bosses 14 protruding from the heat dissipating substrate 1 .
  • the chip fixing boss 14 is provided with a second pass corresponding to the fixing post 9 . Hole 15.
  • the cross section of the chip fixing boss 14 is circular, and the area of the cross section of the bottom plate 13 is much larger than the area of the cross section of the chip fixing boss 13, at least three times or three of the area of the cross section of the chip fixing boss 13.
  • a recess portion 16 on which the LED chip 3 is placed concentrically with the chip fixing boss 14 is provided on the top of the chip fixing boss 14, and the bottom surface of the recess portion 16 is a plane on which the LED chip 3 is placed.
  • a heat dissipating rib 18 integrally formed with the heat dissipating substrate 1 is disposed on the heat dissipating substrate 1 on the side of the large hole 17 of the stepped through hole away from the chip fixing boss 14 , and a heat insulating blind hole 19 is disposed in the heat dissipating rib 18 .
  • Insulation blind hole 19 The side facing the chip fixing boss 14 communicates with the bottom plate 13 of the heat dissipation substrate 1 toward the chip fixing boss 14 side. The side of the heat dissipation substrate 1 facing away from the chip fixing boss 14 is in direct contact with the heat releasing gas.
  • the conductive layer 7 of the layout circuit is directly disposed on the PCB 2, and the conductive layers 7 of the layout circuit are distributed on the same plane.
  • Each of the chip fixing bosses 14 on the PCB board 2 is provided with a fourth through hole 20 that cooperates with the chip fixing boss 14 and a third through hole 21 that cooperates with the fixing post 9.
  • the PCB board 2 is disposed on the heat dissipating substrate 1 One side of the chip fixing boss 14 is in direct contact with the heat dissipation substrate 1, and the PCB board 2 is provided with a side on which the conductive layer 7 of the layout circuit faces away from the contact surface contacting the heat dissipation substrate 1.
  • the chip fixing boss 14 of the heat dissipation substrate 1 passes through the fourth through hole 20 of the PCB board 2.
  • the fixing post 9 of the lens positioning ring 5 passes through the third through hole 21 on the PCB board 2, and the second through hole of the heat dissipation substrate 1. 15.
  • the resisting portion 10 at the end of the fixing post 9 is fixed to the PCB board 2 and the heat dissipating substrate 1, so that the PCB board 2 and the heat dissipating substrate 1 are fixed to the lens positioning ring 5.
  • the chip fixing boss 14 is disposed in the first through hole 23 of the corresponding lens positioning ring 5, and the conductive layer of the layout circuit extends between the inner side wall of the first through hole 23 and the outer side wall of the chip fixing boss 14, the LED chip 3 is directly fixed on the end surface of the chip fixing boss 14 by a die bonding process, the gold wire 6 is placed in the lens positioning ring 5, the 6-terminal end of the gold wire is electrically connected with the electrode of the LED chip 3, and the other end of the gold wire 6 is extended.
  • the patterned circuit conductive layer 7 entering the lens positioning ring 5 is electrically connected; the lens 4 is mounted on the lens positioning ring 5 and is tightly coupled to the lens positioning ring 5.
  • the encapsulant 8 injected through the glue port 12 and the injection channel 11 further secures the lens 4.
  • the above manufacturing method of the LED integrated structure includes:
  • the distance of the conductive layer 7 of the layout circuit from the center of the fourth through hole is greater than the distance from the sidewall of the fourth through hole 20 to the center of the fourth through hole 20 is smaller than the first pass a distance from an inner side wall of the hole 23 to a center of the first through hole 23;
  • the inner cavity of the lens 4 is filled through the rubber port 12 and the glue injection passage 11, and the LED chip 3 and the gold wire 6 are further fixed to the lens 4 by the curing of the encapsulant 8.
  • the manufacturing method of the LED integrated structure includes the following steps:
  • the distance of the conductive layer 7 of the layout circuit from the center of the fourth through hole 20 is greater than the distance from the sidewall of the fourth through hole 20 to the center of the fourth through hole 20 is smaller than the lens positioning The distance from the inner side wall of the ring 5 to the center of the lens positioning ring 5;
  • the inner cavity of the lens 4 is filled through the rubber port 12 and the glue injection passage 11, and the LED chip 3 and the gold wire 6 are packaged, and the lens 4 is further fixed by the curing of the encapsulant 8.
  • an LED integrated structure includes a heat dissipation substrate 50, an LED chip 51, a lens 52, a lens positioning ring 53, a wire 54 electrically connecting the electrodes of the LED chip 51, and an electrical connection wire.
  • a patterned circuit conductive layer 55 of 54 is used to encapsulate the LED chip 51 and the encapsulant 56 of the wires 54.
  • the lens positioning ring 53 is made of high temperature resistant PP0+GF plastic, and the number of lens positioning rings is six. No heat dissipation ribs and heat insulating blind holes are provided on the heat dissipation substrate 50.
  • the heat dissipation substrate 50 is die-cast from a ceramic of high thermal conductivity.
  • the conductive layer 55 of the layout circuit is directly disposed on the heat dissipation substrate 50, and the conductive layers 55 of the layout circuit are distributed on the same plane.
  • the fixing post 57 of the lens positioning ring 53 passes through the heat dissipating substrate 50 and is fixed to the heat dissipating substrate 50 through the fixing post 57 and the resisting portion 58 at the end of the fixing post 57, so that the heat dissipating substrate 50 and the lens positioning ring 53 are fixed together.
  • the above manufacturing method of the LED integrated structure includes:
  • the distance of the layout circuit conductive layer 55 from the center of the chip fixing boss 62 is greater than the distance from the outer side wall of the chip fixing boss 62 to the center of the chip fixing boss 62 is smaller than the lens a distance from an inner side wall of the positioning ring 53 to a center of the lens positioning ring 53;
  • the wire 54 is electrically connected to the conductive layer 55 of the layout circuit extending between the sidewall of the first through hole 61 and the outer sidewall of the chip fixing boss 62;
  • the heat dissipation substrate 100 is stamped from a thin metal or metal alloy of high thermal conductivity, and the material thereof may be stainless steel, copper, tungsten, aluminum, aluminum nitride, or the like.
  • a chromium or the like or an alloy thereof is provided with a silicon carbide coating (not shown) on the surface of the heat dissipation substrate 100, and the number of the lens positioning rings is three.
  • a heat dissipation blind hole 102 disposed in the chip fixing boss 101 concentric with the chip fixing boss 101 is provided.
  • a fixing post 104 is extended on the lens positioning ring 106, and a resisting portion 105 is formed by heat fusion at the end of the fixing post 104.
  • the fixing post 104 of the lens positioning ring 106 passes through the heat dissipating substrate 100 through the end of the fixing post 104.
  • the thermal fusing resisting portion is fixed to the heat dissipating substrate 100, so that the heat dissipating substrate 100 and the lens positioning ring 106 are fixed together.
  • the above manufacturing method of the LED integrated structure includes:
  • the lens positioning ring 106 1) injection molding the lens positioning ring 106, simultaneously forming the positioning lens 113 or the first through hole 103 covering the encapsulant 114, the fixing post 104 extending from one end surface of the lens positioning ring 106, the glue port 108 and the glue injection
  • the length of the fixing column 104 of the channel 109 is greater than the thickness of the heat dissipation substrate 100; 2) the chip fixing boss 101 on the stamping and forming heat dissipation substrate 100, the recessed portion 111 on the top of the chip fixing boss 101, the heat dissipation blind hole 102, and the second through hole 115 of the lens positioning ring fixing column 104;
  • the distance of the layout circuit conductive layer 107 from the center of the chip fixing boss 101 is greater than the distance from the outer side wall of the chip fixing boss 101 to the center of the chip fixing boss 101 is smaller than the first The distance from the inner side wall of a through hole 103 to the center of the first through hole 103
  • the fixing post 104 of the lens positioning ring 106 passes through the second through hole 115 of the heat dissipating substrate 100 that cooperates with the lens positioning ring fixing post 104, and forms the resisting portion 105 through the end of the fixing post 104 of the thermal melting lens positioning ring 106. Fixing the lens positioning ring 106 and the heat dissipation substrate 100;
  • the encapsulant 114 is filled into the inner cavity of the lens 113 through the glue port 108 and the glue injection channel 109 in a vacuum environment, and the LED chip 110 and the gold wire 112 are encapsulated, and the lens 113 is further fixed by the curing of the encapsulant 114.
  • the plastic lens positioning ring 201 is integrally connected by the connecting ribs 202.
  • An R color LED chip 208, a G color LED chip 209, and a B color LED chip 210 are fixed in the top recess portion 204 of the chip fixing boss 203 by a die bonding process.
  • the chip fixing boss 203 is placed in the first through hole 224 of the corresponding plastic lens positioning ring 201, and the circuit conductive layers 212, 214, 216 are arranged.
  • 218, 220, 222 extend between the inner side wall of the first through hole 224 and the outer side wall of the chip fixing boss 203 and are independent of each other, and the gold wires 211, 213, 215, 217, 219, 221 are placed in the first through hole.
  • the anode of the R color LED chip 208 passes through the gold wire 211 and extends into the first
  • the inner side wall of the through hole 224 is electrically connected to the first patterned circuit conductive layer 212 between the outer side wall of the chip fixing boss 203, and the negative electrode of the R color LED chip 208 passes through the gold wire 213 and protrudes into the first through hole 224.
  • the patterned conductive layer 214 between the inner sidewall and the outer sidewall of the chip mounting boss 203 is electrically connected.
  • the positive electrode of the G-color LED chip 209 is electrically connected to the patterned circuit conductive layer 216 extending between the inner side wall of the first through hole 224 and the outer side wall of the chip fixing boss 203 through the gold wire 215, and the G color LED chip 209.
  • the negative electrode is electrically connected to the patterned circuit conductive layer 218 between the inner side wall of the first through hole 224 and the outer side wall of the chip fixing boss 203 through the gold wire 217.
  • the positive electrode of the B color LED chip 210 is electrically connected to the patterned circuit conductive layer 220 extending between the inner side wall of the first through hole 224 and the outer side wall of the chip fixing boss 203 through the gold wire 219, and the B color LED chip 210
  • the negative electrode is electrically connected to the patterned circuit conductive layer 222 between the inner side wall of the first through hole 224 and the outer side wall of the chip fixing boss 203 through the gold wire 221 .
  • the plastic lens positioning member is a lens positioning plastic plate 250, and the number of the lens positioning plastic plates 250 is one.
  • the lens positioning plastic plate 250 is provided with six chip fixing bosses 252 for the heat dissipating substrate 251, and a first through hole 253 for positioning the lens 254 and covering the encapsulant 258.
  • the lens 254 is fixed in the first through hole 253 by a tight fit.
  • a fixing post 255 is extended on the end surface of the lens positioning plastic plate 250, and the heat dissipating substrate 251 and the PCB board 256 are placed in the mold of the molding lens positioning plastic plate 250 at the end of the fixing post 255 when the plastic lens 250 is positioned by the molding lens.
  • a resisting portion 257 is formed.
  • the lens positioning plastic plate 250 is provided with a glue injection channel 259 for injecting the encapsulant 258.
  • the glue port 260 of the glue injection channel 259 is placed on the end surface of the lens positioning plastic plate 250 away from the resisting portion, the glue port 260 and the glue injection channel. 259 is in communication with the sidewall of the first through hole 253.
  • Connecting ribs 281, 282, 283, 284 are additionally connected between the plastic lens positioning rings 280.
  • a positioning post 291 is disposed on the end surface of the plastic lens positioning ring 280, and a positioning hole 286 is disposed on the heat dissipation substrate 285.
  • the positioning hole 288 is matched with the positioning post 291 on the PCB board 287.
  • the plate 287 and the heat dissipation substrate 285 are accurately positioned by the positioning post 291.
  • the PCB board 287, the heat dissipation substrate 285, and the plastic lens positioning member 289 are fixed together by screws 290 instead of being fixed together by the fixing post and the resisting portion.
  • a fixing hole 292 on the glue lens positioning member 289 is placed at the joint of the connecting rib and the plastic lens positioning ring 280.
  • the positioning post 301 is protruded from the heat dissipating substrate 300 , and the positioning hole 304 is matched with the positioning post 301 , and the PCB 305 is disposed on the PCB 305 .
  • the positioning hole 306 is matched with the positioning post 301, and the plastic lens positioning member 303 and the PCB board 305 are accurately positioned by the positioning post 301 and the heat dissipation substrate 300.
  • the PCB board 305, the heat dissipation substrate 300, and the plastic lens positioning member 303 are fixed together by screws 302 instead of being fixed together by the fixing post and the abutting portion.
  • the number of the first through holes 311 on the plastic lens positioning plate 310 is 24.
  • the fixing posts 312 are evenly distributed around the center of each of the four adjacent first through holes 311 and the outside of the first through holes 311.
  • an LED lamp includes a lamp cover 321 and an LED integrated structure.
  • the lamp cover 321 is fixed to the heat dissipation substrate 322 of the LED integrated structure, and the heat dissipation substrate 322 is directly in direct contact with the outside air.
  • the LED integrated structure is the same as that of the embodiment 4.
  • an LED dot matrix display includes a top cover, a transparent plate 332, and an LED integrated structure.
  • the transparent plate 332 is mounted with the top cover 331, and the top cover 331 is mounted with the heat dissipation substrate 333 of the LED integrated structure.
  • the LED integrated structure further includes an imaging controller 334, and the patterned circuit conductive layer of each chip is electrically connected to the imaging controller 334 individually.
  • a direct type backlight device includes a light guide plate 340 and an LED backlight module 341 mounted together, and the LED backlight module 341 includes an LED integrated structure, and the LED integrated structure is the same as that of the implementation 5.
  • an edge-lit backlight device includes a light guide plate 350 mounted together And the LED backlight module 351, the LED backlight module 351 includes an LED integrated structure, and the LED integrated structure is the same as the implementation 5.
  • a projection apparatus includes an LED light source 360, an imaging system 361, and a projection imaging screen 362.
  • the LED light source 360 includes an LED integrated structure, and the LED integrated structure is the same as that of the implementation 5.
  • an LED integrated structure includes a heat dissipation substrate 401, a PCB board 402, an LED chip 403, a lens 404, a plastic lens molding ring 405, and an LED chip 403.
  • the gold wire 406 of the electrode and the patterned circuit conductive layer 407 of the gold wire 406 are electrically connected.
  • the first through hole 408 is a tapered hole of the molded lens 404.
  • the lens fixing 404 is encapsulated by molding the lens 404 to the mold of the molding lens 404, and the LED chip 403 and the gold wire 406 are encapsulated, and the lens fixing ring 414, the lens forming ring 405, the LED chip 403, the gold wire 406, and the chip fixing boss 414 of the heat dissipation substrate 401 are glued.
  • the PCB board 402 is fixed.
  • the side wall of the lens 404 is formed by a first through hole 408 which is tapered, and the top of the lens 404 is formed by a mold of the forming lens 404 and is curved.
  • the above manufacturing method of the LED integrated structure includes:
  • the distance of the layout circuit conductive layer 407 from the center of the fourth through hole 420 is greater than the distance from the sidewall of the fourth through hole 420 of the boss to the center of the fourth through hole 420 is less than The distance from the inner side wall of the lens forming ring 405 to the center of the lens forming ring 405;
  • the PCB board 402 and the heat dissipation substrate 401 are placed at the set position of the plastic mold of the molded lens forming ring 405, and the chip fixing boss 414 on the heat dissipation substrate 401 passes through the boss fourth through hole 420 of the PCB board 402, and is injection molded.
  • Forming the lens forming ring 405 and simultaneously fixing the lens forming ring 405 The pillar 409 and the resisting portion 410; when the lens forming ring 405 is injection molded, the fixing post 409 of the lens forming ring 405 sequentially passes through the third through hole 421 on the PCB board 402, the second through hole 415 on the heat dissipation substrate 401, and passes through The resisting portion 410 fixes the lens forming ring 405 to the PCB board 402 and the heat dissipation substrate 401;
  • the manufacturing method of the LED integrated structure includes:
  • the distance between the conductive layer 407 of the layout circuit and the center of the fourth through hole 420 of the boss is greater than the sidewall of the fourth through hole 420 of the boss to the fourth through hole 420 of the boss.
  • the distance of the center is smaller than the distance from the inner side wall of the lens forming ring 405 to the center of the lens forming ring 405; 6)
  • the chip fixing boss 414 on the heat dissipation substrate 401 is passed through the fourth through hole 420 of the PCB board 402 to mount the PCB board 402 on the heat dissipation substrate 401, and the fixing post 409 of the lens molding ring 405 is sequentially passed through the PCB board 402.
  • the third through hole 421, the second through hole 415 on the heat dissipation substrate 401, and the end portion of the heat-fusible fixing column 409 is formed with the resisting portion 410, and the lens forming ring 405 is fixed to the PCB board 402 and the heat dissipation substrate 401 through the resisting portion 410;
  • an LED integrated structure includes a heat dissipation substrate 450, an LED chip 451, a lens 452, a plastic lens molding ring 453, a wire 454 electrically connecting the electrodes of the LED chip 451, and an electrical connection.
  • the top of lens 452 is planar.
  • the heat dissipation substrate 450 is die-cast from a ceramic of high thermal conductivity.
  • the heat dissipating substrate 450 includes a flat bottom plate 461, and a plurality of bosses 462 of the protruding bottom plate 461 formed integrally with the heat dissipating substrate 450.
  • Each of the bosses 462 is provided with a second through hole 463 that cooperates with the fixing post 457.
  • the layout circuit conductive layer 455 is disposed directly on the heat dissipation substrate 450, and the layout circuit conductive layers 455 are distributed on the same plane.
  • the above manufacturing method of the LED integrated structure includes:
  • the lens 452 is molded by the mold of the molding lens 452, and the LED chip 451 and the wire 454 are packaged, and the glue curing lens 452 is fixed to the lens forming ring 453, the LED chip 451, the wire 454, and the heat dissipation substrate 450.
  • the heat dissipation substrate 500 is stamped from a thin metal or a metal alloy of high thermal conductivity, and the material thereof may be stainless steel, copper, tungsten, aluminum, aluminum nitride, chromium, or the like.
  • the alloy has a silicon carbide coating (not shown) on the surface of the heat dissipation substrate 500, and the number of lens positioning rings is six.
  • a heat dissipation blind hole disposed in the boss 501 concentric with the boss 501 is provided. The side of the heat dissipation substrate 500 facing away from the boss 501 is in direct contact with the heat dissipating gas.
  • the fixing post 504 of the lens forming ring 506 passes through the heat dissipating substrate 500 through the end of the fixing post 504.
  • the thermal fusing resisting portion 505 is fixed to the heat dissipating substrate 500 such that the heat dissipating substrate 500 is fixed to the lens forming ring 506.
  • the top of the lens 503 is a spherical surface.
  • the above manufacturing method of the LED integrated structure includes:
  • the fixing post 504 of the lens forming ring 506 passes through the second through hole 515 of the heat dissipating substrate 500 that cooperates with the lens forming ring fixing post 504, and the end portion 505 is formed by the fixing post 504 of the hot melt lens forming ring 506. Fixing the lens forming ring 506 and the heat dissipation substrate 500;
  • the lens 503 is molded by the mold of the molding lens 503, and the LED chip 510 and the gold wire 512 are packaged, and the glue curing lens 503 is fixed to the lens molding ring 506, the LED chip 510, the gold wire 512, and the heat dissipation substrate 500.
  • the plastic lens molding ring 521 is coupled to the plastic member 519 of the integrally formed lens by the connecting rib 522.
  • An R color LED chip 528, a G color LED chip 529, and a B color LED chip 530 are fixed in the top cavity 524 of the boss 523 by a die bonding process.
  • the anode of the R color LED chip 528 is electrically connected to the first patterned circuit conductive layer 532 between the inner side wall of the first through hole 544 and the outer side wall of the boss 523 through the gold wire 531, and the R color LED chip 528.
  • the negative electrode is electrically connected to the patterned circuit conductive layer 534 between the inner side wall of the first through hole 544 and the outer side wall of the boss 523 through the gold wire 533.
  • the positive electrode of the G-color LED chip 529 is electrically connected to the patterned circuit conductive layer 536 between the inner side wall of the first through hole 544 and the outer side wall of the boss 523 through the gold wire 535, and the negative electrode of the G-color LED chip 529
  • the patterned circuit conductive layer 538 between the inner side wall of the first through hole 544 and the outer side wall of the boss 523 is electrically connected by a gold wire 537.
  • the positive electrode of the B color LED chip 530 passes through the gold wire 539 and the extension
  • the patterned circuit conductive layer 540 between the inner side wall of the first through hole 544 and the outer side wall of the boss 523 is electrically connected, and the negative electrode of the B color LED chip 530 passes through the wire 541 and extends into the inner side wall of the first through hole 544.
  • the patterned circuit conductive layer 542 is electrically connected to the outer sidewall of the boss 523.
  • a reinforcing stud 527 is provided on the lens 525 that mates with a hole 526 in the plastic piece 519 of the forming lens.
  • the lens-molded plastic member is a lens-molded plastic sheet 600, and the number of the lens-molded plastic sheets 600 is one.
  • the lens forming plastic plate 600 is provided with a first through hole 603 for molding the lens 604 in cooperation with the boss 602 of the heat dissipation substrate 601.
  • a fixing post 605 is extended on the end surface of the lens molding plastic plate 600.
  • Connecting ribs 621, 622, 623, and 624 are additionally connected between the plastic lens positioning rings 620.
  • a positioning post 631 is disposed on the end surface of the plastic lens positioning ring 620, and a positioning hole 626 is disposed on the heat dissipation substrate 625.
  • the positioning hole 628 is matched with the positioning post 631 on the PCB board 627.
  • the plate 627 and the heat dissipation substrate 625 are accurately positioned by the positioning post 631.
  • the PCB board 627, the heat sink substrate 625, and the plastic lens positioning member 629 are fixed together by screws 630 instead of being fixed together by the fixing post and the resisting portion.
  • a fixing hole 632 in the plastic lens positioning member 629 is placed at the joint of the connecting rib and the plastic lens positioning ring 620.
  • the positioning post 651 is protruded from the heat dissipating substrate 650, and the positioning hole 654 is matched with the positioning post 651.
  • the plastic lens positioning member 653 is disposed on the PCB 655.
  • the positioning hole 656 is matched with the positioning post 651, and the plastic lens positioning member 653 and the PCB board 655 are accurately positioned by the positioning post 651 and the heat dissipation substrate 650.
  • the PCB board 655, the heat sink substrate 650, and the plastic lens positioning member 653 are fixed together by screws 652 instead of being fixed together by the fixing post and the abutting portion.
  • the first on the plastic lens positioning plate 670 The number of one through holes 671 is 24.
  • the fixing posts 672 are evenly distributed around the center of each of the four adjacent first through holes 671 and the outside of the first through holes 671.
  • an injection mold for forming a positioning lens of an LED integrated structure or a plastic part for molding a lens an LED integrated structure, including a heat dissipation substrate 701, a PCB board 702, a conductive layer 703 of a layout circuit, and a positioning lens Or a molded plastic part
  • the injection mold includes a fixed mold device, a movable mold device, a glue feeding device, an ejection device, and a set position where the heat dissipation substrate 701 and the PCB board 702 are placed in the injection mold when the lens positioning ring is injection molded.
  • Positioning device is a fixed mold device, a movable mold device, a glue feeding device, an ejection device, and a set position where the heat dissipation substrate 701 and the PCB board 702 are placed in the injection mold when the lens positioning ring is injection molded.
  • the plastic part of the positioning lens or the forming lens is a lens positioning ring 704.
  • the lens positioning ring 704 includes a separate annular plastic body 705.
  • the first through hole 706 of the positioning lens is disposed in the axial direction of the plastic body 705.
  • Four fixing posts 707 are extended on the end surface of the body 705, and a circular cross section is formed at the end of the fixing post 707 by placing the heat dissipating substrate 701 in the mold of the forming lens positioning ring 704 when forming the lens positioning ring 704. Resisting portion 708.
  • the plastic body 705 is provided with a glue injection channel 709 for injecting the encapsulant.
  • the glue port 710 of the glue injection channel 709 is placed on the end surface of the plastic body 705 away from the resisting portion 708, and the glue port 710 and the glue injection channel 709 are The sidewalls of the first through holes 706 are in communication.
  • a plurality of chip fixing bosses 711 integrally formed with the heat dissipation substrate 701 and a second through hole 712 fitted to the fixing post 707 are protruded from the bottom of the heat dissipation substrate 701.
  • the chip fixing boss 711 has a circular cross section.
  • the top of the chip fixing boss 711 is provided with a recessed portion 712 for placing the LED chip concentrically with the chip fixing boss 711.
  • the bottom surface of the recessed portion 712 is a plane on which the LED chip is placed. .
  • a large hole (not shown), a small hole 713, and an LED chip, which are disposed in the chip fixing boss 711 and which are concentric with the chip fixing boss 711, are provided.
  • a small hole 713 completely covering the heat dissipation stepped through hole.
  • a heat dissipating rib 714 integrally formed with the heat dissipating substrate 701 is disposed on the heat dissipating substrate 701 on the side of the large end of the stepped through hole away from the chip fixing boss 711, and a heat insulating blind hole 715 is disposed in the heat dissipating rib 714.
  • the side of the thermal blind hole 715 facing the chip fixing boss 711 communicates with the bottom surface of the heat dissipation substrate 701 toward the chip fixing boss 711.
  • the side of the heat dissipation substrate 701 facing away from the chip fixing boss 711 is in direct contact with the heat releasing gas.
  • the patterned circuit conductive layer 703 is disposed directly on the PCB board 702, and the patterned circuit conductive layers 703 are distributed on the same plane.
  • the through hole 716 and the third through hole 717 are matched with the fixing post 707.
  • the PCB board 702 is disposed on a side of the heat dissipation substrate 701 on which the chip fixing boss 711 is disposed and is in direct contact with the heat dissipation substrate 701, and the PCB board 702 is provided with a layout.
  • One side of the circuit conductive layer 703 faces away from the contact surface contacting the heat dissipation substrate 701.
  • the chip fixing boss 711 of the heat dissipation substrate 701 passes through the fourth through hole 716 of the PCB board 702.
  • the fixing post 707 of the lens positioning ring 704 passes through the third through hole 717 of the PCB board 702 and the second through hole of the heat dissipation substrate 701.
  • the 712 is fixed to the PCB board 702 and the heat dissipation substrate 701 through the resisting portion 708 at the end of the fixing post 707.
  • the chip fixing boss 711 is disposed in the first through hole 706 of the corresponding plastic body 705, and the conductive layer 703 of the layout circuit extends between the inner side wall of the first through hole 706 and the outer side wall of the chip fixing boss 711.
  • the fixed mold device comprises a fixed mold base plate 718 fixed on the injection molding machine, a fixed mold support plate 719 fixed to the fixed mold base plate 718, and a fixed template 720 fixed to the fixed mold support plate 719, which is fixed in the fixed mold plate 720. Mold insert 721.
  • the movable mold device includes a movable mold base plate 722 fixed on the injection molding machine, two spacer blocks 723 fixed to the movable mold base plate 722, and a movable template 724 fixed to the two spacer blocks 723, and fixed in the movable template 724. Mold insert 725.
  • the glue feed device includes six point gates and nozzles 727 that communicate with the flow passages 726.
  • Each of the lens positioning rings 704 corresponds to two dot gates, and the dot gates communicate with the plastic body body cavity 732 and are symmetrically distributed on both sides of the protruding portion of the molding injection channel 709.
  • Nozzle 727 is secured within fixed die plate 718 and fixed die pad 719.
  • the ejector device includes a thimble pad 728, a thimble fixing plate 729, and a thimble 730.
  • the ejector pin 730 is fixed to the thimble fixing plate 729 and extends into the movable die plate 724 and the movable die insert 725.
  • the thimble pad 728 and the thimble fixing plate 729 are mounted between the two blocks 723.
  • the heat dissipating substrate 701 is shaped away from the bottom plane of the chip fixing boss 711, and the parting surface is flat.
  • a rectangular cavity 731 for accommodating the heat dissipation substrate 701 and the PCB board 702 is provided on the fixed mold insert 721.
  • the depth of the rectangular cavity 731 is equal to the sum of the thicknesses of the heat dissipation substrate 701 and the PCB board 702, and the side of the rectangular cavity 731
  • a space is provided between the wall and the side wall of the heat dissipation substrate 701.
  • a plastic part body cavity 732 for molding the plastic part body 705, a boss 733 protruding from the plastic body body cavity 732 for forming the first through hole 706, and a patterned layout circuit conductive layer 703 are disposed at the bottom of the rectangular cavity 731.
  • a projection 736 for molding the injection passage 709 is provided on the side wall of the boss 733.
  • the boss 733 and the plastic body body cavity 732 form an annular recess.
  • the movable mold insert 725 is provided with a resisting cavity 737 for forming the resisting portion 708 and a hollowing hole 738 for avoiding the heat radiating rib 714.
  • the resisting cavity 737 is a concave hole having a circular cross section.
  • the positioning mechanism includes a U-shaped positioning groove 739 disposed on two opposite sides of the PCB board 702, four cylindrical step positioning shafts 740 with two steps fixed in the fixed mold insert 721, and four three-stepped The stepping shaft 741 is positioned.
  • the movable mold insert 725 is provided with a hollow hole 743 of the small shaft 742 of the cylindrical step positioning shaft 740 and a small hole avoiding hole 744 of the step positioning shaft 741.
  • the center shaft 745 of the step positioning shaft 741 is engaged with the U-shaped positioning groove 739.
  • the opening and closing mold direction is the horizontal direction, that is, the Y-axis direction, and the heat dissipation substrate 701 and the PCB board 702 are placed in the injection mold, and the small shaft 742 of the cylindrical step positioning shaft 740 faces the two U-shaped sides of the heat dissipation substrate 701 in the Z-axis direction. Positioning is performed, and the middle shaft 745 of the step positioning shaft 741 is positioned in the Z-axis direction and the X-axis direction from the PCB board 702, and the small shaft 746 of the step positioning shaft 741 is positioned from the X-axis direction to the heat dissipation substrate 701.
  • the plastic part body cavity 732 and the boss 733 have a large demolding taper along the demolding direction, that is, the Y-axis direction, and the resisting portion cavity 737 of the movable mold portion has no demoulding taper along the demolding direction, that is, the molding surface in the Y-axis direction. .
  • the ejector mechanism is disposed on the side of the mold clamping device and is a flip-chip mold.
  • the fixed mold device includes a fixed mold base plate 763 fixed on the injection molding machine, two spacer blocks 764 fixed to the fixed mold base plate 763, and a fixed template 765 fixed to the two spacer blocks 764, which are fixed in the fixed template 765. Mold insert 754.
  • the movable mold device includes a movable mold base 766 fixed to the injection molding machine, a movable die plate 767 fixed to the movable mold base plate 766, and a movable mold insert 761 fixed in the movable die plate 767.
  • the ejector device includes a thimble pad 768, a thimble fixing plate 769 fixed to the thimble pad 768, and a thimble 770.
  • the thimble 770 is fixed on the thimble fixing plate 769 and extends into the fixed plate 765 and the fixed mold insert 754 and the plastic body.
  • the cavity 755 is in communication.
  • the thimble pad 768 and the thimble fixing plate 769 are mounted between the two blocks 764.
  • the thimble pad 768 is coupled to the movable die plate 767 by a connecting guide block 771.
  • the plastic lens positioning member 751 includes an annular plastic body 752 and a connecting rib 753 which is injection molded together with the plastic body 752 for connecting the plastic body 752.
  • the number of plastic parts 752 is six.
  • a connecting rib cavity 756 of a shaped connecting rib 753 that communicates with the plastic body body cavity 755.
  • the connecting rib cavity 756 is in communication with the boss 772 and the plastic body body cavity 755 forming an annular recess.
  • the movable mold insert 761 is provided with a resisting cavity 758 for forming the resisting portion 757 and a cutout 760 for avoiding the heat radiating rib 759.
  • the demolding taper of the movable insert 761 and the fixed insert 754 along the forming surface in the mold opening direction is conventionally designed.
  • the gate 762 is a sprue, one of which is connected to the bottom of the connecting rib cavity 756 and placed in the middle of the connecting rib cavity 756.
  • the plastic part of the positioning lens or the molding lens is a lens molding plastic part 780, and the lens forming plastic part 780 includes a plate-shaped plastic part body 781.
  • a fixing post 783 extends from an end surface of the plastic body 781, and a resisting portion 784 is disposed at an end of the fixing post 783.
  • the first through hole 782 is a through hole having a tapered hole, and four cylindrical lens fixing holes 785 are evenly distributed on the outer circumference of each of the first through holes 782.
  • the heat dissipation substrate 794 in this embodiment is not provided with heat dissipation ribs and heat insulation blind holes.
  • a pattern of the conductive layer 787 of the layout circuit is provided, and the parting surface is a plane.
  • a rectangular plastic body cavity 789 is further disposed on the fixed mold insert 788, and a boss 790 protruding from the bottom of the plastic body body cavity 789 to form the first through hole 782 is formed, and the cylindrical mounting of the molded lens fixing hole 785 is formed.
  • the member shaft 791 is provided with a cutout 793 in the boss 790 to avoid the chip fixing boss 792.
  • a cylindrical insert shaft 791 is attached to the fixed mold insert 788 and protrudes from the bottom of the plastic body cavity 789.
  • the depth of the plastic body body cavity 789 is equal to the sum of the thickness of the plate-shaped plastic part body 781 and the thickness of the layout circuit conductive layer 787.
  • the bottom of the rectangular cavity 796 accommodating the heat dissipation substrate 794 and the PCB 786 on the movable mold insert 795 is provided with a resisting cavity 797 of the shaped resisting portion 784 and four heat dissipation blind holes 799 in the chip fixing boss 792. Cooperating positioning boss 798.
  • the heat dissipation blind hole 799 on the heat dissipation substrate 794 is matched with the positioning boss 798, and the heat dissipation substrate 794 is used.
  • the PCB board 786 is placed in the set position in the injection mold.
  • the gate 700 is a point gate, and the number is two, which is in communication with the bottom of the plastic body cavity 789.
  • the LED integrated structure includes the heat dissipation substrate 800, the layout circuit conductive layer 801, and the lens molding plastic member.
  • the layout circuit conductive layer 801 is directly disposed on the heat dissipation substrate 800.
  • the lens-shaped plastic part comprises an annular plastic part body 803 and a connecting rib 804 which is injection-molded together with the plastic part body 803 which connects the plastic part body 803.
  • the first through hole 805 is a through hole with a tapered hole.
  • four cylindrical lens fixing holes 806 are evenly distributed on the outer circumference of each of the first through holes 805.
  • the lens molded plastic member is fixed to the heat dissipation substrate 800 through the fixing post and the abutting portion.
  • the number of forming rings is 24.
  • the heat dissipating substrate 800 is not provided with a chip fixing boss and a heat dissipating blind hole, a heat dissipating rib and a heat insulating blind hole disposed in the boss.
  • the chip is directly fixed on the plane of the heat dissipating substrate 800 and placed thereon. Inside the first through hole 805.
  • the bottom plate faces away from the bottom portion of the conductive layer 801 of the layout circuit, and the parting surface is a flat surface.
  • the accommodating cavity accommodating the heat dissipation substrate 800 is a rectangular cavity 810 disposed on the fixed mold insert.
  • the depth of the rectangular cavity 810 is equal to the sum of the thicknesses of the heat dissipation substrate 800 and the PCB board, and the side wall of the rectangular cavity 810 is cooled.
  • a clearance gap is provided between the side walls of the substrate 800.
  • a resisting cavity 812 for forming a resisting portion is provided on the movable mold insert 811.
  • a hot runner system (not shown) is also provided in the mold clamping device of the present embodiment, and the number of gates (not shown) communicating with the flow passage 802 is six, communicating with the bottom of the connecting rib cavity 809. Each gate corresponds to a hot runner nozzle (not shown).
  • the heat dissipation substrate 830 is provided with a boss 831 formed integrally with the heat dissipation substrate 830.
  • the boss 831 faces away from the PCB board, and the fixed platform is disposed in the boss 831.
  • Blind hole (not shown).
  • the heat dissipation substrate bottom plate is shaped toward the bottom plane of the boss 831, and the parting surface is a plane.
  • the accommodating cavity 832 of the heat dissipating substrate 830 and the PCB 833 is a rectangular cavity which is disposed on the fixed stencil, and a vacant gap is formed between the accommodating cavity and the sidewall of the heat dissipating substrate 830.
  • a hollow hole (not shown) of the boss 831 is provided on the movable mold insert.
  • a rectangular plastic body cavity (not shown) is further disposed on the movable mold insert 850, and is protruded at the bottom of the plastic body cavity to form a first shape.
  • the boss of the through hole, the cylindrical insert shaft of the forming lens fixing hole, and the hollow hole of the hanging block fixing boss are arranged in the boss.
  • the cylindrical insert shaft is fixed to the fixed mold insert and protrudes from the bottom of the plastic body cavity.
  • the bottom of the rectangular cavity 854 accommodating the heat dissipation substrate 852 and the PCB board 853 on the fixed mold insert 851 is provided with a resisting cavity 855 for forming the resisting portion and four heat-dissipating blind holes in the chip fixing boss 856. Positioning boss 857.
  • the gates communicating with the flow path 858 are point gates, and the number is seven, which is in communication with the bottom of the resisting cavity 855.
  • the invention is not limited to the above embodiments.
  • the shape of the heat dissipating substrate of the present invention can be designed according to the needs of various shapes, and can even be designed as a product appearance piece.
  • the present invention only intercepts the LED chip unit therein, so the mold parting surface of the present invention is only schematically illustrated, and can be determined according to the shape of the substrate. Parting surface.
  • the number of chip fixing bosses in the present invention can be from two to many, and the present invention exemplifies only a few LED integrated structural units.
  • the patterned circuit conductive layer in the present invention is only illustrative.
  • one LED chip can be fixed, or two LED chips of different colors can be fixed, three chips of different colors of 1?, G, B, or more than three chips.
  • the design of the conductive layer of the layout circuit is modified accordingly, which belongs to the prior art, and the present invention will not be described in detail.
  • the heat dissipating substrate in the present invention is in direct contact with the heat dissipating liquid, and only the heat dissipating substrate does not leak liquid, so that it will not be described in the embodiment of the present invention.
  • the outer periphery of the heat dissipating substrate and the PCB board can also be used.

Abstract

一种LED集成结构,包括散热基板,LED芯片,透镜,定位透镜或成型透镜的塑胶件,导线和布图电路导电层,与散热基板一体成型的二个或二个以上的芯片固定凸台,在定位透镜或成型透镜的塑胶件上设有定位透镜或成型透镜的第一通孔,芯片固定凸台置于第一通孔内,布图电路导电层伸入第一通孔的内侧壁与芯片固定凸台的外侧壁之间,导线一端与LED芯片电连接,导线的另一端与伸入第一通孔的内侧壁与芯片固定凸台外侧壁之间的布图电路导电层电连接。本发明的优点是中间环节热阻小、散热性好、透镜和芯片的位置关系精确,LED集成结构具有高光通量、结构简单、装配简单、散热效果好、光学效果好的优点。

Description

说 明 书
LED集成结构及制造方法
技术领域
本发明涉及一种用于照明、 背光源模组、 电视机、 LED点阵显示屏、 投 影设备等的 LED集成结构及制造方法, 特别是涉及一种大功率的 LED集成 结构及制造方法。本发明还涉及一种具有 LED集成结构的 LED灯、 LED点阵 显示屏、 背光装置、 投影装置。 本发明还涉及一种成型 LED集成结构的定 位透镜或成型透镜的塑胶件的注塑模。
背景技术
半导体 LED作为新型固体光源, 其传统封装是以环氧树脂包封 LED芯 片、 引脚电性连接 LED芯片这样的直插结构, 到上世纪 80年代, 开始采用 表面贴着技术。 LED光源, 特别是大功率的 LED光源, 发光时热量集中, 如 果 LED芯片产生的热量不及时散发出去, LED光源的温度过高, 就会导致 LED的光效降低、寿命低等, 因此如何将 LED芯片发光时产生的热量迅速有 效的散发出去成了普及应用 LED光源的瓶颈。 如何提高 LED光源的透光率, 以及如何提高 LED光源的散热性能从而延长使用寿命, 是目前行业上的重 要技术难题。
现有常用的大功率 LED集成结构通常采用支架封装成的单一个体 LED 发光管再集成的方式。
申请号为 200810135621. 5的发明专利中,公开了一种发光二极管封装 装置、 散热基座与电极支架组合及其方法, 该发光二极管封装装置包含: 一发光二极管晶粒、 一由高导热材质制成且供晶粒接触放置的散热基座、 一电极支架、 一定位单元及一包覆体。 散热基座由金属或陶瓷等高导热材 质制成, 包括底盘、 本体及本体顶面的凹陷部。 晶粒置于凹陷部的底面。 电极支架由金属材质冲出成型, 包括一基板及一自基板的镂空区周缘轴向 延伸且界定出一容置空间的定位壁。 定位单元设于散热基座与电极支架至 少其中之一, 用以使散热基座嵌卡固定于该电极支架的容置空间中。 该定 位单元可以是包括至少一个自该电极支架的定位壁内壁面凸出的卡樺凸 点, 也可以是包括一自该散热基座近顶面处径向向外凸伸的凸缘。 该制作 方法包含以下步骤:
步骤 (A) : 提供一散热基座;
步骤 (B ) : 冲出成型一电极支架, 使该电极支架包括一中央镂空的基 板, 及一自该基板的镂空区周缘轴向延伸的定位壁, 该定位壁界定出一容 置空间;
步骤 (C ) : 通过一设于该散热基座与该电极支架至少其中之一的定位 单元, 使该散热基座嵌卡固定于该电极支架的容置空间中;
步骤 (D) : 以射出成型方式将该相互嵌卡固定的散热基座及电极支架部分 包覆结合。 现有的这种发光二极管封装装置、 散热基座与电极支架组合及 其方法, 存在以下缺陷和不足:
1 ) 晶粒通过阶梯柱状的散热基座作第一散热体, 由于柱状的散热基座不直 接接触空气来散热, 而且其具有一定的金属实心长度, 由于需要较长的金 属传导散热距离才能将热散发于空气, 且散热基座与空气的接触面积小, 因此晶粒发光时产生的热量会起到热聚集效应。 为了提高散热性能, 该散 热基座一般还需设计与散热基座直接热传导接触的其它高散热性能的金属 或陶瓷等散热件, 透过散热件来最终散热。 这种方式一方面增加了热传导 散热的距离, 另一方面由于散热基座与散热件分属两个零件, 两者就是使 用导热胶粘合在一起也还是有巨大的热阻, 晶粒发光时基本上会保持散热 基座这边温度很高, 散热件这边温度与环境温度差不多的现象, 达不到将 散热基座上的热量迅速散发出去的目的, 散热效果很差。
2 ) 由于多了柱状的散热基座及电极支架等, 与散热件又是不同的零件, 零 件多, 支架结构复杂, 厚度较厚, 不利于装配, 成本也高; 发光二极管与 布图电路的电性连接需经过电极支架, 结构复杂, 中间环节的热阻多, 降 低了 LED芯片的发光效率及散热效率。
3 )其制作方法中需分别成型散热基座和电极支架, 特别是因电极支架结构 复杂, 冲出成型电极支架需要多道工序, 电极支架的冲压模结构复杂, 还 需增加将电极支架与散热基板安装在一起的工序, 因此其制作方法中工序 多, 工艺复杂, 模具结构复杂, 制作成本高。
4 )射出成型成型包覆体并将该相互嵌卡固定的散热基座及电极支架部分包 覆结合时, 由于电极支架复杂, 因此包覆体于电极支架配合的成型面复杂, 注塑模内容置散热基座和电极支架的容置空间复杂, 注塑模的分型面复杂, 射出成型时将组合的散热基座和电极支架置放在设定位置的定位机构复 杂, 当布图电路导电层置于 PCB板上时, 无法在射出成型时将 PCB板、 散 热基座和电极支架固定在一起。
申请号为 200720172030公开了一种引脚式大功率 L E D器件的封装结 构, 包括 L E D晶片、 透镜、 印刷 PCB板、 金属热沉体、 金线和引脚; 金 属热沉体包括基座和该基座上的凸台, 而且基座的上表面面积至少是凸台 的上表面面积的 2倍; 印刷 PCB板与基座胶粘在一起; 在印刷 PCB板下方 的基座上设置有通孔, 借助该通孔引脚与印刷 PCB板电连接; 透镜罩扣 L E D晶片和印刷 PCB板并借助灌胶工艺粘固在印刷 PCB板上。 这种大功率 的引脚式大功率 L E D器件, 虽然增大了金属热沉体的基座面积, 但散热 效果还是较差, 即使另外配置散热器, 由于散热时须将 LED芯片上的热量 传导给凸台和基座上, 再传给金属热沉体, 再由金属热沉体传导给散热器, 由于热传导增加了中间环节, 以及很厚的金属传热体对应的很长的传热路 径, 因此热阻很高, 导热效果很差。 还有透镜要先靠罩扣在印刷 PCB板上, 再由灌胶来粘固是很难实现的, 因为透镜先靠罩扣在印刷 PCB板上时很难 定位准确, 以及灌胶时会使透镜移位, 透镜位置无法准确定义。 引脚要与 印刷 PCB板上方的布图电路电连接并穿过印刷 PCB板和金属热沉体, 加工 复杂, 工艺难度大; LED晶片与印刷 PCB上的布图电路的电性连接需经过电 极支架, 结构复杂, 中间环节的热阻多。
为了解决现有的大功率 LED的集成结构的散热问题, 现有技术中提出 了 LED集成结构的 COB (Chip on Board ) 封装设计。 与现有的支架式 LED 集成结构相比, 由于本发明直接将芯片通过银胶或共晶焊料等固定在基板 上, 可以最大限度的减少中间环节的热阻, 从而减少 LED芯片 p-n结到外 部环境的热阻, 可提高散热效率和发光效率。 这种 COB (Chip on Board ) 封装设计的优点在于每个 LED 芯片的电极都通过键合电极引线直接与金属 焊盘形成欧姆接触, 多路 LED芯片阵列的形成是通过散热基板与 LED芯片 的电连接装置实现电性互联, 即可实现 LED芯片的串并联, 又可提高产品 的可靠性和合格率。 而且外形尺寸小, 厚度薄, 易于装配, 可用于照明、 显示仪等对光源装配尺寸要求较高的场合。 这种封装设计主要有以下几种 方式:
申请号为 200920136646. 7的实用新型专利中, 公开了一种基于 C 0 B 技术封装的白光 L E D集成阵列照明光源, 包括一基板及若干 L E D芯片, 该基板上设有若干凹槽, 其上通过布线形成电子线路, 该电子线路与设置 于基板上的贴片元件配合形成具有特定功能和电气连接的印刷 PCB板; L E D芯片粘接在基板的凹槽底部, 其电极引线键合在指定的焊盘上与电子 线路及贴片元件形成回路, 该 L E D芯片上还涂覆有荧光粉; 基板上的 L E D发光区域上方设有透明硅胶。 上述 C 0 B封装技术的缺点一是 LED芯 片粘接在基板的凹槽底部, 封装 LED芯片时, 需填充大量的硅胶, 由于硅 胶价格昂贵, 因此增加了成本, 缺点二是 LED芯片很难实现据透镜焦点需 要的距离; 缺点三是封装电极引线须从基座底部的 LED芯片电连接到基座 上表面的布图电路上, LED芯片发出的光线会因为过长的引线的阻碍产生阴 影, 影响光学效果, 尤其不利于二次光学优化开发。 还有该实用新型并没 有公开电子线路与贴片元件间如何电性连接, 由于电子线路全部置于反射 罩内, 从其图中特别是图一公开的内容来看, 其电子线路与贴片元件间的 电性连接还需从基板背面通过弓 I脚连接。
申请号为 200920112089. 5的实用新型专利中, 公开了一种 COB封装的 大功率 LED路灯用装置, 包括透镜、 硅胶、 金线、 芯片、 散热板等, 在散 热板上设置有 5— 50个凸台, 芯片直接固定在散热板的凸台上,再通过散热 板和散热板上的散热片散发出去。 这种结构的大功率 LED路灯, 虽然散热 效果较好, 但由于没有定位透镜或成型透镜的塑胶件, 透镜的定位不准, 在透镜内预点上硅胶来封装芯片, 一方面硅胶用量大, 特别是用这种封装 方式, 封装硅胶固化后有气泡产生, 严重影响 LED芯片的发光质量, 会导 致散发出来的光线有光斑, 阴影等光学先天缺陷, 不利于 LED光源的光学 二次优化开发。
申请号为 200820214808. X的实用新型专利中, 公开了一种高效散热发 光的大功率 LED封装结构, 包括透镜、 基板与 LED发光芯片, 透镜固定于 基板上表面, 透镜下表面设有向上凸起的安装凹陷, LED发光芯片置于基板 上表面并被安装凹陷扣盖, 在安装凹陷所扣盖的基板上表面设有正、 负发 光电极, 发光电极与 LED发光芯片通过金属线连接, 基板上表面设有与发 光电极相连的正、 负连接电极, 在安装凹陷外侧的透镜下表面与基板上表 面之间通过环形的胶粘层相粘结, 在胶粘层的内孔与安装凹陷所形成的腔 体内注满硅胶, 在基板上开设有向胶粘层的内孔与安装凹陷所形成的腔体 内连通的注胶通道, 且透镜与基板均由水晶晶体制成。 这种结构的大功率 LED封装结构, 缺点一是透镜与基板的固定靠胶粘层粘结, 粘结固定不牢; 缺点二是无定位透镜的定位机构, 透镜靠与基板粘结时来定位, 定位不准 确, 灌胶时容易使透镜位置偏离; 缺点三是透镜通过粘结层固定在基板上, 粘结层容易将注胶通道堵塞, 影响注射硅胶; 缺点四是电性连接 LED发光 芯片的金属线需与固定在基板上并置于透镜的安装凹陷部内的发光电极电 性连接, 发光电极再与连接电极电性连接, 连接电极再与布图电路导电层 电性连接, 中间环节的热阻多, 影响散热效率和发光效率; 缺点五是 LED 发光芯片与透镜凹陷部的距离大, 光折射损失大, 发光效率低。
申请号为 200710143495.3的发明专利中, 提供了一种以陶瓷为基板的 发光二极管芯片封装结构, 其包括: 陶瓷基板、 导电单元、 中空陶瓷壳体、 复数个发光二极管芯片及封装胶体。 该陶瓷基板具有一本体、 复数个凸块、 复数个贯穿该等凸块的贯穿孔及复数个分别形成于该本体侧面及每两个凸 块之间的半穿孔; 该导电单元具有复数个分别成形于该等凸块表面的第一 导电层、 复数个分别成形于该等半穿孔的内表面及该本体的底面的第二导 电层及复数个分别填充满该等贯穿孔的第三导电层; 该中空陶瓷壳体固定 于该本体的顶面上以形成一容置空间; 该等发光二极管芯片分别设置于该 容置空间内; 该封装胶体填充于该容置空间内。 该发明的以陶瓷为基板的 发光二极管芯片封装结构的制作方法包括下列步骤:
提供一陶瓷基板, 并具有一本体, 复数个彼此分开且分别从该本体的顶 面延伸的凸块、 复数个分别贯穿该等相对应凸块的贯穿孔、 及复数个分别 形成于该本体侧面及每个凸块间之间的半穿孔;
分别成形复数个第一导电层于该等凸块的表面, 并且分别成形复数个第 二导电层于该等半贯穿孔的内表面及该本体的底面;
分别填充满复数个第三导电层于该等贯穿孔内, 以电性连接于该第一导 电层及该第二导电层之间;
固定一中空陶瓷体于该陶瓷基板的本体的顶面上以形成一容置空间, 并 且该容置空间暴露出该等第一导电层的顶面;
分别设置复数个发光二极管芯片于该容置空间内, 并且每一个发光二极 管芯片的正、 负极端分别电性连接于不同的第一导电层; 以及填充一封装 胶体于该容置空间内, 以覆盖该等发光二极管芯片。 该发明中的缺点一是 发光二极管芯片于外部电路的电性连接需经凸块表面的第一导电层、 贯穿 孔内的第三导电层、 半贯穿孔内的第二导电层、 底面接脚等才可与外部布 图电路导电层电性连接, 发光二极管芯片的电性连接复杂, 中间环节热阻 过多; 缺点二是一个发光二极管芯片需二个凸块, 所有的凸块均置于陶瓷 壳体的容置空间内, 这样导致发光二极管之间的距离会比较大, 无法实现 每个发光二极管芯片的单独封装, 需要的封装胶体多, 光学效果不好。 该 发明的制作方法中, 在烧结陶瓷时贯穿孔的制作很困难; 贯穿孔和半贯穿 孔内的导电层制作困难。
申请号为 2004201 12507. 8 的实用新型专利中, 公开了一种大功率 LED 发光二极管, 包括铝基板、 银胶、 晶片、 金线、 反射盖, 铝基板为凸凹型 碗杯形状, 即在其中心处的底面有一圆形凹槽, 与其对应的上面有一碗杯 状凸台, 凸台上装有塑胶框架, 塑胶框架为圆形, 中心设有圆孔, 与圆孔 同心开有两道凹槽, 内外构成低高两道凸沿, 底面对称设有两个圆柱脚, 并装在碗杯状凸台两边的圆孔中, 反射盖弧面较小接近于平盖, 其下沿口 涂有粘合胶水, 装之于塑胶框架的凹槽内。 塑胶框架底面涂有粘合胶水, 其内填充有胶水。 发光体晶片与反射盖底面距离 H值较小。 铝基板可以是 梅花形状, 也可以是圆形。 该专利公开的技术与本发明最接近。 该专利的 组装步骤是, 先将银胶点入铝基板凸台形碗杯内, 再将晶片固定在银胶上, 放入烤箱内烘烤 145C ° 1 小时, 然后焊接金线, 将镜片的正负极分别用金 线焊接在铝基板正负极上, 将塑胶框架底面涂上粘合胶水, 插入铝基板定 位孔内, 将胶水填充进塑胶框架内烘烤, 再将反射盖涂上粘合胶水, 装入 塑胶框架的凹槽内即可使用。 该专利的缺点一是需要通过粘合胶水将塑胶 框架与铝基板固定, 在后续的封装工艺过程中, 不耐高温, 在高温条件下 其固定的可靠性会受很大的影响; 缺点二是在塑胶框架上没有注入填充胶 水的通道, 在装反射盖前就需填充胶水, 如果不使用模具, 胶水的形状无 法控制, 如果使用模具填充胶水, 成本高; 缺点三是是填充胶水后再将反 射盖上涂上粘合胶水装入塑胶框架的凹槽内固定, 这样一方面固定不可靠, 位置关系固定不准确, 另外反射盖与胶水间会有间隙, 间隙内会有空气, 也就是反射盖内会有空气, 大大影响发光二极管的发光效果。 还有该实用 新型专利中的铝基板为碗杯形状, 其上只有一个凸台, 金线电性连接铝基 板的正负极, 从其文字和图公开的内容来看, 铝基板的正负极不会是布图 电路导电层, 而是为如 200820214808. X专利中公开的发光电极或支架式引 脚等。
发明内容
为了解决现有 LED集成结构中间环节热阻过多而造成的散热不畅, 寿 命短,发光效率低下, 及芯片电气互连的可靠性不高造成的良率低等和 C 0 B技术封装的 L E D芯片集成结构光学效果不好的问题, 本发明第一个要 解决的技术问题在于提供一种中间环节热阻小、 散热性好、 芯片到布图电 路导电层直接电连接、 不需要回流焊或波峰焊、 封装胶体可以用树脂或硅 胶等, 透镜和芯片的位置关系精确、 具有高光通量、 结构简单、 装配简单、 散热效果好、 光学效果好的 LED集成结构。
本发明第二个要解决的技术问题是还要提供一种 LED集成结构的制造 方法。
本发明第三个要解决的技术问题是还要提供一种具有 LED 集成结构的 LED灯。
本发明第四个要解决的技术问题是还要提供一种具有 LED 集成结构的 LED点阵显示屏。 本发明第五个要解决的技术问题是还要提供一种具有 LED集成结构的 背光装置。
本发明第六个要解决的技术问题是还要提供一种具有 LED集成结构的 投影装置。
本发明第七个要解决的技术问题是还要提供一种成型 LED集成结构的 定位透镜或成型透镜的塑胶件的注塑模。
为了解决上述技术问题, 本发明所有的技术方案均对散热基板进行了 改进, 在散热基板上设有与散热基板一体成型的二个或二个以上的芯片固 定凸台, 散热基板的横截面的面积是一个芯片固定凸台的横截面的面积的 三倍或三倍以上, LED芯片直接通过固晶工艺固定在凸台上, 散热基板背离 芯片固定凸台的一侧与散热气体或散热液体直接接触; 均设有定位透镜或 成型透镜的塑胶件, 在定位透镜或成型透镜的塑胶件上、 设有与芯片固定 凸台配合、 定位透镜或成型透镜的第一通孔, 透镜、 芯片固定凸台、 第一 通孔的个数一一对应, 定位透镜或成型透镜的塑胶件通过热熔固定柱与散 热基板定位和固定, 或通过将散热基板置于成型定位透镜或成型透镜的塑 胶件的模具内在成型定位透镜或成型透镜的塑胶件时成型抵挡部将散热基 板定位和固定, 或通过定位机构与散热基板定位和通过紧固件和散热基板 固定; 对布图电路导电层进行了改进, 布图电路导电层伸入第一通孔的内 侧壁与芯片固定凸台的外侧壁之间。
为了解决上述技术问题, 本发明提供的第一种技术方案是一种 LED 集成结构,包括散热基板, LED芯片,透镜, 塑胶透镜定位件, 电连接 LED 芯片电极的导线和电连接导线的布图电路导电层, 用来封装 LED芯片和导 线的封装胶体, 在散热基板上设有与散热基板一体成型的二个或二个以上 的芯片固定凸台, 散热基板的横截面的面积是一个芯片固定凸台的横截面 的面积的三倍或三倍以上, 在每个芯片固定凸台的端面上均通过固晶工艺 直接固定有 LED芯片; 在塑胶透镜定位件上、 设有与芯片固定凸台配合、 定位透镜和包覆封装胶体的第一通孔, 透镜、 芯片固定凸台、 第一通孔的 个数一一对应; 在塑胶透镜定位件的端面上延伸设有两个或两个以上的固 定柱, 在散热基板上设有与固定柱配合的第二通孔, 固定柱穿过散热基板 的第二通孔, 在固定柱的端部通过热熔的方式成型有抵挡部或将散热基板 置于成型塑胶透镜定位件的模具内在成型塑胶透镜定位件时成型有抵挡 部, 塑胶透镜定位件通过固定柱和抵挡部与散热基板固定; 芯片固定凸台 置于对应的第一通孔内, 布图电路导电层伸入第一通孔的内侧壁与芯片固 定凸台的外侧壁之间, 导线置于第一通孔内, 导线一端与 LED芯片的电极 电连接, 导线的另一端与伸入第一通孔的内侧壁与芯片固定凸台外侧壁之 间的布图电路导电层电连接; 在塑胶透镜定位件上对应第一通孔的位置设 有注入封装胶体的注胶通道, 注胶通道的胶口置于塑胶透镜定位件远离抵 挡部一侧的端面上, 注胶通道与第一通孔的内侧壁连通; 注入封装胶体前, 透镜与塑胶透镜定位件固定; 注入封装胶体后, 封装胶体进一步将透镜固 定; 散热基板背离芯片固定凸台的一侧与散热气体或散热液体直接接触。
作为上述方案的第一种改进, 在散热基板背离芯片固定凸台的一侧设 有置于芯片固定凸台内的散热盲孔或散热阶梯通孔, LED芯片完全覆盖散 热阶梯通孔的小孔。
作为进一步改进, 在散热盲孔的周边或阶梯散热通孔大端的周边背离 芯片固定凸台的一侧的散热基板上设有与基板一体成型的散热凸筋, 在散 热凸筋内设有隔热盲孔, 隔热盲孔朝向芯片固定凸台的一侧与散热基板连 通。
作为上述方案的第二种改进, 芯片固定凸台为圆柱形, 在芯片固定凸 台的顶部设有置放 LED芯片的凹陷部,凹陷部的底面为放置 LED芯片的平 面。
作为上述方案的第三种改进, 还包括 PCB板, PCB板置于散热基板设 有芯片固定凸台的一侧,布图电路导电层直接设置在 PCB板上,在 PCB板 上设有避空芯片固定凸台的第四通孔和与固定柱配合的第三通孔, 散热基 板的芯片固定凸台穿过第四通孔, PCB 板设有布图电路导电层的一侧背离 接触散热基板的接触面, 固定柱依次穿过 PCB板上的第三通孔和散热基板 上的第二通孔, 再通过热熔的方式成型有抵挡部或将散热基板、 PCB 板置 于成型塑胶透镜定位件的模具内在成型塑胶透镜定位件时成型有抵挡部。
作为上述方案的第四种改进, 散热基板为非金属导热绝缘板, 布图电 路导电层直接设置在散热基板上并朝向塑胶透镜定位件。
作为上述方案的第五种改进, 散热基板为金属基板, 布图电路导电层 直接设置在散热基板上并朝向塑胶透镜定位件, 在布图电路导电层与金属 基板之间设有一绝缘层。
作为上述方案的第一种共同改进, 塑胶透镜定位件为塑胶透镜定位环, 一个芯片固定凸台对应一个独立的塑胶透镜定位环, 布图电路导电层分布 在同一个平面上; 透镜与对应的第一通孔紧配合或通过压边机与塑胶透镜 定位件热压固定。
作为上述方案的第二种共同改进, 塑胶透镜定位件包括塑胶透镜定位 环和将塑胶透镜定位环连接在一起的与塑胶透镜定位环一起注塑成型的连 接筋, 一个芯片固定凸台对应一个塑胶透镜定位环, 布图电路导电层分布 在同一个平面上; 透镜与对应的第一通孔紧配合或通过压边机与塑胶透镜 定位件热压固定。
作为上述方案的第三种共同改进, 塑胶透镜定位件的个数为一个, 为 板状, 在塑胶透镜定位件上设有两个或两个以上第一通孔, 散热基板上的 一个芯片固定凸台对应塑胶透镜定位件上的一个第一通孔, 布图电路导电 层分布在同一个平面上; 透镜与对应的第一通孔紧配合或通过压边机与塑 胶透镜定位件热压固定。
为了解决上述技术问题, 本发明提供的第二种技术方案是具有上述的
LED集成结构的 LED灯。
为了解决上述技术问题, 本发明提供的第三种技术方案是具有上述的 LED集成结构的 LED点阵显示屏, 在 LED点阵显示屏内还包括成像控制 器, 每个芯片的布图电路导电层与成像控制器单独电连接。
为了解决上述技术问题, 本发明提供的第四种技术方案是具有上述的 LED集成结构的背光装置, 包括安装在一起的导光板和 LED背光源模组, LED背光源模组包括上述的 LED集成结构。
为了解决上述技术问题, 本发明提供的第五种技术方案是具有上述的 LED集成结构的投影装置, 包括 LED光源、 成像系统和投影成像屏幕, LED光源包括上述的 LED集成结构。 为了解决上述技术问题, 本发明提供的第六种技术方案是一种 LED集 成结构的制造方法, 工艺过程包括:
1 )在散热基板上成型二个或二个以上的芯片固定凸台, 与固定柱配合的第 二通孔, 散热基板的横截面的面积是一个芯片固定凸台的横截面的面积的 三倍或三倍以上;
2 )在散热基板上绝缘成型布图电路导电层, 布图电路导电层距芯片固定凸 台中心的距离大于芯片固定凸台外侧壁到芯片固定凸台中心的距离小于第 一通孔的内侧壁到第一通孔中心的距离;
3 )将散热基板放置在成型塑胶透镜定位件注塑模具内的设定位置, 注塑成 型塑胶透镜定位件, 同时成型塑胶透镜定位件的第一通孔、 固定柱和抵挡 部、 胶口和注胶通道; 在注塑成型塑胶透镜定位件时, 塑胶透镜定位件的 固定柱穿过散热基板上的第二通孔并通过抵挡部将塑胶透镜定位件与散热 基板固定, 芯片固定凸台置于对应的第一通孔内;
4) 通过固晶工艺将 LED芯片固定在芯片固定凸台的顶面上;
5 )焊与 LED芯片电极电连接的导线, 导线与伸入第一通孔内侧壁与芯片固 定凸台外侧壁之间的布图电路导电层电连接;
6) 将透镜固定在塑胶透镜定位件上;
7 ) 将透镜、 散热基板、 塑胶透镜定位件、 LED芯片、 导线置于特定环境中 抽真空;
8 ) 于真空环境中通过胶口、 注胶通道向透镜内腔灌胶, 对 LED芯片和导线 封装, 通过封装胶体的固化进一步对透镜固定。
为了解决上述技术问题,本发明提供的第七种技术方案是提供一种 LED 集成结构的制造方法, 工艺过程包括:
1 )在散热基板上成型二个或二个以上的芯片固定凸台, 与固定柱配合的第 二通孔, 散热基板的横截面的面积是一个芯片固定凸台的横截面的面积的 三倍或三倍以上;
2 )在 PCB板上成型与固定柱配合的第三通孔和避空芯片固定凸台的第四通 孔;
3 )在 PCB板上成型布图电路导电层, 布图电路导电层距避空芯片固定凸台 的第四通孔中心的距离大于避空芯片固定凸台的第四通孔侧壁到避空芯片 固定凸台的第四通孔中心的距离小于第一通孔的内侧壁到第一通孔中心的 距离;
4)将 PCB板、散热基板放置在成型塑胶透镜定位件的注塑模具的设定位置, 散热基板上的芯片固定凸台穿过第四通孔, 注塑成型塑胶透镜定位件, 同 时成型塑胶透镜定位件的第一通孔、 固定柱和抵挡部、 胶口和注胶通道; 在注塑成型塑胶透镜定位件时, 塑胶透镜定位件的固定柱依次穿过 PCB板 的第三通孔、散热基板上的第二通孔并通过抵挡部将塑胶透镜定位件与 PCB 板、 散热基板固定, 芯片固定凸台置于对应的第一通孔内;
5 ) 通过固晶工艺将 LED芯片固定在芯片固定凸台的顶面上;
6 )焊与 LED芯片电极电连接的导线, 导线与伸入第一通孔内侧壁与芯片固 定凸台外侧壁之间的布图电路导电层电连接;
7 ) 将透镜固定在塑胶透镜定位件上;
8 ) 将透镜、 散热基板、 塑胶透镜定位件、 LED芯片、 导线、 PCB板置于特 定环境中抽真空;
9) 于真空环境中通过胶口、 注胶通道向透镜内腔灌胶, 对 LED芯片和导线 封装, 通过封装胶体的固化进一步对透镜固定。
为了解决上述技术问题,本发明提供的第八种技术方案是提供一种 LED 集成结构的制造方法, 工艺过程包括:
1 )注塑成型塑胶透镜定位件, 同时成型第一通孔、 固定柱、 胶口和注胶通 道, 固定柱的长度大于散热基板的厚度;
2 )在散热基板上成型二个或二个以上的芯片固定凸台, 与固定柱配合的第 二通孔, 散热基板的横截面的面积是一个芯片固定凸台的横截面的面积的 三倍或三倍以上;
3 )在散热基板上绝缘成型布图电路导电层, 布图电路导电层距芯片固定凸 台中心的距离大于芯片固定凸台外侧壁到芯片固定凸台中心的距离小于第 一通孔的内侧壁到第一通孔中心的距离;
4)将塑胶透镜定位件的固定柱穿过散热基板上的第二通孔并热熔固定柱端 部成型抵挡部, 通过抵挡部将塑胶透镜定位件与散热基板固定; 5 ) 通过固晶工艺将 LED芯片固定在芯片固定凸台的顶面上;
6 )焊与 LED芯片电极电连接的导线, 导线与伸入第一通孔侧壁与芯片固定 凸台侧壁之间的布图电路导电层电连接;
7 ) 将透镜固定在塑胶透镜定位件上;
8 ) 将透镜、 散热基板、 塑胶透镜定位件、 LED芯片、 导线置于特定环境中 抽真空;
9 ) 于真空环境中通过胶口、 注胶通道向透镜内腔灌胶, 对 LED芯片和导线 封装, 通过封装胶体的固化进一步对透镜固定。
为了解决上述技术问题,本发明提供的第九种技术方案是提供一种 LED 集成结构的制造方法, 工艺过程包括:
1 )注塑成型塑胶透镜定位件, 同时成型第一通孔、 固定柱、 胶口和注胶通 道, 固定柱的长度大于散热基板和 PCB板的厚度之和;
2 )在散热基板上成型二个或二个以上的芯片固定凸台, 与固定柱配合的第 二通孔, 散热基板的横截面的面积是一个芯片固定凸台的横截面的面积的 三倍或三倍以上;
3 )在 PCB板上成型与固定柱配合的第三通孔和避空芯片固定凸台的第四通 孔;
4 )在 PCB板上成型布图电路导电层, 布图电路导电层距第四通孔中心的距 离大于第四通孔侧壁到第四通孔中心的距离小于第一通孔的侧壁到第一通 孔中心的距离;
5 )将散热基板上的芯片固定凸台穿过第四通孔使 PCB板安装在散热基板上, 同时塑胶透镜定位件的固定柱依次穿过 PCB板上的第三通孔、 散热基板上 的第二通孔并热熔固定柱端部成型抵挡部, 通过抵挡部将塑胶透镜定位件 与 PCB板、 散热基板固定;
6 ) 通过固晶工艺将 LED芯片固定在芯片固定凸台的顶面上;
7 )焊与 LED芯片电极电连接的导线, 导线与伸入第一通孔侧壁与芯片固定 凸台外侧壁之间的布图电路导电层电连接;
8 ) 将透镜固定在塑胶透镜定位件上;
9 ) 将透镜、 散热基板、 塑胶透镜定位件、 PCB板、 LED芯片、 导线置于特 定环境中抽真空;
10 ) 于真空环境中通过胶口、 注胶通道向透镜内腔灌胶, 对 LED芯片和导 线封装, 通过封装胶体的固化进一步对透镜固定。
为了解决上述技术问题, 本发明提供的第十种技术方案是提供一种 LED集成结构, 包括散热基板, LED芯片, 透镜, 电连接 LED芯片电极的 导线和电连接导线的布图电路导电层, 还包括透镜成型塑胶件; 在散热基 板上设有与散热基板一体成型的二个或二个以上的芯片固定凸台, 散热基 板的横截面的面积是一个芯片固定凸台的横截面的面积的三倍或三倍以 上, 在每个芯片固定凸台的端面上均通过固晶工艺直接固定有 LED芯片; 在透镜成型塑胶件上、 设有与芯片固定凸台配合、 成型透镜的第一通孔, 透镜、 芯片固定凸台、 第一通孔的个数一一对应; 在透镜成型塑胶件的端 面上延伸设有两个或两个以上固定柱, 在散热基板上设有与固定柱配合的 第二通孔, 固定柱穿过散热基板上的第二通孔, 在固定柱的端部通过热熔 的方式成型有抵挡部或将散热基板置于成型透镜成型塑胶件的模具内在成 型透镜成型塑胶件时成型有抵挡部; 透镜成型塑胶件通过固定柱和抵挡部 与散热基板固定; 芯片固定凸台置于对应的透镜成型塑胶件内, 布图电路 导电层伸入透镜成型塑胶件的内侧壁与芯片固定凸台外侧壁之间, 导线置 于透镜成型塑胶件内, 导线一端与 LED芯片的电极电连接, 导线的另一端 与伸入透镜成型塑胶件的内侧壁与芯片固定凸台外侧壁之间的布图电路导 电层电连接; 透镜为封装 LED芯片和导线的透明封装胶体; 散热基板背离 芯片固定凸台的一侧与散热气体或散热液体直接接触。
作为改进, 第一通孔的侧壁包括上大下小的锥形, 透镜上表面为平面。 点胶后在重力和第一通孔侧壁的作用下成为相对平面。
作为第一种共同改进, 透镜成型塑胶件为透镜成型塑胶环, 一个芯片 固定凸台对应一个独立的透镜成型塑胶环, 布图电路导电层分布在同一个 平面上。
作为第二种共同改进, 透镜成型塑胶件包括透镜成型塑胶环和将透镜 成型塑胶环连接在一起的与透镜成型塑胶环一起注塑成型的连接筋, 一个 芯片固定凸台对应一个透镜成型塑胶环, 布图电路导电层分布在同一个平 面上。
作为第三种共同改进, 透镜成型塑胶件的个数为一个, 为板状, 在透镜 成型塑胶件上设有两个或两个以上第一通孔, 散热基板上的一个芯片固定 凸台对应透镜成型塑胶件上的一个第一通孔, 布图电路导电层分布在同一 个平面上。
为了解决上述技术问题, 本发明提供的第十一种技术方案是提供一种 制造 LED集成结构的方法, 工艺过程包括:
1 )在散热基板上成型二个或二个以上的芯片固定凸台, 与固定柱配合的第 二通孔, 散热基板的横截面的面积是一个芯片固定凸台的横截面的面积的 三倍或三倍以上;
2 )在散热基板上绝缘成型布图电路导电层, 布图电路导电层距芯片固定凸 台中心的距离大于芯片固定凸台外侧壁到芯片固定凸台中心的距离小于第 一通孔的内侧壁到第一通孔中心的距离;
3 )将散热基板放置在成型透镜成型塑胶件注塑模具内的设定位置, 注塑成 型透镜成型塑胶件; 同时成型透镜成型塑胶件的第一通孔、 固定柱和抵挡 部; 在注塑成型透镜成型塑胶件时, 透镜成型塑胶件的固定柱穿过散热基 板上的第二通孔并通过抵挡部将透镜成型塑胶件与散热基板固定, 芯片固 定凸台置于对应的第一通孔内;
4 ) 通过固晶工艺将 LED芯片固定在芯片固定凸台的顶面上;
5 )焊与 LED芯片电极电连接的导线, 导线与伸入第一通孔侧壁与芯片固定 凸台侧壁之间的布图电路导电层电连接;
6 )通过成型透镜的模具灌胶成型透镜并对 LED芯片和导线封装, 胶固化透 镜与透镜成型塑胶件、 LED芯片、 导线和散热基板固定。
为了解决上述技术问题, 本发明提供的第十二种技术方案是提供一种 制造 LED集成结构的方法, 工艺过程包括:
1 )在散热基板上成型二个或二个以上的芯片固定凸台, 与固定柱配合的第 二通孔, 散热基板的横截面的面积是一个芯片固定凸台的横截面的面积的 三倍或三倍以上;
2 )在 PCB板上成型与固定柱配合的第三通孔和避空芯片固定凸台的第四通 孔;
3 )在 PCB板上成型布图电路导电层, 布图电路导电层距第四通孔中心的距 离大于第四通孔侧壁到第四通孔中心的距离小于第一通孔的侧壁到第一通 孔中心的距离;
4)将 PCB板、散热基板放置在成型透镜成型塑胶件的注塑模具的设定位置, 散热基板上的芯片固定凸台穿过 PCB 的第四通孔; 注塑成型透镜成型塑胶 件, 同时成型透镜成型塑胶件的第一通孔、 固定柱和抵挡部; 在注塑成型 透镜成型塑胶件时, 透镜成型塑胶件的固定柱依次穿过 PCB板上的第三通 孔、散热基板上的第二通孔并通过固定柱和抵挡部将透镜成型塑胶件与 PCB 板、 散热基板固定, 芯片固定凸台置于对应的第一通孔内;
5 ) 通过固晶工艺将 LED芯片固定在芯片固定凸台的顶面上;
6 )焊与 LED芯片电极电连接的导线, 导线与伸入第一通孔侧壁与芯片固定 凸台侧壁之间的布图电路导电层电连接;
7 )通过成型透镜的模具灌胶成型透镜并对 LED芯片和导线封装, 胶固化透 镜与透镜成型塑胶件、 LED芯片、 导线散热基板的芯片固定凸台和 PCB板 固定。
为了解决上述技术问题, 本发明提供的第十三种技术方案是提供一种 制造 LED集成结构的方法, 工艺过程包括:
1 )注塑成型透镜成型塑胶件, 同时成型透镜成型塑胶件的第一通孔、 固定 柱, 固定柱的长度大于散热基板的厚度;
2 )在散热基板上成型二个或二个以上的芯片固定凸台, 与固定柱配合的第 二通孔, 散热基板的横截面的面积是一个芯片固定凸台的横截面的面积的 三倍或三倍以上;
3 )在散热基板上绝缘成型布图电路导电层, 布图电路导电层距芯片固定凸 台中心的距离大于芯片固定凸台外侧壁到芯片固定凸台中心的距离小于第 一通孔侧壁到第一通孔中心的距离;
4)将透镜成型塑胶件的固定柱穿过散热基板上的第二通孔并热熔固定柱端 部成型抵挡部, 通过抵挡部将透镜成型塑胶件与散热基板固定;
5 ) 通过固晶工艺将 LED芯片固定在芯片固定凸台的顶面上; 6 )焊与 LED芯片电极电连接的导线, 导线与伸入第一通孔侧壁与芯片固定 凸台侧壁之间的布图电路导电层电连接;
7 )通过成型透镜的模具灌胶成型透镜并对 LED芯片和导线封装, 胶固化透 镜与透镜成型塑胶件、 LED芯片、 导线和散热基板固定。
为了解决上述技术问题, 本发明提供的第十四种技术方案是提供一种 制造 LED集成结构的方法, 工艺过程包括:
1 )注塑成型透镜成型塑胶件, 同时成型第一通孔、 固定柱, 固定柱的长度 大于散热基板和 PCB板的厚度之和;
2 )在散热基板上成型二个或二个以上的芯片固定凸台, 与固定柱配合的第 二通孔, 散热基板的横截面的面积是一个芯片固定凸台的横截面的面积的 三倍或三倍以上;
3 )在 PCB板上成型与固定柱配合的第三通孔和避空芯片固定凸台的第四通 孔;
4 )在 PCB板上成型布图电路导电层, 布图电路导电层距第四通孔中心的距 离大于第四通孔侧壁到芯片固定凸台避空第四通孔中心的距离小于第一通 孔侧壁到第一通孔中心的距离;
5 )将散热基板上的芯片固定凸台穿过 PCB的第四通孔使 PCB板安装在散热 基板上, 将透镜成型塑胶件的固定柱依次穿过 PCB板的第三通孔、 散热基 板上的第二通孔并热熔固定柱端部成型抵挡部, 通过抵挡部将透镜成型塑 胶件与 PCB板、 散热基板固定;
6 ) 通过固晶工艺将 LED芯片固定在芯片固定凸台的顶面上;
7 )焊与 LED芯片电极电连接的导线, 导线与伸入第一通孔侧壁与芯片固定 凸台侧壁之间的布图电路导电层电连接;
8 )通过成型透镜的模具灌胶成型透镜并对 LED芯片和导线封装, 胶固化透 镜与透镜成型塑胶件、 LED芯片、 导线和散热基板固定。
为了解决上述技术问题, 本发明提供的第十五种技术方案是提供一种 LED集成结构, 包括散热基板, LED芯片, 透镜, 定位透镜或成型透镜的 塑胶件, 电连接 LED芯片电极的导线和电连接导线的布图电路导电层, 在 散热基板上设有与散热基板一体成型的二个或二个以上的芯片固定凸台, 散热基板的横截面的面积是一个芯片固定凸台的横截面的面积的三倍或三 倍以上, 在每个芯片固定凸台的端面上均通过固晶工艺直接固定有 LED芯 片; 定位透镜或成型透镜的塑胶件包括塑胶环和将塑胶环连接在一起与塑 胶环一起注塑成型的连接筋; 在塑胶环上设有定位透镜或成型透镜的第一 通孔; 透镜、 第一通孔和芯片固定凸台的个数一一对应; 芯片固定凸台置 于对应的第一通孔内, 布图电路导电层伸入第一通孔的内侧壁与芯片固定 凸台的外侧壁之间, 导线置于第一通孔内, 导线一端与 LED芯片的电极电 连接, 导线的另一端与伸入第一通孔的内侧壁与芯片固定凸台外侧壁之间 的布图电路导电层电连接; 还设有将散热基板与定位透镜或成型透镜的塑 胶件精确定位的定位机构和将散热基板与塑胶件固定在一起的紧固件; 散 热基板背离芯片固定凸台的一侧与散热气体或散热液体直接接触。
作为改进, 还包括 PCB板, PCB板置于散热基板设有芯片固定凸台的 一侧, 布图电路导电层直接设置在 PCB板上, PCB板设有布图电路导电层 的一侧背离接触散热基板的接触面, 定位机构将散热基板、 PCB 板和定位 透镜或成型透镜的塑胶件精确定位, 紧固件将散热基板、 PCB 板和定位透 镜或成型透镜的塑胶件固定在一起。
为了解决上述技术问题, 本发明提供的第十六种技术方案是提供一种 LED集成结构, 包括散热基板, LED芯片, 透镜, 定位透镜或成型透镜的 塑胶件, 电连接 LED芯片电极的导线和电连接导线的布图电路导电层, 在 散热基板上设有与散热基板一体成型的二个或二个以上的芯片固定凸台, 散热基板的横截面的面积是一个芯片固定凸台的横截面的面积的三倍或三 倍以上, 在每个芯片固定凸台的端面上均通过固晶工艺直接固定有 LED芯 片; 定位透镜或成型透镜的塑胶件为板状, 在定位透镜或成型透镜的塑胶 件上设有两个或两个以上第一通孔, 透镜、 第一通孔和芯片固定凸台的个 数一一对应; 芯片固定凸台置于对应的第一通孔内, 布图电路导电层伸入 第一通孔的内侧壁与芯片固定凸台的外侧壁之间, 导线置于第一通孔内, 导线一端与 LED芯片的电极电连接, 导线的另一端与伸入第一通孔的内侧 壁与芯片固定凸台外侧壁之间的布图电路导电层电连接; 还设有将散热基 板与定位透镜或成型透镜的塑胶件精确定位的定位机构和将散热基板与塑 胶件固定在一起的紧固件; 散热基板背离芯片固定凸台的一侧与散热气体 或散热液体直接接触。
作为改进, 还包括 PCB板, PCB板置于散热基板设有芯片固定凸台的 一侧, 布图电路导电层直接设置在 PCB板上, PCB板设有布图电路导电层 的一侧背离接触散热基板的接触面, 定位机构将散热基板、 PCB 板和定位 透镜或成型透镜的塑胶件精确定位, 紧固件将散热基板、 PCB 板和定位透 镜或成型透镜的塑胶件固定在一起。
为了解决上述技术问题, 本发明提供的第十七种技术方案是提供一种 成型 LED集成结构的定位透镜或成型透镜的塑胶件的注塑模, LED集成结 构包括散热基板, 定位透镜或成型透镜的塑胶件, 布图电路导电层; 注塑 模包括定模装置、 动模装置、 进胶装置和顶出装置, 进胶装置设置在定模 装置一侧, 在散热基板上设有与散热基板一体成型的二个或二个以上的用 来固定 LED芯片的凸台, 散热基板的横截面的面积是每个凸台的横截面的 面积的三倍或三倍以上; 在定位透镜或成型透镜上设有与凸台配合、 定位 透镜或成型透镜的第一通孔, 透镜、 凸台、 第一通孔的个数一一对应; 在 定位透镜或成型透镜的端面上延伸设有两个或两个以上的固定柱, 在散热 基板上设有与固定柱配合的第二通孔, 固定柱穿过散热基板的第二通孔, 在固定柱的端部通过将散热基板置于成型定位透镜或成型透镜的模具内在 成型定位透镜或成型透镜时成型有抵挡部, 定位透镜或成型透镜通过固定 柱和抵挡部与散热基板固定; 凸台置于对应的第一通孔内, 布图电路导电 层伸入第一通孔的内侧壁与凸台的外侧壁之间; 注塑模包括成型塑胶件本 体的塑胶件本体型腔和凸设在塑胶件本体型腔内成型第一通孔的凸台, 成 型抵挡部的抵挡部型腔, 容置散热基板的容置腔, 将散热基板放置在容置 腔设定位置的定位机构; 塑胶件本体型腔和凸台设置在分型面的同侧, 抵 挡部型腔与塑胶件本体型腔设置在分型面的异侧, 容置腔与塑胶件本体型 腔连通或与抵挡部型腔连通; 在模具内设有芯片固定凸台避空孔, 芯片固 定凸台避空孔与塑胶件本体型腔设置在分型面的同侧, 芯片固定凸台避空 孔与芯片固定凸台间设有避空间隙。
作为第一种改进, 塑胶件本体型腔、 凸台设置在定模部分, 抵挡部型 腔设置在动模部分, 顶出机构设置在动模部分, 进胶装置的浇口与塑胶件 本体型腔的底部连通; 塑胶件本体型腔和凸台沿脱模方向的成型面脱模锥 度大, 动模部分的抵挡部型腔沿脱模方向的成型面无脱模锥度或者为倒锥。
作为第二种改进, 塑胶件本体型腔、 凸台设置在定模部分, 抵挡部型 腔设置在动模部分, 顶出机构设置在定模部分, 进胶装置的浇口与塑胶件 本体型腔的底部连通。
作为第三种改进, 塑胶件本体型腔、 凸台设置在动模部分, 抵挡部型 腔设置在定模部分, 顶出机构设置在动模部分, 进胶装置的浇口与抵挡部 型腔的底部连通。
作为第四种改进, 布图电路导电层直接设置在散热基板上并朝向定位 透镜或成型透镜的塑胶件; 定位机构为与芯片固定凸台配合的定位孔, 定 位孔与塑胶件本体型腔在分型面的同侧。
作为第五种改进, 在散热基板背离芯片固定凸台的一侧设有置于芯片 固定凸台内的散热盲孔或散热阶梯通孔; 在散热盲孔的周边或散热阶梯通 孔大端的周边背离芯片固定凸台的一侧的散热基板上设有与基板一体成型 的散热凸筋, 在散热凸筋内设有隔热盲孔; 在注塑模上设有散热凸筋避空 孔, 散热凸筋避空孔与抵挡部型腔在分型面的同侧, 散热凸筋避空孔与散 热凸筋间设有避空间隙。
作为第六种改进, 定位件为定位轴, 定位轴与散热基板配合。
作为第七种改进,还包括 PCB板,布图电路导电层直接设置在 PCB板 上, PCB 板设有布图电路导电层的一侧背离接触散热基板的接触面, 固定 柱依次穿过 PCB板和散热基板并通过抵挡部将定位透镜或成型透镜的塑胶 件、 PCB板和散热基板固定在一起; 定位件为定位轴, 在 PCB板的侧面上 设有开口状的定位槽, 定位轴为阶梯轴并与塑胶件本体型腔同侧, 定位轴 的小轴与散热基板配合,与定位轴小轴相邻的轴与 PCB板上的定位槽配合。
作为第一种共同改进, 定位透镜或成型透镜的塑胶件为定位透镜的透 镜定位塑胶件, 在透镜定位塑胶件上设有注入封装胶体的注胶通道, 注胶 通道的胶口置于透镜定位塑胶件远离抵挡部一侧的端面上, 注胶通道与第 一通孔的内侧壁连通; 在凸台的侧壁上设有成型注胶通道的凸出部。 作为第二种共同改进, 定位透镜或成型透镜的塑胶件为塑胶环, 在散 热基板上固定有两个或两个以上相互独立的塑胶环; 进胶装置的浇口为点 浇口, 每个塑胶环对应一个或两个点浇口。
作为第三种共同改进, 定位透镜或成型透镜的塑胶件包括塑胶环和将 设定个数的塑胶环连接在一起的与塑胶环一起注塑成型的连接筋, 定位透 镜或成型透镜的塑胶件包括两个或两个以上塑胶环; 在模具上设有与塑胶 件本体型腔连通的连接筋成型腔, 进胶装置的浇口与塑胶件本体型腔和 /或 连接筋型腔连通; 进胶装置的浇口为点浇口或直浇口。
作为第四种共同改进, 定位透镜或成型透镜的塑胶件为板状, 在定位 透镜或成型透镜的塑胶件上设有两个或两个以上第一通孔, 进胶装置的浇 口为点浇口或直浇口。
作为第五种共同改进, 定模部分还包括热流道系统。
本发明的有益效果是:
第一个优点是 LED芯片直接通过固晶工艺固定在芯片固定凸台上, 散 热基板背离芯片固定凸台的一侧与散热气体或散热液体直接接触。这种 LED 集成结构的 COB (Chip on Board ) 封装设计, 与现有的 LED集成结构相比, 由于本发明直接将 LED芯片通过银胶或共晶焊料等固定在基板的芯片固定 凸台上, LED芯片工作时产生的热量经过散热基板的芯片固定凸台薄薄的导 热层就直接与散热气体如空气接触或与散热液体接触,接触散热基板的热 量因为热冷气体或液体密度差流动效应迅速被带走, 从而带走基板的热量, 可以最大限度的减少中间环节的热阻, 大大减少 LED芯片 p-n结发热部到 外部空气环境或散热液体的传热路径距离, 从而大大减少热阻。 本结构的 散热基板为薄板, 散热基板的厚度范围一般在 0. 2mm至 5mm内, 主要应用 为在散热基板上与散热基板一体成型多个芯片固定凸台, 基板的面积大大 的大于芯片固定凸台顶部的面积。 这样一方面大大减少 LED芯片产生的热 量散发于散热气体即空气中或散热液体中的中间路径距离和大大增加了与 散热液体和散热气体的接触面积, 大大减少了热积聚效应,可大大提高散热 效率和使芯片保持于合适的工作温度,从而保持芯片的长寿命及有效发光 效率。 芯片固定凸台与散热基板一体成型, 因此芯片产生的热量只透过散 热基板就直接散发于空气中,故热阻小, 散热速度快,不须借助其它散热件 来散热, 散热效果便相当好。 LED芯片通过固晶方式直接固定在芯片固定凸 台上, LED芯片通过导线直接与布图电路导电层电连接, 由于有芯片固定凸 台,使得电连接导线对 LED芯片发出的光线的抵挡阴影降到最低 ,利于光学 二次优化!省去了现有的 LED支架,也就是省去了 LED支架中的散热金属件, 及其电极金属脚等多层中间环节, 尤其避免了散热金属件与散热基板的两 个零件之间产生的高热阻,因此热阻小,导热快散热效果好,结构简单可靠, 尤其芯片固定凸台与散热基板一体成型更有利于光源的设计与装配工艺, 又节省成本。 因此本发明结构简单可靠,零件少,厚度薄, 易于装配, 特别 适用于对光源要求大功率的场合。
第二个优点是由于均设有定位透镜或成型透镜的塑胶件, 布图电路导 电层可伸入定位透镜或成型透镜的塑胶件内, 一方面导线可直接与布图电 路导电层电连接, 不再需要通过导电金属支架将导线与布图电路导电层连 接或通过接线脚从背离芯片固定凸台的散热基板穿出与布图电路导电层连 接, 简化了结构和最大限度的减少中间环节的热阻, 散热效果好; 另一方 面不再需要焊接金属支架或接线脚与布图电路导电层电连接, 不需要回流 焊或波峰焊, 因此封装胶体可以用树脂或硅胶等; 而且还可保证 LED芯片、 电连接导线及其两个焊接端不会暴露于空气中, 有利于使用的长寿命。 而 需要回流焊或波峰焊时,由于回流焊或波峰焊的温度一般在 250C°或 280C°, 封装胶体就不可以使用树脂。 由于硅胶的价格远远高于树脂, 透光性比树 脂差, 因此本发明可以进一步节省成本, 提高 LED芯片的光学性能。 这种 COB封装设计的优点在于每个 LED 芯片 2的电极都通过键合导线直接与布 图电路导电层形成欧姆接触, 多路 LED芯片阵列的形成是通过散热基板与 LED芯片的电连接装置实现电气互联, 即可实现 LED芯片的串并联, 又可提 高产品的可靠性和生产合格率。
第三个优点是定位透镜或成型透镜的塑胶件通过热熔固定柱与散热基 板定位和固定, 或通过将散热基板置于成型定位透镜或成型透镜的塑胶件 的模具内在成型定位透镜或成型透镜的塑胶件时成型抵挡部将散热基板定 位和固定, 或通过定位机构与散热基板定位和通过紧固件和散热基板固定, 固定可靠, 在后续的封装工艺过程中, 能耐高温, 在高温条件下其固定的 可靠性也不会受影响; 相对于用紧固件固定, 本技术方案因不需在定位透 镜或成型透镜的塑胶件上设计固定孔, 对于同样大小的第一通孔, 可以减 少相邻第一通孔之间的距离, 因此可在单位面积内布置更多的透镜。 特别 是定位透镜或成型透镜的塑胶件通过在注塑成形定位透镜或成型透镜的塑 胶件时与散热基板固定, 一方面省去了将定位透镜或成型透镜的塑胶件安 装到散热基板上的安装工序, 对于一个散热基板上设有多个定位透镜或成 型透镜的塑胶件的情况下, 大大节约了生产成本, 另一方面定位透镜或成 型透镜的塑胶件与散热基板在轴向、 径向方向均不存在间隙, 固定非常可 靠, 散热基板与定位透镜或成型透镜的塑胶件之间的位置关系可以非常精 确, 定位透镜或成型透镜的塑胶件上的透镜安装位置尺寸可以非常精确, 从而提高 LED集成结构的光学效果。
第四个优点是散热盲孔或散热阶梯通孔增大散热基板的散热面积, 大 大减少 LED芯片与空气之间的距离, 也就是大大减少 LED芯片热量散发于 空气的中间路径距离, 从而大大减少热积聚效应, 所以有散热孔比无孔的 散热效果好。
第五个优点是凸筋进一步增加散热基板与空气接触的面积, 使散热效 果更好。 因为在 LED芯片发光时, 隔热盲孔内的空气不流通, 因此隔热盲 孔对 LED芯片产生的热量具有隔热作用, 使 LED芯片产生的热量主要沿芯 片固定凸台和散热凸筋散发到空气中。
第六个优点是凹陷部便于 LED芯片的安装和定位, 使 LED芯片的定位 更精确, 更有利于把芯片发出来的光先行定向集聚, 提高光效。
第七个优点是散热基板为绝缘的非金属板, 将布图电路导电层直接设 置在散热基板上, 结构简单, 散热效果好。 散热基板用绝缘导热非金属材 料, 因此可以获得低热阻, 能够避免布图电路导电层短路, 且又能使芯片 在工作期间产生的热量通过绝缘导热材质基板传导出去, 良好的热传导使 得高密度大功率 LED集成芯片封装能够实现。
第八个优点是散热基板采用金属材料, 因此可以获得低热阻, 其上面 的布图电路导电层采用一个厚度相当小的绝缘层进行分隔, 此绝缘层能够 避免金属质基板短路, 且又能使芯片在工作期间产生的热量通过金属基板 传导出去, 良好的热传导使得高密度大功率 LED集成芯片封装能够实现。
第九个优点是布图电路导电层设置于 PCB板上时, 定位透镜或成型透 镜的塑胶件又可实现把散热基板、 PCB板固定在一起。使用 PCB板, 便于布 图电路导电层的电路的布图设计, 省掉了原来电路布图于散热基板上的复 杂的制造工艺, 使用了非常成熟的 PCB板, 大大节省了成本, 既简化了工 艺又提高了布图电路导电层的可靠性和设计灵活性。 同时 PCB板具有隔热 作用, 更利于散热基板上的热量沿与空气接触的一侧散发出去。
第十个优点是一个芯片固定凸台对应一个塑胶透镜定位环, 在成型定 位透镜或成型透镜的塑胶件时塑胶用量大大减少, 降低成本。 透镜通过紧 配合或热压方式固定在定位透镜或成型透镜的塑胶件上, 这样透镜先固定 再封装, 在封装 LED芯片时, 透镜不会移位, 有利于灌胶和固化工序, 特 别是比现有的只通过靠硅胶等的粘结力来固定透镜可靠得多。
第十一个优点是在一块散热基板上的全部塑胶定位环可在注塑时通过 连接筋连接成一个整体的定位透镜或成型透镜的塑胶件; 也可将一块散热 基板上的部分透镜定位环连接为一个整体的定位透镜或成型透镜的在注塑 时塑胶件, 在一块散热基板上设有两个或两个以上这种定位透镜或成型透 镜的塑胶件。 一个芯片固定凸台对应一个塑胶透镜定位环, 在成型塑胶透 镜定位环时塑胶用量少, 成本低。 通过连接筋将塑胶透镜定位环连接为一 个整体, 第一是在注塑成型定位透镜或成型透镜的塑胶件时, 其模具浇口 可以设置在塑胶透镜定位环上或连接筋上, 便于模具浇口的布置和在注塑 时更利于模具内的塑胶充填平衡, 而且不同塑胶透镜定位环之间的塑胶流 动通过连接筋来实现, 可减少模具浇口的数量和便于模具流道的设计, 可 用一个模具浇口成型两个或两个以上的塑胶透镜定位环, 如在塑胶透镜定 位环个数较少的情况下可只直接设计一个直浇口就可成型多个塑胶透镜定 位环; 第二是可减少固定柱的个数, 并不需要在每个塑胶定位环上设有两 个或两个以上的固定柱, 这样一方面可降低模具制造成本, 另一方面可在 注塑成型定位透镜或成型透镜的塑胶件时减少塑胶的用量; 第三是对于同 样大小的塑胶透镜定位环, 可将固定柱设计在塑胶透镜定位环和连接筋交 界的位置, 因此可增加固定柱的横截面; 第四是对于同样大小的塑胶透镜 定位环, 因为成型相邻的透镜定位环的模腔薄壁被连通为成型连接筋的型 腔, 因此在单位面积内可排列更多的塑胶透镜定位环, 模具的使用寿命更 长; 第五是塑胶透镜定位环与塑胶透镜定位环之间的位置关系更精确、 固 定更可靠, 从而使透镜之间的位置关系更精确, 提高光学效果。 透镜通过 紧配合或热压方式固定在定位透镜或成型透镜的塑胶件上, 这样透镜先固 定再封装, 在封装 LED芯片时, 透镜不会移位, 有利于灌胶和固化工序, 特别是比现有的只通过靠硅胶等的粘结力来固定透镜可靠得多。
第十二个优点是在一块散热基板可只设有一个板状的定位透镜或成型 透镜的塑胶件; 也可在一块散热基板上设有两个或两个以上的板状的定位 透镜或成型透镜的塑胶件。 定位透镜或成型透镜的塑胶件为板状, 第一是 在注塑成型定位透镜或成型透镜的塑胶件时, 其模具浇口设计更灵活, 便 于模具浇口的布置和在注塑时更利于模具内的塑胶充填平衡; 第二是可减 少固定柱的个数和可增加固定柱的横截面; 第三是单位面积内可布设更多 的透镜; 第四是透镜之间的位置关系更精确, 提高光学效果。 透镜通过紧 配合或热压方式固定在定位透镜或成型透镜的塑胶件上, 这样透镜先固定 再封装, 在封装 LED芯片时, 透镜不会移位, 有利于灌胶和固化工序, 特 别是比现有的只通过靠硅胶等的粘结力来固定透镜可靠得多。
第十三个优点是, 定位透镜或成型透镜的塑胶件为板状, 固定柱置于 每四个相邻的第一通孔的中心。 对于同样大小的第一通孔, 可以最大限度 地减少相邻第一通孔之间的距离, 因此可在单位面积内最大限度地布置更 多的透镜, 应用于点阵显示屏时, 可最大限度实现高清图像显示。
第十四个优点是设在散热基板表面的碳化硅涂层, 同时具有高热传导 率以及高热辐射率等优点, 在无强制风扇对流的应用领域下, 例如 LED照 明, 更能显现其散热功能。 碳化硅具有优异之热传导特性 ( 1 30- 1 60W/ m . K) , 良好的绝缘性, 并具有比铜、 铝等金属高 5~ 8 倍之热辐射率, 且为非金属等的应用。 例如将铝鰭片喷上碳化硅散热涂料 之后,不但有效将温度降低 5度〜 7度,整体散热效率更增加 1 0 % ~ 1 5 %。
为了解决上述技术问题, 本发明提供的第一种技术方案中的注胶通道 的胶口置于塑胶透镜定位件远离抵挡部一侧的端面上, 注胶通道与塑胶透 镜定位件的内侧壁连通, 便于注胶; 由于塑胶透镜定位件是塑胶件, 因此 胶口和注胶通道易成型。 在注入封装胶体前, 透镜与塑胶透镜定位件紧配 合或热压固定, 这样透镜先固定再封装, 在封装 LED芯片时, 透镜不会移 位, 有利于灌胶和固化工序, 特别是比现有的只通过靠硅胶等的粘结力来 固定透镜可靠得多。 当封装 LED芯片时, 先把芯片通过固晶方式固定在散 热基板芯片固定凸台上, 再焊接电连接导线, 然后再安装透镜, 在抽真空 环境中通过塑胶透镜定位件上的注胶口进行注胶, 因此, 塑胶透镜定位件 可实现封装时的透镜位置的精确安装, 以及通过抽真空及注胶后把透镜、 LED芯片、 电连接导线及其两个焊接端、散热基板及其芯片固定凸台固化在 一起, 特别是封装时这种结构可实现在抽真空环境下封装胶体固化时无气 泡产生, 对 LED芯片的发光质量起到重要的保证作用, 不会导致散发出来 的光线有光斑, 阴影等光学先天缺陷; 由于没有了气泡产生的 LED芯片发 光质量的光学先天缺陷, 更有利于 LED光源的光学二次优化开发, 塑胶透 镜定位件使透镜安装方便和实现透镜安装位置精确固定和固定可靠, 对光 效的聚集利于光学的二次优化, 最终实现光学效果好, 同时塑胶透镜定位 件和透镜又使注胶时硅胶的填充量少, 可降低成本。
为了解决上述技术问题, 本发明提供的第十七种技术方案是提供一种 成型 LED集成结构的定位透镜或成型透镜的塑胶件的注塑模, 优点如下: 1 )在注塑模内设有容置散热基板的容置腔, 注塑成型定位透镜或成型透镜 的塑胶件时定位机构将散热基板限位在注塑模内的设定位置, 注塑模在成 型定位透镜或成型透镜的塑胶件时, 定位透镜或成型透镜的塑胶件与散热 基板固定, 省去了定位透镜或成型透镜的塑胶件的安装工序, 且定位透镜 或成型透镜的塑胶件与散热基板在轴向、 径向方向均不存在间隙, 固定方 式非常可靠, 散热基板与定位透镜或成型透镜的塑胶件之间的位置关系可 以非常精确, 定位透镜或成型透镜的塑胶件的透镜位置关系非常精确, 从 而提高 LED集成结构的光学效果。 塑胶件本体型腔和抵挡部型腔置于分型 面的异侧, 便于产品的脱模。 芯片固定凸台避空孔与芯片固定凸台间设有 避空间隙, 可降低芯片固定凸台避空孔的加工精度, 确保将散热基板放置 在模具内时芯片固定凸台不与模具干涉。
2 )将塑胶件本体型腔、 凸台设置在定模部分, 便于进胶装置的浇口的设置 和注塑时塑胶的充填平衡。 将顶出机构设置在动模部分使模具结构简单。 由于在定模部分脱模方向的成型面大于在动模部分脱模方向的成型面, 因 此在制造模具时定模部分的塑胶件本体型腔和凸台沿脱模方向的成型面脱 模锥度要大, 动模部分的抵挡部型腔沿脱模方向的成型面无脱模锥度或者 为倒锥, 这样可确保动模部分和定模部分分型时产品留在动模一侧。
将塑胶件本体型腔、 凸台设置在定模部分, 便于进胶装置的浇口的设置和 注塑塑胶的充填平衡。 由于在定模部分脱模方向的成型面大于在动模部分 脱模方向的成型面, 动模部分和定模部分分型时产品会留在定模一侧, 将 顶出机构设置在定模一侧, 也就是采用倒装模, 便于产品的顶出, 且脱模 方向的模具成型面不需要特殊设计。
3 )在动模部分脱模方向的成型面大于在定模部分脱模方向的成型面, 动模 部分和定模部分分型时可确保产品会留在动模模一侧, 便于产品的顶出。 将顶出机构设置在动模一侧, 模具结构简单。
4)采用芯片固定凸台与定位孔定位, 结构简单。 对于散热基板上有很多个 芯片固定凸台的情况下, 只需设置两至四个与芯片固定凸台配合的定位孔, 其余设计为避空孔。
5 ) 散热凸筋避空孔为较规则的形状, 便于散热凸筋避空孔的加工。 散热凸 筋避空孔与散热凸筋间设有避空间隙, 可降低散热凸筋避空孔的加工精度, 确保将散热基板放置在模具内时散热凸筋不与模具干涉。
6 ) 定位轴可与散热基板的外周边、 或散热基板上的定位孔、 或散热基板上 的定位槽配合等。 采用定位轴定位散热基板, 结构简单。
由于 PCB板的面积小于或等于散热基板的面积, 或者是在散热基板上设有 凸缘, 采用定位槽与定位轴配合的方式一个定位轴可从两个方向定位。
7 ) 由于在一套模具内成型多个独立的塑胶环, 点浇口便于将从喷嘴内射出 的胶分流到各个独立的成型腔。
8 ) 进胶装置的浇口可为只与塑胶件本体型腔连通, 也可为只与连接筋型 腔连通, 也可包括同时包括与塑胶件本体型腔连通的进胶装置的浇口和与 连接筋型腔连通的进胶装置的浇口。 浇口一般为点浇口, 在塑胶环个数较 少的情况下, 也可使用直浇口, 这样可使模具结构简单。
9 )浇口一般为点浇口, 在定位透镜或成型透镜的塑胶件较小的情况下, 也 可使用直浇口, 这样可使模具结构简单。
采用热流道, 在注射成型定位透镜或成型透镜的塑胶件时, 不会产生 水口等废料, 减少塑料的用量, 且可提高定位透镜或成型透镜的塑胶件注 射成型质量。
附图说明
图 1是本发明实施例 1的主视图。
图 2是沿图 1的 A-A的剖视图。
图 3是本发明实施例 1的立体分解示意图。
图 4是本发明实施例 1从另一个方向投影的立体分解示意图。
图 5是本发明实施例 3的立体分解示意图。
图 6是本发明实施例 4的主视图。
图 7是沿图 6的 B-B的剖视图。
图 8是本发明实施例 4的立体分解示意图。
图 9是本发明实施例 5的立体分解示意图。
图 10是图 9的 I部放大图。
图 11是本发明实施例 6的立体分解示意图。
图 12是本发明实施例 7的立体分解示意图。
图 13是本发明实施例 8的立体分解示意图。
图 14是本发明实施例 9的塑胶透镜定位板的立体示意图。
图 15是本发明实施例 10的立体示意图。
图 16是本发明实施例 11的立体示意图。
图 17是本发明实施例 11从另一个方向投影的立体示意图。
图 18是本发明实施例 11的 LED集成结构的立体示意图。
图 19是本发明实施例 12的立体示意图。
图 20是本发明实施例 13的立体示意图。
图 21是本发明实施例 14的立体示意图。 图 22是本发明实施例 15的主视图。
图 23是沿图 22的 C-C的剖视图。
图 24是本发明实施例 15的立体分解示意图。
图 25是本发明实施例 17的立体分解示意图。
图 26是本发明实施例 18的立体分解示意图。
图 27是本发明实施例 19的立体分解示意图。
图 28是图 27的 II部放大图。
图 29是本发明实施例 20的立体分解示意图。
图 30是本发明实施例 21的立体分解示意图。
图 31是本发明实施例 22的立体分解示意图。
图 32是本发明实施例 23的塑胶透镜定位板的立体示意图。
图 33是本发明实施例 24的主视示意图。
图 34是本发明实施例 24的动模镶件、 定模镶件、 LED集成结构、 定位 构的立体分解示意图。
图 35是本发明实施例 24的动模镶件、 定模镶件、 LED集成结构、 定位 构从另一个方向投影的立体分解示意图。
图 36是图 34的 III部放大图。
图 37是本发明实施例 24的定位机构与 LED集成结构的立体示意图。 图 38是本发明实施例 25的右视示意图。
图 39是本发明实施例 25的动模镶件、 定模镶件、 LED集成结构、 定位 构的立体分解示意图。
图 40是本发明实施例 25的动模镶件、 定模镶件、 LED集成结构、 定位 构从另一个方向投影的立体分解示意图。
图 41是本发明实施例 26的动模镶件、 定模镶件、 LED集成结构、 定位 构的立体分解示意图。
图 42是本发明实施例 26的动模镶件、 定模镶件、 LED集成结构、 定位 构从另一个方向投影的立体分解示意图。
图 43是本发明实施例 27的动模镶件、 定模镶件、 LED集成结构、 定位 构的立体分解示意图。 图 44是本发明实施例 27的动模镶件、 定模镶件、 LED集成结构、 定位机 构从另一个方向投影的立体分解示意图。
图 45是本发明实施例 28的动模镶件、 定模镶件、 LED集成结构、 定位机 构的立体分解示意图。
图 46是本发明实施例 29的动模镶件、 定模镶件、 LED集成结构、 定位机 构的立体分解示意图。
实施例 1
如图 1至图 4所示, 一种 LED集成结构, 包括散热基板 1, PCB板 2、 LED芯片 3, 透镜 4, 透镜定位环 5, 电连接 LED芯片 3的电极的金线 6和 电连接金线 6的布图电路导电层 7,用来封装 LED芯片 3和金线 6的封装胶 体 8。 透镜定位环 5选用耐高温的 PPA塑料。
在透镜定位环 5上设有定位透镜 4和包覆封装胶体 8的第一通孔 23, 透镜定位环 5上延伸设有固定柱 9,在固定柱 9的端部通过将散热基板 1置 于成型透镜定位环 5的模具内在成型塑胶定位环时成型有抵挡部 10。 在透 镜定位环 5上设有注入封装胶体 8的注胶通道 11, 注胶通道 11的胶口 12 置于透镜定位环 5远离抵挡部一侧的端面上, 胶口 12和注胶通道 11与第 一通孔 23的侧壁连通。
散热基板 1 由高导热材质的薄板金属或金属合金冲压而成, 其材料可 以是不锈钢、 铜、 钨、 铝、 氮化铝、 铬等或其合金。 散热基板 1 包括一平 板状的底板 13,与散热基板 1一体成型的凸出底板 13的复数个芯片固定凸 台 14, 对应每个芯片固定凸台 14设有与固定柱 9配合的第二通孔 15。 芯 片固定凸台 14的横截面为圆形, 底板 13的横截面的面积大大的大于芯片 固定凸台 13的横截面的面积, 至少是芯片固定凸台 13的横截面的面积的 三倍或三倍以上。 在芯片固定凸台 14的顶部设有与芯片固定凸台 14同心 的置放 LED芯片 3的凹陷部 16,凹陷部 16的底面为放置 LED芯片 3的平面。 在散热基板 1背离芯片固定凸台 14的一侧设有置于芯片固定凸台 14内与 芯片固定凸台 14同心的散热阶梯通孔的大孔 17、 小孔 22。 在阶梯通孔的 大孔 17的周边背离芯片固定凸台 14一侧的散热基板 1上设有与散热基板 1 一体成型的散热凸筋 18, 在散热凸筋 18内设有隔热盲孔 19, 隔热盲孔 19 朝向芯片固定凸台 14的一侧与散热基板 1的底板 13朝向芯片固定凸台 14 一侧连通。 散热基板 1背离芯片固定凸台 14的一侧与散热气体直接接触。
布图电路导电层 7直接设置在 PCB板 2上, 布图电路导电层 7分布在 同一个平面上。 在 PCB板 2上对应每个芯片固定凸台 14设有与芯片固定凸 台 14配合的第四通孔 20和与固定柱 9配合的第三通孔 21, PCB板 2置于 散热基板 1设有芯片固定凸台 14的一侧并与散热基板 1直接接触, PCB板 2设有布图电路导电层 7的一侧背离接触散热基板 1的接触面。
散热基板 1的芯片固定凸台 14穿过 PCB板 2的第四通孔 20,透镜定位 环 5的固定柱 9穿过 PCB板 2上的第三通孔 21、散热基板 1的第二通孔 15, 通过固定柱 9的端部的抵挡部 10与 PCB板 2、 散热基板 1固定, 这样 PCB 板 2和散热基板 1与透镜定位环 5固定在一起。 芯片固定凸台 14置于对应 的透镜定位环 5的第一通孔 23内, 布图电路导电层 Ί伸入第一通孔 23的 内侧壁与芯片固定凸台 14外侧壁之间, LED芯片 3通过固晶工艺直接固定 在芯片固定凸台 14的端面上, 金线 6置于透镜定位环 5内, 金线 6—端与 LED芯片 3的电极电连接,金线 6的另一端与伸入透镜定位环 5内的布图电 路导电层 7电连接; 透镜 4安装在透镜定位环 5上与透镜定位环 5紧配合 固定。通过胶口 12和注胶通道 11注入的封装胶体 8进一步将透镜 4固定。
上述的 LED集成结构的制造方法, 工艺过程包括:
1 ) 在散热基板 1上通过冲压成型散热基板 1上的芯片固定凸台 14、 散 热阶梯孔的大孔 17、小孔 22、散热凸筋 18、散热凸筋 18内的隔热盲孔 19、 与透镜定位环 5的固定柱 9配合的第二通孔 15;
2 ) 在 PCB板 2上成型与透镜定位环 5的固定柱 9配合的第三通孔 21和 与芯片固定凸台 14配合的第四通孔 20 ;
3 ) 在 PCB板 2上成型布图电路导电层 7,布图电路导电层 7距第四通孔 中心的距离大于第四通孔 20侧壁到第四通孔 20中心的距离小于第一通孔 23的内侧壁到第一通孔 23中心的距离;
4 ) 将 PCB板 2、散热基板 1放置在成型透镜定位环 5的注塑模具的设定 位置, 散热基板 1上的芯片固定凸台 14穿过 PCB的第四通孔 20, 注塑成型 透镜定位环 5, 同时成型透镜定位环 5的固定柱 9和抵挡部 10、 胶口 12和 注胶通道 1 1 ; 在注塑成型透镜定位环 5时, 透镜定位环 5的固定柱 9依次 穿过 PCB板 2上的第三通孔 21、散热基板 1上的第二通孔 15并通过抵挡部 10将透镜定位环 5与 PCB板 2、 散热基板 1固定;
5 ) 通过固晶工艺将 LED芯片 3固定在芯片固定凸台 14的顶面上;
6 ) 焊与 LED芯片 3的电极电连接的金线 6, 金线 6与伸入第一通孔 23 的内侧壁与芯片固定凸台 14的外侧壁之间内的布图电路导电层 7电连接;
7 ) 将透镜 4通过紧配合方式安装在透镜定位环 5上;
8 ) 将透镜 4、 散热基板 1、 透镜定位环 5、 LED芯片 3、 金线 6、 PCB板 2置于特定环境中抽真空;
9 ) 于真空环境中通过胶口 12、 注胶通道 11向透镜 4内腔灌胶, 对 LED 芯片 3和金线 6, 通过封装胶体 8的固化进一步对透镜 4固定。
实施例 2
如图 1至图 4所示, 与实施例 1不同的是, LED集成结构的制造方法, 工艺过程包括:
1 ) 注塑成型透镜定位环 5, 同时成型从透镜定位环 5的一个端面上延伸设 有的固定柱 9、 胶口 12和注胶通道 1 1, 固定柱 9的长度大于散热基板 1和 PCB板 2的厚度之和;
2 )在散热基板 1上通过冲压成型散热基板 1上的芯片固定凸台 14、散热阶 梯通孔的大孔 17、 散热凸筋 18、 散热凸筋 18内的隔热盲孔 19、 与透镜定 位环 5的固定柱 9配合的第二通孔 15;
3 ) 激光切割成型散热阶梯通孔的大孔 17连通的散热阶梯通孔的小孔 22 ;
4 ) 在 PCB板 2上成型与固定柱 9配合的第三通孔 21和与芯片固定凸台 14 配合的第四通孔 20 ;
5 )在 PCB板 2上成型布图电路导电层 7, 布图电路导电层 7距第四通孔 20 中心的距离大于第四通孔 20侧壁到第四通孔 20中心的距离小于透镜定位 环 5的内侧壁到透镜定位环 5中心的距离;
6 )将散热基板 1上的芯片固定凸台 14穿过 PCB2的第四通孔 20使 PCB板 2 安装在散热基板 1上, 将透镜定位环 5的固定柱 9依次穿过 PCB板 2的第 三通孔 21、散热基板 1上的第二通孔 15并热熔固定柱 9的端部成型抵挡部 10, 通过抵挡部 10将透镜定位环 5与 PCB板 2、 散热基板 1固定;
7 ) 通过固晶工艺将 LED芯片 3固定在芯片固定凸台 14的顶面上;
8 ) 焊与 LED芯片 3电极电连接的金线 6, 金线 6与伸入透镜定位环 5内侧 壁与芯片固定凸台 14外侧壁之间的布图电路导电层 7电连接;
9 ) 将透镜 4通过热压固定的方式安装在透镜定位环 5上;
10 ) 将透镜 4、 散热基板 1、 透镜定位环 5、 PCB板 2、 LED芯片 3、 金线 6 置于特定环境中抽真空;
11)于真空环境中通过胶口 12、 注胶通道 11向透镜 4内腔灌胶, 对 LED芯 片 3和金线 6封装, 通过封装胶体 8的固化进一步对透镜 4固定。
实施例 3
如图 5所示, 与实施例 1不同的是, 一种 LED集成结构, 包括散热基 板 50, LED芯片 51, 透镜 52, 透镜定位环 53, 电连接 LED芯片 51电极的 导线 54和电连接导线 54的布图电路导电层 55,用来封装 LED芯片 51和导 线 54的封装胶体 56。 透镜定位环 53选用耐高温的 PP0+GF塑料, 透镜定 位环的个数为六个。 在散热基板 50上不设有散热凸筋和隔热盲孔。
散热基板 50 由高导热材质的陶瓷等压铸而成。 布图电路导电层 55直 接设置在散热基板 50上, 布图电路导电层 55分布在同一个平面上。
透镜定位环 53的固定柱 57穿过散热基板 50通过固定柱 57和固定柱 57端部的抵挡部 58与散热基板 50固定, 这样散热基板 50与透镜定位环 53固定在一起。
上述的 LED集成结构的制造方法, 工艺过程包括:
1 )烧结成型陶瓷散热基板 50,同时成型散热基板 50上的芯片固定凸台 62、 散热阶梯通孔的大孔、 小孔、 与透镜定位环 53的固定柱 57配合的第二通 孔 63, 芯片固定凸台 62顶部固定 LED芯片 51的凹陷部 64;
2 )在散热基板 50上绝缘成型布图电路导电层 55,布图电路导电层 55距芯 片固定凸台 62中心的距离大于芯片固定凸台 62外侧壁到芯片固定凸台 62 中心的距离小于透镜定位环 53的内侧壁到透镜定位环 53中心的距离;
3 )将散热基板 50放置在成型透镜定位环 53注塑模具内的设定位置, 注塑 成型透镜定位环 53, 同时成型透镜定位环 53的固定柱 57和抵挡部 58、 胶 口 60和注胶通道 59、 定位透镜和包覆封装胶体的第一通孔 61 ; 在注塑成 型透镜定位环 53时, 透镜定位环 53的固定柱 57穿过散热基板 50上的第 二通孔 63并通过抵挡部 58将透镜定位环 53与散热基板 50固定;
4)通过固晶工艺将 LED芯片 51固定在芯片固定凸台 62的顶面的凹陷部 64 上;
5 ) 焊与 LED芯片 51电极电连接的导线 54, 导线 54与伸入第一通孔 61内 侧壁与芯片固定凸台 62外侧壁之间内的布图电路导电层 55电连接;
6 ) 将透镜 52通过热压固定的方式安装在透镜定位环 53上;
7 )将透镜 52、 散热基板 50、 透镜定位环 53、 LED芯片 51、 导线 54置于特 定环境中抽真空;
8 )于真空环境中通过胶口 60、注胶通道 59向透镜 52内腔灌胶, 对 LED芯 片 51和导线 54封装, 通过封装胶体 56的固化进一步对透镜 52固定。 实施例 4
如图 6至图 8所示, 与实施例 3不同的是, 散热基板 100由高导热材 质的薄板金属或金属合金冲压而成, 其材料可以是不锈钢、 铜、 钨、 铝、 氮化铝、铬等或其合金,在散热基板 100表面设有一层碳化硅涂层 (未示出), 透镜定位环的个数为三个。 在散热基板 100背离芯片固定凸台 101的一侧 设有置于芯片固定凸台 101内与芯片固定凸台 101同心的散热盲孔 102。
在透镜定位环 106上延伸设有固定柱 104,在固定柱 104的端部通过热 熔的方式成型有抵挡部 105。
透镜定位环 106的固定柱 104穿过散热基板 100通过固定柱 104端部 热熔抵挡部与散热基板 100固定, 这样散热基板 100与透镜定位环 106固 定在一起。
上述的 LED集成结构的制造方法, 工艺过程包括:
1 ) 注塑成型透镜定位环 106,同时成型定位透镜 113或包覆封装胶体 114 的第一通孔 103、 从透镜定位环 106的一个端面上延伸设有的固定柱 104、 胶口 108和注胶通道 109, 固定柱 104的长度大于散热基板 100的厚度; 2 ) 冲压成型散热基板 100上的芯片固定凸台 101、 芯片固定凸台 101顶 部的凹陷部 111、 散热盲孔 102、透镜定位环固定柱 104的第二通孔 115、 ;
3 ) 在散热基板 100上绝缘成型布图电路导电层 107,布图电路导电层 107 距芯片固定凸台 101中心的距离大于芯片固定凸台 101外侧壁到芯片固定 凸台 101中心的距离小于第一通孔 103的内侧壁到第一通孔 103中心的距
4) 将透镜定位环 106的固定柱 104穿过散热基板 100上的与透镜定位环 固定柱 104配合的第二通孔 115,通过热熔透镜定位环 106的固定柱 104端 部成型抵挡部 105使透镜定位环 106与散热基板 100固定;
5 ) 通过固晶工艺将 LED芯片 110固定在芯片固定凸台 101顶部的凹陷部 111的底面上;
6 ) 焊与 LED芯片 110电极电连接的金线 112, 金线 112与伸入透镜定位 环 106内侧壁与芯片固定凸台 101外侧壁之间的布图电路导电层 107电连 接;
7 ) 将透镜 113通过热压固定的方式安装在透镜定位环 106上;
8 ) 将透镜 113、散热基板 100、透镜定位环 106、 LED芯片 110、金线 112 置于特定环境中抽真空;
9 ) 于真空环境中通过胶口 108和注胶通道 109向透镜 113内腔灌封装胶 体 114, 对 LED芯片 110和金线 112封装, 通过封装胶体 114的固化进一步 对透镜 113固定。
实施例 5
如图 9、 图 10所示, 与实施例 1不同的是, 塑胶透镜定位环 201通过 连接筋 202连结为一个整体。 在芯片固定凸台 203的顶部凹陷部 204内通 过固晶工艺固定有 R色 LED芯片 208、 G色 LED芯片 209、 B色 LED芯片 210。 当散热基板 200、 PCB板 223和塑胶透镜定位环 201固定在一起时, 芯片固 定凸台 203置于对应塑胶透镜定位环 201的第一通孔 224内, 布图电路导 电层 212、 214、 216、 218、 220、 222伸入第一通孔 224的内侧壁与芯片固 定凸台 203的外侧壁之间并彼此独立, 金线 211、 213、 215、 217、 219、 221 置于第一通孔 224内。 R色的 LED芯片 208的正极通过金线 211与伸入第一 通孔 224的内侧壁与芯片固定凸台 203的外侧壁之间的第一布图电路导电 层 212电连接, R色的 LED芯片 208的负极通过金线 213与伸入第一通孔 224的内侧壁与芯片固定凸台 203的外侧壁之间的布图电路导电层 214电连 接。 G色的 LED芯片 209的正极通过金线 215与伸入第一通孔 224的内侧壁 与芯片固定凸台 203的外侧壁之间的布图电路导电层 216 电连接, G色的 LED芯片 209的负极通过金线 217与伸入第一通孔 224的内侧壁与芯片固定 凸台 203的外侧壁之间的布图电路导电层 218电连接。 B色的 LED芯片 210 的正极通过金线 219与伸入第一通孔 224的内侧壁与芯片固定凸台 203的 外侧壁之间的布图电路导电层 220电连接, B色的 LED芯片 210的负极通过 金线 221与伸入第一通孔 224的内侧壁与芯片固定凸台 203的外侧壁之间 的布图电路导电层 222电连接。
实施例 6
如图 11所示, 与实施例 5不同的是, 塑胶透镜定位件为透镜定位塑胶 板 250, 透镜定位塑胶板 250的个数为一个。在透镜定位塑胶板 250上设有 六个与散热基板 251的芯片固定凸台 252—一配合的用来定位透镜 254和 包覆封装胶体 258的第一通孔 253。 透镜 254通过紧配合固定在第一通孔 253内。在透镜定位塑胶板 250的端面上延伸设有固定柱 255,在固定柱 255 的端部通过将散热基板 251、 PCB板 256置于成型透镜定位塑胶板 250的模 具内在成型透镜定位塑胶板 250时成型有抵挡部 257。 在透镜定位塑胶板 250上设有注入封装胶体 258的注胶通道 259, 注胶通道 259的胶口 260置 于透镜定位塑胶板 250远离抵挡部一侧的端面上,胶口 260和注胶通道 259 与第一通孔 253的侧壁连通。
实施例 7
如图 12所示, 与实施例 5不同的是。 在塑胶透镜定位环 280间还另外 连接有连接筋 281、 282、 283、 284。 在塑胶透镜定位环 280的端面上设有 定位柱 291,在散热基板 285上设有与定位柱 291配合的定位孔 286,在 PCB 板 287上设有与定位柱 291配合的定位孔 288, PCB板 287、 散热基板 285 通过定位柱 291精确定位。 PCB板 287、散热基板 285、塑胶透镜定位件 289 通过螺钉 290 固定在一起, 而不是通过固定柱和抵挡部固定在一起。 在塑 胶透镜定位件 289上的固定孔 292置于连接筋和塑胶透镜定位环 280的连 接处。
实施例 8
如图 13所示, 与实施例 6不同的是, 在散热基板 300上凸设有定位柱 301, 在塑胶透镜定位件 303设有与定位柱 301配合的定位孔 304, 在 PCB 板 305上设有与定位柱 301配合的定位孔 306, 塑胶透镜定位件 303、 PCB 板 305通过定位柱 301与散热基板 300精确定位。 PCB板 305、散热基板 300、 塑胶透镜定位件 303通过螺钉 302固定在一起, 而不是通过固定柱和抵挡 部将固定在一起。
实施例 9
如图 14所示, 与实施例 6不同的是, 在塑胶透镜定位板 310上的第一 通孔 311的个数为 24个。固定柱 312均匀分布在每四个相邻的第一通孔 311 的中心和第一通孔 311的外侧。
实施例 10
如图 15所示, 一种 LED灯, 包括灯盖 321和 LED集成结构。灯盖 321 和 LED集成结构的散热基板 322固定在一起, 散热基板 322直接与外部的 空气直接接触。 LED集成结构与实施例 4同。
实施例 11
如图 16至图 18所示, 一种 LED点阵显示屏, 包括顶盖 331, 透明板 332和 LED集成结构。 透明板 332与顶盖 331安装在一起、 顶盖 331与 LED 集成结构的散热基板 333安装在一起。与实施例 6不同的是, LED集成结构 还包括成像控制器 334,每个芯片的布图电路导电层与成像控制器 334单独 电连接。
实施例 12
如图 19所示, 一种直下式背光装置, 包括安装在一起的导光板 340 和 LED背光源模组 341, LED背光源模组 341包括 LED集成结构, LED集成 结构与实施 5相同。
实施例 13
如图 20所示, 一种侧光式背光装置, 包括安装在一起的导光板 350 和 LED背光源模组 351, LED背光源模组 351包括 LED集成结构, LED集成 结构与实施 5相同。
实施例 14
如图 21所示, 一种投影装置, 包括 LED光源 360、 成像系统 361和投 影成像屏幕 362, LED光源 360包括 LED集成结构, LED集成结构与实施 5 相同。
实施例 15
如图 22至图 24所示, 与实施例 1不同的是, 一种 LED集成结构, 包 括散热基板 401, PCB板 402、 LED芯片 403, 透镜 404, 塑胶透镜成型环 405, 电连接 LED芯片 403的电极的金线 406和电连接金线 406的布图电 路导电层 407。
第一通孔 408为成型透镜 404的锥形孔。 通过向成型透镜 404的模具 灌胶成型透镜 404并对 LED芯片 403和金线 406封装, 胶固化透镜 404与 透镜成型环 405、 LED芯片 403、金线 406和散热基板 401的芯片固定凸台 414、 PCB板 402固定。 透镜 404的侧壁由第一通孔 408成型, 为锥形, 透 镜 404的顶部由成形透镜 404的模具成型, 为弧形。
上述的 LED集成结构的制造方法, 工艺过程包括:
1 ) 在散热基板 401上通过冲压成型散热基板 401上的芯片固定凸台 414、 散热阶梯孔的大孔 417、 小孔 422、 散热凸筋 418、 散热凸筋 418内的隔热 盲孔 419、 与透镜成型环 405的固定柱 409配合的第二通孔 415、 凸台顶部 的凹陷部 416;
2 ) 在 PCB板 402上成型与透镜成型环 405的固定柱 409配合的第三通孔 421和与芯片固定凸台 414配合的第四通孔 420;
3 ) 在 PCB板 402上成型布图电路导电层 407, 布图电路导电层 407距第 四通孔 420中心的距离大于凸台第四通孔 420侧壁到第四通孔 420中心的 距离小于透镜成型环 405的内侧壁到透镜成型环 405中心的距离;
4) 将 PCB板 402、 散热基板 401放置在成型透镜成型环 405的塑胶模具 的设定位置, 散热基板 401上的芯片固定凸台 414穿过 PCB板 402的凸台 第四通孔 420, 注塑成型透镜成型环 405, 同时成型透镜成型环 405的固定 柱 409和抵挡部 410; 在注塑成型透镜成型环 405时, 透镜成型环 405的固 定柱 409依次穿过 PCB板 402上的第三通孔 421、散热基板 401上的第二通 孔 415并通过抵挡部 410将透镜成型环 405与 PCB板 402、散热基板 401固 定;
5 ) 通过固晶工艺将 LED芯片 403固定在芯片固定凸台 414的顶面的凹陷 部 416的底面上;
6 ) 焊与 LED芯片 403的电极电连接的金线 406, 金线 406与伸入透镜成 型环 405内侧壁与芯片固定凸台 414外侧壁之间内的布图电路导电层 407 电连接;
7 ) 通过成型透镜 404的模具灌胶成型透镜 404并对 LED芯片 403和金线 406封装, 胶固化透镜 404与透镜成型环 405、 LED芯片 403、 金线 406和 散热基板 401的芯片固定凸台 414、 PCB板 402固定。
实施例 16
如图 22至 24所示, 与实施例 15不同的是, LED集成结构的制造方法, 工艺过程包括:
1 ) 注塑成型透镜成型环 405, 同时成型从透镜成型环 405的一个端面上延 伸设有的固定柱 409,固定柱 409的长度大于散热基板 401和 PCB板 402的 厚度之和;
2 ) 在散热基板 401上通过冲压成型散热基板 401上的芯片固定凸台 414、 散热阶梯通孔的大孔 417、散热凸筋 418、散热凸筋 418内的隔热盲孔 419、 与透镜成型环 405的固定柱 409配合的第二通孔 415、 凸台顶部的凹陷部 416;
3 )激光切割成型散热阶梯通孔的大孔 417连通的散热阶梯通孔的小孔 422;
4 )在 PCB板 402上成型与固定柱 409配合的第三通孔 421和与芯片固定凸 台 414配合的第四通孔 420;
5 ) 在 PCB板 402上成型布图电路导电层 407, 布图电路导电层 407距凸台 第四通孔 420中心的距离大于凸台第四通孔 420侧壁到凸台第四通孔 420 中心的距离小于透镜成型环 405的内侧壁到透镜成型环 405中心的距离; 6 ) 将散热基板 401上的芯片固定凸台 414穿过 PCB板 402的第四通孔 420 使 PCB板 402安装在散热基板 401上, 将透镜成型环 405的固定柱 409依 次穿过 PCB板 402的第三通孔 421、散热基板 401上的第二通孔 415并热熔 固定柱 409的端部成型抵挡部 410, 通过抵挡部 410将透镜成型环 405与 PCB板 402、 散热基板 401固定;
7 )通过固晶工艺将 LED芯片 403固定在芯片固定凸台 414的顶面的凹陷部 416内;
8 ) 焊与 LED芯片 403电极电连接的金线 406, 金线 406与伸入透镜成型环 405内侧壁与芯片固定凸台 414外侧壁之间的布图电路导电层 407电连接; 9 )通过成型透镜 404的模具灌胶成型透镜 404并对 LED芯片 403和金线 406 封装, 胶固化透镜 404与透镜成型环 405、 LED芯片 403、 金线 406和散热 基板 401的芯片固定凸台 414、 PCB板 402固定。
实施例 17
如图 25所示, 与实施例 15不同的是, 一种 LED集成结构, 包括散热 基板 450, LED芯片 451, 透镜 452, 塑胶透镜成型环 453, 电连接 LED芯 片 451电极的导线 454和电连接导线 454的布图电路导电层 455。
透镜 452的顶部为平面。
散热基板 450由高导热材质的陶瓷等压铸而成。 散热基板 450包括一 平板状的底板 461,与散热基板 450—体成型的凸出底板 461的复数个凸台 462, 对应每个凸台 462设有与固定柱 457配合的第二通孔 463。 布图电路 导电层 455直接设置在散热基板 450上, 布图电路导电层 455分布在同一 个平面上。
上述的 LED集成结构的制造方法, 工艺过程包括:
1 ) 烧结成型陶瓷散热基板 450, 同时成型散热基板 450上的凸台 462、 散热阶梯通孔的大孔、 小孔、 与透镜成型环 453的固定柱 457配合的第二 通孔 463、 芯片固定凸台 462顶部固定 LED芯片的凹陷部 464;
2 ) 在散热基板 450上绝缘成型布图电路导电层 455,布图电路导电层 455 距凸台 462中心的距离大于凸台 462外侧壁到凸台 462中心的距离小于透 镜成型环 453的内侧壁到透镜成型环 453中心的距离; 3 ) 将散热基板 450放置在成型透镜成型环 453塑胶模具内的设定位置, 注塑成型透镜成型环 453, 同时成型透镜成型环 453的固定柱 457、 抵挡部 458和第一通孔 456; 在注塑成型透镜成型环 453时, 透镜成型环 453的固 定柱 457穿过散热基板 450上的第二通孔 463并通过抵挡部 458将透镜成 型环 453与散热基板 450固定;
4 ) 通过固晶工艺将 LED芯片 451固定在凸台 462的顶面上;
5 ) 焊与 LED芯片 451电极电连接的导线 454, 导线 454与伸入透镜成型 环 453内侧壁与凸台 462外侧壁之间内的布图电路导电层 455电连接;
6 ) 通过成型透镜 452的模具灌胶成型透镜 452并对 LED芯片 451和导线 454封装, 胶固化透镜 452与透镜成型环 453、 LED芯片 451、 导线 454和 散热基板 450固定。
实施例 18
如图 26所示, 与实施例 17不同的是, 散热基板 500由高导热材质的 薄板金属或金属合金冲压而成, 其材料可以是不锈钢、 铜、 钨、 铝、 氮化 铝、 铬等或其合金, 在散热基板 500表面设有一层碳化硅涂层 (未示出) , 透镜定位环的个数为六个。 在散热基板 500背离凸台 501 的一侧设有置于 凸台 501内与凸台 501同心的散热盲孔。 散热基板 500背离凸台 501的一 侧与散热气体直接接触。
透镜成型环 506的固定柱 504穿过散热基板 500通过固定柱 504端部 热熔抵挡部 505与散热基板 500固定,这样散热基板 500与透镜成型环 506 固定在一起。
透镜 503的顶部为球面。
上述的 LED集成结构的制造方法, 工艺过程包括:
1 ) 注塑成型透镜成型环 506, 同时从透镜成型环 506的一个端面上延伸 设有的固定柱 504, 固定柱 504的长度大于散热基板 500的厚度;
2 ) 冲压成型散热基板 500上的凸台 501、 散热盲孔、 透镜成型环固定柱 504的第二通孔 515; 3 ) 在散热基板 500上绝缘成型布图电路导电层 507,布图电路导电层 507 距凸台 501中心的距离大于凸台 501外侧壁到凸台 501中心的距离小于透 镜成型环 506的内侧壁到透镜成型环 506中心的距离;
4 ) 将透镜成型环 506的固定柱 504穿过散热基板 500上的与透镜成型环 固定柱 504配合的第二通孔 515,通过热熔透镜成型环 506的固定柱 504端 部成型抵挡部 505使透镜成型环 506与散热基板 500固定;
5 ) 通过固晶工艺将 LED芯片 510固定在凸台 501顶部的凹陷部 511的底 面上;
6 ) 焊与 LED芯片 510电极电连接的金线 512, 金线 512与伸入透镜成型 环 506内侧壁与凸台 501外侧壁之间的布图电路导电层 507电连接;
7 ) 通过成型透镜 503的模具灌胶成型透镜 503并对 LED芯片 510和金线 512封装, 胶固化透镜 503与透镜成型环 506、 LED芯片 510、 金线 512和 散热基板 500固定。
实施例 19
如图 27、 图 28所示, 与实施例 15不同的是, 塑胶透镜成型环 521通 过连接筋 522连结为一个整体的成形透镜的塑胶件 519。在凸台 523的顶部 凹腔 524内通过固晶工艺固定有 R色 LED芯片 528、 G色 LED芯片 529、 B色 LED芯片 530。当散热基板 520、 PCB板 543和成形透镜的塑胶件 519 固定在一起时, 凸台 523置于对应塑胶透镜成型环 521的第一通孔 544内, 布图电路导电层 532、 534、 536、 538、 540、 542伸入第一通孔 544的内侧 壁与凸台 523的外侧壁之间并彼此独立, 金线 531、 533、 535、 537、 539、 541置于第一通孔 544内。 R色的 LED芯片 528的正极通过金线 531与伸 入第一通孔 544的内侧壁与凸台 523的外侧壁之间的第一布图电路导电层 532电连接, R色的 LED芯片 528的负极通过金线 533与伸入第一通孔 544 的内侧壁与凸台 523的外侧壁之间的布图电路导电层 534电连接。 G色的 LED芯片 529的正极通过金线 535与伸入第一通孔 544的内侧壁与凸台 523 的外侧壁之间的布图电路导电层 536电连接, G色的 LED芯片 529的负极 通过金线 537与伸入第一通孔 544的内侧壁与凸台 523的外侧壁之间的布 图电路导电层 538电连接。 B色的 LED芯片 530的正极通过金线 539与伸 入第一通孔 544的内侧壁与凸台 523 的外侧壁之间的布图电路导电层 540 电连接, B色的 LED芯片 530的负极通过导线 541与伸入第一通孔 544的 内侧壁与凸台 523的外侧壁之间的布图电路导电层 542电连接。在透镜 525 上设有与成形透镜的塑胶件 519上的孔 526配合的加强固定柱 527。
实施例 20
如图 29所示, 与实施例 15不同的是, 透镜成型塑胶件为透镜成型塑 胶板 600, 透镜成型塑胶板 600的个数为一个。在透镜成型塑胶板 600上设 有与散热基板 601的凸台 602—一配合的用来成型透镜 604的第一通孔 603。 在透镜成型塑胶板 600的端面上延伸设有固定柱 605,在固定柱 605的端部 通过将散热基板 601、PCB板 606置于成型透镜成型塑胶板 600的模具内在 成型透镜成型塑胶板 600时成型有抵挡部 607。
实施例 21
如图 30所示, 与实施例 19不同的是。 在塑胶透镜定位环 620间还另 外连接有连接筋 621、 622、 623、 624。 在塑胶透镜定位环 620的端面上设 有定位柱 631, 在散热基板 625上设有与定位柱 631配合的定位孔 626, 在 PCB板 627上设有与定位柱 631配合的定位孔 628, PCB板 627、 散热基板 625通过定位柱 631精确定位。 PCB板 627、 散热基板 625、 塑胶透镜定位 件 629通过螺钉 630固定在一起, 而不是通过固定柱和抵挡部固定在一起。 在塑胶透镜定位件 629上的固定孔 632置于连接筋和塑胶透镜定位环 620 的连接处。
实施例 22
如图 31所示, 与实施例 20不同的是, 在散热基板 650上凸设有定位 柱 651,在塑胶透镜定位件 653设有与定位柱 651配合的定位孔 654,在 PCB 板 655上设有与定位柱 651配合的定位孔 656, 塑胶透镜定位件 653、 PCB 板 655通过定位柱 651与散热基板 650精确定位。 PCB板 655、散热基板 650、 塑胶透镜定位件 653通过螺钉 652固定在一起, 而不是通过固定柱和抵挡 部将固定在一起。
实施例 23
如图 32所示, 与实施例 21不同的是, 在塑胶透镜定位板 670上的第 一通孔 671的个数为 24个。 固定柱 672均匀分布在每四个相邻的第一通孔 671的中心和第一通孔 671的外侧。
实施例 24
如图 33至图 37所示, 一种成型 LED集成结构的定位透镜或成型透镜 的塑胶件的注塑模, LED集成结构, 包括散热基板 701、 PCB板 702、 布图 电路导电层 703、 定位透镜或成型透镜的塑胶件, 注塑模包括定模装置、 动 模装置、 进胶装置、 顶出装置和在注塑成型透镜定位环时将散热基板 701 和 PCB板 702放置在注塑模内的设定位置的定位装置。
定位透镜或成型透镜的塑胶件为透镜定位环 704,透镜定位环 704包括 独立的环状的塑胶件本体 705,在塑胶件本体 705的轴线方向设有定位透镜 的第一通孔 706, 在塑胶件本体 705的端面上延伸设有四个固定柱 707, 在 固定柱 707的端部通过将散热基板 701置于成型透镜定位环 704的模具内 在成型透镜定位环 704时成型有截面为圆形的抵挡部 708。 在塑胶件本体 705上设有注入封装胶体的注胶通道 709, 注胶通道 709的胶口 710置于塑 胶件本体 705远离抵挡部 708—侧的端面上, 胶口 710和注胶通道 709与 第一通孔 706的侧壁连通。
在散热基板 701 的底部凸设有与散热基板 701—体成型的复数个芯片 固定凸台 711、 与固定柱 707配合的第二通孔 712。 芯片固定凸台 711的横 截面为圆形, 在芯片固定凸台 711 的顶部设有与芯片固定凸台 711 同心的 置放 LED芯片的凹陷部 712, 凹陷部 712的底面为放置 LED芯片的平面。 在散热基板 701 背离芯片固定凸台 711 的一侧设有置于芯片固定凸台 711 内与芯片固定凸台 711同心的散热阶梯通孔的大孔 (未示出)、 小孔 713, LED芯片完全覆盖散热阶梯通孔的小孔 713。 在阶梯通孔大端的周边背离 芯片固定凸台 711—侧的散热基板 701上设有与散热基板 701—体成型的 散热凸筋 714, 在散热凸筋 714内设有隔热盲孔 715, 隔热盲孔 715朝向芯 片固定凸台 711的一侧与散热基板 701的底板朝向芯片固定凸台 711—侧 连通。 散热基板 701背离芯片固定凸台 711的一侧与散热气体直接接触。
布图电路导电层 703直接设置在 PCB板 702上, 布图电路导电层 703 分布在同一个平面上。 在 PCB板 702上设有与芯片固定凸台 711配合的第 四通孔 716和与固定柱 707配合的第三通孔 717,PCB板 702置于散热基板 701设有芯片固定凸台 711的一侧并与散热基板 701直接接触, PCB板 702 设有布图电路导电层 703的一侧背离接触散热基板 701的接触面。
散热基板 701的芯片固定凸台 711穿过 PCB板 702的第四通孔 716, 透镜定位环 704的固定柱 707穿过 PCB板 702上的第三通孔 717、 散热基 板 701的第二通孔 712通过固定柱 707端部的抵挡部 708与 PCB板 702、 散热基板 701固定。 芯片固定凸台 711置于对应的塑胶件本体 705的第一 通孔 706内, 布图电路导电层 703伸入第一通孔 706的内侧壁与芯片固定 凸台 711外侧壁之间。
定模装置包括固定在注塑机上的定模座板 718, 与定模座板 718固定的 定模垫板 719, 与定模垫板 719固定的定模板 720, 固定在定模板 720内的 定模镶件 721。
动模装置包括固定在注塑机上的动模座板 722, 与动模座板 722固定的 两个垫块 723, 与两个垫块 723固定的动模板 724, 固定在动模板 724内的 动模镶件 725。
进胶装置包括六个与流道 726连通的点浇口和喷嘴 727。 每个透镜定位 环 704对应两个点浇口, 点浇口与塑胶件本体型腔 732连通, 对称分布在 成型注胶通道 709的凸出部的两侧。 喷嘴 727固定在定模座板 718和定模 垫板 719内。
顶出装置包括顶针垫板 728、 顶针固定板 729、 顶针 730, 顶针 730固定 在顶针固定板 729上并伸入动模板 724与动模镶件 725内。 顶针垫板 728 和顶针固定板 729安装在两个垫块 723之间。
沿散热基板 701背离芯片固定凸台 711的底部平面分型,分型面为平面。 在定模镶件 721上设有容置散热基板 701和 PCB板 702的的矩形凹腔 731,矩形凹腔 731的深度等于散热基板 701和 PCB板 702的厚度之和,矩 形凹腔 731的侧壁与散热基板 701的侧壁之间设有避空间隙。
在矩形凹腔 731 的底部设有成型塑胶件本体 705 的塑胶件本体型腔 732、 凸设在塑胶件本体型腔 732内成型第一通孔 706的凸台 733、 成型布 图电路导电层 703的凹槽 734、 避空芯片固定凸台 733的避空凹圆孔 735, 在凸台 733的侧壁上设有成型注胶通道 709的凸出部 736。凸台 733和塑胶 件本体型腔 732形成环状的凹陷部。在动模镶件 725上设有成型抵挡部 708 的抵挡部型腔 737和避空散热凸筋 714的避空孔 738,抵挡部型腔 737为截 面为圆形的凹孔。 还设有将散热基板 701和 PCB板 702放置在容置腔设定 位置的定位机构。定位机构包括设置在 PCB板 702两个相对侧面上的 U形 定位槽 739,固定在定模镶件 721内的四个带两个阶梯的圆柱形阶梯定位轴 740和四个带三个阶梯的阶梯定位轴 741。在动模镶件 725上设有圆柱形阶 梯定位轴 740的小轴 742的避空孔 743和阶梯定位轴 741的小轴的避空孔 744。阶梯定位轴 741的中轴 745与 U形定位槽 739配合。开合模方向为水 平方向即 Y轴方向, 将散热基板 701和 PCB板 702放置在注塑模内, 圆柱 形阶梯定位轴 740的小轴 742对散热基板 701的两个 U形侧面在 Z轴方向 进行定位,阶梯定位轴 741的中轴 745对 PCB板 702从 Z轴方向和 X轴方 向两个方向进行定位, 阶梯定位轴 741的小轴 746对散热基板 701从 X轴 方向进行定位。 塑胶件本体型腔 732和凸台 733沿脱模方向即 Y轴方向的 成型面脱模锥度大, 动模部分的抵挡部型腔 737沿脱模方向即 Y轴方向的 成型面无脱模锥度。
实施例 25
如图 38至图 40所示, 与实施例 24不同的是, 顶出机构设置在定模装 置一侧, 为倒装模。
定模装置包括固定在注塑机上的定模座板 763, 与定模座板 763固定的 两个垫块 764, 与两个垫块 764固定的定模板 765, 固定在定模板 765内的 定模镶件 754。
动模装置包括固定在注塑机上的动模座板 766, 与动模座板 766固定的 动模板 767, 固定在动模板 767内的动模镶件 761。
顶出装置包括顶针垫板 768、 与顶针垫板 768固定的顶针固定板 769、 顶针 770,顶针 770固定在顶针固定板 769上并伸入定模板 765与定模镶件 754内与塑胶件本体型腔 755连通。顶针垫板 768和顶针固定板 769安装在 两个垫块 764之间。 顶针垫板 768通过连接导向块 771与动模板 767连接 在一起。 塑胶透镜定位件 751包括环状的塑胶件本体 752和将塑胶件本体 752 连接在一起的与塑胶件本体 752 —起注塑成型的连接筋 753。 塑胶件本体 752的个数为六个。
在定模镶件 754上还设有与塑胶件本体型腔 755连通的成型连接筋 753 的连接筋型腔 756。连接筋型腔 756与凸台 772和塑胶件本体型腔 755形成 环状的凹陷部连通。 在动模镶件 761上设有成型抵挡部 757的抵挡部型腔 758和避空散热凸筋 759的避空孔 760。 动模镶件 761和定模镶件 754沿开 合模方向的成型面的脱模锥度按常规设计。
浇口 762为直浇口, 个数为一个, 与连接筋型腔 756底部连通, 并置于 连接筋型腔 756的中间位置。
实施例 26
如图 41、 图 42所示, 与实施例 24不同的是, 定位透镜或成型透镜的 塑胶件为透镜成型塑胶件 780,透镜成型塑胶件 780包括板状的塑胶件本体 781, 在塑胶件本体 781上设有六个第一通孔 782, 在塑胶件本体 781的端 面上延伸设有固定柱 783, 在固定柱 783的端部设有抵挡部 784。 第一通孔 782为带有锥形孔的通孔,在每个第一通孔 782的外周还设有均匀分布的四 个圆柱形的透镜固定孔 785。在本实施例中的散热基板 794上不设有散热凸 筋和隔热盲孔。
沿 PCB板 786设有布图电路导电层 787的端面分型, 分型面为平面。 在定模镶件 788上还设有矩形的塑胶件本体型腔 789, 凸设在塑胶件本 体型腔 789的底部成型第一通孔 782的凸台 790,成型透镜固定孔 785的圆 柱形镶件轴 791, 在凸台 790内设有避空芯片固定凸台 792的避空孔 793。 圆柱形镶件轴 791固定在定模镶件 788上并凸设在塑胶件本体型腔 789的 底部。 塑胶件本体型腔 789的深度等于板状塑胶件本体 781 的厚度和布图 电路导电层 787的厚度之和。
在动模镶件 795上容置散热基板 794和 PCB板 786的矩形凹腔 796的底 部设有成型抵挡部 784的抵挡部型腔 797和四个与芯片固定凸台 792内的 散热盲孔 799配合的定位凸台 798。在注塑成型透镜成型塑胶件 780时,通 过散热基板 794上的散热盲孔 799与定位凸台 798配合, 将散热基板 794 和 PCB板 786置放在注塑模内的设定位置.
浇口 700为点浇口, 个数为两个, 与塑胶件本体型腔 789底部连通。 实施例 27
如图 43、 图 44所示, 与实施例 24不同的是, LED集成结构包括散热 基板 800、布图电路导电层 801和透镜成型塑胶件。布图电路导电层 801直 接设置在散热基板 800上。 透镜成型塑胶件包括环状的塑胶件本体 803和 将塑胶件本体 803连接在一起的与塑胶件本体 803—起注塑成型的连接筋 804.第一通孔 805为带有锥形孔的通孔,在每个第一通孔 805的外周还设有 均匀分布的四个圆柱形的透镜固定孔 806。透镜成型塑胶件通过固定柱和抵 挡部与散热基板 800固定在一起。 成型环的个数为 24个。 在本实施例中, 散热基板 800上不设有芯片固定凸台和置于凸台内的散热盲孔、 散热凸筋 和隔热盲孔, 芯片直接固定在散热基板 800 的平面上并置于第一通孔 805 内。
沿散热基板 800底板背离布图电路导电层 801的底部分型, 分型面为平 面。
在定模镶件 807上还设有与塑胶件本体型腔 808连通的成型连接筋 804 的连接筋型腔 809。连接筋型腔 809与凸台 810和塑胶件本体型腔 808形成 环状的凹陷部连通。 容置散热基板 800 的容置腔为设置在定模镶件上的矩 形凹腔 810,矩形凹腔 810的深度等于散热基板 800和 PCB板的厚度之和, 矩形凹腔 810的侧壁与散热基板 800的侧壁之间设有避空间隙。
在动模镶件 811上设有成型抵挡部的抵挡部型腔 812。
在本实施例的定模装置内还设有热流道系统 (未示出), 与流道 802连通的 浇口 (未示出) 的个数为六个, 与连接筋型腔 809底部连通。 每个浇口对 应一个热流道喷嘴 (未示出)。
实施例 28
如图 45所示, 与实施例 24不同的是, 在散热基板 830上设有与散热基 板 830—体成型的凸台 831, 凸台 831背离 PCB板, 在凸台 831内设有固 定芯片的盲孔 (未示出)。
在一套注塑模内同时放置四个散热基板 830。 沿散热基板底板朝向凸台 831的底部平面分型, 分型面为平面。
散热基板 830和 PCB板 833的容置腔 832为矩形凹腔, 设置在定模板 上, 容置腔与散热基板 830的侧壁间设有避空间隙。
在动模镶件上设有凸台 831的避空孔 (未示出)。
实施例 29
如图 46所示, 与实施例 26不同的是, 在动模镶件 850上还设有矩形 的塑胶件本体型腔 (未示出), 凸设在塑胶件本体型腔的底部成型第一通孔 的凸台, 成型透镜固定孔的圆柱形镶件轴, 在凸台内设有避空芯片固定凸 台的避空孔。 圆柱形镶件轴固定在定模镶件上并凸设在塑胶件本体型腔的 底部。
在定模镶件 851上容置散热基板 852和 PCB板 853的矩形凹腔 854的 底部设有成型抵挡部的抵挡部型腔 855和四个与芯片固定凸台 856内的散 热盲孔配合的定位凸台 857。与流道 858连通的浇口为点浇口,个数为 7个, 与抵挡部型腔 855底部连通。
本发明并不限于上述实施例。 本发明散热基板的形状可根据需要设计 各种形状, 甚至可设计为产品外观件, 本发明只是截取其中 LED芯片单元, 故本发明的模具分型面只是示意说明, 可以根据基板的形状来确定分型面。 本发明中的芯片固定凸台个数可从两个到很多个,本发明只是例举几种 LED 集成结构单元。 本发明中的布图电路导电层只是示意说明。 在一个芯片固 定凸台上, 可固定一个 LED芯片, 也可固定两个不同颜色的 LED芯片, 三 个1?、 G、 B不同颜色的芯片, 或者是三个以上的芯片。 当芯片个数不同时, 布图电路导电层的设计相应修改, 属现有技术, 本发明不再详细说明。 本 发明中的散热基板与散热液体直接接触, 只需散热基板不漏液体即可, 故 在本发明中不再用实施例说明。
在本发明中, 如果散热基板和 PCB板的尺寸精度高, 也可用散热基板和 PCB 板的外周定位。

Claims

权 利 要 求 书
1、 LED集成结构, 包括散热基板, LED芯片, 透镜, 塑胶透镜定位件, 电 连接 LED芯片电极的导线和电连接导线的布图电路导电层,用来封装 LED 芯片和导线的封装胶体, 其特征在于: 在散热基板上设有与散热基板一体 成型的二个或二个以上的芯片固定凸台, 散热基板的横截面的面积是一个 芯片固定凸台的横截面的面积的三倍或三倍以上, 在每个芯片固定凸台的 端面上均通过固晶工艺直接固定有所述的 LED芯片;在塑胶透镜定位件上、 设有与芯片固定凸台配合、 定位透镜和包覆封装胶体的第一通孔, 透镜、 芯片固定凸台、 第一通孔的个数一一对应; 在塑胶透镜定位件的端面上延 伸设有两个或两个以上的固定柱, 在散热基板上设有与固定柱配合的第二 通孔, 固定柱穿过散热基板的第二通孔, 在固定柱的端部通过热熔的方式 成型有抵挡部或将散热基板置于成型塑胶透镜定位件的模具内在成型塑胶 透镜定位件时成型有抵挡部, 塑胶透镜定位件通过固定柱和抵挡部与散热 基板固定; 芯片固定凸台置于对应的第一通孔内, 布图电路导电层伸入第 一通孔的内侧壁与芯片固定凸台的外侧壁之间, 导线置于第一通孔内, 导 线一端与 LED芯片的电极电连接, 导线的另一端与伸入第一通孔的内侧壁 与芯片固定凸台外侧壁之间的布图电路导电层电连接; 在塑胶透镜定位件 上对应第一通孔的位置设有注入封装胶体的注胶通道, 注胶通道的胶口置 于塑胶透镜定位件远离抵挡部一侧的端面上, 注胶通道与第一通孔的内侧 壁连通; 注入封装胶体前, 透镜与塑胶透镜定位件固定; 注入封装胶体后, 封装胶体进一步将透镜固定; 散热基板背离芯片固定凸台的一侧与散热气 体或散热液体直接接触。
2、 如权利要求 1所述的 LED集成结构, 其特征在于: 在散热基板背离芯 片固定凸台的一侧设有置于芯片固定凸台内的散热盲孔或散热阶梯通孔, LED芯片完全覆盖散热阶梯通孔的小孔。
3、 如权利要求 2所述的 LED集成结构, 其特征在于: 在散热盲孔的周边 或散热阶梯通孔大端的周边背离芯片固定凸台的一侧的散热基板上设有与 基板一体成型的散热凸筋, 在散热凸筋内设有隔热盲孔, 隔热盲孔朝向芯 片固定凸台的一侧与散热基板连通。
4、 如权利要求 1所述的 LED集成结构, 其特征在于: 芯片固定凸台为圆 柱形, 在芯片固定凸台的顶部设有置放 LED芯片的凹陷部, 凹陷部的底面 为放置 LED芯片的平面。
5、如权利要求 1所述的 LED集成结构,其特征在于:还包括 PCB板, PCB 板置于散热基板设有芯片固定凸台的一侧, 布图电路导电层直接设置在 PCB板上, 在 PCB板上设有避空芯片固定凸台的第四通孔和与固定柱配合 的第三通孔, 散热基板的芯片固定凸台穿过第四通孔, PCB 板设有布图电 路导电层的一侧背离接触散热基板的接触面, 固定柱依次穿过 PCB板上的 第三通孔和散热基板上的第二通孔, 再通过热熔的方式成型有抵挡部或将 散热基板、 PCB 板置于成型塑胶透镜定位件的模具内在成型塑胶透镜定位 件时成型有抵挡部。
6、 如权利要求 1所述的 LED集成结构, 其特征在于: 散热基板为非金属 导热绝缘板, 布图电路导电层直接设置在散热基板上并朝向塑胶透镜定位 件。
7、 如权利要求 1所述的 LED集成结构, 其特征在于: 所述的散热基板为 金属基板, 布图电路导电层直接设置在散热基板上并朝向塑胶透镜定位件, 在布图电路导电层与金属基板之间设有一绝缘层。
8、 如权利要求 1所述的 LED集成结构, 其特征在于: 在所述的散热基板表 面设有一层碳化硅涂层。
9、 如权利要求 1至 8任意一项所述的 LED集成结构, 其特征在于: 塑胶 透镜定位件为塑胶透镜定位环, 一个芯片固定凸台对应一个独立的塑胶透 镜定位环,布图电路导电层分布在同一个平面上; 透镜与对应的第一通孔紧 配合或通过压边机与塑胶透镜定位件热压固定。
10、 如权利要求 1至 8任意一项所述的 LED集成结构, 其特征在于: 塑胶 透镜定位件包括塑胶透镜定位环和将塑胶透镜定位环连接在一起的与塑胶 透镜定位环一起注塑成型的连接筋, 一个芯片固定凸台对应一个塑胶透镜 定位环,布图电路导电层分布在同一个平面上; 透镜与对应的第一通孔紧配 合或通过压边机与塑胶透镜定位件热压固定。
11、 如权利要求 1至 8任意一项所述的 LED集成结构, 其特征在于: 塑胶 透镜定位件的个数为一个, 为板状, 在塑胶透镜定位件上设有两个或两个 以上所述的第一通孔, 散热基板上的一个所述的芯片固定凸台对应塑胶透 镜定位件上的一个所述的第一通孔, 布图电路导电层分布在同一个平面上; 透镜与对应的第一通孔紧配合或通过压边机与塑胶透镜定位件热压固定。
12、 如权利要求 11所述的 LED集成结构, 其特征在于: 固定柱置于每四 个相邻的第一通孔的中心。
13、 一种具有如权利要求 1至 8任意一项所述的 LED集成结构的灯。
14、 一种具有如权利要求 1至 8任意一项所述的 LED集成结构的显示屏, 所述的显示屏为 LED点阵显示屏,在所述的 LED点阵显示屏内包括所述的 LED集成结构, 所述的 LED集成结构还包括成像控制器, 每个芯片的布图 电路导电层与成像控制器单独电连接。
15、一种具有如权利要求 1至 8任意一项所述的 LED集成结构的背光装置, 包括安装在一起的导光板和 LED背光源模组, LED背光源模组包括所述的 LED集成结构。
16、一种具有如权利要求 1至 8任意一项所述的 LED集成结构的投影装置, 包括 LED光源、 成像系统和投影成像屏幕, LED光源包括所述的 LED集 成结构。
17、 LED集成结构的制造方法, LED集成结构包括散热基板, LED芯片, 透 镜, 塑胶透镜定位件, 电连接 LED芯片电极的导线和电连接导线的布图电 路导电层, 用来封装 LED芯片和导线的封装胶体, 其特征在于在塑胶透镜 定位件上设有定位透镜和包覆封装胶体的第一通孔, 在塑胶透镜定位件的 端面上延伸设有固定柱, 工艺过程包括:
1 )在散热基板上成型二个或二个以上的芯片固定凸台, 与固定柱配合的第 二通孔, 散热基板的横截面的面积是一个芯片固定凸台的横截面的面积的 三倍或三倍以上;
2 )在散热基板上绝缘成型布图电路导电层, 布图电路导电层距芯片固定凸 台中心的距离大于芯片固定凸台外侧壁到芯片固定凸台中心的距离小于第 一通孔的内侧壁到第一通孔中心的距离; 3 )将散热基板放置在成型塑胶透镜定位件注塑模具内的设定位置, 注塑成 型塑胶透镜定位件, 同时成型塑胶透镜定位件的第一通孔、 固定柱和抵挡 部、 胶口和注胶通道; 在注塑成型塑胶透镜定位件时, 塑胶透镜定位件的 固定柱穿过散热基板上的第二通孔并通过抵挡部将塑胶透镜定位件与散热 基板固定, 芯片固定凸台置于对应的第一通孔内;
4) 通过固晶工艺将 LED芯片固定在芯片固定凸台的顶面上;
5 )焊与 LED芯片电极电连接的导线, 导线与伸入第一通孔内侧壁与芯片固 定凸台外侧壁之间的布图电路导电层电连接;
6) 将透镜固定在塑胶透镜定位件上;
7 ) 将透镜、 散热基板、 塑胶透镜定位件、 LED芯片、 导线置于特定环境中 抽真空;
8 ) 于真空环境中通过胶口、 注胶通道向透镜内腔灌胶, 对 LED芯片和导线 封装, 通过封装胶体的固化进一步对透镜固定。
18、 LED集成结构的制造方法, LED集成结构包括散热基板, PCB板, LED 芯片, 透镜, 塑胶透镜定位件, 电连接 LED芯片电极的导线和电连接导线 的布图电路导电层, 用来封装 LED芯片和导线的封装胶体, 其特征在于在 塑胶透镜定位件上设有定位透镜和包覆封装胶体的第一通孔, 在塑胶透镜 定位件的端面上延伸设有固定柱, 工艺过程包括:
1 )在散热基板上成型二个或二个以上的芯片固定凸台, 与固定柱配合的第 二通孔, 散热基板的横截面的面积是一个芯片固定凸台的横截面的面积的 三倍或三倍以上;
2 )在 PCB板上成型与固定柱配合的第三通孔和避空芯片固定凸台的第四通 孔;
3 )在 PCB板上成型布图电路导电层, 布图电路导电层距避空芯片固定凸台 的第四通孔中心的距离大于避空芯片固定凸台的第四通孔侧壁到避空芯片 固定凸台的第四通孔中心的距离小于第一通孔的内侧壁到第一通孔中心的 距离;
4)将 PCB板、散热基板放置在成型塑胶透镜定位件的注塑模具的设定位置, 散热基板上的芯片固定凸台穿过第四通孔, 注塑成型塑胶透镜定位件, 同 时成型塑胶透镜定位件的第一通孔、 固定柱和抵挡部、 胶口和注胶通道; 在注塑成型塑胶透镜定位件时, 塑胶透镜定位件的固定柱依次穿过 PCB板 的第三通孔、散热基板上的第二通孔并通过抵挡部将塑胶透镜定位件与 PCB 板、 散热基板固定, 芯片固定凸台置于对应的第一通孔内;
5 ) 通过固晶工艺将 LED芯片固定在芯片固定凸台的顶面上;
6 )焊与 LED芯片电极电连接的导线, 导线与伸入第一通孔内侧壁与芯片固 定凸台外侧壁之间的布图电路导电层电连接;
7 ) 将透镜固定在塑胶透镜定位件上;
8 ) 将透镜、 散热基板、 塑胶透镜定位件、 LED芯片、 导线、 PCB板置于特 定环境中抽真空;
9) 于真空环境中通过胶口、 注胶通道向透镜内腔灌胶, 对 LED芯片和导线 封装, 通过封装胶体的固化进一步对透镜固定。
19、 LED集成结构的制造方法, LED集成结构包括散热基板, LED芯片, 透 镜, 塑胶透镜定位件, 电连接 LED芯片电极的导线和电连接导线的布图电 路导电层, 用来封装 LED芯片和导线的封装胶体, 其特征在于在塑胶透镜 定位件上设有定位透镜和包覆封装胶体的第一通孔, 在塑胶透镜定位件的 端面上延伸设有固定柱, 工艺过程包括:
1 )注塑成型塑胶透镜定位件, 同时成型第一通孔、 固定柱、 胶口和注胶通 道, 固定柱的长度大于散热基板的厚度;
2 )在散热基板上成型二个或二个以上的芯片固定凸台, 与固定柱配合的第 二通孔, 散热基板的横截面的面积是一个芯片固定凸台的横截面的面积的 三倍或三倍以上;
3 )在散热基板上绝缘成型布图电路导电层, 布图电路导电层距芯片固定凸 台中心的距离大于芯片固定凸台外侧壁到芯片固定凸台中心的距离小于第 一通孔的内侧壁到第一通孔中心的距离;
4)将塑胶透镜定位件的固定柱穿过散热基板上的第二通孔并热熔固定柱端 部成型抵挡部, 通过抵挡部将塑胶透镜定位件与散热基板固定;
5 ) 通过固晶工艺将 LED芯片固定在芯片固定凸台的顶面上;
6 )焊与 LED芯片电极电连接的导线, 导线与伸入第一通孔侧壁与芯片固定 凸台侧壁之间的布图电路导电层电连接;
7 ) 将透镜固定在塑胶透镜定位件上;
8 ) 将透镜、 散热基板、 塑胶透镜定位件、 LED芯片、 导线置于特定环境中 抽真空;
9 ) 于真空环境中通过胶口、 注胶通道向透镜内腔灌胶, 对 LED芯片和导线 封装, 通过封装胶体的固化进一步对透镜固定。
20、 LED集成结构的制造方法, LED集成结构包括散热基板、 PCB板, LED 芯片, 透镜, 塑胶透镜定位件, 电连接 LED芯片电极的导线和电连接导线 的布图电路导电层, 用来封装 LED芯片和导线的封装胶体, 其特征在于在 塑胶透镜定位件上设有定位透镜和包覆封装胶体的第一通孔, 在塑胶透镜 定位件的端面上延伸设有固定柱, 工艺过程包括:
1 )注塑成型塑胶透镜定位件, 同时成型第一通孔、 固定柱、 胶口和注胶通 道, 固定柱的长度大于散热基板和 PCB板的厚度之和;
2 )在散热基板上成型二个或二个以上的芯片固定凸台, 与固定柱配合的第 二通孔, 散热基板的横截面的面积是一个芯片固定凸台的横截面的面积的 三倍或三倍以上;
3 )在 PCB板上成型与固定柱配合的第三通孔和避空芯片固定凸台的第四通 孔;
4 )在 PCB板上成型布图电路导电层, 布图电路导电层距第四通孔中心的距 离大于第四通孔侧壁到第四通孔中心的距离小于第一通孔的侧壁到第一通 孔中心的距离;
5 )将散热基板上的芯片固定凸台穿过第四通孔使 PCB板安装在散热基板上, 同时塑胶透镜定位件的固定柱依次穿过 PCB板上的第三通孔、 散热基板上 的第二通孔并热熔固定柱端部成型抵挡部, 通过抵挡部将塑胶透镜定位件 与 PCB板、 散热基板固定;
6 ) 通过固晶工艺将 LED芯片固定在芯片固定凸台的顶面上;
7 )焊与 LED芯片电极电连接的导线, 导线与伸入第一通孔侧壁与芯片固定 凸台外侧壁之间的布图电路导电层电连接;
8 ) 将透镜固定在塑胶透镜定位件上; 9 ) 将透镜、 散热基板、 塑胶透镜定位件、 PCB板、 LED芯片、 导线置于特 定环境中抽真空;
10 ) 于真空环境中通过胶口、 注胶通道向透镜内腔灌胶, 对 LED芯片和导 线封装, 通过封装胶体的固化进一步对透镜固定。
21、 LED集成结构, 包括散热基板, LED芯片, 透镜, 电连接 LED芯片电 极的导线和电连接导线的布图电路导电层, 其特征在于: 还包括透镜成型 塑胶件; 在散热基板上设有与散热基板一体成型的二个或二个以上的芯片 固定凸台, 散热基板的横截面的面积是一个芯片固定凸台的横截面的面积 的三倍或三倍以上, 在每个芯片固定凸台的端面上均通过固晶工艺直接固 定有所述的 LED芯片; 在透镜成型塑胶件上、 设有与芯片固定凸台配合、 成型透镜的第一通孔, 透镜、 芯片固定凸台、 第一通孔的个数一一对应; 在透镜成型塑胶件的端面上延伸设有两个或两个以上固定柱, 在散热基板 上设有与固定柱配合的第二通孔, 固定柱穿过散热基板上的第二通孔, 在 固定柱的端部通过热熔的方式成型有抵挡部或将散热基板置于成型透镜成 型塑胶件的模具内在成型透镜成型塑胶件时成型有抵挡部; 透镜成型塑胶 件通过固定柱和抵挡部与散热基板固定; 芯片固定凸台置于对应的透镜成 型塑胶件内, 布图电路导电层伸入透镜成型塑胶件的内侧壁与芯片固定凸 台外侧壁之间, 导线置于透镜成型塑胶件内, 导线一端与 LED芯片的电极 电连接, 导线的另一端与伸入透镜成型塑胶件的内侧壁与芯片固定凸台外 侧壁之间的布图电路导电层电连接; 透镜为封装 LED芯片和导线的透明封 装胶体; 散热基板背离芯片固定凸台的一侧与散热气体或散热液体直接接 触。
22、 如权利要求 20所述的 LED集成结构, 其特征在于: 散热基板背离芯 片固定凸台的一侧与散热气体直接接触; 在散热基板背离芯片固定凸台的 一侧设有置于芯片固定凸台内的利于芯片散热的散热盲孔或散热阶梯通 孔; 芯片固定凸台为圆柱形, 在芯片固定凸台的顶部设有置放 LED芯片的 凹陷部, 凹陷部的底面为放置 LED芯片的平面。
23、 如权利要求 21所述的 LED集成结构, 其特征在于: 在散热盲孔的周 边或散热阶梯通孔大端的周边背离芯片固定凸台的一侧的散热基板上设有 与基板一体成型的散热凸筋, 在散热凸筋内设有隔热盲孔, 隔热盲孔朝向 芯片固定凸台的一侧与散热基板的底板朝向芯片固定凸台一侧连通。
24、 如权利要求 20所述的 LED集成结构, 其特征在于: 还包括 PCB板,
PCB 板置于散热基板设有芯片固定凸台的一侧, 布图电路导电层直接设置 在 PCB板上,在 PCB板上设有避空芯片固定凸台的第四通孔和与固定柱配 合的第三通孔, 散热基板的芯片固定凸台穿过第四通孔, PCB 板设有布图 电路导电层的一侧背离接触散热基板的接触面, 固定柱依次穿过 PCB板上 的第三通孔和散热基板上的第二通孔, 再通过热熔的方式成型有抵挡部或 将散热基板、 PCB 板置于成型塑胶透镜定位件的模具内在成型塑胶透镜定 位件时成型有抵挡部。
25、 如权利要求 20所述的 LED集成结构, 其特征在于: 布图电路导电层 直接设置在散热基板上。
26、 如权利要求 20所述的 LED集成结构, 其特征在于: 第一通孔的侧壁 包括上大下小的锥形, 透镜上表面为平面。
点胶后在重力和第一通孔侧壁的作用下成为相对平面。
27、 如权利要求 20至 26任意一项所述的 LED集成结构, 其特征在于: 透 镜成型塑胶件为透镜成型塑胶环, 一个芯片固定凸台对应一个独立的透镜 成型塑胶环, 布图电路导电层分布在同一个平面上。
28、 如权利要求 20至 26任意一项所述的 LED集成结构, 其特征在于: 透 镜成型塑胶件包括透镜成型塑胶环和将透镜成型塑胶环连接在一起的与透 镜成型塑胶环一起注塑成型的连接筋, 一个芯片固定凸台对应一个透镜成 型塑胶环, 布图电路导电层分布在同一个平面上。
29、 如权利要求 20至 26任意一项所述的 LED集成结构, 其特征在于: 透 镜成型塑胶件的个数为一个, 为板状, 在透镜成型塑胶件上设有两个或两 个以上所述的第一通孔, 散热基板上的一个所述的芯片固定凸台对应透镜 成型塑胶件上的一个所述的第一通孔, 布图电路导电层分布在同一个平面 上。
30、 如权利要求 20所述的 LED集成结构, 其特征在于: 固定柱置于每四 个相邻的第一通孔的中心。
31、 LED集成结构的制造方法, LED集成结构包括散热基板, LED芯片, 透 镜, 透镜成型塑胶件, 电连接 LED芯片电极的导线和电连接导线的布图电 路导电层, 其特征在于在透镜成型塑胶件上设有成形透镜的第一通孔, 在 透镜成型塑胶件的端面上延伸设有固定柱, 工艺过程包括:
1 )在散热基板上成型二个或二个以上的芯片固定凸台, 与固定柱配合的第 二通孔, 散热基板的横截面的面积是一个芯片固定凸台的横截面的面积的 三倍或三倍以上;
2 )在散热基板上绝缘成型布图电路导电层, 布图电路导电层距芯片固定凸 台中心的距离大于芯片固定凸台外侧壁到芯片固定凸台中心的距离小于第 一通孔的内侧壁到第一通孔中心的距离;
3 )将散热基板放置在成型透镜成型塑胶件注塑模具内的设定位置, 注塑成 型透镜成型塑胶件; 同时成型透镜成型塑胶件的第一通孔、 固定柱和抵挡 部; 在注塑成型透镜成型塑胶件时, 透镜成型塑胶件的固定柱穿过散热基 板上的第二通孔并通过抵挡部将透镜成型塑胶件与散热基板固定, 芯片固 定凸台置于对应的第一通孔内;
4 ) 通过固晶工艺将 LED芯片固定在芯片固定凸台的顶面上;
5 )焊与 LED芯片电极电连接的导线, 导线与伸入第一通孔侧壁与芯片固定 凸台侧壁之间的布图电路导电层电连接;
6 )通过成型透镜的模具灌胶成型透镜并对 LED芯片和导线封装, 胶固化透 镜与透镜成型塑胶件、 LED芯片、 导线和散热基板固定。
32、 LED集成结构的制造方法, LED集成结构包括散热基板, PCB板, LED 芯片, 透镜, 透镜成型塑胶件, 电连接 LED芯片电极的导线和电连接导线 的布图电路导电层, 其特征在于在透镜成型塑胶件上设有成形透镜的第一 通孔, 在透镜成型塑胶件上的端面上延伸设有固定柱, 工艺过程包括:
1 )在散热基板上成型二个或二个以上的芯片固定凸台, 与固定柱配合的第 二通孔, 散热基板的横截面的面积是一个芯片固定凸台的横截面的面积的 三倍或三倍以上;
2 )在 PCB板上成型与固定柱配合的第三通孔和避空芯片固定凸台的第四通 孔; 3 )在 PCB板上成型布图电路导电层, 布图电路导电层距第四通孔中心的距 离大于第四通孔侧壁到第四通孔中心的距离小于第一通孔的侧壁到第一通 孔中心的距离;
4 )将 PCB板、散热基板放置在成型透镜成型塑胶件的注塑模具的设定位置, 散热基板上的芯片固定凸台穿过 PCB 的第四通孔; 注塑成型透镜成型塑胶 件, 同时成型透镜成型塑胶件的第一通孔、 固定柱和抵挡部; 在注塑成型 透镜成型塑胶件时, 透镜成型塑胶件的固定柱依次穿过 PCB板上的第三通 孔、散热基板上的第二通孔并通过固定柱和抵挡部将透镜成型塑胶件与 PCB 板、 散热基板固定, 芯片固定凸台置于对应的第一通孔内;
5 ) 通过固晶工艺将 LED芯片固定在芯片固定凸台的顶面上;
6 )焊与 LED芯片电极电连接的导线, 导线与伸入第一通孔侧壁与芯片固定 凸台侧壁之间的布图电路导电层电连接;
7 )通过成型透镜的模具灌胶成型透镜并对 LED芯片和导线封装, 胶固化透 镜与透镜成型塑胶件、 LED芯片、 导线散热基板的芯片固定凸台和 PCB板 固定。
33、 LED集成结构的制造方法, LED集成结构包括散热基板, LED芯片, 透 镜, 透镜成型塑胶件, 电连接 LED芯片电极的导线和电连接导线的布图电 路导电层, 其特征在于在透镜成型塑胶件上设有成形透镜的第一通孔, 在 透镜成型塑胶件上的端面上延伸设有固定柱, 工艺过程包括:
1 )注塑成型透镜成型塑胶件, 同时成型透镜成型塑胶件的第一通孔、 固定 柱, 固定柱的长度大于散热基板的厚度;
2 )在散热基板上成型二个或二个以上的芯片固定凸台, 与固定柱配合的第 二通孔, 散热基板的横截面的面积是一个芯片固定凸台的横截面的面积的 三倍或三倍以上;
3 )在散热基板上绝缘成型布图电路导电层, 布图电路导电层距芯片固定凸 台中心的距离大于芯片固定凸台外侧壁到芯片固定凸台中心的距离小于第 一通孔侧壁到第一通孔中心的距离;
4 )将透镜成型塑胶件的固定柱穿过散热基板上的第二通孔并热熔固定柱端 部成型抵挡部, 通过抵挡部将透镜成型塑胶件与散热基板固定; 5 ) 通过固晶工艺将 LED芯片固定在芯片固定凸台的顶面上;
6 )焊与 LED芯片电极电连接的导线, 导线与伸入第一通孔侧壁与芯片固定 凸台侧壁之间的布图电路导电层电连接;
7 )通过成型透镜的模具灌胶成型透镜并对 LED芯片和导线封装, 胶固化透 镜与透镜成型塑胶件、 LED芯片、 导线和散热基板固定。
34、 LED集成结构的制造方法, LED集成结构包括散热基板、 PCB板, LED 芯片, 透镜, 透镜成型塑胶件, 电连接 LED芯片电极的导线和电连接导线 的布图电路导电层, 用来封装 LED芯片和导线的封装胶体, 其特征在于在 透镜成型塑胶件上设有成形透镜的第一通孔, 在透镜成型塑胶件上的端面 上延伸设有固定柱, 工艺过程包括:
1 )注塑成型透镜成型塑胶件, 同时成型第一通孔、 固定柱, 固定柱的长度 大于散热基板和 PCB板的厚度之和;
2 )在散热基板上成型二个或二个以上的芯片固定凸台, 与固定柱配合的第 二通孔, 散热基板的横截面的面积是一个芯片固定凸台的横截面的面积的 三倍或三倍以上;
3 )在 PCB板上成型与固定柱配合的第三通孔和避空芯片固定凸台的第四通 孔;
4 )在 PCB板上成型布图电路导电层, 布图电路导电层距第四通孔中心的距 离大于第四通孔侧壁到芯片固定凸台避空第四通孔中心的距离小于第一通 孔侧壁到第一通孔中心的距离;
5 )将散热基板上的芯片固定凸台穿过 PCB的第四通孔使 PCB板安装在散热 基板上, 将透镜成型塑胶件的固定柱依次穿过 PCB板的第三通孔、 散热基 板上的第二通孔并热熔固定柱端部成型抵挡部, 通过抵挡部将透镜成型塑 胶件与 PCB板、 散热基板固定;
6 ) 通过固晶工艺将 LED芯片固定在芯片固定凸台的顶面上;
7 )焊与 LED芯片电极电连接的导线, 导线与伸入第一通孔侧壁与芯片固定 凸台侧壁之间的布图电路导电层电连接;
8 )通过成型透镜的模具灌胶成型透镜并对 LED芯片和导线封装, 胶固化透 镜与透镜成型塑胶件、 LED芯片、 导线和散热基板固定。
35、 LED集成结构, 包括散热基板, LED芯片, 透镜, 定位透镜或成型透 镜的塑胶件,电连接 LED芯片电极的导线和电连接导线的布图电路导电层, 其特征在于: 在散热基板上设有与散热基板一体成型的二个或二个以上的 芯片固定凸台, 散热基板的横截面的面积是一个芯片固定凸台的横截面的 面积的三倍或三倍以上, 在每个芯片固定凸台的端面上均通过固晶工艺直 接固定有所述的 LED芯片; 定位透镜或成型透镜的塑胶件包括塑胶环和将 塑胶环连接在一起与塑胶环一起注塑成型的连接筋; 在塑胶环上设有定位 透镜或成型透镜的第一通孔; 透镜、 第一通孔和芯片固定凸台的个数一一 对应; 芯片固定凸台置于对应的第一通孔内, 布图电路导电层伸入第一通 孔的内侧壁与芯片固定凸台的外侧壁之间, 导线置于第一通孔内, 导线一 端与 LED芯片的电极电连接, 导线的另一端与伸入第一通孔的内侧壁与芯 片固定凸台外侧壁之间的布图电路导电层电连接; 还设有将散热基板与定 位透镜或成型透镜的塑胶件精确定位的定位机构和将散热基板与塑胶件固 定在一起的紧固件; 散热基板背离芯片固定凸台的一侧与散热气体或散热 液体直接接触。
36、 如权利要求 33所述的 LED集成结构, 其特征在于: 还包括 PCB板,
PCB 板置于散热基板设有芯片固定凸台的一侧, 布图电路导电层直接设置 在 PCB板上, PCB板设有布图电路导电层的一侧背离接触散热基板的接触 面, 定位机构将散热基板、 PCB 板和定位透镜或成型透镜的塑胶件精确定 位, 紧固件将散热基板、 PCB 板和定位透镜或成型透镜的塑胶件固定在一 起。
37、 LED集成结构, 包括散热基板, LED芯片, 透镜, 定位透镜或成型透 镜的塑胶件,电连接 LED芯片电极的导线和电连接导线的布图电路导电层, 其特征在于: 在散热基板上设有与散热基板一体成型的二个或二个以上的 芯片固定凸台, 散热基板的横截面的面积是一个芯片固定凸台的横截面的 面积的三倍或三倍以上, 在每个芯片固定凸台的端面上均通过固晶工艺直 接固定有所述的 LED芯片; 定位透镜或成型透镜的塑胶件为板状, 在定位 透镜或成型透镜的塑胶件上设有两个或两个以上所述的第一通孔, 透镜、 第一通孔和芯片固定凸台的个数一一对应; 芯片固定凸台置于对应的第一 通孔内, 布图电路导电层伸入第一通孔的内侧壁与芯片固定凸台的外侧壁 之间, 导线置于第一通孔内, 导线一端与 LED芯片的电极电连接, 导线的 另一端与伸入第一通孔的内侧壁与芯片固定凸台外侧壁之间的布图电路导 电层电连接; 还设有将散热基板与定位透镜或成型透镜的塑胶件精确定位 的定位机构和将散热基板与塑胶件固定在一起的紧固件; 散热基板背离芯 片固定凸台的一侧与散热气体或散热液体直接接触。
38、 如权利要求 35所述的 LED集成结构, 其特征在于: 还包括 PCB板, PCB 板置于散热基板设有芯片固定凸台的一侧, 布图电路导电层直接设置 在 PCB板上, PCB板设有布图电路导电层的一侧背离接触散热基板的接触 面, 定位机构将散热基板、 PCB 板和定位透镜或成型透镜的塑胶件精确定 位, 紧固件将散热基板、 PCB 板和定位透镜或成型透镜的塑胶件固定在一 起。
39、 成型塑胶件的注塑模, 注塑模为成型 LED集成结构的定位透镜或成型 透镜的塑胶件的注塑模, LED集成结构包括散热基板, 定位透镜或成型透 镜的塑胶件, 布图电路导电层; 注塑模包括定模装置、 动模装置、 进胶装 置和顶出装置, 进胶装置设置在定模装置一侧, 其特征在于: 在散热基板 上设有与散热基板一体成型的二个或二个以上的用来固定 LED 芯片的凸 台, 散热基板的横截面的面积是每个凸台的横截面的面积的三倍或三倍以 上; 在定位透镜或成型透镜上设有与凸台配合、 定位透镜或成型透镜的第 一通孔, 透镜、 凸台、 第一通孔的个数一一对应; 在定位透镜或成型透镜 的端面上延伸设有两个或两个以上的固定柱, 在散热基板上设有与固定柱 配合的第二通孔, 固定柱穿过散热基板的第二通孔, 在固定柱的端部通过 将散热基板置于成型定位透镜或成型透镜的模具内在成型定位透镜或成型 透镜时成型有抵挡部, 定位透镜或成型透镜通过固定柱和抵挡部与散热基 板固定; 凸台置于对应的第一通孔内, 布图电路导电层伸入第一通孔的内 侧壁与凸台的外侧壁之间; 注塑模包括成型塑胶件本体的塑胶件本体型腔 和凸设在塑胶件本体型腔内成型第一通孔的凸台, 成型抵挡部的抵挡部型 腔, 容置散热基板的容置腔, 将散热基板放置在容置腔设定位置的定位机 构; 塑胶件本体型腔和凸台设置在分型面的同侧, 抵挡部型腔与塑胶件本 体型腔设置在分型面的异侧, 容置腔与塑胶件本体型腔连通或与抵挡部型 腔连通; 在模具内设有芯片固定凸台避空孔, 芯片固定凸台避空孔与塑胶 件本体型腔设置在分型面的同侧, 芯片固定凸台避空孔与芯片固定凸台间 设有避空间隙。
40、 如权利要求 39所述的成型塑胶件的注塑模, 其特征在于: 塑胶件本体 型腔、 凸台设置在定模部分, 抵挡部型腔设置在动模部分, 顶出机构设置 在动模部分, 进胶装置的浇口与塑胶件本体型腔的底部连通; 塑胶件本体 型腔和凸台沿脱模方向的成型面脱模锥度大, 动模部分的抵挡部型腔沿脱 模方向的成型面无脱模锥度或者为倒锥。
41、 如权利要求 39所述的成型塑胶件的注塑模, 其特征在于: 塑胶件本体 型腔、 凸台设置在定模部分, 抵挡部型腔设置在动模部分, 顶出机构设置 在定模部分, 进胶装置的浇口与塑胶件本体型腔的底部连通。
42、 如权利要求 39所述的成型塑胶件的注塑模, 其特征在于: 塑胶件本体 型腔、 凸台设置在动模部分, 抵挡部型腔设置在定模部分, 顶出机构设置 在动模部分, 进胶装置的浇口与抵挡部型腔的底部连通。
43、 如权利要求 39所述的成型塑胶件的注塑模, 其特征在于: 布图电路导 电层直接设置在散热基板上并朝向定位透镜或成型透镜的塑胶件; 定位机 构为与芯片固定凸台配合的定位孔, 定位孔与塑胶件本体型腔在分型面的
44、 如权利要求 39所述的成型塑胶件的注塑模, 其特征在于: 在散热基板 背离芯片固定凸台的一侧设有置于芯片固定凸台内的散热盲孔或散热阶梯 通孔; 在散热盲孔的周边或散热阶梯通孔大端的周边背离芯片固定凸台的 一侧的散热基板上设有与基板一体成型的散热凸筋, 在散热凸筋内设有隔 热盲孔; 在注塑模上设有散热凸筋避空孔, 散热凸筋避空孔与抵挡部型腔 在分型面的同侧, 散热凸筋避空孔与散热凸筋间设有避空间隙。
45、 如权利要求 39所述的成型塑胶件的注塑模, 其特征在于: 定位件为定 位轴, 定位轴与散热基板配合。
46、 如权利要求 39所述的成型塑胶件的注塑模, 其特征在于: 还包括 PCB 板, 布图电路导电层直接设置在 PCB板上, PCB板设有布图电路导电层的 一侧背离接触散热基板的接触面, 固定柱依次穿过 PCB板和散热基板并通 过抵挡部将定位透镜或成型透镜的塑胶件、 PCB板和散热基板固定在一起; 定位件为定位轴, 在 PCB板的侧面上设有开口状的定位槽, 定位轴为阶梯 轴并与塑胶件本体型腔同侧, 定位轴的小轴与散热基板配合, 与定位轴小 轴相邻的轴与 PCB板上的定位槽配合。
47、 如权利要求 39至 45任意一项所述的成型塑胶件的注塑模, 其特征在 于: 定位透镜或成型透镜的塑胶件为定位透镜的透镜定位塑胶件, 在透镜 定位塑胶件上设有注入封装胶体的注胶通道, 注胶通道的胶口置于透镜定 位塑胶件远离抵挡部一侧的端面上, 注胶通道与第一通孔的内侧壁连通; 在凸台的侧壁上设有成型注胶通道的凸出部。
48、 如权利要求 39至 45任意一项所述的成型塑胶件的注塑模, 其特征在 于: 定位透镜或成型透镜的塑胶件为塑胶环, 在散热基板上固定有两个或 两个以上相互独立的所述的塑胶环; 进胶装置的浇口为点浇口, 每个塑胶 环对应一个或两个点浇口。
49、 如权利要求 39至 45任意一项所述的成型塑胶件的注塑模, 其特征在 于: 定位透镜或成型透镜的塑胶件包括塑胶环和将设定个数的塑胶环连接 在一起的与塑胶环一起注塑成型的连接筋, 定位透镜或成型透镜的塑胶件 包括两个或两个以上所述的塑胶环; 在模具上设有与塑胶件本体型腔连通 的连接筋成型腔,进胶装置的浇口与塑胶件本体型腔和 /或连接筋型腔连通; 进胶装置的浇口为点浇口或直浇口。
50、 如权利要求 39至 45任意一项所述的成型塑胶件的注塑模, 其特征在 于: 定位透镜或成型透镜的塑胶件为板状, 在定位透镜或成型透镜的塑胶 件上设有两个或两个以上所述的第一通孔, 进胶装置的浇口为点浇口或直 浇口。
51、 如权利要求 39至 45任意一项所述的成型塑胶件的注塑模, 其特征在 于: 定模部分还包括热流道系统。
PCT/CN2010/079793 2010-07-07 2010-12-14 Led集成结构及制造方法 WO2012003699A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010102309596A CN101963295A (zh) 2010-07-07 2010-07-07 Led集成结构及制造方法、灯、显示屏、背光装置、投影装置、成型塑胶件的注塑模
CN201010230959.6 2010-07-07

Publications (1)

Publication Number Publication Date
WO2012003699A1 true WO2012003699A1 (zh) 2012-01-12

Family

ID=43516296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079793 WO2012003699A1 (zh) 2010-07-07 2010-12-14 Led集成结构及制造方法

Country Status (2)

Country Link
CN (1) CN101963295A (zh)
WO (1) WO2012003699A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2489930B1 (en) * 2011-02-21 2015-03-25 LG Innotek Co., Ltd. Lighting module and lighting device
CN102130283B (zh) * 2011-02-22 2012-07-18 史杰 Led芯片封装支架
CN102157667A (zh) * 2011-03-02 2011-08-17 北京易光天元半导体照明科技有限公司 一种led出光颜色可控的新型封装方法和装置
WO2013044601A1 (zh) * 2011-09-30 2013-04-04 Yang Dongzuo 一种led点阵显示屏及组合式点阵显示屏
CN102364709A (zh) * 2011-10-29 2012-02-29 华南师范大学 大功率发光二极管封装结构
CN102679210B (zh) * 2012-04-01 2014-08-13 深圳市超频三科技有限公司 Led灯具及led光源组件
RU2681952C2 (ru) * 2013-02-19 2019-03-14 Филипс Лайтинг Холдинг Б.В. Осветительное устройство с улучшенными тепловыми свойствами
CN103236489A (zh) * 2013-04-18 2013-08-07 浙江深度照明有限公司 一种led封装结构
JP2016058315A (ja) * 2014-09-11 2016-04-21 パナソニックIpマネジメント株式会社 照明器具
CN104696752A (zh) * 2015-03-09 2015-06-10 合肥京东方光电科技有限公司 一种发光二极管光源、背光模组、显示装置和照明装置
CN104795378B (zh) * 2015-03-23 2018-05-08 广东美的制冷设备有限公司 智能功率模块及其制造方法
US11019689B2 (en) * 2015-06-15 2021-05-25 J.W. Speaker Corporation Lens heating systems and methods for an LED lighting system
CN107768326B (zh) * 2017-10-12 2019-09-27 中国科学院微电子研究所 一种碳化硅功率器件封装结构
CN109058940B (zh) * 2018-08-28 2021-04-30 徐嘉忆 灯具
CN211176348U (zh) * 2020-01-03 2020-08-04 广州光联电子科技有限公司 一种大功率led照明装置
CN112599029B (zh) * 2020-11-27 2022-07-12 佛山市青松科技股份有限公司 一种led显示屏的制备方法
WO2022233160A1 (zh) * 2021-05-07 2022-11-10 深圳市洲明科技股份有限公司 显示屏模组及其灌胶工艺、灌胶治具

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225139B1 (en) * 2000-01-24 2001-05-01 Chan Tsung-Wen Manufacturing method of an led of a type of round concave cup with a flat bottom
CN1787242A (zh) * 2004-12-10 2006-06-14 北京大学 一种倒装led芯片的封装方法
CN200982585Y (zh) * 2006-09-06 2007-11-28 武汉盟信科技有限责任公司 基于led光源系统的合光模块
US20090322229A1 (en) * 2008-06-25 2009-12-31 Bwt Property, Inc. LED Lighting Fixture
CN201471684U (zh) * 2009-09-11 2010-05-19 东莞勤上光电股份有限公司 用于led灯具中的led灯板的注塑模具

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100444415C (zh) * 2004-07-06 2008-12-17 旭山光电股份有限公司 气密式高导热芯片封装组件
CN2746538Y (zh) * 2004-11-05 2005-12-14 江珏 大功率led发光二极管
JP5363462B2 (ja) * 2007-05-07 2013-12-11 コーニンクレッカ フィリップス エヌ ヴェ 改良された熱放散及び製造容易性を持つ面照明のためのledベースの照明器具

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225139B1 (en) * 2000-01-24 2001-05-01 Chan Tsung-Wen Manufacturing method of an led of a type of round concave cup with a flat bottom
CN1787242A (zh) * 2004-12-10 2006-06-14 北京大学 一种倒装led芯片的封装方法
CN200982585Y (zh) * 2006-09-06 2007-11-28 武汉盟信科技有限责任公司 基于led光源系统的合光模块
US20090322229A1 (en) * 2008-06-25 2009-12-31 Bwt Property, Inc. LED Lighting Fixture
CN201471684U (zh) * 2009-09-11 2010-05-19 东莞勤上光电股份有限公司 用于led灯具中的led灯板的注塑模具

Also Published As

Publication number Publication date
CN101963295A (zh) 2011-02-02

Similar Documents

Publication Publication Date Title
WO2012003699A1 (zh) Led集成结构及制造方法
WO2012003698A1 (zh) 一种led集成结构
WO2012034332A1 (zh) 一种带有冷却装置的led集成结构
TWI528508B (zh) 高功率發光二極體陶瓷封裝之製造方法
WO2012027937A1 (zh) 带有冷却装置的led集成结构
WO2012003700A1 (zh) 一种led集成结构的制造方法
TWI441350B (zh) 樹脂填封發光體及其製造方法
US7777247B2 (en) Semiconductor light emitting device mounting substrates including a conductive lead extending therein
US9431592B2 (en) Submount with cavities and through vias for LED packaging
TWI485878B (zh) 形成發光二極體之透鏡結構之方法及其相關架構
CN102610599B (zh) 发光器件封装件及其制造方法
WO2012012974A1 (zh) 一种led封装结构及其封装方法
CN201741711U (zh) 成型led集成结构的定位或成型透镜的塑胶件的注塑模
CN102326269A (zh) 紧凑的模制led模块
JP2012523678A (ja) パワーled放熱基板およびパワーled製品を製造する方法及びその方法による製品
CN101728466A (zh) 高功率发光二极管陶瓷封装结构及其制造方法
WO2014101602A1 (zh) 应用远距式荧光粉层的led封装结构及其制成方法
JP2008300553A (ja) 表面実装型発光ダイオードのフレーム組合せ部材の製造方法及びその構造
JP2004207367A (ja) 発光ダイオード及び発光ダイオード配列板
TW201438298A (zh) 發光組件及其製造方法
CN103187409A (zh) 基于引线框架的led阵列封装光源模块
CN101097973A (zh) 大功率led二维光源
JP5097372B2 (ja) 大電流高効率の表面実装型発光ダイオードランプおよびその製造方法
CN100459328C (zh) 制造激光器二极管器件的方法,激光器二极管器件的外壳和激光器二极管器件
WO2019148934A1 (zh) 灯具、直插式led灯珠及制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10854358

Country of ref document: EP

Kind code of ref document: A1