WO2012002423A1 - 有機薄膜層の形成方法、有機エレクトロルミネッセンス素子の製造方法 - Google Patents

有機薄膜層の形成方法、有機エレクトロルミネッセンス素子の製造方法 Download PDF

Info

Publication number
WO2012002423A1
WO2012002423A1 PCT/JP2011/064894 JP2011064894W WO2012002423A1 WO 2012002423 A1 WO2012002423 A1 WO 2012002423A1 JP 2011064894 W JP2011064894 W JP 2011064894W WO 2012002423 A1 WO2012002423 A1 WO 2012002423A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
drying
coating
organic thin
forming
Prior art date
Application number
PCT/JP2011/064894
Other languages
English (en)
French (fr)
Inventor
慎一 藏方
川邉 茂寿
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2012522655A priority Critical patent/JP5700043B2/ja
Publication of WO2012002423A1 publication Critical patent/WO2012002423A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour

Definitions

  • the present invention relates to a method for forming an organic thin film by a coating method and a method for producing an organic electroluminescence element (hereinafter also referred to as an organic EL element) using this forming method.
  • the following two coating methods are known as a method of applying a coating solution to a belt-like substrate that runs continuously.
  • One is a post-measurement type coating method in which an excess coating solution is discharged onto the substrate in advance, and then the excess is removed by some scraping means.
  • a post-measuring type coating method a blade coating method, an air knife coating method, a wire bar coating method, a gravure coating method, a reverse coating method, and a reverse roll coating method are known.
  • the other is a pre-weighing type coating method in which the coating liquid is ejected by an amount that forms a necessary coating liquid film and the coating liquid is applied onto the substrate.
  • a pre-weighing type coating method an extrusion coating method using a slit type die coater, a slide coating method using a slide coater, a curtain coating method, and a coating method using an inkjet head are known.
  • the slit type die coater can cope with high coating accuracy, high quality, high speed, thin film, suitability for multilayer coating, etc., for example, optical film, inkjet recording paper, It is used for the production of heat-developable recording materials and organic EL elements.
  • An organic EL element is a thin film composed of an organic layer (single layer portion or multilayer portion) containing an organic light-emitting substance having a thickness of about 0.1 ⁇ m between a pair of anode and cathode formed on a substrate.
  • Type all-solid-state device When a relatively low voltage of about 2 V to 20 V is applied to such an organic EL element, electrons are injected into the organic layer from the cathode and holes are injected from the anode.
  • organic EL devices are manufactured by a method in which the organic layer is applied to a continuously running belt-like substrate (hereinafter also referred to as a web-like substrate) called a roll-to-roll method in recent years. Is being considered. In recent years, there has been a growing demand for higher functionality and thinner layers, uniform coating film thickness, and higher productivity.
  • the viscosity of the coating solution to be used is a low viscosity of 4.0 mPa ⁇ s or less.
  • the thickness of the hole transport layer is 5 nm to 500 nm
  • the thickness of one layer forming the light emitting layer is 2 nm to 100 nm.
  • Dry drying unevenness has been studied so far. For example, while conveying a web-shaped substrate coated with a coating liquid, in a drying furnace, hot air is sent as a laminar flow in a direction parallel to the substrate, without causing drying unevenness on the coated surface.
  • a method for efficiently drying a coating film is known (for example, see Patent Document 1).
  • a laminar air flow is transported in the direction of transport of the substrate in each drying zone disposed between 0.2 m and 0.8 m from the coating position. It is divided into a plurality of drying zones equipped with air supply means to supply in the direction intersecting with the air, and it is carried into the transport port of the drying zone to produce at a faster drying speed than at least natural drying while suppressing slight drying unevenness.
  • a method of drying a coating film that can improve the property (for example, see Patent Document 3).
  • Patent Document 1 has the following problems. 1. Very high device accuracy is required to discharge uniform drying air. 2. Wind viscosity variation in the height direction is large, and low viscosity coating liquids of 10.0 mPa ⁇ s or less are liable to generate wind ripples and cannot be applied.
  • Patent Document 2 has the following problems. 1. An airflow generation unit that generates a dry airflow is required for the applied pixels, and the drying capacity depends on the number of airflow generation unit nozzles. There is a problem in terms of accuracy and cost by increasing the number of airflow generation units. 2. In addition, when the distance between the airflow generation unit, the airflow generation unit, and the coating mechanism is short, the airflow may be disturbed due to the influence of air supply / exhaust generated from the adjacent airflow generation unit, and drying unevenness may occur. However, it has been found that the method described in Patent Document 3 has the following problems. 1. A pressure difference is generated between the top plate and the base material and between the base material and the bottom plate, and uniform drying is difficult. A low-viscosity coating liquid of 2.10.0 mPa ⁇ s or less is liable to generate wind ripples, and when the air current is applied in the direction crossing the transport direction, liquid deviation occurs and a uniform device cannot be produced.
  • the organic thin film layer forming coating solution is applied on the belt-like substrate that is continuously transported by the coating method to form an organic thin film layer having a stable film thickness without causing uneven drying.
  • Development of a method for forming an organic thin film layer and a method for manufacturing an organic EL element by this method is desired.
  • the present invention has been made in view of the above situation, and its purpose is to apply a coating liquid for forming an organic thin film layer by a coating method on a continuous belt-shaped substrate, and there is no occurrence of drying unevenness.
  • An object of the present invention is to provide a method for forming an organic thin film layer for forming an organic thin film layer having a stable film thickness and a method for producing an organic EL element by this method.
  • the amount of solvent contained in the coating film is changed from 0.01% by mass to 10.0% by mass of the amount of solvent contained in the coating liquid for forming an organic thin film layer. 5.
  • the temperature of the laminar drying air is ⁇ 5 ° C. with respect to the atmospheric temperature when the coating liquid for forming an organic thin film layer is applied on the belt-shaped substrate. 8. The method for forming an organic thin film layer according to 7.
  • FIG. 2 is an enlarged schematic view of a portion indicated by X in FIG. 1.
  • FIG. 3 is a schematic cross-sectional view along AA ′ in FIG. It is the schematic of the manufacturing process which manufactures an organic EL element using the formation method of the organic thin film layer shown in FIGS.
  • the drying step in the method for forming an organic thin film layer of the present invention is characterized by having a drying chamber on at least a backup roll. Below, it explains with the formation process of the organic thin film layer in this invention.
  • FIG. 1 is a schematic view showing a method for forming an organic thin film layer in which an organic thin film layer is formed by applying a coating liquid for forming an organic thin film layer on a belt-like substrate.
  • reference numeral 4 denotes a process for forming an organic thin film layer.
  • the forming process 4 includes a belt-shaped substrate supply process 4a, a coating process 4b, a first drying process 4c, a second drying process 4d, and a recovery process 4e.
  • the supplying step 4a uses a feeding device (not shown), feeds the roll-shaped belt-like substrate 5 mounted on the feeding device (not shown), and supplies the belt-like substrate 5 to the coating step 4b.
  • the coating process 4b uses a wet coating machine 4b1 and a back roll 4b2 that holds the belt-like substrate 5.
  • the wet coating machine 4b1 applies the organic thin film layer forming coating solution 6 (see FIG. 2) on the back roll 4b2. This is applied to the belt-like substrate 5 to form a coating film for forming an organic thin film layer.
  • Usable wet coaters include, for example, die coating method, screen printing method, flexographic printing method, ink jet method, Mayer bar method, cap coating method, spray coating method, casting method, roll coating method, bar coating method, gravure coating. It is possible to use a coating machine such as a method. Use of these wet coating machines can be appropriately selected according to the material of the organic thin film layer. This figure has shown the case of the die-coating system as the wet application machine 4b1.
  • the vapor pressure of the solvent used for the coating liquid for forming the organic thin film layer is preferably 5 ⁇ 133 Pa to 50 ⁇ 133 Pa in consideration of the heating cost for maintaining the solvent drying temperature, the drying speed, and the like.
  • the solvent is not particularly specified as long as it can dissolve the organic thin film layer, but alcohols such as methanol, ethanol, n-propyl alcohol, IPA, n-butyl alcohol, dimethylformamide, dimethylacetamide, THF, ketone , Ethers, acetone, diacetone alcohol, dioxane, polyethylene glycol, polypropylene glycol, polyalkylene glycol and other glycols, 2-pyrrolidone, xylene, toluene, chlorobenzene, dichlorobenzene, chloroform, dichloromethane, dichloroethane, n-butyl acetate , Isopropyl acetate, ⁇ -butyl lactone, butyl cellosolve, cyclohexane, cyclohexanone, N-methyl-2-pyrrolidone, tetrachloroethane, nitrobenz Aldehyde, nitrobenzene, carbon disulf
  • the viscosity of the coating solution for forming an organic thin film layer varies depending on the material of the organic thin film layer to be formed. However, in the present invention, considering the electrical characteristics of the organic thin film layer, the drying speed, etc., 0.3 mPa ⁇ s to 10.0 mPa ⁇ s.
  • the viscosity is a value measured with a Brookfield digital viscometer HV-50.
  • the solid content concentration of the organic thin film layer forming coating solution varies depending on the material of the organic thin film layer to be formed. In the present invention, however, in consideration of the stability over time after preparation of the coating solution, 0.1% by mass to 2.0% by mass. % Is preferred.
  • the first drying step 4c a drying device 4c1 is used, and the solvent is preliminarily removed from the organic thin film layer forming coating film formed in the coating step 4b.
  • the first drying step 4c is referred to as a preliminary drying step for convenience.
  • the preliminary drying step 4c will be described in detail with reference to FIGS.
  • the second drying step 4d uses the drying device 4d1, and the organic thin film layer is formed by heating and drying the belt-like substrate 5 on which the organic thin film layer forming coating film processed in the preliminary drying step 4c is formed. Is done.
  • drying apparatus 4d1 For example, a heater heating system, a heating air system, etc. are mentioned, It is possible to select suitably as needed.
  • the second drying step 4d is referred to as a main drying step for convenience.
  • the band-shaped substrate 5 on which the organic thin film layer is formed is recovered in the form of a winding roll around the core.
  • the organic thin film layer means a thickness of 10 nm to 200 nm.
  • the thickness can be measured with an optical interference type film thickness measuring instrument such as WykoNT9100 manufactured by Nippon Biko Co., Ltd.
  • FIG. 2 is an enlarged schematic view of a portion indicated by X in FIG.
  • FIG. 2A is an enlarged schematic perspective view of a portion indicated by X in FIG.
  • FIG.2 (b) is a schematic plan view from the predrying apparatus side of Fig.2 (a).
  • the pre-drying step 4c is arranged on the back roll and uses a drying device 4c1 having a drying chamber under reduced pressure.
  • the drying device 4c1 includes a drying chamber 4c11 and a pressure control unit 4c12.
  • the drying chamber 4c11 includes a side plate 4c111, a side plate 4c112, a top plate 4c113, a top plate 4c113, and a single mounting plate 4c114.
  • the drying chamber 4c11 is fixed to the side plate 4c124 (see FIG. 3) of the pressure control unit 4c12 via the mounting plate 4c114.
  • a dry air in a laminar flow is configured to flow in the transport direction of the belt-shaped substrate 5 (the arrow direction in the figure).
  • the pressure control unit 4c12 has a side plate 4c121, a side plate 4c122, a side plate 4c123, a side plate 4c124 (see FIG. 3), and a top plate 4c125, and has a box-like structure in which the belt-like base material 5 side is opened.
  • Reference numeral 4c126 denotes a suction pipe attached to the top plate 4c125, which is connected to a suction pump (not shown).
  • Reference numeral 7 denotes a coating film formed by applying the coating liquid 6 for forming an organic thin film layer.
  • J indicates the width of the drying chamber 4c11.
  • the width J is preferably 150% to 180% with respect to the coating width L of the coating liquid for forming an organic thin film layer in consideration of the influence of wind turbulence on the inner surface of the drying chamber and production efficiency.
  • K indicates the width of the belt-like substrate 5.
  • FIG. 3 is a schematic cross-sectional view along AA ′ in FIG.
  • FIG. 3A is an enlarged schematic cross-sectional view along AA ′ of FIG.
  • FIG. 3B is an enlarged schematic view of a portion indicated by Y in FIG.
  • 4c127 indicates a pressure control chamber.
  • a suction pump not shown
  • the gas in the atmosphere for applying the coating liquid for forming an organic thin film layer flows into the drying air from the opening 4c115 of the drying chamber 4c11. It flows in the laminar flow state to the opening 4c116.
  • reducing the pressure control chamber means reducing the pressure in the pressure control chamber relative to the pressure in the coating chamber.
  • the opening 4c115 is referred to as an entrance and the opening 4c116 is referred to as an exit.
  • 4c115 indicates an opening on the wet coater 4b1 side of the drying chamber 4c11
  • 4c116 indicates an opening on the pressure control unit 4c12 side of the drying chamber 4c11.
  • the inner surface of the drying chamber 4c11 preferably has a surface roughness of 10 ⁇ m or less in order to make the drying air flowing in the drying chamber 4c11 into a laminar flow.
  • the surface roughness is a value measured by Keyence Corporation KS-1100.
  • the periphery of the opening 4c115 and the opening 4c116 is free of concaves and convexes that affect the laminar flow state of the drying air flowing in the drying chamber 4c11, such as screw holes, joints, burrs, and the like.
  • the temperature of the drying air flowing in the drying chamber 4c11 is determined based on the organic thin film layer on the belt-like substrate 5 in consideration of the convection of the coating liquid, the influence on the mechanical shaft runout accuracy such as the back roll, and the influence of the variation due to the heating mechanism It is preferable that it is the atmospheric temperature which apply
  • Atmospheric temperature refers to the temperature of the room in which it is applied.
  • the ambient temperature is preferably 20 ° C. to 40 ° C. because the equipment cost increases when the temperature is too high, and a sufficient evaporation rate cannot be obtained when the temperature is too low.
  • the state of the drying air flowing in the drying chamber 4c11 is preferably a laminar flow state.
  • the Reynolds number (Re) is preferably 70 to 1950 and the average flow velocity is preferably 0.3 m / sec or more. More preferably, they are 70 or more and 1000 or less, Most preferably, they are 70 or more and 750 or less. If the Reynolds number is less than 70, it takes too much time for drying since the average flow velocity of the drying air approaches 0 m / sec as a substantial drying condition. Therefore, the lower limit of the Reynolds number is preferably 70 or more.
  • the upper limit of the Reynolds number is preferably 1950 or less.
  • the value obtained by calculating the kinematic viscosity of the gas ( ⁇ / ⁇ where ⁇ is the viscosity of the drying air and ⁇ is the density of the drying air) by 13.35 ⁇ 10 ⁇ 6 (m 2 ⁇ s ⁇ 1 ) is shown.
  • the flow velocity indicates a value obtained from Kanomax Anemo Master Anemometer 6003.
  • Adjustment of the Reynolds number (Re) and the average flow rate of the drying air flowing in the drying chamber 4c11 is possible by controlling the pressure in the pressure control chamber.
  • the amount of solvent contained in the organic thin film layer-forming coating film formed on the belt-like substrate 5 is adjusted to the amount of solvent in the organic thin film layer-forming coating solution in consideration of the occurrence of wind ripples.
  • the coating film is disposed at a position above the back roll so that the coating film is conveyed into the drying chamber between 20% by mass or more.
  • the amount of the solvent contained in the coating film for forming the organic thin film layer when exiting from the opening 4c116 in the preliminary drying step 4c is determined in consideration of the distance necessary for drying in the main drying step 4d, film thickness unevenness, and the like. It is preferable that it is 0.01 mass% to 10.0 mass% of the amount of solvent contained in the coating liquid for coating.
  • the amount of solvent contained in the organic thin film layer-forming coating film indicates a value measured by the following method.
  • Solvent amount was calculated by measuring the wet film thickness using a double scan laser displacement meter LT-9500 manufactured by Keyence Corporation.
  • M indicates the height (indicating the height of the drying chamber) from the surface of the back roll 4b2 of the opening 4c115 to the inner surface 4c117 of the top plate 4c113.
  • N indicates the height from the surface of the back roll 4b2 of the opening 4c116 to the inner surface 4c117 of the top plate 4c113 (indicating the height of the drying chamber).
  • the height from the opening (entrance) 4c115 to the opening (exit) 4c116 continuously changes from 0.1 mm to 50 mm in consideration of drying of the coating film in order to make the drying air laminar flow. It is necessary. Note that “continuously changing” means monotonously continuously increasing or decreasing. Even if the direction of change changes in the middle, it may not change. Specifically, there should be no step of 1 mm or more.
  • the height from the surface of the back roll from the opening (entrance) 4c115 to the opening (exit) 4c116 may be the same.
  • the material forming the drying chamber 4c11 is not particularly limited as long as it is a material that is not affected by the solvent to be evaporated, and examples thereof include stainless steel, aluminum, and quartz glass. Among these, quartz glass is preferably used in consideration of visibility, solvent resistance, and accuracy.
  • the following effects can be obtained by the method for forming an organic thin film layer of the present invention shown in FIGS. 1. There is no occurrence of uneven drying, and a long light emission lifetime is obtained by having a stable film thickness of the organic thin film layer. 2.
  • the organic thin film layer can be continuously dried, and the cost is low.
  • the organic thin film layer forming method of the present invention shown in FIGS. 1 to 3 is applied within each layer constituting an antireflection film having a hard coat layer, an antireflection layer, etc., an optical film, and an organic EL element.
  • organic layers eg, hole transport layer, light-emitting layer, etc.
  • organic layers can be formed by various methods, color filters used in liquid crystal displays, optical filters, various coating films, inkjet recording paper, thermal development recording materials, etc. Is possible.
  • FIG. 4 is a schematic view of a manufacturing process for manufacturing an organic EL element using the method for forming an organic thin film layer shown in FIGS.
  • the organic EL element refers to the structure of substrate / first electrode / functional layer (hole transport layer / light emitting layer / electron transport layer) / second electrode.
  • the preliminary drying step shown in the figure is the same as the preliminary drying step 4c shown in FIGS. 2 and 3, and the main drying step is the same as the main drying step 4d shown in FIG.
  • 1 indicates the manufacturing process of the organic EL element.
  • the manufacturing process 1 includes a first supply process 101, a hole transport layer formation process 102, a light emitting layer formation process 103, an electron transport layer formation process 104, a first recovery process 105, a second supply process 106, A second electrode forming step 107 and a second recovery step 108 are included.
  • the first supply step 101 uses a roll-like strip-shaped substrate 2a feeding device (not shown) and an accumulator 101a, and continuously feeds the strip-shaped substrate 2 to the hole transport layer forming step 102 of the next step. It is like.
  • the accumulator 101a is provided for speed adjustment with the hole transport layer forming step 102 in the next step.
  • the hole transport layer forming step 102 has a coating step 102a and a drying step 102b, and uses an accumulator 102c.
  • a hole transport layer forming coating solution is applied on the first electrode except for the first electrode extraction electrode portion of the band-shaped substrate 2 on which the first electrode is formed, and the drying step.
  • a hole transport layer is formed through 102b and conveyed to the next light emitting layer forming step 103.
  • the accumulator 102c is arranged for speed adjustment with the light emitting layer forming step 103 of the next step.
  • the coating step 102a uses a wet coating machine 102a1 and a backup roll 102a2 that holds the belt-like substrate 2.
  • the coating liquid for forming a hole transport layer by the wet coater 102a1 detects an alignment mark (not shown) attached to the belt-like substrate 2 with an alignment mark detector (not shown), and detects the first electrode (anode). It is applied on a first electrode (anode) (not shown) that has already been formed except for the extraction electrode (not shown).
  • Usable wet coaters include, for example, die coating method, screen printing method, flexographic printing method, ink jet method, Mayer bar method, cap coating method, spray coating method, casting method, roll coating method, bar coating method, gravure coating.
  • the wet coater 102a1 is of the whole surface coating type.
  • the organic EL panel is a full color system, it is patterned and formed.
  • an inkjet method, a flexographic printing method, an offset printing method, a gravure printing method, a screen printing method in order to apply a light emitting layer on the first electrode (anode) in accordance with the pattern of the first electrode (anode) that has been applied.
  • various coating apparatuses used for a spray coating method using a mask it is possible to use various coating apparatuses used for a spray coating method using a mask.
  • the drying step 102b includes a preliminary drying step 102b1 and a main drying step 102b2.
  • the preliminary drying step 102b1 is the same as the preliminary drying step 4c shown in FIGS.
  • the main drying step 102b2 uses a drying device 102b21 and a heat treatment device 102b22.
  • drying apparatus 102b21 For example, a heating system, a heating air system, a vacuum drying system etc. are mentioned, It can be suitably selected as needed.
  • the heat treatment apparatus 102b22 heats a coating film for hole transport layer formation (not shown) from the back surface side of the belt-like substrate 2 by the back surface heat transfer method.
  • a heat treatment condition for the hole transport layer (not shown) in the heat treatment apparatus 102b22 considering the improvement of the smoothness of the hole transport layer, the removal of the residual solvent, etc., the glass transition of the resin constituting the hole transport layer It is preferable to perform the back surface heat transfer type heat treatment at a temperature of ⁇ 30 ° C. to + 30 ° C. and a temperature not exceeding the decomposition temperature of the organic compound constituting the hole transport layer.
  • antistatic means 102b3 between the drying step 102b and the light emitting layer forming step 103 as necessary.
  • the antistatic means 102b3 has a non-contact type antistatic device 102b31 and a contact type antistatic device 102b32.
  • the non-contact type antistatic device 102b31 include a non-contact type ionizer.
  • the type of ionizer is not particularly limited, and the ion generation method may be either an AC method or a DC method.
  • An AC type, a double DC type, a pulsed AC type, and a soft X-ray type can be used, but the AC type is particularly preferable from the viewpoint of precise static elimination.
  • Air or N 2 is used as the injection gas required when using the AC type, but it is preferable to use N 2 with sufficiently high purity. From the viewpoint of in-line operation, the blower type or the gun type is selected.
  • a static eliminating roll or a conductive brush connected to the ground is used as the contact-type antistatic device 102b32.
  • the static elimination roll as the static eliminator is grounded and removes the surface charge by rotatingly contacting the neutralized surface.
  • Such static elimination rolls include rolls made of elastic plastic or rubber mixed with conductive materials such as carbon black, metal powder, and metal fibers in addition to rolls made of metal such as aluminum, copper, nickel, and stainless steel. used.
  • an elastic material is preferable.
  • the conductive brush connected to the earth include a neutralizing bar or a neutralizing yarn structure having a brush member made of conductive fibers arranged in a line or a linear metal brush.
  • the neutralization bar is not particularly limited, but a corona discharge type is preferably used.
  • a corona discharge type is preferably used.
  • SJ-B manufactured by Keyence Corporation is used.
  • the neutralizing yarn but usually a flexible thread-like one is preferably used.
  • a stainless steel neutralizing fiber Naslon manufactured by Nippon Seisen Co., Ltd. can be mentioned as an example.
  • the non-contact type antistatic device 102b31 is used on the surface side of the hole transport layer formed on the belt-like substrate 2, and the contact type antistatic device 102b32 is used on the back surface side of the belt-like substrate 2.
  • the film thickness of the hole transport layer is appropriately adjusted in consideration of light emission efficiency, lifetime, and the like.
  • the light emitting layer forming step 103 includes a coating step 103a and a drying step 103b, and uses an accumulator 103c.
  • the accumulator 103c is provided for speed adjustment with the electron transport layer forming step 104 in the next step.
  • a coating solution for forming a light emitting layer is applied on the hole transport layer except for the first electrode extraction electrode portion of the belt-like substrate 2 on which the hole transport layer is formed, and the drying step 103b is performed. After that, the light emitting layer is formed and conveyed to the electron transport layer forming step 104 of the next step.
  • the coating step 103a uses a wet coater 103a1 and a backup roll 103a2 that holds the belt-like substrate 2.
  • the coating solution for forming the light emitting layer by the wet coater 103a1 detects an alignment mark (not shown) attached to the belt-like substrate 2 with an alignment mark detector (not shown), and takes out the first electrode (anode). It is applied on a hole transport layer (not shown) that has already been formed except for (not shown).
  • a wet coater that can be used the same wet coater as that used in the coating step 102a of the hole transport layer forming step 102 can be used.
  • the drying step 103b includes a preliminary drying step 103b1 and a main drying step 103b2.
  • the preliminary drying step 103b1 has the same configuration as the preliminary drying step 102b1 of the hole transport layer forming step 102.
  • the main drying step 103b2 uses a drying device 103b21 and a heat treatment device 103b22.
  • drying apparatus 103b21 For example, a heating system, a heating air system, etc. are mentioned, It can be suitably selected as needed.
  • the heat treatment apparatus 103b22 heats the light emitting layer forming coating film (not shown) from the back surface side of the belt-like substrate 2 by the back surface heat transfer method.
  • the glass transition temperature of the resin constituting the light emitting layer is considered in consideration of improvement in smoothness of the light emitting layer, removal of residual solvent, curing of the light emitting layer, and the like.
  • the film thickness of the light emitting layer is usually selected in the range of 5 nm to 1 ⁇ m, preferably 20 nm to 100 nm in consideration of the film uniformity, device lifetime, light emission efficiency, and the like.
  • the light emitting layer (not shown) is a multilayer, it is necessary to arrange an application process and a drying process according to the number of layers.
  • a white element can be manufactured by forming a light emitting layer in multiple layers.
  • the light emitting layer refers to a blue light emitting layer, a green light emitting layer, and a red light emitting layer.
  • the lamination order in the case of laminating
  • blue light emitting layer / green light emitting layer / red light emitting layer / blue light emitting layer blue light emitting layer / green light emitting layer / red light emitting layer / blue light emitting from the order close to the anode.
  • the total thickness of the light emitting layer is not particularly limited, but is usually selected in the range of 2 nm to 5 ⁇ m, preferably 2 nm to 200 nm in consideration of the film uniformity, the voltage required for light emission, and the like. Further, it is preferably in the range of 10 nm to 100 nm. A film thickness of 100 nm or less is preferable because it has the effect of improving the stability of the emission color with respect to the driving current as well as the voltage surface.
  • the electron transport layer forming step 104 has a coating step 104a and a drying step 104b, and uses an accumulator 104c.
  • the accumulator 104c is disposed for speed adjustment with the first recovery step 105 of the next step.
  • a coating liquid for forming an electron transport layer is applied on the light emitting layer except for the first electrode extraction electrode portion of the belt-like substrate 2 on which the light emitting layer is formed, and the electron is transported through the drying step 104b.
  • a transport layer is formed, conveyed to the first recovery step 105 of the next step, and once recovered.
  • the coating process 104a uses a wet coating machine 104a1 and a backup roll 104a2 that holds the belt-like substrate 2.
  • the coating liquid for forming an electron transport layer by the wet coater 104a1 detects an alignment mark (not shown) attached to the belt-like substrate 2 with an alignment mark detector (not shown) and takes out the first electrode (anode). It is applied on a light-emitting layer (not shown) that has already been formed except for electrodes (not shown).
  • an alignment mark detector not shown
  • the first electrode anode
  • It is applied on a light-emitting layer (not shown) that has already been formed except for electrodes (not shown).
  • As a wet coater that can be used the same wet coater as that used in the coating step 102a of the hole transport layer forming step 102 can be used.
  • the drying step 104b includes a preliminary drying step 104b1 and a main drying step 104b2.
  • the preliminary drying step 104b1 has the same configuration as the preliminary drying step 102b1 of the hole transport layer forming step 102.
  • the main drying step 104b2 uses a drying device 104b21 and a heat treatment device 104b22.
  • drying apparatus 104b21 For example, a heating system, a heating air system, etc. are mentioned, It is possible to select suitably as needed.
  • the heat treatment apparatus 104b22 heats the electron transport layer-forming coating film (not shown) from the back side of the belt-like substrate 2 by the back side heat transfer method. Resin that constitutes the electron transport layer in consideration of heat treatment conditions for the electron transport layer (not shown) in the heat treatment apparatus 104b22, such as improvement of the smoothness of the electron transport layer, removal of residual solvent, and curing of the electron transport layer. It is preferable to perform the back-surface heat transfer type heat treatment at ⁇ 30 ° C. to + 30 ° C. with respect to the glass transition temperature and at a temperature not exceeding the decomposition temperature of the organic compound constituting the electron transport layer.
  • the film thickness of the electron transport layer is appropriately adjusted in consideration of light emission efficiency, lifetime, and the like.
  • the second supply step 106 uses an unwinding device (not shown) of the roll-shaped belt-like substrate 2a formed up to the electron transport layer and wound up in a roll shape, and an accumulator 106a, and forms the second electrode in the next step.
  • step 107 the belt-like substrate 2 on which the electron transport layer is formed is fed out.
  • the accumulator 106a is arranged for speed adjustment with the second electrode forming step 107 of the next step.
  • the second electrode forming step 107 includes a vapor deposition apparatus 107a having an evaporation source container 107b and an accumulator 107c.
  • the accumulator 107c is arranged for speed adjustment with the second recovery step 108 of the next step.
  • an alignment mark (not shown) attached to the belt-like substrate 2 on which the electron transport layer supplied from the second supply step 106 is formed is read with a detection device (not shown).
  • a second electrode (cathode) (not shown) having a take-out electrode (not shown) at a position determined by the vapor deposition device 107a according to the information of the detection device (not shown) is already formed with an electron injection layer (not shown).
  • a mask pattern is formed on the film.
  • the sheet resistance as the second electrode (cathode) is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 nm to 200 nm.
  • an organic EL element 3 having a configuration of base material / first electrode (anode) / hole transport layer / light emitting layer / electron injection layer / second electrode (cathode) is completed. Thereafter, the organic EL panel is manufactured by sealing the organic EL element with a sealing material.
  • the method for forming the second electrode (cathode) is not particularly limited.
  • a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • the organic EL device in which the hole transport layer, the light-emitting layer, and the electron transport layer are formed by a wet coating method by the method for forming an organic thin film layer of the present invention can be formed stably, and the organic EL device has stable performance.
  • the device can be manufactured.
  • This figure shows the case where the hole transport layer forming process is divided into the electron transport layer forming process and the second electrode forming process, but the process from the hole transport layer forming process to the second electrode forming process may be continued. Is possible.
  • Organic EL device The materials used for producing the organic EL device by the coating method of the present invention are described in WO 06/100908, JP 2006-294536 A, JP 2007-73332 A, etc. It is possible to use known materials.
  • JP-A-2008-296421, 2008-224003, 2008-224718, 2008- It is possible to use known materials described in JP-A-200600, JP-A-2007-098833, JP-A-2006-293201, JP-A-2006-285217, and the like.
  • Example 1 Preparation of strip-shaped substrate
  • a polyethylene terephthalate film (Teijin-DuPont film, hereinafter abbreviated as PET) having a thickness of 100 ⁇ m, a width of 200 mm, and a length of 500 m was prepared as a belt-like substrate.
  • ITO film Formation of first electrode (ITO film)
  • An ITO film having a thickness of 100 nm was formed on the prepared belt-like substrate using a sputtering apparatus.
  • a commercially available dye, C.I. I. A coating solution in which 1.5 parts by mass of Acid Red 249 was dissolved was prepared, and the amount of polyvinyl butyrate (PVB) added was adjusted so that the viscosity was 1.0 mP ⁇ s to prepare a coating solution.
  • the viscosity of the coating solution is a value measured at a temperature of 25 ° C. using an E-type viscometer VISCONIC ED type manufactured by Toki Sangyo Co., Ltd. and a controller E-200 type manufactured by the same company.
  • Slit die coater width 170mm Slit gap O 100 ⁇ m Application width 100mm (Application) The ITO film formed on the prepared belt-like substrate supported by the back roll having a diameter of 300 mm using the slit type die coater prepared in the manufacturing process shown in FIG.
  • a coating film for forming an organic thin film layer having a wet film thickness of 6 ⁇ m is formed by coating at a coating speed of 1.0 m / min to 10.0 m / min. 2 and 3 using a drying device in which the height from the surface of the roll was continuously changed, and then the temperature was 120 ° C. and the average wind speed was 0.3 m / min. in seconds, an organic thin film layer is formed, and sample No. 101 to 110.
  • the dry film thickness (film thickness after drying) was 100 nm.
  • the amount of the solvent contained in the coating film for forming an organic thin film layer when entering the preliminary drying step was 95.0% with respect to the amount of the solvent contained in the coating solution for forming an organic thin film layer.
  • the amount of solvent contained in the coating film for forming an organic thin film layer before entering the preliminary drying step was a value calculated from the wet film thickness using a double scan type laser displacement meter LT-9500 manufactured by Keyence Corporation.
  • the amount of the solvent contained after passing through the preliminary drying step was 1.2% by mass.
  • the amount of solvent contained in the coating film for forming an organic thin film layer after passing through the preliminary drying step represents a ratio (% by mass) to the amount of solvent contained in the coating liquid for forming an organic thin film layer.
  • the wet film thickness means a theoretical film thickness calculated by the following equation.
  • wet film thickness coating liquid supply flow rate / (coating width x coating speed) The coating speed was measured with a laser Doppler speed meter LV203 manufactured by Mitsubishi Electric Corporation.
  • the coating width was 100 mm
  • the coating length was 50 m
  • the coating temperature was 25 ° C.
  • Predrying process conditions Temperature of drying air flowing through the drying chamber: 25 ° C Distance from entrance to exit of drying chamber: 200mm Surface roughness (Ra) of the inner surface of the drying chamber: 5 ⁇ m Ratio (%) to coating width of coating liquid for forming organic thin film layer in drying chamber: 150% Decompression degree of the drying chamber: 30 Pa The direction in which the drying air flows was the same as the transport direction of the belt-shaped substrate.
  • Comparative Sample No. was formed by forming an organic thin film layer under the same conditions except that the preliminary drying step was not used and the drying step was performed at a temperature of 120 ° C. under the same conditions. 111.
  • Table 1 shows the results from 101 to 111, with samples taken from the beginning 5 m and the end 5 m, measuring the film thickness stability by the measurement method shown below, and evaluating according to the evaluation rank shown below.
  • Measuring method of film thickness stability Since the relationship between the concentration and the film thickness is linear, use the Konica Minolta Konica Densitometer PDM-7 to measure the concentration at 10 mm intervals in the width direction. The variation in density at 31 points was calculated as the film thickness stability by the following formula.
  • Film thickness stability (variation) ((maximum density-minimum density) / average density) x 100 Evaluation rank of film thickness stability (variation) ⁇ : variation is less than 1.0 ⁇ : variation is 1.0 or more and less than 3.0 ⁇ : variation is 3.0 or more and less than 5.0 ⁇ : variation is 5. 0 or more
  • the surface of the back roll from the entrance to the exit on the back roll Uses a drying device that has a drying chamber whose height is continuously increased monotonically from 0.1 mm to 10.0 mm, and uses a drying device that depressurizes the drying chamber, and passes through a preliminary drying process in which laminar drying air flows. Sample No. 2 was dried in this drying step to form an organic thin film layer. It was confirmed that Nos. 102 to 109 showed excellent film thickness stability.
  • No. 101 is a sample No. of the present invention with a variation in film thickness. Compared with 102 to 109, it was confirmed that it was slightly inferior although it was not a practical problem.
  • Example 2 (Preparation of strip-shaped substrate) The same belt-like substrate as in Example 1 was prepared.
  • a first electrode (ITO film) was formed on a strip-shaped substrate prepared by the same method as in Example 1.
  • Example 2 The same slit type die coater as used in Example 1 was used, and in the production process shown in FIG. The amount of the solvent contained in the coating film for forming an organic thin film layer after coating at 10.0 m / min to form a coating film for forming an organic thin film layer having a wet film thickness of 6.0 ⁇ m and passing through a preliminary drying step
  • the sample Nos. Prepared in Example 1 are the same as those shown in Table 2.
  • An organic thin film layer was formed on the belt-like substrate by the same method as in No. 106, and Sample No. 201 to 208.
  • the amount of solvent contained in the organic thin film layer-forming coating film after passing through the preliminary drying step is adjusted from 0.007 to 10.5% by mass from the surface of the back roll from the entrance to the exit of the drying chamber. This was carried out by changing the height, the pressure in the pressure control chamber in the drying apparatus, the conveyance speed, and the like.
  • the amount of solvent contained in the coating film for forming an organic thin film layer after passing through the preliminary drying step represents a ratio (% by mass) to the amount of solvent contained in the coating liquid for forming an organic thin film layer.
  • the wet film thickness means the same theoretical film thickness as in Example 1, and indicates a value measured by the same method as in Example 1.
  • the coating speed was measured with a laser Doppler velocimeter LV203 manufactured by Mitsubishi Electric Corporation.
  • the organic thin film layer forming coating solution After the organic thin film layer forming coating solution is applied on the ITO film formed on the belt-shaped substrate to form the organic thin film layer forming coating film, it is passed through a preliminary drying step in which laminar drying air flows.
  • the amount of the solvent contained in the coating film for forming an organic thin film layer after passing through the preliminary drying step is 0.01% by mass to 10.0% by mass of the amount of the solvent contained in the coating solution for forming an organic thin film layer. %, In which the organic thin film layer was formed by drying in this drying step. It was confirmed that 202 to 207 exhibited excellent film thickness stability.
  • the organic thin film layer forming coating solution is applied on the ITO film formed on the belt-shaped substrate to form the organic thin film layer forming coating film, it is passed through a preliminary drying step in which laminar drying air flows.
  • the amount of the solvent contained in the coating film for forming an organic thin film layer after passing through the preliminary drying step is 0.007% by mass of the amount of the solvent contained in the coating solution for forming an organic thin film layer.
  • No. 201 has a film thickness stability of Sample No. It was confirmed that it was inferior to 202 to 207 to the extent that there was no practical problem.
  • the organic thin film layer forming coating solution is applied on the ITO film formed on the belt-shaped substrate to form the organic thin film layer forming coating film, it is passed through a preliminary drying step in which laminar drying air flows.
  • the amount of solvent contained in the coating film for forming an organic thin film layer after passing through the preliminary drying step is 7% by mass of the amount of solvent contained in the coating solution for forming an organic thin film layer.
  • Sample No. dried to form an organic thin film layer No. 208 has a film thickness stability of Sample No. It was confirmed that it was inferior to 202 to 207 to the extent that there was no practical problem.
  • Example 3 (Preparation of strip-shaped substrate) The same belt-like substrate as in Example 1 was prepared.
  • a first electrode (ITO film) was formed on a strip-shaped substrate prepared by the same method as in Example 1.
  • the same slit type die coater as used in Example 1 was used, and in the production process shown in FIG. To 10.0 m / min to form a coating film for forming an organic thin film layer having a wet film thickness of 6.0 ⁇ m.
  • Table 3 the organic thin film before entering the preliminary drying step shown in FIGS.
  • the residual solvent amount of the coating film for layer formation was processed by changing the transport speed of the belt-shaped substrate and the distance between the slit die coater and the opening of the pre-drying device, and subsequently dried at a temperature of 120 ° C in the main drying step.
  • An organic thin film layer was formed and sample No. 301 to 308.
  • the dry film thickness (film thickness after drying) was 100 nm.
  • the amount of solvent contained in the coating film for forming an organic thin film layer before entering the preliminary drying step indicates a ratio (% by mass) to the amount of solvent contained in the coating solution for forming an organic thin film layer.
  • Example 2 The value measured by the same method as in Example 1 was used for the amount of solvent contained in the coating film for forming an organic thin film layer before entering the preliminary drying step.
  • the wet film thickness means the same theoretical film thickness as in Example 1, and indicates a value measured by the same method as in Example 1.
  • the theoretical film thickness calculated by the following formula.
  • the coating speed was measured with a laser Doppler velocimeter LV203 manufactured by Mitsubishi Electric Corporation.
  • the amount of solvent contained in the organic thin film layer-forming coating film when leaving the preliminary drying process is the height from the surface of the back roll from the entrance to the exit of the drying chamber, the pressure in the pressure control chamber in the drying device, and the conveyance By changing the speed, etc., the content was 1.2% by mass with respect to the amount of solvent contained in the coating solution for forming an organic thin film layer.
  • Example 3 shows the results of 301 to 308, samples taken from the beginning 5 m and the end 5 m, the film thickness stability was measured by the same method as in Example 1, and evaluated with the same evaluation rank as Example 1. .
  • Sample No. prepared by transporting to the pre-drying step when the amount of solvent in the amount of solvent contained in the coating film for forming an organic thin film layer is 20% by mass or more with respect to the amount of solvent contained in the coating solution for forming an organic thin film layer . It was confirmed that 301 to 307 showed excellent performance in film thickness stability. The effectiveness of the present invention was confirmed.
  • Example 4 Sample Nos. Prepared in Example 1 except that the temperature of the drying air in the preliminary drying step was changed as shown in Table 4. An organic thin film layer was formed under the same conditions as in Sample No. 106. 401 to 407. In addition, the atmospheric temperature at the time of application
  • the temperature of the laminar drying air is set to the atmospheric temperature (25 ° C ⁇ 5 ° C) when the organic thin film layer forming coating solution is applied onto the belt-like substrate, thereby suppressing thermal convection of the coating solution film. It was confirmed that the performance was excellent in thickness stability. The effectiveness of the present invention was confirmed.
  • Example 5 shows the Reynolds number (Re) and the average flow rate of the drying air in the preliminary drying process by changing the ratio of the drying air temperature, the drying air flow height, and the drying air flow passage to the coating width of the organic thin film layer forming coating liquid. Sample Nos. Produced in Example 1 were all changed except as shown. An organic thin film layer was formed under the same conditions as in Sample No. 106. 501 to 512.
  • Example 6 A band-shaped organic EL element structure (flexible substrate / first electrode (anode) / hole transport layer / light emitting layer / electron transport layer / second electrode (cathode)) is used in the manufacturing process shown in FIG.
  • the amount of the solvent contained in the light-emitting layer-forming coating film after passing through the preliminary drying step was changed as shown in Table 7, and after preparing by the method shown below, cutting was performed to prepare an organic EL element and a sample. No. 601 to 608.
  • the hole transport layer, the light emitting layer, and the electron transport layer were formed by coating with a slit type die coater, and the first electrode (anode) and the second electrode (cathode) were formed by vapor deposition.
  • PET polyethylene terephthalate film having a thickness of 100 ⁇ m, a width of 200 mm, and a length of 500 m was prepared as a belt-like substrate.
  • the alignment mark was provided in the same position of the surface in which a 1st electrode is formed, and the opposite surface.
  • ITO indium tin oxide
  • a sputtering method under a vacuum environment condition of 5 ⁇ 10 ⁇ 1 Pa by a sputtering method, and a size of 12 mm ⁇ 5 mm having an extraction electrode
  • the first electrode was continuously formed in 12 rows at regular intervals, and was wound up and stored once.
  • the viscosity of the coating liquid for forming a hole transport layer was 0.7 mPa ⁇ s.
  • the viscosity is a value measured at 20 ° C. using a digital viscometer LVDV-I manufactured by Brookfield.
  • a non-contact type antistatic device was used on the first electrode formation side, and a contact type antistatic device was used on the back side.
  • a non-contact type antistatic device a flexible AC ionizing bar MODEL4100V manufactured by Hugle Electronics Co., Ltd. was used.
  • the contact type antistatic device was a conductive guide roll ME-102 manufactured by Miyako Roller Kogyo Co., Ltd.
  • the coating conditions were as follows: hole transport layer forming coating solution, coating speed 5 m / min, coating width 180 mm, wet film thickness 2 ⁇ m, hole transport layer forming coating solution temperature 25 ° C., dew point temperature ⁇ It was carried out under an atmospheric pressure of N 2 gas environment of 20 ° C. or less and with a cleanliness class 5 or less (JIS B 9920). The amount of solvent contained in the coating film for hole transport layer formation after passing through the preliminary drying step was 5% by mass with respect to the amount of solvent contained in the coating liquid for hole transport layer formation.
  • a back roll having a diameter of 300 mm was used.
  • Predrying process conditions Temperature of drying air flowing through the drying chamber: 25 ° C Average wind speed of the drying air flowing through the drying chamber: 1.0 m / sec Height from the back roll surface at the entrance of the drying chamber: 5 mm Height from the back roll surface at the exit of the drying chamber: 5 mm Distance from entrance to exit of drying chamber: 200mm Surface roughness (Ra) of the inner surface of the drying chamber: 5 ⁇ m Ratio (%) to coating width of coating liquid for forming organic thin film layer in drying chamber: 150% The direction in which the drying air flows was the same as the transport direction of the belt-shaped substrate.
  • the wet film thickness indicates a theoretical value calculated by flow rate (supply amount) / (application width ⁇ application speed).
  • the coating speed was measured with a laser Doppler velocimeter LV203 manufactured by Mitsubishi Electric Corporation.
  • Drying and Heating treatment conditions for the coating film for forming the hole transport layer are as follows. After applying the coating liquid for forming the hole transport layer and passing through the preliminary drying process, using the drying device, After removing the residual solvent by blowing hot air with a slit nozzle type outlet from the outlet to a height of 100 mm, an outlet air velocity of 1 m / sec, a wide air velocity distribution of 5%, and a temperature of 120 ° C. A back surface heat transfer type heat treatment was performed at a temperature of 150 ° C. to form a hole transport layer. The dry film thickness (film thickness after drying) was 100 nm.
  • the prepared slit die coater is applied to the entire upper surface of the hole transport layer (except 10 mm at both ends of the PET).
  • the light emitting layer forming coating solution was applied under the conditions shown below. After coating, the amount of solvent contained in the coating film for forming the light-emitting layer after passing through the preliminary drying step and passing through the preliminary drying step is changed as shown in Table 5, and subsequently in the drying section according to the conditions shown below. Subsequently, it was transported to the electron transport layer forming step after drying and heat treatment.
  • the amount of solvent contained in the light emitting layer forming coating film after passing through the preliminary drying step indicates a ratio (% by mass) to the amount of solvent contained in the light emitting layer forming coating solution.
  • the change in the amount of the solvent contained in the light-emitting layer-forming coating film after passing through the preliminary drying step is to change the average flow rate of the drying air flowing through the drying air channel from 0.08 m / sec to 2.5 m / sec. I went there.
  • a non-contact type antistatic device was used for the light emitting layer side, and a contact type antistatic device was used for the back side.
  • the non-contact type antistatic device and the tactile type antistatic device were the same as those used for forming the hole transport layer.
  • the coating conditions are as follows: the coating liquid for forming the light emitting layer is coated at a coating speed of 5 m / min, the coating width is 180 mm, the wet film thickness is 3 ⁇ m, the temperature during coating of the coating liquid for forming the light emitting layer is 25 ° C.
  • the test was performed under atmospheric pressure in a N 2 gas environment and with a cleanliness class of 5 or less (JIS B 9920). The coating speed was measured by the same measuring method as the coating speed of the hole transport layer.
  • Pre-drying process conditions were the same as those for forming the hole transport layer except for the average flow velocity of the drying air flowing through the drying air channel.
  • the amount of solvent contained in the light-emitting layer-forming coating film when transported in the preliminary drying process is adjusted by adjusting the transport speed of the belt-shaped substrate and the distance between the slit die coater and the opening of the preliminary drying device. It was 90 mass% with respect to the amount of solvent contained in the coating liquid for layer formation.
  • Drying and heat treatment conditions for the coating film for forming the light emitting layer include applying a coating liquid for forming the light emitting layer, and then using a drying device.
  • the drying condition is a slit nozzle type outlet of the drying device. After removing the solvent at a height of 100 mm toward the film-forming surface, an outflow air velocity of 1 m / sec, a wide air velocity distribution of 5%, and a temperature of 120 ° C., the heat treatment is then performed at the temperature of 150 ° C. using a heat treatment device. To form a light emitting layer.
  • the dry film thickness (film thickness after drying) was 100 nm.
  • the prepared slit type die coater is used on the entire upper surface of the light emitting layer (excluding 10 mm at both ends of the PET).
  • the applied electron transport layer forming coating solution was applied under the following conditions. After coating, after drying and heat treatment in the drying section under the conditions shown below, the hole transport layer, light emitting layer and electron transport layer formed on the extraction electrode section of the first electrode are removed and patterned.
  • the PET having the electron transport layer formed thereon was prepared and temporarily wound and stored.
  • a non-contact type antistatic device was used on the electron transport layer side, and a contact type antistatic device was used on the back side.
  • the non-contact type antistatic device and the tactile type antistatic device were the same as those used for forming the hole transport layer.
  • the coating conditions were as follows: a coating solution for forming an electron transport layer, a coating speed of 5 m / min, a coating width of 180 mm, a wet film thickness of 2 ⁇ m, a temperature during coating of the coating solution for forming an electron transport layer was 25 ° C., and a dew point temperature of ⁇ 20. It was carried out under an atmospheric pressure of N 2 gas environment of not more than 0 ° C. and with a cleanliness class of 5 or less (JIS B 9920). The coating speed was measured by the same measuring method as the coating speed of the hole transport layer.
  • Pre-drying process conditions were the same as when forming the hole transport layer, including the average flow velocity of the drying air flowing through the drying air flow path.
  • the wet film thickness indicates a theoretical value calculated by flow rate (supply amount) / (application width ⁇ application speed).
  • the coating speed was measured with a laser Doppler velocimeter LV203 manufactured by Mitsubishi Electric Corporation.
  • Drying and heat treatment conditions for the coating film for forming the electron transport layer are as follows. After the coating liquid for forming the electron transport layer is applied, a drying apparatus is used. After removing the solvent from the outlet to the film formation surface at a height of 100 mm, outflow air velocity of 1 m / sec, wide air velocity distribution of 5%, and a temperature of 120 ° C, the backside heat transfer system at a temperature of 150 ° C by a heat treatment device. The electron transport layer was formed by performing the heat treatment. The dry film thickness (film thickness after drying) was 50 nm.
  • Second electrode (Formation of second electrode) Subsequently, the alignment mark attached to the PET formed up to the electron transport layer is detected, and the size of the first electrode and the extraction electrode for the second electrode are formed on the electron transport layer formed according to the position of the alignment mark.
  • a vacuum of 5 ⁇ 10 ⁇ 4 Pa aluminum is used as the second electrode forming material, a mask pattern is formed by vapor deposition, and a second electrode having a thickness of 100 nm is stacked to form a plurality of organic layers. An organic EL element structure in which an EL element was formed was produced.
  • Evaluation rank of leakage current characteristics A Maximum current value is less than 1 ⁇ 10 ⁇ 6 A ⁇ : Maximum current value is 1 ⁇ 10 ⁇ 6 A or more and less than 1 ⁇ 10 ⁇ 5 A ⁇ : Maximum current value is 1 ⁇ 10 ⁇ 5 A or more and less than 1 ⁇ 10 ⁇ 3 A ⁇ : The maximum current value is 1 ⁇ 10 ⁇ 3 A or more.
  • An organic EL device having a layer structure of the prepared flexible substrate / first electrode (anode) / hole transport layer / light emitting layer / electron transport layer / second electrode (cathode) under the predrying conditions of the present invention Sample No. It was confirmed that all of 602 to 607 showed stable performance in terms of leakage current characteristics and luminance unevenness.
  • Sample No. 609 is a sample No. for both leakage current characteristics and luminance unevenness. Inferior results from 602 to 607.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

 連続的に搬送される帯状基材の上に塗布方式で有機薄膜層形成用塗布液を塗布し、乾燥ムラの発生がなく、安定した膜厚を有する少なくとも1層の有機薄膜層を形成する有機薄膜層の形成方法及びこの方法による有機EL素子の製造方法の提供するため、バックロールに支持され搬送される帯状基材の上に、有機薄膜層形成用塗布液を塗布する塗布工程と、前記塗布工程で形成された塗膜を乾燥する乾燥工程を有する有機薄膜層の形成方法において、前記乾燥工程は、前記バックロールの上に乾燥室を有する乾燥装置を使用していることを特徴とする有機薄膜層の形成方法。

Description

有機薄膜層の形成方法、有機エレクトロルミネッセンス素子の製造方法
 本発明は塗布方式による有機薄膜の形成方法及びこの形成方法を用いた有機エレクトロルミネッセンス素子(以下、有機EL素子とも言う)の製造方法に関する。
 従来から連続走行する帯状基材に塗布液を塗布する方法として次の2通りの塗布方法が知られている。一つは、予め必要な塗布液膜形成量よりも余剰な塗布液を基材上に吐出させ、その後なんらかの掻き取り手段で余剰分を取り除く後計量型塗布方式である。後計量型塗布方式としては、ブレード塗布法、エアーナイフ塗布法、ワイヤーバー塗布法、グラビア塗布法、リバース塗布法、リバースロール塗布法が知られている。
 他の一つは、必要な塗布液膜を形成する量だけ塗布液を吐出させて基材の上に塗布液を塗布する前計量型塗布方式である。前計量型塗布方式としては、スリット型ダイコーターを用いたエクストルージョン塗布法、スライドコーターを用いたスライド塗布法、カーテン塗布法、インクジェットヘッドを用いた塗布法が知られている。前計量型塗布装置の中でもスリット型ダイコーターは、塗布精度の高さ、高品位性、高速、薄膜、多層塗布適性等の対応が可能であることから、例えば、光学用フィルム、インクジェット記録用紙、熱現像記録材料、有機EL素子等の製造に使用されている。
 この中でも、近年、有機EL素子について使用される塗布方法が注目を浴びている。有機EL素子は、基材の上に形成された一対の陽極と陰極との間に、厚さ0.1μm程度の有機発光物質を含有する有機層(単層部又は多層部)で構成する薄膜型の全固体素子である。この様な有機EL素子に2Vから20V程度の比較的低い電圧を印加すると、有機層に陰極から電子が注入され陽極から正孔が注入される。この電子と正孔が有機層に含まれる発光層において再結合し、エネルギー準位が伝導帯から価電子帯に戻る際にエネルギーを光として放出することにより発光が得られることが知られており、次世代の平面ディスプレーや照明として期待されている技術である。
 有機EL素子は生産性の向上や製造コスト低減のため、近年では有機層をロールツーロール方式と言われる連続走行する帯状基材(以下、ウェブ状基材ともいう)に塗布する方式での製造が検討されている。又、近年では素子の高機能化や薄層化、塗布膜の膜厚の均一化、及び更なる高生産性の要望が高くなっている。
 例えば、有機EL素子を構成している有機層(例えば、正孔輸送層、発光層等)を塗布方式により形成する場合、有機EL素子の性能、使用する材料の溶解度の観点から低粘度になる場合が多く、使用する塗布液の粘度は、4.0mPa・s以下の低粘度となっているが、このような低粘度の材料を用いた場合には、乾燥ムラを避けることが難しいことが知られている。又、有機層の内、正孔輸送層の膜厚は5nmから500nm、発光層を形成している1層の厚さは2nmから100nmと薄膜であるため有機層の膜厚の均一性が有機ELパネルの性能に影響を及ぼすことが知られている。例えば発光層を塗布方式で形成する場合において、数nmの膜厚のバラツキが発光ムラとして現れることが知られており、このため膜厚の均一化の要望が高くなっている。
 膜厚ムラの発生する原因としては、上述した塗布時の膜厚のバラツキの他、乾燥時の乾燥ムラ(風紋とも言う)によることが知られている。
 乾燥時の乾燥ムラに対してはこれまでに検討がなされて来た。例えば、塗液が塗布されたウェブ状の基材を搬送しながら乾燥炉内で、基材に対して平行な風向きでかつ層流として熱風を送り、塗工面の乾燥ムラを起こさずに、しかも効率よく塗膜を乾燥させる方法が知られている(例えば、特許文献1参照。)。
 基板上に液状材料を塗布した直後に、気流発生部の噴出口から基板の搬送方向と平行な層流状態の気流を噴出して乾燥する方法が知られている(例えば、特許文献2参照。)。
 搬送中の帯状の基材に溶剤を含む塗布液を塗布した後、塗布位置から0.2m以上、0.8m以下に配設した各乾燥ゾーン毎に層流状態の気流を基材の搬送方向と交わる方向に供給する給気手段を備えた複数の乾燥ゾーンに分割され乾燥ゾーンの搬送口に搬入し、わずかな乾燥ムラの発生をも抑制しながら少なくとも自然乾燥よりも乾燥速度を早く、生産性も向上出来る塗布膜を乾燥する方法が知られている(例えば、特許文献3参照。)。
特開2002-340479号公報 特開2003-297569号公報 特開2009-125633号公報
 しかしながら特許文献1に記載の方法は次の問題点があることが判った。
1.均一な乾燥風を吐出させるには非常に高い装置精度が要求される。
2.高さ方向の風速バラツキが大きく、10.0mPa・s以下の低粘度塗布液は風紋が発生しやすく適用出来ない。
 しかしながら特許文献2に記載の方法は次の問題点があることが判った。
1.塗布した画素に対して乾燥気流を発生させる気流発生部が必要であり、乾燥能力は気流発生部ノズルの数に依存する。気流発生部の数を増やすことで精度、コストの面で課題がある。
2.又、気流発生部と気流発生部及び塗布機構との距離が短い場合には、隣接する気流発生部から発生した給排気の影響で気流が乱れ乾燥ムラが発生する恐れがある。
しかしながら特許文献3に記載の方法は次の問題点があることが判った。
1.天板と基材及び基材と底板に圧力差が生じ、均一な乾燥が困難である。
2.10.0mPa・s以下の低粘度塗布液は風紋が発生しやすく搬送方向と交わる方向に気流を当てると液寄りが生じ、均一なデバイスが作製出来ない。
 この様な状況から、連続的に搬送される帯状基材の上に塗布方式で有機薄膜層形成用塗布液を塗布し、乾燥ムラの発生がなく、安定した膜厚を有する有機薄膜層を形成する有機薄膜層の形成方法及びこの方法による有機EL素子の製造方法の開発が望まれている。
 本発明は、上記状況に鑑みなされたものであり、その目的は連続的に搬送される帯状基材の上に塗布方式で有機薄膜層形成用塗布液を塗布し、乾燥ムラの発生がなく、安定した膜厚を有する有機薄膜層を形成する有機薄膜層の形成方法及びこの方法による有機EL素子の製造方法を提供することにある。
 本発明の上記目的は、下記の構成により達成された。
 1.バックロールに支持され搬送される帯状基材の上に、有機薄膜層形成用塗布液を塗布する塗布工程と、前記塗布工程で形成された塗膜を乾燥する乾燥工程を有する有機薄膜層の形成方法において、
 前記乾燥工程は、前記バックロールの上に乾燥室を有する乾燥装置を使用していることを特徴とする有機薄膜層の形成方法。
 2.前記乾燥室を減圧とすることを特徴とする前記1に記載の有機薄膜層の形成方法。
 3.前記乾燥室の入り口から出口までの高さが、前記バックロールの表面から0.1mmから50mmで連続的に変化していることを特徴とする前記1又は2に記載の有機薄膜層の形成方法。
 4.前記乾燥工程は前記塗膜に含有される溶媒量が、前記有機薄膜層形成用塗布液に含有される溶媒量に対して20%以上の間に前記塗膜が前記乾燥室内に搬送される位置に配置されていることを特徴とする前記1から3の何れか1項に記載の有機薄膜層の形成方法。
 5.前記乾燥工程は前記塗膜に含有される溶媒量を、前記有機薄膜層形成用塗布液に含有される溶媒量の0.01質量%から10.0質量%にすることを特徴とする前記1から4の何れか1項に記載の有機薄膜層の形成方法。
 6.前記予備乾燥工程は、吸引方式で形成した層流状態の乾燥風により前記塗膜を乾燥することを特徴とする前記1から5の何れか1項に記載の有機薄膜層の形成方法。
 7.前記乾燥風のレイノルズ数(Re)が70から1950で、且つ平均流速が0.3m/sec以上であることを特徴とする前記6に記載の有機薄膜層の形成方法。
 8.前記層流状態の乾燥風の温度は、前記有機薄膜層形成用塗布液を、前記帯状基材の上に塗布する時の雰囲気温度に対して±5℃であることを特徴とする前記6又は7に記載の有機薄膜層の形成方法。
 9.前記層流状態の乾燥風は、前記帯状基材と平行で、且つ搬送方向と同じ方向に流れていることを特徴とする前記6から8の何れか1項に記載の有機薄膜層の形成方法。
 10.基材上に少なくとも第1電極と、少なくとも1層の有機層と第2電極を有する有機エレクトロルミネッセンス素子の製造方法において、前記有機層が前記1から6の何れか1項に記載の有機薄膜層の形成方法により形成されることを特徴とする有機エレクトロルミネッセンス素子の製造方法。
 連続的に搬送される帯状基材の上に塗布方式で有機薄膜層形成用塗布液を塗布し、乾燥ムラの発生がなく、安定した膜厚を有する有機薄膜層を形成する有機薄膜層の形成方法及びこの方法による有機EL素子の製造方法を提供することが出来た。
帯状基材の上に有機薄膜層形成用塗布液を塗布し少なくとも1層の有機薄膜層を形成する有機薄膜層の形成方法を示す概略図である。 図1のXで示される部分の拡大概略図である。 図2(a)のA-A′に沿った概略断面図である。 図1から図3に示す有機薄膜層の形成方法を使用して有機EL素子を製造する製造工程の概略図である。
 本発明の実施の形態を図1から図4を参照しながら説明するが本発明はこれに限定されるものではない。本発明の有機薄膜層の形成方法における乾燥工程は、少なくともバックアップロールの上に乾燥室を有していることを特徴としている。以下に本発明における有機薄膜層の形成工程に付き説明する。
 図1は帯状基材の上に有機薄膜層形成用塗布液を塗布して有機薄膜層を形成する有機薄膜層の形成方法を示す概略図である。
 図中、4は有機薄膜層の形成工程を示す。形成工程4は、帯状基材の供給工程4aと、塗布工程4bと、第1の乾燥工程4cと、第2の乾燥工程4dと、回収工程4eとを有している。
 供給工程4aは繰り出し装置(不図示)を使用しており、繰り出し装置(不図示)に装着されたロール状の帯状基材5を繰り出し、塗布工程4bに帯状基材5を供給する。
 塗布工程4bは湿式塗布機4b1と、帯状基材5を保持するバックロール4b2とを使用しており、湿式塗布機4b1により有機薄膜層形成用塗布液6(図2参照)をバックロール4b2上の帯状基材5に塗布し、有機薄膜層形成用塗膜が形成される。
 使用可能な湿式塗布機としては、例えば、ダイコート方式、スクリーン印刷方式、フレキソ印刷方式、インクジェット方式、メイヤーバー方式、キャップコート法、スプレー塗布法、キャスト法、ロールコート法、バーコート法、グラビアコート法等の塗布機の使用が可能である。これらの湿式塗布機の使用は有機薄膜層の材料に応じて適宜選択することが可能となっている。本図は、湿式塗布機4b1としてダイコート方式の場合を示している。
 有機薄膜層形成用塗布液に使用する溶媒の蒸気圧は、溶媒乾燥温度を維持するための加熱コスト、乾燥速度液寄りなどを考慮し、5×133Paから50×133Paであることが好ましい。
 好ましい溶媒としては、有機薄膜層を溶解出来るものであれば特に指定はないが、メタノール、エタノール、n-プロピルアルコール、IPA、n-ブチルアルコールなどのアルコール類、ジメチルホルムアミド、ジメチルアセトアミド、THF、ケトン類、エーテル類、アセトン、ジアセトンアルコール、ジオキサン、ポリエチレングリコール、ポリプロピレングリコール、ポリアルキレングリコールなどのグリコール類、2-ピロリドン、キシレン、トルエン、クロロベンゼン、ジクロロベンゼン、クロロフォルム、ジクロロメタン、ジクロロエタン、酢酸n-ブチル、酢酸イソプロピル、γブチルラクトン、ブチルセロソルブ、シクロヘキサン、シクロヘキサノン、N-メチル-2-ピロリドン、テトラクロロエタン、ニトロベンズアルデヒド、ニトロベンゼン、二硫化炭素、2-ヘプタノン、ベンゼン、テルピネオール及び水などを組み合わせて使用出来る。
 有機薄膜層形成用塗布液の粘度は、形成する有機薄膜層の材料により異なるが、本発明では、有機薄膜層の電気特性、乾燥速度等を考慮し、0.3mPa・sから10.0mPa・sである。粘度は、ブルックフィールドデジタル粘度計HV-50で測定した値を示す。
 有機薄膜層形成用塗布液の固形分濃度は、形成する有機薄膜層の材料により異なるが、本発明では、塗布液調製後の経時安定性を考慮し、0.1質量%から2.0質量%が好ましい。
 第1の乾燥工程4cは、乾燥装置4c1を使用しており、塗布工程4bで形成された有機薄膜層形成用塗膜から溶媒が予備的に除去される。尚、本発明では第1の乾燥工程4cを便宜上、予備乾燥工程と言う。予備乾燥工程4cに関しては図2、図3で詳細に説明する。
 第2の乾燥工程4dは、乾燥装置4d1を使用しており、予備乾燥工程4cで処理された有機薄膜層形成用塗膜が形成されている帯状基材5を加熱乾燥し有機薄膜層が形成される。乾燥装置4d1としては特に限定はなく、例えばヒーター加熱方式、加熱風方式等が挙げられ必要に応じて適宜選択することが可能となっている。尚、本発明では第2の乾燥工程4dを便宜上、本乾燥工程と言う。
 回収工程4eは、巻取り装置(不図示)を使用しており、有機薄膜層が形成された帯状基材5を巻芯に巻取りロール状で回収する。
 本発明で有機薄膜層とは、10nmから200nmの厚さを言う。又、厚さは、日本ビーコ(株)製WykoNT9100など光学干渉式膜厚測定機で測定することが可能である。
 図2は図1のXで示される部分の拡大概略図である。図2(a)は図1のXで示される部分の拡大概略斜視図である。図2(b)は図2(a)の予備乾燥装置側からの概略平面図である。
 予備乾燥工程4cは、バックロールの上に配置されており、乾燥室を減圧とする乾燥装置4c1を使用している。乾燥装置4c1は、乾燥室4c11と圧力制御部4c12とを有している。
 乾燥室4c11は側板4c111と、側板4c112と天板4c113と、天板4c113と1体となった取付け板4c114とを有しており、帯状基材5側と圧力制御部4c12側と湿式塗布機4b1側が開いた樋状の構造を有している。乾燥室4c11は取付け板4c114を介して圧力制御部4c12の側板4c124(図3参照)に固定されている。乾燥室4c11には層流状態の乾燥風が、帯状基材5の搬送方向(図中の矢印方向)に流れる様になっている。
 圧力制御部4c12は、側板4c121と、側板4c122と、側板4c123と、側板4c124(図3参照)と、天板4c125とを有し、帯状基材5側が開けられた箱形構造となっている。4c126は天板4c125に取り付けられた吸引管を示し吸引ポンプ(不図示)に繋がっている。
 6は湿式塗布機4b1から吐出された有機薄膜層形成用塗布液を示す。7は有機薄膜層形成用塗布液6を塗布し形成された塗膜を示す。
 Jは乾燥室4c11の幅を示す。幅Jは有機薄膜層形成用塗布液の塗布幅Lに対して、乾燥室の内側の面部の風の乱れの影響と生産効率等を考慮し、150%から180%であることが好ましい。Kは帯状基材5の幅を示す。
 図3は図2(a)のA-A′に沿った概略断面図である。図3(a)は図2(a)のA-A′に沿った拡大概略断面図である。図3(b)は図3(a)のYで示される部分の拡大概略図である。
 図中、4c127は圧力制御室を示す。吸引管4c126を介して吸引ポンプ(不図示)で圧力制御室を減圧にすることで、乾燥室4c11の開口部4c115から有機薄膜層形成用塗布液を塗布する雰囲気の気体が乾燥風となり流れ込み、開口部4c116へと層流状態で流れる様になっている。尚、圧力制御室を減圧にするとは、塗布室の圧力対して圧力制御室の圧力を下げることを言う。本発明では、開口部4c115を入り口、開口部4c116を出口と言う。
 4c115は乾燥室4c11の湿式塗布機4b1側の開口部を示し、4c116は乾燥室4c11の圧力制御部4c12側の開口部を示す。開口部4c115から開口部4c116有機薄膜層形成用塗布液を塗布する雰囲気の区間が乾燥室4c11となっている。
 乾燥室4c11の内側の面は、乾燥室4c11内を流れる乾燥風を層流とするため表面粗さが10μm以下であることが好ましい。表面粗さはキーエンス(株)KS-1100により測定した値を示す。又、開口部4c115及び開口部4c116の周辺には乾燥室4c11内を流れる乾燥風の層流状態に影響を与える凹状物、凸状物、例えばねじ穴、継ぎ手、バリ等がないことが好ましい。
 乾燥室4c11内を流れる乾燥風の温度は、塗布液の対流、バックロール等の機械軸振れ精度への影響、加熱機構によるバラツキの影響等を考慮し、帯状基材5の上に有機薄膜層形成用塗布液を塗布する雰囲気温度であることが好ましい。雰囲気温度とは塗布する部屋の温度を言う。尚、雰囲気温度としては、温度が高過ぎる場合設備コストが高くなり、低過ぎると充分な蒸発速度が得られないため、20℃から40℃が好ましい。
 乾燥室4c11内を流れる乾燥風の状態は、層流状態であることが好ましいが風速が低すぎる場合は、基材の搬送風の影響を受け易くなり、且つ乾燥速度が遅くなるため、レイノルズ数(Re)が70から1950で、且つ平均流速が0.3m/sec以上であることが好ましい。さらに好ましくは70以上、1000以下、最も好ましくは70以上、750以下である。レイノルズ数を70未満とすると、実質的な乾燥条件としては乾燥風の平均流速が0m/secに近づくため乾燥に時間が掛かり過ぎる。それゆえレイノルズ数の下限は70以上が好ましい。これに対して、レイノルズ数を1950超とすると乱流/層流遷移域となり、塗布液の液界面が乱された状態で乾燥が進むため、塗膜に多少のムラが生じる可能性がある。それ故、レイノルズ数の上限が1950以下とすることが好ましい。
 レイノルズ数(Re)は、乾燥室4c11の幅手と高さをそれぞれa、bとした場合、矩形流路相当直径De=2ab/(a+b)、流速は下記に示す測定値(m/sec)、気体の動粘度(μ/ρ 式中 μ:乾燥風の粘度、ρ:乾燥風の密度)を13.35×10-6(m・s-1)により求めた値を示す。流速は、カノマックス株式会社アネモマスター風速計6003より求めた値を示す。
 乾燥室4c11内を流れる乾燥風のレイノルズ数(Re)及び平均流速の調整は、圧力制御室の圧力を制御することで可能となっている。
 予備乾燥工程4cは、帯状基材5の上に形成された有機薄膜層形成用塗膜中に含有される溶媒量が、風紋の発生を考慮し、有機薄膜層形成用塗布液の溶剤量に対して20質量%以上の間に前記塗膜が前記乾燥室内に搬送される様に、バックロールの上の位置に配置されていることが好ましい。
 予備乾燥工程4cの開口部4c116から出る時の有機薄膜層形成用塗膜に含有される溶媒量は、本乾燥工程4dの乾燥に必要な距離、膜厚ムラ等を考慮し、有機薄膜層形成用塗布液に含有される溶媒量の0.01質量%から10.0質量%であることが好ましい。
 有機薄膜層形成用塗膜に含有される溶剤量は、以下に示す方法で測定した値を示す。
 溶剤量の測定は、キーエンス(株)製 ダブルスキャン型レーザー変位計 LT-9500を用いて、ウェット膜厚を測定することで算出した。
 Mは開口部4c115のバックロール4b2の表面から天板4c113の内面4c117迄の高さ(乾燥室の高さを示す)を示す。
 Nは開口部4c116のバックロール4b2の表面から天板4c113の内面4c117迄の高さ(乾燥室の高さを示す)を示す。
 開口部(入り口)4c115から開口部(出口)4c116迄の高さは、乾燥風を層流とするため、塗膜の乾燥等を考慮し、0.1mmから50mmで連続的に変化していることが必要である。尚、連続的に変化するとは単調に連続的に増加、又は減少することを言う。途中で変化の方向が変わっても、又変化しなくてもよい。具体的には1mm以上の段差がなければよい。
 又、開口部(入り口)4c115から開口部(出口)4c116迄のバックロールの表面からの高さは同じであっても構わない。
 他の符号は図2と同義である。
 乾燥室4c11を形成する材料は蒸発する溶媒で影響を受けない材料であれば特に限定はなく、例えば、ステンレス、アルミニウム、石英ガラス等が挙げられる。これらの中でも、視認性、耐溶媒性、精度を考慮し、石英ガラスが好ましく用いられる。
 図1から図3に示される本発明の有機薄膜層の形成方法により次の効果が挙げられる。1.乾燥ムラの発生がなく、有機薄膜層が安定した膜厚を有すことで長い発光寿命が得られる。
2.連続して有機薄膜層の乾燥を行うことが出来、且つ、低コストである。
 図1から図3に示される本発明の有機薄膜層の形成方法は、ハードコート層、反射防止層等を有する反射防止フィルム、光学用フィルム、有機EL素子を構成している各層の内で塗布方式で形成可能な有機層(例えば、正孔輸送層、発光層等)、液晶ディスプレーに用いられるカラーフィルター、光学フィルター、各種コーティングフィルムの製造、インクジェット記録用紙、熱現像記録材料等の製造に適用することが可能である。
 以下に本発明の図1から図3に示す有機薄膜層の形成方法を使用した有機EL素子を製造する方法に付き説明する。
 図4は図1から図3に示す有機薄膜層の形成方法を使用して有機EL素子を製造する製造工程の概略図である。尚、本発明で有機EL素子とは、基材/第1電極/機能層(正孔輸送層/発光層/電子輸送層)/第2電極の構成を言う。尚、本図に示す予備乾燥工程は図2、図3に示す予備乾燥工程4cと同じであり、本乾燥工程は図1に示す本乾燥工程4dと同じである。
 図中、1は有機EL素子の製造工程を示す。製造工程1は、第1供給工程101と、正孔輸送層形成工程102と、発光層形成工程103と、電子輸送層形成工程104と、第1回収工程105と、第2供給工程106と、第2電極形成工程107と第2回収工程108とを有している。
 第1供給工程101は、ロール状帯状基材2aの繰り出し装置(不図示)とアキュームレータ101aとを使用ており、連続的に、次工程の正孔輸送層形成工程102に帯状基材2を繰り出す様になっている。アキュームレータ101aは次工程の正孔輸送層形成工程102との速度調整のために配設されている。
 正孔輸送層形成工程102は、塗布工程102aと、乾燥工程102bとを有し、アキュームレータ102cを使用している。正孔輸送層形成工程102では、第1電極までが形成された帯状基材2の第1電極取り出し電極部を除き第1電極の上に正孔輸送層形成用塗布液が塗布され、乾燥工程102bを経て正孔輸送層が形成され、次工程の発光層形成工程103に搬送される。アキュームレータ102cは次工程の発光層形成工程103との速度調整のために配設されている。
 塗布工程102aは、湿式塗布機102a1と帯状基材2を保持するバックアップロール102a2とを使用している。湿式塗布機102a1による正孔輸送層形成用塗布液は、帯状基材2に付けられているアライメントマーク(不図示)をアライメントマーク検出機(不図示)で検出し、第1電極(陽極)の取り出し電極(不図示)を除いて既に形成されている第1電極(陽極)(不図示)の上に塗布される。使用可能な湿式塗布機としては、例えば、ダイコート方式、スクリーン印刷方式、フレキソ印刷方式、インクジェット方式、メイヤーバー方式、キャップコート法、スプレー塗布法、キャスト法、ロールコート法、バーコート法、グラビアコート法等の塗布機の使用が可能である。これらの湿式塗布機の使用は正孔輸送層の材料に応じて適宜選択することが可能となっている。尚、本図は照明用に使用する有機EL素子を1例にしているため湿式塗布機102a1は全面塗工タイプとなっているが、有機ELパネルがフルカラー方式の場合は、パターン化されて形成されている第1電極(陽極)のパターンに合わせて第1電極(陽極)上に発光層をパターン塗布するため、例えば、インクジェット方式、フレキソ印刷方式、オフセット印刷方式、グラビア印刷方式、スクリーン印刷方式、マスクを用いたスプレー塗布方式等に使用する各種塗布装置を使用することが可能である。
 乾燥工程102bは、予備乾燥工程102b1と本乾燥工程102b2とを有している。予備乾燥工程102b1に関しては図2、図3に示す予備乾燥工程4cと同じである。
 本乾燥工程102b2は、乾燥装置102b21と加熱処理装置102b22とを使用している。乾燥装置102b21としては特に限定はなく、例えば加熱方式、加熱風方式、真空乾燥方式等が挙げられ必要に応じて適宜選択することが可能となっている。
 加熱処理装置102b22は正孔輸送層形成用塗膜(不図示)を帯状基材2の裏面側から裏面伝熱方式で加熱する様になっている。加熱処理装置102b22における正孔輸送層(不図示)の加熱処理条件として、正孔輸送層の平滑性向上、残留溶媒の除去等を考慮し、正孔輸送層を構成している樹脂のガラス転移温度に対して-30℃から+30℃、且つ、正孔輸送層を構成している有機化合物の分解温度を超えない温度で裏面伝熱方式の熱処理を行うことが好ましい。
 乾燥工程102bと発光層形成工程103との間には必要に応じて帯電防止手段102b3を配設することが好ましい。
 帯電防止手段帯電防止手段102b3は、非接触式帯電防止装置102b31と接触式帯電防止装置102b32とを有している。非接触式帯電防止装置102b31としては例えば、非接触式のイオナイザーが挙げられる。イオナイザーの種類については特に制限はなく、イオン発生方式はAC方式、DC方式どちらでも構わない。ACタイプ、ダブルDCタイプ、パルスACタイプ、軟X線タイプが用いることが出来るが、特に精密除電の観点から、ACタイプが好ましい。ACタイプの使用の際に必要となる噴射気体については、空気かNが用いられるが、充分に純度が高められたNで行うことが好ましい。又、インラインで行う観点より、ブロワータイプもしくはガンタイプより選ばれる。
 接触式帯電防止装置102b32としては、除電ロール又はアース接続した導電性ブラシを用いて行われる。除電器としての除電ロールは、接地されており、除電された表面に回転自在に接触して表面電荷を除去する。この様な除電ロールとしては、アルミニウム、銅、ニッケル、ステンレス等の金属製ロールの他に、カーボンブラック、金属粉、金属繊維等の導電性材料を混合した弾性のあるプラスチックやゴム製のロールが使用される。特に、帯状基材2との接触をよくするため、弾性のあるものが好ましい。アース接続した導電性ブラシとは、一般には、線状に配列した導電性繊維からなるブラシ部材や線状金属製のブラシを有する除電バー又は除電糸構造のものを挙げることが出来る。除電バーについては、特に限定はないが、コロナ放電式のものが好ましく用いられ、例えば、キーエンス社製のSJ-Bが用いられる。除電糸についても、特に限定はないが、通常フレキシブルな糸状のものが好ましく用いられ、例えば、日本精線社製ステンレス鋼除電繊維ナスロンをその一例として挙げることが出来る。
 非接触式帯電防止装置102b31は帯状基材2の上に形成されている正孔輸送層面側に使用し、接触式帯電防止装置102b32は帯状基材2の裏面側に使用することが好ましい。
 正孔輸送層の膜厚は、発光効率、寿命等を考慮し適宜調整される。
 発光層形成工程103は、塗布工程103aと、乾燥工程103bとを有し、アキュームレータ103cを使用している。アキュームレータ103cは次工程の電子輸送層形成工程104との速度調整のために配設されている。発光層形成工程103では、正孔輸送層までが形成された帯状基材2の第1電極取り出し電極部を除き正孔輸送層の上に発光層形成用塗布液が塗布され、乾燥工程103bを経て発光層が形成され、次工程の電子輸送層形成工程104に搬送される。
 塗布工程103aは、湿式塗布機103a1と、帯状基材2を保持するバックアップロール103a2とを使用している。湿式塗布機103a1による発光層形成用塗布液は、帯状基材2に付けられているアライメントマーク(不図示)をアライメントマーク検出機(不図示)で検出し、第1電極(陽極)の取り出し電極(不図示)を除いて既に形成されている正孔輸送層(不図示)の上に塗布される。使用可能な湿式塗布機としては、正孔輸送層形成工程102の塗布工程102aに使用する湿式塗布機と同じものを使用することが可能である。
 乾燥工程103bは、予備乾燥工程103b1と本乾燥工程103b2とを有している。予備乾燥工程103b1は正孔輸送層形成工程102の予備乾燥工程102b1と同じ構成となっている。
 本乾燥工程103b2は、乾燥装置103b21と加熱処理装置103b22とを使用している。乾燥装置103b21としては特に限定はなく、例えば加熱方式、加熱風方式等が挙げられ必要に応じて適宜選択することが可能となっている。
 加熱処理装置103b22は発光層形成用塗膜(不図示)を帯状基材2の裏面側から裏面伝熱方式で加熱する様になっている。加熱処理装置103b22における発光層(不図示)の加熱処理条件として、発光層の平滑性向上、残留溶媒の除去、発光層の硬化等を考慮し、発光層を構成している樹脂のガラス転移温度に対して-30℃から+30℃、且つ、発光層を構成している有機化合物の分解温度を超えない温度で裏面伝熱方式の熱処理を行うことが好ましい。
 乾燥工程103bと電子輸送層形成工程104との間には必要に応じて帯電防止手段102b3と同じ帯電防止手段103b3を配設することが好ましい。
 発光層の膜厚は、膜の均質性、素子寿命、発光効率等を考慮し、通常、5nmから1μm、好ましくは20nmから100nmの範囲で選ばれる。
 発光層(不図示)が多層の場合は、積層する数に合わせて塗布工程、乾燥工程を配設する必要がある。例えば、発光層を多層にすることで白色素子の作製が可能である。本発明において、発光層とは青色発光層、緑色発光層、赤色発光層を指す。発光層を積層する場合の積層順としては、特に制限はなく、又各発光層間に非発光性の中間層を有していてもよい。又、発光層を4層以上設ける場合には、陽極に近い順から、例えば青色発光層/緑色発光層/赤色発光層/青色発光層、青色発光層/緑色発光層/赤色発光層/青色発光層/緑色発光層、青色発光層/緑色発光層/赤色発光層/青色発光層/緑色発光層/赤色発光層の様に青色発光層、緑色発光層、赤色発光層を順に積層することが、輝度安定性を高める上で好ましい。
 発光層の膜厚の総和は特に制限はないが、膜の均質性、発光に必要な電圧等を考慮し、通常2nmから5μm、好ましくは2nmから200nmの範囲で選ばれる。更に10nmから100nmの範囲にあるのが好ましい。膜厚を100nm以下にすると電圧面のみならず、駆動電流に対する発光色の安定性が向上する効果があり好ましい。
 電子輸送層形成工程104は、塗布工程104aと、乾燥工程104bとを有し、アキュームレータ104cを使用している。アキュームレータ104cは次工程の第1回収工程105との速度調整のために配設されている。電子輸送層形成工程104では、発光層までが形成された帯状基材2の第1電極取り出し電極部を除き発光層の上に電子輸送層形成用塗布液が塗布され、乾燥工程104bを経て電子輸送層が形成され、次工程の第1回収工程105に搬送され一旦回収される。
 塗布工程104aは、湿式塗布機104a1と、帯状基材2を保持するバックアップロール104a2とを使用している。湿式塗布機104a1による電子輸送層形成用塗布液は、帯状基材2に付けられているアライメントマーク(不図示)をアライメントマーク検出機(不図示)で検出し、第1電極(陽極)の取り出し電極(不図示)を除いて既に形成されている発光送層(不図示)の上に塗布される。使用可能な湿式塗布機としては、正孔輸送層形成工程102の塗布工程102aに使用する湿式塗布機と同じものを使用することが可能である。
 乾燥工程104bは、予備乾燥工程104b1と本乾燥工程104b2とを有している。予備乾燥工程104b1は正孔輸送層形成工程102の予備乾燥工程102b1と同じ構成となっている。
 本乾燥工程104b2は、乾燥装置104b21と加熱処理装置104b22とを使用している。乾燥装置104b21としては特に限定はなく、例えば加熱方式、加熱風方式等が挙げられ必要に応じて適宜選択することが可能となっている。
 加熱処理装置104b22は電子輸送層形成用塗膜(不図示)を帯状基材2の裏面側から裏面伝熱方式で加熱する様になっている。加熱処理装置104b22における電子輸送層(不図示)の加熱処理条件として、電子輸送層の平滑性向上、残留溶媒の除去、電子輸送層の硬化等を考慮し、電子輸送層を構成している樹脂のガラス転移温度に対して-30℃から+30℃、且つ、電子輸送層を構成している有機化合物の分解温度を超えない温度で裏面伝熱方式の熱処理を行うことが好ましい。
 乾燥工程104bと第1回収工程105との間には必要に応じて帯電防止手段102b3と同じ帯電防止手段104b3を配設することが好ましい。
 電子輸送層の膜厚は発光効率、寿命等を考慮し適宜調整される。
 第2供給工程106は、電子輸送層迄が形成されロール状に巻取られたロール状帯状基材2aの繰り出し装置(不図示)とアキュームレータ106aとを使用ており、次工程の第2電極形成工程107に電子輸送層迄が形成された帯状基材2を繰り出す様になっている。アキュームレータ106aは次工程の第2電極形成工程107との速度調整のために配設されている。
 第2電極形成工程107は、蒸発源容器107bを有する蒸着装置107aとアキュームレータ107cとを有している。アキュームレータ107cは次工程の第2回収工程108との速度調整のために配設されている。
 第2電極形成工程107では第2供給工程106から供給されてくる電子輸送層迄が形成された帯状基材2に付けられているアライメントマーク(不図示)を検出装置(不図示)で読み取り、検出装置(不図示)の情報に従って蒸着装置107aで決められた位置に、取り出し電極(不図示)を有する第2電極(陰極)(不図示)を、既に形成されている電子注入層(不図示)の上にマスクパターン成膜する。第2電極(陰極)としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nmから5μm、好ましくは50nmから200nmの範囲で選ばれる。この段階で、基材/第1電極(陽極)/正孔輸送層/発光層/電子注入層/第2電極(陰極)の構成を有する有機EL素子3が出来上がる。この後、封止材料で有機EL素子を封止することで有機ELパネルが製造される。
 第2電極(陰極)の形成方法については、特に限定はなく、例えばスパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法などを用いることが出来る。
 本発明の有機薄膜層の形成方法で正孔輸送層、発光層、電子輸送層を湿式塗布方式で形成した有機EL素子は各層が安定して形成することが出来、安定した性能を有する有機EL素子の製造が可能となった。
 本図は、正孔輸送層形成工程から電子輸送層形成工程と、第2電極形成工程とに分割した場合を示したが正孔輸送層形成工程から第2電極形成工程までを連続することも可能である。
 以下に、本発明の有機薄膜層の形成方法により製造される製品に係わる材料に付き説明する。
 有機EL素子
 又、本発明の塗布方法で有機EL素子を製造する際に使用する材料は、国際公開第06/100868号パンフレット、特開2006-294536号公報、特開2007-73332公報等に記載されている公知の材料を使用することが可能である。
 その他
 尚、本発明の塗布方法で反射防止フィルム、光学フィルムを製造する際に使用する材料は、特開2008-296421号公報、同2008-242003号公報、同2008-224718号公報、同2008-200600号公報、同2007-098833号公報、同2006-293201号公報、同2006-285217号公報等に記載されている公知の材料を使用することが可能である。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されない。尚、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
 実施例1
 (帯状基材の準備)
 厚さ100μm、幅200mm、長さ500mのポリエチレンテレフタレートフィルム(帝人・デュポン社製フィルム、以下、PETと略記する)を帯状基材として準備した。
 (第1電極(ITO膜)の形成)
 準備した帯状基材の上にスパッタ装置を用いて厚さ100nmのITO膜を形成した。
 (有機薄膜層形成用塗布液の準備)
 アセトン100質量部に市販の染料、C.I.アシッドレッド249を1.5質量部を溶解した塗布液調製し、粘度1.0mP・sになる様にポリビニルブチレート(PVB)の添加量調整し塗布液を準備した。塗布液の粘度は東機産業株式会社製の、E型粘度計 VISCONIC ED型及び同社製コントローラーE-200型を使用し、温度25℃で測定した値を示す。
 (スリット型ダイコーターの準備)
 以下に示すスリット型ダイコーターを準備した。
   スリット型ダイコーターの幅             170mm
   スリット間隙O                   100μm
   塗布幅                       100mm
 (塗布)
 図1に示す製造工程で準備したスリット型ダイコーターを使用し、準備した有機薄膜層形成用塗布液を、直径300mmのバックロールに支持された、準備した帯状基材の上に形成したITO膜の上に、塗布速度1.0m/minから10.0m/minで塗布し、ウェット膜厚6μmの有機薄膜層形成用塗膜を形成し表1に示す様に乾燥室の入り口及び出口のバックロールの表面からの高さを連続的に変えた乾燥装置を使用した図2、図3に示す予備乾燥工程で処理し、引き続き本乾燥工程で加熱装置により温度120℃、平均風速0.3m/secで乾燥し有機薄膜層を形成し試料No.101から110とした。ドライ膜厚(乾燥後の膜厚)は100nmであった。尚、予備乾燥工程に入る時の有機薄膜層形成用塗膜に含有される溶剤量は、有機薄膜層形成用塗布液に含有される溶媒量に対して95.0%であった。
 予備乾燥工程に入る前の有機薄膜層形成用塗膜に含有される溶媒量は、キーエンス社製ダブルスキャン型レーザー変位計 LT-9500を用いウェット膜厚より算出した値を使用した。
 尚、予備乾燥工程を通過させた後に含まれる溶媒量は1.2質量%であった。
 予備乾燥工程を通過させた後の有機薄膜層形成用塗膜に含有される溶媒量とは、有機薄膜層形成用塗布液に含有される溶媒量に対する割合(質量%)を示す。
 尚、ウェット膜厚とは、下式で算出される理論膜厚を言う。
 ウェット膜厚=塗布液供給流量/(塗布幅×塗布速度)
 又、塗布速度は、三菱電機(株)製 レーザドップラ速度計LV203で測定した。
 (塗布条件)
 塗布条件としては、塗布幅100mm、塗布長50m、塗布液の塗布時の温度は25℃で行った。
 予備乾燥工程の条件
 乾燥室を流れる乾燥風の温度:25℃
 乾燥室の入り口から出口までの距離:200mm
 乾燥室の内側の表面の表面粗さ(Ra):5μm
 乾燥室の有機薄膜層形成用塗布液の塗布幅に対する割合(%):150%
 乾燥室の減圧度:30Pa
 乾燥風の流れる方向は帯状基材の搬送方向と同じとした。
 比較試料の作製
 予備乾燥工程を使用せずに本乾燥工程で温度120℃で乾燥した他は全て同じ条件で行い有機薄膜層を形成し比較試料No.111とした。
 評価
 作製した各試料No.101から111に付き、始め5mと、終わり5mとの箇所から試料を抜き取り、膜厚安定性を以下に示す測定方法により測定し、以下に示す評価ランクに従って評価した結果を表1に示す。
 膜厚安定性の測定方法
 濃度と膜厚との関係が直線関係にあることから、コニカミノルタ製コニカデンシトメーターPDM-7を使用し、幅手方向に10mm間隔で濃度を測定し、試料に付き31点の濃度のバラツキを膜厚安定性として、次の式より計算で求めた。
  膜厚安定性(バラツキ)=((最高濃度-最小濃度)/平均濃度)×100
 膜厚安定性(バラツキ)の評価ランク
 ◎:バラツキが1.0未満
 ○:バラツキが1.0以上、3.0未満
 △:バラツキが3.0以上、5.0未満
 ×:バラツキが5.0以上
Figure JPOXMLDOC01-appb-T000001
 有機薄膜層形成用塗布液を帯状基材の上に形成したITO膜の上に塗布し、有機薄膜層形成用塗膜を形成した後、バックロールの上に入り口から出口のバックロールの表面からの高さを0.1mmから10.0mmで連続的に単調に増加した乾燥室を有し、乾燥室を減圧とする乾燥装置を使用し、層流状態の乾燥風が流れる予備乾燥工程を通過させ、本乾燥工程で乾燥し有機薄膜層を形成した試料No.102から109は膜厚安定性が優れた性能を示すことが確認された。
 予備乾燥工程の乾燥室の上に入り口のバックロールの表面からの高さを0.0.07mm、出口のバックロールの表面からの高さを20.0mmと連続的に単調に増加した乾燥室を有し、乾燥室を減圧とする乾燥装置を使用して作成した試料No.101は、膜厚バラツキが本発明の試料No.102から109に比べ実用上問題にはならないが僅かに劣ることが確認された。
 予備乾燥工程の乾燥室の上に入り口のバックロールの表面からの高さを20.0mm、出口のバックロールの表面からの高さを55.0mmと連続的に単調に増加した乾燥室を有し、乾燥室を減圧とする乾燥装置を使用して作成した試料No.109は、膜厚バラツキが本発明の試料No.102から109に比べ実用上問題にはならないが僅かに劣ることが確認された。
 有機薄膜層形成用塗布液を帯状基材の上に形成したITO膜の上に塗布し、有機薄膜層形成用塗膜を形成した後、予備乾燥工程を使用せず、加熱した層流の乾燥風で乾燥して作製した試料No.111は膜が流れることで、膜厚安定性が本発明の試料No.101から110に比べ劣ることが確認された。本発明の有効性を確認した。
 実施例2
 (帯状基材の準備)
 実施1と同じ帯状基材を準備した。
 (第1電極(ITO膜)の形成)
 実施1と同じ方法で準備した帯状基材の上に第1電極(ITO膜)を形成した。
 (有機薄膜層形成用塗布液の準備)
 実施例1と同じ有機薄膜層形成用塗布液を準備した。
 (塗布)
 実施例1で使用したものと同じスリット型ダイコーターを使用し、図1に示す製造工程で、準備した有機薄膜層形成用塗布液を準備した帯状基材の上に塗布速度1.0m/minから10.0m/minで塗布し、ウェット膜厚6.0μmの有機薄膜層形成用塗膜を形成し、予備乾燥工程を通過させた後の有機薄膜層形成用塗膜に含有される溶媒量を表2に示す様に変化させた他は、実施例1で作成した試料No.106と同じ方法で帯状基体の上に有機薄膜層を形成し試料No.201から208とした。尚、予備乾燥工程を通過させた後に有機薄膜層形成用塗膜に含まれる溶媒量を0.007から10.5質量%までの調整は、乾燥室の入り口から出口までのバックロールの表面からの高さ、乾燥装置内の圧力制御室の圧力、搬送速度、等を変化させることで行った。
 予備乾燥工程を通過させた後の有機薄膜層形成用塗膜に含有される溶媒量とは、有機薄膜層形成用塗布液に含有される溶媒量に対する割合(質量%)を示す。
 尚、ウェット膜厚とは、実施例1と同じ理論膜厚を言い、実施例1と同じ方法で測定した値を示す。又、塗布速度は、三菱電機(株)製 レーザドップラ速度計LV203で測定した。
 (塗布条件)
 塗布条件としては、実施例1と同じ条件で行った。
 評価
 作製した各試料No.201から208に付き、始め5mと、終わり5mとの箇所から試料を抜き取り、膜厚安定性を実施例1と同じ方法で測定し、実施例1と同じ評価ランクに従って評価した結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 有機薄膜層形成用塗布液を帯状基材の上に形成したITO膜の上に塗布し、有機薄膜層形成用塗膜を形成した後、層流状態の乾燥風が流れる予備乾燥工程を通過させ、予備乾燥工程を通過させた後の前記有機薄膜層形成用塗膜に含有される溶媒量が、有機薄膜層形成用塗布液に含有される溶媒量の0.01質量%から10.0質量%の状態で、本乾燥工程で乾燥し有機薄膜層を形成した試料No.202から207は膜厚安定性が優れた性能を示すことが確認された。
 有機薄膜層形成用塗布液を帯状基材の上に形成したITO膜の上に塗布し、有機薄膜層形成用塗膜を形成した後、層流状態の乾燥風が流れる予備乾燥工程を通過させ、予備乾燥工程を通過させた後の前記有機薄膜層形成用塗膜に含有される溶媒量が、有機薄膜層形成用塗布液に含有される溶媒量の0.007質量%状態で、本乾燥工程で乾燥し有機薄膜層を形成した試料No.201は膜厚安定性が本発明の試料No.202から207に比べ実用上問題ない程度で劣ることが確認された。
 有機薄膜層形成用塗布液を帯状基材の上に形成したITO膜の上に塗布し、有機薄膜層形成用塗膜を形成した後、層流状態の乾燥風が流れる予備乾燥工程を通過させ、予備乾燥工程を通過させた後の前記有機薄膜層形成用塗膜に含有される溶媒量が、有機薄膜層形成用塗布液に含有される溶媒量の7質量%状態で、本乾燥工程で乾燥し有機薄膜層を形成した試料No.208は、膜厚安定性が本発明の試料No.202から207に比べ実用上問題ない程度で劣ることが確認された。
 有機薄膜層形成用塗布液を帯状基材の上に形成したITO膜の上に塗布し、有機薄膜層形成用塗膜を形成した後、予備乾燥工程を使用せず、加熱した層流の乾燥風で乾燥して作製した試料No.209は膜が流れることで、膜厚安定性が本発明の試料No.201から208に比べ劣ることが確認された。本発明の有効性を確認した。
 実施例3
 (帯状基材の準備)
 実施1と同じ帯状基材を準備した。
 (第1電極(ITO膜)の形成)
 実施1と同じ方法で準備した帯状基材の上に第1電極(ITO膜)を形成した。
 (有機薄膜層形成用塗布液の準備)
 実施例1と同じ有機薄膜層形成用塗布液を準備した。
 (塗布)
 実施例1で使用したものと同じスリット型ダイコーターを使用し、図1に示す製造工程で、準備した有機薄膜層形成用塗布液を準備した帯状基材の上に塗布速度1.0m/minから10.0m/minで塗布し、ウェット膜厚6.0μmの有機薄膜層形成用塗膜を形成し、表3に示す様に図2、図3に示す予備乾燥工程に入る前の有機薄膜層形成用塗膜の残存溶媒量を、帯状基材の搬送速度、スリット型ダイコーターと予備乾燥装置の開口部までの距離を変化させて処理した後、引き続き本乾燥工程で温度120℃で乾燥し有機薄膜層を形成し試料No.301から308とした。尚、ドライ膜厚(乾燥後の膜厚)は100nmであった。予備乾燥工程に入る前の有機薄膜層形成用塗膜に含有される溶媒量とは、有機薄膜層形成用塗布液に含有される溶媒量に対する割合(質量%)を示す。
 予備乾燥工程に入る前の有機薄膜層形成用塗膜に含有される溶媒量は、実施例1と同じ方法で測定した値を使用した。
 尚、ウェット膜厚とは、実施例1と同じ理論膜厚を言い、実施例1と同じ方法で測定した値を示す。下式で算出される理論膜厚を言う。
 又、塗布速度は、三菱電機(株)製 レーザドップラ速度計LV203で測定した。
 (塗布条件)
 塗布条件としては、実施例1と同じ条件で行った。
 予備乾燥工程を出る時の有機薄膜層形成用塗膜に含有される溶媒量は、乾燥室の入り口から出口までのバックロールの表面からの高さ、乾燥装置内の圧力制御室の圧力、搬送速度、等を変化させることで、有機薄膜層形成用塗布液に含有される溶媒量に対して1.2質量%とした。
 評価
 作製した各試料No.301から308付き、始め5mと、終わり5mとの箇所から試料を抜き取り、膜厚安定性を実施例1と同じ方法で測定し、実施例1と同じ評価ランクで評価した結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 有機薄膜層形成用塗膜に含有される溶媒量中の溶剤量が有機薄膜層形成用塗布液に含有される溶剤量に対して20質量%以上で、予備乾燥工程に搬送し作製した試料No.301から307は膜厚安定性において優れた性能を示すことが確認された。本発明の有効性が確認された。
 実施例4
 予備乾燥工程の乾燥風の温度を表4に示す様に変えた他は全て実施例1で作製した試料No.106と同じ条件で有機薄膜層を形成し試料No.401から407とした。尚、塗布を行った際の、雰囲気温度は25℃であった。
 評価
 作製した各試料No.401から407に付き、始め5mと、終わり5mとの箇所から試料を抜き取り、膜厚安定性を実施例1と同じ方法で測定し、実施例1と同じ評価ランクで評価した結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 層流状態の乾燥風の温度を、有機薄膜層形成用塗布液を帯状基材の上に塗布する時の雰囲気温度(25℃±5℃)にすることで塗布液膜の熱対流を抑え膜厚安定性に優れた性能を示すことが確認された。本発明の有効性が確認された。
 実施例5
 予備乾燥工程の風流路乾燥風温度、乾燥流路高さ及び乾燥風流路の有機薄膜層形成用塗布液の塗布幅に対する割合を変え、乾燥風のレイノルズ数(Re)及び平均流速を表5に示す様に変えた他は全て実施例1で作製した試料No.106と同じ条件で有機薄膜層を形成し試料No.501から512とした。
 Re数は以下に示す式で表される。
  Re=ρvd/μ
 相当直径をd、乾燥風の密度ρ、乾燥風の粘度μ、乾燥風の粘性μ、平均流速をvとした時とする。
 評価
 作製した各試料No.501から512に付き、始め5mと、終わり5mとの箇所から試料を抜き取り、膜厚安定性を実施例1と同じ方法で測定し、実施例1塗同じ評価ランクで評価した結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 層流状態の乾燥風のレイノルズ数(Re)が73から1950で、且つ平均流速が0.3m/sec以上の条件にすることで膜厚安定性が優れた性能を示すことが確認された。本発明の有効性が確認された。
 実施例6
 帯状の有機EL素子構造体(可撓性基材/第1電極(陽極)/正孔輸送層/発光層/電子輸送層/第2電極(陰極))を図4に示す製造工程を使用し、予備乾燥工程を通過させた後の発光層形成用塗膜に含有される溶媒量を表7に示す様に変化させ、以下に示す方法で作製した後、断裁し有機EL素子を作製し試料No.601から608とした。尚、正孔輸送層、発光層、電子輸送層はスリット型ダイコーターで塗布し形成し、第1電極(陽極)、第2電極(陰極)は蒸着方式で成膜し形成した。
 〈帯状基材の準備〉
 厚さ100μm、幅200mm、長さ500mのポリエチレンテレフタレートフィルム(帝人・デュポン社製フィルム、以下、PETと略記する)を帯状基材として準備した。尚、帯状基材には、予め第1電極を形成する位置を示すためにアライメントマークを第1電極が形成される面及び反対の面の同じ位置に設けた。
 〈第1電極の形成〉
 準備した帯状基材の上に5×10-1Paの真空環境条件で厚さ120nmのITO(インジウムチンオキシド)をスパッタリング法により、マスクパターン成膜を行い、取り出し電極を有する12mm×5mmの大きさの第1電極を一定間隔で12列連続的に形成し、一旦巻取り保管した。
 (正孔輸送層形成用塗布液の準備)
 ポリエチレンジオキシチオフェン・ポリスチレンスルホネート(PEDOT/PSS、Bayer社製 Bytron P AI 4083)を純水で65%、メタノール5%で希釈した溶液を正孔輸送層形成用塗布液として準備した。正孔輸送層形成用塗布液の粘度は0.7mPa・sであった。粘度はブルックフィールド社製 デジタル粘度計 LVDV-Iを使用し、20℃で測定した値を示す。
 (正孔輸送層の形成)
 準備したスリット型ダイコーターを使用し、準備された第1電極が形成されたロール状のPETを帯電除去処理した後、バックアップロールに保持されたPETの第1電極の上全面(但し、両端の10mmは除く)に、準備した正孔輸送層形成用塗布液を以下に示す条件で塗布した後、乾燥・加熱処理を行った。
 (帯電除去処理)
 帯電除去処理は第1電極形成側を非接触式帯電防止装置を、裏面側を接触式帯電防止装置を使用した。非接触式帯電防止装置はヒューグルエレクトロニクス(株)製フレキシブルAC式イオナイズィングバーMODEL4100Vを使用し行った。接触式帯電防止装置は都ローラー工業(株)製導電性ガイドロールME-102を使用し行った。
 (正孔輸送層形成用塗布液の塗布条件)
 塗布条件としては、正孔輸送層形成用塗布液を塗布速度5m/min、塗布幅180mm、ウェット膜厚は2μm、正孔輸送層形成用塗布液の塗布時の温度は25℃、露点温度-20℃以下のNガス環境の大気圧下で、且つ清浄度クラス5以下(JIS B 9920)で行った。予備乾燥工程を通過した後の正孔輸送層形成用塗膜に含有される溶媒量は、正孔輸送層形成用塗布液に含有される溶媒量に対して5質量%とした。
 バックロールは直径300mmのものを使用した。
 予備乾燥工程の条件
 乾燥室を流れる乾燥風の温度:25℃
 乾燥室を流れる乾燥風の平均風速:1.0m/sec
 乾燥室の入り口のバックロール表面からの高さ:5mm
 乾燥室の出口のバックロール表面からの高さ:5mm
 乾燥室の入り口から出口までの距離:200mm
 乾燥室の内側の表面の表面粗さ(Ra):5μm
 乾燥室の有機薄膜層形成用塗布液の塗布幅に対する割合(%):150%
 乾燥風の流れる方向は帯状基材の搬送方向と同じとした。
 ウェット膜厚は、流量(供給量)/(塗布幅×塗布速度)により算出した理論値を示す。
 尚、塗布速度は、三菱電機(株)製 レーザドップラ速度計LV203で測定した。
 乾燥及び加熱処理条件
 正孔輸送層形成用塗膜の乾燥及び加熱処理条件としては、正孔輸送層形成用塗布液を塗布し予備乾燥工程を通過した後、乾燥装置を使用し、乾燥装置のスリットノズル形式の流出口から成膜面に向け高さ100mm、流出風速1m/sec、幅手の風速分布5%、温度120℃の熱風を吹き付け残留溶媒を除去した後、引き続き、加熱処理装置により温度150℃で裏面伝熱方式の熱処理を行い、正孔輸送層を形成した。尚、ドライ膜厚(乾燥後の膜厚)は100nmであった。
 (発光層形成用塗布液の調製)
 ジカルバゾール誘導体(CBP)           1.00質量%
 イリジウム錯体(Ir(ppy))         0.05質量%
 トルエン                     98.95質量%
 発光層形成用塗布液の粘度は0.59mPa・sであった。粘度はブルックフィールド社 デジタル粘度計 LVDV-Iを使用し、20℃で測定した値を示す。
 (発光層の形成)
 準備された正孔輸送層までが形成されたロール状のPETを帯電除去処理した後、正孔輸送層の上全面(但し、PETの両端の10mmは除く)に、準備したスリット型ダイコーターを使用し、発光層形成用塗布液を以下に示す条件で塗布した。塗布後、予備乾燥工程で処理し、予備乾燥工程を通過させた後の発光層形成用塗膜に含有される溶媒量を表5に示す様に変化させ、引き続き乾燥部で以下に示す条件により乾燥・加熱処理を行った引き続き電子輸送層形成工程に搬送した。予備乾燥工程を通過させた後の発光層形成用塗膜に含有される溶媒量とは、発光層形成用塗布液に含有される溶媒量に対する割合(質量%)を示す。予備乾燥工程を通過させた後の発光層形成用塗膜に含有される溶媒量の変化は、乾燥風流路を流れる乾燥風の平均流速を0.08m/secから2.5m/secに変えることで行った。
 帯電除去処理は発光層側に対して非接触式帯電防止装置を、裏面側に対して接触式帯電防止装置を使用した。非接触式帯電防止装置及び触式帯電防止装置は正孔輸送層を形成する時と同じものを使用した。
 (発光層形成用塗布液の塗布条件)
 塗布条件としては、発光層形成用塗布液を塗布速度5m/min、塗布幅180mm、ウェット膜厚は3μm、発光層形成用塗布液の塗布時の温度は25℃、露点温度-20℃以下のNガス環境の大気圧下で、且つ、清浄度クラス5以下(JIS B 9920)で行った。尚、塗布速度は、正孔輸送層の塗布速度と同じ測定方法で行った。
 予備乾燥工程の条件
 乾燥風流路を流れる乾燥風の平均流速を除いて正孔輸送層形成の時と同じ条件とした。
 予備乾燥工程内に搬送される時の発光層形成用塗膜に含有される溶媒量は、帯状基材の搬送速度、スリット型ダイコーターと予備乾燥装置の開口部までの距離を調整し、発光層形成用塗布液に含有される溶媒量に対して90質量%とした。
 乾燥及び加熱処理条件
 発光層形成用塗膜の乾燥及び加熱処理条件としては、発光層形成用塗布液を塗布した後、乾燥装置を使用し、乾燥条件は、乾燥装置のスリットノズル形式の流出口から成膜面に向け高さ100mm、流出風速1m/sec、幅手の風速分布5%、温度120℃で溶媒を除去した後、引き続き、加熱処理装置により温度150℃で裏面伝熱方式の熱処理を行い、発光層を形成した。尚、ドライ膜厚(乾燥後の膜厚)は100nmであった。
 (電子輸送層形成用塗布液の準備)
 電子輸送層形成用塗布液として、0.5質量%の電子輸送材料1を含有する1-ブタノール溶液を準備した。
Figure JPOXMLDOC01-appb-C000006
 (電子輸送層の形成)
 準備された発光層までが形成されたロール状のPETを帯電除去処理した後、発光層の上全面(但し、PETの両端の10mmは除く)に、準備したスリット型ダイコーターを使用し、準備した電子輸送層形成用塗布液を以下に示す条件で塗布した。塗布後、乾燥部で以下に示す条件により乾燥・加熱処理を行った後、第1電極の取り出し電極部の上に形成された正孔送層、発光層及び電子輸送層を除去し、パターン化した電子輸送層までを形成したPETを作製し、一旦巻取り保管した。
 (帯電除去処理)
 帯電除去処理は電子輸送層側を非接触式帯電防止装置を、裏面側を接触式帯電防止装置を使用した。非接触式帯電防止装置及び触式帯電防止装置は正孔輸送層を形成する時と同じものを使用した。
 (電子輸送層形成用塗布液の塗布条件)
 塗布条件としては、電子輸送層形成用塗布液を、塗布速度5m/min、塗布幅180mm、ウェット膜厚は2μm、電子輸送層形成用塗布液の塗布時の温度は25℃、露点温度-20℃以下のNガス環境の大気圧下で、且つ、清浄度クラス5以下(JIS B 9920)で行った。尚、塗布速度は、正孔輸送層の塗布速度と同じ測定方法で行った。
 予備乾燥工程の条件
 乾燥風流路を流れる乾燥風の平均流速も含め、正孔輸送層形成の時と同じ条件とした。
 ウェット膜厚は、流量(供給量)/(塗布幅×塗布速度)により算出した理論値を示す。
 尚、塗布速度は、三菱電機(株)製 レーザドップラ速度計LV203で測定した。
 乾燥及び加熱処理条件
 電子輸送層形成用塗膜の乾燥及び加熱処理条件としては、電子輸送層形成用塗布液を塗布した後、乾燥装置を使用し、乾燥条件は、乾燥装置のスリットノズル形式の流出口から成膜面に向け高さ100mm、流出風速1m/sec、幅手の風速分布5%、温度120℃で溶媒を除去した後、引き続き、加熱処理装置により温度150℃で裏面伝熱方式の熱処理を行い、電子輸送層を形成した。尚、ドライ膜厚(乾燥後の膜厚)は50nmであった。
 (第2電極の形成)
 引き続き、電子輸送層までが形成されたPETに付けられたアライメントマークを検出し、アライメントマークの位置に従って形成された電子輸送層の上に第1電極の大きさ及び第2電極用取り出し電極を形成する大きさで、5×10-4Paの真空下にて第2電極形成材料としてアルミニウムを使用し、蒸着法にてマスクパターン成膜し、厚さ100nmの第2電極を積層し複数の有機EL素子を形成した有機EL素子構造体を作製した。
 (断裁)
 準備した複数の有機EL素子が連続的に繋がった状態のものを個別の有機EL素子の大きさにPETに付けられたアライメントマークを検出し、アライメントマークの位置に従って断裁し個別の有機EL素子を作製した。
 比較試料の作製
 予備乾燥工程を使用せずに本乾燥工程で正孔輸送層、発光層、電子輸送層を温度150℃で乾燥した他は全て同じ条件で行い有機薄膜層を形成し比較試料No.609とした。
 評価
 作製した試料No.601から609に付き、始め5mと、終わり5mとの箇所から作製した試料を抜き取り、リーク電流特性、輝度ムラを以下に示す試験方法により試験し、以下に示す評価ランクに従って評価した結果を表6に示す。
 リーク電流特性の試験方法
 定電圧電源を用いて、逆方向の電圧(逆バイアス)を5Vを5秒間印加し、その時有機EL素子に流れる電流を測定した。サンプル10枚の発光領域について測定を行い、最大電流値をリーク電流とした。
 リーク電流特性の評価ランク
 ◎:最大電流値が1×10-6A未満
 ○:最大電流値が1×10-6A以上、1×10-5A未満
 △:最大電流値が1×10-5A以上、1×10-3A未満
 ×:最大電流値が1×10-3A以上。
 発光ムラ(輝度ムラ)の測定方法
 定電圧電源を用いて、有機ELパネルに直流5Vを印加し、サンプル中央部の発光部6箇所の輝度差を目視で観察した。
 発光ムラ(輝度ムラ)の評価ランク
 ◎:輝度の差が全くない
 ○:6箇所中、1箇所の輝度が異なる
 △:6箇所中、2箇所以上4箇所未満の輝度が異なる
 ×:6箇所中、4箇所以上の輝度が異なる。
Figure JPOXMLDOC01-appb-T000007
 本発明の予備乾燥の条件で、作製した可撓性基材/第1電極(陽極)/正孔輸送層/発光層/電子輸送層/第2電極(陰極)の層構成を有する有機EL素子である試料No.602から607は何れもリーク電流特性、輝度ムラ共に安定した性能を示すことを確認した。
 本発明の予備乾燥の条件外(予備乾燥工程を通過させた後の塗膜に含まれる溶媒量が、塗布液に含まれる溶媒量に対して0.007質量%)で、作製した有機EL素子である試料No.601は、リーク電流特性、輝度ムラ共に試料No.602から607に対して劣る結果を示した。
 本発明の予備乾燥の条件外(予備乾燥工程を通過させた後の塗膜に含まれる溶媒量が、塗布液に含まれる溶媒量に対して7.0質量%)で、作製した有機EL素子である試料No.608は、リーク電流特性、輝度ムラ共に試料No.602から607に対して劣る結果を示した。
 予備乾燥を行わずに作製した有機EL素子である試料No.609は、リーク電流特性、輝度ムラ共に試料No.602から607に対して劣る結果を示した。
 本発明の有効性が確認された。
 1 製造工程
 102 正孔輸送層形成工程
 103 発光層形成工程
 104 電子輸送層形成工程
 107 第2電極形成工程
 2、2a、5 帯状基材
 4 形成工程
 4b 塗布工程
 102a1、103a1、104a1、4b1 湿式塗布機
 102b1、103b1、104b1、4c 予備乾燥工程
 4c1 乾燥装置
 4c11 乾燥室
 4c115、4c116 開口部
 4c12 圧力制御部
 102b2、103b2、103b2、4d 本乾燥工程
 102b21、103b21、104b21、4d1 乾燥装置

Claims (10)

  1.  バックロールに支持され搬送される帯状基材の上に、有機薄膜層形成用塗布液を塗布する塗布工程と、前記塗布工程で形成された塗膜を乾燥する乾燥工程を有する有機薄膜層の形成方法において、
     前記乾燥工程は、前記バックロールの上に乾燥室を有する乾燥装置を使用していることを特徴とする有機薄膜層の形成方法。
  2.  前記乾燥室を減圧とすることを特徴とする請求項1に記載の有機薄膜層の形成方法。
  3.  前記乾燥室の入り口から出口までの高さが、前記バックロールの表面から0.1mmから50mmで連続的に変化していることを特徴とする請求項1又は2に記載の有機薄膜層の形成方法。
  4.  前記乾燥工程は前記塗膜に含有される溶媒量が、前記有機薄膜層形成用塗布液に含有される溶媒量に対して20%以上の間に前記塗膜が前記乾燥室内に搬送される位置に配置されていることを特徴とする請求項1から3の何れか1項に記載の有機薄膜層の形成方法。
  5.  前記乾燥工程は前記塗膜に含有される溶媒量を、前記有機薄膜層形成用塗布液に含有される溶媒量の0.01質量%から10.0質量%にすることを特徴とする請求項1から4の何れか1項に記載の有機薄膜層の形成方法。
  6.  前記乾燥工程は、吸引方式で形成した層流状態の乾燥風により前記塗膜を乾燥することを特徴とする請求項1から5の何れか1項に記載の有機薄膜層の形成方法。
  7.  前記乾燥風のレイノルズ数(Re)が70から1950で、且つ平均流速が0.3m/sec以上であることを特徴とする請求項6に記載の有機薄膜層の形成方法。
  8.  前記層流状態の乾燥風の温度は、前記有機薄膜層形成用塗布液を、前記帯状基材の上に塗布する時の雰囲気温度に対して±5℃であることを特徴とする請求項6又は7に記載の有機薄膜層の形成方法。
  9.  前記層流状態の乾燥風は、前記帯状基材の長さ方向と平行で、且つ搬送方向と同じ方向に流れていることを特徴とする請求項6から8の何れか1項に記載の有機薄膜層の形成方法。
  10.  基材上に少なくとも第1電極と、少なくとも1層の有機層と第2電極を有する有機エレクトロルミネッセンス素子の製造方法において、前記有機層が請求項1から9の何れか1項に記載の有機薄膜層の形成方法により形成されることを特徴とする有機エレクトロルミネッセンス素子の製造方法。
PCT/JP2011/064894 2010-07-01 2011-06-29 有機薄膜層の形成方法、有機エレクトロルミネッセンス素子の製造方法 WO2012002423A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012522655A JP5700043B2 (ja) 2010-07-01 2011-06-29 有機薄膜層の形成方法、有機エレクトロルミネッセンス素子の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010150868 2010-07-01
JP2010-150868 2010-07-01

Publications (1)

Publication Number Publication Date
WO2012002423A1 true WO2012002423A1 (ja) 2012-01-05

Family

ID=45402128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064894 WO2012002423A1 (ja) 2010-07-01 2011-06-29 有機薄膜層の形成方法、有機エレクトロルミネッセンス素子の製造方法

Country Status (2)

Country Link
JP (1) JP5700043B2 (ja)
WO (1) WO2012002423A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014100660A (ja) * 2012-11-20 2014-06-05 Dainippon Printing Co Ltd 塗膜形成方法、及び、塗膜形成装置
CN111312903A (zh) * 2020-03-04 2020-06-19 江苏集萃分子工程研究院有限公司 两步法卷对卷制备钙钛矿薄膜的连续制备装置及工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190292A (ja) * 1997-09-25 1999-04-06 Dainippon Screen Mfg Co Ltd 塗布装置および塗布方法
JP2003297569A (ja) * 2002-01-30 2003-10-17 Toshiba Corp 表示装置の製造方法及び製造装置
JP2005275275A (ja) * 2004-03-26 2005-10-06 Seiko Epson Corp 乾燥装置、乾燥方法、有機エレクトロルミネッセンス装置の製造方法、カラーフィルタの製造方法、有機エレクトロルミネッセンス装置、及び液晶装置
JP2007232268A (ja) * 2006-02-28 2007-09-13 Toshiba Corp 減圧乾燥装置及び塗布体の製造方法
JP2008302301A (ja) * 2007-06-07 2008-12-18 Toppan Printing Co Ltd 塗布物の製造装置
JP2009268975A (ja) * 2008-05-08 2009-11-19 Konica Minolta Holdings Inc 有機化合物層形成用塗布液の塗布方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190292A (ja) * 1997-09-25 1999-04-06 Dainippon Screen Mfg Co Ltd 塗布装置および塗布方法
JP2003297569A (ja) * 2002-01-30 2003-10-17 Toshiba Corp 表示装置の製造方法及び製造装置
JP2005275275A (ja) * 2004-03-26 2005-10-06 Seiko Epson Corp 乾燥装置、乾燥方法、有機エレクトロルミネッセンス装置の製造方法、カラーフィルタの製造方法、有機エレクトロルミネッセンス装置、及び液晶装置
JP2007232268A (ja) * 2006-02-28 2007-09-13 Toshiba Corp 減圧乾燥装置及び塗布体の製造方法
JP2008302301A (ja) * 2007-06-07 2008-12-18 Toppan Printing Co Ltd 塗布物の製造装置
JP2009268975A (ja) * 2008-05-08 2009-11-19 Konica Minolta Holdings Inc 有機化合物層形成用塗布液の塗布方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014100660A (ja) * 2012-11-20 2014-06-05 Dainippon Printing Co Ltd 塗膜形成方法、及び、塗膜形成装置
CN111312903A (zh) * 2020-03-04 2020-06-19 江苏集萃分子工程研究院有限公司 两步法卷对卷制备钙钛矿薄膜的连续制备装置及工艺

Also Published As

Publication number Publication date
JPWO2012002423A1 (ja) 2013-08-29
JP5700043B2 (ja) 2015-04-15

Similar Documents

Publication Publication Date Title
JP5831228B2 (ja) 塗布方法
US20030194497A1 (en) Coating method, coating apparatus, and method and apparatus for manufacturing pattern members using webs on which coating films have been formed by coating method and coating apparatus
JP5522170B2 (ja) 塗布方法
US11342130B2 (en) Method of making a photovoltaic device on a substrate at high speed with perovskite solution
JP5648691B2 (ja) 塗布方法、有機エレクトロニクス素子の製造方法
JP5700043B2 (ja) 有機薄膜層の形成方法、有機エレクトロルミネッセンス素子の製造方法
US10319909B2 (en) Method for manufacturing organic electronic element
KR20140143589A (ko) 플렉서블 woled 디스플레이와 플렉서블 oled 조명용 박막 대량생산 제조용 롤투롤 증착기
JP2011131116A (ja) 塗布方法及び有機エレクトロルミネッセンス素子
US10686162B2 (en) Method for manufacturing organic EL panel
WO2017056875A1 (ja) 薄膜製造方法及び有機elデバイスの製造方法
WO2012026363A1 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP5772826B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP2004001465A (ja) パターン部材の製造方法及び製造装置
JP2011230872A (ja) 帯状フィルムロール体
JP2013250002A (ja) 塗布膜の乾燥装置及び乾燥方法
WO2016132583A1 (ja) 薄膜電子デバイスの製造方法、エッチング装置および薄膜電子デバイスの製造装置
WO2012121237A1 (ja) 蒸着装置及び薄膜形成方法
WO2012121238A1 (ja) 蒸着用シート、蒸着装置、及び蒸着用シートの製造方法
JP2011253784A (ja) 塗布装置及び有機エレクトロニクス素子の製造方法
JP2011241015A (ja) 帯状可撓性支持体の搬送方法、有機エレクトロニクス素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800885

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012522655

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800885

Country of ref document: EP

Kind code of ref document: A1