WO2012000212A1 - 抑制5型磷酸二酯酶的化合物及制备方法 - Google Patents

抑制5型磷酸二酯酶的化合物及制备方法 Download PDF

Info

Publication number
WO2012000212A1
WO2012000212A1 PCT/CN2010/075587 CN2010075587W WO2012000212A1 WO 2012000212 A1 WO2012000212 A1 WO 2012000212A1 CN 2010075587 W CN2010075587 W CN 2010075587W WO 2012000212 A1 WO2012000212 A1 WO 2012000212A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
zth
formula
pyrazolo
dihydro
Prior art date
Application number
PCT/CN2010/075587
Other languages
English (en)
French (fr)
Inventor
张南
钟荣
Original Assignee
苏州麦迪仙医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州麦迪仙医药科技有限公司 filed Critical 苏州麦迪仙医药科技有限公司
Priority to AU2010356747A priority Critical patent/AU2010356747B2/en
Priority to JP2013516957A priority patent/JP5715247B2/ja
Priority to EP10853917.2A priority patent/EP2589601B1/en
Priority to CA2803660A priority patent/CA2803660C/en
Priority to BR112013000042-2A priority patent/BR112013000042A2/pt
Priority to KR1020137002839A priority patent/KR20130044314A/ko
Priority to US13/512,524 priority patent/US8859565B2/en
Priority to RU2012155786/04A priority patent/RU2547465C2/ru
Publication of WO2012000212A1 publication Critical patent/WO2012000212A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/14Prodigestives, e.g. acids, enzymes, appetite stimulants, antidyspeptics, tonics, antiflatulents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/10Drugs for genital or sexual disorders; Contraceptives for impotence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/235Saturated compounds containing more than one carboxyl group
    • C07C59/245Saturated compounds containing more than one carboxyl group containing hydroxy or O-metal groups
    • C07C59/265Citric acid

Definitions

  • the present invention relates to a compound which inhibits phosphodiesterase type 5 and a salt thereof, a process for producing the same, and a pharmaceutical composition containing the compound or a salt thereof.
  • Cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) are important intracellular second messengers, and their level at the intracellular level is important for regulating various functions of cells. Enzymes involved in regulating intracellular levels of cAMP and cGMP include adenylate cyclase (AC), guanylate cyclase (GC), and phosphodiesterase (PDE), and the balance of these enzymes is coordinated within the cell. The cAMP and cGMP levels are maintained within the normal range. In certain disease states such as hypertension, angina, etc., the levels of cAMP and cGMP in the cells are found to decrease.
  • AC adenylate cyclase
  • GC guanylate cyclase
  • PDE phosphodiesterase
  • PDE5 inhibitors have the following pharmacological effects and clinical applications:
  • PDE5 inhibitors can cause cGMP levels in the corpus cavernosum to rise, and a series of physiological and biochemical reactions cause vascular smooth muscle relaxation and penile erection. Unlike prostaglandin E1, PDE5 inhibitors do not cause pathological erections, and their effects still require sexual stimulation.
  • a first object of the present invention is to provide a novel compound having a phosphodiesterase-inhibiting activity and a salt thereof such as a decanoate; a second object of the present invention is to provide a novel compound and its citric acid Method for preparing a salt; A third object of the present invention is to provide a pharmaceutical composition containing a novel compound or a salt thereof such as decanoate.
  • the present invention provides a compound represented by Formula I, and a pharmaceutically acceptable decanoate of the compound represented by Formula II:
  • the bismuth salt of the formula II is obtained by reacting a compound of the formula I with a decanoic acid group.
  • the chemical name of the formula II is 5-[2-ethoxyphenyl-5- (3, 4, 5- Trimethylpiperazinyl)-sulfonyl]-1-methyl-3-propyl-1,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one decanoate
  • ZTH is added to tetrahydrofuran in 2,6-dimethylpiperazine and di-tert-butyl dicarbonate, and reacted at room temperature, and then the tetrahydrofuran is concentrated to the end to obtain 3,5-dimethyl-1-tert-butoxycarbonylpiperazine.
  • Tetrahydrofuran, potassium carbonate, and methyl iodide were added to the mixture in the mixture.
  • ZTH-4, ZTH-3 triethylamine was added to tetrahydrofuran, stirred at room temperature overnight, then the solvent was evaporated, and water and dichloromethane were added to the residue, and the methylene chloride layer was successively The mixture is washed with a saturated aqueous solution of brine, then dried and concentrated, and the residue is crystallised from ethyl acetate (ZTH-5).
  • ZTH-5, ZTH-5 salts such as ZTH are pyrazolopyrimidinone compounds, and their chemical structures are similar to those of cGMP. They can compete with cGMP to bind to the catalytic region of PDE5, thereby inhibiting the degradation of cGMP by cDE5 and increasing the concentration of cGMP. The cGMP concentration was maintained at a normal level.
  • ZTH-5 a salt of ZTH-5 such as ZTH can effectively inhibit the activity of type 5 phosphodiesterase, and thus can be used as a type 5 phosphodiesterase inhibitor or as an active ingredient of a type 5 phosphodiesterase inhibitor
  • ZTH -5, ZTH-5 salts such as ZTH have the potential to be developed as a new generation of drugs for the treatment of erectile dysfunction, inhibition of platelet aggregation and antithrombotic, reduction of pulmonary hypertension and anti-cardiovascular disease, anti-asthma and treatment of diabetic gastroparesis.
  • ZTH_4 (36g, 10mmol, leq), ZTH-3 (1.76g, 10mmol, leq), triethylamine (60.6g, 60mmol, 6eq) was added to 500ml of tetrahydrofuran, stirred at room temperature overnight, evaporated to remove the residue 200 ml of water and 200 ml of dichloromethane were added, and the mixture was separated. The methylene chloride layer was washed successively with saturated aqueous sodium hydrogencarbonate and saturated brine, dried and concentrated, and the residue was recrystallized from dec. -5, and recrystallization from 50 times of ethanol gave 16.5 g of white crystals of ZTH-5 in a yield of 37%.
  • the inhibitory effect of different concentrations of ZTH on the degradation of cGMP by PDE5 was examined by enzyme-linked immunoassay.
  • concentration of cGMP was measured according to the Agilent's cGMP biotrack enzyme immuoas sy system (EIA) procedure. Sildenafil citrate was used as a positive control.
  • the final concentration of the sample well 100 ⁇ 1 is 10 mol ⁇ L , 10 mol ⁇ L , 10 'mol ⁇ L ⁇ 10 'mol ⁇ L ⁇ 10 "mol ⁇ L ⁇ 10 'mol ⁇ L ⁇ 10 '" Mol ⁇ L ⁇
  • the sildenafil citrate non-control drug was also prepared as described above.
  • cGMP cGMP, Na
  • the final concentration of cGMP is 3200fmol/50 ⁇ 1, _20°C and stored at low temperature.
  • PDE5 was mixed with cGMP, and the pores of 100 ⁇ 1 contained 3200fmolc GMP at 30°C for 20min to detect the degradation of cGMP by PDE5.
  • ZTH and sildenafil citrate positive control were mixed with cGMP and mixed thoroughly (simultaneous DMS0 ddH 0 solution was used as drug negative control), and PDE53u was added at 30 °C for 20 min.
  • the sample well contains 3200f molc GMP in a volume of 100 ⁇ l, and the drug concentration can be 10 4 mol ⁇ L 1 , 10 'mol ⁇ l 10 'mol ⁇ l 10 'mol ⁇ l 10 'mol ⁇ l
  • ⁇ 200 ⁇ l was added for color development, and reading was performed at a wavelength of 630 nm on a BIORAD 450 plate reader.
  • the EIA absorbance formula is used to calculate %8/80 [(standard or sample 0D-NSB 0D) X 100/(0 standard 0D-NSB 0D)], and the S-shaped curve is fitted by linear regression and PR0BIT regression function, calculation of ZTH, sildenafil citrate positive control drug pair IC50 for PDE5.
  • PDE5 and cGMP When PDE5 and cGMP are applied at 30 °C for 20 minutes, PDE5 can degrade 3200f mol cGMP to about 1600fmol.
  • ZTH inhibits the degradation of cGMP by PDE5: a comparison of 10 4 mol ⁇ L ⁇ 10 'mol ⁇ L ⁇ 10 'mol ⁇ L ⁇ 10 'mol ⁇ L ⁇ 10 'mol ⁇ L ⁇
  • the data can be fitted to the S-shaped curve (p ⁇ 0.05) ;
  • IC50 is calculated by the PR0BIT regression function, the IC50 value of ZTH is 2.12X 10 9 M, and tannic acid
  • the sildenafil positive control drug was 6.958 X 10 9 M.
  • cAMP cAMP, Na
  • the final concentration of cAMP is I600fmol/50 1, _20 °C and stored at low temperature.
  • PDE5 Degradation of cAMP by PDE5: PDE5 was mixed with cAMP, and the larvae of L IOO I contained 1600 fmolcAMP at 30 ° C for 20 min to detect the degradation of cAMP by PDE5.
  • the sample hole ⁇ ⁇ contains 1600fmolcAMP in volume, and the drug concentration is 10 4 mol ⁇ L 1 , 10 'mol ⁇ L ⁇
  • the EIA absorbance formula is used to calculate %8/80 [(standard or sample 0D-NSB 0D) X 100/(0 standard 0D-NSB 0D)], and the S-shaped curve is fitted by linear regression and The PR0BIT regression function calculates the IC50 of the ZTH, sildenafil citrate positive control drug for PDE5.
  • PDE5 has no degradation effect on cAMP.
  • ZTH is a pyrazolopyrimidinone compound with a chemical structure similar to cGMP. It can compete with cGMP to bind to the catalytic region of PDE5, thereby inhibiting the degradation of cGMP by cDE5 and increasing the concentration of cGMP.
  • the IC50 value of ZTH was calculated to be 2.12 ⁇ 10 9 M, and the positive control drug was 6.958 X 10 9 M.
  • ZTH can To inhibit the degradation of cGMP by PDE5 in a dose-dependent manner, it is a good PDE5 inhibitor, which inhibits the activity of PDE5 enzyme significantly stronger than sildenafil citrate, and is expected to become a new generation of treatment for erectile dysfunction and inhibition. Platelet aggregation and anti-thrombotic, reduced pulmonary hypertension and anti-cardiovascular disease, anti-asthma and the potential to treat diabetic gastroparesis drugs.
  • ZTH is a citrate of ZTH-5
  • ZTH-5 is similar to ZTH structure, that is, ZTH_5 and ZTH-5 are other than citrate.
  • the salt is similar to the ZTH structure and has a common pyrazolopyrimidinone structure. Therefore, from the experimental results of ZTH, it can be deduced that the salts of ZTH-5 and ZTH-5 other than citrate have the inhibition of PDE5 on cGMP.
  • the degradation, becoming a PDE5 inhibitor, is also expected to be a new generation of potential for the treatment of erectile dysfunction, inhibition of platelet aggregation and antithrombotic, reduction of pulmonary hypertension and anti-cardiovascular disease, anti-asthma and treatment of diabetic gastroparesis.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Diabetes (AREA)
  • Epidemiology (AREA)
  • Hematology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Endocrinology (AREA)
  • Cardiology (AREA)
  • Pulmonology (AREA)
  • Emergency Medicine (AREA)
  • Obesity (AREA)
  • Nutrition Science (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

抑制 5型磷酸二酯酶的化合物及制备方法 技术领域
本发明涉及抑制 5型磷酸二酯酶的化合物和它的盐、其制备方法 以及含有该化合物或它的盐的药物组合物。 背景技术
环磷酸腺苷(cAMP)和环磷酸鸟苷(cGMP)是重要的细胞内第二信 使, 其在细胞内水平的高低对调节细胞的各种功能具有重要意义。 参 与调节细胞内 cAMP和 cGMP水平的酶类包括腺苷酸环化酶(AC)、鸟苷 酸环化酶(GC)和磷酸二酯酶(PDE), 这几种酶的平衡协调使细胞内的 cAMP和 cGMP水平维持在正常范围内。 在某些疾病状态如高血压、 心 绞痛等情况下, 可发现细胞内 cAMP 和 cGMP 水平下降。 为提高细胞 内 cAMP禾 Π cGMP的水平, 可通过激动 AC、 GC和抑制 PDE两种途径来 实现, 而第二种途径效果更佳。 近年来, 人们对研究和开发 PDE抑制 剂表现出极大热情, 并且已在选择性 PDE同功酶抑制剂的临床应用方 面取得突破性进展。 目前, cDNA 分子克隆实验结果已证明哺乳动物 至少有 10种 PDE基因家族存在。 对于每一种 PDE基因家族来说, 由 于拼接差异的存在, 又出现了多种 PDE同功酶亚型, 其中, 5型磷酸 二酯酶 (PDE5 ) 家族能选择性水解 cGMP, 广泛地分布于机体各组织 器官中。
PDE5抑制剂具有如下药理作用和临床应用:
( 1 ) 抑制血小板聚集与抗血栓: 理想的抗血栓药物应具有抑制血 小板聚集而无血管平滑肌舒张作用, 避免造成缺血部位进一步缺血。 PDE 3 和 PDE5 抑制剂均有抑制血小板聚集作用, 但是相对来说由于 PDE 5 抑制剂的血管平滑肌舒张作用较弱, 故其在治疗动脉血栓性疾 病方面具有明显的优势。经典的 PDE5抑制剂双嘧达莫(d i pyr i amo l e) 就具有良好的抗血栓作用;
( 2 ) 降低肺动脉高压与抗心血管疾病: 肺血管阻力异常往往是导 致心血管疾病的重要原因。 在动物模型试验中, 选择性 PDE5抑制剂 扎普司特(zaprinast)能显著增加一氧化氮作用时间和强度, 具有较 强的降低肺动脉高压作用,临床用于治疗心绞痛、高血压和心肌梗死。 最新报道, PDE5抑制剂 E-4010能提高野百合碱诱导的高血压大鼠的 存活率;
(3) 抗哮喘: 有文献报道, 猪作为动物模型的实验表明, PDE5 抑制剂 SR-265579对组胺诱导所致支气管扩张有治疗作用;
(4) 治疗糖尿病性胃轻瘫: 有报道, 对糖尿病大鼠, PDE5抑制剂 枸櫞酸西地那非 (sildenafil) 能逆转推迟的胃排空, 对糖尿病并发 的消化系统植物神经病变有一定的治疗改善作用;
(5)治疗勃起功能障碍:由于 PDE5广泛分布于阴茎海绵体中, PDE5 抑制剂可导致阴茎海绵体中 cGMP水平上升,经一系列生理生化反应, 使得血管平滑肌舒张, 阴茎勃起。 与前列腺素 E1不同, PDE5抑制剂 不会引起病理性勃起, 它的这种作用仍需要性剌激。
基于 PDE5 抑制剂上述的药理作用, 我们通过化学分子修饰方法 改造枸櫞酸西地那非 (sildenafil) 的化学结构生产出新的化合物和 它的枸櫞酸盐, 即 5- 【2-乙氧苯基 -5- (3,4, 5-三甲基哌嗪基) -磺 酰基】 -1-甲基 -3-丙基 -1, 6-二氢 -7H-吡唑并 [4, 3-d]嘧啶 -7-酮和其 枸櫞酸盐 (ZTH), 我们发现 ZTH能有效地抑制 PDE5酶的活性, 则诞 生了本发明。 发明内容
本发明的第一个目的是提供一种具有抑制 5型磷酸二酯酶活性 的新化合物和它的盐如枸櫞酸盐; 本发明的第二个目的是提供新化 合物和它的枸櫞酸盐的制备方法; 本发明的第三个目的是提供含有 新化合物或它的盐如枸櫞酸盐的药物组合物。
本发明提供了式 I表示的化合物,以及式 II表示的该化合物药 用枸櫞酸盐:
Figure imgf000004_0001
。 、 (ID
式 I 的化合物的化学名称为 5- 【2-乙氧苯基 -5- (3, 4, 5-三甲 基哌嗪基) -磺酰基】 -1-甲基 -3-丙基 -1, 6-二氢 -7H-吡唑并 [4, 3-d] 嘧啶 -7-酮, 通过核磁共振技术阐明其结构和质谱计算分子量: ¾-NMR (400MHz, MeOD) δ 8.180-8.185 (d, J=2Hz, 1H) , 7.880-7.908 (dd, L=2.4Hz, J2=8.8Hz, 1H) , 7.356- 7.379 (d, J=9.2Hz, 1H) , 4.284- 4.337 (q, J=14Hz, 2H), 4.234 (s, 3H) , 3.575-3.603 (d, J=ll.2Hz, 2H) , 2.865- 2.902 (t, J=7.2Hz, 2H), 2.377 (br, 2H) , 2.261 (s, 3H) , 2.112-2.168 (t, J=ll.2Hz, 2H) , 1.795- 1.851 (m, 2H) , 1.465- 1.500 (t, J=7.2Hz, 3H) , 1.090- 1.105 (d, J=6Hz, 6H) , 0.978-1.015 (t, J=7.2Hz, 3H) . MS 503 [M+H] +
式 II 中的枸櫞酸盐, 是由式 I 的化合物与枸櫞酸相反应制得的, 式 II 的化学名称为 5-【2-乙氧苯基 -5- (3, 4, 5-三甲基哌嗪基) -磺 酰基】 -1-甲基 -3-丙基 -1, 6-二氢 -7H-吡唑并 [4, 3-d]嘧啶 -7-酮枸櫞 酸盐, 通过核磁共振分析: ¾-NMR (400MHz, CDC13) δ 8.164-8.170 (d, J=2.4Hz, 1H), 7.914-7.942 (dd, L=2.4Hz, J2=8.8Hz, 1H) , 7.363- 7.385 (d, J=8.8Hz, 1H), 4.276-4.329 (q, J=14Hz, 2H) , 4.231 (s, 3H) , 3.746— 3.776 (d, J=ll.2Hz, 2H), 2.986 (br, 2H) , 2.858- 2.895 (t, J=7.2Hz, 2H) , 2.792 (s, 2H) , 2.739 (s, 2H), 2.590 (s, 3H) , 2.406- 2.464 (t, J=ll.6Hz, 2H) , 1.784-1.839 (m, 2H), 1.448-1.483 (t, J=7.2Hz, 3H) , 1.253- 1.269 (d, J=6.4Hz, 6H) , 0.972-1.009 (t, J=7.2Hz, 3H) .
式 I 的化合物, 主要以顺式 2, 6-二甲基哌嗪与 5_(2-乙氧苯 基) -1-甲基 -3-丙基 -1, 6-二氢 -7H-吡唑并 [4, 3-d]嘧啶 -7-酮作为 起始原料, 经多步反应合成得到的, 合成路线如下图所示:
Figure imgf000005_0001
Figure imgf000005_0002
ZTH 在 2, 6-二甲基哌嗪和二碳酸二叔丁酯中加入四氢呋喃, 室温反 应, 然后将四氢呋喃浓缩至尽, 得 3, 5-二甲基 -1-叔丁氧基羰基哌嗪 (ZTH-1), 经核磁共振和质谱分析, ¾-NMR (400MHz, CDC13) 53.8-4.1 (br, 2H), 2.75-2.80 (m, 2H), 2.2-2.5 (br, 2H), 1.45 (s, 9H) , 1.052- 1.067 (d, J=6Hz, 6H). MS 215[M+H]+
在 ZTH-1 中依次加入四氢呋喃, 碳酸钾, 碘甲烷, 室温反应过 夜, 然后过滤, 浓缩, 往残余物中加入水与二氯甲烷, 并用二氯甲烷 洗涤, 合并有机层, 饱和盐水洗涤, 无水硫酸钠干燥, 浓缩, 残余物 柱层析 (甲醇: 二氯甲烷 = 1 : 20), 得到 3, 4, 5-三甲基 -1-叔丁基羰基 哌嗪 ( ZTH-2 ), 经核磁共振和质谱分析, ¾-NMR (40(MHz, MeOD) δ 4.505-4.533 (m, 2Η) , 4.110-4.134 (m, 2Η) , 2.943 (s, 3Η) , 2.779 (br, 2Η) , 2.196 (s, 9Η), 1.782- 1.797 (d, J=6Hz, 6H) . MS 229 [M+H] + 将 ZTH-2 溶于二氧六环中, 冷却, 缓慢滴加饱和盐酸二氧六环 溶液, 室温搅拌, 然后减压蒸去溶剂, 得到 1, 2, 6-三甲基哌嗪 ( ZTH-3 ),经核磁共振和质谱分析, ¾-丽 R (400MHz, MeOD) δ 4.505-4.533 (m, 2H), 3.722 (br, 2H) , 3.611-3.644 (m, 2H) , 3.310- 3.423 (m, 2H) , 2.937 (s, 3H), 1.493-1.506 (d, J=5.2Hz, 6H) . MS 129 [M+H] +
将 5- (2-乙氧苯基) -1-甲基 -3-丙基 -1, 6-二氢 -7H-吡唑并 [4, 3-d] 嘧啶 -7-酮滴入到氯磺酸中, 保持反应液温度不高于 25°C, 室温反应, 然后将反应液倾入碎冰中, 室温机械搅拌, 保持温度不高于 25°C, 然后过滤, 干燥, 得 5_(2-乙氧苯基 -5-氯磺酰基) -1-甲基 -3-丙基 -1, 6-二氢 -7H-吡唑并 [4, 3-d]嘧啶 -7-酮 (ZTH-4), 经核磁共振和质 谱分析, ¾-NMR (400MHz, DMS0) δ 7.871-7.876 (s, 1Η), 7.700-7.727 (dd, L=2Hz, J2=8.4Hz, 1H), 7.098— 7.119 (d, J=8.4Hz, 1H) , 4.125-4.161 (m, 5H) , 2.778-2.816 (t, J=7.6Hz, 2H) , 1.700- 1.756 (m, 2H) , 1.303- 1.337 (t, J=6.8Hz, 3H), 0.919-0.956 (t, J=7.6Hz, 3H). MS 411 [M+H] +
将 ZTH-4、 ZTH-3 三乙胺加入到四氢呋喃中, 室温搅拌过夜, 然后蒸去溶剂, 往残余物中加入水与二氯甲烷, 分离, 二氯甲烷层依 次以饱和碳酸氢钠水溶液、 饱和盐水溶液洗涤, 然后干燥, 浓缩, 残 余物以乙醇重结晶得式 I 的化合物 (ZTH-5)。
在 ZTH-5 中加入无水甲醇, 搅拌升温至回流, 溶清后加入枸櫞 酸, 回流反应完毕后, 冷却至室温, 过滤, 甲醇洗涤, 干燥得式 II 的化合物 (ZTH)。
ZTH-5、 ZTH-5 的盐如 ZTH为吡唑并嘧啶酮类化合物, 化学结 构与 cGMP近似, 可以与 cGMP竞争结合 PDE5 的催化区, 从而抑制 PDE5对 cGMP的降解, 增加 cGMP的浓度, 保证 cGMP浓度维持在正常 水平。 ZTH-5、ZTH-5的盐如 ZTH能有效抑制 5型磷酸二酯酶的活性, 因此可作为 5型磷酸二酯酶抑制剂,或者作为 5型磷酸二酯酶抑制药 的有效成分, ZTH-5、 ZTH-5的盐如 ZTH具有开发成为新一代治疗勃 起功能障碍、 抑制血小板聚集与抗血栓、 降低肺动脉高压与抗心血管 疾病、 抗哮喘和治疗糖尿病性胃轻瘫药物的潜力。 具体实施方式
( 1) ZTH-5 (5- 【2-乙氧苯基 -5- ( 3, 4, 5-三甲基哌嗪基) -磺酰 基】 -1-甲基 -3-丙基 -1, 6-二氢 -7H-吡唑并 [4, 3-d]嘧啶 -7-酮) 的制 备:
1、 3, 5-二甲基 -1-叔丁氧基羰基哌嗪 (ZTH-1) 的制备: 将 2, 6-二甲基哌嗪 ( 11.4g, lOOmmol, leq) 和二碳酸二叔丁酯 (21.8g, lOOmmol, 1 eq ) 加入 250ml 单口瓶中, 再加入 100毫升四 氢呋喃, 室温反应 4小时。 四氢呋喃浓缩至尽, 得 21.4g橘黄色油状 物 ZTH-1, 收率 100%;
2、 3, 4, 5-三甲基 -1-叔丁基羰基哌嗪 (ZTH-2) 的制备: 将 ZTH-1 (10.7g, 50mmol, leq)加入 250ml单口瓶中, 依次加入 100ml 四氢呋喃, 碳酸钾 ( 10.35g, 75mmol, 1.5eq), 碘甲烷 ( 8.52g, 60mmol, 1.2eq), 室温反应过夜。 过滤, 浓缩, 往残余物中加入 100 毫升水与 100毫升二氯甲烷, 并用二氯甲烷 (50毫升 X2次) 洗涤, 合并有机层, 饱和盐水洗涤, 无水硫酸钠干燥, 浓缩, 残余物柱层析 (甲醇: 二氯甲烷 = 1:20)得到 5.7克橘黄色油状物 ZTH-2, 收率 50%;
3、 1, 2, 6-三甲基哌嗪 (ZTH-3) 的制备:
将 ZTH_2 U1.4g, 50mmol, 1 eq ) 溶于 100毫升二氧六环中, 冷 却至 0°C, 缓慢滴加饱和盐酸二氧六环溶液 (4M, 25ml, 2eq), 室温 搅拌 2小时, 减压蒸去溶剂, 得到白色固体粗品 ZTH-3, 不经纯化, 直接用于下一步;
4、 5- (2-乙氧苯基 -5-氯磺酰基) -1-甲基 -3-丙基 -1, 6-二氢 -7H- 吡唑并 [4, 3-d]嘧啶 -7-酮 (ZTH-4) 的制备:
在 -10°C下, 将 5_(2-乙氧苯基) -1-甲基 -3-丙基 -1, 6-二氢 -7H- 吡唑并 [4, 3-d]嘧啶 -7-酮 (50g, 160mmo) 加入到 100ml 氯磺酸中, 滴加过程中, 保持反应液温度不高于 25°C, 滴加完毕, 室温反应 3 小时, 将反应液倾入碎冰中, 机械搅拌, 保持温度不高于 25°C, 加 毕,室温搅拌 1小时,过滤,干燥,得 50g 白色固体 ZTH-4,收率 75.9%; 5、 5- 【2-乙氧苯基 -5- ( 3, 4, 5-三甲基哌嗪基) -磺酰基】 _1_ 甲基 -3-丙基 -1, 6-二氢 -7H-吡唑并 [4, 3-d]嘧啶 -7-酮 (ZTH-5) 的制 备:
将 ZTH_4 (36g, lOmmol, leq), ZTH-3 ( 17.6g, lOmmol, leq), 三乙胺(60.6g, 60mmol, 6eq)加入到 500毫升四氢呋喃中, 室温搅拌 过夜, 蒸去溶剂, 往残余物中加入 200毫升水与 200毫升二氯甲烷, 分离, 二氯甲烷层依次以饱和碳酸氢钠水溶液、 饱和盐水溶液洗涤, 干燥, 浓缩, 残余物以十倍量乙醇重结晶得 32g 白色晶体 ZTH-5, 再 以 50倍量乙醇重结晶得 16.5g 白色晶体 ZTH-5, 收率 37%。
(2) ZTH (5-【2-乙氧苯基 -5- ( 3, 4, 5-三甲基哌嗪基) -磺酰基】 -1-甲基 -3-丙基 -1, 6-二氢 -7H-吡唑并 [4, 3-d]嘧啶 -7-酮枸櫞酸盐) 的制备:
在 500毫升反应瓶中, 加入 15克化合物 ZTH-5、 270毫升无水甲 醇, 搅拌升温至回流, 溶清后加入 12.5 克枸櫞酸, 回流反应约 1.5 小时, 反应毕, 冷却至室温, 过滤, 3 次 X5 毫升甲醇洗涤, 干燥得 15克白色固体 ZTH。
上述 ( 1) 和 (2) 为制备实施例, 下述 (3) 为实验实施例。
(3) ZTH对 PDE5抑制作用的研究
1、 ZTH对 PDE5作用 cGMP的抑制效果:
实验方法:
利用酶联免疫系统检测体外不同浓度 ZTH对 PDE5降解 cGMP的抑制 作用效果。按照 Amer s ham公司的 cGMP生物转化酶联免疫检测系统试剂 盒 ( cGMP biotrack enzyme immuoas sy system, EIA) 操作步骤, 检 测 cGMP的浓度。 以枸櫞酸西地那非作为阳性对照。
配制试剂:
ZTH、 枸櫞酸西地那非的不同药物浓度的配制:
分别称取一定量的 ZTH悬浮于 ddH 0, 加入 DMS0(药物: DMS0=lmol:
ID 使 其溶解, 加样孔 100 μ 1中最终浓度为 10 mol · L 、 10 mol · L 、 10 'mol · L \ 10 'mol · L \ 10 "mol · L \ 10 'mol · L \ 10 '"mol · L \
10 "mol · L \ 10 ''mol · L
枸櫞酸西地那非对照药物同样按上述方法配制。
PDE5工作液的配制:
吸取一定量的 PDE5, 相应体积的 EIA缓冲液稀释, 使最终浓度为 lu/μ 1, -80°C低温保存备用。
cGMP的配制:
称取一定量的 cGMP (cGMP, Na) , 分别溶于相应体积的 EIA缓冲 液中, cGMP终浓度为 3200fmol/50 μ 1, _20°C低温保存备用。
实验内容:
PDE5对 cGMP的降解作用:
PDE5与 cGMP混合, 力卩样孔 100μ 1内含 3200fmolcGMP, 30°C作用 20min, 以检测 PDE5对 cGMP的降解作用。
ZTH对 PDE5的抑制作用:
ZTH 和枸櫞酸西地那非阳性对照药分别与 cGMP 混合并充分混匀 (同时设以 DMS0的 ddH 0溶液作为药品阴性对照),加入 PDE53u 30°C 作用 20min。 加样孔 100 μ 1体积中含有 3200f molcGMP, 药物浓度可 以 为 104mol · L 1 、 10 'mol · l 10 'mol · l 10 'mol · l
10 "mol · L \ 10 'mol · L \ 10 ' ol · L \ 10 "mol · L \ 10 mol · L 以检测不同浓度的 ZTH、 阳性对照药对 PDE5降解 cGMP作用的抑制。 将上述测定样品加入被抗体包被好的测定孔后, 各加入 100μ 1 的抗 血清中止反应, 置于 4°C作用 15_ 18h, 随后加入 cGMP peroxidase conjugate 50 μ 1 中止反应, 作用 3h后洗板, 加入 ΤΜΒ 200 μ 1进行 显色, 在 BIORAD 450酶标仪以 630nm波长下进行读数。 根据所测得 的 cGMP 吸光度值, 利用 EIA 吸光度公式计算%8/80[ (标准或样本 0D-NSB 0D) X 100/(0标准 0D-NSB 0D) ], 通过线形回归拟合 S型曲 线和 PR0BIT 回归函数, 计算 ZTH、 枸櫞酸西地那非阳性对照药物对 于 PDE5的 IC50。
实验结果:
PDE5对 cGMP的降解:
PDE5与 cGMP在 30°C作用 20分钟, PDE5可将 3200f mol cGMP降解至 1600fmol左右。
ZTH对 PDE5降解 cGMP作用的抑制: 分另 U比较 104mol · L \ 10 'mol · L \ 10 'mol · L \ 10 'mol · L \
10 "mol · L \ 10 'mol · L \ 10 '"mol · L \ 10 "mol · L \ 10 mol · L ' 不同浓度的 ZTH和对照药物以及 DMS0 ddH 0溶液组对 PDE5降解 cGMP 作用的抑制,根据不同浓度 ZTH抑制 PDE5对 cGMP降解所得到的不同 吸光度(0D值),利用 EIA吸光度公式计算%8/80[ (标准或样本 0D-NSB 0D) X 100/(0标准 OD-NSB 0D) ], 计算药物的 IC50值。 通过回归线 形拟合, 数据可拟合为 S型曲线 (p< 0.05); 通过 PR0BIT回归函数 计算 IC50, ZTH的 IC50值为 2.12X 109M, 而枸櫞酸西地那非阳性对 照药物为 6.958 X 109M。
2、 ZTH对 PDE5作用 cAMP的影响:
实验方法:
利用酶联免疫系统检测体外不同浓度 ZTH对 PDE5作用 cAMP的影 响。 按照 Ame r s ham公司的 c AMP生物转化酶联免疫检测系统试剂盒
( cAMP biotrack enzyme immuo as sy system, EIA ) 操作步骤, 检测 c A M P的浓度。 以枸櫞酸西地那非作为对照。
配制试剂:
cAMP的配制
称取一定量的 cAMP (cAMP, Na) , 分别溶于相应体积的 EIA缓冲 液中, cAMP终浓度为 I600fmol/50 1, _20°C低温保存备用。
ZTH、 枸櫞酸西地那非的配制、 PDE5工作液的配制同上。
实验内容:
PDE5对 cAMP的降解作用: PDE5与 cAMP混合, 力口样孑 L IOO I, 内含 1600fmolcAMP, 30°C作用 20min, 以检测 PDE5对 cAMP的降解作用。
ZTH对 PDE5作用 cAMP的影响:
ZTH和阳性对照药与 cAMP混合并充分混匀 (同时设以 DMS0的 ddH 0溶 液作为药品阴性对照) , 加入 PDE53u 30°C作用 20min。 加样孔 ΙΟΟμ Ι 体积中含有 1600fmolcAMP, 药物浓度为 104mol · L 1、 10 'mol · L \
10 'ιιιοΐ · L \ 107mol · L \ 10 "mol · L \ 10 'mol · L \ 10 ^mol · L \
10 ' mol - L \ 1012πιΟ1 · ΐ 。 将上述测定样品加入被抗体包被好的测 定孔后各加入 100μ 1的抗血清中止反应, 并置于 4°C作用 2h, 随后加 入 cAMP peroxi dase conjugate 50μ 1中止反应, 作用 lh后洗板, 加 入 ΤΜΒ150μ 1进行显色, 在酶标仪以 630nm波长下进行读数。 根据所测 得的 cAMP吸光度值, 利用 EIA吸光度公式计算%8/80[ (标准或样本 0D-NSB 0D) X 100/(0标准 0D-NSB 0D) ], 通过线形回归拟合 S型曲线 和 PR0BIT回归函数,计算 ZTH、枸櫞酸西地那非阳性对照药物对于 PDE5 的 IC50。
实验结果:
PDE5对 cAMP的降解作用:
PDE5对 cAMP无降解作用。
ZTH对 PDE5作用 cAMP影响:
力口 ZTH组、 对照药组、 ddH 0药品阴性对照组之间 0D值无显著性差异
(p > 0.05) , 无法拟合 S形曲线 (p > 0.05) 。
实验结论:
ZTH为吡唑并嘧啶酮类化合物, 化学结构与 cGMP近似, 可以与 cGMP 竞争结合 PDE5的催化区, 从而抑制 PDE5对 cGMP的降解, 增加 cGMP的浓 度。 通过研究 ZTH对 PDE5降解 cGMP作用的抑制效果,计算 ZTH的 IC50 值为 2.12X109M, 阳性对照药物为 6.958 X 109M。 结果提示, ZTH可 以抑制 PDE5 对 cGMP 的降解并具有剂量依赖性, 是一种很好的 PDE5 抑制剂, 其抑制 PDE5 酶的活性明显强过枸櫞酸西地那非, 有望成为 新一代治疗勃起功能障碍、 抑制血小板聚集与抗血栓、 降低肺动脉高 压与抗心血管疾病、 抗哮喘和治疗糖尿病性胃轻瘫药物的潜力。 上述实验实施例中, 虽然只公开了 ZTH 的实验数据, 但是 ZTH 是 ZTH-5的枸櫞酸盐, ZTH-5与 ZTH结构相近, 也就是说 ZTH_5、 ZTH-5 的除枸櫞酸盐以外的盐与 ZTH结构均相近,具有共同的吡唑并嘧啶酮 类结构, 因此从 ZTH 的实验效果可以推导出 ZTH-5、 ZTH-5 的除枸櫞 酸盐以外的盐都具有抑制 PDE5对 cGMP的降解作用, 成为 PDE5抑制 剂,也有望成为新一代治疗勃起功能障碍、抑制血小板聚集与抗血栓、 降低肺动脉高压与抗心血管疾病、抗哮喘和治疗糖尿病性胃轻瘫药物 的潜力。

Claims

权利要求:
1、 式 I表示的化合物, 或者其药学上可接受的盐:
Figure imgf000013_0001
式 I 的化合物的化学名称为 5- 【2-乙氧苯基 -5- ( 3, 4, 5-三甲基 哌嗪基) -磺酰基】 -1-甲基 -3-丙基 -1, 6-二氢 -7H-吡唑并 [4, 3-d]嘧 啶 -7-酮。
2、 式 II 表示的 5- 【2-乙氧苯基 -5- ( 3, 4, 5-三甲基哌嗪基) - 磺酰基】 -1-甲基 -3-丙基 -1, 6-二氢 -7H-吡唑并 [4, 3-d]嘧啶 -7-酮枸 櫞酸盐:
Figure imgf000013_0002
(II)
3、 制备式 I 的化合物的方法, 其特征在于: 包括以下步骤,
( 1) 在 2, 6-二甲基哌嗪和二碳酸二叔丁酯中加入四氢呋喃, 室 温反应, 然后将四氢呋喃浓缩至尽, 得 3, 5-二甲基 -1-叔丁氧基羰基哌 嗪;
( 2) 在步骤 ( 1) 中的 3, 5-二甲基 -1-叔丁氧基羰基哌嗪依次加 入四氢呋喃, 碳酸钾, 碘甲烷, 室温反应过夜, 然后过滤, 浓缩, 往 残余物中加入水与二氯甲烷, 并用二氯甲烷洗涤, 合并有机层, 饱和 盐水洗涤, 无水硫酸钠干燥, 浓缩, 残余物柱层析 (甲醇: 二氯甲烷 = 1 :20), 得到 3, 4, 5-三甲基 -1-叔丁基羰基哌嗪;
( 3) 将步骤 (2) 中的 3, 4, 5-三甲基 -1-叔丁基羰基哌嗪溶于二 氧六环中, 冷却, 缓慢滴加饱和盐酸二氧六环溶液, 室温搅拌, 然后 减压蒸去溶剂, 得到 1, 2, 6-三甲基哌嗪;
(4) 将 5_(2-乙氧苯基) -1-甲基 -3-丙基 -1, 6-二氢 -7H-吡唑并 [4, 3-d]嘧啶 -7-酮滴入到氯磺酸中, 保持反应液温度不高于 25°C, 室温反应, 然后将反应液倾入碎冰中, 室温机械搅拌, 保持温度不高 于 25°C, 然后过滤, 干燥, 得 5_(2-乙氧苯基 -5-氯磺酰基) -1-甲基 -3-丙基 -1, 6-二氢 -7H-吡唑并 [4, 3-d]嘧啶 -7-酮;
(5) 将步骤 (4) 中的 5_(2-乙氧苯基) -1-甲基 -3-丙基 -1, 6-二 氢 -7H-吡唑并 [4, 3-d]嘧啶 -7-酮, 步骤 (3) 中 1, 2, 6-三甲基哌嗪, 三乙胺加入到四氢呋喃中, 室温搅拌过夜, 然后蒸去溶剂, 往残余物 中加入水与二氯甲烷,分离,二氯甲烷层依次以饱和碳酸氢钠水溶液、 饱和盐水溶液洗涤, 然后干燥, 浓缩, 残余物以乙醇重结晶得式 I 的 化合物。
4、 制备式 II表示的化合物的方法, 其特征在于: 包括: 在式 I 的化合物中加入无水甲醇, 搅拌升温至回流, 溶清后加入枸櫞酸, 回 流反应完毕后, 冷却至室温, 过滤, 甲醇洗涤, 干燥得式 II 的化合 物。
5、 权利要求 1 中所述的化合物或其药学上可接收的盐在制备 5 型磷酸二酯酶抑制剂中的应用。
6、 权利要求 2 中所述的 5- 【2-乙氧苯基 -5- (3, 4, 5-三甲基哌 嗪基) -磺酰基】 -1-甲基 -3-丙基 -1, 6-二氢 -7H-吡唑并 [4, 3-d]嘧啶 -7-酮枸櫞酸盐在制备 5型磷酸二酯酶抑制剂中的应用。
7、 药物组合物, 其中含有权利要求 1 中所述的化合物或其药学 上可接收的盐作为有效成分, 并含有常规药用载体和 /或赋形剂。
8、药物组合物, 其中含有权利要求 2中所述的 5-【2-乙氧苯基-5_ ( 3, 4, 5-三甲基哌嗪基) -磺酰基】 -1-甲基 -3-丙基 -1, 6-二氢 -7H-吡 唑并 [4, 3-d]嘧啶 -7-酮枸櫞酸盐作为有效成分, 并含有常规药用载体 和 /或赋形剂。
PCT/CN2010/075587 2010-07-02 2010-07-30 抑制5型磷酸二酯酶的化合物及制备方法 WO2012000212A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2010356747A AU2010356747B2 (en) 2010-07-02 2010-07-30 Compound for inhibiting type 5 phosphodiesterase and preparation method thereof
JP2013516957A JP5715247B2 (ja) 2010-07-02 2010-07-30 5型ホスホジエステラーゼを阻害するための化合物およびその調製方法
EP10853917.2A EP2589601B1 (en) 2010-07-02 2010-07-30 Compound for inhibiting type 5 phosphodiesterase and preparation method thereof
CA2803660A CA2803660C (en) 2010-07-02 2010-07-30 Compound for inhibiting type 5 phosphodiesterase and preparation method thereof
BR112013000042-2A BR112013000042A2 (pt) 2010-07-02 2010-07-30 composto para inibição da fosfodiesterase tipo 5 e método de preparação do mesmo
KR1020137002839A KR20130044314A (ko) 2010-07-02 2010-07-30 제5형 포스포다이에스터라아제 억제용 화합물 및 그의 제조 방법
US13/512,524 US8859565B2 (en) 2010-07-02 2010-07-30 Compound for inhibiting type 5 phosphodiesterase and preparation method thereof
RU2012155786/04A RU2547465C2 (ru) 2010-07-02 2010-07-30 Соединение, обладающее ингибирующим действием в отношении фосфодиэстеразы 5 типа, и способ его получения

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010102216587A CN101891747B (zh) 2010-07-02 2010-07-02 抑制5型磷酸二酯酶的化合物及制备方法
CN201010221658.7 2010-07-02

Publications (1)

Publication Number Publication Date
WO2012000212A1 true WO2012000212A1 (zh) 2012-01-05

Family

ID=43101120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075587 WO2012000212A1 (zh) 2010-07-02 2010-07-30 抑制5型磷酸二酯酶的化合物及制备方法

Country Status (10)

Country Link
US (1) US8859565B2 (zh)
EP (1) EP2589601B1 (zh)
JP (1) JP5715247B2 (zh)
KR (1) KR20130044314A (zh)
CN (1) CN101891747B (zh)
AU (1) AU2010356747B2 (zh)
BR (1) BR112013000042A2 (zh)
CA (1) CA2803660C (zh)
RU (1) RU2547465C2 (zh)
WO (1) WO2012000212A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10017511B2 (en) 2014-01-30 2018-07-10 Council Of Scientific & Industrial Research Pyrazolopyrimidinones for the treatment of impotence and process for the preparation thereof
CN113493459B (zh) * 2020-04-07 2022-12-13 广州白云山医药集团股份有限公司白云山制药总厂 Pde5抑制剂化合物及其制备方法和应用
CN113461694A (zh) * 2021-08-05 2021-10-01 广东西捷药业有限公司 一种伐地那非类似物及其合成方法和应用
CN114163493B (zh) * 2021-11-18 2023-09-15 浙大宁波理工学院 一种可作为5型磷酸二酯酶抑制剂的多肽及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1094492C (zh) * 1999-06-21 2002-11-20 杭州神鹰医药化工有限公司 西地那非的制备方法
CN1517349A (zh) * 2003-01-16 2004-08-04 刘宝顺 两种治疗阳痿的新化合物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9013750D0 (en) * 1990-06-20 1990-08-08 Pfizer Ltd Therapeutic agents
GB9311920D0 (en) * 1993-06-09 1993-07-28 Pfizer Ltd Therapeutic agents
DK1109814T3 (da) * 1998-09-04 2004-08-02 Ortho Mcneil Pharm Inc 5-Heterocyclylpyrazolo[4,3-d]pyrimidin-7-oner til behandling af mandlig erektil dysfunktion
CN1127506C (zh) * 2001-06-29 2003-11-12 刘宝顺 一种治疗阳痿的新化合物
US20060205733A1 (en) * 2004-08-26 2006-09-14 Encysive Pharmaceuticals Endothelin a receptor antagonists in combination with phosphodiesterase 5 inhibitors and uses thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1094492C (zh) * 1999-06-21 2002-11-20 杭州神鹰医药化工有限公司 西地那非的制备方法
CN1517349A (zh) * 2003-01-16 2004-08-04 刘宝顺 两种治疗阳痿的新化合物

Also Published As

Publication number Publication date
EP2589601B1 (en) 2015-09-09
RU2547465C2 (ru) 2015-04-10
EP2589601A1 (en) 2013-05-08
AU2010356747B2 (en) 2014-10-30
CA2803660C (en) 2016-10-18
JP2013529651A (ja) 2013-07-22
BR112013000042A2 (pt) 2018-08-28
US20130116265A1 (en) 2013-05-09
AU2010356747A1 (en) 2012-06-07
RU2012155786A (ru) 2014-08-10
CN101891747B (zh) 2012-04-25
JP5715247B2 (ja) 2015-05-07
CA2803660A1 (en) 2012-01-05
KR20130044314A (ko) 2013-05-02
EP2589601A4 (en) 2013-11-13
CN101891747A (zh) 2010-11-24
US8859565B2 (en) 2014-10-14

Similar Documents

Publication Publication Date Title
JP5756176B2 (ja) 6−シクロアルキル−1,5−ジヒドロ−ピラゾロ(3,4−d)ピリミジ−4−オン誘導体及びpde9a阻害剤としてのその使用
JP2020147607A (ja) 横隔膜機能を向上させるための方法
US6673802B2 (en) Compounds specific to adenosine A3 receptor and uses thereof
TWI726017B (zh) 做為布魯頓式酪胺酸激酶(btk)抑制劑之雜芳族化合物
AU2015243110A1 (en) Tyrosine kinase inhibitors
US20020094974A1 (en) Compounds specific to adenosine A3 receptor and uses thereof
EP1347980A1 (en) Compounds specific to adenosine-a1,-a2a, and- a3-receptor and uses thereof
AU2002248151A1 (en) Compounds specific to adenosine A1, A2A, and A3 receptor and uses thereof
KR20120124428A (ko) 치환된 피롤로-아미노피리미딘 화합물
CN101362764A (zh) 具有PDE-5抑制活性的5,7-二氨基吡唑并[4,3-d]嘧啶
JP2019503389A (ja) Pde1阻害剤
JPH07504681A (ja) プリノン系の抗アンギナ薬
EA023574B1 (ru) ПРОИЗВОДНЫЕ 6-ЦИКЛОБУТИЛ-1,5-ДИГИДРОПИРАЗОЛО[3,4-d]ПИРИМИДИН-4-ОНА И ИХ ПРИМЕНЕНИЕ В КАЧЕСТВЕ ИНГИБИТОРОВ PDE9A
JP2003519102A (ja) アデノシンa▲下1▼、a▲下2a▼およびa▲下3▼受容体に対して特異的な化合物並びにその使用
TWI827846B (zh) 新穎環狀緩激肽b2受體拮抗劑、包含其的醫藥組合物、組合製劑及藥劑
WO2012000212A1 (zh) 抑制5型磷酸二酯酶的化合物及制备方法
JP3937367B2 (ja) 一酸化窒素合成酵素阻害剤
EP1689752B1 (en) Pyrazolopyrimidines
JP6633246B2 (ja) ヒトpde1阻害薬として有用なトリアゾロピラジノン誘導体
CN108863955B (zh) 二苯基吡嗪类化合物或其药学上可接受的盐、异构体及其制备方法和用途
CN112194660A (zh) 一种pde2抑制剂苯基吡唑并嘧啶类化合物及其制备方法
CN113493459B (zh) Pde5抑制剂化合物及其制备方法和应用
RU2642432C1 (ru) 7-(4-Метоксифенил)-5-фенил-4,5-дигидро-[1,2,4]триазоло[1,5-а]пиримидин как активатор глюкокиназы и ингибитор дипептидилпептидазы типа 4 и способ его получения
JP2023521425A (ja) E型肝炎の治療のためのアルキニルヌクレオシド類似体
JPH04264086A (ja) 新規な7−シクロプロピルイミダゾジアゼピン類及びそれらの塩類、それらの製造法及び得られる中間体化合物、薬剤としての使用及びそれらを含有する製薬組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853917

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010356747

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2013516957

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010853917

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2010356747

Country of ref document: AU

Date of ref document: 20100730

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13512524

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2803660

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137002839

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012155786

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013000042

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112013000042

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013000042

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130102