WO2011162302A1 - 情報表示パネル用正帯電微粒子 - Google Patents

情報表示パネル用正帯電微粒子 Download PDF

Info

Publication number
WO2011162302A1
WO2011162302A1 PCT/JP2011/064300 JP2011064300W WO2011162302A1 WO 2011162302 A1 WO2011162302 A1 WO 2011162302A1 JP 2011064300 W JP2011064300 W JP 2011064300W WO 2011162302 A1 WO2011162302 A1 WO 2011162302A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
positively charged
charged fine
fine particles
display medium
Prior art date
Application number
PCT/JP2011/064300
Other languages
English (en)
French (fr)
Inventor
令晋 佐々木
修二 清水
勇二 小野
正洋 本間
紀彦 加賀
和也 村田
Original Assignee
株式会社日本触媒
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒, 株式会社ブリヂストン filed Critical 株式会社日本触媒
Publication of WO2011162302A1 publication Critical patent/WO2011162302A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F2001/1678Constructional details characterised by the composition or particle type

Definitions

  • the present invention relates to positively charged fine particles.
  • particles for display medium containing mother particles and positively charged fine particles present on the surface layer of the mother particles are disposed in a gas between two opposing substrates at least one of which is transparent.
  • a display medium used for an information display panel that displays information such as images by moving the display medium particles in the gas by applying an electric field to the display medium particles. Used to make up the particles.
  • the electrophoresis method has a problem that the response speed is slow and the repeated stability of information display is lacking.
  • one of the display medium particles has a structure in which positively charged child particles (positively charged fine particles) are present on the surface layer of the mother particle, and has a black or white color tone.
  • the other display medium particle has a configuration in which negatively chargeable child particles (negatively charged particles) are present on the surface layer of the mother particle, and has a color tone different from that of the one display medium particle.
  • these two kinds of particles for display medium can be moved, and various information can be visually recognized through the transparent substrate.
  • the fluidity of the display medium and the controllability of the charge amount are important.
  • an electrophotographic toner a technique for improving these characteristics by adhering child particles to toner base particles has been known.
  • characteristics such as the fluidity of the display medium and the controllability of the charge amount deteriorate during the reversal durability test in which the display reversal is repeated. There was a problem that performance could not be maintained.
  • Patent Document 1 this problem is solved. Specifically, a child particle having a particle diameter d 1 in the range of 0.03 ⁇ m ⁇ d 1 ⁇ 1.00 ⁇ m is applied to the surface layer of the mother particle having a particle diameter d 0 in the range of 1.0 ⁇ m ⁇ d 0 ⁇ 50 ⁇ m. It has been proposed that composite particles obtained by adhering or adhering in a state where the condition of d 1 / d 0 ⁇ 0.33 is satisfied are used as display medium particles. Patent Document 1 discloses an example using melamine resin fine particles as child particles.
  • Melamine resin fine particles disclosed as an example of child particles in Patent Document 1 are particles having positive chargeability (positively charged fine particles).
  • the charge retention is not sufficient. There was found.
  • an object of the present invention is to provide means capable of exhibiting sufficient charge retention in positively charged fine particles for constituting display medium particles used in an electro-powder fluid display panel.
  • the present inventors conducted intensive research in view of the above problems.
  • the positively charged fine particles for constituting the display medium particles were tried to have a core-shell structure composed of a core layer at the center and a shell layer at the surface layer.
  • the influence by each composition change of the core layer and shell layer which comprise the said core-shell structure was examined.
  • the positively charged fine particles having a core-shell structure when the core layer and the shell layer each have a specific composition, it is found that positively charged fine particles having excellent charge retention can be provided, and the present invention is completed. It came.
  • Display medium particles containing mother particles and positively charged fine particles present on the surface layer of the mother particles are contained in a gas, and by applying an electric field to the display medium particles, Positively charged fine particles for constituting particles for display medium used in an information display panel for displaying information such as images by moving particles for display medium,
  • a positively charged fine particle characterized in that the proportion of melamine in the amino compound (A) is 80 to 100% by mass and the proportion of benzoguanamine in the amino compound (B) is 80 to 100% by mass. is there.
  • FIG. 1 is an explanatory diagram for explaining an embodiment of an information display panel used in an information display device according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram for explaining another embodiment of the information display panel used in the information display device of one embodiment of the present invention.
  • FIG. 3 is an explanatory diagram for explaining still another embodiment of the information display panel used in the information display device of one embodiment of the present invention.
  • FIG. 4 is a diagram showing an embodiment of particles for display medium using positively charged fine particles of the present invention.
  • the “positively charged fine particles” mean fine particles whose surface is positively charged.
  • the positively charged fine particles according to this embodiment are used for constituting display medium particles used in an electronic powder fluid display panel.
  • the configuration of the positively charged fine particles according to this embodiment will be described in detail, and the details of the electronic powder fluid display panel and the display medium particles used therefor will be described later.
  • the positively charged fine particles of this embodiment have a core-shell structure including a core and a shell layer disposed on the outer surface of the core.
  • a core is a site
  • the positively charged fine particles of this embodiment have one feature in that the proportion of melamine (2,4,6-triaminotriazine) in the amino compound (A) constituting the core is relatively high. More specifically, in the positively charged fine particles of this embodiment, the ratio of melamine in the amino compound (A) is 80 to 100% by mass. This ratio is preferably 85 to 100% by mass, more preferably 90 to 100% by mass, further preferably 95 to 100% by mass, particularly preferably 98 to 100% by mass, and most preferably 100% by mass (that is, the total amount of the amino compound (A) is melamine). When the melamine ratio in the amino compound (A) is a value within such a range, there is an advantage that the particle diameter of the core can be easily controlled in the submicron region.
  • the preferable ratio of the specific compound in the amino compound which comprises these about “things”, such as a core and a shell layer, is prescribed
  • the amino compound has already undergone a condensation reaction with formaldehyde and exists in a form different from that of the original amino compound. Therefore, in the description of the “thing” such as the core and shell layer in the present specification, when defining a preferable ratio of a specific compound, in practice, the ratio of the structure derived from the specific amino compound should be specified. Therefore, the calculation of the ratio is based on the amount of a specific compound that can be specified from the structure.
  • the ratio of melamine in the amino compound (A) constituting the core is 80% by mass
  • the ratio of melamine in the total amount of amino compound specified from the structure derived from the amino compound in the core is 80% by mass”. It means that.
  • the same shall be understood unless otherwise specified.
  • the amino compound (A) constituting the core contains a compound other than melamine (that is, when the proportion of melamine in the amino compound (A) is not 100% by mass), it can be used as an amino compound (A) other than melamine.
  • a compound other than melamine that is, when the proportion of melamine in the amino compound (A) is not 100% by mass
  • it can be used as an amino compound (A) other than melamine.
  • the compound represented by following formula (1) will be mentioned, for example.
  • each R is independently a hydrogen atom or an optionally substituted alkyl group, and at this time, at least one R is an alkyl group.
  • a preferred form when R is an alkyl group includes a hydroxyalkyl group.
  • compounds other than the compound represented by the above formula (1) can also be used as the compound (A) constituting the core. Specifically, it is not particularly limited as long as it is a compound having an amino group in the molecule, but a compound having two or more amino groups in the molecule is preferable, and a polyfunctional amino compound having a triazine ring is more preferably used. sell.
  • Polyfunctional amino compounds having such a triazine ring include benzoguanamine (2,4-diamino-6-phenyl-sym.-triazine), cyclohexanecarboguanamine, cyclohexenecarboguanamine, acetoguanamine, norbornenecarboguanamine, spiro Examples thereof include guanamine compounds such as guanamine, diaminotriazine compounds represented by the following formula (2) and the following formula (3), and the like.
  • R 1 represents a hydrocarbon group having 1 to 2 carbon atoms which is a linear structure or a structure having a side chain.
  • R 2 represents a hydrocarbon group having 1 to 8 carbon atoms which is any one of a linear structure, a structure having a side chain, a structure having an aromatic ring, and a structure having an alicyclic ring.
  • the structure having an aromatic ring and the structure having an alicyclic ring may be a structure having a side chain and / or a structure having a substituent.
  • the compound other than melamine is used as the amino compound (A) constituting the core of this embodiment, only one such compound may be used, or two or more may be used in combination.
  • the core has a configuration containing a condensate of the amino compound (A) and formaldehyde (HC ( ⁇ O) —H) described above.
  • the condensation reaction of amino compounds (A) including melamine with formaldehyde is well known in the technical field relating to the synthesis of melamine resins. Specific reaction conditions and the like will be described later.
  • a methylol group (—CH 2 OH) is formed on the amino group by reacting the amino group of the amino compound (A) such as melamine with formaldehyde.
  • a group for example, methylolmelamine
  • two of the compounds produced above react with each other, so that one methylol group is eliminated from one and a condensation reaction occurs. By repeating this, a condensate constituting the core is generated.
  • the shape of the core is not particularly limited, and any shape such as a spherical shape, a needle shape, a plate shape, a bowl shape, a bowl shape, a confetti shape, or an indefinite shape can be adopted.
  • the shape of the core is preferably spherical.
  • the core size is not particularly limited, but in a preferred embodiment, the average particle diameter d of the core is 0.01 to 0.5 ⁇ m. If the average particle diameter of the core is within such a range, there is an advantage that the thickness of the shell layer can be increased, and the average particle diameter as the core-shell particles can be controlled to a submicron size.
  • the average particle diameter d of the core is more preferably 0.05 to 0.3 ⁇ m, still more preferably 0.08 to 0.25 ⁇ m, and particularly preferably 0.1 to 0.2 ⁇ m.
  • the average particle diameter d of the core was obtained by shadowing an SEM photograph so that the total number of particles was about 200, and the diameter of 100 particles randomly selected from the photograph (taken) The maximum diameter of the particles (cross section) is measured with a caliper, and the arithmetic average value is adopted as the average particle diameter.
  • the proportion of benzoguanamine (2,4-diamino-6-phenyl-sym.-triazine) in the amino compound (B) constituting the shell layer is relatively high.
  • the proportion of benzoguanamine in the amino compound (B) is 80 to 100% by mass. This ratio is preferably 85 to 100% by mass, more preferably 90 to 100% by mass, further preferably 95 to 100% by mass, particularly preferably 98 to 100% by mass, and most preferably 100% by mass (that is, the total amount of the amino compound (B) is benzoguanamine).
  • the proportion of benzoguanamine in the amino compound (B) is within such a range, positively charged fine particles having excellent charge retention can be provided.
  • the amino compound (B) constituting the shell layer contains a compound other than benzoguanamine (that is, when the proportion of benzoguanamine in the amino compound (B) is not 100% by mass), it is used as an amino compound (B) other than benzoguanamine.
  • a compound other than benzoguanamine that is, when the proportion of benzoguanamine in the amino compound (B) is not 100% by mass
  • it is used as an amino compound (B) other than benzoguanamine.
  • the guanamine compound (thing other than a benzoguanamine) mentioned above will be mentioned, for example.
  • compounds other than the above-described guanamine compounds can also be used as the compound (B) constituting the shell layer. Specifically, it is not particularly limited as long as it is a compound having an amino group in the molecule, but a compound having two or more amino groups in the molecule is preferable, and a polyfunctional amino compound having a triazine ring is more preferably used. sell. Examples of such a polyfunctional amino compound having a triazine ring include melamine and amino compounds other than melamine described above, and diaminotriazine compounds similarly represented by formula (2) and formula (3) described above.
  • amino compound (B) constituting the shell layer of this embodiment When a compound other than benzoguanamine is used as the amino compound (B) constituting the shell layer of this embodiment, only one such compound may be used, or two or more may be used in combination.
  • the shell layer has a structure containing a condensate of the amino compound (B) and formaldehyde (HC ( ⁇ O) —H) described above.
  • the condensation reaction between the amino compound (B) and formaldehyde and the form of the condensate obtained thereby are the same as those described above for the amino compound (A), and thus the description thereof is omitted here.
  • the shell layer further includes a condensation unit of a phenol compound and formaldehyde.
  • the phenol compound is co-condensed in the shell layer. According to such a configuration, it is possible to accurately control the charge amount while maintaining the charge retention performance of the positively charged fine particles obtained and the particles for display medium using the positive charged fine particles.
  • phenolic compound means a compound having a phenolic hydroxyl group.
  • the shell layer contains (preferably consists of) an amino compound-phenol compound-formaldehyde cocondensate;
  • the shell layer contains (preferably consists of) an amino compound-formaldehyde condensate layer and a phenol-formaldehyde condensate (phenol resin) formed on the surface of the layer (preferably consists of this).
  • a form comprising (preferably consisting of) layers;
  • the shell layer contains (preferably consists of) an amino compound-phenol compound-formaldehyde cocondensate, and a phenol-formaldehyde condensate (phenol resin) formed on the surface of the layer (preferably Is a layer comprising (preferably consisting of) layers.
  • the content of the structural unit derived from the phenol compound in the shell layer is not particularly limited, but the lower limit is preferably 1% by mass or more, more preferably 10% by mass with respect to the total amount of the shell layer. % Or more.
  • the upper limit is preferably 60% by mass or less, more preferably 50% by mass or less, based on the total amount of the shell layer. If the content of the structural unit derived from the phenol compound is 1% by mass or more, the effect of using the phenol compound is sufficiently exhibited, which is preferable. On the other hand, if the content of the structural unit derived from the phenol compound is 60% by mass or less, the high temperature compression deformation rate can be kept low, which is preferable.
  • the average thickness t of a shell layer is 0.01 micrometer or more. When the average thickness of the shell layer is within such a range, positively charged fine particles that are sufficiently excellent in charge retention can be obtained.
  • the average thickness t of the shell layer is more preferably 0.01 to 0.25 ⁇ m, further preferably 0.02 to 0.15 ⁇ m, and particularly preferably 0.04 to 0.10 ⁇ m.
  • the value of the ratio of the average thickness t of the shell layer to the average particle diameter d of the core described above is not particularly limited. However, in a preferred embodiment, the shell layer ratio is 0.01 to 1. A shell layer ratio within such a range is preferable in that the charge retention of positively charged fine particles is excellent.
  • the shell layer ratio is more preferably 0.05 to 0.75, and particularly preferably 0.10 to 0.50.
  • the positively charged fine particles of this embodiment are characterized by the fact that the core and shell layers are composed of a condensate of an amino compound and formaldehyde as a whole, and the core and shell layers each have a specific composition, as is apparent from the above description of the core and shell layers. It is what has. Hereinafter, other preferable modes as positively charged fine particles will be described.
  • the surface of the positively charged fine particles is preferably treated with a fluorine-based silane coupling agent. According to such a configuration, it is possible to accurately control the charge amount while maintaining the charge retention performance of the positively charged fine particles obtained and the particles for display medium using the positive charged fine particles.
  • fluorine-based silane coupling agent means an organic functional group and a hydrolyzable silyl group in one molecule, and further a fluorine atom in the organic functional group. Any structure can be used in the present embodiment as long as such a definition is satisfied, but a preferred fluorine-based silane coupling agent has a structure represented by the following formula (4).
  • Rf is a perfluoroalkyl group having 1 to 20 carbon atoms
  • R is a methyl group or an ethyl group
  • X is a hydrolyzable group
  • n is an integer of 0 to 5
  • a is 0 or 1.
  • fluorine-based silane coupling agent represented by the above formula (4) include, for example, CF 3 (CH 2 ) 2 SiCl 3 , CF 3 (CF 2 ) 5 SiCl 3 , CF 3 (CF 2 ) 5 (CH 2 ) 2 SiCl 3 , CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 , CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 7 ( CH 2) 2 Si (CH 3 ) Cl 2, CF 3 (CH 2) 2 Si (OCH 3) 3, CF 3 (CH 2) 2 Si (CH 3) (OCH 3) 2, CF 3 (CF 2) 3 (CH 2 ) 2 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) ( OCH 3 ) 2 ,
  • fluorine-type silane coupling agents may be used individually by 1 type, and 2 or more types may be used together.
  • the amount of the fluorine-based silane coupling agent used for the surface treatment of the positively charged fine particles is not particularly limited, but is preferably 0.1% by mass or more with respect to 100% by mass of the particles to be treated (core-shell particles), More preferably, it is 1.0 mass% or more.
  • the upper limit of the amount of the fluorine-based silane coupling agent is preferably 50% by mass or less, and more preferably 20% by mass or less. When this amount is 0.1% by mass or more, the effect of the surface treatment can be sufficiently exhibited.
  • the amount is 50% by mass or less, the charge amount of the positively charged fine particles can be appropriately controlled, which is preferable.
  • the shape of the positively charged fine particle is not particularly limited, and any shape such as a spherical shape, a needle shape, a plate shape, a bowl shape, a bowl shape, a scalloped sugar shape, and an indeterminate shape similar to the above-described core can be adopted.
  • the shape of the positively charged fine particles is preferably spherical.
  • the size of the positively charged fine particles is not particularly limited, but in a preferred embodiment, the average particle diameter D of the positively charged fine particles is in the range of 0.1 to 1.0 ⁇ m.
  • the average particle diameter D of the positively charged fine particles is a value within such a range, the composite with the mother particles constituting the display medium particles can be performed uniformly.
  • the average particle diameter D of the positively charged fine particles is more preferably 0.1 to 0.8 ⁇ m, still more preferably 0.15 to 0.5 ⁇ m, and particularly preferably 0.2 to 0.3 ⁇ m.
  • the average particle diameter D of the positively charged fine particles can be measured by the same measurement method as the average particle diameter d of the core described above.
  • the value of the coefficient of variation (CV) of the particle diameter of the positively charged fine particles is preferably 30% or less. If the CV value of the particle diameter of the positively charged fine particles is within such a range, it is preferable because stable charging performance can be achieved.
  • the CV value of the particle diameter of the positively charged fine particles is more preferably 20% or less, further preferably 15% or less, and particularly preferably 10% or less.
  • the CV value of the positively charged fine particles is a value calculated as a percentage (%) of the standard deviation of the particle diameter with respect to the average particle diameter D, and is an index indicating the degree of variation in the particle diameter of the positively charged fine particles (CV The smaller the value, the smaller the variation in particle size).
  • the positively charged fine particles are more preferable as they have higher resistance to compression deformation (compression resistance). As will be described later, the positively charged fine particles adhere to and adhere to the surface of the mother particles to constitute display medium particles. However, if the positively charged fine particles have high compression deformation resistance, the positively charged fine particles adhere to the surface of the mother particles. Deformation at the time of fixing can be suppressed to the minimum, and deterioration of charging performance can be prevented.
  • a high temperature compression deformation rate can be mentioned.
  • the high temperature compression deformation rate of the positively charged fine particles is defined as the deformation rate of the particles when a predetermined load is applied under a high temperature condition using a flow tester as described in the Examples section described later.
  • the specific value of the high-temperature compressive deformation rate of the positively charged fine particles is not particularly limited, but for example, deformation when a load is applied in an environment in which the particles are heated as described in Examples described later.
  • the rate is preferably 50% or less, more preferably 40% or less, and even more preferably 30% or less.
  • a method for obtaining positively charged fine particles having high compression deformation resistance that is, having a low high temperature compressive deformation rate
  • a shell layer is formed on the outer surface of the core as described in the section of the manufacturing method described later. Then, a method of heat-treating the obtained particles under a pressurized condition can be mentioned (refer to Example 3 and Example 4 described later).
  • Positively charged fine particles are also preferred as the amount of saturated moisture absorption is smaller.
  • the specific value of the saturated moisture absorption amount of the positively charged fine particles is not particularly limited, but is preferably 2 to 9% by mass, more preferably 2.5 to 7.0% by mass, and still more preferably 3.0. -5.0% by mass.
  • the saturated moisture absorption amount of the positively charged fine particles is within such a range, positively charged fine particles that are further excellent in charge retention can be provided.
  • the saturated moisture absorption amount of the positively charged fine particles as described in Examples below, first, the positively charged fine particles are crushed, and the obtained powder is heated at a temperature of 30 ° C. and a humidity of 90% RH. Leave for 1 day under atmospheric conditions. Thereafter, the amount of moisture can be quantified by the Karl Fischer method with respect to 1 g of the powder, and the percentage of the obtained amount of moisture can be measured as the saturated moisture absorption amount (% by mass).
  • the triboelectric charge amount of the fine particles can have a positive charge amount.
  • the value of the triboelectric charge amount (equilibrium weight average charge amount) of the positively charged fine particles may be more than 1 [ ⁇ C / g] and less than 600 [ ⁇ C / g]. Note that the value of the triboelectric charge amount is measured by the method described in Examples described later.
  • the charge retention performance of the positively charged fine particles is determined by the charge retention rate after a certain time has elapsed after charging.
  • the charge retention rate of the positively charged fine particles is preferably 10% or more.
  • the value of the charge retention rate is measured by the method described in the examples described later.
  • the positively charged fine particles are prepared by first condensing an amino compound (A) and formaldehyde in an aqueous solvent to produce a core containing the resulting condensate. Next, the obtained core was dispersed in an aqueous medium, and the amino compound (B) and formaldehyde were condensed on the outer surface of the core by adding the amino compound (B) and formaldehyde while heating. A shell layer containing the condensate is formed. Thereby, positively charged fine particles can be produced.
  • a core precursor is first obtained by condensation reaction of an amino compound and formaldehyde.
  • the raw materials used for producing the core precursor are an amino compound (A) and formaldehyde.
  • the proportion of melamine in the amino compound (A) may be 80 to 100% by mass.
  • the specific form of an amino compound (A) since it is as having mentioned above about the specific form of an amino compound (A), detailed description is abbreviate
  • the formaldehyde used for the preparation of the core precursor may be in the form of an aqueous solution (that is, formalin) or in the form of an aqueous solution of a precursor that can generate formaldehyde in water such as trioxane or paraformaldehyde. Good.
  • the core precursor obtained above is mixed with a surfactant in an aqueous medium, a curing catalyst is added to this mixed solution, and preferably heated. As a result, the core precursor is hardened and precipitated in an aqueous medium to form particles into the core.
  • a shell layer is formed on the outer peripheral portion of the core obtained above.
  • the shell layer is formed on the outer periphery of the core by, for example, dispersing the core obtained above in an aqueous medium, adding the amino compound (B), preferably together with formaldehyde, in the presence of a curing catalyst, Heat.
  • the amino compound (B) preferably together with formaldehyde
  • a condensate of amino compound (B) and formaldehyde grows on the outer periphery of the core, and a shell layer is formed.
  • the shell layer in the embodiment in which the shell layer, which is a preferred embodiment, includes a condensation unit of a phenol compound and formaldehyde is conventionally known while appropriately adjusting depending on the site where the structural unit of the phenol compound is to be included.
  • This method can be used.
  • the phenol compound may be supplied to the reaction system simultaneously with the amino compound (B), may be added to the reaction system after the amino compound (B) is supplied, or the amino compound (B) Prior to the supply, the reaction system may be supplied.
  • segmentation addition, whole quantity lump addition, etc. can be selected suitably.
  • a reaction liquid in which positively charged fine particles having a core-shell structure are dispersed and contained in an aqueous medium can be obtained.
  • particles are separated by a conventionally known separation method such as a centrifugal separation method, washed with a solvent as necessary, and dried to obtain powdered positively charged fine particles (positively charged fine particle powder). can get.
  • a conventionally known separation method such as a centrifugal separation method
  • the reaction liquid after forming the shell layer is heated under pressure.
  • positively charged fine particles having further improved compression deformation resistance (hardness) can be obtained.
  • the reaction solution is pressurized and heated in a pressure vessel, but the pressure in the gas phase is preferably in the range of 0.1 to 5.0 MPa, more preferably in the range of 0.5 to 2.5 MPa, and the temperature is preferably It is preferable to heat and maintain the temperature in the range of 100 to 250 ° C., more preferably 150 to 200 ° C.
  • a fluorine-based silane coupling agent is introduced while the dried and pulverized powder is suspended in a container using a fluid tank dryer such as a Henschel mixer.
  • the fluorinated silane coupling agent may be diluted with water or an organic solvent, and an acid or alkali may be added thereto.
  • the charging may be performed by any method such as spraying, sequential charging, split charging, or batch charging. After the charging, the surface treatment can be achieved by heating the charging material to raise the temperature to a predetermined temperature and then holding it for a predetermined time.
  • the dried or pulverized powder or the cake obtained by filtering the reaction solution is dispersed in an organic solvent such as alcohol using a bead mill or an ultrasonic disperser.
  • a fluorinated silane coupling agent is introduced into the dispersion.
  • charging may be performed by any method such as spraying, sequential charging, split charging, or batch charging.
  • the surface treatment can be achieved by heating the charging material to raise the temperature to a predetermined temperature and then holding it for a predetermined time.
  • the positively charged fine particles provided by the present invention are used for constituting display medium particles used in an electronic powder fluid display panel.
  • the positively charged fine particles provided by the present invention are used to constitute display medium particles for an electronic powder fluid display panel as an information display device.
  • an electric field is applied to a chargeable display medium (comprising display medium particles and gas as a dispersion medium) sealed between two opposing substrates.
  • the display medium is attracted by the force of the electric field, a Coulomber, or the like, and the display medium reciprocates due to a change in the electric field direction due to the potential switching, thereby displaying information such as an image. Therefore, it is necessary to design the information display panel so that the display medium can move uniformly and maintain stability during repetition or storage.
  • the force applied to the particles used as the display medium in addition to the force attracted by the Coulombers between the particles, an electric image force with the electrode and the substrate, intermolecular force, gravity and the like can be considered.
  • At least two kinds of colors composed of at least one kind of particles and display medium particles 3 having different charging characteristics (here, white particle group 3W and black particle group).
  • 3B) is moved perpendicularly to the substrates 1 and 2 according to the electric field applied from the outside of the substrates 1 and 2, and the black particle group 3B is visually recognized by the observer to display black, or The white particle group 3W is visually recognized by the observer to display white.
  • partition walls 4 are provided, for example, in a lattice shape between the substrates 1 and 2 to define display cells. The space between the substrates 1 and 2 is filled with a gas as a dispersion medium.
  • the display medium particles 3 (here, the white particle group 3W and the black particle group) having at least two kinds of colors and charging characteristics different from each other, which are composed of at least one kind of particles. 3B) is moved perpendicularly to the substrates 1 and 2 in accordance with the electric field generated by applying a voltage between the electrode 5 provided on the substrate 1 and the electrode 6 provided on the substrate 2, and the black particles
  • the group 3B is visually recognized by the observer and black display is performed, or the white particle group 3W is visually recognized by the observer and white display is performed.
  • partition walls 4 are provided, for example, in a lattice form between the substrates 1 and 2 to define display cells.
  • the space between the substrates 1 and 2 is filled with a gas as a dispersion medium.
  • one type of display medium particle 3 (here, white particle group 3W) having at least color and chargeability composed of at least one type of particles is used.
  • white particle group 3W white particle group 3W
  • the white particle group 3 ⁇ / b> W is visually recognized by an observer.
  • a white display is performed, or the color of the electrode 6 or the substrate 1 is displayed by making an observer visually recognize the color of the electrode 6 or the substrate 1.
  • a partition 4 is provided between the substrates 1 and 2 to form a display cell, for example.
  • the space between the substrates 1 and 2 is filled with a gas as a dispersion medium.
  • FIGS. 4A and 4B are diagrams showing examples of display medium particles using positively charged fine particles of the present invention.
  • the display medium particle 11 is characterized in that the child particles 13 which are positively charged fine particles provided by the present invention are attached or fixed to the surface layer of the mother particle 12. It is in the point comprised from the composite particle obtained.
  • FIG. 4A shows an example in which a composite particle is formed by fixing child particles (positively charged fine particles) 13 to the surface layer of the mother particle 12, and
  • FIG. 4B shows child particles on the surface layer of the mother particle 12.
  • An example in which composite particles are formed by attaching (positively charged fine particles) 13 is shown.
  • attachment means that the child particles (positively charged fine particles) 13 are fixed to the surface layer of the mother particles 12 by electrostatic force, Coulombka, van der Waalska, etc. It means a form in which (positively charged fine particles) 13 can move.
  • adheresion means that the child particles (positively charged fine particles) 13 are embedded in the surface layer of the mother particles 12 and fixed by adhesion, adhesion or the like. This means that 13 movements are not seen.
  • the method for producing the particles for display medium used in the present embodiment is not particularly limited, and conventionally known knowledge can be appropriately referred to.
  • the following composite (attachment or fixation) treatment method of the mother particles 12 and the child particles (positively charged fine particles) 13 can be used.
  • the manufacturing method of the positively charged fine particles constituting the child particles 13 is as described above, the description thereof is omitted here.
  • a raw material composed of a base resin and a pigment for example, a white pigment such as titanium oxide or a black pigment such as carbon black
  • a biaxial kneader for example, a biaxial kneader
  • Predetermined mother particles 12 can be obtained by pulverizing with a mill.
  • the substrate is a transparent substrate 2 on which the color of the display medium can be confirmed from the outside of the panel, and a material having high visible light transmittance and good heat resistance is suitable.
  • the substrate 1 may be transparent or opaque.
  • the substrate material include polymer sheets such as polyethylene terephthalate, polyethersulfone, polyethylene, polycarbonate, polyimide, and acrylic, flexible materials such as metal sheets, and flexible materials such as glass and quartz. There are no inorganic sheets.
  • the thickness of the substrate is preferably 2 to 5000 ⁇ m, and more preferably 5 to 2000 ⁇ m. If it is too thin, it will be difficult to maintain the strength and uniformity of the distance between the substrates, and if it is thicker than 5000 ⁇ m, it will be a thin information display panel. Is inconvenient.
  • Electrode forming materials for electrodes provided on the substrate side include metals such as aluminum, silver, nickel, copper, and gold, conductive metal oxides such as ITO, indium oxide, conductive tin oxide, and conductive zinc oxide, polyaniline, Examples thereof include conductive polymers such as polypyrrole and polythiophene, which are appropriately selected and used.
  • a method for forming an electrode a method of forming the above-described materials into a thin film by sputtering, vacuum deposition, CVD (chemical vapor deposition), coating, or the like, or mixing a conductive agent with a solvent or a synthetic resin binder. The method of apply
  • the electrode provided on the viewing substrate side needs to be transparent, but the electrode provided on the back substrate side does not need to be transparent.
  • the above-mentioned material that is conductive and capable of pattern formation can be suitably used.
  • the electrode thickness is not particularly limited as long as the conductivity can be secured and the light transmittance is not affected, and is preferably 3 to 1000 nm, preferably 5 to 400 nm.
  • the material and thickness of the electrode provided on the back substrate side are the same as those of the electrode provided on the viewing substrate side described above, but need not be transparent. In this case, the external voltage input may be superimposed with direct current or alternating current.
  • the shape of the partition 4 provided as required is optimally set depending on the type of display medium involved in the display, and is not limited in general, but the width of the partition is 2 to 100 ⁇ m, preferably 3 to 50 ⁇ m. The height is adjusted to 10 to 500 ⁇ m, preferably 10 to 200 ⁇ m.
  • a both-rib method in which ribs are formed on each of the opposing substrates and then bonded, and a one-rib method in which ribs are formed only on one substrate are conceivable. In the present invention, any method is preferably used.
  • the shape of the display cell formed by the partition walls made of these ribs is not particularly limited, but examples thereof include a square shape, a triangular shape, a line shape, a circular shape, and a hexagonal shape as viewed from the substrate plane direction.
  • the shape and the mesh shape are exemplified. It is better to make the portion corresponding to the cross section of the partition wall visible from the display side (the area of the frame portion of the display cell) as small as possible, and the sharpness of information display such as images is increased.
  • the method for forming the partition include a mold transfer method, a screen printing method, a sand blast method, a photolithography method, and an additive method. Among these, a photolithography method using a resist film and a mold transfer method are preferably used. In any method, the present invention can be suitably used.
  • the “powder fluid” in the present invention is a substance in an intermediate state of both fluid and particle characteristics that exhibits fluidity by itself without borrowing the force of gas or liquid.
  • liquid crystal is defined as an intermediate phase between a liquid and a solid, and has fluidity that is a characteristic of liquid and anisotropy (optical properties) that is a characteristic of solid (Heibonsha: Encyclopedia) .
  • anisotropy optical properties
  • particle is an object with a finite mass even if it is negligible, and is considered to be affected by gravity (Maruzen: Science Dictionary).
  • the pulverulent fluid in the present invention is in an intermediate state having both the characteristics of particles and liquid, as in the definition of liquid crystal (liquid and solid intermediate phase), and is the characteristic of the above-mentioned particles. It is a substance that is extremely unaffected and exhibits a unique state with high fluidity. Such a substance can be obtained in an aerosol state, that is, a dispersion system in which a solid or liquid substance is stably suspended as a dispersoid in a gas, and the information display device of this embodiment uses the solid substance as a dispersoid. Is.
  • At least one of them is transparent and encloses a powder fluid exhibiting high fluidity in an aerosol state in which solid particles are stably suspended as a dispersoid in a gas as a display medium between opposed substrates.
  • a powder fluid can be easily and stably moved by a Coulomb force or the like by applying a low voltage.
  • the powder fluid used in the present invention is a substance in an intermediate state of both fluid and particle characteristics that exhibits fluidity by itself without borrowing the force of gas or liquid.
  • this powder fluid can be in an aerosol state.
  • a solid substance is used in a state of being relatively stably suspended as a dispersoid in a gas.
  • the particles can contain a charge control agent, a colorant, an inorganic additive, and the like, if necessary, in the resin as the main component.
  • the display medium particles need two kinds of positively charged particles and negatively charged particles.
  • the positively charged fine particles provided by the present invention described above are positively charged display medium particles. , Used as a charge control agent (positive charge control agent).
  • Examples of the resin constituting the mother particle include urethane resin, urea resin, acrylic resin, polyester resin, acrylic urethane resin, acrylic urethane silicone resin, acrylic urethane fluororesin, acrylic fluororesin, silicone resin, acrylic silicone resin, epoxy resin , Polystyrene resin, styrene acrylic resin, polyolefin resin, petryl resin, vinylidene chloride resin, melamine resin, phenol resin, fluororesin, polycarbonate resin, polysulfone resin, polyether resin, polyamide resin, etc. You can also.
  • acrylic urethane resin, acrylic silicone resin, acrylic fluororesin, acrylic urethane silicone resin, acrylic urethane fluororesin, fluororesin, and silicone resin are suitable from the viewpoint of controlling the adhesive force with the substrate.
  • the charge control agent is not particularly limited.
  • the negative charge control agent include salicylic acid metal complexes, mixed metal azo dyes, metal-containing (including metal ions and metal atoms) oil-soluble dyes, and quaternary ammonium salts. System compounds, calixarene compounds, boron-containing compounds (benzyl acid boron complexes), nitroimidazole derivatives, and the like.
  • the positive charge control agent the positively charged fine particles provided by the present invention described above are used. Other positive charge control agents may be used in combination.
  • positive charge control agents examples include nigrosine dyes, triphenylmethane compounds, quaternary ammonium salt compounds, polyamine resins, imidazole derivatives, and the like.
  • metal oxides such as ultrafine silica, ultrafine titanium oxide, ultrafine alumina, nitrogen-containing cyclic compounds such as viridine and their derivatives and salts, various organic pigments, resins containing fluorine, chlorine, nitrogen, etc. are also charged. It can also be used as a control agent.
  • colorant various organic or inorganic pigments and dyes as exemplified below can be used.
  • Black colorants include carbon black, copper oxide, manganese dioxide, aniline black, activated carbon and the like.
  • blue colorants include C.I. I. Pigment blue 15: 3, C.I. I. Pigment Blue 15, Bituminous Blue, Cobalt Blue, Alkaline Blue Lake, Victoria Blue Lake, Phthalocyanine Blue, Metal-free Phthalocyanine Blue, Phthalocyanine Blue Partial Chlorides, Fast Sky Blue, Indanthrene Blue BC and the like.
  • red colorants include bengara, cadmium red, red lead, mercury sulfide, cadmium, permanent red 4R, risor red, pyrazolone red, watching red, calcium salt, lake red D, brilliant carmine 6B, eosin lake, rhodamine lake B, Alizarin Lake, Brilliant Carmine 3B, C.I. I. Pigment Red 2 etc.
  • Yellow colorants include chrome yellow, zinc yellow, cadmium yellow, yellow iron oxide, mineral first yellow, nickel titanium yellow, navel yellow, naphthol yellow S, Hansa Yellow G, Hansa Yellow 10G, Benzidine Yellow G, Benzidine Yellow GR, Quinoline Yellow Lake, Permanent Yellow NCG, Tartrazine Lake, C.I. I. Pigment Yellow 12 etc.
  • ⁇ Green colorants include chrome green, chromium oxide, pigment green B, C.I. I. Pigment Green 7, Malachite Green Lake, Final Yellow Green G, etc.
  • Orange colorants include red yellow lead, molybdenum orange, permanent orange GTR, pyrazolone orange, Vulcan orange, Indanthrene Brilliant Orange RK, Benzidine Orange G, Indanthrene Brilliant Orange GK, C.I. I. Pigment Orange 31 etc.
  • Purple colorants include manganese purple, first violet B, methyl violet lake and the like.
  • white colorants include zinc white, titanium oxide, antimony white, and zinc sulfide.
  • extender pigments examples include barite powder, barium carbonate, clay, silica, white carbon, talc, and alumina white.
  • various dyes such as basic, acidic, disperse, and direct dyes include nigrosine, methylene blue, rose bengal, quinoline yellow, and ultramarine blue.
  • inorganic additives include titanium oxide, zinc white, zinc sulfide, antimony oxide, calcium carbonate, lead white, talc, silica, calcium silicate, alumina white, cadmium yellow, cadmium red, cadmium orange, titanium yellow,
  • pigments and inorganic additives can be used alone or in combination.
  • carbon black is particularly preferable as the black pigment
  • titanium oxide is preferable as the white pigment.
  • the particles for display medium used in this embodiment preferably have an average particle diameter d (0.5) in the range of 0.1 to 20 ⁇ m, and are uniform and uniform. If the average particle diameter d (0.5) is larger than this range, the display is not clear. If the average particle diameter d (0.5) is smaller than this range, the cohesive force between the particles becomes too large, which hinders the movement of the particles.
  • the particle diameter can be obtained from a laser diffraction / scattering method or the like. When laser light is irradiated to particles to be measured, a light intensity distribution pattern of diffracted / scattered light is spatially generated, and this light intensity pattern has a corresponding relationship with the particle diameter, so that the particle diameter can be measured.
  • the particle diameter in the present invention is obtained from a volume-based distribution. Specifically, using a Mastersizer2000 (Malvern Instruments ⁇ Ltd.) measuring instrument, particles are introduced into a nitrogen stream and the attached analysis software (software based on volume-based distribution using Mie theory) The diameter can be measured.
  • Mastersizer2000 Malvern Instruments ⁇ Ltd.
  • the charge amount of the display medium particles naturally depends on the measurement conditions, but the charge amount of the display medium particles in the information display panel is almost the same as the initial charge amount, the contact with the partition walls, the contact with the substrate, and the elapsed time. Depending on the charge decay, the saturation value of the charging behavior of the particles constituting the display medium is a dominant factor.
  • the relative humidity at 25 ° C. is preferably 60% RH or less, preferably 50% RH or less, more preferably 35% RH or less.
  • This void portion refers to the electrodes 5 and 6 and the display medium (particle group or particles) from the portion sandwiched between the opposing substrates 1 and 2 in FIGS. 1 (a), 1 (b) to 3 (a) and 3 (b). It refers to the gas portion in contact with the so-called particles for display medium, excluding the occupied portion of the powder fluid 3), the occupied portion of the partition wall 4 (if present), and the information display panel seal portion.
  • the gas in the gap is not limited as long as it is in the humidity region described above, but dry air, dry nitrogen, dry argon, dry helium, dry carbon dioxide, dry methane, and the like are suitable.
  • This gas needs to be sealed between panel substrates so that the humidity is maintained. For example, filling of display medium particles, assembly of an information display panel, and the like are performed in a predetermined humidity environment. It is important to apply a sealing material and a sealing method that prevent moisture from entering from the outside.
  • the distance between the substrates in the information display panel of this embodiment is adjusted to usually 10 to 500 ⁇ m, preferably 10 to 200 ⁇ m, as long as the particles for the display medium can move and maintain the contrast.
  • the volume occupancy of the display medium particles in the space between the opposing substrates is preferably 5 to 70%, more preferably 5 to 60%. When it exceeds 70%, the movement of the particles for display medium is hindered, and when it is less than 5%, the contrast tends to be unclear.
  • An information display panel (electronic powder fluid display panel) and an information display device of this embodiment are a display unit of a mobile device such as a notebook computer, a PDA, a mobile phone, and a handy terminal, an electronic paper bag such as an electronic book and an electronic newspaper, and a signboard.
  • Posters bulletin boards such as blackboards, calculators, home appliances, automotive supplies, card displays such as point cards, IC cards, electronic advertisements, electronic POPs, electronic shelf labels, electronic price tags, electronic music scores, RF-IDs It is suitably used for a display unit of equipment.
  • the positively charged fine particles provided by the present invention are used for constituting display medium particles used in an electronic powder fluid display panel. Therefore, still another preferred form provided by the present invention is: A core containing a condensate of amino compound (A) and formaldehyde; and a shell layer containing a condensate of amino compound (B) and formaldehyde disposed on the outer surface of the core;
  • the positively charged fine particles characterized in that the proportion of melamine in (A) is 80 to 100% by mass and the proportion of benzoguanamine in the amino compound (B) is 80 to 100% by mass
  • Display medium particles containing mother particles and positively charged fine particles present on the surface layer of the mother particles between two opposing substrates at least one of which is transparent are contained in a gas, and the display medium particles
  • As positively charged fine particles for constituting display medium particles used in an information display panel that displays information such as images by moving the display medium particles in the gas by applying an electric field to the gas use It is.
  • an aqueous sodium dodecylbenzenesulfonate solution having a solid content of 65% by mass (manufactured by Kao Corporation: Neoperex G65: hereinafter also simply referred to as “DBSNa”), 25.2 parts by mass, and ion-exchanged water 5600 mass Thereafter, 200 parts by mass of a 10% by mass aqueous solution of dodecylbenzenesulfonic acid (hereinafter also simply referred to as “DBS”) was added thereto. This state was maintained for 5 hours to obtain 7009.2 parts by mass of a liquid containing amino resin crosslinked particles (1) (hereinafter also simply referred to as “melamine resin seed liquid (1)”). In addition, it was 0.19 micrometer when the average particle diameter of the amino resin crosslinked particle (1) contained in a melamine resin seed liquid (1) was measured (CV value: 12.0%).
  • Formation of benzoguanamine resin coating layer 200 parts by mass of benzoguanamine (hereinafter, also simply referred to as “BG”), 260 parts by mass of 37% by weight formalin, 12.6 parts by mass of DBSNa, 2 parts by mass of DBS10, and 2560 parts by mass of ion-exchanged water are uniformly dispersed and mixed. 3042.6 mass parts of liquid was obtained. And the whole quantity of the said BG dispersion liquid was dripped in 7009.2 mass parts of melamine resin seed liquid (1) prepared above, and also it hold
  • BG benzoguanamine
  • the dispersion (1) containing the BG-coated amino resin crosslinked particles (1) having the surface of the amino resin crosslinked particles (1) coated with a condensate of BG and formaldehyde (hereinafter simply referred to as “BG coated slurry ( 1) ”) was obtained.
  • the BG-coated slurry (1) obtained above was subjected to solid-liquid separation with a centrifugal separator, and the supernatant liquid was removed, and then the sedimented cake was taken out. After the obtained cake was dispersed in methanol, a change in which solid-liquid separation was performed with a centrifuge was repeated two times and washed with methanol to obtain a cake. The obtained cake was vacuum dried at 190 ° C., and the obtained dried powder was pulverized to obtain BG-coated amino resin crosslinked particles (1) as positively charged fine particles.
  • the dispersion (2) containing the BG-coated amino resin crosslinked particles (2) in which the surfaces of the amino resin crosslinked particles (2) are coated with a condensate of BG and formaldehyde (hereinafter simply referred to as “BG coated slurry ( 2) ”)) 8007.6 parts by mass were obtained.
  • the BG-coated slurry (2) obtained above was subjected to solid-liquid separation with a centrifugal separator, and the supernatant liquid was removed, and the sedimented cake was taken out. After the obtained cake was dispersed in methanol, a change in which solid-liquid separation was performed with a centrifuge was repeated two times and washed with methanol to obtain a cake. The obtained cake was vacuum-dried at 190 ° C. for 3 hours, and the obtained dry powder was pulverized to obtain BG-coated amino resin crosslinked particles (2) as positively charged fine particles.
  • a liquid containing amino resin crosslinked particles (5) (hereinafter also simply referred to as “melamine resin seed liquid (5)”) was obtained by the same method as in Production Example 1 described above.
  • the average particle size of the amino resin crosslinked particles (5) contained in the melamine resin seed solution (5) was measured and found to be 0.21 ⁇ m (CV value: 11.2%).
  • (Formation of benzoguanamine resin coating layer) 200 parts of BG, 260 parts of 37% by weight formalin, 12.6 parts of 65% by weight DBSNa, 10 parts of DBS, and 2770.3 parts of ion-exchanged water were uniformly dispersed and mixed to obtain a BG dispersion.
  • BG dispersion is dropped into 4177.8 parts of melamine resin seed liquid (5), and is further maintained for 5 hours after the dropping, and the surface of the amino resin crosslinked particles (5) is covered with a condensate of BG and formaldehyde As a result, 7430.7 parts of dispersion (5) (hereinafter, also simply referred to as “BG coating slurry (5)”) containing the BG-coated amino resin crosslinked particles (5) was obtained.
  • the PhOH dispersion aqueous solution is dropped into 7430.7 parts of BG-coated slurry (5), and is further maintained for 5 hours after the completion of the dropwise addition, and then cooled to room temperature, and the surface of the BG-coated amino resin crosslinked particles (5) is Dispersion (5) containing PhOH / BG-coated amino resin crosslinked particles (5) coated with a condensate of PhOH and formaldehyde (hereinafter also simply referred to as “PhOH / BG-coated slurry (5)”) 8431 Obtained 1 part.
  • the amount of phenol and the amount of phenol were changed as shown in Table 1-2 to sequentially form a benzoguanamine resin coating layer and a phenol resin coating layer, and PhOH / BG-coated amino resin crosslinked particles (6) to (9 Dispersions (6) to (9) containing Thereafter, as in Production Example 5, pressure, washing, drying, and pulverization were performed to obtain PhOH / BG-coated amino resin crosslinked particles (6) to (9).
  • the dried powder was vacuum-dried at 190 ° C., and the obtained dried powder was pulverized to obtain BG-coated amino resin crosslinked particles (10) surface-treated with trifluoropropyltrimethoxysilane.
  • the average particle size was 0.24 ⁇ m (CV value: 6.6%).
  • the average particle diameter D and its CV value were measured by the following method. Specifically, SEM photographs were taken so that the total number of particles was around 200, and the diameter (maximum length of the photographed particles (cross-section)) of 100 particles randomly selected from the photographs was vernier caliper. The arithmetic average value was taken as the average particle diameter D. Further, the CV value of the average particle diameter D was calculated as a percentage (%) of the standard deviation of the particle diameter with respect to the average particle diameter D. The results are shown in Table 1-1 to Table 1-3 below.
  • the high-temperature compression deformation rate which is an index of the degree of compression deformation resistance
  • the high-temperature compression deformation rate was measured by the following method. Specifically, the bottom of the sample filling chamber of the flow tester is sealed, 0.5 g of the sample is charged, and the temperature is raised from room temperature to 240 ° C. at 10 ° C./min while applying a load of 300 kgf / cm 2. did. At that time, the height deformed between 100 and 240 ° C. was read, and the high temperature compression deformation rate was calculated by the following formula. The results are shown in Table 1-1 to Table 1-3 below.
  • the saturated moisture absorption amount was measured by the following method. Specifically, first, positively charged fine particles were pulverized, and the obtained powder was allowed to stand for 1 day under an atmospheric condition of a temperature of 30 ° C. and a humidity of 90% RH. Then, the moisture content was quantified by the Karl Fischer method for 1 g of the powder, and the percentage of the obtained moisture content was defined as the saturated moisture absorption amount (% by mass). The results are shown in Table 1-1 to Table 1-3 below.
  • Example 1 Display medium particles to be sealed in an information display device were produced by the following method.
  • the mother particles and the child particles prepared above were combined under the following conditions to obtain display medium particles in which the child particles were adhered and fixed to the surface layer of the mother particles.
  • Comparative display medium particles (1) were produced by the same method as in Example 1 except that the positively charged melamine resin fine particles prepared in Comparative Production Example 1 were used as the child particles. .
  • the display medium particles formed using the positively charged fine particles provided by the present invention are compared with the conventional display medium particles using the positively charged fine particles.
  • a significant improvement is observed in terms of charge retention performance (charge retention rate).
  • the shell layer constituting the positively charged fine particles used in the display medium particles contains a condensation unit of a phenol compound and formaldehyde, whereby display medium particles It can be seen that the charge amount of the particles can be precisely controlled while maintaining the charge retention ratio at a high value.
  • the charge retention of the display medium particles can be achieved by treating the surface of the positively charged fine particles used in the particles with a fluorinated silane coupling agent. It can be seen that the charge amount of the particles can be precisely controlled while maintaining the rate at a high value.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

本発明は、情報表示用パネルの表示媒体用粒子を構成するための正帯電微粒子において、十分な電荷保持性を発揮させることを目的とする。 本発明は、母粒子(12)とその表層に存在する正帯電微粒子(13)とを含む表示媒体用粒子(11)を構成するための正帯電微粒子である。 本発明の正帯電微粒子(13)は、アミノ化合物(A)とホルムアルデヒドとの縮合物を含むコアと;前記コアの外表面に配置された、アミノ化合物(B)とホルムアルデヒドとの縮合物を含むシェル層と;からなり、前記アミノ化合物(A)におけるメラミンの割合が80~100質量%であり、前記アミノ化合物(B)におけるベンゾグアナミンの割合が80~100質量%であることを特徴とする。 本発明は、表示媒体用粒子を気体中で電界によって移動させて画像を表示する情報表示用パネルに用いられる。

Description

情報表示パネル用正帯電微粒子
 本発明は、正帯電微粒子に関する。本発明により提供される正帯電微粒子は、少なくとも一方が透明な対向する2枚の基板間に、母粒子と前記母粒子の表層に存在する正帯電微粒子とを含む表示媒体用粒子が、気体中に含有されてなり、前記表示媒体用粒子に電界を付与することによって、前記気体中を、前記表示媒体用粒子を移動させて画像等の情報を表示する情報表示用パネルに用いられる表示媒体用粒子を構成するために用いられる。
 従来、液晶ディスプレイ(LCD)に代わる情報表示装置として、電気泳動方式やエレクトロクロミック方式、サーマル方式、2色粒子回転方式など、種々の技術を用いたものが提案されている。
 しかしながら、これらのうち例えば電気泳動方式では、応答速度が遅く、また、情報表示の繰り返し安定性に欠けるという問題があった。
 かような問題を解決しうる新たな情報表示装置として、いわゆる「電子粉流体表示用パネル」を用いたものが提案されている(例えば、特許文献1を参照)。電子粉流体表示用パネルにおいて表示媒体を構成する表示媒体用粒子は、典型的には2種類必要である。つまり、一方の表示媒体用粒子は、母粒子の表層に正帯電性の子粒子(正帯電微粒子)が存在する構成を有し、黒色または白色の色調を有する。そして、他方の表示媒体用粒子は、母粒子の表層に負帯電性の子粒子(負帯電粒子)が存在する構成を有し、上記一方の表示媒体用粒子とは異なる色調を有する。電子粉流体表示用パネルにおいては、電圧の印加を制御することによって、これら2種類の表示媒体用粒子を移動させ、種々の情報が透明基板を介して視認されうるのである。
 このような電子粉流体表示用パネルにおいては、表示媒体の流動性や帯電量の制御性が重要である。そして従来、電子写真用トナーとして、子粒子をトナー母粒子に付着させることでこれらの特性の向上を図る技術が知られていた。しかし、このような電子写真用トナーを電子粉流体表示用パネルにそのまま適用すると、表示反転を繰り返して行う反転耐久試験時に、表示媒体の流動性や帯電量の制御性といった特性が悪化し、初期性能を維持できないという問題があった。
 特許文献1では、この問題の解決を図っている。具体的には、1.0μm<d<50μmの範囲の粒子径dを有する母粒子の表層に、0.03μm<d<1.00μmの範囲の粒子径dを有する子粒子を、d/d<0.33の条件を満たした状態で、付着または固着させて得た複合粒子を表示媒体用粒子として用いることが提案されている。そして、特許文献1には、子粒子としてメラミン樹脂微粒子を用いた例が開示されている。
特開2006-72283号公報
 特許文献1に子粒子の例として開示されているメラミン樹脂微粒子は、正帯電性を有する粒子(正帯電微粒子)である。しかしながら、本発明者らの検討によれば、電子粉流体表示用パネルに用いられる表示媒体用粒子を構成するための正帯電微粒子としてメラミン樹脂粒子を用いると、電荷保持性が十分ではないということが判明した。
 そこで本発明は、電子粉流体表示用パネルに用いられる表示媒体用粒子を構成するための正帯電微粒子において、十分な電荷保持性を発揮させうる手段を提供することを目的とする。
 本発明者らは、上記課題に鑑み鋭意研究を行った。その過程において、表示媒体用粒子を構成するための正帯電微粒子を、中心部のコア層と表層部のシェル層とからなるコアシェル構造とすることを試みた。そして、当該コアシェル構造を構成するコア層とシェル層とのそれぞれの組成変化による影響について検討を行った。その結果、コアシェル構造を有する正帯電微粒子において、コア層とシェル層とがそれぞれ特定の組成を有する場合に、電荷保持性に優れる正帯電微粒子が提供されうることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、少なくとも一方が透明な対向する2枚の基板間に、
 母粒子と前記母粒子の表層に存在する正帯電微粒子とを含む表示媒体用粒子が、気体中に含有されてなり、前記表示媒体用粒子に電界を付与することによって、前記気体中を、前記表示媒体用粒子を移動させて画像等の情報を表示する情報表示用パネルに用いられる表示媒体用粒子を構成するための正帯電微粒子であって、
 アミノ化合物(A)とホルムアルデヒドとの縮合物を含むコアと;
 前記コアの外表面に配置された、アミノ化合物(B)とホルムアルデヒドとの縮合物を含むシェル層と;
からなり、前記アミノ化合物(A)におけるメラミンの割合が80~100質量%であり、前記アミノ化合物(B)におけるベンゾグアナミンの割合が80~100質量%であることを特徴とする、正帯電微粒子である。
 本発明によれば、電子粉流体表示用パネルに用いられる表示媒体用粒子を構成するための正帯電微粒子において、十分な電荷保持性を発揮させることが可能となる。
図1は、本発明の一形態の情報表示装置において用いられる情報表示用パネルの一実施形態を説明するための説明図である。 図2は、本発明の一形態の情報表示装置において用いられる情報表示用パネルの他の実施形態を説明するための説明図である。 図3は、本発明の一形態の情報表示装置において用いられる情報表示用パネルのさらに他の実施形態を説明するための説明図である。 図4は、本発明の正帯電微粒子を用いた表示媒体用粒子の一実施形態を示す図である。
 以下、本発明の実施の形態を説明する。なお、本発明の技術的範囲は特許請求の範囲の記載に基づいて定められるべきであり、以下の形態のみに制限されるわけではない。
 [正帯電微粒子]
 本発明の一形態は、正帯電微粒子に関する。なお、「正帯電微粒子」とは、表面が正に帯電している微粒子を意味する。
 本形態に係る正帯電微粒子は、電子粉流体表示用パネルに用いられる表示媒体用粒子を構成するために用いられるものである。以下、本形態に係る正帯電微粒子の構成について詳述し、電子粉流体表示用パネルやこれに用いられる表示媒体用粒子の詳細については、後述することとする。
 本形態の正帯電微粒子は、コアおよび当該コアの外表面に配置されたシェル層からなるコアシェル構造を有する。
 (コア)
コアは、本形態の正帯電微粒子のコアシェル構造の核となる部位であり、アミノ化合物(本明細書中、「アミノ化合物(A)」とも称する)とホルムアルデヒドとの縮合物を含む。
 本形態の正帯電微粒子においては、コアを構成するアミノ化合物(A)におけるメラミン(2,4,6-トリアミノトリアジン)の割合が比較的高い点に1つの特徴がある。より具体的には、本形態の正帯電微粒子において、アミノ化合物(A)におけるメラミンの割合は、80~100質量%である。この割合は、好ましくは85~100質量%であり、より好ましくは90~100質量%であり、さらに好ましくは95~100質量%であり、特に好ましくは98~100質量%であり、最も好ましくは100質量%(すなわち、アミノ化合物(A)の全量がメラミン)である。アミノ化合物(A)におけるメラミンの割合がかような範囲内の値であると、コアの粒子径をサブミクロン領域に制御しやすいという利点がある。
 なお、本明細書では、コアやシェル層といった「もの」について、これらを構成するアミノ化合物における特定の化合物の好ましい割合を規定している。本来は、正帯電微粒子の状態では、アミノ化合物は既にホルムアルデヒドと縮合反応し、元のアミノ化合物とは異なる形態で存在している。したがって、本明細書においてコアやシェル層といった「もの」の説明を行う際に、特定の化合物の好ましい割合を規定する場合、実際には当該特定のアミノ化合物に由来する構造の割合を規定することになり、当該割合の算出については、構造から特定されうる特定の化合物の量を基準とするものとする。例えば、「コアを構成するアミノ化合物(A)におけるメラミンの割合が80質量%」であるとは、「コアにおけるアミノ化合物由来の構造から特定されるアミノ化合物総量におけるメラミンの割合が80質量%」であることを意味する。以下、本明細書において、特に断りがない場合においては、同様のことを意味するものとする。
 コアを構成するアミノ化合物(A)がメラミン以外の化合物を含む場合(すなわち、アミノ化合物(A)におけるメラミンの割合が100質量%ではない場合)、メラミン以外にアミノ化合物(A)として用いられうる化合物について特に制限はない。ただし、一例を挙げると、例えば、下記式(1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000002
式中、Rは、それぞれ独立して、水素原子または置換基を有していてもよいアルキル基であり、この際、少なくとも1つのRはアルキル基である。Rがアルキル基である場合の好ましい形態としては、ヒドロキシアルキル基が挙げられる。
 また、上記式(1)で表される化合物以外の化合物もまた、コアを構成する化合物(A)として用いられうる。具体的には、分子内にアミノ基を有する化合物であれば特に限定されないが、分子内にアミノ基を2つ以上有する化合物が好ましく、より好ましくは、トリアジン環を有する多官能アミノ化合物が用いられうる。かようなトリアジン環を有する多官能アミノ化合物としては、ベンゾグアナミン(2,4-ジアミノ-6-フェニル-sym.-トリアジン)、シクロヘキサンカルボグアナミン、シクロへキセンカルボグアナミン、アセトグアナミン、ノルボルネンカルボグアナミン、スピログアナミンなどのグアナミン化合物や、下記式(2)や下記式(3)で表されるジアミノトリアジン化合物などが挙げられる。
Figure JPOXMLDOC01-appb-C000003
式中、Rは、直鎖構造または側鎖を有する構造である炭素数1~2の炭化水素基を表す。
Figure JPOXMLDOC01-appb-C000004
式中、Rは、直鎖構造、側鎖を有する構造、芳香環を有する構造および脂環を有する構造のいずれかである炭素数1~8の炭化水素基を表す。なお、芳香環を有する構造および脂環を有する構造は、側鎖を有する構造および/または置換基を有する構造であってもよい。
 本形態のコアを構成するアミノ化合物(A)として、メラミン以外の化合物が用いられる場合、かような化合物が1種のみ用いられてもよいし、2種以上併用されてもよい。
 本形態の正帯電微粒子において、コアは、上述したアミノ化合物(A)とホルムアルデヒド(H-C(=O)-H)との縮合物を含む構成を有する。メラミンを初めとするアミノ化合物(A)とホルムアルデヒドとの縮合反応は、メラミン樹脂の合成に関する技術分野において周知である。具体的な反応条件等については後述するが、反応の第1段階では、メラミンなどのアミノ化合物(A)の有するアミノ基とホルムアルデヒドとが反応することによりアミノ基上にメチロール基(-CHOH基)が導入された化合物(例えば、メチロールメラミン)が生成する。そして、反応の第2段階では、上記で生成した化合物が2つ反応することで一方からメチロール基が1つ脱離し、縮合反応が起こる。これを繰り返すことにより、コアを構成する縮合物が生成するのである。
 コアの形状について特に制限はなく、球状、針状、板状、俵状、繭状、金平糖状、不定形状などの任意の形状が採用されうる。なかでも好ましくは、コアの形状は球状である。
 コアのサイズについて特に制限はないが、好ましい形態において、コアの平均粒子径dは、0.01~0.5μmである。コアの平均粒子径がかような範囲内の値であれば、シェル層の厚みを大きくすることができ、コアシェル粒子としての平均粒子径をサブミクロンサイズにコントロールすることができるという利点がある。コアの平均粒子径dは、より好ましくは0.05~0.3μmであり、さらに好ましくは0.08~0.25μmであり、特に好ましくは0.1~0.2μmである。なお、本発明において、コアの平均粒子径dは、粒子総個数が200個前後になるようにSEM写真を揖影し、その写真より無作為に選んだ100個の粒子の直径(撮影された粒子(断面)の最大径)をノギスにて計測し、その算術平均値を平均粒子径として採用するものとする。
 (シェル層)
 本形態の正帯電微粒子におけるもう1つの特徴は、シェル層を構成するアミノ化合物(B)におけるベンゾグアナミン(2,4-ジアミノ-6-フェニル-sym.-トリアジン)の割合が比較的高いことである。より具体的には、本形態の正帯電微粒子において、アミノ化合物(B)におけるベンゾグアナミンの割合は、80~100質量%である。この割合は、好ましくは85~100質量%であり、より好ましくは90~100質量%であり、さらに好ましくは95~100質量%であり、特に好ましくは98~100質量%であり、最も好ましくは100質量%(すなわち、アミノ化合物(B)の全量がベンゾグアナミン)である。アミノ化合物(B)におけるベンゾグアナミンの割合がかような範囲内の値であると、電荷保持性に優れる正帯電微粒子が提供されうる。
 シェル層を構成するアミノ化合物(B)がベンゾグアナミン以外の化合物を含む場合(すなわち、アミノ化合物(B)におけるベンゾグアナミンの割合が100質量%ではない場合)、ベンゾグアナミン以外にアミノ化合物(B)として用いられうる化合物について特に制限はない。ただし、一例を挙げると、例えば、上述したグアナミン化合物(ベンゾグアナミン以外のもの)が挙げられる。
 また、上述したグアナミン化合物以外の化合物もまた、シェル層を構成する化合物(B)として用いられうる。具体的には、分子内にアミノ基を有する化合物であれば特に限定されないが、分子内にアミノ基を2つ以上有する化合物が好ましく、より好ましくは、トリアジン環を有する多官能アミノ化合物が用いられうる。かようなトリアジン環を有する多官能アミノ化合物としては、上述したメラミンおよびメラミン以外のアミノ化合物や、同様に上述した式(2)や式(3)で表されるジアミノトリアジン化合物などが挙げられる。
 本形態のシェル層を構成するアミノ化合物(B)として、ベンゾグアナミン以外の化合物が用いられる場合、かような化合物が1種のみ用いられてもよいし、2種以上併用されてもよい。
 本形態の正帯電微粒子において、シェル層は、上述したアミノ化合物(B)とホルムアルデヒド(H-C(=O)-H)との縮合物を含む構成を有する。アミノ化合物(B)とホルムアルデヒドとの縮合反応およびこれにより得られる縮合物の形態については、アミノ化合物(A)について上述したのと同様であるため、ここでは説明を省略する。
 また、本形態の正帯電微粒子の好ましい実施形態では、シェル層が、フェノール化合物とホルムアルデヒドとの縮合単位をさらに含む。言い換えると、フェノール化合物がシェル層中に共縮合されてなる。かような構成によれば、得られる正帯電微粒子やこれを用いた表示媒体用粒子の電荷保持性能を高い値に維持しつつ、その帯電量を精密に制御することが可能となる。
 ここで、「フェノール化合物」とは、フェノール性水酸基を有する化合物を意味する。フェノール化合物の具体的な形態について特に制限はないが、例えば、フェノール、o-エチルフェノール、p-エチルフェノール、混合クレゾール、p-n-プロピルフェノール、o-イソプロピルフェノール、p-イソプロピルフェノール、混合イソプロピルフェノール、o-sec-ブチルフェノール、m-tert-ブチルフェノ-ル、p-tert-ブチルフェノール、ペンチルフェノール、p-オクチルフェノール、p-ノニルフェノール、2,3-ジメチルフェノール、2,4-ジメチルフェノール、2,6-ジメチルフェノール、3,4-ジメチルフェノール、2,4-ジ-s-ブチルフェノール、3,5-ジメチルフェノール、2,6-ジ-s-ブチルフェノール、2,6-ジ-t-ブチルフェノール、3-メチル-4-イソプロピルフェノール、3-メチル-5-イソプロピルフェノール、3-メチル-6-イソプロピルフェノール、2-t-ブチル-4-メチルフェノール、3-メチル-6-t-ブチルフェノール、2-t-ブチル-4-エチルフェノール等のフェノール性水酸基を有する化合物;カテコール、レゾルシン、ビフェノール、ビスフェノールA、ビスフェノールS、ビスフェノールF等の分子内にフェノール性水酸基を2個以上有する化合物が挙げられる。特に好ましくはフェノールである。これらのフェノール化合物は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。
 フェノール化合物とホルムアルデヒドとの縮合単位をシェル層に含ませるための具体的な形態について特に制限はないが、例えば以下のような形態が例示される:
(i)シェル層が、アミノ化合物-フェノール化合物-ホルムアルデヒド共縮合物を含む(好ましくはこれからなる)形態;
(ii)シェル層が、アミノ化合物-ホルムアルデヒド縮合物を含む(好ましくはこれからなる)層と、当該層の表面に形成された、フェノール-ホルムアルデヒド縮合物(フェノール樹脂)を含む(好ましくはこれからなる)層とを含む(好ましくはこれらからなる)形態;
(iii)シェル層が、アミノ化合物-フェノール化合物-ホルムアルデヒド共縮合物を含む(好ましくはこれからなる)層と、当該層の表面に形成された、フェノール-ホルムアルデヒド縮合物(フェノール樹脂)を含む(好ましくはこれからなる)層とを含む(好ましくはこれらからなる)形態。
 本実施形態において、シェル層におけるフェノール化合物由来の構造単位の含有量について特に制限はないが、その下限値は、シェル層の全量に対して好ましくは1質量%以上であり、より好ましくは10質量%以上である。一方、その上限値は、シェル層の全量に対して好ましくは60質量%以下であり、より好ましくは50質量%以下である。フェノール化合物由来の構造単位の含有量が1質量%以上であれば、フェノール化合物を用いたことによる作用効果が十分に発現するため、好ましい。一方、フェノール化合物由来の構造単位の含有量が60質量%以下であれば、高温圧縮変形率が低く抑えられるため、好ましい。
 シェル層のサイズについて特に制限はないが、好ましい形態において、シェル層の平均厚みtは、0.01μm以上である。シェル層の平均厚みがかような範囲内の値であると、充分に電荷保持性に優れる正帯電微粒子が得られる。シェル層の平均厚みtは、より好ましくは0.01~0.25μmであり、さらに好ましくは0.02~0.15μmであり、特に好ましくは0.04~0.10μmである。なお、本発明において、シェル層の平均厚み(平均値)tは、コアの外表面にシェル層を形成して得られる正帯電微粒子の平均粒子径をD(μm)とした場合に、上述したコアの平均粒子径d(μm)を用いて、t=(D-d)/2により算出されうる。また、正帯電微粒子の状態から直接tを測定するには、後述する実施例に記載のノギス法を用いることができる。
 上述したコアの平均粒子径dに対するシェル層の平均厚みtの比の値(t/d;「シェル層比」とも称する)についても特に制限はない。ただし、好ましい形態において、シェル層比は、0.01~1である。シェル層比がかような範囲内の値であれば、正帯電微粒子の電荷保持性が優れるという点で好ましい。このシェル層比は、より好ましくは0.05~0.75であり、特に好ましくは0.10~0.50である。
 (正帯電微粒子)
 本形態の正帯電微粒子は、コアおよびシェル層についてそれぞれ上述したところからも明らかなように、全体としてアミノ化合物とホルムアルデヒドの縮合物からなり、コアおよびシェル層がそれぞれ特定の組成を有する点に特徴を有するものである。以下、正帯電微粒子としての他の好ましい形態について説明する。
 正帯電微粒子の表面は、フッ素系シランカップリング剤によって処理されていることが好ましい。かような構成によれば、得られる正帯電微粒子やこれを用いた表示媒体用粒子の電荷保持性能を高い値に維持しつつ、その帯電量を精密に制御することが可能となる。
 ここで、「フッ素系シランカップリング剤」とは、1分子中に有機官能基および加水分解性シリル基を有し、さらに有機官能基中にフッ素原子を含有するものを意味する。かような定義を満たす限りいかなる構造のものも本実施形態では用いられうるが、好ましいフッ素系シランカップリング剤は、下記式(4)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000005
式中、Rfは炭素数1~20のパ-フルオロアルキル基であり、Rはメチル基またはエチル基であり、Xは加水分解性基であり、nは0~5の整数であり、aは0または1である。
 上記式(4)で表されるフッ素系シランカップリング剤の具体例としては、例えば、CF(CHSiCl、CF(CFSiCl、CF(CF(CHSiCl、CF(CF(CHSiCl、CF(CF(CHSi(OCH、CF(CF(CHSi(CH)Cl、CF(CHSi(OCH、CF(CHSi(CH)(OCH、CF(CF(CHSi(OCH、CF(CF(CHSi(OCH、CF(CF(CHSi(CH)(OCH、CF(CF(CHSi(OCHが挙げられる。これらの中でもCF(CHSi(OCH(トリフロロプロピルトリメトキシシラン)が好ましい。なお、これらのフッ素系シランカップリング剤は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。
 正帯電微粒子の表面処理に用いられるフッ素系シランカップリング剤の量について特に制限はないが、処理される粒子(コアシェル粒子)100質量%に対して、好ましくは0.1質量%以上であり、より好ましくは、1.0質量%以上である。一方、フッ素系シランカップリング剤の量の上限値は、好ましくは50質量%以下であり、より好ましくは20質量%以下である。この量が0.1質量%以上であると、表面処理による作用効果が十分に発揮されうる。一方、この量が50質量%以下であれば、正帯電微粒子の帯電量を適切に制御できるため、好ましい。
 正帯電微粒子の形状について特に制限はなく、上述したコアと同様の、球状、針状、板状、俵状、繭状、金平糖状、不定形状などの任意の形状が採用されうる。なかでも好ましくは、正帯電微粒子の形状は球状である。
 正帯電微粒子のサイズについて特に制限はないが、好ましい形態において、正帯電微粒子の平均粒子径Dは、0.1~1.0μmの範囲である。正帯電微粒子の平均粒子径Dがかような範囲内の値であれば、表示媒体用粒子を構成する母粒子との複合化を均一に行うことができる。正帯電微粒子の平均粒子径Dは、より好ましくは0.1~0.8μmであり、さらに好ましくは0.15~0.5μmであり、特に好ましくは0.2~0.3μmである。なお、本発明において、正帯電微粒子の平均粒子径Dは、上述したコアの平均粒子径dと同様の測定方法により測定されうる。また、正帯電微粒子の粒子径の変動係数(CV)の値は、好ましくは30%以下である。正帯電微粒子の粒子径のCV値がかような範囲内の値であれば、安定した帯電性能を達成することができるため、好ましい。正帯電微粒子の粒子径のCV値は、より好ましくは20%以下であり、さらに好ましくは15%以下であり、特に好ましくは10%以下である。なお、正帯電微粒子のCV値は、平均粒子径Dに対する粒子径の標準偏差の百分率(%)として算出される値であり、正帯電微粒子の粒子径のばらつきの程度を示す指標である(CV値が小さいほど、粒子径のばらつきも小さい)。
 正帯電微粒子は、圧縮変形に対する耐性(耐圧縮変形性)が高いほど好ましい。正帯電微粒子は後述するように母粒子の表面に付着・固着されて表示媒体用粒子を構成することとなるが、正帯電微粒子の耐圧縮変形性が高ければ、母粒子の表面への付着・固着の際の変形が最小限に抑制され、帯電性能の低下が防止されうるのである。正帯電微粒子の耐圧縮変形性の指標としては、例えば、高温圧縮変形率が挙げられる。なお、正帯電微粒子の高温圧縮変形率は、後述する実施例の欄において説明するようにフローテスターを用いて、高温条件下で所定の荷重を印加した際の粒子の変形率として規定される。ここで、正帯電微粒子の高温圧縮変形率の具体的な値について特に制限はないが、例えば、後述する実施例に記載のように粒子に対して加熱した環境下において荷重を印加した際の変形率は、好ましくは50%以下であり、より好ましくは40%以下であり、さらに好ましくは30%以下である。なお、耐圧縮変形性の高い(すなわち、高温圧縮変形率の小さい)正帯電微粒子を得る手法としては、例えば、後述する製造方法の欄において説明するように、コアの外表面にシェル層を形成した後、得られた粒子を加圧条件下にて熱処理するという手法が挙げられる(同様に後述する実施例3および実施例4を参照)。
 正帯電微粒子はまた、飽和吸湿量が少ないほど好ましい。正帯電微粒子の飽和吸湿量の具体的な値について特に制限はないが、好ましくは2~9質量%であり、より好ましくは2.5~7.0質量%であり、さらに好ましくは3.0~5.0質量%である。正帯電微粒子の飽和吸湿量がかような範囲内の値であると、より一層電荷保持性に優れる正帯電微粒子が提供されうる。なお、正帯電微粒子の飽和吸湿量を測定する際には、後述する実施例に記載の通り、まず、正帯電微粒子を解砕し、得られた粉体を温度30℃、湿度90%RHの雰囲気条件下で1日間放置する。その後、粉体1gについてカールフィッシャー法により水分量を定量し、得られた水分量の百分率を飽和吸湿量(質量%)として測定することができる。
 本発明の構成とすることにより、微粒子の摩擦帯電量が正帯電量を有することが可能となる。正帯電微粒子の摩擦帯電量(平衡重量平均帯電量)の値は、1[μC/g]を超えて600[μC/g]未満であればよい。なお、この摩擦帯電量の値は、後述する実施例に記載の手法により測定される。
 また、本発明の構成とすることにより、正帯電微粒子の電荷保持性能を向上させることが可能となる。具体的には、正帯電微粒子の電荷保持性能は、帯電後、一定時間経過後の電荷保持率により判断される。そして、正帯電微粒子の電荷保持率は、好ましくは10%以上である。なお、この電荷保持率の値は、後述する実施例に記載の手法により測定される。
 [正帯電微粒子の製造方法]
 本形態の正帯電微粒子の製造方法について特に制限はなく、上述した構成を有する正帯電微粒子が得られるように、従来公知の知見が適宜参照されうる。以下、本形態の正帯電微粒子を製造するための手法の好ましい一例について説明するが、下記に説明する製造方法によって本形態の正帯電微粒子の技術的範囲が影響を受けることはない。
 正帯電微粒子は、簡単に言えば、まずアミノ化合物(A)とホルムアルデヒドとを水性溶媒中で縮合させ、得られた縮合物を含むコアを作製する。次いで、得られたコアを水系媒体中に分散させ、加熱しながらアミノ化合物(B)およびホルムアルデヒドを添加することにより、コアの外表面においてアミノ化合物(B)とホルムアルデヒドとを縮合させ、得られた縮合物を含むシェル層を形成する。これにより、正帯電微粒子が製造されうるのである。以下、工程順に簡単に説明する。
 (コアの製造)
 コアを製造する際には、例えば、アミノ化合物とホルムアルデヒドとを縮合反応させることにより、まずコア前駆体を得る。
 コア前駆体を作製するために用いられる原料は、アミノ化合物(A)およびホルムアルデヒドである。本発明の正帯電微粒子を製造するには、アミノ化合物(A)におけるメラミンの割合を80~100質量%とすればよい。なお、アミノ化合物(A)の具体的な形態については上述した通りであるため、ここでは詳細な説明を省略する。
 一方、コア前駆体の作製に用いられるホルムアルデヒドは、水溶液の形態(すなわち、ホルマリン)であってもよいし、トリオキサンやパラホルムアルデヒドといった水中でホルムアルデヒドを発生しうる前駆体の水溶液の形態であってもよい。
 続いて、上記で得られたコア前駆体を水系媒体中で界面活性剤と混合し、この混合液に硬化触媒を添加し、好ましくは加熱する。これにより、コア前駆体を水系媒体中で硬化・析出させて、コアへと粒子化する。
 (シェル層の作製)
 続いて、上記で得られたコアの外周部に、シェル層を形成する。コアの外周部へのシェル層の形成は、例えば、上記で得られたコアを水系媒体に分散させ、硬化触媒の存在下、アミノ化合物(B)を好ましくはホルムアルデヒドとともに添加して、反応系を加熱する。これにより、コアの外周部にアミノ化合物(B)とホルムアルデヒドとの縮合物が成長し、シェル層が形成されるのである。
 なお、好ましい一実施形態であるシェル層がフェノール化合物とホルムアルデヒドとの縮合単位を含む実施形態におけるシェル層の形成は、フェノール化合物の構造単位を含ませたい部位に応じて適宜調整を加えつつ従来公知の手法により行われうる。その一例として、例えば、フェノール化合物はアミノ化合物(B)と同時に反応系に供給されてもよいし、アミノ化合物(B)の供給後に反応系に添加されてもよいし、アミノ化合物(B)の供給に先立って反応系に供給されてもよい。また、フェノール化合物の添加形態についても制限はなく、連続滴下、分割添加、全量一括添加などが、適宜選択されうる。
 上述の好ましい製法により、コアシェル構造の正帯電微粒子が水性媒体中に分散含有された反応液が得られる。該反応液より、遠心分離法などの従来公知の分離方法により粒子を分離し、必要に応じて溶媒を洗浄した後に乾燥することによって、粉体状の正帯電微粒子(正帯電微粒子粉体)が得られる。乾燥時に正帯電微粒子の2次凝集が起こる場合には、従来公知の解砕処理を行なうことが好ましい。
 また、好ましい形態として、シェル層を形成した後の反応液を加圧条件下にて加熱する。該処理により、耐圧縮変形性(硬度)がより一層向上した正帯電微粒子が得られる。その結果、表示媒体用粒子を構成する母粒子の表面に正帯電微粒子を付着・固着させる際の変形が抑制され、帯電性能の低下が防止される。通常、耐圧容器中で反応液を加圧・加熱するが、気相部の圧力を好ましくは0.1~5.0MPa、より好ましくは0.5~2.5MPaの範囲とし、温度を好ましくは100~250℃、より好ましくは150~200℃の範囲として、加熱保持することが好ましい。
 また、上述したように、正帯電微粒子の表面をフッ素系シランカップリング剤で処理することもまた、好ましい形態である。ここで、表面処理の具体的な手法について特に制限はないが、例えば、以下の方法が例示される。乾式処理の場合には例えば、乾燥・粉砕を行った粉体をヘンシェルミキサーなどの流動槽乾燥機を用いて容器の中で浮遊させながら、フッ素系シランカップリング剤を投入する。この際、フッ素系シランカップリング剤は水や有機溶媒などで希釈して用いてもよく、ここに酸またはアルカリを投入してもよい。投入の際は噴霧、逐次投入、分割投入、一括投入などいずれの方法で行ってもよい。投入後は投入物を加熱して所定温度まで昇温させ、その後、所定時間保持を行うことで、表面処理が達成されうる。
 一方、湿式処理の場合、乾燥・粉砕を行った粉体または反応液をろ過したケーキをアルコール類などの有機溶媒中にビーズミルや超音波分散機などを用いて分散させる。次いで、その分散液中にフッ素系シランカップリング剤を投入する。この際、投入は噴霧、逐次投入、分割投入、一括投入などいずれの方法で行ってもよい。投入後は投入物を加熱して所定温度まで昇温させ、その後、所定時間保持を行うことで、表面処理が達成されうる。
 [表示媒体用粒子/電子粉流体表示用パネル]
 本発明により提供される正帯電微粒子は、上述したように、電子粉流体表示用パネルに用いられる表示媒体用粒子を構成するために用いられるものである。以下、本発明により提供される正帯電微粒子を、情報表示装置としての電子粉流体表示用パネル用の表示媒体用粒子を構成するのに用いる場合の好ましい実施形態を説明する。
 まず、本発明の正帯電微粒子を用いた表示媒体用粒子を利用する情報表示装置が備える情報表示用パネルの基本的な構成について説明する。本発明で用いる情報表示用パネルでは、対向する2枚の基板間に封入した帯電性を有する表示媒体(表示媒体用粒子と分散媒体としての気体とからなる)に電界が付与される。付与された電界方向に沿って、表示媒体が電界の力やクーロンカなどによって引き寄せられ、表示媒体が電位の切替えによる電界方向の変化によって往復運動することにより、画像等の情報表示がなされる。従って、表示媒体が均一に移動し、かつ、繰り返し時あるいは保存時の安定性を維持できるように、情報表示用パネルを設計する必要がある。ここで、表示媒体とする粒子にかかる力は、粒子同士のクーロンカにより引き付けあう力の他に、電極や基板との電気影像力、分子間力、重力などが考えられる。
 本形態の情報表示装置において用いられる情報表示用パネルの例を、図1(a)、(b)~図3(a)、(b)に基づき説明する。
 図1(a)、(b)に示す例では、少なくとも1種類の粒子から構成される少なくとも2種以上の色と帯電特性の異なる表示媒体用粒子3(ここでは白色粒子群3Wと黒色粒子群3Bを示す)を、基板1、2の外部から加えられる電界に応じて、基板1、2と垂直に移動させ、黒色粒子群3Bを観察者に視認させて黒色の表示を行うか、あるいは、白色粒子群3Wを観察者に視認させて白色の表示を行っている。なお、図1(b)に示す例では、図1(a)に示す例に加えて、基板1、2との間に例えば格子状に隔壁4を設け表示セルを画成している。また、基板1、2の間は、分散媒体としての気体で充たされている。
 図2(a)、(b)に示す例では、少なくとも1種類の粒子から構成される少なくとも2種以上の色と帯電特性の異なる表示媒体用粒子3(ここでは白色粒子群3Wと黒色粒子群3Bを示す)を、基板1に設けた電極5と基板2に設けた電極6との間に電圧を印加することにより発生する電界に応じて、基板1、2と垂直に移動させ、黒色粒子群3Bを観察者に視認させて黒色の表示を行うか、あるいは、白色粒子群3Wを観察者に視認させて白色の表示を行っている。なお、図2(b)に示す例では、図2(a)に示す例に加えて、基板1、2との間に例えば格子状に隔壁4を設け表示セルを画成している。また、基板1、2の間は、分散媒体としての気体で充たされている。
 図3(a)、(b)に示す例では、少なくとも1種以上の粒子から構成される少なくとも色と帯電性とを有する1種の表示媒体用粒子3(ここでは白色粒子群3W)を、基板1上に設けた電極5と電極6との間に電圧を印加させることにより発生する電界に応じて、基板1、2と平行方向に移動させ、白色粒子群3Wを観察者に視認させて白色表示を行うか、あるいは、電極6または基板1の色を観察者に視認させて電極6または基板1の色の表示を行っている。なお、図3(b)に示す例では、図3(a)に示す例に加えて、基板1、2との間に例えば格子状に隔壁4を設け表示セルを画成している。また、基板1、2の間は、分散媒体としての気体で充たされている。
 以上の説明は、白色粒子3Wを白色粉流体に、黒色粒子3Bを黒色粉流体に、それぞれ置き換えた場合も同様に適用されうる。
 図4(a)、(b)はそれぞれ本発明の正帯電微粒子を用いた表示媒体用粒子の一例を示す図である。図4(a)、(b)に示す例において、表示媒体用粒子11の特徴は、母粒子12の表層に、本発明により提供される正帯電微粒子である子粒子13を付着または固着させて得られる複合粒子から構成される点にある。図4(a)に、母粒子12の表層に子粒子(正帯電微粒子)13を固着させて複合粒子を構成した例を示すとともに、図4(b)に、母粒子12の表層に子粒子(正帯電微粒子)13を付着させて複合粒子を構成した例を示す。ここで、「付着」とは、子粒子(正帯電微粒子)13が母粒子12の表層に静電気力、クーロンカ、ファンデルワールスカなどにより固定されているため、反転耐久試験を行った際に子粒子(正帯電微粒子)13が移動しうる形態を意味する。一方、「固着」とは、子粒子(正帯電微粒子)13が母粒子12の表層に埋設、接着、粘着などにより固定されていることで、反転耐久試験の際に子粒子(正帯電微粒子)13の移動がみられない形態を意味する。
 本形態において用いられる表示媒体用粒子の製造方法は特に限定はなく、従来公知の知見が適宜参照されうる。一例として、以下のような母粒子12と子粒子(正帯電微粒子)13との複合化(付着または固着)処理方法が用いられうる。なお、子粒子13を構成する正帯電微粒子の製造方法の一例については上述した通りであるため、ここでは説明を省略する。
 また、母粒子12の製造方法の一例として、ベース樹脂と顔料(例えば、酸化チタンなどの白色顔料またはカーボンブラックなどの黒色顔料)とからなる原料を2軸の混練機で混練し、その後、ジェットミルにて微粉砕することで、所定の母粒子12を得ることができる。さらに、母粒子12と子粒子13との複合化(付着または固着)処理方法の一例として、母粒子12と子粒子13を所定の割合で混合した混合粉体(嵩体積=みかけの体積100cm)を、サンプルミルSK-M10((株)協立理工製)に一括投入し、45℃、16500rpm×l0分間の条件で複合化処理を行った後、目開き150μmのSUS篩いを通過させて複合粒子を得、得られた複合粒子を表示媒体用粒子11として得ることができる。
 以下、本形態の情報表示用パネルを構成する各部材について説明する。
 基板については、少なくとも一方の基板はパネル外側から表示媒体の色が確認できる透明な基板2であり、可視光の透過率が高くかつ耐熱性の良い材料が好適である。基板1は透明でも不透明でもかまわない。基板材料を例示すると、ポリエチレンテレフタレート、ポリエーテルサルフォン、ポリエチレン、ポリカーボネート、ポリイミド、アクリルなどのポリマーシートや、金属シートのように可撓性のあるもの、および、ガラス、石英などの可撓性のない無機シートが挙げられる。基板の厚みは、2~5000μmが好ましく、さらに5~2000μmが好適であり、薄すぎると、強度、基板間の間隔均一性を保ちにくくなり、5000μmより厚いと、薄型情報表示用パネルとする場合に不都合がある。
 基板側に設ける電極の電極形成材料としては、アルミニウム、銀、ニッケル、銅、金等の金属類やITO、酸化インジウム、導電性酸化錫、導電性酸化亜鉛等の導電金属酸化物類、ポリアニリン、ポリピロール、ポリチオフェンなどの導電性高分子類が例示され、適宜選択して用いられる。電極の形成方法としては、上記例示の材料をスパッタリング法、真空蒸着法、CVD(化学蒸着)法、塗布法等で薄膜状に形成する方法や、導電剤を溶媒や合成樹脂バインダーに混合して塗布したりする方法が用いられる。視認基板側に設ける電極は透明である必要があるが、背面基板側に設ける電極は透明である必要がない。いずれの場合もパターン形成可能である導電性である上記材料を好適に用いることができる。なお、電極厚みは、導電性が確保でき光透過性に支障がなければよく、3~1000nm、好ましくは5~400nmが好適である。背面基板側に設ける電極の材質や厚みなどは上述した視認基板側に設ける電極と同様であるが、透明である必要はない。なお、この場合の外部電圧入力は、直流あるいは交流を重畳してもよい。
 必要に応じて設ける隔壁4については、その形状は表示にかかわる表示媒体の種類により適宜最適設定され、一概には限定されないが、隔壁の幅は2~100μm、好ましくは3~50μmに、隔壁の高さは10~500μm、好ましくは10~200μmに調整される。また、隔壁を形成するにあたり、対向する両基板の各々にリブを形成した後に接合する両リブ法、片側の基板上にのみリブを形成する片リブ法が考えられる。本発明では、いずれの方法も好適に用いられる。
 これらのリブからなる隔壁により形成される表示セルの形状は特に制限されないが、基板平面方向からみて四角状、三角状、ライン状、円形状、六角状が例示され、配置としては格子状やハニカム状や網目状が例示される。表示側から見える隔壁断面部分に相当する部分(表示セルの枠部の面積)はできるだけ小さくした方がよく、画像等の情報表示の鮮明さが増す。ここで、隔壁の形成方法を例示すると、金型転写法、スクリーン印刷法、サンドブラスト法、フォトリソ法、アディティブ法が挙げられる。このうち、レジストフィルムを用いるフォトリソ法や金型転写法が好適に用いられる。いずれの方法においても本発明を好適に用いることができる。
 続いて、本形態の情報表示用パネルに用いられる表示媒体としての粉流体について説明する。
 本発明における「粉流体」は、気体の力も液体の力も借りずに、自ら流動性を示す、流体と粒子の特性を兼ね備えた両者の中間状態の物質である。例えば、液晶は液体と固体の中間的な相と定義され、液体の特徴である流動性と固体の特徴である異方性(光学的性質)を有するものである(平凡社:大百科事典)。一方、粒子の定義は、無視できるほどの大きさであっても有限の質量をもった物体であり、重力の影響を受けるとされている(丸善:理学事典)。ここで、粒子でも、気固流動層体、液固流動体という特殊状態があり、粒子に底板から気体を流すと、粒子には気体の速度に対応して上向きの力が作用し、この力が重力とつりあう際に、流体のように容易に流動できる状態になるものを気固流動層体と呼び、同じく、流体により流動化させた状態を液固流動体と呼ぶとされている(平凡社:大百科事典)。このように気固流動層体や液固流動体は、気体や液体の流れを利用した状態である。本発明の適用対象である電子粉流体表示用パネルでは、このような気体の力も液体の力も借りずに、自ら流動性を示す状態の物質を特異的に作り出すことが可能であり、これが「粉流体」と定義されるのである。
 すなわち、本発明における粉流体は、液晶(液体と固体の中間相)の定義と同様に、粒子と液体の両特性を兼ね備えた中間的な状態で、先に述べた粒子の特徴である重力の影響を極めて受け難く、高流動性を示す特異な状態を示す物質である。このような物質はエアロゾル状態、すなわち気体中に固体状もしくは液体状の物質が分散質として安定に浮遊する分散系で得ることができ、本形態の情報表示装置で固体状物質を分散質とするものである。
 本形態の情報表示用パネルは、少なくとも一方が透明な、対向する基板間に、表示媒体として気体中に固体粒子が分散質として安定に浮遊するエアロゾル状態で高流動性を示す粉流体を封入するものであり、このような粉流体は、低電圧の印加でクーロン力などにより容易に安定して移動させることができる。
 本発明で用いられる粉流体は、先に述べたように、気体の力も液体の力も借りずに、自ら流動性を示す、流体と粒子の特性を兼ね備えた両者の中間状態の物質である。この粉流体は、特にエアロゾル状態とすることができ 、本形態の情報表示装置では、気体中に固体状の物質が分散質として比較的安定に浮遊する状態で用いられる。
 次に、本形態の情報表示用パネルに用いられる表示媒体用粒子について説明する。粒子は、その主成分となる樹脂に、必要に応じて、荷電制御剤、着色剤、無機添加剤等を含ますことができる。なお、表示媒体用粒子は、正に荷電した粒子と負に荷電した粒子の2種類が必要であるが、上述した本発明により提供される正帯電微粒子は、正に荷電した表示媒体用粒子において、荷電制御剤(正荷電制御剤)として用いられるものである。
 母粒子を構成する樹脂の例としては、ウレタン樹脂、ウレア樹脂、アクリル樹脂、ポリエステル樹脂、アクリルウレタン樹脂、アクリルウレタンシリコーン樹脂、アクリルウレタンフッ素樹脂、アクリルフッ素樹脂、シリコーン樹脂、アクリルシリコーン樹脂、エポキシ樹脂、ポリスチレン樹脂、スチレンアクリル樹脂、ポリオレフイン樹脂、プチラール樹脂、塩化ビニリデン樹脂、メラミン樹脂、フェノール樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリスルフォン樹脂、ポリエーテル樹脂、ポリアミド樹脂等が挙げられ、2種以上混合することもできる。特に、基板との付着力を制御する観点から、アクリルウレタン樹脂、アクリルシリコーン樹脂、アクリルフッ素樹脂、アクリルウレタンシリコーン樹脂、アクリルウレタンフッ素樹脂、フッ素樹脂、シリコーン樹脂が好適である。
 荷電制御剤としては、特に制限はないが、負荷電制御剤としては例えば、サリチル酸金属錯体、合金属アゾ染料、含金属(金属イオンや金属原子を含む)の油溶性染料、第4級アンモニウム塩系化合物、カリックスアレン化合物、含ホウ素化合物(ベンジル酸ホウ素錯体)、ニトロイミダゾール誘導体等が挙げられる。一方、正荷電制御剤としては、上述した本発明により提供される正帯電微粒子が用いられる。なお、その他の正荷電制御剤が併用されてもよい。かような正荷電制御剤としては、例えば、ニグロシン染料、トリフェニルメタン系化合物、4級アンモニウム塩系化合物、ポリアミン樹脂、イミダゾール誘導体等が挙げられる。その他、超微粒子シリカ、超微粒子酸化チタン、超微粒子アルミナ等の金属酸化物、ビリジン等の含窒素環状化合物およびその誘導体や塩、各種有機顔料、フッ素、塩素、窒素等を含んだ樹脂等も荷電制御剤として用いることもできる。
 着色剤としては、以下に例示するような、有機または無機の各種、各色の顔料、染料が使用可能である。
 黒色着色剤としては、カーボンブラック、酸化銅、二酸化マンガン、アニリンブラック、活性炭等がある。青色着色剤としては、C.I.ピグメントブルー15:3、C.I.ピグメントブルー15、紺青、コバルトブルー、アルカリブルーレーキ、ビクトリアブルーレーキ、フタロシアニンブルー、無金属フタロシアニンブルー、フタロシアニンブルー部分塩素化物、ファーストスカイブルー、インダスレンブルーBC等がある。
 赤色着色剤としては、ベンガラ、カドミウムレッド、鉛丹、硫化水銀、カドミウム、パーマネントレッド4R、リソールレッド、ピラゾロンレッド、ウォッチングレッド、カルシウム塩、レーキレッドD、ブリリアントカーミン6B、エオシンレーキ、ローダミンレーキB、アリザリンレーキ、ブリリアントカーミン3B、C.I.ピグメントレッド2等がある。
 黄色着色剤としては、黄鉛、亜鉛黄、カドミウムイエロー、黄色酸化鉄、ミネラルファーストイエロー、ニッケルチタンイエロー、ネーブルイエロー、ナフトールイエローS、ハンザイエローG、ハンザイエロー10G、ベンジジンイエローG、ベンジジンイエローGR、キノリンイエローレーキ、パーマネントイエローNCG、タートラジンレーキ、C.I.ピグメントイエロー12等がある。
 緑色着色剤としては、クロムグリーン、酸化クロム、ピグメントグリーンB、C.I.ピグメントグリーン7、マラカイトグリーンレーキ、ファイナルイエローグリーンG等がある。
 橙色着色剤としては、赤色黄鉛、モリブデンオレンジ、パーマネントオレンジGTR、ピラゾロンオレンジ、バルカンオレンジ、インダスレンブリリアントオレンジRK、ベンジジンオレンジG、インダスレンブリリアントオレンジGK、C.I.ピグメントオレンジ31等がある。
 紫色着色剤としては、マンガン紫、ファーストバイオレットB、メチルバイオレットレーキ等がある。
 白色着色剤としては、亜鉛華、酸化チタン、アンチモン白、硫化亜鉛等がある。
 体質顔料としては、バライト粉、炭酸バリウム、クレー、シリカ、ホワイトカーボン、タルク、アルミナホワイト等がある。また、塩基性、酸性、分散、直接染料等の各種染料として、ニグロシン、メチレンブルー、ローズベンガル、キノリンイエロー、ウルトラマリンブルー等がある。
 無機系添加剤の例としては、酸化チタン、亜鉛華、硫化亜鉛、酸化アンチモン、炭酸カルシウム、鉛白、タルク、シリカ、ケイ酸カルシウム、アルミナホワイト、カドミウムイエロー、カドミウムレッド、カドミウムオレンジ、チタンイエロー、紺青、群青、コバルトブルー、コバルトグリーン、コバルトバイオレット、酸化鉄、カーボンブラック、マンガンフェライトブラック、コバルトフェライトブラック、銅粉、アルミニウム粉などが挙げられる。
 これらの顔料および無機系添加剤は、単独であるいは複数組み合わせて用いることができる。このうち特に黒色顔料としてカーボンブラックが、白色顔料として酸化チタンが好ましい。
 また、本形態に用いられる表示媒体用粒子は、その平均粒子径d(0.5)が、0.1~20μmの範囲であり、均一で揃っていることが好ましい。平均粒子径d(0.5)がこの範囲より大きいと表示上の鮮明さに欠け、この範囲より小さいと粒子同士の凝集力が大きくなりすぎるために粒子の移動に支障をきたすようになる。なお、上記の粒子径は、レーザー回折/散乱法などから求めることができる。測定対象となる粒子にレーザー光を照射すると空間的に回折/散乱光の光強度分布パターンが生じ、この光強度パターンは粒子径と対応関係があることから、粒子径が測定できる。ここで、本発明における粒子径は、体積基準分布から得られるものである。具体的には、Mastersizer2000(Malvern Instruments Ltd.)測定機を用いて、窒素気流中に粒子を投入し、付属の解析ソフト(Mie理論を用いた体積基準分布を基本としたソフト)にて、粒子径の測定を行なうことができる。
 表示媒体用粒子の帯電量は当然その測定条件に依存するが、情報表示用パネルにおける表示媒体用粒子の帯電量はほぼ、初期帯電量、隔壁との接触、基板との接触、経過時間に伴う電荷減衰に依存し、特に表示媒体を構成する粒子の帯電挙動の飽和値が支配因子となる。
 さらに、本形態において表示媒体用粒子の分散媒体である基板間の表示媒体用粒子を取り巻く空隙部分の気体の管理が重要であり、表示安定性向上に寄与する。具体的には、分散媒体としての気体の湿度について、25℃における相対湿度を60%RH以下、好ましくは50%RH以下、さらに好ましくは35%RH以下とすることが好ましい。
 この空隙部分とは、図1(a)、(b)~図3(a)、(b)において、対向する基板1、2に挟まれる部分から、電極5、6、表示媒体(粒子群あるいは粉流体3)の占有部分、隔壁4の占有部分(存在する場合)、情報表示用パネルシール部分を除いた、いわゆる表示媒体用粒子が接する気体部分を指す。
 空隙部分の気体は、先に述べた湿度領域であれば、その種類は問わないが、乾燥空気、乾燥窒素、乾燥アルゴン、乾燥ヘリウム、乾燥二酸化炭素、乾燥メタンなどが好適である。この気体は、その湿度が保持されるようにパネル基板間に封入することが必要であり、例えば、表示媒体用粒子の充填、情報表示用パネルの組み立てなどを所定湿度環境下にて行い、さらに、外からの湿度侵入を防ぐシール材、シール方法を施すことが肝要である。
 本形態の情報表示用パネルにおける基板と基板との間隔は、表示媒体用粒子が移動でき、コントラストを維持できればよく、通常10~500μm、好ましくは10~200μmに調整される。
 対向する基板間の空間における表示媒体用粒子の体積占有率は5~70%が好ましく、さらに好ましくは5~60%である。70%を超える場合には表示媒体用粒子の移動の支障をきたし、5%未満の場合にはコントラストが不明確となり易い。
 本形態の情報表示用パネル(電子粉流体表示用パネル)、情報表示装置は、ノートパソコン、PDA、携帯電話、ハンディターミナル等のモバイル機器の表示部、電子ブック、電子新聞等の電子ペーパー 、看板、ポスター、黒板等の掲示板、電卓、家電製品、自動車用品等の表示部、ポイントカード、ICカード等のカード表示部、電子広告、電子POP、電子棚札、電子値札、電子楽譜、RF-ID機器の表示部などに好適に用いられる。
 上述のように、本発明により提供される正帯電微粒子は、電子粉流体表示用パネルに用いられる表示媒体用粒子を構成するために用いられるものである。したがって、本発明により提供されるさらに他の好ましい形態は、
「アミノ化合物(A)とホルムアルデヒドとの縮合物を含むコアと;前記コアの外表面に配置された、アミノ化合物(B)とホルムアルデヒドとの縮合物を含むシェル層と;からなり、前記アミノ化合物(A)におけるメラミンの割合が80~100質量%であり、前記アミノ化合物(B)におけるベンゾグアナミンの割合が80~100質量%であることを特徴とする正帯電微粒子の、
 少なくとも一方が透明な対向する2枚の基板間に、母粒子と前記母粒子の表層に存在する正帯電微粒子とを含む表示媒体用粒子が、気体中に含有されてなり、前記表示媒体用粒子に電界を付与することによって、前記気体中を、前記表示媒体用粒子を移動させて画像等の情報を表示する情報表示用パネルに用いられる表示媒体用粒子を構成するための正帯電微粒子としての使用」
である。
 ≪正帯電微粒子の製造≫
 [製造例1]
 (シード粒子の作製)
 撹拌機、還流冷却管および温度計を備えた四つ口の2Lセパラブルフラスコに、メラミン400質量部、37質量%ホルマリン772質量部、25質量%アンモニア水12質量部を仕込み、加熱撹拌し、このものを、別途調製した固形分濃度65質量%ドデシルベンゼンスルホン酸ナトリウム水溶液(花王株式会社製:ネオペレックスG65:以下、単に「DBSNa」とも称する)25.2質量部、およびイオン交換水5600質量部の均一な界面活性剤水溶液に投入し、次いで、10質量%ドデシルベンゼンスルホン酸水溶液(以下、単に「DBS」とも称する)200質量部を添加した。この状態で5時間保持して、アミノ樹脂架橋粒子(1)を含有する液(以下、単に「メラミン樹脂シード液(1)」とも称する)7009.2質量部を得た。なお、メラミン樹脂シード液(1)に含有されるアミノ樹脂架橋粒子(1)の平均粒子径を測定したところ、0.19μmであった(CV値:12.0%)。
 (ベンゾグアナミン樹脂被覆層の形成)
 ベンゾグアナミン(以下、単に「BG」とも称する)200質量部、37質量%ホルマリン260質量部、DBSNa12.6質量部、DBSl0質量部、およびイオン交換水2560質量部を均一に分散混合して、BG分散液3042.6質量部を得た。そして、上記で調製されたメラミン樹脂シード液(1)7009.2質量部中に、上記BG分散液の全量を滴下し、滴下終了後にさらに5時間保持した。これにより、アミノ樹脂架橋粒子(1)の表面がBGとホルムアルデヒドとの縮合物により被覆されたBG被覆アミノ樹脂架橋粒子(1)を含有する分散液(1)(以下、単に「BG被覆スラリー(1)」とも称する)10051.9質量部を得た。
 (洗浄~乾燥~粉砕処理)
 上記で得られたBG被覆スラリー(1)を遠心分離機にて固液分離し、上澄み液を除去した後、沈降したケーキを取り出した。得られたケーキをメタノールに分散させた後、遠心分離機にて固液分離を行う換作を2回線り返し、メタノールで洗浄して、ケーキを得た。得られたケーキに対して190℃にて真空乾燥を行い、得られた乾燥粉体を粉砕処理して、正帯電微粒子であるBG被覆アミノ樹脂架橋粒子(1)を得た。
 [製造例2]
 (シード粒子の作製)
 上述した製造例1と同様の手法により、アミノ樹脂架橋粒子(2)を含有する液(以下、単に「メラミン樹脂シード液(2)」とも称する)を得た。なお、メラミン樹脂シード液(2)に含有されるアミノ樹脂架橋粒子(2)の平均粒子径を測定したところ、0.14μmであった(CV値:8.5%)。
 (ベンゾグアナミン樹脂被覆層の形成)
 BG400質量部、37質量%ホルマリン520質量部、DBSNa25.2質量部、DBS20質量部、およびイオン交換水4700質量部を均一に分散混合して、BG分散液5665.2質量部を得た。そして、上記で調製されたメラミン樹脂シード液(2)2342.3質量部中に、上記BG分散液の全量を滴下し、滴下終了後にさらに5時間保持した。これにより、アミノ樹脂架橋粒子(2)の表面がBGとホルムアルデヒドとの縮合物により被覆されたBG被覆アミノ樹脂架橋粒子(2)を含有する分散液(2)(以下、単に「BG被覆スラリー(2)」とも称する)8007.6質量部を得た。
 (洗浄~乾燥~粉砕処理)
 上記で得られたBG被覆スラリー(2)を遠心分離機にて固液分離し、上澄み液を除去した後、沈降したケーキを取り出した。得られたケーキをメタノールに分散させた後、遠心分離機にて固液分離を行う換作を2回線り返し、メタノールで洗浄して、ケーキを得た。得られたケーキに対して190℃にて3時間真空乾燥を行い、得られた乾燥粉体を粉砕処理して、正帯電微粒子であるBG被覆アミノ樹脂架橋粒子(2)を得た。
 [製造例3]
 (加圧~洗浄~乾燥~粉砕処理)
 上述した製造例1と同様の手法により得られたBG被覆スラリー(1)8000質量部、および硬化触媒(キヤタニットA:MRCユニテック製)24質量部を、10Lの加圧容器に仕込み、撹拌しながら昇温し、0.9MPaの高圧条件下、170℃にて加圧処理を行ない、加圧処理BG被覆スラリー(3)を得た。得られた加圧処理BG被覆スラリー(3)を遠心分離機にて固液分離し、上澄み液を除去した後、沈降したケーキを取り出した。得られたケーキをメタノールに分散させた後、遠心分離機にて固液分離を行う換作を2回線り返し、メタノールで洗浄して、ケーキを得た。得られたケーキに対して190℃にて真空乾燥を行い、得られた乾燥粉体を粉砕処理して、正帯電微粒子であるBG被覆アミノ樹脂架橋粒子(3)を得た。
 [製造例4]
 BG被覆スラリー(1)に代えて、上述した製造例2と同様の手法により得られたBG被覆スラリー(2)を用いたこと以外は、上述した製造例3と同様の手法により、正帯電微粒子であるBG被覆アミノ樹脂架橋粒子(4)を得た。
 [製造例5]
 上述した製造例1と同様の手法により、アミノ樹脂架橋粒子(5)を含有する液(以下、単に「メラミン樹脂シード液(5)」とも称する)を得た。なお、メラミン樹脂シード液(5)に含有されるアミノ樹脂架橋粒子(5)の平均粒子径を測定したところ、0.21μmであった(CV値:11.2%)
 (ベンゾグアナミン樹脂被覆層の形成)
 BG200部、37質量%ホルマリン260部、65質量%DBSNa12.6部、DBS10部、イオン交換水2770.3部を均一に分散混合し、BG分散液を得た。メラミン樹脂シード液(5)4177.8部中に上記のBG分散液を滴下し、滴下終了後にさらに5時間保持し、上記アミノ樹脂架橋粒子(5)表面がBGとホルムアルデヒドとの縮合物により被覆されたBG被覆アミノ樹脂架橋粒子(5)を含有する分散液(5)(以下、単に「BG被覆スラリー(5)」とも称する)7430.7部を得た。
 (フェノール樹脂被覆層の形成)
 予め加熱溶解したフェノール(以下、「PhOH」とも称する)50部、37質量%ホルマリン129.7部、65質量%DBSNa3.2部、DBS2.5部、イオン交換水815部を均一に分散混合し、PhOH分散水溶液を得た。BG被覆スラリー(5)7430.7部中に上記のPhOH分散水溶液を滴下し、滴下終了後にさらに5時間保持し、その後室温まで冷却して、上記BG被覆アミノ樹脂架橋粒子(5)の表面がPhOHとホルムアルデヒドとの縮合物により被覆されたPhOH/BG被覆されたアミノ樹脂架橋粒子(5)を含有する分散液(5)(以下、単に「PhOH/BG被覆スラリー(5)」とも称する)8431.1部を得た。
 (加圧~洗浄~乾燥~粉砕処理)
 前記PhOH/BG被覆スラリー(1)8000部、および硬化触媒(キャタニットA:MRCユニテック製)24部を10Lの加圧容器に仕込み、攪拌しながら昇温し、内温が170℃にて加熱処理を行い、加圧処理PhOH/BG被覆スラリー(1)を得た。得られた加圧処理PhOH/BG被覆スラリー(1)を遠心分離機にて固液分離し、上澄み液を除去した後、沈降したケーキを取り出した。得られたケーキをメタノールに分散後、遠心分離機にて固液分離を行う操作を2回行い、メタノールで洗浄したケーキを得た。得られたケーキを190℃にて真空乾燥し、得られた乾燥粉体を粉砕処理してPhOH/BG被覆アミノ樹脂架橋粒子(5)を得た。PhOH/BG被覆アミノ樹脂架橋粒子(5)をSEMにて観察したところ、平均粒子径0.25μm(CV値:7.3%)であった。
 [製造例6~9]
 上述した製造例5と同様にして、表1-2に示す平均粒子径およびCV値を有する、メラミンとホルムアルデヒドとの縮合物からなるシード粒子を分散含有するシード液を調製し、メラミン量に対するベンゾグアナミン量、フェノール量(質量比)を表1-2に示すように変更してベンゾグアナミン樹脂被覆層およびフェノール樹脂被覆層を順次形成し、PhOH/BG被覆されたアミノ樹脂架橋粒子(6)~(9)を含有する分散液(6)~(9)を製造した。その後、製造例5と同様に、加圧、洗浄、乾燥、粉砕処理することによって、PhOH/BG被覆アミノ樹脂架橋粒子(6)~(9)を得た。
 [製造例10]
 上述した製造例4で得られたBG被覆アミノ樹脂架橋粒子の粉体とメタノールとを混合して、総量が1000部(固形分濃度10%)になるように希釈し、ホモディスパーで予備分散させた後、超音波ホモジナイザーにて30分間分散させた。
 そのBG被覆スラリー1000部を2Lのガラス製ナス形フラスコに移し取り、その中にトリフルオロプロピルトリメトキシシラン(信越シリコーン社製/LS-1090)5部を投入して、エバポレーターに装着して、オイルバスの温度70℃にて真空乾燥させ、乾燥粉体を得た。
 さらにその乾燥粉体を190℃にて真空乾燥し、得られた乾燥粉体を粉砕処理してトリフルオロプロピルトリメトキシシランで表面処理されたBG被覆アミノ樹脂架橋粒子(10)を得た。そのトリフルオロプロピルトリメトキシシランで表面処理されたBG被覆アミノ樹脂架橋粒子(10)をSEMにて観察したところ、平均粒子径0.24μm(CV値:6.6%)であった。
 [製造例11~12]
 製造例10において、トリフルオロプロピルトリメトキシシラン(信越シリコーン社製/LS-1090)5部を、それぞれ10部(製造例11)または20部(製造例12)とする以外は、製造例11と同様にして、トリフルオロプロピルトリメトキシシランで表面処理されたBG被覆アミノ樹脂架橋粒子(11)および(12)をそれぞれ得た。
 [比較製造例1]
 正帯電微粒子の1種であるメラミン樹脂微粒子として、エポスターS(株式会社日本触媒製;平均粒子径=0.20μm(CV値:12.4%))を準備し、比較製造例1の正帯電微粒子とした。
 [正帯電微粒子の物性評価]
 (平均粒子径およびそのCV値:ノギス法)
 上記の各製造例・比較製造例で得られた正帯電微粒子について、以下の手法により平均粒子径DおよびそのCV値を測定した。具体的には、粒子総個数が200個前後になるようにSEM写真を撮影し、その写真より無作為に選んだ100個の粒子の直径(撮影された粒子(断面)の最大長)をノギスにて計測し、その算術平均値を平均粒子径Dとした。また、平均粒子径Dに対する粒子径の標準偏差の百分率(%)として、平均粒子径DのCV値を算出した。結果を下記の表1-1~表1-3に示す。
 (高温圧縮変形率)
 上記の各製造例・比較製造例で得られた正帯電微粒子について、以下の手法により耐圧縮変形性の程度の指標となる高温圧縮変形率を測定した。具体的には、フローテスターの試料充填室の底を封して試料0.5gを投入し、その試料に300kgf/cmの荷重をかけながら、常温から240℃まで10℃/minで昇温した。その際の100~240℃の間に変形した高さを読み取り、下記式にて高温圧縮変形率を算出した。結果を下記の表1-1~表1-3に示す。
Figure JPOXMLDOC01-appb-M000006
 (飽和吸湿量)
 上記の各製造例・比較製造例で得られた正帯電微粒子について、以下の手法により飽和吸湿量を測定した。具体的には、まず、正帯電微粒子を解砕し、得られた粉体を温度30℃、湿度90%RHの雰囲気条件下で1日間放置した。その後、粉体1gについてカールフィッシャー法により水分量を定量し、得られた水分量の百分率を飽和吸湿量(質量%)とした。結果を下記の表1-1~表1-3に示す。
 (摩擦帯電量)
 上記の各製造例・比較製造例で得られた正帯電微粒子について、摩擦帯電量は、下記の装置を用い、下記の条件にて、一般的なフローオフ法に基づいて測定した。結果を下記の表1-1~表1-3に示す。
・測定装置 ブローオフ方式帯電量測定機(京セラケミカル株式会社製、TB-203)
・メッシュアバーチャ 32[μm]
・ブロー圧/サクション圧 4.5[kPa]/9.5[kPa]
・キャリア F96-80(パウダーテック株式会社製)
・振盪回数 1000回
 (電荷保持率)
 上記の各製造例・比較製造例で得られた正帯電微粒子について、電荷保持率は、下記の条件にて測定した。結果を下記の表1-1~表1-3に示す。
(1)銅セルに粒子を層厚300(μm)で充填する。
(2)スコロトロン帯電器(ニードル印加電圧±10(kV)、グリッド電圧±1(kV))により粒子表面電位±1(kV)となるように電荷を付与する。
(3)グラウンド(GND)結線し、室温(22℃)、湿度(50RH%)で測定開始、12時間経過した後の表面電位を初期表面電位で割ったものを電荷保持率(%)とした。
(4)電荷保持性能の判断は、電荷保持率が10(%)以上であれば、電荷保持性が高いと判断した。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表1-1~表1-3に示す結果から、本発明によれば、正帯電を示し、電荷保持性が改善された高架橋微粒子が得られることがわかる。本発明の正帯電微粒子は、従来の正帯電微粒子と比較して、特に電荷保持性能(電荷保持率)の点で顕著な改善がみられる。
 また、製造例5~9で得られた正帯電微粒子についての結果から、シェル層にフェノール化合物とホルムアルデヒドとの縮合単位を含ませることで、電荷保持率を高い値に維持しつつ、正帯電微粒子の帯電量を精密に制御できることがわかる。同様に、製造例10~12で得られた正帯電微粒子についての結果から、正帯電微粒子の表面をフッ素系シランカップリング剤で処理することによっても、電荷保持率を高い値に維持しつつ、正帯電微粒子の帯電量を精密に制御できることがわかる。
 ≪表示媒体用粒子の製造≫
 [実施例1]
 以下の手法により、情報表示装置に封入するための表示媒体用粒子を作製した。
 まず、シクロオレフィンコポリマー(ポリプラスチックス株式会社製、TOPAS)100質量部とカーボンブラック5質量部とを2軸混練し、ジェットミル(ラボジェットミルIDS-LJ型:日本ニューマチック工業株式会社製)を用いて粉砕分級して、母粒子(平均粒子径:10μm)を得た。一方、子粒子として、上述した製造例1において得られた正帯電微粒子であるBG被覆アミノ樹脂架橋粒子(1)を準備した。
 続いて、上記で準備した母粒子と子粒子とを、下記の条件下で複合化して、母粒子の表層に子粒子が付着・固着されてなる表示媒体用粒子を得た。
 [複合化条件]
・複合化装置 ホソカワミクロン株式会社製 NOB-130(ノビルタミル)
 容器中に回転可能な撹拌羽根が設けられており、撹拌羽根と容器内面との間に母粒子および子粒子が圧密され、その間に存在する母粒子および子粒子に剪断力を与える構成を有している。
・投入エネルギー 2400[kJ]
 [実施例2~12]
 子粒子として、上述した製造例2~12において得られた正帯電微粒子であるBG被覆アミノ樹脂架橋粒子(2)~(12)をそれぞれ用いたこと以外は、上述した実施例1と同様の手法により、表示媒体用粒子(2)~(12)を作製した。
 [比較例1]
 子粒子として、上述した比較製造例1において準備した正帯電微粒子であるメラミン樹脂微粒子を用いたこと以外は、上述した実施例1と同様の手法により、比較表示媒体用粒子(1)を作製した。
 [表示媒体用粒子の物性評価]
 (加工時の変形性)
 上記の各実施例・比較例で得られた表示媒体用粒子について、以下の手法により加工時の変形の程度を評価した。具体的には、電界放出形走査電子顕微鏡(日本電子株式会社製、JSM-7500F)を用いて、表示媒体用粒子の総個数が200個となるように写真を撮影し、表示媒体用粒子の子粒子(正帯電微粒子)の形状を目視により観察して、変形した子粒子(正帯電微粒子)を含む表示媒体用粒子の数を求め、その割合から、変形した子粒子(正帯電微粒子)を含む表示媒体用粒子の数が40%未満であれば「○」、40%以上70%未満であれば「△」、70%以上であれば「×」と判断した。結果を下記の表2に示す。
 (摩擦帯電量)
 上記の各実施例・比較例で得られた表示媒体用粒子について、摩擦帯電量は、下記の装置を用い、下記の条件にて、一般的なフローオフ法に基づいて測定した。結果を下記の表2に示す。
・測定装置 ブローオフ方式帯電量測定機(京セラケミカル株式会社製、TB-203)
・メッシュアバーチャ 32[μm]
・ブロー圧/サクション圧 4.5[kPa]/9.5[kPa]
・キャリア F96-80(パウダーテック株式会社製)
・振盪回数 1000回
 (電荷保持率)
 上記の各実施例・比較例で得られた表示媒体用粒子について、電荷保持率は、下記の条件にて測定した。結果を下記の表2に示す。
(1)銅セルに粒子を層厚300(μm)で充填する。
(2)スコロトロン帯電器(ニードル印加電圧±10(kV)、グリッド電圧±1(kV))により粒子表面電位±1(kV)となるように電荷を付与する。
(3)グラウンド(GND)結線し、室温(22℃)、湿度(50RH%)で測定開始、24時間経過した後の表面電位を初期表面電位で割ったものを電荷保持率(%)とした。
(4)電荷保持性能の判断は、電荷保持率が80(%)以上であれば、電荷保持性が高いと判断した。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 表2-1~表2-3に示す結果から、本発明により提供される正帯電微粒子を用いて構成された表示媒体用粒子は、従来の正帯電微粒子を用いた表示媒体用粒子と比較して、特に電荷保持性能(電荷保持率)の点で顕著な改善がみられる。
 また、実施例5~9で得られた表示媒体用粒子についての結果から、これに用いる正帯電微粒子を構成するシェル層にフェノール化合物とホルムアルデヒドとの縮合単位を含ませることで、表示媒体用粒子の電荷保持率を高い値に維持しつつ、当該粒子の帯電量を精密に制御できることがわかる。同様に、実施例10~12で得られた表示媒体用粒子についての結果から、これに用いる正帯電微粒子の表面をフッ素系シランカップリング剤で処理することによっても、表示媒体用粒子の電荷保持率を高い値に維持しつつ、当該粒子の帯電量を精密に制御できることがわかる。
1、2  基板、
3  表示媒体(粒子群、粉流体)、
3W  白色粒子群(白色粉流体)、
3B  黒色粒子群(黒色粉流体)、
4  隔壁、
5、6  電極、
11  表示媒体用粒子、
12  母粒子、
13  子粒子。

Claims (7)

  1.  少なくとも一方が透明な対向する2枚の基板間に、
     母粒子と前記母粒子の表層に存在する正帯電微粒子とを含む表示媒体用粒子が、気体中に含有されてなり、前記表示媒体用粒子に電界を付与することによって、前記気体中を、前記表示媒体用粒子を移動させて画像等の情報を表示する情報表示用パネルに用いられる表示媒体用粒子を構成するための正帯電微粒子であって、
     アミノ化合物(A)とホルムアルデヒドとの縮合物を含むコアと;
     前記コアの外表面に配置された、アミノ化合物(B)とホルムアルデヒドとの縮合物を含むシェル層と;
    からなり、前記アミノ化合物(A)におけるメラミンの割合が80~100質量%であり、前記アミノ化合物(B)におけるベンゾグアナミンの割合が80~100質量%であることを特徴とする、正帯電微粒子。
  2.  前記シェル層が、フェノール化合物とホルムアルデヒドとの縮合単位をさらに含む、請求項1に記載の正帯電微粒子。
  3.  微粒子の表面がフッ素系シランカップリング剤によって処理されてなる、請求項1または2に記載の正帯電微粒子。
  4.  平衡重量平均帯電量Q[μC/g]が、下記数式1を満たす、請求項1~3のいずれか1項に記載の正帯電微粒子:
    Figure JPOXMLDOC01-appb-M000001
  5.  電圧印加初期の表面電位に対する電圧印加12時間経過後の表面電位の百分率として定義される電荷保持率(%)が10%以上である、請求項1~4のいずれか1項に記載の正帯電微粒子。
  6.  粒子径が100~1000nmであり、粒子径の変動係数(CV)の値が30%以下である、請求項1~5のいずれか1項に記載の正帯電微粒子。
  7.  前記コアの外表面に前記シェル層を形成した後、得られた粒子を加圧条件下で熱処理して得られるものである、請求項1~6のいずれか1項に記載の正帯電微粒子。
PCT/JP2011/064300 2010-06-22 2011-06-22 情報表示パネル用正帯電微粒子 WO2011162302A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-141743 2010-06-22
JP2010141743 2010-06-22
JP2010212785 2010-09-22
JP2010-212785 2010-09-22

Publications (1)

Publication Number Publication Date
WO2011162302A1 true WO2011162302A1 (ja) 2011-12-29

Family

ID=45371478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064300 WO2011162302A1 (ja) 2010-06-22 2011-06-22 情報表示パネル用正帯電微粒子

Country Status (1)

Country Link
WO (1) WO2011162302A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139751A (ja) * 2007-12-07 2009-06-25 Bridgestone Corp 表示媒体用粒子およびそれを用いた情報表示用パネル
WO2010016529A1 (ja) * 2008-08-05 2010-02-11 株式会社ブリヂストン 表示媒体用粒子およびこれを用いた情報表示用パネル
WO2010027057A1 (ja) * 2008-09-05 2010-03-11 株式会社ブリヂストン 樹脂微粒子の製造方法および樹脂微粒子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139751A (ja) * 2007-12-07 2009-06-25 Bridgestone Corp 表示媒体用粒子およびそれを用いた情報表示用パネル
WO2010016529A1 (ja) * 2008-08-05 2010-02-11 株式会社ブリヂストン 表示媒体用粒子およびこれを用いた情報表示用パネル
WO2010027057A1 (ja) * 2008-09-05 2010-03-11 株式会社ブリヂストン 樹脂微粒子の製造方法および樹脂微粒子

Similar Documents

Publication Publication Date Title
JP4579823B2 (ja) 画像表示媒体に用いる粒子、それを用いた画像表示用パネル及び画像表示装置
JPWO2005071480A1 (ja) 表示媒体用白色粒子及びそれを用いた情報表示装置
JP4846224B2 (ja) 表示媒体用粒子及びそれを用いた情報表示用パネル、情報表示装置
JP2007304409A (ja) 表示媒体用粒子および情報表示用パネル
WO2004077140A1 (ja) 画像表示用パネル及び画像表示装置
JP2006106596A (ja) 情報表示用パネルに用いる表示媒体用粒子
JP4982179B2 (ja) 表示媒体用粒子及びそれを用いた情報表示用パネル、情報表示装置
WO2006064842A1 (ja) 表示媒体用粒子及びそれを用いた情報表示用パネル
JP2007171482A (ja) 表示媒体用粒子、その製造方法および情報表示用パネル
JP5066337B2 (ja) 情報表示用パネル
WO2011162302A1 (ja) 情報表示パネル用正帯電微粒子
JP4945099B2 (ja) 表示媒体用粒子及びそれを利用した情報表示用パネル
JP2005241779A (ja) 画像表示装置に用いる粒子、粉流体及びそれを用いた画像表示装置
WO2011161963A1 (ja) 表示媒体用粒子、及びそれを用いた情報表示装置
JP2012008167A (ja) 表示媒体用粒子、及びそれを用いた情報表示装置
JP2004317526A (ja) 画像表示用パネル及び画像表示装置
JP5052104B2 (ja) 表示媒体用粒子、情報表示用パネルおよび情報表示装置
CN100357819C (zh) 图像显示介质中使用的粒子、使用该粒子的图像显示用平板及图像显示装置
JP2012068392A (ja) 表示媒体用粒子、及びそれを用いた情報表示装置
JP2005352468A (ja) 情報表示用パネルの製造装置、それを用いた情報表示用パネルの製造方法および情報表示用パネル
JP2006293154A (ja) 情報表示用パネルの製造方法および情報表示用パネル
JP2006099046A (ja) 表示媒体用粒子およびそれを用いた情報表示装置
JP2001013505A (ja) 液晶表示素子用スペーサ、その製造方法および液晶表示素子
JP4863762B2 (ja) 表示媒体用粒子および情報表示用パネル
JP2010026451A (ja) 画像表示装置用表示粒子および画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11798184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11798184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP