WO2011162183A1 - 熱可塑性樹脂積層体 - Google Patents

熱可塑性樹脂積層体 Download PDF

Info

Publication number
WO2011162183A1
WO2011162183A1 PCT/JP2011/063949 JP2011063949W WO2011162183A1 WO 2011162183 A1 WO2011162183 A1 WO 2011162183A1 JP 2011063949 W JP2011063949 W JP 2011063949W WO 2011162183 A1 WO2011162183 A1 WO 2011162183A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
structural unit
vinyl
vinyl copolymer
copolymer resin
Prior art date
Application number
PCT/JP2011/063949
Other languages
English (en)
French (fr)
Inventor
佐藤 和哉
小池 信行
小黒 寛樹
芳男 青木
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to KR1020127033234A priority Critical patent/KR20130106774A/ko
Priority to JP2012521456A priority patent/JP5713014B2/ja
Priority to US13/704,827 priority patent/US20130095337A1/en
Priority to EP11798067.2A priority patent/EP2583825B1/en
Priority to CN201180030071.0A priority patent/CN102947089B/zh
Priority to KR1020187011741A priority patent/KR20180049151A/ko
Publication of WO2011162183A1 publication Critical patent/WO2011162183A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/06Embossing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/12Monomers containing a branched unsaturated aliphatic radical or a ring substituted by an alkyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • Y10T428/31913Monoolefin polymer

Definitions

  • the present invention relates to a thermoplastic resin laminate, and more particularly, to a thermoplastic resin laminate used for a transparent substrate material and a transparent protective material and having excellent transparency, low birefringence, and formability.
  • Resin-made transparent plates are applied to soundproof partition walls, carports, signboards, and optical sheets such as display unit front plates, light guide plates, and prism sheets of liquid crystal display devices for office automation equipment and portable electronic devices.
  • liquid crystal display devices are becoming smaller, thinner, and more portable.
  • optical sheets used in liquid crystal display devices have not only transparency, heat resistance, and low birefringence, but also brightness and viewing angle. There is a demand for further functionality such as improvement.
  • thermoplastic resin is continuously introduced between a shaping roll and a pressing roll that have been grooved in a desired shape, and sandwiched and cooled.
  • a thermoplastic resin is continuously introduced between a shaping roll and a pressing roll that have been grooved in a desired shape, and sandwiched and cooled.
  • an optical sheet having a desired shape on the surface can be obtained.
  • this molding method has a shorter shaping time than other molding methods, for example, when a thermoplastic resin whose fluidity is greatly reduced when the resin temperature is low, such as a methacrylic resin, the concave groove of the shaping roll is used. The resin does not spread to the deep part, and an optical sheet having a desired shape may not be obtained.
  • a method of shaping the thermoplastic resin with as low a viscosity as possible by maintaining the temperature of the shaping roll at a high temperature. Since the plastic resin is not sufficiently cooled, so-called reshaping may occur, and the formability may be deteriorated.
  • Patent Document 1 when trying to manufacture an optical sheet having a desired shape by a roll embossing method by extrusion molding using a methacrylic resin, the range of manufacturing conditions becomes extremely narrow, and stable production becomes difficult.
  • Patent Documents 2 and 3 a polycarbonate resin which is a resin having relatively high fluidity even when the resin temperature is low is often applied to the base material of the optical sheet manufactured by this molding method.
  • polycarbonate resin is inferior in transparency and low birefringence to methacrylic resin, when the obtained optical sheet is applied to a liquid crystal display device, luminance is insufficient or color unevenness occurs. In some cases, a malfunction occurred.
  • the present invention relates to a thermoplastic resin laminate that is used for a transparent substrate material and a transparent protective material, and has excellent transparency, low birefringence, and formability, and an optical sheet using the thermoplastic resin laminate.
  • the issue is to provide.
  • the present inventors polymerized a (meth) acrylic acid ester monomer and an aromatic vinyl monomer on one or both sides of a methacrylic resin plate or a laminate thereof.
  • the inventors have found that a thermoplastic resin laminate having the above characteristics can be obtained by providing a hydrogenated vinyl copolymer resin layer, and the present invention has been achieved. That is, the present invention provides the following thermoplastic resin laminate and an optical sheet using the thermoplastic resin laminate.
  • thermoplastic resin laminate in which a vinyl copolymer resin (A) layer is laminated on one side or both sides of a methacrylic resin (B) layer, wherein the vinyl copolymer resin (A) is represented by the following general formula (1):
  • the aliphatic vinyl structural unit (b) is 90 to 100 mol% based on the total of all the structural units in the vinyl copolymer resin (A)
  • a vinyl copolymer resin having a molar ratio of (a) to the aliphatic vinyl structural unit (b) of 65:35 to 85:15, wherein 90 moles of all the structural units in the methacrylic resin (B) % Is a structural unit that has no benzene ring The thermoplastic resin laminate according to claim Rukoto.
  • R1 is a hydrogen atom or a methyl group
  • R2 is an alkyl group having 1 to 18 carbon atoms.
  • R3 is a hydrogen atom or a methyl group
  • R4 is a cyclohexyl group that may have an alkyl substituent having 1 to 4 carbon atoms.
  • thermoplastic resin (C) layer made of methyl methacrylate-styrene copolymer or acrylonitrile-styrene copolymer is laminated on one side or both sides of the methacrylic resin (B) layer, and further a vinyl copolymer resin ( A ′) a thermoplastic resin laminate in which layers are laminated, wherein the vinyl copolymer resin (A ′) is a (meth) acrylate structural unit (a) represented by the general formula (1) And the aliphatic vinyl structural unit (b) represented by the general formula (2), and the total proportion of the (meth) acrylate structural unit (a) and the aliphatic vinyl structural unit (b) is 90 to 100 mol% based on the total of all the structural units in the vinyl copolymer resin (A '), the (meth) acrylic ester structural unit (a), the aliphatic vinyl structural unit (b), Molar ratio of 15:85 85:15 vinyl copolymer resin, wherein 90% by mole or more
  • thermoplastic resin laminate according to the above 1 or 2 which is obtained by hydrogenating 70% or more of monomer-derived aromatic double bonds. 4).
  • An optical sheet comprising the thermoplastic resin laminate according to any one of 1 to 6 above.
  • thermoplastic resin laminate excellent in transparency, low birefringence, formability, and the like
  • thermoplastic resin laminate is an optical article as a transparent substrate material and a transparent protective material.
  • it is preferably used for a front plate, a light guide plate, a prism sheet and the like of a liquid crystal display device.
  • the thermoplastic resin laminate of the present invention is a thermoplastic resin laminate in which a vinyl copolymer resin (A) layer is laminated on one side or both sides of a methacrylic resin (B) layer, and the vinyl copolymer resin (A ) Includes a (meth) acrylic ester structural unit (a) represented by the following general formula (1) and an aliphatic vinyl structural unit (b) represented by the following general formula (2),
  • the total proportion of the meth) acrylic ester structural unit (a) and the aliphatic vinyl structural unit (b) is 90 to 100 mol% with respect to the total of all the structural units in the vinyl copolymer resin (A).
  • R1 is a hydrogen atom or a methyl group
  • R2 is an alkyl group having 1 to 18 carbon atoms.
  • R3 is a hydrogen atom or a methyl group
  • R4 is a cyclohexyl group that may have an alkyl substituent having 1 to 4 carbon atoms.
  • R2 is an alkyl group having 1 to 18 carbon atoms, and includes a methyl group, an ethyl group, a butyl group, a lauryl group, a stearyl group, and a cyclohexyl group. And isobornyl group.
  • R2 is a methyl group and / or ethyl group
  • R1 is a methyl group and R2 is a methyl group. It is a methyl methacrylate structural unit.
  • Examples of the aliphatic vinyl structural unit represented by the general formula (2) include, for example, R3 is a hydrogen atom or a methyl group, and R4 is a cyclohexyl group or a cyclohexyl group having an alkyl substituent having 1 to 4 carbon atoms. Things can be mentioned.
  • R3 is a hydrogen atom
  • R4 is a cyclohexyl group.
  • the vinyl copolymer resin (A) used in the present invention is mainly composed of a (meth) acrylate structural unit (a) represented by the general formula (1) and an aliphatic represented by the general formula (2). It consists of a vinyl structural unit (b), may contain one or more of the (meth) acrylic acid ester structural unit (a), and one or two of the aliphatic vinyl structural unit (b). You may contain more than a seed.
  • the vinyl copolymer resin (A) has a total ratio of the (meth) acrylic acid ester structural unit (a) and the aliphatic vinyl structural unit (b) in the vinyl copolymer resin (A). It is 90 to 100 mol%, preferably 95 to 100 mol%, based on the total of the units.
  • the vinyl copolymer resin (A) is in the range of 10 mol% or less with respect to the total of all the structural units, and the (meth) acrylic ester structural unit (a) and the aliphatic vinyl structural unit (b). Other structural units may be contained.
  • the structural unit other than the (meth) acrylic ester structural unit (a) and the aliphatic vinyl structural unit (b) include, for example, a polymer obtained by polymerizing a (meth) acrylic ester monomer and an aromatic vinyl monomer.
  • the vinyl copolymer resin (A) obtained by hydrogenating an aromatic double bond derived from an aromatic vinyl monomer include structural units derived from an aromatic vinyl monomer containing an unhydrogenated aromatic double bond. .
  • the (meth) acrylate structural unit (a) represented by the general formula (1) and the aliphatic vinyl structural unit (b) represented by the general formula (2) Is in the range of 65:35 to 85:15, and more preferably in the range of 70:30 to 80:20.
  • the molar ratio of the (meth) acrylate structural unit (a) to the total of the (meth) acrylic ester structural unit (a) and the aliphatic vinyl structural unit (b) is less than 65%, a methacrylic resin ( Since the adhesiveness with B) is lowered, it is not practical.
  • the molar ratio is in a range exceeding 85%, the heat resistance of the vinyl copolymer resin (A) is insufficient, and the formability tends to be lowered.
  • the vinyl copolymer resin (A ′) used in the present invention is mainly composed of the (meth) acrylate structural unit (a) represented by the general formula (1) and the aliphatic represented by the general formula (2). It consists of a vinyl structural unit (b), may contain one or more of the (meth) acrylic acid ester structural unit (a), and one or two of the aliphatic vinyl structural unit (b). You may contain more than a seed. Further, the vinyl copolymer resin (A ′) is such that the total proportion of the (meth) acrylic ester structural unit (a) and the aliphatic vinyl structural unit (b) is the whole of the vinyl copolymer resin (A ′).
  • the vinyl copolymer resin (A ′) is within a range of 10 mol% or less with respect to the total of all the structural units, and the (meth) acrylate structural unit (a) and the aliphatic vinyl structural unit (b). ) May contain other structural units.
  • the structural unit other than the (meth) acrylic ester structural unit (a) and the aliphatic vinyl structural unit (b) include, for example, a polymer obtained by polymerizing a (meth) acrylic ester monomer and an aromatic vinyl monomer.
  • the (meth) acrylate structural unit (a) represented by the general formula (1) and the aliphatic vinyl structural unit (b) represented by the general formula (2) ) In the range of 15:85 to 85:15.
  • the molar ratio of the (meth) acrylic ester structural unit (a) to the total of the (meth) acrylic ester structural unit (a) and the aliphatic vinyl structural unit (b) is less than 15%, thermoplasticity described later.
  • the adhesiveness with the resin (C) becomes low, or the mechanical strength becomes too low and it becomes brittle, it is not practical. Further, when the molar ratio is in a range exceeding 85%, the heat resistance of the vinyl copolymer resin (A ′) is insufficient, and the formability tends to be lowered. From the viewpoint of adhesion to the thermoplastic resin (C) and formability, the molar ratio of the (meth) acrylic ester structural unit (a) to the aliphatic vinyl structural unit (b) is 30:70 to 80 : 20, preferably 45:55 to 75:25.
  • the vinyl copolymer resin (A) and the vinyl copolymer resin (A ′) are not particularly limited, but after copolymerizing at least one (meth) acrylate monomer and at least one aromatic vinyl monomer, What was obtained by hydrogenating the aromatic double bond derived from this aromatic vinyl monomer is suitable.
  • (meth) acryl shows methacryl and / or acryl.
  • Specific examples of the aromatic vinyl monomer used at this time include styrene, ⁇ -methylstyrene, p-hydroxystyrene, alkoxystyrene, chlorostyrene, and derivatives thereof. Of these, styrene is preferred.
  • (meth) acrylate monomers include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, lauryl (meth) acrylate, and stearyl (meth) acrylate.
  • (Meth) acrylic acid cyclohexyl, (meth) acrylic acid isobornyl (meth) acrylic acid alkyl esters, etc. can be mentioned, but from the balance of physical properties, methacrylic acid alkyl ester is used alone or It is preferable to use acrylic acid alkyl ester and acrylic acid alkyl ester in combination.
  • alkyl methacrylates particularly preferred are methyl methacrylate and ethyl methacrylate.
  • a known method can be used for the polymerization of the (meth) acrylic acid ester monomer and the aromatic vinyl monomer, and for example, it can be produced by a bulk polymerization method, a solution polymerization method, or the like.
  • the bulk polymerization method is carried out by a method in which the monomer composition containing the monomer and the polymerization initiator is continuously supplied to a complete mixing tank and continuously polymerized at 100 to 180 ° C.
  • the monomer composition may contain a chain transfer agent as necessary.
  • the polymerization initiator is not particularly limited, but t-amylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, benzoyl peroxide, 1,1-di (t-hexylperoxy) -3,3,5-trimethylcyclohexane, 1,1-di (t-hexylperoxy) cyclohexane, 1,1-di (t-butylperoxy) cyclohexane, t-hexylpropoxyisopropyl monocarbonate, t-amylperoxynormal Organic peroxides such as octoate, t-butylperoxyisopropyl monocarbonate, di-t-butyl peroxide, 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile) ), 2,2'-azobis (2,4-dimethylvaleronitrile) Com
  • the chain transfer agent is used as necessary, and examples thereof include ⁇ -methylstyrene dimer.
  • Examples of the solvent used in the solution polymerization method include hydrocarbon solvents such as toluene, xylene, cyclohexane and methylcyclohexane, ester solvents such as ethyl acetate and methyl isobutyrate, ketone solvents such as acetone and methyl ethyl ketone, tetrahydrofuran, Examples include ether solvents such as dioxane and alcohol solvents such as methanol and isopropanol.
  • hydrocarbon solvents such as toluene, xylene, cyclohexane and methylcyclohexane
  • ester solvents such as ethyl acetate and methyl isobutyrate
  • ketone solvents such as acetone and methyl ethyl ketone
  • tetrahydrofuran examples include ether solvents such as dioxane and alcohol solvents such as methanol and isopropanol.
  • the solvent used in the hydrogenation reaction after polymerizing the (meth) acrylic acid ester monomer and the aromatic vinyl monomer may be the same as or different from the above polymerization solvent.
  • hydrocarbon solvents such as cyclohexane and methylcyclohexane
  • ester solvents such as ethyl acetate and methyl isobutyrate
  • ketone solvents such as acetone and methyl ethyl ketone
  • ether solvents such as tetrahydrofuran and dioxane
  • alcohol solvents such as methanol and isopropanol A solvent etc.
  • the vinyl copolymer used in the present invention is obtained by polymerizing the (meth) acrylic acid ester monomer and the aromatic vinyl monomer as described above, and then hydrogenating the aromatic double bond derived from the aromatic vinyl monomer.
  • a resin (A) and a vinyl copolymer resin (A ′) can be obtained.
  • the method for hydrogenation is not particularly limited, and a known method can be used. For example, it can be carried out batchwise or continuously with a hydrogen pressure of 3 to 30 MPa and a reaction temperature of 60 to 250 ° C. When the temperature is 60 ° C. or higher, reaction time does not take too long, and when it is 250 ° C. or lower, molecular chain scission and ester site hydrogenation are less likely to occur.
  • Examples of the catalyst used in the hydrogenation reaction include metals such as nickel, palladium, platinum, cobalt, ruthenium, and rhodium or oxides or salts or complex compounds of these metals, carbon, alumina, silica, silica / alumina, and diatomaceous earth. And a solid catalyst supported on a porous carrier.
  • the vinyl copolymer resin (A) and the vinyl copolymer resin (A ′) are preferably obtained by hydrogenating 70% or more of the aromatic double bond derived from the aromatic vinyl monomer. That is, the ratio of the unhydrogenated portion of the aromatic double bond in the structural unit derived from the aromatic vinyl monomer in the vinyl copolymer resin (A) and the vinyl copolymer resin (A ′) is 30% or less. preferable. If it exceeds 30%, the transparency of the vinyl copolymer resin (A) and the vinyl copolymer resin (A ′) may decrease.
  • the proportion of the unhydrogenated sites is more preferably 20% or less, and still more preferably 10% or less.
  • the weight average molecular weight of the vinyl copolymer resin (A) and the vinyl copolymer resin (A ′) is not particularly limited, but is preferably 50,000 to 400,000 from the viewpoint of strength and moldability. More preferably, it is from 1,000,000 to 300,000.
  • the said weight average molecular weight is a weight average molecular weight of standard polystyrene conversion measured by gel permeation chromatography (GPC).
  • the vinyl copolymer resin (A) and the vinyl copolymer resin (A ′) can be blended with other resins as long as the transparency is not impaired.
  • examples thereof include methyl methacrylate-styrene copolymer resin, polymethyl methacrylate, polystyrene, and polycarbonate.
  • the glass transition temperature of the vinyl copolymer resin (A) and the vinyl copolymer resin (A ′) is preferably in the range of 110 to 140 ° C.
  • the glass transition temperature in the present invention is a temperature when a differential scanning calorimeter is used to measure a sample at 10 mg and a heating rate of 10 ° C./min and calculate by the midpoint method.
  • the methacrylic resin (B) used in the present invention is a structural unit in which 90 mol% or more of all structural units in the methacrylic resin (B) do not have a benzene ring, and preferably 95 mol% or more is benzene. A structural unit having no ring.
  • This methacrylic resin (B) forms a base layer of the thermoplastic resin laminate of the present invention, and is selected depending on the use of the resin laminate, but polymethyl methacrylate, methyl methacrylate-acrylic Methyl methacrylate copolymer resin, methyl methacrylate-styrene copolymer resin in which the styrene component is 10 mol% or less of all the structural units, and the like.
  • polymethyl methacrylate is used because of its excellent transparency. used.
  • the thermoplastic resin (C) used in the present invention is a thermoplastic resin comprising a methyl methacrylate-styrene copolymer or an acrylonitrile-styrene copolymer.
  • the resin comprising a methyl methacrylate-styrene copolymer include Estyrene MS200, Estyrene MS300, Estyrene MS500, Estyrene MS600, Estyrene MS750 and the like manufactured by Nippon Steel Chemical Co., Ltd., and acrylonitrile-styrene copolymer
  • the resin composed of coalesce include Stylac AS767, Stylac AST8701, and Stylac AST8707 manufactured by Asahi Kasei Chemicals Corporation.
  • thermoplastic resin laminate of the present invention As a method for producing the thermoplastic resin laminate of the present invention, a method by coextrusion or the like can be used.
  • the method of coextrusion is not particularly limited, and a known method can be used.
  • a vinyl copolymer resin (A) layer is laminated on one or both of the methacrylic resin (B) layers in the feed block, extruded into a sheet shape with a T-die, and then passed through a forming roll. Cool to form the desired laminate.
  • a vinyl copolymer resin (A) layer is laminated on one or both of the methacrylic resin (B) layers in a multi-manifold die, extruded into a sheet shape, and then passed through a forming roll for clamping. While cooling, a desired laminate is formed.
  • the thermoplastic resin (C) layer is provided between the vinyl copolymer resin (A ′) layer and the methacrylic resin (B) layer, in the feed block method, one side of the methacrylic resin (B) layer by the feed block.
  • thermoplastic resin (C) layer is laminated on both sides, a vinyl copolymer resin (A ′) resin layer is further laminated thereon, extruded into a sheet shape with a T-die, and then cooled while passing through a molding roll. Then, a desired laminate is formed.
  • a thermoplastic resin (C) layer is laminated on one or both of the methacrylic resin (B) layers in the multi-manifold die, and a vinyl copolymer resin (A ′) layer is further laminated thereon. And after extruding to a sheet form, it passes through a forming roll and it cools while pinching, and forms a desired laminated body.
  • molding roll is not specifically limited, The method of pinching and cooling with a some metal roll and the method of pinching and cooling with a metal roll, a nonmetal roll, or a metal belt can be illustrated.
  • a shaping roll may be combined as this forming roll.
  • embossing can be performed during molding.
  • the embossing process can be performed on one side or both sides of the thermoplastic resin laminate of the present invention.
  • the groove shape of the shaping roll is not particularly limited, but the groove depth is preferably 0.1 ⁇ m to 1000 ⁇ m, and the convex-concave shape is preferably in the range of 5 ⁇ m to 10000 ⁇ m, and the groove depth is 10 ⁇ m to 500 ⁇ m.
  • the convex-concave shape has a convex-to-convex distance of 10 ⁇ m to 3000 ⁇ m.
  • the groove depth is less than 0.1 ⁇ m or the distance between the protrusions is less than 5 ⁇ m, accurate molding may be difficult depending on the shape.
  • the height is larger than 1000 ⁇ m or the distance between the protrusions is larger than 10,000 ⁇ m, it is necessary to slow down the molding speed, which is not preferable due to lack of production efficiency.
  • the irregular shape is a cylindrical lens or prism having a longitudinal direction parallel to the sheet forming direction.
  • the thickness of the thermoplastic resin laminate of the present invention is preferably in the range of h + 0.1 to h + 10.0 mm, where h is the groove depth of the concave groove of the shaping roll used during molding.
  • h 0.
  • the resin sufficiently enters the concave groove of the shaping roll, and thickness accuracy defects and appearance defects are less likely to occur.
  • h + 10.0 mm or less it becomes difficult to generate
  • the thickness of the vinyl copolymer resin (A) layer and the vinyl copolymer resin (A ′) layer is defined as h when the groove depth of the shaping roll used during molding is h.
  • a range of h / 2 + 10 to h + 500 ⁇ m is preferable.
  • h 0. If it is less than h / 2 + 10 ⁇ m, the formability of the thermoplastic resin laminate may be insufficient.
  • h + 500 micrometers the transparency at the time of using as an optical sheet may be insufficient. More preferably, it is in the range of h / 2 + 30 to h + 200 ⁇ m.
  • thermoplastic resin (C) layer When the thermoplastic resin (C) layer is provided between the vinyl copolymer resin (A ′) layer and the methacrylic resin (B) layer of the thermoplastic resin laminate of the present invention, the thermoplastic resin (C) layer
  • the thickness is preferably about 5 to 200 ⁇ m.
  • the vinyl copolymer resin (A), the vinyl copolymer resin (A ′), the methacrylic resin (B), and the thermoplastic resin (C) can be used by mixing various additives.
  • the additive include an antioxidant, an ultraviolet absorber, an anticolorant, an antistatic agent, a release agent, a lubricant, a dye, a pigment, an inorganic filler, and a resin filler.
  • the method of mixing is not particularly limited, and a method of compounding the whole amount, a method of dry blending the master batch, a method of dry blending the whole amount, and the like can be used.
  • the thermoplastic resin laminate of the present invention can be subjected to any one or more of hard coat treatment, antireflection treatment, and antiglare treatment on one or both sides.
  • the methods of hard coat treatment, antireflection treatment and antiglare treatment are not particularly limited, and known methods can be used. For example, a method of forming a film using a thermosetting or photocurable resin composition, a method of vacuum-depositing a dielectric thin film, and the like can be mentioned.
  • the thermoplastic resin laminate of the present invention is useful as an optical sheet, and is used in optical articles as a transparent substrate material and a transparent protective material, and particularly suitably used for a front plate, a light guide plate, a prism sheet, etc. of a liquid crystal display device. Is done.
  • thermoplastic resin laminates obtained in Examples and Comparative Examples were performed as follows.
  • the total light transmittance (JIS K 7105) of the thermoplastic resin laminates and the thermoplastic resin plates obtained in the following examples and comparative examples was measured using a color difference meter (manufactured by Nippon Denshoku Industries Co., Ltd .: COH-400). Measured at A sample having a total light transmittance of 91% or more was judged good, and a sample having a total light transmittance of less than 91% was judged defective.
  • ⁇ Adhesion evaluation> A test piece having a length of 10 cm and a width of 10 cm was cut from the thermoplastic resin laminate obtained in Examples 1 to 4 and Comparative Examples 1 to 4 and 9, and a two-component solventless epoxide adhesive (Cemedine Co., Ltd.) was cut.
  • a notch reaching the methacrylic resin (B) layer from the layer side is made, and is substantially uniform not exceeding 1.0 MPa / s with a tensile tester (product name: Adhesion Tester 106 manufactured by Elcometer).
  • the tension was increased at speed. When the tension of 1.0 MPa was applied, the test site was visually observed, and the test piece with a peeled area ratio of less than 20% with respect to the test site area was good, and the test piece with 20% or more was considered bad. .
  • Synthesis Example 1 [Production of vinyl copolymer resin (A2)] Purified methyl methacrylate (Mitsubishi Gas Chemical Co., Ltd.) 77.000 mol%, purified styrene (Wako Pure Chemical Industries, Ltd.) 22.998 mol%, and t-amylperoxy-2-ethyl as a polymerization initiator A monomer composition consisting of 0.002 mol% of hexanoate (Arkema Yoshitomi Co., Ltd., trade name: Luperox 575) is continuously supplied at 1 kg / h to a 10 L complete mixing tank with a helical ribbon blade, and an average residence time of 2 Continuous polymerization was carried out at a polymerization temperature of 150 ° C.
  • the obtained vinyl copolymer resin (A1) was dissolved in methyl isobutyrate (manufactured by Kanto Chemical Co., Inc.) to prepare a 10% by mass methyl isobutyrate solution.
  • a 1000 mL autoclave apparatus was charged with 500 parts by weight of a 10% by weight methyl isobutyrate solution of vinyl copolymer resin (A1) and 1 part by weight of 10% by weight Pd / C (manufactured by NE Chemcat).
  • the aromatic double bond site of the vinyl copolymer resin (A1) was hydrogenated.
  • the catalyst was removed by a filter and introduced into a solvent removal apparatus to obtain a pellet-like vinyl copolymer resin (resin A2).
  • the proportion of the methyl methacrylate structural unit in the vinyl copolymer resin (A2) was 75 mol%, and the hydrogenation reaction rate of the aromatic double bond site was 99%.
  • the weight average molecular weight (standard polystyrene conversion) measured by gel permeation chromatography was 124,000.
  • Synthesis Example 2 [Production of vinyl copolymer resin (A′2)] Purified methyl methacrylate (Mitsubishi Gas Chemical Co., Ltd.) 60.000 mol%, purified styrene (Wako Pure Chemical Industries, Ltd.) 39.998 mol%, and t-amylperoxy-2-ethyl as a polymerization initiator A monomer composition consisting of 0.002 mol% of hexanoate (Arkema Yoshitomi Co., Ltd., trade name: Luperox 575) is continuously supplied at 1 kg / h to a 10 L complete mixing tank with a helical ribbon blade, and an average residence time of 2 Continuous polymerization was carried out at a polymerization temperature of 150 ° C.
  • the obtained vinyl copolymer resin (A′1) was dissolved in methyl isobutyrate (manufactured by Kanto Chemical Co., Inc.) to prepare a 10 mass% methyl isobutyrate solution.
  • a 1000 mL autoclave apparatus was charged with 500 parts by mass of a 10% by mass methyl isobutyrate solution of vinyl copolymer resin (A′1) and 1 part by mass of 10% by mass Pd / C (manufactured by NE Chemcat), hydrogen pressure 9 MPa, 200 ° C.
  • Synthesis Example 3 [Production of vinyl copolymer resin (A ′′ 2)] Purified methyl methacrylate (Mitsubishi Gas Chemical Co., Ltd.) 92.000 mol%, purified styrene (Wako Pure Chemical Industries, Ltd.) 7.998 mol%, and t-amylperoxy-2-ethyl as a polymerization initiator A monomer composition consisting of 0.002 mol% of hexanoate (Arkema Yoshitomi Co., Ltd., trade name: Luperox 575) is continuously supplied at 1 kg / h to a 10 L complete mixing tank with a helical ribbon blade, and an average residence time of 2 Continuous polymerization was carried out at a polymerization temperature of 150 ° C.
  • the polymer was continuously extracted from the bottom so that the liquid level of the polymerization tank was constant, and introduced into a solvent removal apparatus to obtain a pellet-like vinyl copolymer resin (A ′′ 1).
  • the obtained vinyl copolymer resin (A ′′ 1) was dissolved in methyl isobutyrate (manufactured by Kanto Chemical Co., Inc.) to prepare a 10 mass% methyl isobutyrate solution.
  • a 1000 mL autoclave apparatus was charged with 500 parts by mass of a 10% by mass methyl isobutyrate solution of vinyl copolymer resin (A ′′ 1) and 1 part by mass of 10% by mass Pd / C (manufactured by NE Chemcat), with a hydrogen pressure of 9 MPa, 200
  • the aromatic double bond site of the vinyl copolymer resin (A ′′ 1) was hydrogenated by keeping at 15 ° C. for 15 hours.
  • the catalyst was removed by a filter and introduced into a solvent removal apparatus to obtain a pelletized vinyl copolymer resin (resin A ′′ 2).
  • the proportion of the methyl methacrylate structural unit in the vinyl copolymer resin (A ′′ 2) was 90 mol%, and the hydrogenation reaction rate of the aromatic double bond site was 99%.
  • the weight average molecular weight (standard polystyrene conversion) measured by gel permeation chromatography was 98,000.
  • Example 1 Thermoplastic using a multilayer extruder having a single screw extruder with a shaft diameter of 32 mm, a single screw extruder with a shaft diameter of 65 mm, a feed block connected to the full extruder, and a T-die connected to the feed block. A resin laminate was molded. Further, the vinyl copolymer resin (resin A2) obtained in Synthesis Example 1 was continuously introduced into a single screw extruder having a shaft diameter of 32 mm and extruded under the conditions of a cylinder temperature of 250 ° C. and a discharge speed of 6 kg / h.
  • methacrylic resin [product name: Delpet 80NE] (resin B) (resin B) manufactured by Asahi Kasei Chemicals Co., Ltd. is continuously introduced into a single-screw extruder with a shaft diameter of 65 mm and extruded at a cylinder temperature of 260 ° C. and a discharge speed of 50 kg / h. It was.
  • the feed block connected to the entire extruder was provided with two types and two layers of distribution pins, and the resin A2 and the resin B were introduced and laminated at a temperature of 260 ° C. It was extruded in a sheet form with a T-die having a temperature of 270 ° C.
  • thermoplastic resin laminate of resin A2 and resin B was connected to the tip and cooled while transferring the mirror surface with three mirror finish rolls to obtain a thermoplastic resin laminate of resin A2 and resin B.
  • the set temperature of the roll was set to 90 ° C., 90 ° C., and 100 ° C. in order from the upstream side.
  • the thickness of the obtained thermoplastic resin laminate was 1.0 mm, and the thickness of the resin A2 layer was 120 ⁇ m near the center.
  • the laminate of resin A2 and resin B was extruded under the same conditions for each extruder, feed block, and T die, and the most upstream of the three mirror finish rolls had a groove depth of 100 ⁇ m and a convex distance of 200 ⁇ m.
  • the prism sheet was cooled while being transferred in place of the prism-shaped shaping roll to obtain a prism sheet in which the resin A2 layer side was embossed.
  • the set temperature of the roll was set to 90 ° C., 90 ° C., and 100 ° C. in order from the upstream side.
  • the evaluation results are shown in Table 1. The results of transparency evaluation, formability evaluation, and adhesion evaluation were all good.
  • Example 2 A single screw extruder with a shaft diameter of 25 mm, a single screw extruder with a shaft diameter of 32 mm, a single screw extruder with a shaft diameter of 65 mm, a feed block connected to all the extruders, and a T-die connected to the feed block
  • a thermoplastic resin laminate was molded using a multilayer extrusion apparatus having A methyl methacrylate-styrene (5: 5) copolymer resin [manufactured by Nippon Steel Chemical Co., Ltd., trade name: Estyrene MS500] (resin C1) (resin C1) was continuously introduced into a single-screw extruder having a shaft diameter of 25 mm, and a cylinder Extrusion was performed under the conditions of a temperature of 240 ° C.
  • the vinyl copolymer resin (resin A′2) obtained in Synthesis Example 2 was continuously introduced into a single screw extruder having a shaft diameter of 32 mm and extruded under the conditions of a cylinder temperature of 250 ° C. and a discharge speed of 6 kg / h.
  • methacrylic resin product name: Delpet 80NE] (resin B) (resin B) manufactured by Asahi Kasei Chemicals Co., Ltd. is continuously introduced into a single-screw extruder with a shaft diameter of 65 mm and extruded at a cylinder temperature of 260 ° C. and a discharge speed of 50 kg / h. It was.
  • the feed block connected to the entire extruder was provided with three types and three layers of distribution pins, and the resin A′2, resin C1, and resin B were introduced and laminated at a temperature of 260 ° C. Extruded into a sheet shape with a T-die with a temperature of 270 ° C. connected to the tip, cooled while transferring the mirror surface with three mirror finish rolls, and a thermoplastic resin laminate of Resin A′2, Resin C1 and Resin B Obtained. At this time, the rolls were set at 90 ° C., 90 ° C., and 100 ° C. from the upstream side.
  • the thickness of the obtained thermoplastic resin laminate was 1.0 mm, the thickness of the resin A′2 layer was 120 ⁇ m near the center, and the thickness of the resin C1 layer was 60 ⁇ m near the center. Also, the laminate of resin A′2, resin C1, and resin B is extruded under the same conditions for each extruder, feed block, and T die, and the most upstream of the three mirror finish rolls has a groove depth of 100 ⁇ m. Then, it was cooled while being transferred to a prism-shaped shaping roll with a convex distance of 200 ⁇ m, and a prism sheet with an embossed resin A ′ 2 layer side was obtained.
  • the set temperature of the roll was set to 90 ° C., 90 ° C., and 100 ° C. in order from the upstream side.
  • the evaluation results are shown in Table 1. The results of transparency evaluation, formability evaluation, and adhesion evaluation were all good.
  • Example 3 Instead of the methyl methacrylate-styrene (5: 5) copolymer resin (resin C1) used in Example 2, methyl methacrylate-styrene (3: 7) copolymer resin (resin C2) [Nippon Steel Chemical Co., Ltd. Except for using the product name: Estyrene MS300], a thermoplastic resin laminate of Resin A′2, Resin C2 and Resin B and a prism sheet embossed on the Resin A′2 side are used in the same manner as in Example 2. Obtained. The evaluation results are shown in Table 1. The results of transparency evaluation, formability evaluation, and adhesion evaluation were all good.
  • Example 4 instead of the methyl methacrylate-styrene (5: 5) copolymer resin (resin C1) used in Example 2, an acrylonitrile-styrene copolymer resin (manufactured by Asahi Kasei Chemicals Corporation, trade name: Stylac AST8701) (resin C3 ) was used in the same manner as in Example 2 to obtain a thermoplastic resin laminate of resin A′2, resin C3, and resin B and a prism sheet with the resin A′2 side embossed. The evaluation results are shown in Table 1. The results of transparency evaluation, formability evaluation, and adhesion evaluation were all good.
  • Comparative Example 1 The same procedure as in Example 1 was used except that the vinyl copolymer resin (resin A′2) obtained in Synthesis Example 2 was used instead of the vinyl copolymer resin (Resin A2) obtained in Synthesis Example 1 used in Example 1. Thus, a thermoplastic resin laminate of resin A′2 and resin B and a prism sheet in which the resin A′2 side was embossed were obtained. The evaluation results are shown in Table 1. The result of adhesion evaluation was poor.
  • Example 1 and Example 1 were used except that the vinyl copolymer resin (resin A ′′ 2) obtained in Synthesis Example 3 was used instead of the vinyl copolymer resin (resin A2) obtained in Synthesis Example 1 used in Example 1.
  • a thermoplastic resin laminate of resin A ′′ 2 and resin B and a prism sheet in which the resin A ′′ 2 side was embossed were obtained.
  • the evaluation results are shown in Table 1. The result of formability evaluation was poor.
  • thermoplastic resin plate was formed using a single-layer extruder having a shaft diameter of 65 mm and a T-die.
  • a methacrylic resin manufactured by Asahi Kasei Chemicals Corporation, trade name: Delpet 80NE
  • resin B was continuously introduced into a single-screw extruder having a shaft diameter of 65 mm and extruded at a cylinder temperature of 260 ° C. and a discharge speed of 50 kg / h.
  • a thermoplastic resin plate of Resin B was obtained by extruding into a sheet with a T-die having a temperature of 270 ° C. connected to the tip and cooling while transferring the mirror surface with three mirror finish rolls.
  • the rolls were set at 90 ° C., 90 ° C., and 100 ° C. from the upstream side.
  • the thickness of the obtained thermoplastic resin plate was 1.0 mm.
  • the resin B was extruded under the same conditions of the extruder and the T-die, and one of the three mirror finishing rolls was changed to a prism-shaped shaping roll having a groove depth of 100 ⁇ m and a convex distance of 200 ⁇ m.
  • the resin B was cooled while being transferred to obtain a prism sheet made of resin B embossed on one side.
  • the set temperature of the roll was set to 90 ° C., 90 ° C., and 100 ° C. in order from the upstream side.
  • the evaluation results are shown in Table 1. The result of formability evaluation was poor.
  • Comparative Example 6 A thermoplastic resin plate of Resin B and a prism sheet with one side embossed were obtained in the same manner as in Comparative Example 5 except that the set temperature of the roll of Comparative Example 5 was changed to 100 ° C., 90 ° C., and 100 ° C. in order from the upstream side. The evaluation results are shown in Table 1. The result of formability evaluation was poor.
  • Comparative Example 7 A thermoplastic resin plate of Resin B and a prism sheet with one side embossed were obtained in the same manner as in Comparative Example 5 except that the set temperatures of the rolls of Comparative Example 5 were 110 ° C., 90 ° C., and 100 ° C. in order from the upstream side. The evaluation results are shown in Table 1. The result of formability evaluation was poor.
  • thermoplastic resin plate was formed using a single-layer extruder having a shaft diameter of 65 mm and a T-die.
  • Polycarbonate resin [Mitsubishi Gas Chemical Co., Ltd., trade name: Iupilon E2000] was continuously introduced into a single-screw extruder having a shaft diameter of 65 mm, and extruded at a cylinder temperature of 280 ° C. and a discharge speed of 50 kg / h. It was extruded in a sheet form with a T-die having a temperature of 290 ° C. connected thereto and cooled while transferring the mirror surface with three mirror finish rolls to obtain a polycarbonate resin thermoplastic resin plate.
  • the roll was set to temperatures of 130 ° C., 130 ° C., and 180 ° C. from the upstream side.
  • the thickness of the obtained thermoplastic resin plate was 1.0 mm.
  • the polycarbonate resin is extruded under the same conditions of the extruder and the T die, and one of the three mirror finishing rolls is changed to a prism-shaped shaping roll having a groove depth of 100 ⁇ m and a convex distance of 200 ⁇ m.
  • a polycarbonate resin prism sheet with one side embossed was cooled while being transferred.
  • the set temperature of the roll was set to 130 ° C, 130 ° C, and 180 ° C in order from the upstream side.
  • the evaluation results are shown in Table 1. The result of the transparency evaluation was poor.
  • Comparative Example 9 Thermoplastic using a multilayer extruder having a single screw extruder with a shaft diameter of 32 mm, a single screw extruder with a shaft diameter of 65 mm, a feed block connected to the full extruder, and a T-die connected to the feed block. A resin laminate was molded. Further, a polycarbonate resin [manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name: Iupilon E2000] was continuously introduced into a single screw extruder having a shaft diameter of 32 mm, and extruded under conditions of a cylinder temperature of 280 ° C. and a discharge speed of 6 kg / h.
  • a polycarbonate resin manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name: Iupilon E2000
  • methacrylic resin [product name: Delpet 80NE] (resin B) (resin B) manufactured by Asahi Kasei Chemicals Co., Ltd. is continuously introduced into a single-screw extruder with a shaft diameter of 65 mm and extruded at a cylinder temperature of 260 ° C. and a discharge speed of 50 kg / h. It was.
  • the feed block connected to the whole extruder was provided with two types and two layers of distribution pins, and a polycarbonate resin and a resin B were introduced and laminated at a temperature of 280 ° C. It was extruded in a sheet form with a T-die having a temperature of 290 ° C.
  • thermoplastic resin laminate of polycarbonate resin and resin B was connected to the tip and cooled while transferring the mirror surface with three mirror finish rolls, to obtain a thermoplastic resin laminate of polycarbonate resin and resin B.
  • the roll was set to temperatures of 130 ° C., 130 ° C., and 100 ° C. from the upstream side.
  • the thickness of the obtained thermoplastic resin laminate was 1.0 mm, and the thickness of the polycarbonate resin layer was 120 ⁇ m near the center.
  • a laminate of polycarbonate resin and resin B is extruded under the same conditions for each extruder, feed block, and T die, and the most upstream of the three mirror finish rolls has a groove depth of 100 ⁇ m and a convex distance of 200 ⁇ m.
  • the prism sheet was cooled while being transferred to a prism-shaped shaping roll to obtain a prism sheet in which the polycarbonate resin layer side was embossed.
  • the set temperature of the roll was set to 130 ° C., 130 ° C., and 100 ° C. in order from the upstream side.
  • the evaluation results are shown in Table 1. The result of the transparency evaluation was poor.
  • thermoplastic resin laminate of the present invention is characterized by excellent transparency, low birefringence, and formability, and is suitably used as a transparent substrate material and a transparent protective material. It is suitably used as a sheet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 透明性基板材料や透明性保護材料に使用され、透明性、低複屈折性、賦形性に優れた熱可塑性樹脂積層体を提供する。 メタクリル系樹脂(B)層の片面又は両面にビニル共重合樹脂(A)層が積層された合成樹脂積層体であって、前記ビニル共重合樹脂(A)が、特定の式で表される(メタ)アクリル酸エステル構成単位(a)と、特定の式で表される脂肪族ビニル構成単位(b)とを含み、前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)との合計割合が前記ビニル共重合樹脂(A)中の全構成単位の合計に対して90~100モル%であり、前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)とのモル比が65:35~85:15であるビニル共重合樹脂であって、前記メタクリル系樹脂(B)中の全構成単位の90モル%以上がベンゼン環を有さない構成単位であることを特徴とする熱可塑性樹脂積層体。

Description

熱可塑性樹脂積層体
 本発明は、熱可塑性樹脂積層体に関し、詳しくは、透明性基板材料や透明性保護材料に使用され、透明性、低複屈折性、賦形性に優れた熱可塑性樹脂積層体に関する。
 樹脂製透明板は、防音隔壁、カーポート、看板や、OA機器・携帯電子機器の液晶表示装置の表示部前面板、導光板、プリズムシートといった光学シートなどに応用される。特に液晶表示装置については小型化、薄型化、携帯化が進んでおり、それに伴い、液晶表示装置に用いられる光学シートには透明性、耐熱性、低複屈折性に加え、輝度や視野角の向上といったさらなる機能性の付与が求められている。
 この輝度や視野角の向上といった機能を付与するために、これら光学シートの表面に特定の形状を賦形することで性能向上をはかる手法が近年多く用いられている。該光学シートの表面に特定の形状を賦形する成形方法として、射出成形法、鋳造法、熱プレス法、UV硬化樹脂によるモノマーキャスティング法、押出成形によるロールエンボッシング法が従来知られているが、近年では生産性、安全性、製品コストの観点から、押出成形によるロールエンボッシング法が広く用いられている。
 この押出成形によるロールエンボッシング法は、所望の形状に凹溝加工を施した賦形ロールと押圧ロールの間に熱可塑性樹脂が連続的に導入されると共に挟圧、冷却され、その瞬間にロールの形状が賦形されるものであり、例えば、表面に所望の形状が賦形された光学シートを得ることができる。
 この成形方法は他の成形方法に比べ賦形時間が短いため、例えばメタクリル系樹脂のように樹脂温度が低くなると流動性が大幅に低下する熱可塑性樹脂を用いると、賦形ロールの凹溝の深部まで該樹脂が行き渡らず、所望の形状を有する光学シートが得られないことがある。
 熱可塑性樹脂の賦形性を少しでも向上させるために、賦形ロールの温度を高温に維持することで可能な限り熱可塑性樹脂を低粘度で賦形する方法もあるが、賦形後に該熱可塑性樹脂が充分に冷却されないためにいわゆる賦形戻りが生じてしまい、かえって賦形性が悪くなってしまうことがある。
 結果として、メタクリル系樹脂を用い、押出成形によるロールエンボッシング法で所望の形状を有する光学シートを製造しようとすると、その製造条件の幅は極端に狭くなり、安定した生産が困難となる(特許文献1)。
 そのため、この成形方法で製造される光学シートの基材には、樹脂温度が低くなっても比較的流動性が高い樹脂であるポリカーボネート樹脂が適用されることが多い(特許文献2、3)。しかしながら、ポリカーボネート樹脂は透明性や低複屈折性がメタクリル系樹脂に比べて劣るため、得られる光学シートを液晶表示装置に適用すると、輝度が不十分であったり、色ムラが発生したりするなどの不具合が生じることがあった。
特開2009-172794号公報 特開2007-090859号公報 特開2007-108475号公報
 本発明は、透明性基板材料や透明性保護材料に使用され、透明性、低複屈折性、賦形性に優れた熱可塑性樹脂積層体、及び該熱可塑性樹脂積層体を用いた光学シートを提供することを課題とする。
 本発明者らは、上記の課題を解決するため鋭意研究を重ねた結果、メタクリル系樹脂板あるいはその積層体の片面又は両面に、(メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーとを重合し、これを水素化したビニル共重合樹脂層を設けることで、上記特性を備えた熱可塑性樹脂積層体が得られることを見出し、本発明に到達した。
 すなわち、本発明は、以下の熱可塑性樹脂積層体、及び該熱可塑性樹脂積層体を用いた光学シートを提供するものである。
1.メタクリル系樹脂(B)層の片面又は両面にビニル共重合樹脂(A)層が積層された熱可塑性樹脂積層体であって、前記ビニル共重合樹脂(A)が、下記一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)と、下記一般式(2)で表される脂肪族ビニル構成単位(b)とを含み、前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)との合計割合が前記ビニル共重合樹脂(A)中の全構成単位の合計に対して90~100モル%であり、前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)とのモル比が65:35~85:15であるビニル共重合樹脂であって、前記メタクリル系樹脂(B)中の全構成単位の90モル%以上がベンゼン環を有さない構成単位であることを特徴とする熱可塑性樹脂積層体。
Figure JPOXMLDOC01-appb-C000003
(式中、R1は水素原子又はメチル基であり、R2は炭素数1~18のアルキル基である。)
Figure JPOXMLDOC01-appb-C000004
(式中、R3は水素原子又はメチル基であり、R4は炭素数1~4のアルキル置換基を有することのあるシクロヘキシル基である。)
2.メタクリル系樹脂(B)層の片面又は両面に、メタクリル酸メチル-スチレン共重合体又はアクリロニトリル-スチレン共重合体からなる熱可塑性樹脂(C)層が積層され、さらにその上にビニル共重合樹脂(A')層が積層された熱可塑性樹脂積層体であって、前記ビニル共重合樹脂(A')が、前記一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)と、前記一般式(2)で表される脂肪族ビニル構成単位(b)とを含み、前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)との合計割合が前記ビニル共重合樹脂(A')中の全構成単位の合計に対して90~100モル%であり、前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)とのモル比が15:85~85:15であるビニル共重合樹脂であって、前記メタクリル系樹脂(B)中の全構成単位の90モル%以上がベンゼン環を有さない構成単位であることを特徴とする熱可塑性樹脂積層体。
3.前記ビニル共重合樹脂(A)又は前記ビニル共重合樹脂(A')が、少なくとも1種の(メタ)アクリル酸エステルモノマーと少なくとも1種の芳香族ビニルモノマーとを重合した後、該芳香族ビニルモノマー由来の芳香族二重結合の70%以上を水素化して得られたものである上記1又は2に記載の熱可塑性樹脂積層体。
4.前記一般式(1)において、R1及びR2がメチル基である上記1~3のいずれかに記載の熱可塑性樹脂積層体。
5.前記一般式(2)において、R3が水素原子であり、R4がシクロヘキシル基である上記1~4のいずれかに記載の熱可塑性樹脂積層体。
6.片面又は両面をエンボッシングしてあることを特徴とする上記1~5のいずれかに記載の熱可塑性樹脂積層体。
7.上記1~6のいずれかに記載の熱可塑性樹脂積層体からなる光学シート。
 本発明によれば、透明性、低複屈折性、賦形性などに優れた熱可塑性樹脂積層体が提供され、該熱可塑性樹脂積層体は、透明性基板材料、透明性保護材料として光学物品に用いられ、特に液晶表示装置の前面板、導光板、プリズムシートなどに好適に使用される。
 本発明の熱可塑性樹脂積層体は、メタクリル系樹脂(B)層の片面又は両面にビニル共重合樹脂(A)層が積層された熱可塑性樹脂積層体であって、前記ビニル共重合樹脂(A)が、下記一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)と、下記一般式(2)で表される脂肪族ビニル構成単位(b)とを含み、前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)との合計割合が前記ビニル共重合樹脂(A)中の全構成単位の合計に対して90~100モル%であり、前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)とのモル比が65:35~85:15であるビニル共重合樹脂であって、前記メタクリル系樹脂(B)中の全構成単位の90モル%以上がベンゼン環を有さない構成単位であることを特徴とする熱可塑性樹脂積層体、及び、メタクリル系樹脂(B)層の片面又は両面に、メタクリル酸メチル-スチレン共重合体又はアクリロニトリル-スチレン共重合体からなる熱可塑性樹脂(C)層が積層され、さらにその上にビニル共重合樹脂(A')層が積層された熱可塑性樹脂積層体であって、前記ビニル共重合樹脂(A')が、下記一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)と、下記一般式(2)で表される脂肪族ビニル構成単位(b)とを含み、前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)との合計割合が前記ビニル共重合樹脂(A')中の全構成単位の合計に対して90~100モル%であり、前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)とのモル比が15:85~85:15であるビニル共重合樹脂であって、前記メタクリル系樹脂(B)中の全構成単位の90モル%以上がベンゼン環を有さない構成単位であることを特徴とする熱可塑性樹脂積層体である。
Figure JPOXMLDOC01-appb-C000005
(式中、R1は水素原子又はメチル基であり、R2は炭素数1~18のアルキル基である。)
Figure JPOXMLDOC01-appb-C000006
(式中、R3は水素原子又はメチル基であり、R4は炭素数1~4のアルキル置換基を有することのあるシクロヘキシル基である。)
 前記一般式(1)で表される(メタ)アクリル酸エステル構成単位において、R2は炭素数1~18のアルキル基であり、メチル基、エチル基、ブチル基、ラウリル基、ステアリル基、シクロヘキシル基、イソボルニル基などを挙げることができる。
 該(メタ)アクリル酸エステル構成単位のうち、好ましいのはR2がメチル基及び/又はエチル基である(メタ)アクリル酸エステル構成単位であり、更に好ましいのはR1がメチル基、R2がメチル基であるメタクリル酸メチル構成単位である。
 前記一般式(2)で表される脂肪族ビニル構成単位としては、例えば、R3が水素原子又はメチル基であり、R4がシクロヘキシル基又は炭素数1~4のアルキル置換基を有するシクロヘキシル基であるものを挙げることができる。
 該脂肪族ビニル構成単位のうち、好ましいのはR3が水素原子であり、R4がシクロヘキシル基である脂肪族ビニル構成単位である。
 本発明で用いられるビニル共重合樹脂(A)は、主として前記一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)と、前記一般式(2)で表される脂肪族ビニル構成単位(b)とからなり、前記(メタ)アクリル酸エステル構成単位(a)を1種又は2種以上含有していてもよく、前記脂肪族ビニル構成単位(b)を1種又は2種以上含有していてもよい。また、ビニル共重合樹脂(A)は、前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)との合計割合が該ビニル共重合樹脂(A)中の全構成単位の合計に対して90~100モル%であり、好ましくは95~100モル%である。
 すなわち、前記ビニル共重合樹脂(A)は、全構成単位の合計に対して10モル%以下の範囲で、前記(メタ)アクリル酸エステル構成単位(a)及び前記脂肪族ビニル構成単位(b)以外の構成単位を含有していてもよい。
 前記(メタ)アクリル酸エステル構成単位(a)及び前記脂肪族ビニル構成単位(b)以外の構成単位としては、例えば、(メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーとを重合した後に該芳香族ビニルモノマー由来の芳香族二重結合を水素化して得られたビニル共重合樹脂(A)における、水素化されていない芳香族二重結合を含む芳香族ビニルモノマー由来の構成単位などが挙げられる。
 ビニル共重合樹脂(A)において、前記一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)と、前記一般式(2)で表される脂肪族ビニル構成単位(b)とのモル比は、65:35~85:15の範囲であり、70:30~80:20の範囲であるとより好ましい。
 (メタ)アクリル酸エステル構成単位(a)と脂肪族ビニル構成単位(b)との合計に対する(メタ)アクリル酸エステル構成単位(a)のモル比が65%未満であると、メタクリル系樹脂(B)との密着性が低くなるので実用的ではない。また、該モル比が85%を超える範囲であると、ビニル共重合樹脂(A)の耐熱性が不十分であり、賦形性が低下しやすい。
 本発明で用いるビニル共重合樹脂(A')は、主として前記一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)と、前記一般式(2)で表される脂肪族ビニル構成単位(b)とからなり、前記(メタ)アクリル酸エステル構成単位(a)を1種又は2種以上含有していてもよく、前記脂肪族ビニル構成単位(b)を1種又は2種以上含有していてもよい。また、ビニル共重合樹脂(A')は、前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)との合計割合がビニル共重合樹脂(A')中の全構成単位の合計に対して90~100モル%であり、好ましくは95~100モル%である。
 すなわち、前記ビニル共重合樹脂(A')は、全構成単位の合計に対して10モル%以下の範囲で、前記(メタ)アクリル酸エステル構成単位(a)及び前記脂肪族ビニル構成単位(b)以外の構成単位を含有していてもよい。
 前記(メタ)アクリル酸エステル構成単位(a)及び前記脂肪族ビニル構成単位(b)以外の構成単位としては、例えば、(メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーとを重合した後に該芳香族ビニルモノマー由来の芳香族二重結合を水素化して得られたビニル共重合樹脂(A')における、水素化されていない芳香族二重結合を含む芳香族ビニルモノマー由来の構成単位などが挙げられる。
 ビニル共重合樹脂(A')において、前記一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)と、前記一般式(2)で表される脂肪族ビニル構成単位(b)とのモル比は、15:85~85:15の範囲である。
 (メタ)アクリル酸エステル構成単位(a)と脂肪族ビニル構成単位(b)との合計に対する(メタ)アクリル酸エステル構成単位(a)のモル比が15%未満であると、後述する熱可塑性樹脂(C)との密着性が低くなったり、機械強度が低くなりすぎて脆くなったりするので実用的ではない。また、該モル比が85%を超える範囲であると、ビニル共重合樹脂(A')の耐熱性が不十分であり、賦形性が低下しやすい。熱可塑性樹脂(C)との密着性、及び賦形性の観点から、上記(メタ)アクリル酸エステル構成単位(a)と脂肪族ビニル構成単位(b)とのモル比は30:70~80:20の範囲であると好ましく、45:55~75:25の範囲であるとより好ましい。
 ビニル共重合樹脂(A)及びビニル共重合樹脂(A')は、特に限定されないが、少なくとも1種の(メタ)アクリル酸エステルモノマーと少なくとも1種の芳香族ビニルモノマーとを共重合した後、該芳香族ビニルモノマー由来の芳香族二重結合を水素化して得られたものが好適である。なお、(メタ)アクリルとは、メタクリル及び/又はアクリルを示す。
 この際に使用される芳香族ビニルモノマーとしては、具体的にスチレン、α-メチルスチレン、p-ヒドロキシスチレン、アルコキシスチレン、クロロスチレン、及びそれらの誘導体などを挙げることができる。これらの中で好ましいのはスチレンである。
 また、(メタ)アクリル酸エステルモノマーとしては、具体的には(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸イソボルニルなどの(メタ)アクリル酸アルキルエステル類などを挙げることができるが、物性のバランスから、メタアクリル酸アルキルエステルを単独で用いるか、あるいはメタアクリル酸アルキルエステルとアクリル酸アルキルエステルを併用することが好ましい。メタアクリル酸アルキルエステルのうち、特に好ましいものはメタアクリル酸メチル又はメタアクリル酸エチルである。
 (メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーの重合には、公知の方法を用いることができるが、例えば、塊状重合法、溶液重合法などにより製造することができる。
 塊状重合法は、上記モノマー、重合開始剤を含むモノマー組成物を完全混合槽に連続的に供給し、100~180℃で連続重合する方法などにより行われる。上記モノマー組成物は、必要に応じて連鎖移動剤を含んでもよい。
 重合開始剤は特に限定されないが、t-アミルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、過酸化ベンゾイル、1,1-ジ(t-ヘキシルペルオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ジ(t-ヘキシルペルオキシ)シクロヘキサン、1,1-ジ(t-ブチルペルオキシ)シクロヘキサン、t-ヘキシルプロポキシイソプロピルモノカーボネート、t-アミルパーオキシノルマルオクトエート、t-ブチルペルオキシイソプロピルモノカーボネート、ジ-t-ブチルパーオキサイドなどの有機過酸化物、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)などのアゾ化合物が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。
 連鎖移動剤は必要に応じて使用され、例えば、α-メチルスチレンダイマーなどが挙げられる。
 溶液重合法に用いられる溶媒としては、例えば、トルエン、キシレン、シクロヘキサン、メチルシクロヘキサンなどの炭化水素系溶媒、酢酸エチル、イソ酪酸メチルなどのエステル系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒、メタノール、イソプロパノールなどのアルコール系溶媒などを挙げることができる。
 (メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーとを重合した後の水素化反応に用いられる溶媒は、前記の重合溶媒と同じであっても異なっていてもよい。例えば、シクロヘキサン、メチルシクロヘキサンなどの炭化水素系溶媒、酢酸エチル、イソ酪酸メチルなどのエステル系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒、メタノール、イソプロパノールなどのアルコール系溶媒などを挙げることができる。
 上記のようにして(メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーとを重合した後、該芳香族ビニルモノマー由来の芳香族二重結合を水素化することにより、本発明に用いられるビニル共重合樹脂(A)及びビニル共重合樹脂(A’)を得ることができる。
 水素化の方法は特に限定されず、公知の方法を用いることができる。例えば、水素圧力3~30MPa、反応温度60~250℃でバッチ式あるいは連続流通式で行うことができる。温度を60℃以上とすることにより反応時間がかかり過ぎることがなく、また250℃以下とすることにより分子鎖の切断やエステル部位の水素化が起きることが少ない。
 水素化反応に用いられる触媒としては、例えば、ニッケル、パラジウム、白金、コバルト、ルテニウム、ロジウムなどの金属又はそれら金属の酸化物あるいは塩あるいは錯体化合物を、カーボン、アルミナ、シリカ、シリカ・アルミナ、珪藻土などの多孔性担体に担持した固体触媒などが挙げられる。
 ビニル共重合樹脂(A)及びビニル共重合樹脂(A')は、芳香族ビニルモノマー由来の芳香族二重結合の70%以上を水素化して得られたものであることが好ましい。即ち、ビニル共重合樹脂(A)及びビニル共重合樹脂(A')における芳香族ビニルモノマー由来の構成単位中の芳香族二重結合の未水素化部位の割合は、30%以下であることが好ましい。30%を超えるとビニル共重合樹脂(A)及びビニル共重合樹脂(A')の透明性が低下する場合がある。該未水素化部位の割合は、より好ましくは20%以下であり、更に好ましくは10%以下である。
 ビニル共重合樹脂(A)及びビニル共重合樹脂(A')の重量平均分子量は、特に制限はないが、強度及び成型性の観点から、50,000~400,000であることが好ましく、70,000~300,000であることがより好ましい。
 上記重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により測定される、標準ポリスチレン換算の重量平均分子量である。
 ビニル共重合樹脂(A)及びビニル共重合樹脂(A')には、透明性を損なわない範囲で他の樹脂をブレンドすることができる。例えば、メタクリル酸メチル-スチレン共重合樹脂、ポリメタクリル酸メチル、ポリスチレン、ポリカーボネートなどを挙げることができる。
 ビニル共重合樹脂(A)及びビニル共重合樹脂(A')のガラス転移温度は、110~140℃の範囲であることが好ましい。ガラス転移温度が110℃以上であると積層体の耐熱性が十分であり、また140℃以下であると熱賦形などの加工性に優れる。本発明におけるガラス転移温度とは、示差走査熱量測定装置を用い、試料10mg、昇温速度10℃/分で測定し中点法で算出したときの温度である。
 本発明に用いられるメタクリル系樹脂(B)は、該メタクリル系樹脂(B)中の全構成単位の90モル%以上がベンゼン環を有さない構成単位であり、好ましくは95モル%以上がベンゼン環を有さない構成単位である。このメタクリル系樹脂(B)は、本発明の熱可塑性樹脂積層体のベースとなる層を形成するものであり、樹脂積層体の用途により選択されるが、ポリメタクリル酸メチル、メタクリル酸メチル-アクリル酸メチル共重合樹脂、スチレン成分が全構成単位中の10モル%以下であるメタクリル酸メチル-スチレン共重合樹脂などが挙げられるが、好ましくは、優れた透明性を有することからポリメタクリル酸メチルが使用される。
 本発明に用いられる熱可塑性樹脂(C)は、メタクリル酸メチル-スチレン共重合体又はアクリロニトリル-スチレン共重合体からなる熱可塑性樹脂である。
 メタクリル酸メチル-スチレン共重合体からなる樹脂としては、例えば新日鐵化学(株)製のエスチレンMS200、エスチレンMS300、エスチレンMS500、エスチレンMS600、エスチレンMS750などを挙げることができ、アクリロニトリル-スチレン共重合体からなる樹脂としては、例えば旭化成ケミカルズ(株)製のスタイラックAS767、スタイラックAST8701、スタイラックAST8707などを挙げることができる。
 本発明の熱可塑性樹脂積層体の製造方法としては、共押出による方法などを用いることができる。
 共押出の方法は特に限定されず、公知の方法を用いることが出来る。例えば、フィードブロック方式では、フィードブロックでメタクリル系樹脂(B)層の片方あるいは両方にビニル共重合樹脂(A)層を積層し、Tダイでシート状に押し出した後、成形ロールを通過させながら冷却し、所望の積層体を形成する。また、マルチマニホールド方式では、マルチマニホールドダイ内でメタクリル系樹脂(B)層の片方あるいは両方にビニル共重合樹脂(A)層を積層し、シート状に押し出した後、成形ロールを通過させ挟圧しながら冷却し、所望の積層体を形成する。
 ビニル共重合樹脂(A')層とメタクリル系樹脂(B)層の間に熱可塑性樹脂(C)層を設ける場合には、フィードブロック方式では、フィードブロックでメタクリル系樹脂(B)層の片方あるいは両方に熱可塑性樹脂(C)層を積層し、さらにその上にビニル共重合樹脂(A')樹脂層を積層し、Tダイでシート状に押し出した後、成形ロールを通過させながら冷却し、所望の積層体を形成する。また、マルチマニホールド方式では、マルチマニホールドダイ内でメタクリル系樹脂(B)層の片方あるいは両方に熱可塑性樹脂(C)層を積層し、さらにその上にビニル共重合樹脂(A')層を積層し、シート状に押し出した後、成形ロールを通過させ挟圧しながら冷却し、所望の積層体を形成する。
 この成形ロールは特に限定されないが、複数の金属ロールで挟圧して冷却する方法や、金属ロールと非金属ロール又は金属ベルトで挟圧して冷却する方法を例示することができる。
 この成形ロールとして、賦形ロールを組み合わせてもよい。賦形ロールを使用することで、成形時にエンボッシング加工が可能となる。エンボッシング加工は本発明の熱可塑性樹脂積層体の片面又は両面に施すことができる。賦形ロールの溝の形状は特に限定されないが、溝深さが0.1μm~1000μmであり、凸間距離が5μm~10000μmの範囲内の凹凸形状であると好ましく、溝深さ10μm~500μmであり、凸間距離10μm~3000μmの範囲内の凹凸形状であるとより好ましい。溝深さが0.1μm未満又は凸間距離が5μm未満の場合には、形状によっては精密な成形が困難となる場合がある。一方、高さが1000μmより大きいか凸間距離が10000μmより大きい場合には、成形速度を遅くする必要があり、生産効率に欠け好ましくない。特に凹凸形状がシートの成形方向に対して平行な長手方向を有するシリンドリカルレンズやプリズムであるのがより好適である。
 本発明の熱可塑性樹脂積層体の厚みは、成形時に用いられる賦形ロールの凹溝の溝深さをhとするとh+0.1~h+10.0mmの範囲であることが好ましい。但し、溝のない鏡面仕上げロールを用いた場合にはh=0とする。h+0.1mm以上とすることで、賦形ロールの凹溝に充分に樹脂が入り込み、厚み精度不良や外観不良が生じにくくなる。またh+10.0mm以下であることにより、成形後の冷却ムラなどによる厚み精度不良や外観不良が発生しにくくなる。より好ましくはh+0.3~h+5.0mmの範囲であり、更に好ましくはh+0.5~h+3.0mmの範囲である。
 本発明の熱可塑性樹脂積層体において、ビニル共重合樹脂(A)層及びビニル共重合樹脂(A')層の厚みは、成形時に用いられる賦形ロールの凹溝の溝深さをhとするとh/2+10~h+500μmの範囲であることが好ましい。但し、溝のない鏡面仕上げロールを用いた場合にはh=0とする。h/2+10μm未満であると熱可塑性樹脂積層体の賦形性が不足する場合がある。またh+500μmを超えると光学シートとして用いた場合の透明性が不足する場合がある。より好ましくはh/2+30~h+200μmの範囲である。
 本発明の熱可塑性樹脂積層体のビニル共重合樹脂(A')層とメタクリル系樹脂(B)層の間に熱可塑性樹脂(C)層を設ける場合には、該熱可塑性樹脂(C)層の厚みは5~200μm程度であることが好ましい。熱可塑性樹脂(C)層の厚みを該範囲とすることにより、透明性、低複屈折性、賦形性といった機能を損なうことなく、ビニル共重合樹脂(A')層とメタクリル系樹脂(B)層の密着性を向上させることができる。
 本発明におけるビニル共重合樹脂(A)、ビニル共重合樹脂(A')、メタクリル系樹脂(B)及び熱可塑性樹脂(C)には、各種添加剤を混合して使用することができる。添加剤としては、例えば、抗酸化剤、紫外線吸収剤、抗着色剤、抗帯電剤、離型剤、滑剤、染料、顔料、無機フィラー、樹脂フィラーなどを挙げることができる。混合の方法は特に限定されず、全量コンパウンドする方法、マスターバッチをドライブレンドする方法、全量ドライブレンドする方法などを用いることができる。
 なお、本発明の熱可塑性樹脂積層体には、その片面又は両面にハードコート処理、反射防止処理、及び防眩処理のいずれか一つ以上を施すことができる。ハードコート処理、反射防止処理、防眩処理の方法は特に限定されず、公知の方法を用いることができる。例えば、熱硬化性あるいは光硬化性樹脂組成物を用いて皮膜を形成する方法、誘電体薄膜を真空蒸着する方法などが挙げられる。
 本発明の熱可塑性樹脂積層体は光学シートとして有用であり、透明性基板材料、透明性保護材料として光学物品に用いられ、特に液晶表示装置の前面板、導光板、プリズムシートなどに好適に使用される。
 以下、実施例により本発明を具体的に説明する。ただし、本発明はこれらの実施例により何ら制限されるものではない。
 実施例及び比較例で得られた熱可塑性樹脂積層体の評価は以下のように行った。
<透明性評価>
 以下の実施例及び比較例にて得られた熱可塑性樹脂積層体及び熱可塑性樹脂板の全光線透過率(JIS K 7105)を、色差計(日本電色工業(株)製:COH―400)にて測定した。全光線透過率91%以上のものを良、91%未満のものを不良とした。
<賦形性評価>
 以下の実施例及び比較例にて得られたプリズムシートのエンボッシング面の形状を表面粗さ計((株)東京精密製:サーフコム3000A)にて測定し、最大高さRz(JIS B 0601)を測定することにより賦形率を算出した。得られた光学シートのエンボッシング面の賦形率が90%以上のものを良、90%未満のものを不良とした。以下、賦形率の算出には下記の式を用いた。
 賦形率 = Rz/h×100 (%)
  Rz:最大高さ
  h:ロールの溝深さ
<密着性評価>
 以下の実施例1~4、比較例1~4及び9にて得られた熱可塑性樹脂積層体から長さ10cm×幅10cmの試験片を切削し、二液無溶剤エポキサイド接着剤(セメダイン(株)製 製品名:セメダインEP001)を塗布した試験円筒を、各試験片のビニル共重合樹脂(A)、ビニル共重合樹脂(A')、比較例で用いたビニル共重合樹脂(A'’)又はポリカーボネート樹脂側の面の中心に接着し、温度60℃に設定したオーブン中にて静置した。
 オーブン中にて3時間以上静置し接着剤を硬化した後、円筒の周囲にビニル共重合樹脂(A)、ビニル共重合樹脂(A')、ビニル共重合樹脂(A'’)又はポリカーボネート樹脂層側からメタクリル系樹脂(B)層に達する切込みを入れ、引っ張り試験機(エルコメーター社製 製品名:アドヒーションテスター106)にて、1.0MPa/sを超えない実質的に一様な速度で張力を増加させた。
 1.0MPaの張力がかかった時点で試験部位を目視にて観察し、試験部位の面積に対し剥離した面積の割合が20%未満の試験片を良好、20%以上の試験片を不良とした。
合成例1〔ビニル共重合樹脂(A2)の製造〕
 精製したメタクリル酸メチル(三菱ガス化学社製)77.000モル%と、精製したスチレン(和光純薬工業社製)22.998モル%と、重合開始剤としてt-アミルパーオキシ-2-エチルヘキサノエート(アルケマ吉富社製、商品名:ルペロックス575)0.002モル%からなるモノマー組成物を、ヘリカルリボン翼付き10L完全混合槽に1kg/hで連続的に供給し、平均滞留時間2.5時間、重合温度150℃で連続重合を行った。重合槽の液面が一定となるよう底部から連続的に抜き出し、脱溶剤装置に導入してペレット状のビニル共重合樹脂(A1)を得た。
 得られたビニル共重合樹脂(A1)をイソ酪酸メチル(関東化学社製)に溶解し、10質量%イソ酪酸メチル溶液を調製した。1000mLオートクレーブ装置にビニル共重合樹脂(A1)の10質量%イソ酪酸メチル溶液を500質量部、10質量%Pd/C(NEケムキャット社製)を1質量部仕込み、水素圧9MPa、200℃で15時間保持して、ビニル共重合樹脂(A1)の芳香族二重結合部位を水素化した。フィルターにより触媒を除去し、脱溶剤装置に導入してペレット状のビニル共重合樹脂(樹脂A2)を得た。ビニル共重合樹脂(A2)におけるメタクリル酸メチル構成単位の割合は75モル%であり、芳香族二重結合部位の水素化反応率は99%であった。ゲル浸透クロマトグラフィーにより測定した重量平均分子量(標準ポリスチレン換算)は124,000であった。
合成例2〔ビニル共重合樹脂(A'2)の製造〕
 精製したメタクリル酸メチル(三菱ガス化学社製)60.000モル%と、精製したスチレン(和光純薬工業社製)39.998モル%と、重合開始剤としてt-アミルパーオキシ-2-エチルヘキサノエート(アルケマ吉富社製、商品名:ルペロックス575)0.002モル%からなるモノマー組成物を、ヘリカルリボン翼付き10L完全混合槽に1kg/hで連続的に供給し、平均滞留時間2.5時間、重合温度150℃で連続重合を行った。重合槽の液面が一定となるよう底部から連続的に抜き出し、脱溶剤装置に導入してペレット状のビニル共重合樹脂(A'1)を得た。
 得られたビニル共重合樹脂(A'1)をイソ酪酸メチル(関東化学社製)に溶解し、10質量%イソ酪酸メチル溶液を調製した。1000mLオートクレーブ装置にビニル共重合樹脂(A'1)の10質量%イソ酪酸メチル溶液を500質量部、10質量%Pd/C(NEケムキャット社製)を1質量部仕込み、水素圧9MPa、200℃で15時間保持して、ビニル共重合樹脂(A'1)の芳香族二重結合部位を水素化した。フィルターにより触媒を除去し、脱溶剤装置に導入してペレット状のビニル共重合樹脂(樹脂A'2)を得た。ビニル共重合樹脂(A'2)におけるメタクリル酸メチル構成単位の割合は58モル%であり、芳香族二重結合部位の水素化反応率は99%であった。ゲル浸透クロマトグラフィーにより測定した重量平均分子量(標準ポリスチレン換算)は147,000であった。
合成例3〔ビニル共重合樹脂(A''2)の製造〕
 精製したメタクリル酸メチル(三菱ガス化学社製)92.000モル%と、精製したスチレン(和光純薬工業社製)7.998モル%と、重合開始剤としてt-アミルパーオキシ-2-エチルヘキサノエート(アルケマ吉富社製、商品名:ルペロックス575)0.002モル%からなるモノマー組成物を、ヘリカルリボン翼付き10L完全混合槽に1kg/hで連続的に供給し、平均滞留時間2.5時間、重合温度150℃で連続重合を行った。重合槽の液面が一定となるよう底部から連続的に抜き出し、脱溶剤装置に導入してペレット状のビニル共重合樹脂(A'’1)を得た。
 得られたビニル共重合樹脂(A'’1)をイソ酪酸メチル(関東化学社製)に溶解し、10質量%イソ酪酸メチル溶液を調製した。1000mLオートクレーブ装置にビニル共重合樹脂(A'’1)の10質量%イソ酪酸メチル溶液を500質量部、10質量%Pd/C(NEケムキャット社製)を1質量部仕込み、水素圧9MPa、200℃で15時間保持して、ビニル共重合樹脂(A''1)の芳香族二重結合部位を水素化した。フィルターにより触媒を除去し、脱溶剤装置に導入してペレット状のビニル共重合樹脂(樹脂A'’2)を得た。ビニル共重合樹脂(A'’2)におけるメタクリル酸メチル構成単位の割合は90モル%であり、芳香族二重結合部位の水素化反応率は99%であった。ゲル浸透クロマトグラフィーにより測定した重量平均分子量(標準ポリスチレン換算)は98,000であった。
実施例1
 軸径32mmの単軸押出機と、軸径65mmの単軸押出機と、全押出機に連結されたフィードブロックと、フィードブロックに連結されたTダイとを有する多層押出装置を用いて熱可塑性樹脂積層板を成形した。また軸径32mmの単軸押出機に合成例1で得たビニル共重合樹脂(樹脂A2)を連続的に導入し、シリンダ温度250℃、吐出速度6kg/hの条件で押し出した。また軸径65mmの単軸押出機にメタクリル樹脂〔旭化成ケミカルズ(株)製、商品名:デルペット80NE〕(樹脂B)を連続的に導入し、シリンダ温度260℃、吐出速度50kg/hで押し出した。全押出機に連結されたフィードブロックは2種2層の分配ピンを備え、温度260℃として樹脂A2と樹脂Bを導入し積層した。その先に連結された温度270℃のTダイでシート状に押し出し、3本の鏡面仕上げロールで鏡面を転写しながら冷却し、樹脂A2と樹脂Bの熱可塑性樹脂積層体を得た。このときロールの設定温度は上流側から順に90℃、90℃、100℃とした。得られた熱可塑性樹脂積層体の厚みは1.0mm、樹脂A2層の厚みは中央付近で120μmであった。
 また各押出機、フィードブロック、Tダイの条件を同一として樹脂A2と樹脂Bの積層体を押出し、3本の鏡面仕上げロールのうち最も上流側の1本を溝深さ100μm、凸間距離200μmのプリズム形状の賦形ロールに変えて転写しながら冷却し、樹脂A2層側をエンボッシングしたプリズムシートを得た。このときロールの設定温度は上流側から順に90℃、90℃、100℃とした。評価結果を表1に示す。透明性評価、賦形性評価、密着性評価の結果はいずれも良好であった。
実施例2
 軸径25mmの単軸押出機と、軸径32mmの単軸押出機と、軸径65mmの単軸押出機と、全押出機に連結されたフィードブロックと、フィードブロックに連結されたTダイとを有する多層押出装置を用いて熱可塑性樹脂積層板を成形した。軸径25mmの単軸押出機にメタクリル酸メチル-スチレン(5:5)共重合樹脂〔新日鐵化学(株)製、商品名:エスチレンMS500〕(樹脂C1)を連続的に導入し、シリンダ温度240℃、吐出速度3kg/hの条件で押し出した。また軸径32mmの単軸押出機に合成例2で得たビニル共重合樹脂(樹脂A'2)を連続的に導入し、シリンダ温度250℃、吐出速度6kg/hの条件で押し出した。また軸径65mmの単軸押出機にメタクリル樹脂〔旭化成ケミカルズ(株)製、商品名:デルペット80NE〕(樹脂B)を連続的に導入し、シリンダ温度260℃、吐出速度50kg/hで押し出した。全押出機に連結されたフィードブロックは3種3層の分配ピンを備え、温度260℃として樹脂A'2と樹脂C1と樹脂Bを導入し積層した。その先に連結された温度270℃のTダイでシート状に押し出し、3本の鏡面仕上げロールで鏡面を転写しながら冷却し、樹脂A'2と樹脂C1と樹脂Bの熱可塑性樹脂積層体を得た。このときロールは上流側から温度90℃、90℃、100℃とした。得られた熱可塑性樹脂積層体の厚みは1.0mm、樹脂A'2層の厚みは中央付近で120μm、樹脂C1層の厚みは中央付近で60μmであった。
 また各押出機、フィードブロック、Tダイの条件を同一として樹脂A'2と樹脂C1と樹脂Bの積層体を押出し、3本の鏡面仕上げロールのうち最も上流側の1本を溝深さ100μm、凸間距離200μmのプリズム形状の賦形ロールに変えて転写しながら冷却し、樹脂A'2層側をエンボッシングしたプリズムシートを得た。このときロールの設定温度は上流側から順に90℃、90℃、100℃とした。評価結果を表1に示す。透明性評価、賦形性評価、密着性評価の結果はいずれも良好であった。
実施例3
 実施例2で使用したメタクリル酸メチル-スチレン(5:5)共重合樹脂(樹脂C1)の代わりにメタクリル酸メチル-スチレン(3:7)共重合樹脂(樹脂C2)〔新日鐵化学(株)製、商品名:エスチレンMS300〕を使用した以外は、実施例2と同様にして樹脂A'2と樹脂C2と樹脂Bの熱可塑性樹脂積層体ならびに樹脂A'2側をエンボッシングしたプリズムシートを得た。評価結果を表1に示す。透明性評価、賦形性評価、密着性評価の結果はいずれも良好であった。
実施例4
 実施例2で使用したメタクリル酸メチル-スチレン(5:5)共重合樹脂(樹脂C1)の代わりにアクリロニトリル-スチレン共重合樹脂〔旭化成ケミカルズ(株)製、商品名:スタイラックAST8701〕(樹脂C3)を使用した以外は、実施例2と同様にして樹脂A'2と樹脂C3と樹脂Bの熱可塑性樹脂積層体ならびに樹脂A'2側をエンボッシングしたプリズムシートを得た。評価結果を表1に示す。透明性評価、賦形性評価、密着性評価の結果はいずれも良好であった。
比較例1
 実施例1で使用した合成例1で得たビニル共重合樹脂(樹脂A2)の代わりに合成例2で得たビニル共重合樹脂(樹脂A'2)を使用した以外は実施例1と同様にして樹脂A'2と樹脂Bの熱可塑性樹脂積層体ならびに樹脂A'2側をエンボッシングしたプリズムシートを得た。評価結果を表1に示す。密着性評価の結果は不良であった。
比較例2
 実施例1で使用した合成例1で得たビニル共重合樹脂(樹脂A2)の代わりに合成例3で得たビニル共重合樹脂(樹脂A'’2)を使用した以外は、実施例1と同様にして樹脂A'’2と樹脂Bの熱可塑性樹脂積層体ならびに樹脂A'’2側をエンボッシングしたプリズムシートを得た。評価結果を表1に示す。賦形性評価の結果は不良であった。
比較例3
 実施例1で使用した合成例1で得たビニル共重合樹脂(樹脂A2)の代わりに合成例3で得たビニル共重合樹脂(樹脂A'’2)を使用し、ロールの設定温度を上流側から順に100℃、90℃、100℃とした以外は実施例1と同様にして樹脂A'’2と樹脂Bの熱可塑性樹脂板ならびに樹脂A'’2側をエンボッシングしたプリズムシートを得た。評価結果を表1に示す。賦形性評価の結果は不良であった。
比較例4
 実施例1で使用した合成例1で得たビニル共重合樹脂(樹脂A2)の代わりに合成例3で得たビニル共重合樹脂(樹脂A'’2)を使用し、ロールの設定温度を上流側から順に110℃、90℃、100℃とした以外は実施例1と同様にして樹脂A'’2と樹脂Bの熱可塑性樹脂板ならびに樹脂A'’2側をエンボッシングしたプリズムシートを得た。評価結果を表1に示す。賦形性評価の結果は不良であった。
比較例5
 軸径65mmの単軸押出機とTダイとを有する単層押出装置を用いて熱可塑性樹脂板を成形した。軸径65mmの単軸押出機にメタクリル樹脂〔旭化成ケミカルズ(株)製、商品名:デルペット80NE〕(樹脂B)を連続的に導入し、シリンダ温度260℃、吐出速度50kg/hで押し出した。その先に連結された温度270℃のTダイでシート状に押し出し、3本の鏡面仕上げロールで鏡面を転写しながら冷却し、樹脂Bの熱可塑性樹脂板を得た。このときロールは上流側から温度90℃、90℃、100℃とした。得られた熱可塑性樹脂板の厚みは1.0mmであった。
 また押出機、Tダイの条件を同一として樹脂Bを押出し、3本の鏡面仕上げロールのうち最も上流側の1本を溝深さ100μm、凸間距離200μmのプリズム形状の賦形ロールに変えて転写しながら冷却し、片面をエンボッシングした樹脂Bのプリズムシートを得た。このときロールの設定温度は上流側から順に90℃、90℃、100℃とした。評価結果を表1に示す。賦形性評価の結果は不良であった。
比較例6
 比較例5のロールの設定温度を上流側から順に100℃、90℃、100℃とした以外は比較例5と同様にして樹脂Bの熱可塑性樹脂板ならびに片面をエンボッシングしたプリズムシートを得た。評価結果を表1に示す。賦形性評価の結果は不良であった。
比較例7
 比較例5のロールの設定温度を上流側から順に110℃、90℃、100℃とした以外は比較例5と同様にして樹脂Bの熱可塑性樹脂板ならびに片面をエンボッシングしたプリズムシートを得た。評価結果を表1に示す。賦形性評価の結果は不良であった。
比較例8
 軸径65mmの単軸押出機とTダイとを有する単層押出装置を用いて熱可塑性樹脂板を成形した。軸径65mmの単軸押出機にポリカーボネート樹脂〔三菱ガス化学(株)製、商品名:ユーピロンE2000〕を連続的に導入し、シリンダ温度280℃、吐出速度50kg/hで押し出した。その先に連結された温度290℃のTダイでシート状に押し出し、3本の鏡面仕上げロールで鏡面を転写しながら冷却し、ポリカーボネート樹脂の熱可塑性樹脂板を得た。このときロールは上流側から温度130℃、130℃、180℃とした。得られた熱可塑性樹脂板の厚みは1.0mmであった。
 また押出機、Tダイの条件を同一としてポリカーボネート樹脂を押出し、3本の鏡面仕上げロールのうち最も上流側の1本を溝深さ100μm、凸間距離200μmのプリズム形状の賦形ロールに変えて転写しながら冷却し、片面をエンボッシングしたポリカーボネート樹脂のプリズムシートを得た。このときロールの設定温度は上流側から順に130℃、130℃、180℃とした。評価結果を表1に示す。透明性評価の結果は不良であった。
比較例9
 軸径32mmの単軸押出機と、軸径65mmの単軸押出機と、全押出機に連結されたフィードブロックと、フィードブロックに連結されたTダイとを有する多層押出装置を用いて熱可塑性樹脂積層板を成形した。また軸径32mmの単軸押出機にポリカーボネート樹脂〔三菱ガス化学(株)製、商品名:ユーピロンE2000〕を連続的に導入し、シリンダ温度280℃、吐出速度6kg/hの条件で押し出した。また軸径65mmの単軸押出機にメタクリル樹脂〔旭化成ケミカルズ(株)製、商品名:デルペット80NE〕(樹脂B)を連続的に導入し、シリンダ温度260℃、吐出速度50kg/hで押し出した。全押出機に連結されたフィードブロックは2種2層の分配ピンを備え、温度280℃としてポリカーボネート樹脂と樹脂Bを導入し積層した。その先に連結された温度290℃のTダイでシート状に押し出し、3本の鏡面仕上げロールで鏡面を転写しながら冷却し、ポリカーボネート樹脂と樹脂Bの熱可塑性樹脂積層体を得た。このときロールは上流側から温度130℃、130℃、100℃とした。得られた熱可塑性樹脂積層体の厚みは1.0mm、ポリカーボネート樹脂層の厚みは中央付近で120μmであった。
 また各押出機、フィードブロック、Tダイの条件を同一としてポリカーボネート樹脂と樹脂Bの積層体を押出し、3本の鏡面仕上げロールのうち最も上流側の1本を溝深さ100μm、凸間距離200μmのプリズム形状の賦形ロールに変えて転写しながら冷却し、ポリカーボネート樹脂層側をエンボッシングしたプリズムシートを得た。このときロールの設定温度は上流側から順に130℃、130℃、100℃とした。評価結果を表1に示す。透明性評価の結果は不良であった。
Figure JPOXMLDOC01-appb-T000007
 本発明の熱可塑性樹脂積層体は透明性、低複屈折性、賦形性などに優れるという特徴を有し、透明性基板材料、透明性保護材料として好適に用いられ、特に液晶表示装置の光学シートとして好適に用いられる。

Claims (7)

  1.  メタクリル系樹脂(B)層の片面又は両面にビニル共重合樹脂(A)層が積層された熱可塑性樹脂積層体であって、前記ビニル共重合樹脂(A)が、下記一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)と、下記一般式(2)で表される脂肪族ビニル構成単位(b)とを含み、前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)との合計割合が前記ビニル共重合樹脂(A)中の全構成単位の合計に対して90~100モル%であり、前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)とのモル比が65:35~85:15であるビニル共重合樹脂であって、前記メタクリル系樹脂(B)中の全構成単位の90モル%以上がベンゼン環を有さない構成単位であることを特徴とする熱可塑性樹脂積層体。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は水素原子又はメチル基であり、R2は炭素数1~18のアルキル基である。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R3は水素原子又はメチル基であり、R4は炭素数1~4のアルキル置換基を有することのあるシクロヘキシル基である。)
  2.  メタクリル系樹脂(B)層の片面又は両面に、メタクリル酸メチル-スチレン共重合体又はアクリロニトリル-スチレン共重合体からなる熱可塑性樹脂(C)層が積層され、さらにその上にビニル共重合樹脂(A')層が積層された熱可塑性樹脂積層体であって、前記ビニル共重合樹脂(A')が、前記一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)と、前記一般式(2)で表される脂肪族ビニル構成単位(b)とを含み、前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)との合計割合が前記ビニル共重合樹脂(A')中の全構成単位の合計に対して90~100モル%であり、前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)とのモル比が15:85~85:15であるビニル共重合樹脂であって、前記メタクリル系樹脂(B)中の全構成単位の90モル%以上がベンゼン環を有さない構成単位であることを特徴とする熱可塑性樹脂積層体。
  3.  前記ビニル共重合樹脂(A)又は前記ビニル共重合樹脂(A')が、少なくとも1種の(メタ)アクリル酸エステルモノマーと少なくとも1種の芳香族ビニルモノマーとを重合した後、該芳香族ビニルモノマー由来の芳香族二重結合の70%以上を水素化して得られたものである請求項1又は2に記載の熱可塑性樹脂積層体。
  4.  前記一般式(1)において、R1及びR2がメチル基である請求項1~3のいずれかに記載の熱可塑性樹脂積層体。
  5.  前記一般式(2)において、R3が水素原子であり、R4がシクロヘキシル基である請求項1~4のいずれかに記載の熱可塑性樹脂積層体。
  6.  片面又は両面をエンボッシングしてあることを特徴とする請求項1~5のいずれかに記載の熱可塑性樹脂積層体。
  7.  請求項1~6のいずれかに記載の熱可塑性樹脂積層体からなる光学シート。
PCT/JP2011/063949 2010-06-21 2011-06-17 熱可塑性樹脂積層体 WO2011162183A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020127033234A KR20130106774A (ko) 2010-06-21 2011-06-17 열가소성 수지 적층체
JP2012521456A JP5713014B2 (ja) 2010-06-21 2011-06-17 熱可塑性樹脂積層体
US13/704,827 US20130095337A1 (en) 2010-06-21 2011-06-17 Thermoplastic resin laminate
EP11798067.2A EP2583825B1 (en) 2010-06-21 2011-06-17 Thermoplastic resin laminate
CN201180030071.0A CN102947089B (zh) 2010-06-21 2011-06-17 热塑性树脂叠层体
KR1020187011741A KR20180049151A (ko) 2010-06-21 2011-06-17 열가소성 수지 적층체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-140183 2010-06-21
JP2010140183 2010-06-21

Publications (1)

Publication Number Publication Date
WO2011162183A1 true WO2011162183A1 (ja) 2011-12-29

Family

ID=45371370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063949 WO2011162183A1 (ja) 2010-06-21 2011-06-17 熱可塑性樹脂積層体

Country Status (7)

Country Link
US (1) US20130095337A1 (ja)
EP (1) EP2583825B1 (ja)
JP (1) JP5713014B2 (ja)
KR (2) KR20130106774A (ja)
CN (1) CN102947089B (ja)
TW (1) TWI531468B (ja)
WO (1) WO2011162183A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017135335A1 (ja) * 2016-02-05 2017-08-10 三菱瓦斯化学株式会社 熱可塑性樹脂積層延伸フィルム
WO2017135336A1 (ja) * 2016-02-05 2017-08-10 三菱瓦斯化学株式会社 熱可塑性樹脂積層延伸フィルム
WO2018173762A1 (ja) * 2017-03-22 2018-09-27 三菱瓦斯化学株式会社 熱可塑性樹脂積層延伸フィルム

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6470255B2 (ja) * 2014-03-07 2019-02-13 株式会社クラレ 積層体
WO2015168610A1 (en) * 2014-05-02 2015-11-05 Sabic Global Technologies B.V. Multilayered articles with low optical retardation
KR102309889B1 (ko) * 2016-07-06 2021-10-08 덴카 주식회사 편광자 보호 필름용 수지 조성물, 편광자 보호 필름
TWI772319B (zh) * 2016-08-18 2022-08-01 日商三菱瓦斯化學股份有限公司 2段硬化性層合板
EP3871880A4 (en) * 2018-10-26 2021-11-24 Mitsubishi Gas Chemical Company, Inc. THERMOPLASTIC RESIN LAMINATE

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199028A (ja) * 2004-12-20 2006-08-03 Mitsubishi Gas Chem Co Inc プラスチックシート
JP2007090859A (ja) 2005-09-05 2007-04-12 Sony Corp 光学フィルムの製造方法
JP2007108475A (ja) 2005-10-14 2007-04-26 Sekisui Chem Co Ltd プリズムシートならびに光学シート
JP2009172794A (ja) 2008-01-22 2009-08-06 Kuraray Co Ltd 樹脂シートの製造方法
JP2009196125A (ja) * 2008-02-19 2009-09-03 Mitsubishi Gas Chem Co Inc 熱可塑性樹脂積層体
WO2010024217A1 (ja) * 2008-08-28 2010-03-04 三菱瓦斯化学株式会社 熱可塑性樹脂積層体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0847852A3 (de) * 1996-12-10 2004-03-03 Basf Aktiengesellschaft Verbundschichtplatten oder -folien und Formkörper daraus
FR2827295B1 (fr) * 2001-07-13 2004-07-09 Saint Gobain Materiau transparent en plaque ,a base de polymere de methacrylate de methyle,modifie en surface,vitrages incorporant ce materiau,et procedes correspondants
WO2005116090A1 (ja) * 2004-05-31 2005-12-08 Mitsubishi Gas Chemical Company, Inc. 熱可塑性透明樹脂
JP4910311B2 (ja) * 2004-05-31 2012-04-04 三菱瓦斯化学株式会社 熱可塑性透明樹脂
JP2006063127A (ja) * 2004-08-25 2006-03-09 Mitsubishi Gas Chem Co Inc 熱可塑性透明樹脂
US7567381B2 (en) * 2004-12-20 2009-07-28 Mitsubishi Gas Chemical Company, Inc. Plastic sheet
EP2080786B1 (en) * 2006-10-23 2014-03-05 Kuraray Co., Ltd. Acrylic thermoplastic resin composition, acrylic resin film and acrylic resin composite

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199028A (ja) * 2004-12-20 2006-08-03 Mitsubishi Gas Chem Co Inc プラスチックシート
JP2007090859A (ja) 2005-09-05 2007-04-12 Sony Corp 光学フィルムの製造方法
JP2007108475A (ja) 2005-10-14 2007-04-26 Sekisui Chem Co Ltd プリズムシートならびに光学シート
JP2009172794A (ja) 2008-01-22 2009-08-06 Kuraray Co Ltd 樹脂シートの製造方法
JP2009196125A (ja) * 2008-02-19 2009-09-03 Mitsubishi Gas Chem Co Inc 熱可塑性樹脂積層体
WO2010024217A1 (ja) * 2008-08-28 2010-03-04 三菱瓦斯化学株式会社 熱可塑性樹脂積層体

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017135335A1 (ja) * 2016-02-05 2017-08-10 三菱瓦斯化学株式会社 熱可塑性樹脂積層延伸フィルム
WO2017135336A1 (ja) * 2016-02-05 2017-08-10 三菱瓦斯化学株式会社 熱可塑性樹脂積層延伸フィルム
JPWO2017135336A1 (ja) * 2016-02-05 2018-12-06 三菱瓦斯化学株式会社 熱可塑性樹脂積層延伸フィルム
JPWO2017135335A1 (ja) * 2016-02-05 2018-12-06 三菱瓦斯化学株式会社 熱可塑性樹脂積層延伸フィルム
WO2018173762A1 (ja) * 2017-03-22 2018-09-27 三菱瓦斯化学株式会社 熱可塑性樹脂積層延伸フィルム
JPWO2018173762A1 (ja) * 2017-03-22 2020-01-30 三菱瓦斯化学株式会社 熱可塑性樹脂積層延伸フィルム
JP7040515B2 (ja) 2017-03-22 2022-03-23 三菱瓦斯化学株式会社 熱可塑性樹脂積層延伸フィルム

Also Published As

Publication number Publication date
KR20180049151A (ko) 2018-05-10
TWI531468B (zh) 2016-05-01
EP2583825A4 (en) 2014-09-17
JP5713014B2 (ja) 2015-05-07
EP2583825A1 (en) 2013-04-24
US20130095337A1 (en) 2013-04-18
CN102947089B (zh) 2015-05-20
EP2583825B1 (en) 2020-04-01
CN102947089A (zh) 2013-02-27
JPWO2011162183A1 (ja) 2013-08-22
TW201213123A (en) 2012-04-01
KR20130106774A (ko) 2013-09-30

Similar Documents

Publication Publication Date Title
JP5713014B2 (ja) 熱可塑性樹脂積層体
JP5850112B2 (ja) 熱可塑性樹脂積層体
JP2009196125A (ja) 熱可塑性樹脂積層体
KR20070028388A (ko) 열가소성 투명 수지
JPWO2013157530A1 (ja) 積層体
JP2012228811A (ja) 合成樹脂積層体
WO2022131015A1 (ja) 多層体および成形品
CN110461599B (zh) 热塑性树脂叠层拉伸膜
CN108602335B (zh) 热塑性树脂叠层拉伸膜
TWI770005B (zh) 熱可塑性樹脂層合延伸薄膜
JP6668826B2 (ja) 熱可塑性樹脂積層体
JP7076664B1 (ja) 多層体および成形品
WO2022071489A1 (ja) 樹脂積層体
WO2022071487A1 (ja) 樹脂積層体
JP2019094447A (ja) 熱可塑性透明樹脂組成物延伸フィルム
JP2019072946A (ja) 熱可塑性樹脂積層フィルム
JPWO2019039550A1 (ja) 積層体およびその製造方法
JP2006022211A (ja) 光拡散性樹脂
JP2019094446A (ja) 熱可塑性透明樹脂組成物延伸フィルム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180030071.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11798067

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012521456

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13704827

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127033234

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011798067

Country of ref document: EP