WO2011158667A1 - 大腸腫瘍の検出方法 - Google Patents
大腸腫瘍の検出方法 Download PDFInfo
- Publication number
- WO2011158667A1 WO2011158667A1 PCT/JP2011/062785 JP2011062785W WO2011158667A1 WO 2011158667 A1 WO2011158667 A1 WO 2011158667A1 JP 2011062785 W JP2011062785 W JP 2011062785W WO 2011158667 A1 WO2011158667 A1 WO 2011158667A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gene
- colorectal
- rna
- marker
- detecting
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
Definitions
- the present invention relates to a method for detecting colorectal tumors, particularly advanced adenomas and early cancers, using a marker gene. More specifically, the present invention relates to a method for detecting the presence or absence of a colorectal tumor in a subject from which stool is collected, using the amount of marker gene-derived RNA contained in stool as an index.
- This application claims the priority based on Japanese Patent Application No. 2010-137460 for which it applied to Japan on June 16, 2010, and uses the content here.
- the only non-invasive method that can be used at present is a stool test for examining the presence or absence of occult blood, that is, a stool occult blood test, which is widely used as a standard method for mass screening of colorectal cancer.
- a stool occult blood test which is widely used as a standard method for mass screening of colorectal cancer.
- the fecal occult blood test has low sensitivity and specificity (sensitivity 30 to 90%, specificity 70 to 98%) because hemoglobin appears in the stool is not specific to the tumor. There is a disadvantage that there are not a few false positives.
- a method for non-invasively detecting colorectal cancer there is a method using an ingredient contained in feces as an index. Since the stool contains cells that have detached from the cancer tissue, the composition of the stool is thought to reflect gastrointestinal lesions. Therefore, a cancer-affected person is distinguished from a healthy person using a gene that is not so expressed in normal tissue but highly expressed in cancer tissue as a biomarker and the amount of mRNA of the gene in stool as an index. Thus, by using stool as a specimen, there is no invasiveness and the test burden on the subject can be drastically improved.
- Non-Patent Documents 1 to 4 methods using DNA such as detection of K-ras, p-53, APC gene mutation and microsatellite instability in feces have been reported (see, for example, Non-Patent Documents 1 to 4).
- a method for detecting mRNA such as protein kinase C (PKC) in stool for example, see Non-patent Documents 5 to 7
- a method for examining the expression of CD44 variant in the stool cell fraction for example, non-patent document) Reference 8
- a method for detecting the presence or absence of methylation of genomic DNA contained in feces for example, see Non-Patent Document 9 have been developed.
- PLC protein kinase C
- the expression level of these genes is as follows. In many cases, the gene expression shows almost the same behavior as the gene expression level. Therefore, even when these gene markers are used in combination, it is difficult to improve the detection sensitivity of COX-2 negative colon cancer.
- the COX-2 gene, the MMP-7 gene, and the Snail gene tend to increase in the amount of expression in stool depending on the degree of progression of cancer, so the sensitivity of early cancer detection is lower than that of advanced cancer There is also a problem.
- An object of the present invention is to provide a method for detecting a colorectal tumor, particularly advanced adenoma or early cancer with high sensitivity, using as an index a component contained in feces.
- RNA from stool provided by a person suffering from colorectal tumor, and analyzed RNA derived from a human gene contained in this RNA. It was found that the amount of CKB (creatine kinase B) gene-derived RNA contained in stool is higher in those suffering from colorectal tumors than in those not suffering from colorectal tumors (those who do not have a particular disease in the large intestine). Was completed.
- CKB tine kinase B
- the present invention has the following configuration.
- a method of detecting a colon tumor using a marker gene (A) extracting RNA contained in feces collected from a subject; (B) a step of measuring the amount of marker gene-derived RNA in the RNA obtained in the step (A); (C) comparing the amount of the marker gene-derived RNA measured in the step (B) with a preset threshold value for each type of marker gene;
- COX-2 Cyclooxygenase-2 gene
- MMP-7 Microx metalloproteinase-7 gene
- Snail gene MMP-1 (Matrix metalloproteinase-1) gene
- B2M ⁇ 2 microglobulin
- the marker gene further comprises one or more genes selected from the group consisting of MMP-7 gene, Snail gene, MMP-1 gene, and B2M gene For detecting colorectal tumors.
- the subject has been diagnosed as having a colorectal tumor
- the stool collected from the subject over time is subjected to the steps (A) to (C), respectively, to monitor the possibility of recurrence of the colorectal tumor in the subject.
- the method for detecting a colorectal tumor according to any one of (5).
- a gene marker for colorectal tumor comprising a CKB (creatine kinase B) gene.
- a device or drug for extracting RNA contained in feces At least one of a probe and a primer for detecting RNA derived from CKB (Createtine kinase B) gene
- a kit for detecting a colorectal tumor using stool comprising:
- the colorectal tumor may be a tumor that occurs in the large intestine regardless of benign or malignant, and includes both colorectal adenoma and colorectal cancer.
- Colorectal cancer is generally classified into clinical stage 0 to IV. In the present invention and the present specification, each stage refers to the following state. Stage 0: Cancer remains in the mucous membrane. Stage I: A condition in which cancer remains in the large intestine wall. Stage II: A condition in which the cancer exceeds the intrinsic muscle layer of the large intestine wall and extends beyond the wall. Stage III: Cancer has spread to lymph nodes. Stage IV: Cancer has spread to distant organs and lymph nodes.
- “Early cancer” and “advanced cancer” are defined by the depth of the wall. Early cancer refers to cancer in which the advanced part of the cancer is confined to the intramucosa or submucosa of the large intestine wall and does not exceed this, and refers to part of stage 0 and stage I of the clinical stage. Advanced cancer is a cancer where the advanced part of the cancer goes beyond the submucosa and reaches deeper than the intrinsic muscle layer, and refers to part of stage I, stage II, stage III and stage IV among clinical stages. These are defined in the 7th edition of the Colorectal Cancer Handling Code (Colon Cancer Society, Kanbara Publishing, 2006).
- Colorectal adenomas are also divided into small adenomas and advanced adenomas according to the size and the degree of atypia. Some colorectal adenomas are difficult to distinguish from early colon cancer, particularly mucosal cancer (stage 0 cancer). In particular, advanced adenomas having a size exceeding 10 mm are considered to be suitable for cancer as tumors that may develop into submucosal cancer (stage I cancer) in the future, similar to mucosal cancer. Therefore, in primary screening such as mass screening, it is important to detect colorectal adenomas, particularly advanced adenomas, as in the case of early colorectal cancer.
- marker gene-derived RNA means RNA transcribed from the full length or a part of the genomic DNA of the marker gene, and may be mRNA of the gene, It may be a part (fragment).
- non-affected person means a person who does not suffer from a colorectal tumor, and includes not only a healthy person but also a person suffering from a disease other than a colorectal tumor.
- COX-2 gene-derived RNA in stool is a very effective biomarker for detecting colorectal cancer (see Patent Documents 1 to 4).
- COX-2 negative colon cancer cannot be detected when only the COX-2 gene is used as a biomarker. Therefore, the present inventors believe that by using a marker gene capable of detecting COX-2 negative colorectal cancer in combination with the COX-2 gene, a colorectal tumor can be detected more sensitively by mass screening or the like. A novel marker gene was searched.
- each gene was performed by an Agilent Expression Array analysis using a GeneChip (registered trademark) array (subjected to Takara Bio Inc. Dragon Genomics Center).
- the amount of COX-2 gene-derived RNA in stool was 25.3 times higher in healthy COX-2 positive colorectal cancer patients, whereas in COX-2 negative colorectal cancer patients It was only 1.4 times that of healthy people.
- the amount of RNA derived from each gene of the MMP-7 gene and MMP-1 gene is large in COX-2 strong positive colorectal cancer patients, and the COX-2 negative colorectal cancer patients are healthy as in the COX-2 gene. It was clearly not higher than.
- the colorectal tumor detection method of the present invention is characterized by using a CKB gene as a gene marker for colorectal tumors.
- the amount of CKB gene-derived RNA in stool tends to be greater in those with colorectal tumors than in non-affecteds. Therefore, the presence or absence of colorectal tumor can be detected using the amount of CKB gene-derived RNA in stool as an index. That is, the present invention can be said to be a method for detecting RNA derived from a gene marker for colon tumor in stool using CKB gene as a gene marker for colon tumor in order to examine the presence or absence of colon tumor.
- a marker gene other than the CKB gene may be used in combination as a gene marker for the colorectal tumor.
- the other marker gene combined with the CKB gene is not particularly limited as long as the gene-derived RNA amount in the stool is significantly different between the colon tumor affected group and the non-affected group.
- one or more genes selected from the group consisting of COX-2 gene, MMP-7 gene, Snail gene, MMP-1 gene, and B2M gene are used as the marker gene used in combination with the CKB gene. It is preferable.
- RNA derived from the gene in the stool is non-indicated in COX-2 negative colorectal cancer patients (the amount of COX-2 gene-derived RNA is approximately the same as that of non-affected persons). Since the gene was higher than that of the affected person, it was found that it can be used as a genetic marker for colorectal tumors. Therefore, in the method for detecting a colorectal tumor of the present invention, it is particularly preferable to use a combination of CKB gene and COX-2 gene as a marker gene for colorectal tumor. By using a combination of the CKB gene and the COX-2 gene, the detection sensitivity of colorectal adenoma and early cancer can be further improved.
- the detection sensitivity of colorectal adenoma can be improved as compared with the case of using a combination of 1 gene or a combination of CKB gene, COX-2 gene and B2M gene.
- colon cancer can be detected with very high accuracy and high sensitivity by using a combination of four genes, CKB gene, COX-2 gene, MMP-7 gene, and B2M gene.
- the colorectal tumor detection method of the present invention comprises the following steps (A) to (C).
- RNA contained in feces collected from a subject is extracted.
- the extracted RNA may be purified by a conventional method.
- the method for extracting and purifying RNA from stool is not particularly limited, and any method known in the art may be used, and a commercially available purification kit or the like may be used.
- the method for measuring the amount or concentration of RNA is not particularly limited, and any method known in the art such as an absorbance measurement method may be used.
- the preservation solution added to the stool examples include, for example, a stool sample preparation solution containing a water-soluble alcohol or the like as an active ingredient (see, for example, International Publication No. 2010-024251 pamphlet). It is preferable that it is a solution which can preserve
- RNA extracted in step (A) may be used as it is in step (B) or may be used in step (B) after storage for a certain period.
- RNA may be stored by any method as long as it can be stored while suppressing degradation of RNA.
- RNA may be stored after lyophilization or in a solution in purified water. May be saved.
- step (B) the amount of RNA derived from the marker gene in the RNA obtained in step (A) is measured.
- the method for measuring the amount of the marker gene-derived RNA in the step (B) is not particularly limited, and from among known methods generally used for measuring the amount of nucleic acid having a specific base sequence, It can be selected as appropriate.
- it may be detected by a hybridization method using a probe that can hybridize with a marker gene-derived RNA, or by a method using a nucleic acid amplification reaction using a primer and a polymerase that can hybridize with a marker gene-derived RNA. May be.
- a hybridization method using a probe that can hybridize with a marker gene-derived RNA
- a method using a nucleic acid amplification reaction using a primer and a polymerase that can hybridize with a marker gene-derived RNA May be.
- commercially available detection kits can also be used.
- RNA derived from a marker gene can also be amplified by a NASBA (Nucleic Acid Sequence-Based Amplification) method in which RNA is directly amplified from RNA.
- the amplification product of the marker gene-derived RNA can be quantified by a technique known in the art. For example, the amplification product can be quantitatively measured by appropriately separating the amplified product by gel or capillary electrophoresis as appropriate and then detecting it.
- various sensitization methods such as the Invader (registered trademark) method can be used to detect the marker gene-derived RNA.
- the sensitization method should be used for either directly detecting the marker gene-derived RNA present in the RNA obtained in step (A) or for detecting after amplification by a nucleic acid amplification reaction. Can do.
- the amount of each marker gene-derived RNA may be measured individually or simultaneously.
- amplification products may be obtained by performing PCR separately for each gene type using cDNA obtained by reverse transcription reaction from all or part of the RNA obtained in step (A) as a template. By performing PCR or the like, amplification products of a plurality of genes may be obtained in one reaction.
- step (C) the amount of RNA derived from the marker gene measured in step (B) is compared with a threshold set in advance for each type of marker gene.
- the threshold value is a threshold value for discriminating between a group suffering from colorectal cancer or advanced adenoma and a non-affected group.
- the threshold value used in step (C) is appropriately set by those skilled in the art by considering the type of marker gene-derived RNA amount measurement method in step (B) and performing necessary preliminary tests. can do.
- stool collected from a group (non-affected group) that is known not to suffer from colorectal disease from the results of other examination methods such as endoscopy, and affected by colorectal cancer or colorectal advanced adenoma The amount of marker gene-derived RNA is determined for feces collected from a known group (affected group) using the same measurement method as in step (B), and the measured values of both groups are compared.
- a threshold value for identifying both groups can be set as appropriate.
- the desired detection accuracy can be taken into account when setting the threshold value.
- the probability that the amount of the RNA derived from the marker gene is less than the threshold is within a desired range (for example, 10% or less, preferably 5% or less, more preferably 2.5). % Or less, more preferably 1% or less, particularly preferably 0%).
- RNA derived from the marker gene in stool is a desired value (for example, 90% ile, preferably 95% ile, more preferably 97.5% ile, still more preferably 99% ile, particularly preferably in the percentile of non-affected persons. Can be set to be 100% ile).
- the significance probability (P value) that the amount of RNA derived from the marker gene in stool collected from the subject is less than the threshold is a desired value (for example, 10%, preferably 5%, more preferably 1%, still more preferably).
- CKB-derived RNA amount the amount of CKB gene-derived RNA measured in step (B)
- the threshold If there is less, it is determined that the subject is CKB negative.
- the amount of CKB-derived RNA tends to be higher in the colon tumor affected group than in the non-affected group. For this reason, the subject from whom the detection result of being CKB positive was obtained has a high possibility of having a colorectal tumor. For this reason, a definitive diagnosis can be performed by using the method for detecting a colorectal tumor of the present invention for primary screening such as mass screening and performing endoscopy or the like on a subject determined to be CKB positive.
- the detection result obtained by the method for detecting a colorectal tumor of the present invention is useful as information for diagnosis of a colorectal tumor. That is, the method for detecting a colorectal tumor of the present invention can provide information for diagnosing a colorectal tumor.
- the colorectal tumor detection method of the present invention can be used for monitoring the recurrence possibility of a colorectal tumor.
- stool is collected over time from a subject who has been diagnosed as having a colorectal tumor.
- the above steps (A) to (C) are performed on each collected stool.
- the obtained measurement value is set in advance.
- the stool is higher than the threshold value, it can be determined that the subject has a high possibility of recurrence of the colorectal tumor at the time when the stool is collected.
- the threshold value can also be set so as to be preferably 5% or less.
- the threshold value can be set in accordance with the desired sensitivity and specificity.
- each marker gene is compared with a threshold value to determine whether it is positive or negative.
- a subject who is positive for at least one marker gene is likely to have a colorectal tumor.
- another marker gene is often negative. For this reason, the sensitivity of colorectal tumor detection can be improved by using multiple types of marker genes in combination.
- the method for detecting a colorectal tumor of the present invention can be carried out more easily by using a kit equipped with reagents and equipment used in the steps (A) and (B).
- the kit includes a device or drug for extracting RNA contained in stool, and at least one of a probe or primer for detecting CKB gene-derived RNA, and uses stool. Used to detect colorectal tumors.
- RNA contained in stool As an apparatus or drug for extracting RNA contained in stool, for example, it is used for homogenizing collected stool and preparing a suspension in which nucleic acid is extracted from cells contained in the stool. And a reagent for recovering and purifying RNA from the obtained suspension.
- the suspension solution can be appropriately selected from solutions generally used for recovering nucleic acids from stool. Specific examples of the suspension solution include a phenol solution and a chloroform solution.
- the suspension solution preferably contains an RNase inhibitor such as guanidine thiocyanate, a surfactant, or a chelating agent.
- the reagent for recovering and purifying RNA from the suspension include inorganic solutions such as ethanol solution and silica.
- CKB gene-derived RNA As a probe or primer for detecting CKB gene-derived RNA, CKB gene-derived RNA or an oligonucleotide that can specifically hybridize with a part of cDNA obtained from the RNA can be used.
- the oligonucleotide capable of hybridizing with CKB gene-derived RNA or the like may be designed and produced by any method known in the art.
- detection of CKB gene-derived RNA is performed by synthesizing cDNA by reverse transcription using RNA extracted from feces as a template, and then using the obtained cDNA as a template and a primer for detecting CKB gene-derived RNA.
- the nucleic acid amplification reaction such as, and the method of detecting the obtained amplification product, reverse transcriptase, random primers, nucleotides, buffers, etc. used for reverse transcription reaction, polymerase used for PCR, labeled nucleotide, Unlabeled nucleotides, buffers, PCR devices and the like may be included in the kit of the present invention.
- a stool collection rod, a collection container, and the like for collecting stool excreted from animals such as humans can also be included in the kit of the present invention.
- Example 1 ⁇ Stool sample> 10 patients with colorectal adenoma (tumor size 5-9mm), 24 patients with advanced colorectal adenoma (tumor size 10mm or more), 111 patients with colorectal cancer (25 early cancer, 86 advanced cancer) Feces were provided by 12 upper gastrointestinal cancer patients (10 stomach tumor patients and 2 esophageal cancer patients) and 113 healthy subjects. Each patient is a patient who has been diagnosed endoscopically and histologically.
- neoplastic lesions in the large intestine (but not including adenomatous polyps and hyperplastic polyps less than 5 mm), no obvious inflammatory changes, hemorrhagic lesions, systemic diseases, and progression Persons without sexual cancer were considered healthy.
- stage 0 is 11; stage I is 24; stage II is 37; stage III is 25; stage IV is 14 there were.
- informed consent was obtained in advance orally or in writing for these patients and healthy individuals.
- Specimens were collected 2-4 weeks after endoscopy or biopsy and prior to surgery or endoscopic resection. The collected stool sample was first stored at 4 ° C., then transferred to ⁇ 80 ° C. within 24 hours after the start of storage, and stored until RNA extraction treatment was performed.
- ⁇ RNA extraction and purification from stool samples > About 0.5 g of frozen stool sample and 3 mL of Isogen (manufactured by Nippon Gene Co., Ltd.) were added to a sterilized 5 mL tube, and then mixed with a homogenizer for homogenization. The obtained slurry was dispensed into a sterilized 1.5 mL tube at approximately 0.7 mL each, and then centrifuged at 12,000 ⁇ g for 5 minutes at 4 ° C., and the supernatant was transferred to a new sterilized 1.5 mL tube. Dispensed.
- RNA, random hexamer, and reverse transcriptase M-MLV RNaseH ⁇ ; manufactured by Takara Bio Inc.
- cDNA was synthesized in a reaction solution with a final volume of 20 ⁇ L according to the instruction manual.
- stool can be obtained for CKB gene, COX-2 gene, MMP-7 gene, Snail gene, MMP-1 gene, and B2M gene in the cDNA.
- the amount of cDNA synthesized from each gene-derived RNA was quantified.
- the TaqMan (registered trademark) primer / probe set for detecting these marker genes was commercially available from Applied Biosystems.
- the probes included in these sets are reporter probes in which a fluorescent substance FAM is labeled on the 5 ′ end side and a quenching substance is labeled on the 3 ′ end side.
- FAM fluorescent substance labeled on the 5 ′ end side
- quenching substance is labeled on the 3 ′ end side.
- 1 ⁇ L of a cDNA solution and 1 ⁇ L of 20 ⁇ TaqMan primers and probe mixture were added with sterilized purified water to a final volume of 20 ⁇ L. did.
- Each PCR solution prepared for each gene was treated at 95 ° C.
- mRNA mRNA derived from the gene
- IFOBT immunological fecal occult blood test
- Table 1 shows the copy number of mRNA of each marker gene.
- the upper value is the average value
- the lower value is the range.
- “Other Cancer” indicates the results of patients with upper gastrointestinal cancer.
- the amount of CKB mRNA in stool is significantly higher in the group of colon cancer patients with colorectal cancer and colorectal advanced adenoma than in the normal group, as with known colorectal cancer markers such as COX-2. I understood. That is, it is clear from these results that a colon tumor can be detected by setting an appropriate threshold value using the amount of CKB gene-derived RNA in feces as an index.
- the amount of CKB mRNA in the group of patients with advanced colorectal adenoma was significantly higher than that of COX-2 and the like in the group of patients with advanced colorectal adenoma, so it can be said that advanced colorectal adenoma can be detected with higher sensitivity. .
- ⁇ Cutoff value setting> In order to set a threshold (cutoff value) for distinguishing between those with and without colorectal tumor for each marker gene, the number of copies of each marker gene in the group of healthy subjects, colorectal cancer and advanced colorectal adenomas Analyzed.
- Table 2 shows the average value, standard deviation (SD), median value, 95th percentile value, and 97.5th percentile value of the copy number of each marker gene in the healthy subject group.
- Tables 3 and 4 show the average value, standard deviation (SD), median value, and 25th percentile value of the copy number of each marker gene in the colorectal cancer group and the colorectal advanced adenoma group.
- the cutoff value of the CKB gene is 1450
- the cutoff value of the COX-2 gene is 58
- the cutoff value of the MMP-7 gene is 5
- the cutoff value of the Snail gene is 9
- the cutoff value of the MMP-1 gene The cut-off value was set to 37
- the cut-off value for the B2M gene was set to 21000.
- the amount of RNA derived from the CKB gene is the area of the region under the curve, as in the amount of RNA derived from the COX-2 gene, the amount of RNA derived from the MMP-7 gene, the amount of RNA derived from the B2M gene, and the immunological fecal occult blood test.
- the combination of the CKB gene and the COX-2 gene had the best sensitivity.
- the combination of the CKB gene and the COX-2 gene is more sensitive than the combination of the MMP-1 gene and the COX-2 gene, although the CKB gene alone has a lower detection sensitivity than the MMP-1 gene. It was good.
- colon cancer can be detected with very high sensitivity by using a combination of -7 genes.
- the sensitivity and specificity of colorectal cancer detection in the case of combining 4 genes of CKB gene, COX-2 gene, MMP-7 gene and B2M gene, and the sensitivity of colorectal tumor detection in the cumulative stage are calculated, and COX -2 gene only, COX-2 gene and MMP-7 gene in combination, COX-2 gene and B2M gene in combination, COX-2 gene and CKB gene When used in combination, and compared with the results of immunological fecal occult blood test (IFOBT (single)).
- IFOBT immunological fecal occult blood test
- colorectal tumor detection method of the present invention it is possible to accurately examine the presence or absence of colorectal tumors, particularly colorectal advanced adenomas and stage 0 and stage I cancers.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Hospice & Palliative Care (AREA)
- Biophysics (AREA)
- Oncology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
本願は、2010年6月16日に日本国に出願された特願2010-137460号に基づく優先権を主張し、その内容をここに援用する。
(1) マーカー遺伝子を用いて、大腸腫瘍を検出する方法であって、
(A)被験者から採取した糞便中に含まれるRNAを抽出する工程と、
(B)前記工程(A)において得られたRNA中のマーカー遺伝子由来RNAの量を測定する工程と、
(C)前記工程(B)において測定されたマーカー遺伝子由来RNAの量と、マーカー遺伝子の種類ごとに予め設定された閾値とを比較する工程と、
を有し、
前記マーカー遺伝子がCKB(Creatine kinase B)遺伝子であることを特徴とする大腸腫瘍の検出方法。
(2) 前記マーカー遺伝子として、さらに、COX-2(Cyclooxygenase-2)遺伝子、MMP-7(Matrix metalloproteinase-7)遺伝子、Snail遺伝子、MMP-1(Matrix metalloproteinase-1)遺伝子、及びB2M(β2 microglobulin)遺伝子からなる群より選択される1種以上の遺伝子を用いることを特徴とする前記(1)記載の大腸腫瘍の検出方法。
(3) 前記マーカー遺伝子として、さらに、COX-2遺伝子を用いることを特徴とする前記(1)記載の大腸腫瘍の検出方法。
(4) 前記マーカー遺伝子として、さらに、MMP-7遺伝子、Snail遺伝子、MMP-1遺伝子、及びB2M遺伝子からなる群より選択される1種以上の遺伝子を用いることを特徴とする前記(3)記載の大腸腫瘍の検出方法。
(5) 前記マーカー遺伝子として、さらに、MMP-7遺伝子を用いることを特徴とする前記(1)記載の大腸腫瘍の検出方法。
(6) 大腸腺種又は大腸早期癌を検出することを特徴とする前記(3)~(5)のいずれか1つに記載の大腸腫瘍の検出方法。
(7) 前記被験者が、大腸腫瘍に罹患していると診断されたことがあり、
前記被験者から経時的に採取された糞便に対して、それぞれ、前記工程(A)~(C)を行い、当該被験者の大腸腫瘍の再発可能性をモニタリングするためになされることを特徴とする前記(1)~(5)のいずれか一つに記載の大腸腫瘍の検出方法。
(8) CKB(Creatine kinase B)遺伝子からなることを特徴とする大腸腫瘍の遺伝子マーカー。
(9) 糞便中に含まれるRNAを抽出するための機器又は薬剤と、
CKB(Creatine kinase B)遺伝子由来RNAを検出するためのプローブ又はプライマーの少なくともいずれか一方と、
を含むことを特徴とする糞便を用いて大腸腫瘍を検出するためのキット。
0期:癌が粘膜内に留まっている状態。
I期:癌が大腸壁内に留まっている状態。
II期:癌が大腸壁の固有筋層を超えており、壁外にまで及んでいる状態。
III期:癌がリンパ節に転移している状態。
IV期:癌が遠方の臓器やリンパ節にまで転移している状態。
本発明者らが既に明らかにしているように、糞便中のCOX-2遺伝子由来RNA量は、大腸癌を検出するために非常に有効なバイオマーカーである(特許文献1~4参照。)。しかしながら、COX-2遺伝子のみをバイオマーカーとした場合には、COX-2陰性の大腸癌を検出することができない。そこで、本発明者らは、COX-2陰性の大腸癌を検出可能なマーカー遺伝子をCOX-2遺伝子と併用することにより、集団検診等でより感度よく大腸腫瘍を検出し得ると考え、そのような新規なマーカー遺伝子の探索を行った。
本発明の大腸腫瘍の検出方法は、大腸腫瘍の遺伝子マーカーとして、CKB遺伝子を用いることを特徴とする。糞便中のCKB遺伝子由来RNAの量は、大腸腫瘍罹患者において、非罹患者よりも多くなる傾向がある。このため、糞便中のCKB遺伝子由来RNAの量を指標として、大腸腫瘍の罹患の有無を検出することができる。すなわち本発明は、大腸腫瘍の罹患の有無を調べるために、大腸腫瘍の遺伝子マーカーとして、CKB遺伝子を用いて、糞便中の大腸腫瘍の遺伝子マーカー由来RNAを検出する方法とも言える。
(A)被験者から採取した糞便中に含まれるRNAを抽出する工程と、
(B)前記工程(A)において得られたRNA中のマーカー遺伝子由来RNAの量を測定する工程と、
(C)前記工程(B)において測定されたマーカー遺伝子由来RNAの量と、マーカー遺伝子の種類ごとに予め設定された閾値とを比較する工程。
以下、工程ごとに説明する。
その他、ヒトをはじめとする動物から排泄された糞便を採取するための採便棒や採取容器等も、本発明のキットに含ませることができる。
<糞便サンプル>
大腸小腺腫(腫瘍の大きさが5~9mm)患者10名、大腸進行腺腫(腫瘍の大きさが10mm以上)患者が24名、大腸癌患者111名(早期癌25名、進行癌86名)、上部消化管癌患者12名(胃腫瘍患者10名、食道癌患者2名)、及び健常者113名から、糞便を提供していただいた。各患者は、内視鏡的・組織学的に確定診断がなされた患者である。本実施例においては、大腸に腫瘍性病変(但し、5mm未満の腺腫性ポリープや過形成ポリープは含まない)や、明らかな炎症性変化が認められず、出血性病変、全身性疾患、及び進行性の癌のない人を健常者とした。また、大腸癌患者111名のうち、病期0期が11名、病期I期が24名、病期II期が37名、病期III期が25名、病期IV期が14名であった。なお、これらの患者及び健常者には、事前に口頭又は書面にてインフォームドコンセントを得た。
検体(糞便サンプル)は、内視鏡検査又は生検から2~4週間後であって、手術又は内視鏡的切除の前に採取された。採取された糞便サンプルは、まず4℃で保存された後、保存開始後24時間以内に-80℃に移し、RNA抽出処理を行うまで保存した。
滅菌済みの5mLチューブに、約0.5gの凍結した糞便サンプルと、3mLのIsogen(ニッポンジーン社製)を加えた後、ホモジナイザーで混合して、均一化させた。得られたスラリーを、滅菌済み1.5mLチューブに約0.7mLずつ分注した後、12,000×gで5分間、4℃で遠心し、その上清を新しい滅菌済み1.5mLチューブに分注した。各チューブに0.3mLのIsogenと0.3mLのクロロホルムをそれぞれ加え、チューブを30秒間激しくボルテックスにかけて撹拌した後、12,000×gで15分間、4℃で遠心した。得られた水相を、チューブ上面からコンタミネーションを生じないように注意して回収し、新しい1.5mLチューブに移した。等量の70%エタノール溶液を加えた後、チューブを30秒間激しくボルテックスにかけて攪拌した。得られた混合液から、RNeasy mini kit(QIAGEN社製)を用いてRNAを抽出・精製した。精製されたRNAは、NanoDrop 1000(NanoDrop Wilmington社製)を用いて定量した。以後の解析に用いるまで、RNAは-80℃にて保存した。
精製されたRNAとランダムヘキサマーと逆転写酵素M-MLV(RNaseH-;タカラバイオ社製)とを用いて、最終容量が20μLの反応液中で、使用説明書に従ってcDNAを合成した。
合成されたcDNAを鋳型として、定量的リアルタイムPCRを行うことにより、当該cDNA中のCKB遺伝子、COX-2遺伝子、MMP-7遺伝子、Snail遺伝子、MMP-1遺伝子、及びB2M遺伝子に対して、糞便中の各遺伝子由来RNAから合成されたcDNAの量を定量した。これらのマーカー遺伝子を検出するためのTaqMan(登録商標)プライマー・プローブセットは、アプライドバイオシステムズ社より市販されているものを、それぞれ用いた。なお、これらのセットに含まれているプローブは、5’端側に蛍光物質FAMがラベルされており、3’端側には消光物質がラベルされているレポータープローブである。具体的には、1μLのcDNA溶液と、1μLの20×TaqMan primers and probe mixture(アプライドバイオシステムズ社製)とに滅菌済み精製水を加えて最終容量を20μLに調製したものを、PCR反応溶液とした。遺伝子ごとにそれぞれ調製したPCR溶液を、95℃で20秒間処理した後、95℃で3秒間、62℃で30秒間を60サイクルの反応条件で、7500 Fast Real-Time PCR systems(アプライドバイオシステムズ社製)を用いて、リアルタイムに蛍光強度を測定しながら核酸増幅(PCR)した。コピー数を計算する対照試料(標準物質)として、各遺伝子のcDNAが入ったプラスミドを使用し、同時に増幅した。
測定の結果得られたマーカー遺伝子由来RNA量(コピー数)に対する統計学的処理は、Mann Whitney′s U testにより行った。また、全ての統計学的処理は、両側検定で行い、P値<0.05を統計上有意であるとした。
なお、マーカー遺伝子由来RNAの大部分が当該遺伝子由来のmRNAであることから、以下、mRNAと記載する。
マーカー遺伝子由来RNA量の測定に用いたものと同一の糞便に対して、免疫学的便潜血検査(MPA)法(1回)を行い、潜血の有無を検出した。免疫学的便潜血検査は、市販の便潜血キット「マグストリーム(登録商標)HemSp-N」(磁性粒子凝集反応薬)(富士レビオ社製、製品番号:214794)を用いて、添付のプロトコールに従って行った。
各マーカー遺伝子のmRNAのコピー数を表1に示す。表1中、上段の数値は平均値であり、下段はレンジである。また、「Other Cancer」は上部消化管癌患者の結果を示す。この結果、糞便中のCKBのmRNA量は、COX-2等の公知の大腸癌マーカーと同様に、大腸癌、及び大腸進行腺腫の大腸腫瘍罹患者群において、健常者群よりも有意に多いことが分かった。すなわち、これらの結果から、適当な閾値を設定することにより、糞便中のCKB遺伝子由来RNA量を指標として大腸腫瘍を検出し得ることが明らかである。特に、CKBのmRNA量は、COX-2等よりも大腸進行腺腫患者群におけるコピー数が、健常者群よりも有意に多かったことから、大腸進行腺腫をより高い感度で検出可能であるといえる。
各マーカー遺伝子の大腸腫瘍罹患者と非罹患者を識別するための閾値(カットオフ値)を設定するために、健常者群、大腸癌群、及び大腸進行腺腫群における各マーカー遺伝子のコピー数を解析した。
表2に、健常者群における、各マーカー遺伝子のコピー数の平均値、標準偏差(SD)、中央値、95パーセンタイル値、及び97.5パーセンタイル値を示す。また、表3及び表4に、大腸癌群及び大腸進行腺腫群における、各マーカー遺伝子のコピー数の平均値、標準偏差(SD)、中央値、及び25パーセンタイル値を示す。これらの結果から、CKB遺伝子のカットオフ値を1450、COX-2遺伝子のカットオフ値を58、MMP-7遺伝子のカットオフ値を5、Snail遺伝子のカットオフ値を9、MMP-1遺伝子のカットオフ値を37、B2M遺伝子のカットオフ値を21000と設定した。
上記で設定したカットオフ値を用いて各サンプルの陽性・陰性を判断し、大腸癌検出の感度及び特異度を算出し、免疫学的便潜血検査(IFOBT(single))の結果と比較した。算出結果を表5に示す。この結果、COX-2遺伝子は、感度・特異度共に免疫学的便潜血検査よりも良好であったが、CKB遺伝子は、特異度は免疫学的便潜血検査と同等であったものの、感度は免疫学的便潜血検査よりも低かった。表5中、「95%CI」は95%信頼区間(%)である。なお、以降の全てのサンプルの感度及び特異度に対するP値の算出は、χ2検定(chi-square test、カイ二乗検定)により行った。また、全ての統計学的処理は、両側検定で行い、P値<0.05を統計上有意であるとした。
各マーカー遺伝子の大腸腫瘍検出用マーカーとしての性能を調べるため、ROC(Receiver Operating Characteristic)解析を行った。ROC解析は、PASW statistics ver.18(IBM製)を用いて作図した。解析結果を表6及び図1に示す。図1は、縦軸を感度、横軸を(1-特異度)として、ROC曲線を引いた。
CKB遺伝子とその他のマーカー遺伝子を組み合わせた場合の大腸癌検出の感度及び特異度を算出し、比較した。算出結果を表7及び8に示す。
上記で設定したカットオフ値を用いて各サンプルの陽性・陰性を判断し、病期ごとの大腸腫瘍検出の感度及び特異度を算出し、免疫学的便潜血検査(IFOBT(single))の結果と比較した。算出結果を表9に示す。表9中、「0_Ca」~「IV_Ca」は、それぞれ、大腸癌の病期0期~IV期を示す。この結果、CKB遺伝子は、0期の大腸癌を免疫学的便潜血検査よりも高い感度で検出し得ることがわかった。
CKB遺伝子とその他のマーカー遺伝子を組み合わせた場合の病期ごとの大腸腫瘍検出の感度を算出し、比較した。算出結果を表10に示す。この結果、CKB遺伝子にその他の遺伝子、特にCOX-2遺伝子やMMP-7遺伝子を組み合わせることにより、単独では感度が低かった大腸腫瘍の検出感度を高められることが明らかとなった。中でも、CKB遺伝子とCOX-2遺伝子に、更にMMP-7遺伝子、Snail遺伝子、MMP-1遺伝子、又はB2M遺伝子を組み合わせて用いることにより、非常に高い感度で大腸進行腺腫や0期やI期の癌を検出し得ることが分かった。特に、適切なカットオフ値を設定することにより、大腸進行腺腫を50%以上という非常に高い感度で検出し得ることもわかった。
CKB遺伝子とその他のマーカー遺伝子を組み合わせた場合の累積病期の大腸腫瘍検出の感度を算出し、免疫学的便潜血検査(IFOBT(single))の結果と比較した。算出結果を表11に示す。表11中、「Ad~0_Ca」~「Ad~IV_Ca」は、それぞれ、大腸進行腺腫から大腸癌の各病期までの累積病期を示す。表11では、比較対象として、COX-2遺伝子単独で用いた場合と、COX-2遺伝子とMMP-1遺伝子を組み合わせた場合も示している。これらの結果からも、CKB遺伝子に他のマーカー遺伝子を組み合わせて用いることにより、高感度で大腸腫瘍を検出し得ること、さらにCOX-2遺伝子を組み合わせて用いることにより、特にCOX-2遺伝子とMMP-7遺伝子を組み合わせて用いることにより、非常に高い感度で大腸腫瘍を検出し得ることが明らかである。
Claims (9)
- マーカー遺伝子を用いて、大腸腫瘍を検出する方法であって、
(A)被験者から採取した糞便中に含まれるRNAを抽出する工程と、
(B)前記工程(A)において得られたRNA中のマーカー遺伝子由来RNAの量を測定する工程と、
(C)前記工程(B)において測定されたマーカー遺伝子由来RNAの量と、マーカー遺伝子の種類ごとに予め設定された閾値とを比較する工程と、
を有し、
前記マーカー遺伝子がCKB(Creatine kinase B)遺伝子であることを特徴とする大腸腫瘍の検出方法。 - 前記マーカー遺伝子として、さらに、COX-2(Cyclooxygenase-2)遺伝子、MMP-7(Matrix metalloproteinase-7)遺伝子、Snail遺伝子、MMP-1(Matrix metalloproteinase-1)遺伝子、及びB2M(β2 microglobulin)遺伝子からなる群より選択される1種以上の遺伝子を用いることを特徴とする請求項1記載の大腸腫瘍の検出方法。
- 前記マーカー遺伝子として、さらに、COX-2遺伝子を用いることを特徴とする請求項1記載の大腸腫瘍の検出方法。
- 前記マーカー遺伝子として、さらに、MMP-7遺伝子、Snail遺伝子、MMP-1遺伝子、及びB2M遺伝子からなる群より選択される1種以上の遺伝子を用いることを特徴とする請求項3記載の大腸腫瘍の検出方法。
- 前記マーカー遺伝子として、さらに、MMP-7遺伝子を用いることを特徴とする請求項1記載の大腸腫瘍の検出方法。
- 大腸腺種又は大腸早期癌を検出することを特徴とする請求項3~5のいずれか一項に記載の大腸腫瘍の検出方法。
- 前記被験者が、大腸腫瘍に罹患していると診断されたことがあり、
前記被験者から経時的に採取された糞便に対して、それぞれ、前記工程(A)~(C)を行い、当該被験者の大腸腫瘍の再発可能性をモニタリングするためになされることを特徴とする請求項1~5のいずれか一項に記載の大腸腫瘍の検出方法。 - CKB(Creatine kinase B)遺伝子からなることを特徴とする大腸腫瘍の遺伝子マーカー。
- 糞便中に含まれるRNAを抽出するための機器又は薬剤と、
CKB(Creatine kinase B)遺伝子由来RNAを検出するためのプローブ又はプライマーの少なくともいずれか一方と、
を含むことを特徴とする糞便を用いて大腸腫瘍を検出するためのキット。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/704,194 US20130090258A1 (en) | 2010-06-16 | 2011-06-03 | Method for detecting colorectal tumor |
EP11795575.7A EP2584045A4 (en) | 2010-06-16 | 2011-06-03 | METHOD FOR DETECTING COLORECTAL TUMOR |
JP2012520368A JP5851400B2 (ja) | 2010-06-16 | 2011-06-03 | 大腸腫瘍の検出方法 |
CN201180029067.2A CN102947468B (zh) | 2010-06-16 | 2011-06-03 | 大肠肿瘤的检测方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-137460 | 2010-06-16 | ||
JP2010137460 | 2010-06-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011158667A1 true WO2011158667A1 (ja) | 2011-12-22 |
Family
ID=45348073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/062785 WO2011158667A1 (ja) | 2010-06-16 | 2011-06-03 | 大腸腫瘍の検出方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20130090258A1 (ja) |
EP (1) | EP2584045A4 (ja) |
JP (1) | JP5851400B2 (ja) |
CN (1) | CN102947468B (ja) |
WO (1) | WO2011158667A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103575711A (zh) * | 2012-07-24 | 2014-02-12 | 日本光电工业株式会社 | 用于分析细胞的方法和装置 |
WO2014071067A3 (en) * | 2012-10-31 | 2014-07-03 | The Rockefeller University | Treatment and diagnosis of colon cancer |
JP2015177745A (ja) * | 2014-03-18 | 2015-10-08 | 愛知県 | 肺癌の検査方法 |
US9399028B2 (en) | 2012-08-13 | 2016-07-26 | The Rockefeller University | Treatment of drug resistant cancer |
CN107110865A (zh) * | 2014-08-22 | 2017-08-29 | 雅培制药有限公司 | 用于结肠直肠癌的早期检测的方法 |
US10669296B2 (en) | 2014-01-10 | 2020-06-02 | Rgenix, Inc. | LXR agonists and uses thereof |
US11174220B2 (en) | 2019-12-13 | 2021-11-16 | Inspirna, Inc. | Metal salts and uses thereof |
US11214536B2 (en) | 2017-11-21 | 2022-01-04 | Inspirna, Inc. | Polymorphs and uses thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112226521B (zh) * | 2020-12-10 | 2021-03-16 | 康妍葆(北京)干细胞科技有限公司 | 鉴定牙周膜干细胞的试剂盒及方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK1033364T3 (da) * | 1999-03-01 | 2005-06-06 | Pfizer Prod Inc | Cyanholdige oxamidsyrer og -derivater som thyroideareceptorligander |
US7235358B2 (en) * | 2001-06-08 | 2007-06-26 | Expression Diagnostics, Inc. | Methods and compositions for diagnosing and monitoring transplant rejection |
US20060141493A1 (en) * | 2001-11-09 | 2006-06-29 | Duke University Office Of Science And Technology | Atherosclerotic phenotype determinative genes and methods for using the same |
WO2007018257A1 (ja) * | 2005-08-10 | 2007-02-15 | Hamamatsu Foundation For Science And Technology Promotion | 大腸癌マーカー検出方法 |
US20090011413A1 (en) * | 2005-12-14 | 2009-01-08 | Canon Kabushiki Kaisha | Method for screening colon cancer cells and gene set used for examination of colon cancer |
JP5303132B2 (ja) * | 2007-09-20 | 2013-10-02 | シスメックス株式会社 | がん細胞の存否を判定する方法及び装置 |
-
2011
- 2011-06-03 CN CN201180029067.2A patent/CN102947468B/zh not_active Expired - Fee Related
- 2011-06-03 JP JP2012520368A patent/JP5851400B2/ja active Active
- 2011-06-03 WO PCT/JP2011/062785 patent/WO2011158667A1/ja active Application Filing
- 2011-06-03 US US13/704,194 patent/US20130090258A1/en not_active Abandoned
- 2011-06-03 EP EP11795575.7A patent/EP2584045A4/en not_active Withdrawn
Non-Patent Citations (10)
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9658214B2 (en) | 2012-07-24 | 2017-05-23 | Nihon Kohden Corporation | Method and apparatus for analyzing cells |
CN103575711A (zh) * | 2012-07-24 | 2014-02-12 | 日本光电工业株式会社 | 用于分析细胞的方法和装置 |
US10945978B2 (en) | 2012-08-13 | 2021-03-16 | The Rockefeller University | Treatment and diagnosis of melanoma |
US9962348B2 (en) | 2012-08-13 | 2018-05-08 | The Rockefeller University | Treatment and diagnosis of melanoma |
US9399028B2 (en) | 2012-08-13 | 2016-07-26 | The Rockefeller University | Treatment of drug resistant cancer |
US11865094B2 (en) | 2012-08-13 | 2024-01-09 | The Rockefeller University | Treatment and diagnosis of melanoma |
US9526710B2 (en) | 2012-08-13 | 2016-12-27 | The Rockefeller University | Treatment and diagnosis of melanoma |
US10543183B2 (en) | 2012-08-13 | 2020-01-28 | The Rockefeller University | Treatment and diagnosis of melanoma |
US9707195B2 (en) | 2012-08-13 | 2017-07-18 | The Rockefeller University | Treatment and diagnosis of melanoma |
US10172817B2 (en) | 2012-10-31 | 2019-01-08 | The Rockefeller University | Treatment and diagnosis of colon cancer |
US10406128B2 (en) | 2012-10-31 | 2019-09-10 | The Rockefeller University | Treatment and diagnosis of colon cancer |
US9040497B2 (en) | 2012-10-31 | 2015-05-26 | The Rockefeller University | Treatment and diagnosis of colon cancer |
WO2014071067A3 (en) * | 2012-10-31 | 2014-07-03 | The Rockefeller University | Treatment and diagnosis of colon cancer |
US9492414B2 (en) | 2012-10-31 | 2016-11-15 | The Rockefeller University | Treatment and diagnosis of colon cancer |
US10669296B2 (en) | 2014-01-10 | 2020-06-02 | Rgenix, Inc. | LXR agonists and uses thereof |
JP2015177745A (ja) * | 2014-03-18 | 2015-10-08 | 愛知県 | 肺癌の検査方法 |
CN107110865A (zh) * | 2014-08-22 | 2017-08-29 | 雅培制药有限公司 | 用于结肠直肠癌的早期检测的方法 |
US11214536B2 (en) | 2017-11-21 | 2022-01-04 | Inspirna, Inc. | Polymorphs and uses thereof |
US11174220B2 (en) | 2019-12-13 | 2021-11-16 | Inspirna, Inc. | Metal salts and uses thereof |
US11459292B2 (en) | 2019-12-13 | 2022-10-04 | Inspirna, Inc. | Metal salts and uses thereof |
US11878956B2 (en) | 2019-12-13 | 2024-01-23 | Inspirna, Inc. | Metal salts and uses thereof |
Also Published As
Publication number | Publication date |
---|---|
EP2584045A4 (en) | 2013-12-04 |
JP5851400B2 (ja) | 2016-02-03 |
CN102947468B (zh) | 2014-03-19 |
EP2584045A1 (en) | 2013-04-24 |
CN102947468A (zh) | 2013-02-27 |
US20130090258A1 (en) | 2013-04-11 |
JPWO2011158667A1 (ja) | 2013-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5851400B2 (ja) | 大腸腫瘍の検出方法 | |
KR102354660B1 (ko) | 정량 pcr, 프라이머 및 키트에 의한 인간 대변 시료로부터의 대장암의 진단 방법 | |
CN108977543B (zh) | 一种基于联合检测sdc2和sfrp2基因甲基化水平的结直肠癌早期诊断试剂 | |
JP6897970B2 (ja) | 大腸腫瘍の有無を検査する方法 | |
JP2015517321A (ja) | 定量的多重メチル化特異的PCR法−cMethDNA、試薬、及びその使用 | |
EP3800273A1 (en) | Use of detection reagent for detecting methylation of genes associated with colorectal cancer, and kit | |
WO2019144277A1 (zh) | 鉴定结直肠癌状态的方法和试剂盒 | |
WO2017054325A1 (zh) | 乳腺癌联合诊断标志物及检测试剂盒 | |
JP2019522478A (ja) | 遺伝子発現プロファイルを用いた肺癌の診断のための組成物及び方法 | |
CN110229899B (zh) | 用于结直肠癌早期诊断或预后预测的血浆标记物组合 | |
US20040259101A1 (en) | Methods for disease screening | |
JP5806122B2 (ja) | 潰瘍性大腸炎の検出方法 | |
JP6608424B2 (ja) | 前癌性結腸直腸ポリープおよび結腸直腸癌を特定するための方法およびキット | |
JP2013542733A (ja) | 結腸直腸癌のスクリーニング方法 | |
US20110097271A1 (en) | Colon Cancer Associated Transcript 1 (CCAT1) As A Cancer Marker | |
JP2019531738A (ja) | 前立腺癌の診断と予後のためのインドールアミン−2,3−ジオキシゲナーゼ アッセイ | |
EP2203570B1 (en) | 3.4 kb mitochondrial dna deletion for use in the detection of cancer | |
JP7239973B2 (ja) | 前癌病変又は癌の有無の予測を補助する方法 | |
JP6103866B2 (ja) | 大腸ガン検出方法、診断用キット及びdnaチップ | |
JP7299765B2 (ja) | マイクロrna測定方法およびキット | |
CN114672560A (zh) | 通过外泌体miRNA标志物鉴定结直肠癌状态的检测试剂盒和方法 | |
CN113832142A (zh) | 粪便人类基因组dna提取方法及应用 | |
CN116814790A (zh) | Pitx2基因作为标志物在检测肺癌中的应用 | |
CN117187388A (zh) | Grik2基因作为标志物在制备肺癌检测试剂盒中的应用 | |
CN109182520A (zh) | 一种宫颈癌及其癌前病变检测试剂盒及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180029067.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11795575 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2012520368 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13704194 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2011795575 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011795575 Country of ref document: EP |