WO2011158646A1 - レーザ発生装置及びレーザ発生方法 - Google Patents

レーザ発生装置及びレーザ発生方法 Download PDF

Info

Publication number
WO2011158646A1
WO2011158646A1 PCT/JP2011/062538 JP2011062538W WO2011158646A1 WO 2011158646 A1 WO2011158646 A1 WO 2011158646A1 JP 2011062538 W JP2011062538 W JP 2011062538W WO 2011158646 A1 WO2011158646 A1 WO 2011158646A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
wavelength
polarization
conversion unit
optical path
Prior art date
Application number
PCT/JP2011/062538
Other languages
English (en)
French (fr)
Inventor
梶山 康一
水村 通伸
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Publication of WO2011158646A1 publication Critical patent/WO2011158646A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/354Third or higher harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0057Temporal shaping, e.g. pulse compression, frequency chirping

Definitions

  • the present invention relates to a laser generation apparatus and a laser generation method, and more particularly, to a laser generation apparatus and a laser generation method for extending the pulse width of laser light by combining after separating optical path lengths between separated laser lights. About.
  • a pulse irradiation apparatus that separates pulse laser light into optical paths having different optical path lengths, and then combines the separated pulse lights to shape the waveform so as to arbitrarily change the temporal pulse width.
  • a laser beam is separated into two laser beams by a first half mirror, and the laser beam that is reflected by the first half mirror is advanced by a pair of total reflection mirrors.
  • the two laser beams are synthesized by a second half mirror that is refracted in a direction orthogonal to the laser beam that passes through the half mirror and is arranged at a point where the two laser beams intersect.
  • each of the two laser beams is further separated into transmitted light and reflected light.
  • Two combined lights traveling to are generated, and half of the light cannot be used. That is, the two laser lights incident on the half mirror are separated into transmitted light and reflected light, respectively, and the transmitted light of one laser light and the reflected light of the other laser light are combined, and one laser light is combined. Since the reflected light of the light and the transmitted light of the other laser beam are combined and the two combined lights are emitted in two directions, one of the combined lights is used, and the other The combined light cannot be used.
  • Patent Document 1 a part of the laser light that escapes from the optical path is recirculated to the optical path using a pair of total reflection mirrors. In such a configuration, the final combined pulse light is recirculated. There is a problem that the waveform is different from that of the pulsed light when not performed. Further, for example, in annealing treatment using laser light, there are cases where it is desired to irradiate laser light having a plurality of wavelengths after extending the pulse width, respectively. Since the device extends the pulse width, there is a problem in that it cannot respond to the above-described requirement of the irradiation pattern.
  • the present invention addresses such a problem and provides a laser generator and a laser generation method for extending the pulse width (light emission time) of laser light by combining the separated laser lights with an optical path length difference.
  • Laser light can be used without waste, laser light having a desired waveform can be easily obtained, and laser light having a plurality of wavelengths can be emitted with their pulse widths extended. For the purpose.
  • a laser generator synthesizes a plurality of laser light beams of a plurality of wavelengths by combining a wavelength conversion unit for separation that separates the laser beams according to wavelengths, and the laser light of each wavelength.
  • a wavelength conversion unit for synthesis that emits laser light of a wavelength, a polarization conversion unit for separation that separates laser light according to polarization components, and a plurality of polarization components separated by the polarization conversion unit for separation An optical path for guiding at least one of the combining polarization conversion unit to be combined and the polarization component separated by the separation polarization conversion unit to the combining polarization conversion unit while giving an optical path length difference to the other polarization components
  • a combination with a length difference providing unit is provided for each wavelength to be separated by the separation wavelength conversion unit, and each laser beam of each wavelength separated by the separation wavelength conversion unit
  • the separation for polarization conversion unit is separated into polarization components, and the laser light of each wavelength the synthesis polarization conversion unit is synthesized to be combined by the combining wavelength conversion unit.
  • an optical path length difference is given between laser beams of each wavelength, and the laser light of each wavelength is converted into the wavelength conversion unit for synthesis according to the optical path length difference. Can be sequentially emitted.
  • the laser light having an extended pulse width is emitted with a time difference for each different wavelength, and the emission order for each wavelength can be selected by setting the optical path length difference.
  • a laser oscillation unit that generates laser light having a single wavelength and a harmonic generation unit that generates a harmonic by converting the wavelength of the laser light having the single wavelength can be further provided.
  • the laser oscillation unit is a YAG laser that generates laser light having a fundamental wavelength of 1064 nm
  • the harmonic generation unit includes an SHG crystal that generates a second harmonic and a THG crystal that generates a third harmonic.
  • the laser beam having a wavelength of at least 1064 nm, 532 nm, and 355 nm can be output.
  • a laser oscillation unit having the same oscillation wavelength as the fundamental wavelength can be provided in the optical path of the laser beam having the fundamental wavelength separated by the wavelength conversion unit for separation.
  • the output of the laser light having the fundamental wavelength separated by the separation wavelength conversion unit can be enhanced in the middle of the optical path.
  • the wavelength conversion unit for separation and the wavelength conversion unit for synthesis can be configured by a dichroic mirror or a dichroic prism, and the wavelength for transmission and reflection of the wavelength conversion unit for separation and the wavelength conversion unit for synthesis are different from each other.
  • a plurality of dichroic mirrors or dichroic prisms may be provided, and one of the plurality of dichroic mirrors or dichroic prisms may be selectively installed on the optical path.
  • the separation polarization conversion unit and the synthesis polarization conversion unit can be configured by a polarization beam splitter, and the optical path length difference providing unit can be configured by a total reflection mirror.
  • the optical path length difference providing unit can be configured by disposing a high refractive index optical medium on an optical path of a polarization component whose geometric optical path length is longer than the other. In such a configuration, by arranging the high refractive index optical medium on the optical path, the optical optical path length can be made longer than the geometric optical path length, and a larger optical path length difference can be given.
  • the laser generator according to the present invention separates a laser beam containing at least one harmonic together with a fundamental wave into a dichroic mirror for separation for each wavelength, and separates each laser beam of each wavelength into two polarization components.
  • a combining beam dicing and combining laser beam for each wavelength combined by the combining polarizing beam splitter is combined on the same optical axis.
  • the laser light is separated according to the wavelength by the dichroic mirror, and the laser light for each wavelength is separated into two polarization components by the polarization beam splitter.
  • the polarized light component reflected by the polarizing beam splitter is reflected by a pair of total reflection mirrors, so that it travels an optical path longer than the polarized light component transmitted through the polarizing beam splitter, and the two polarized light components having a given optical path length difference are converted into a polarized beam.
  • the laser beams for each wavelength obtained by combining with a splitter and further combining the polarization components are combined with a dichroic mirror for synthesis.
  • the laser generation method includes a step of separating laser light including at least one harmonic together with a fundamental wave for each wavelength, and a step of separating each laser light of each wavelength according to a polarization component,
  • the method includes a step of giving an optical path length difference between the separated polarization components, a step of synthesizing the polarization components giving the optical path length difference, and a step of synthesizing laser light for each wavelength obtained by synthesizing the polarization components.
  • the laser light including at least one harmonic together with the fundamental wave is separated for each wavelength, the separated laser light of each wavelength is separated according to the polarization component, and the optical path length for each separated polarization component
  • the laser beam is synthesized for each wavelength after synthesizing after giving the difference and synthesizing this polarization component.
  • the laser generating apparatus and the laser generating method of the present invention it is possible to synthesize laser light having an optical path length difference (phase difference) by polarization conversion (reflection / transmission) using the difference in the vibration direction of the polarization component.
  • the combined laser beam can be emitted in one direction, the optical path length difference can be increased, and the use efficiency of the laser beam with an extended pulse width can be increased, and the laser beam does not escape to the outside of the optical path. Therefore, reflux for ensuring utilization efficiency is not necessary, and a change in waveform due to reflux can be avoided.
  • the emission order of the laser light of each wavelength can be arbitrarily set.
  • FIG. 1 is a block diagram showing a laser annealing apparatus including the laser generating apparatus according to the present invention and applying the laser generating method according to the present invention.
  • a laser annealing apparatus 1 shown in FIG. 1 is for crystallization by irradiating a semiconductor film (not shown) formed on a substrate 2 with a laser beam 3 to melt and solidify the semiconductor film. Laser annealing for converting the silicon film into polysilicon by laser irradiation is performed.
  • the laser annealing apparatus 1 includes a laser generation apparatus 4, a beam shaping optical system 5 that shapes the laser light from the laser generation apparatus 4 and condenses, for example, as a linear beam on the surface of the semiconductor film, and a substrate stage on which the substrate 2 is placed.
  • the laser generator 4 includes a YAG laser (laser oscillation unit) 11 as a laser light source, an SHG crystal 12 (harmonic generation unit) that generates a second harmonic, and a THG crystal 13 (harmonic generation) that generates a third harmonic. Unit) and a pulse width extender 14 for extending the pulse width of the laser light.
  • the YAG laser 11 is a solid laser having an oscillation wavelength of 1064 nm, which is composed of a combination of a YAG rod and a flash lamp
  • the SHG crystal 12 is a laser beam having a wavelength of 532 nm which is 1 ⁇ 2 of the fundamental wavelength ⁇ .
  • (Second harmonic) is generated, and the THG crystal 13 generates laser light (third harmonic) having a wavelength of 355 nm, which is 1/3 of the fundamental wavelength
  • the pulse width extender 14 has a wavelength of 1064 nm, 532nm and 355nm laser light is emitted.
  • the laser light source is not limited to the YAG laser 11, but may be another solid-state laser such as an excimer laser. Therefore, the fundamental wavelength ⁇ of the laser light is not limited to 1064 nm.
  • the pulse width extender 14 includes optical elements such as dichroic mirrors 31 to 34, polarization beam splitters 51 and 52, and total reflection mirrors 41 to 44.
  • a laser beam LS combined wave of fundamental wave, second harmonic wave, and third harmonic wave
  • a first dichroic mirror 31 a wavelength conversion unit for separation
  • a dichroic prism may be used in place of the dichroic mirrors 31 to 34.
  • the first dichroic mirror 31 transmits light having a wavelength of 355 nm or less (laser light L3; third harmonic), and has light having wavelengths longer than 355 nm (laser lights L1 and L2 having 1064 nm and 532 nm; fundamental wave and second harmonic). Wave). Accordingly, among the three laser beams LS having wavelengths of 1064 nm, 532 nm, and 355 nm incident on the first dichroic mirror 31, the laser beam L3 having a wavelength of 355 nm passes through the first dichroic mirror 31 and travels straight, whereas the wavelengths of 1064 nm and 532 nm.
  • the laser beams L1 and L2 are incident on the mirror surface of the first dichroic mirror 31 at an incident angle of 45 deg and reflected, and the laser beams L1 and L2 are refracted by 90 deg with respect to the incident direction with respect to the first dichroic mirror 31. move on.
  • the laser light LS including the wavelengths of 1064 nm, 532 nm, and 355 nm is separated into two light beams of the laser light L3 having the wavelength of 355 nm and the laser beams L1 and L2 having the wavelengths of 1064 nm and 532 nm.
  • the second dichroic mirror 32 (the wavelength conversion unit for separation) is on the optical axis of the laser beams L1 and L2 reflected by the first dichroic mirror 31 and has a mirror surface parallel to the first dichroic mirror 31. ) And the laser beams L 1 and L 2 reflected by the first dichroic mirror 31 are incident on the second dichroic mirror 32.
  • the second dichroic mirror 32 transmits light having a wavelength of 1064 nm or more (laser light L1; fundamental wave) and reflects light having a wavelength shorter than 1064 nm (laser light L2 having a wavelength of 532 nm; second harmonic). It is.
  • the laser beam L1 having a wavelength of 1064 nm is transmitted through the second dichroic mirror 32 and is transmitted to the first and second dichroic mirrors.
  • the laser beam L2 having a wavelength of 532 nm is incident on the mirror surface of the second dichroic mirror 32 at an incident angle of 45 deg and reflected, and the laser beam L2 is reflected by the second dichroic mirror 32. Is refracted by 90 degrees with respect to the incident direction with respect to, and proceeds toward the right side in FIG.
  • the second dichroic mirror 32 separates the light beam into two light beams of a laser beam L1 having a wavelength of 1064 nm and a laser beam L2 having a wavelength of 532 nm.
  • the first total reflection mirror is on the optical axis of the laser beam L1 that has passed through the second dichroic mirror 32 and has a mirror surface parallel to the first dichroic mirror 31 and the second dichroic mirror 32.
  • the laser beam L1 transmitted through the second dichroic mirror 32 is incident on the mirror surface of the first total reflection mirror 41 at an incident angle of 45 deg and reflected, and the laser beam L1 is reflected by the first total reflection mirror 41.
  • the light is refracted by 90 degrees with respect to the incident direction with respect to the reflecting mirror 41, and proceeds toward the right side in FIG. 2, that is, in parallel with the incident direction of the laser light LS with respect to the first dichroic mirror 31.
  • the laser light LS including the three wavelengths 1064 nm, 532 nm, and 355 nm is transmitted to the first dichroic mirror 31 and the second dichroic mirror 32 (separation wavelength conversion unit), and the wavelength 1064 nm (basic wavelength).
  • the laser beam L3 transmitted through the first dichroic mirror 31, the laser beam L2 reflected by the second dichroic mirror 32, and the laser beam L1 having a wavelength of 1064 nm reflected by the first total reflection mirror 41 are parallel to each other.
  • the laser light travels in the same direction (right side in FIG. 2).
  • the separation polarization beam splitter 51 (separation polarization conversion unit) separates the laser light into two in accordance with the polarization component, and one of the separated polarization components is converted into a total reflection mirror.
  • the optical path length difference (phase difference) is set by advancing on the optical path longer than the other using 42 and 43, and then combined using the combining polarization beam splitter 52 (combining polarization conversion unit).
  • the first polarizing beam splitter 51 (L3) is arranged on the optical axis of the laser beam L3 that has passed through the first dichroic mirror 31 so that the polarizing film is parallel to the mirror surface of the first dichroic mirror 31. It is.
  • the polarizing beam splitters 51 and 52 for example, a cube-shaped one in which a polarizing film is coated and adhered to the slope of a 45 deg rectangular prism can be used.
  • the laser beam L3 transmitted through the first dichroic mirror 31 is incident on the polarizing film of the first polarizing beam splitter 51 (L3) at an incident angle of 45 deg.
  • the P-polarized component L3P of the laser beam L3 is the first polarizing beam splitter 51 (L3).
  • the S-polarized component L3S of the laser light L3 is reflected by the first polarizing beam splitter 51 (L3), and the S-polarized component L3S is incident on the polarizing film of the first polarizing beam splitter 51 (L3).
  • the light is refracted by 90 degrees with respect to the direction, and proceeds downward in FIG.
  • the laser beam L3 having a wavelength of 355 nm is separated into two light beams of the P-polarized component L3P and the S-polarized component L3S by the first polarizing beam splitter 51 (L3).
  • the second total light is on the optical axis of the S-polarized light component L3S reflected by the first polarizing beam splitter 51 (L3) and so that the polarizing film and the mirror surface of the first polarizing beam splitter 51 (L3) are parallel to each other.
  • a reflection mirror 42 (L3) is arranged.
  • the S-polarized component L3S reflected by the first polarizing beam splitter 51 (L3) is incident on the second total reflection mirror 42 (L3) at an incident angle of 45 deg and reflected, and the second total reflection mirror 42 (L3) is reflected.
  • the third total reflection mirror is arranged so that the mirror surface is symmetrical with respect to the second total reflection mirror 42 (L3) on the optical axis of the S polarization component L3S reflected by the second total reflection mirror 42 (L3).
  • 43 (L3) is provided.
  • the S-polarized component L3S of the laser light L3 reflected by the second total reflection mirror 42 (L3) is incident on the third total reflection mirror 43 (L3) at an incident angle of 45 deg and reflected, and the third total reflection is performed. Refracted by 90 deg with respect to the incident direction on the mirror 43 (L3) and directed upward in FIG. 2, that is, on the optical axis of the P-polarized component L3P of the laser light L3 transmitted through the first polarizing beam splitter 51 (L3). Proceed in an orthogonal (crossing) direction.
  • Polarization is performed at a position where the P-polarized component L3P of the laser beam L3 transmitted through the first polarizing beam splitter 51 (L3) and the S-polarized component L3S of the laser beam L3 reflected by the third total reflection mirror 43 (L3) intersect.
  • a second polarization beam splitter 52 (L3) (combining polarization conversion unit) is arranged so that the film is parallel to the mirror surface of the third total reflection mirror 43 (L3).
  • the P-polarized component L3P of the laser beam L3 that has passed through the first polarization beam splitter 51 (L3) is transmitted as it is, while the laser beam reflected by the third total reflection mirror 43 (L3).
  • the S-polarized component L3S of the light L3 is incident on the second polarizing beam splitter 52 (L3) at an incident angle of 45 deg and reflected so that it is refracted by 90 deg and travels in a direction parallel to the optical axis of the P-polarized component L3P.
  • the S-polarized component L3S and the P-polarized component L3P of the laser beam L3 are combined and emitted.
  • the S-polarized component L3S and the P-polarized component L3P are combined in the second polarizing beam splitter 52 (L3), the S-polarized component L3S is delayed in phase with respect to the P-polarized component L3P.
  • the laser beam L3 has a pulse width that is longer than the pulse width when the laser beam L3 is incident on the first polarizing beam splitter 51 (L3) by a phase difference (optical path length difference).
  • the P-polarized component L3P of the laser beam L3 and the S-polarized component L3S of the laser beam L3 whose phase is delayed from the P-polarized component L3P are the same light. It is synthesized on the axis and output.
  • the optical system extending the pulse width by the combination of the first polarizing beam splitter 51, the second polarizing beam splitter 52, the second total reflection mirror 42, and the third total reflection mirror 43 is reflected by the second dichroic mirror 32.
  • the optical system for processing the laser beam L2 having a wavelength of 532 nm and the optical system for processing the laser beam L1 having a wavelength of 1064 nm reflected by the first total reflection mirror 41 are provided. That is, the laser beam L2 having a wavelength of 532 nm reflected by the second dichroic mirror 32 is separated into the P-polarized component L2P and the S-polarized component L2S by the first polarizing beam splitter 51 (L2).
  • the S-polarized component L2S is reflected by the pair of total reflection mirrors 42 (L2) and 43 (L2), travels along the detour optical path, and gives an optical path length difference (phase difference) with the P-polarized component L2P traveling straight.
  • the S polarization component L2S and the P polarization component L2P are synthesized by the second polarization beam splitter 52 (L2), and the laser beam L2 having an extended pulse width is emitted from the second polarization beam splitter 52 (L2).
  • the laser beam L1 having a wavelength of 1064 nm reflected by the first total reflection mirror 41 is separated into the P-polarized component L1P and the S-polarized component L1S by the first polarizing beam splitter 51 (L1).
  • the S-polarized component L1S is reflected by the pair of total reflection mirrors 42 (L1) and 43 (L1), travels along the detour optical path, and gives an optical path length difference (phase difference) with the P-polarized component L1P traveling straight.
  • the S polarization component L1S and the P polarization component L1P are synthesized by the second polarization beam splitter 52 (L1), and the laser beam L1 having an extended pulse width is emitted from the second polarization beam splitter 52 (L1).
  • the process for synthesizing and outputting the laser beams L1 to L3 for each wavelength is performed with the following configuration.
  • the fourth total reflection mirror 44 is arranged so that the polarizing film of the second polarization beam splitter 52 (L1) and the mirror surface are parallel to the optical axis of the laser beam L1 emitted from the second polarization beam splitter 52 (L1).
  • the laser beam L1 emitted from the second polarizing beam splitter 52 (L1) is incident on the fourth total reflection mirror 44 at an incident angle of 45 deg and reflected, and is refracted by 90 deg. It will go upwards.
  • the laser beam L1 composed of the P-polarized component L1P and the S-polarized component L1S whose phase is delayed with respect to the P-polarized component L1P is reflected by the fourth total reflection mirror 44, and the laser beam LS (laser The direction is changed in a direction orthogonal (crossing) to the optical axis of the light L3).
  • the mirror surface is parallel to the fourth total reflection mirror 44 at the point where the optical axis of the reflected light at the fourth total reflection mirror 44 and the optical axis of the output light from the second polarization beam splitter 52 (L2) intersect.
  • the third dichroic mirror 33 (combining wavelength conversion unit) is arranged so that Similar to the second dichroic mirror 32, the third dichroic mirror 33 has a characteristic of transmitting the laser beam L1 having a wavelength of 1064 nm and reflecting the laser beam L2 having a wavelength of 532 nm. Accordingly, the laser light L1 reflected by the fourth total reflection mirror 44 and incident on the third dichroic mirror 33 is transmitted through the third dichroic mirror 33, but is emitted from the second polarization beam splitter 52 (L2).
  • L2 (a laser beam L2 composed of a P-polarized component L2P and an S-polarized component L2S whose phase is delayed with respect to the P-polarized component L2P) is incident on the third dichroic mirror 33 at an incident angle of 45 deg and reflected.
  • the laser beam L1 refracted by 90 deg and transmitted through the third dichroic mirror 33 is synthesized coaxially.
  • the geometric optical path length is longer by a distance twice the distance (distance from the first dichroic mirror 33), and the laser light L1 is emitted from the third dichroic mirror 33 with a delay from the laser light L2.
  • the laser beam L2 is composed of a P-polarized component L2P and an S-polarized component L2S whose phase is delayed with respect to the P-polarized component L2P, and the laser beam L1 is compared with the P-polarized component L1P and the P-polarized component L1P.
  • the third dichroic mirror 33 outputs the P polarization component L2P, the S polarization component L2S, the P polarization component L1P, and the S polarization component L1S in this order.
  • the optical axis of the outgoing light (laser light L1, L2 combined light) from the third dichroic mirror 33 and the optical axis of the outgoing light (laser light L3) from the second polarizing beam splitter 52 (L3) intersect.
  • the fourth dichroic mirror 34 (combination wavelength conversion unit) is arranged so that the plane of polarization is parallel to the third dichroic mirror 33. Similar to the first dichroic mirror 31, the fourth dichroic mirror 34 has a characteristic of transmitting laser light L3 having a wavelength of 355 nm and reflecting laser light L1 and L2 having wavelengths of 1064 nm and 532 nm.
  • the laser beams L1 and L2 emitted from the third dichroic mirror 33 are incident on the fourth dichroic mirror 34 at an incident angle of 45 deg and reflected so that they are refracted by 90 deg and proceed to the right in FIG.
  • the laser beam L3 emitted from the second polarization beam splitter 52 (L3) travels through the fourth dichroic mirror 34.
  • the emitted light from the fourth dichroic mirror 34 is a combination of the laser beams L1, L2, and L3.
  • the geometric optical path length is longer by a distance twice the distance (distance from the dichroic mirror 34), and the laser light L2 is emitted from the fourth dichroic mirror 34 with a delay from the laser light L3.
  • the emission order from the fourth dichroic mirror 34 is the order of the laser light L3, the laser light L2, and the laser light L1, and more specifically, the P-polarized component L3P, the S-polarized component L3S, the P-polarized component L2P, and the S-polarized light.
  • the component L2S, the P-polarized component L1P, and the S-polarized component L1S are output in this order.
  • the laser beam L1 reaches the fourth dichroic mirror 34 via the first dichroic mirror 31, the second dichroic mirror 32, the first total reflection mirror 41, the fourth total reflection mirror 44, and the third dichroic mirror 33.
  • the laser beam L2 reaches the fourth dichroic mirror 34 via the first dichroic mirror 31, the second dichroic mirror 32, and the third dichroic mirror 33, and the laser beam L3 is transmitted from the first dichroic mirror 31 to the fourth dichroic mirror.
  • the phase of the laser beam L2 is delayed with respect to the laser beam L3, and further, the phase of the laser beam L1 is delayed with respect to the laser beam L2, so that the emission order from the fourth dichroic mirror 34 is As described above, the laser beam L3 (wavelength 355 nm), the laser beam L2 (wavelength 532 nm), and the laser L1 (wavelength 1064 nm) are arranged in this order.
  • the laser beam L3 is applied to the semiconductor film. (Wavelength 355 nm), laser light L2 (wavelength 532 nm), and laser L1 (wavelength 1064 nm) are irradiated in this order.
  • each of the laser beams L1 to L3 synthesizes and outputs the P-polarized components L1P to L3P and the S-polarized components L1S to L3S whose phases are delayed from the P-polarized components L1P to L3P on the same optical axis.
  • the P polarization component L1P of the light L1 and the S polarization component L1S of the laser light L1 are in this order.
  • the first polarization beam splitter 51 separates the single-wavelength laser light according to the polarization component, and one polarization component is advanced along the detour optical path using the total reflection mirrors 42 and 43.
  • the pulse width is increased by combining the one polarization component (giving the optical path length difference) and the other polarization component that travels straight by the second polarization beam splitter 52, so that the laser beam having the pulse width increased.
  • the two laser beams with different optical path lengths are incident on a beam splitter (half mirror) and combined, the two laser beams to be combined are reflected and transmitted by the combining beam splitter in two directions. Since they are separated from each other, the synthesized light is also divided into two directions, and one of the synthesized lights cannot be used.
  • the second polarization is changed depending on the polarization direction. Since it is determined that either the beam is transmitted through the beam splitter 52 or reflected by the second polarizing beam splitter 52, the two laser beams having different optical path lengths are combined into a one-direction light beam and emitted. Thus, the laser beam can be used effectively, and the laser beam does not escape to the outside of the optical path. Therefore, reflux for ensuring the use efficiency is unnecessary, and a change in waveform due to the reflux can be avoided.
  • the laser light including the second harmonic L2 and the third harmonic L3 together with the fundamental wave L1 is separated for each wavelength using the dichroic mirrors 31 and 32, and the separated laser light
  • the process of extending the pulse width is performed for each of L1 to L3
  • the separated laser beams L1 to L3 are guided to the optical system for extending the pulse width provided corresponding to each of the laser beams L1 to L3.
  • an optical path length difference is given between the laser beams L1 to L3, and when the laser beams L1 to L3 are combined, they are emitted in the order corresponding to the optical path length difference.
  • the order of the optical path lengths of the laser beams L1 to L3 can be arbitrarily set by selecting the wavelength transmitted by the dichroic mirror, for example, in annealing, the power and absorption rate of the laser beams L1 to L3, etc.
  • the laser beams L1 to L3 can be emitted in an appropriate irradiation order based on the difference.
  • the laser beam L1 having the highest power at the fundamental wavelength is irradiated last, so that the lower layer film of the amorphous silicon film is damaged by irradiating the laser beam L1 having the highest power first. Can be avoided. It should be noted that damage to the lower layer film of the amorphous silicon film can be avoided even if the laser light L1 having the fundamental wavelength is irradiated second by setting the wavelength transmitted and reflected by the dichroic mirror.
  • the number of types of wavelengths included in the laser light is not limited to three, but the number of separation stages by the dichroic mirror is increased or decreased according to the increase or decrease of the types of wavelengths, and the polarization beam splitter 51, What is necessary is just to provide the optical system which consists of 52 and the total reflection mirrors 42 and 43.
  • FIG. 1 the number of types of wavelengths included in the laser light is not limited to three, but the number of separation stages by the dichroic mirror is increased or decreased according to the increase or decrease of the types of wavelengths, and the polarization beam splitter 51, What is necessary is just to provide the optical system which consists of 52 and the total reflection mirrors 42 and 43.
  • the high refractive index optical medium 61 can be disposed on the optical path between the total reflection mirror 42 and the total reflection mirror 43.
  • the optical path length can be expressed as the product of the geometric length along the path and the refractive index of the medium when light passes through the medium.
  • an optical glass rod or a yttrium vanadate (YVO 4 ) crystal is used as the high refractive index optical medium 61 disposed on the bypass optical path of the polarization component to be bypassed. Or can be placed on the road.
  • the high refractive index optical medium 61 is provided as described above, the pair of total reflection mirrors 42 and 43 for setting a long geometric optical path and the high refractive index optical medium 61 constitute an optical path length difference providing unit.
  • a laser chamber (laser oscillation unit) 73 provided with a YAG rod 71 and a flash lamp 72 in the optical path of laser light L1 having a fundamental wavelength (wavelength 1064 nm) separated by the second dichroic mirror 32.
  • the laser chamber 73 is oscillated in synchronism with the YAG laser 11, the laser beam L1 can be enhanced in the middle of the optical path, and finally the laser beam L1 emitted from the fourth dichroic mirror 34 Strength can be increased.
  • the laser light L1 after being enhanced in the laser chamber 73 is caused to pass through the SHG crystal and the THG crystal, so that the laser light LS including the fundamental wave, the second harmonic wave, and the third harmonic wave is generated again.
  • the laser light LS is incident on the optical system including the dichroic mirrors 31 to 34, the total reflection mirrors 41 and 44, and the polarization beam splitters 51 and 52 for each wavelength and the total reflection mirrors 42 and 43, and the pulse width is increased in multiple stages. Can be extended.
  • the high refractive index optical medium 61 can be further provided. Further, by arranging an attenuation filter in at least one of the optical paths of the separated laser beams L1 to L3, it is possible to adjust the intensity balance between the laser beams L1 to L3 when they are finally combined and emitted. it can. Furthermore, although the laser generator and laser generation method according to the present invention are applied to the laser annealing apparatus 1 in the above embodiment, the application target is not limited to the laser annealing apparatus 1.
  • the total reflection mirror, the polarization beam splitter, and the dichroic mirror are configured such that the laser light is refracted by 90 degrees.
  • the refraction angle is not limited to 90 degrees (incident angle is 45 degrees).
  • the light can be refracted in a direction obliquely intersecting the optical axis of the incident light.
  • the polarization beam splitter 51 and the total reflection mirror 42 are installed such that the polarization plane and the reflection plane are inclined by 45 degrees with respect to the optical axis of the incident light, and the incident angle is 45 degrees.
  • the reflected light from the polarizing beam splitter 51 and the reflected light from the total reflection mirror 42 travel in a direction intersecting 90 deg. With respect to the optical axis of the incident light, that is, a direction orthogonal thereto, but are totally reflected.
  • the total reflection mirror 43 on which the reflected light from the mirror 42 enters is installed so that the incident angle is larger than 45 deg. In the total reflection mirror 43, the reflected light obliquely intersects the optical axis of the incident light. It has become.
  • the polarization beam splitter 52 is arranged in parallel with the total reflection mirror 43, and the reflected light of the total reflection mirror 43 that obliquely intersects the transmitted light of the polarization beam splitter 51 and the reflected light of the total reflection mirror 42 is:
  • the light reflected by the polarizing beam splitter 52 is refracted in the same direction as the optical axis of the transmitted light of the polarizing beam splitter 51.
  • FIG. 5B shows an example in which the combination of the polarization beam splitter 51 and the total reflection mirror 42 is also set so that the incident angle is larger than 45 degrees.
  • the emission order of the laser beams L1 to L3 is fixed, but instead of the first dichroic mirror 31 to the fourth dichroic mirror 34, for example, as shown in FIG.
  • an actuator such as a motor
  • the emission order of the laser beams L1 to L3 can be changed. It can be arbitrarily changed.
  • the dichroic mirror 82a has a characteristic of transmitting only the laser light L1 and reflecting the laser lights L2 and L3, and the dichroic mirror 82b transmits only the laser light L2 and reflects the laser lights L1 and L3.
  • the dichroic mirror 82c transmits only the laser beam L3 and reflects the laser beams L1 and L2. Therefore, in the case of the same emission order (L3, L2, L1) as that in FIG. 2, the laser beam LS is first separated by the dichroic mirror 82c, and the laser beams L1, L2 reflected by the dichroic mirror 82c are converted into dichroic mirrors.
  • the 82a separates the laser light L1 and the laser light L2, and the light emitted from the total reflection mirror 44 and the light emitted from the polarization beam splitter 52 are combined by the dichroic mirror 82a, and the combined laser light and polarization beam splitter are combined. What is necessary is just to synthesize
  • the laser beam LS is first separated by the dichroic mirror 82a, and the laser beams L2 and L3 reflected by the dichroic mirror 82a are separated into the laser beam L2 and the laser beam L3 by the dichroic mirror 82b.
  • the output light of the polarization beam splitter 52 are combined by the dichroic mirror 82b, and the combined laser light and the output light of the polarization beam splitter 51 are combined by the dichroic mirror 82a.
  • the emission order of the light L1 to L3 is L1, L3, L2, and the emission order can be arbitrarily changed.
  • the means for selectively positioning one of the dichroic mirrors 82a to 82c on the optical path is not limited to the means for rotating the disk-shaped holder 81 described above.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Recrystallisation Techniques (AREA)
  • Laser Beam Processing (AREA)
  • Lasers (AREA)

Abstract

 本発明は、レーザ発生装置及びレーザ発生方法に関する。基本波と共に第2高調波,第3高調波を含むレーザ光を、ダイクロイックミラー31,32によって波長毎のレーザ光L1~L3に分離する。そして、レーザ光L1~L3それぞれを、偏光ビームスプリッタ51(L1)~51(L3)によってP偏光成分L1P~L3PとS偏光成分L1S~L3Sとに分離する。偏光ビームスプリッタ51(L1)~51(L3)で反射したS偏光成分L1S~L3Sを、一対の全反射ミラー42(L1)~42(L3),43(L1)~43(L3)によって、P偏光成分L1P~L3Pに直交する方向に屈折させる。そして、P偏光成分L1P~L3PとS偏光成分L1S~L3Sとを、偏光ビームスプリッタ52(L1)~52(L3)で波長毎に同一光軸上に合成する。更に、偏光成分を合成した波長毎のレーザ光L1~L3を、ダイクロイックミラー33,34によって同一光軸上に合成して出力する。これにより、レーザ光を無駄なく利用でき、かつ、所期の波形のレーザ光を容易に得られ、しかも、複数の波長のレーザ光をそれぞれにパルス幅を延ばした上で出射させることができる。

Description

レーザ発生装置及びレーザ発生方法
 本発明は、レーザ発生装置及びレーザ発生方法に関し、詳しくは、分離させたレーザ光の間に光路長差をつけてから合成することで、レーザ光のパルス幅を延ばすレーザ発生装置及びレーザ発生方法に関する。
 従来から、パルスレーザ光を、光路長が異なる光路に分離し、その後、分離されたパルス光を合成して、時間的パルス幅を任意に変えるように波形整形するパルス照射装置が知られている。
 例えば、特許文献1に開示される装置では、第1ハーフミラーでレーザ光を2つのレーザ光に分離し、第1ハーフミラーで反射して進むレーザ光を、一対の全反射ミラーで、第1ハーフミラーを透過して進むレーザ光に直交する方向に向きを屈折させ、前記2つのレーザ光が交差する点に配置した第2ハーフミラーで、2つのレーザ光を合成させている。
 また、特許文献2に開示される装置では、レーザ光を、偏光ビームスプリッタに入射させ、s偏光成分を反射させる一方、p偏光成分を透過させ、s偏光成分を、一対の全反射ミラーによって迂回させた後、偏光ビームスプリッタで再び同一光路上に戻すことで、光路長さが異なる2つのレーザ光を合成させている。
特開平11-074216号公報 特開2005-224827号公報
 しかし、特許文献1のように、ハーフミラー(ビームスプリッタ)で2つのレーザ光を合成させる場合、2つのレーザ光それぞれが、更に透過光と反射光とに分離されるため、実際には異なる方向に進む2つの合成光が発生することになり、半分の光を利用できなくなってしまう。
 即ち、ハーフミラーに入射する2つのレーザ光は、それぞれに透過光と反射光とに分離され、一方のレーザ光の透過光と他方のレーザ光の反射光とが合成され、また、一方のレーザ光の反射光と他方のレーザ光の透過光とが合成され、2つの合成光は2方向に分かれて出射することになるため、いずれか一方の合成光を利用することになってしまい、他方の合成光を利用できない。
 そこで、特許文献1のものでは、光路外に逃げる一部のレーザ光を一対の全反射ミラーを用いて光路に還流させているが、係る構成の場合、最終的な合成パルス光が、還流を行わない場合のパルス光とは異なった波形になってしまうという問題があった。
 また、例えばレーザ光を用いたアニール処理などでは、複数波長のレーザ光をそれぞれにパルス幅を延ばした上で照射させたい場合があるが、特許文献2の装置は、単一波長のレーザ光のパルス幅を延ばす装置であるため、前述の照射パターンの要求に対応することができないという問題があった。
 そこで、本発明は、このような問題点に対処し、分離したレーザ光間に光路長差を与えて合成することでレーザ光のパルス幅(発光時間)を延ばすレーザ発生装置及びレーザ発生方法において、レーザ光を無駄なく利用でき、かつ、所期の波形のレーザ光を容易に得られ、しかも、複数の波長のレーザ光をそれぞれにパルス幅を延ばした上で出射させることができるようにすることを目的とする。
 上記目的を達成するために、本発明に係るレーザ発生装置は、複数波長のレーザ光を、波長に応じて分離する分離用波長変換ユニットと、前記波長毎のレーザ光を合成して、前記複数波長のレーザ光を出射する合成用波長変換ユニットと、を備えると共に、レーザ光を、偏光成分に応じて分離する分離用偏光変換ユニットと、前記分離用偏光変換ユニットが分離した複数の偏光成分を合成する合成用偏光変換ユニットと、前記分離用偏光変換ユニットが分離した偏光成分のうちの少なくとも1つを、他の偏光成分に対して光路長差を与えて前記合成用偏光変換ユニットに導く光路長差付与ユニットと、の組み合わせを、前記分離用波長変換ユニットが分離する波長毎に備え、前記分離用波長変換ユニットが分離した各波長のレーザ光それぞれを、前記分離用偏光変換ユニットで偏光成分に分離し、前記合成用偏光変換ユニットが合成した波長毎のレーザ光を前記合成用波長変換ユニットで合成するようにした。
 このような構成では、分離した波長毎に、偏光成分に応じた分離、光路長差の付与、光路長差を与えた偏光成分の合成が行われ、最終的に、パルス幅を延ばした波長毎のレーザ光を合成する。
 ここで、前記分離用波長変換ユニット及び合成用波長変換ユニットによって、各波長のレーザ光の間に光路長差を与え、該光路長差に応じて各波長のレーザ光を前記合成用波長変換ユニットから順次出射させることができる。
 このような構成では、パルス幅を延ばしたレーザ光が、異なる波長毎に時間差をもって出射されることになり、光路長差の設定によって波長毎の出射順を選択できる。
 また、単一波長のレーザ光を発生するレーザ発振ユニットと、前記単一波長のレーザ光を波長変換して高調波を発生する高調波発生ユニットと、を更に備えることができる。
 そして、前記レーザ発振ユニットを、基本波長が1064nmのレーザ光を発生するYAGレーザとし、前記高調波発生ユニットが、第2高調波を発生するSHG結晶及び第3高調波を発生するTHG結晶を含み、少なくとも1064nm、532nm、355nmの波長のレーザ光を出力することができる。
 更に、前記分離用波長変換ユニットで分離した基本波長のレーザ光の光路途中に、前記基本波長と同じ発振波長のレーザ発振ユニットを備えることができる。
 このような構成では、分離用波長変換ユニットで分離した基本波長のレーザ光の出力が、光路途中で増強できる。
 また、前記分離用波長変換ユニット及び合成用波長変換ユニットを、ダイクロイックミラー又はダイクロイックプリズムで構成でき、更に、前記分離用波長変換ユニット及び合成用波長変換ユニットが、透過・反射させる波長が相互に異なる複数のダイクロイックミラー又はダイクロイックプリズムを備え、この複数のダイクロイックミラー又はダイクロイックプリズムのうちの1つを光路上に選択的に設置するようにできる。
 また、前記分離用偏光変換ユニット及び合成用偏光変換ユニットを、偏光ビームスプリッタで構成でき、更に、前記光路長差付与ユニットを、全反射ミラーで構成できる。
 更に、前記光路長差付与ユニットを、幾何学的光路長を他に比べて長くした偏光成分の光路上に高屈折率光学媒質を配置して構成することができる。このような構成では、光路上に高屈折率光学媒質を配置することで、幾何学的光路長よりも光学的光路長をより長くでき、より大きな光路長差を与えることができる。
 また、本発明に係るレーザ発生装置は、基本波と共に少なくとも1つの高調波を含むレーザ光を、波長毎に分離する分離用のダイクロイックミラーと、各波長のレーザ光それぞれを2つの偏光成分に分離する分離用の偏光ビームスプリッタと、前記分離用の偏光ビームスプリッタで反射した偏光成分の光路を、前記分離用の偏光ビームスプリッタを透過した偏光成分に交差する方向に屈折させる一対の全反射ミラーと、前記分離用の偏光ビームスプリッタを透過した偏光成分と、前記分離用の偏光ビームスプリッタで反射し前記全反射ミラーで光路が屈折された偏光成分とを、同一光軸上に合成する合成用の偏光ビームスプリッタと、前記合成用の偏光ビームスプリッタで合成した波長毎のレーザ光を、同一光軸上に合成する合成用のダイクロイックミラーと、を含む。
 このような構成では、ダイクロイックミラーでレーザ光を波長に応じて分離し、波長毎のレーザ光は、それぞれに偏光ビームスプリッタによって2つの偏光成分に分離される。偏光ビームスプリッタで反射した偏光成分は、一対の全反射ミラーで反射することで、偏光ビームスプリッタを透過した偏光成分よりも長い光路を進み、光路長差が与えられた2つの偏光成分を偏光ビームスプリッタで合成し、更に、偏光成分を合成して得た波長毎のレーザ光を、合成用のダイクロイックミラーで合成する。
 また、本発明に係るレーザ発生方法は、基本波と共に少なくとも1つの高調波を含むレーザ光を、波長毎に分離するステップと、各波長のレーザ光それぞれを偏光成分に応じて分離するステップと、分離した偏光成分間に光路長差を与えるステップと、光路長差を与えた偏光成分を合成するステップと、偏光成分を合成した波長毎のレーザ光を合成するステップと、を含む。
 このような構成では、基本波と共に少なくとも1つの高調波を含むレーザ光を波長毎に分離し、分離した各波長のレーザ光それぞれを偏光成分に応じて分離し、分離した各偏光成分について光路長差を与えた上で合成し、この偏光成分を合成した後の波長毎のレーザ光を合成する。
 本発明に係るレーザ発生装置及びレーザ発生方法によれば、偏光成分の振動方向の違いを利用した偏光変換(反射・透過)によって、光路長差(位相差)を与えたレーザ光を合成できるため、合成後のレーザ光を1方向に出射させることが可能となり、光路長差を与えパルス幅を延ばしたレーザ光の利用効率を高めることができると共に、光路外へのレーザ光の逃げ出しが発生しないので、利用効率を確保するための還流が不要となり、還流による波形の変化を回避できる。
 更に、複数波長のレーザ光を、波長に応じて分離した後、偏光成分に分離して光路長差を与えて合成し、偏光成分を合成した後の各波長のレーザ光を合成するので、各波長のレーザ光のパルス幅を延ばし、かつ、各波長間での光路長差の設定によって、各波長のレーザ光の出射順を任意に設定できる。
本発明の実施形態におけるレーザアニール装置を示すブロック図である。 本発明に係るレーザ発生装置の第1実施形態を示す構成図である。 本発明に係るレーザ発生装置の第2実施形態を示す構成図である。 本発明に係るレーザ発生装置の第3実施形態を示す構成図である。 本発明に係るレーザ発生装置の第4実施形態を示す構成図である。 本発明に係るレーザ発生装置の第5実施形態を示す構成図である。
 以下、本発明の実施形態を添付図面に基づいて詳細に説明する。
 図1は、本発明に係るレーザ発生装置を含み、また、本発明に係るレーザ発生方法を適用する、レーザアニール装置を示すブロック図である。
 図1に示すレーザアニール装置1は、基板2上に形成した半導体膜(図示省略)にレーザ光3を照射して、半導体膜を溶融・固化させることにより結晶化させるものであり、例えば、アモルファスシリコン膜をレーザ光の照射によってポリシリコン化するレーザアニールを行う。
 レーザアニール装置1は、レーザ発生装置4と、レーザ発生装置4からのレーザ光を整形し、半導体膜の表面に例えば線状ビームとして集光させるビーム整形光学系5と、基板2を載せる基板ステージ6とを備える。
 レーザ発生装置4は、レーザ光源としてのYAGレーザ(レーザ発振ユニット)11、第2高調波を発生するSHG結晶12(高調波発生ユニット)、第3高調波を発生するTHG結晶13(高調波発生ユニット)、更に、レーザ光のパルス幅を延ばすパルス幅延長器14を備える。
 YAGレーザ11は、YAGロッドとフラッシュランプとの組み合わせで構成される、発振波長が1064nmの固体レーザであり、また、SHG結晶12は、基本波長λの1/2である532nmの波長のレーザ光(第2高調波)を発生させ、THG結晶13は、基本波長の1/3である355nmの波長のレーザ光(第3高調波)を発生させ、パルス幅延長器14に、波長が1064nm,532nm,355nmのレーザ光を出射する。但し、レーザ光源を、YAGレーザ11に限定するものではなく、例えば、エキシマレーザなどの他の固体レーザであっても良く、従って、レーザ光の基本波長λを1064nmに限定するものでもない。
 パルス幅延長器14は、図2に示すように、ダイクロイックミラー31~34、偏光ビームスプリッタ51,52、全反射ミラー41~44などの光学素子を備える。
 図2において、THG結晶13からの1064nm,532nm,355nmの波長を含むレーザ光LS(基本波,第2高調波,第3高調波の合成波)は、鏡面を斜め45degに傾けてレーザ光LSの光軸上に配置した第1ダイクロイックミラー31(分離用波長変換ユニット)に入射する。尚、ダイクロイックミラー31~34に代えて、ダイクロイックプリズムを用いてもよい。
 第1ダイクロイックミラー31は、波長355nm以下の光(レーザ光L3;第3高調波)を透過させ、355nmよりも長い波長の光(1064nm,532nmのレーザ光L1,L2;基本波,第2高調波)を反射させる特性のものである。
 従って、第1ダイクロイックミラー31に入射する3つの波長1064nm,532nm,355nmのレーザ光LSのうち、波長355nmのレーザ光L3は、第1ダイクロイックミラー31を透過して直進する一方、波長1064nm,532nmのレーザ光L1,L2は、第1ダイクロイックミラー31の鏡面に対し入射角45degで入射して反射し、レーザ光L1,L2は、第1ダイクロイックミラー31に対する入射方向に対して90degだけ屈折して進む。
 これにより、1064nm,532nm,355nmの波長を含むレーザ光LSは、波長355nmのレーザ光L3と、波長1064nm,532nmのレーザ光L1,L2との2つの光束に分離する。
 第1ダイクロイックミラー31で反射したレーザ光L1,L2の光軸上であって、かつ、第1ダイクロイックミラー31に対して鏡面が平行になるように、第2ダイクロイックミラー32(分離用波長変換ユニット)を配置してあり、第1ダイクロイックミラー31で反射したレーザ光L1,L2は、第2ダイクロイックミラー32に入射する。
 第2ダイクロイックミラー32は、波長1064nm以上の光(レーザ光L1;基本波)を透過させ、1064nmよりも短い波長の光(波長532nmのレーザ光L2;第2高調波)を反射させる特性のものである。
 従って、第2ダイクロイックミラー32に入射する2つの波長1064nm,532nmのレーザ光L1,L2のうち、波長1064nmのレーザ光L1は、第2ダイクロイックミラー32を透過して、第1,第2ダイクロイックミラー31,32の配列方向に沿って直進する一方、波長532nmのレーザ光L2は、第2ダイクロイックミラー32の鏡面に対し入射角45degで入射して反射し、レーザ光L2は、第2ダイクロイックミラー32に対する入射方向に対して90degだけ屈折し、図2で右側に向けて、即ち、第1ダイクロイックミラー31に対するレーザ光LSの入射方向と平行に進む。
 これにより、第2ダイクロイックミラー32において、波長1064nmのレーザ光L1と、波長532nmのレーザ光L2との2つの光束に分離する。
 また、第2ダイクロイックミラー32を透過したレーザ光L1の光軸上であって、かつ、第1ダイクロイックミラー31及び第2ダイクロイックミラー32に対して鏡面が平行になるように、第1全反射ミラー41を配置してあり、第2ダイクロイックミラー32を透過したレーザ光L1は、第1全反射ミラー41の鏡面に対して45degの入射角で入射して反射し、レーザ光L1は、第1全反射ミラー41に対する入射方向に対して90degだけ屈折し、図2で右側に向けて、即ち、第1ダイクロイックミラー31に対するレーザ光LSの入射方向と平行に進む。
 上記のように、第1ダイクロイックミラー31及び第2ダイクロイックミラー32(分離用波長変換ユニット)における透過・反射によって、3つの波長1064nm,532nm,355nmを含むレーザ光LSが、波長1064nm(基本波長)のレーザ光L1(基本波)と、波長532nmのレーザ光L2(第2高調波)と、波長355nmのレーザ光L3(第3高調波)との3つの光束に分離する。
 更に、第1ダイクロイックミラー31を透過したレーザ光L3と、第2ダイクロイックミラー32で反射したレーザ光L2と、第1全反射ミラー41で反射した波長1064nmのレーザ光L1とは、相互に平行でかつ同一方向(図2で右側)に進むレーザ光となる。
 このようにして、波長毎に3つの光束に分離したレーザ光L1,L2,L3それぞれのパルス幅を、偏光ビームスプリッタ51,52及び全反射ミラー42,43を用いて延ばす処理を施す。
 係るパルス幅を延ばす処理では、分離用の偏光ビームスプリッタ51(分離用偏光変換ユニット)によって偏光成分に応じてレーザ光を2つに分離し、分離した偏光成分のうちの一方を、全反射ミラー42,43を用いて他方よりも長い光路上に進ませることで、光路長差(位相差)をつけた後に、合成用の偏光ビームスプリッタ52(合成用偏光変換ユニット)を用いて合成させる。
 具体的には、第1ダイクロイックミラー31を透過したレーザ光L3の光軸上に、偏光膜が第1ダイクロイックミラー31の鏡面と平行になるように、第1偏光ビームスプリッタ51(L3)を配置してある。
 尚、偏光ビームスプリッタ51,52としては、例えば、45deg直角プリズムの斜面に偏光膜をコーティングして接着した立方体状のものを用いることができる。
 第1ダイクロイックミラー31を透過したレーザ光L3は、入射角45degで第1偏光ビームスプリッタ51(L3)の偏光膜に入射し、レーザ光L3のP偏光成分L3Pは第1偏光ビームスプリッタ51(L3)を透過して進む一方、レーザ光L3のS偏光成分L3Sは第1偏光ビームスプリッタ51(L3)で反射し、S偏光成分L3Sは、第1偏光ビームスプリッタ51(L3)の偏光膜に対する入射方向に対して90degだけ屈折し、図2で下方向に進む。これにより、波長355nmのレーザ光L3は、第1偏光ビームスプリッタ51(L3)によって、P偏光成分L3PとS偏光成分L3Sとの2つの光束に分離する。
 第1偏光ビームスプリッタ51(L3)で反射したS偏光成分L3Sの光軸上であって、かつ、第1偏光ビームスプリッタ51(L3)の偏光膜と鏡面が平行になるように、第2全反射ミラー42(L3)を配置してある。
 これにより、第1偏光ビームスプリッタ51(L3)で反射したS偏光成分L3Sは、第2全反射ミラー42(L3)に45degの入射角で入射して反射し、第2全反射ミラー42(L3)に対する入射方向に対して90degだけ屈折し、図2で右側に向けて、即ち、第1偏光ビームスプリッタ51(L3)に対するレーザ光L3の入射方向と平行に進む。
 また、第2全反射ミラー42(L3)で反射したS偏光成分L3Sの光軸上に、第2全反射ミラー42(L3)に対して鏡面が線対称となるように、第3全反射ミラー43(L3)を設けてある。
 これにより、第2全反射ミラー42(L3)で反射したレーザ光L3のS偏光成分L3Sは、第3全反射ミラー43(L3)に45degの入射角で入射して反射し、第3全反射ミラー43(L3)に対する入射方向に対して90degだけ屈折し、図2で上方に向けて、即ち、第1偏光ビームスプリッタ51(L3)を透過したレーザ光L3のP偏光成分L3Pの光軸に直交(交差)する方向に進む。
 第1偏光ビームスプリッタ51(L3)を透過したレーザ光L3のP偏光成分L3Pと、第3全反射ミラー43(L3)で反射したレーザ光L3のS偏光成分L3Sとが交差する位置に、偏光膜が第3全反射ミラー43(L3)の鏡面と平行になるように、第2偏光ビームスプリッタ52(L3)(合成用偏光変換ユニット)を配置してある。
 第2偏光ビームスプリッタ52(L3)では、第1偏光ビームスプリッタ51(L3)を透過したレーザ光L3のP偏光成分L3Pがそのまま透過する一方、第3全反射ミラー43(L3)で反射したレーザ光L3のS偏光成分L3Sは、第2偏光ビームスプリッタ52(L3)に入射角45degで入射して反射することで、90degだけ屈折し、P偏光成分L3Pの光軸と平行な方向に進むようになり、結果、レーザ光L3のS偏光成分L3SとP偏光成分L3Pとが合成されて出射される。
 ここで、S偏光成分L3Sは、P偏光成分L3Pと分離された後、一対の全反射ミラー42(L3),43(L3)(光路長差付与ユニット)によって反射する光路を経由して、再度P偏光成分L3Pに合成されるので、第1偏光ビームスプリッタ51(L3)と第2全反射ミラー42(L3)との距離D1(D1=第3全反射ミラー43(L3)と第2偏光ビームスプリッタ52(L3)との距離)の2倍だけ、S偏光成分L3Sの幾何学的光路長は、P偏光成分L3Pよりも長い。
 このため、第2偏光ビームスプリッタ52(L3)においてS偏光成分L3SとP偏光成分L3Pとを合成するときに、S偏光成分L3Sは、P偏光成分L3Pに対して位相が遅れていて、合成後のレーザ光L3パルス幅が、第1偏光ビームスプリッタ51(L3)に対するレーザ光L3の入射時におけるパルス幅よりも位相差分(光路長差分)だけ延びることになる。
 換言すれば、第2偏光ビームスプリッタ52(L3)からは、レーザ光L3のP偏光成分L3Pと、該P偏光成分L3Pよりも位相が遅れたレーザ光L3のS偏光成分L3Sとが、同一光軸上に合成されて出力される。
 上記のように、第1偏光ビームスプリッタ51,第2偏光ビームスプリッタ52,第2全反射ミラー42,第3全反射ミラー43の組み合わせによってパルス幅を延ばす光学系が、第2ダイクロイックミラー32で反射する波長532nmのレーザ光L2を処理する光学系、及び、第1全反射ミラー41で反射する波長1064nmのレーザ光L1を処理する光学系として、それぞれに設けてある。
 即ち、第2ダイクロイックミラー32で反射した波長532nmのレーザ光L2は、第1偏光ビームスプリッタ51(L2)でP偏光成分L2PとS偏光成分L2Sとに分離される。
 そして、S偏光成分L2Sは、一対の全反射ミラー42(L2),43(L2)で反射して迂回光路を進み、直進するP偏光成分L2Pとの間に光路長差(位相差)が付与された後、第2偏光ビームスプリッタ52(L2)でS偏光成分L2SとP偏光成分L2Pとが合成され、第2偏光ビームスプリッタ52(L2)から、パルス幅が延びたレーザ光L2が出射される。
 同様に、第1全反射ミラー41で反射した波長1064nmのレーザ光L1は、第1偏光ビームスプリッタ51(L1)でP偏光成分L1PとS偏光成分L1Sとに分離される。そして、S偏光成分L1Sは、一対の全反射ミラー42(L1),43(L1)で反射して迂回光路を進み、直進するP偏光成分L1Pとの間に光路長差(位相差)が付与された後、第2偏光ビームスプリッタ52(L1)でS偏光成分L1SとP偏光成分L1Pとが合成され、第2偏光ビームスプリッタ52(L1)から、パルス幅が延びたレーザ光L1が出射される。
 上記のようにして、波長毎のレーザ光L1~L3について、それぞれにパルス幅を延ばす処理を施すと、波長毎のレーザ光L1~L3を合成して出力する処理を、以下の構成によって行う。
 第2偏光ビームスプリッタ52(L1)から出射されるレーザ光L1の光軸上に、第2偏光ビームスプリッタ52(L1)の偏光膜と鏡面が平行になるように、第4全反射ミラー44を設けてあり、第2偏光ビームスプリッタ52(L1)から出射されるレーザ光L1は、第4全反射ミラー44に対して入射角45degで入射して反射することで、90degだけ屈折し、図2で上方に向けて進むようになる。
 換言すれば、P偏光成分L1Pと、該P偏光成分L1Pに対して位相が遅れたS偏光成分L1Sとからなるレーザ光L1は、第4全反射ミラー44で反射して、レーザ光LS(レーザ光L3)の光軸に直交(交差)する方向に向きを転じる。
 更に、第4全反射ミラー44における反射光の光軸と、第2偏光ビームスプリッタ52(L2)からの出射光の光軸とが交わる点に、第4全反射ミラー44に対して鏡面が平行になるように、第3ダイクロイックミラー33(合成用波長変換ユニット)を配置してある。
 第3ダイクロイックミラー33は、第2ダイクロイックミラー32と同様に、波長1064nmのレーザ光L1を透過し、波長532nmのレーザ光L2を反射させる特性のものである。
 従って、第4全反射ミラー44で反射して第3ダイクロイックミラー33に入射するレーザ光L1は、第3ダイクロイックミラー33を透過するが、第2偏光ビームスプリッタ52(L2)から出射されるレーザ光L2(P偏光成分L2Pと該P偏光成分L2Pに対して位相が遅れたS偏光成分L2Sとからなるレーザ光L2)は、第3ダイクロイックミラー33に入射角45degで入射して反射することで、90degだけ屈折し、第3ダイクロイックミラー33を透過して進むレーザ光L1と同軸上に合成される。
 ここで、第3ダイクロイックミラー33に対する入射時において、レーザ光L1は、レーザ光L2よりも、第2ダイクロイックミラー32と第1全反射ミラー41との距離D2(D2=第4全反射ミラー44と第ダイクロイックミラー33との距離)の2倍の距離だけ、幾何学的光路長が長く、第3ダイクロイックミラー33からは、レーザ光L2に対してレーザ光L1が遅れて出射されることになる。
 更に、レーザ光L2は、P偏光成分L2Pと該P偏光成分L2Pに対して位相が遅れたS偏光成分L2Sとからなり、レーザ光L1は、P偏光成分L1Pと該P偏光成分L1Pに対して位相が遅れたS偏光成分L1Sとからなるから、第3ダイクロイックミラー33からは、P偏光成分L2P,S偏光成分L2S,P偏光成分L1P,S偏光成分L1Sの順で出力されることになる。
 また、第3ダイクロイックミラー33からの出射光(レーザ光L1,L2の合成光)の光軸と、第2偏光ビームスプリッタ52(L3)からの出射光(レーザ光L3)の光軸とが交わる点に、第3ダイクロイックミラー33に対して偏光面が平行になるように、第4ダイクロイックミラー34(合成用波長変換ユニット)を配置してある。
 第4ダイクロイックミラー34は、第1ダイクロイックミラー31と同様に、波長355nmのレーザ光L3を透過させ、1064nm,532nmのレーザ光L1,L2を反射させる特性のものである。
 従って、第3ダイクロイックミラー33から出射されるレーザ光L1,L2は、第4ダイクロイックミラー34に入射角45degで入射して反射することで、90degだけ屈折し、図2で右方向に進むことになる一方、第2偏光ビームスプリッタ52(L3)から出射されるレーザ光L3は、第4ダイクロイックミラー34を透過して進む。
 これにより、第4ダイクロイックミラー34からの出射光は、レーザ光L1,L2,L3の合成となる。
 ここで、第4ダイクロイックミラー34に対する入射時において、レーザ光L2は、レーザ光L3よりも、第1ダイクロイックミラー31と第2ダイクロイックミラー32との距離D3(D3=第3ダイクロイックミラー33と第4ダイクロイックミラー34との距離)の2倍の距離だけ、幾何学的光路長が長く、第4ダイクロイックミラー34からは、レーザ光L3に対してレーザ光L2が遅れて出射されることになる。
 従って、第4ダイクロイックミラー34からの出射順は、レーザ光L3,レーザ光L2,レーザ光L1の順になり、更に詳細には、P偏光成分L3P,S偏光成分L3S,P偏光成分L2P,S偏光成分L2S,P偏光成分L1P,S偏光成分L1Sの順で出力されることになる。
 即ち、レーザ光L1は、第1ダイクロイックミラー31、第2ダイクロイックミラー32、第1全反射ミラー41、第4全反射ミラー44、第3ダイクロイックミラー33を介して第4ダイクロイックミラー34に至るのに対し、レーザ光L2は、第1ダイクロイックミラー31、第2ダイクロイックミラー32、第3ダイクロイックミラー33を介して第4ダイクロイックミラー34に至り、レーザ光L3は、第1ダイクロイックミラー31から第4ダイクロイックミラー34に至るため、「レーザ光L1の光路長」>「レーザ光L2の光路長」>「レーザ光L3の光路長」となる。
 そして、前記光路長差により、レーザ光L3に対してレーザ光L2の位相が遅れ、更に、レーザ光L2に対してレーザ光L1の位相が遅れるために、第4ダイクロイックミラー34からの出射順は、前述のように、レーザ光L3(波長355nm),レーザ光L2(波長532nm),レーザL1(波長1064nm)の順となり、本実施形態のレーザアニール装置1では、半導体膜に対してレーザ光L3(波長355nm),レーザ光L2(波長532nm),レーザL1(波長1064nm)の順で照射されることになる。
 更に、各レーザ光L1~L3は、P偏光成分L1P~L3Pと、該P偏光成分L1P~L3Pよりも位相が遅れたS偏光成分L1S~L3Sとを、同一光軸上に合成して出力するから、第4ダイクロイックミラー34からの出射順は、レーザ光L3のP偏光成分L3P、レーザ光L3のS偏光成分L3S、レーザ光L2のP偏光成分L2P、レーザ光L2のS偏光成分L2S、レーザ光L1のP偏光成分L1P、レーザ光L1のS偏光成分L1Sの順となる。
 上記構成によると、第1偏光ビームスプリッタ51で偏光成分に応じて単一波長のレーザ光を分離し、一方の偏光成分を、全反射ミラー42,43を用いて迂回光路を進ませ、この迂回させた(光路長差を与えた)一方の偏光成分と、直進する他方の偏光成分とを、第2偏光ビームスプリッタ52で合成させることで、パルス幅を延ばすから、パルス幅を延ばしたレーザ光を、1方向の光束として出射させて有効に利用できる。
 即ち、光路長差を付与した2つのレーザ光を、ビームスプリッタ(ハーフミラー)に入射させて合成する場合、合成する2つのレーザ光は、合成用のビームスプリッタにおいて反射・透過して2方向にそれぞれ分離されることになるため、合成光も2方向に分かれることになり、合成光の一方を利用できなくなってしまう。
 これに対し、レーザ光を第1偏光ビームスプリッタ51で偏光成分に応じて分離し、光路長差を与えてから第2偏光ビームスプリッタ52で合成させる構成であれば、偏光方向によって、第2偏光ビームスプリッタ52を透過するか、又は、第2偏光ビームスプリッタ52で反射するかのいずれか一方に決まるから、光路長差を与えた2つのレーザ光を1方向の光束に合成して出射させることができ、レーザ光を有効利用できると共に、光路外へのレーザ光の逃げ出しが発生しないので、利用効率を確保するための還流が不要となり、還流による波形の変化を回避できる。
 また、本実施形態のように、基本波L1と共に、第2高調波L2及び第3高調波L3を含むレーザ光を、ダイクロイックミラー31,32を用いて波長毎に分離し、分離後のレーザ光L1~L3のそれぞれについてパルス幅を延ばす処理を行わせると、分離後のレーザ光L1~L3を、各レーザ光L1~L3に対応して設けたパルス幅を延ばすための光学系に導くために、レーザ光L1~L3間で光路長差が付与され、レーザ光L1~L3を合成したときに、前記光路長差に応じた順で出射することになる。
 ここで、ダイクロイックミラーが透過する波長を選択することで、レーザ光L1~L3の光路長の順番を任意に設定できるから、例えば、アニールにおいて、各レーザ光L1~L3のパワーや吸収率などの差などに基づく適切な照射順で、レーザ光L1~L3を出射させることができる。
 本実施形態の場合、最もパワーの大きな基本波長のレーザ光L1を最後に照射するから、パワーの大きなレーザ光L1を最初に照射することで、アモルファスシリコン膜の下層膜を損傷させてしまうことを回避できる。尚、ダイクロイックミラーが透過・反射する波長の設定によって、基本波長のレーザ光L1を2番目に照射させるようにしても、アモルファスシリコン膜の下層膜の損傷を回避できる。
 尚、例えば、第2高調波と第3高調波とのいずれか一方と、基本波とを含むレーザ光について、パルス幅を延ばす装置であってもよい。
 即ち、レーザ光が含む波長の種類を3つに限定するものではなく、波長の種類の増減に応じてダイクロイックミラーによる分離段数を増減させ、かつ、前記分離段数に応じて、偏光ビームスプリッタ51,52及び全反射ミラー42,43からなる光学系を設ければよい。
 また、各レーザ光L1~L3のP偏光成分L1P~L3PとS偏光成分L1S~L3Sとの間に、幾何学的光路長差を超える光学的光路長差を与えるために、図3に示すように、例えば全反射ミラー42と全反射ミラー43との間の光路上に、高屈折率光学媒質61を配置することができる。
 前記光学的光路長とは、ある媒質内を光が通過するときに、その経路に沿った幾何学的な長さと前記媒質の屈折率との積として表すことができ、光路上に屈折率の高い光学媒質61を配置することで、より大きな光学的光路長差を与えることができ、幾何学的光路長差を短くして装置寸法を抑制しつつ、パルス幅を延ばすことができる。
 光学的光路長を長くするために、迂回させる偏光成分の迂回光路上に配置する高屈折率光学媒質61として、例えば、光学ガラスのロッドを配置したり、イットリウム・バナデート(YVO4)結晶を光路上に配置したりすることができる。
 上記のように高屈折率光学媒質61を設ける場合、長い幾何学的光路を設定するための一対の全反射ミラー42,43と、前記高屈折率光学媒質61とが、光路長差付与ユニットを構成する。
 また、図4に示すように、第2ダイクロイックミラー32で分離した基本波長(波長1064nm)のレーザ光L1の光路に、YAGロッド71とフラッシュランプ72とを備えたレーザチャンバ(レーザ発振ユニット)73を配置し、このレーザチャンバ73をYAGレーザ11と同期させて発振させれば、レーザ光L1を光路途中で増強することができ、最終的に、第4ダイクロイックミラー34から出射するレーザ光L1の強度を高めることができる。
 更に、前記レーザチャンバ73で増強した後のレーザ光L1を、SHG結晶、THG結晶を通過させることで、基本波、第2高調波、第3高調波を含むレーザ光LSを再度発生させ、前記ダイクロイックミラー31~34、全反射ミラー41,44、及び、波長毎の偏光ビームスプリッタ51,52と全反射ミラー42,43からなる光学系に、レーザ光LSを入射させ、より多段にパルス幅を延ばすことができる。
 また、前記レーザチャンバ73を備える構成において、更に、前記高屈折率光学媒質61を設けることができる。
 また、分離した各レーザ光L1~L3の光路上の少なくとも1つに減衰フィルタを配置することで、最終的に合成して出射するときのレーザ光L1~L3間における強度バランスを調整することもできる。
 更に、上記実施形態では、本願発明に係るレーザ発生装置及びレーザ発生方法を、レーザアニール装置1に適用した例を示したが、適用対象をレーザアニール装置1に限定するものではない。
 また、上記実施形態では、全反射ミラー,偏光ビームスプリッタ,ダイクロイックミラーにおいて、レーザ光が90degだけ屈折する構成としたが、屈折角度を90deg(入射角を45deg)に限定するものではなく、例えば図5(A),(B)に示すように、入射光の光軸に対して斜めに交差する方向に屈折させることができる。
 図5(A)に示した例では、偏光ビームスプリッタ51及び全反射ミラー42を、入射光の光軸に対して偏光面・反射面が45degだけ傾くように設置して、入射角が45degになるようにしてあり、偏光ビームスプリッタ51での反射光及び全反射ミラー42での反射光は、入射光の光軸に対して90degに交差する方向、即ち、直交する方向に進むが、全反射ミラー42からの反射光が入射する全反射ミラー43は、入射角が45degよりも大きくなるように設置され、全反射ミラー43では、入射光の光軸に対して反射光が斜めに交差するようになっている。
 そして、偏光ビームスプリッタ52は、全反射ミラー43と平行に配置され、偏光ビームスプリッタ51の透過光及び全反射ミラー42の反射光に対して斜めに交差する、全反射ミラー43の反射光は、偏光ビームスプリッタ52での反射で偏光ビームスプリッタ51の透過光の光軸と同一方向に屈折する。
 また、図5(B)は、偏光ビームスプリッタ51及び全反射ミラー42の組み合わせについても、入射角が45degよりも大きくなるように設定した例を示す。
 また、図2~図4に示した構成では、レーザ光L1~L3の出射順は固定されるが、第1ダイクロイックミラー31~第4ダイクロイックミラー34に代えて、例えば図6に示したように、円盤状ホルダ81の同一円周上に、反射・透過させる波長が相互に異なる複数のダイクロイックミラー82a~82cを備え、前記円盤状ホルダ81をモータなどのアクチュエータによって軸周りに回転させることで、複数のダイクロイックミラー82a~82cのうちの1つを光路上に位置させることができるように構成した分離用波長変換ユニット及び合成用波長変換ユニットを設ければ、レーザ光L1~L3の出射順を任意に変更することが可能となる。
 図6において、ダイクロイックミラー82aは、レーザ光L1のみが透過し、レーザ光L2,L3が反射する特性であり、ダイクロイックミラー82bは、レーザ光L2のみが透過し、レーザ光L1,L3が反射する特性であり、ダイクロイックミラー82cは、レーザ光L3のみが透過し、レーザ光L1,L2が反射する特性である。
 従って、図2のものと同じ出射順(L3,L2,L1)とする場合には、レーザ光LSをまずダイクロイックミラー82cで分離し、ダイクロイックミラー82cで反射したレーザ光L1,L2を、ダイクロイックミラー82aで、レーザ光L1とレーザ光L2とに分離し、全反射ミラー44の出射光と偏光ビームスプリッタ52の出射光とを、ダイクロイックミラー82aで合成し、当該合成後のレーザ光と偏光ビームスプリッタ51の出射光とを、ダイクロイックミラー82cで合成するようにすればよい。
 一方、例えば、レーザ光LSをまずダイクロイックミラー82aで分離し、ダイクロイックミラー82aで反射したレーザ光L2,L3を、ダイクロイックミラー82bで、レーザ光L2とレーザ光L3とに分離し、全反射ミラー44の出射光と偏光ビームスプリッタ52の出射光とを、ダイクロイックミラー82bで合成し、当該合成後のレーザ光と偏光ビームスプリッタ51の出射光とを、ダイクロイックミラー82aで合成するようにすれば、レーザ光L1~L3の出射順はL1,L3,L2となり、出射順を任意に変更することができる。
 尚、ダイクロイックミラー82a~82cのうちの1つを光路上に選択的に位置させるための手段を、上記の円盤状ホルダ81を回転させる手段に限定するものではない。
1…レーザアニール装置
2…基板
3…レーザ光
4…レーザ発生装置
5…ビーム整形光学系
6…ステージ
11…YAGレーザ(レーザ発振ユニット)
12…SHG(高調波発生ユニット)
13…THG(高調波発生ユニット)
14…パルス幅延長器
31…第1ダイクロイックミラー(分離用波長変換ユニット)
32…第2ダイクロイックミラー(分離用波長変換ユニット)
33…第3ダイクロイックミラー(合成用波長変換ユニット)
34…第4ダイクロイックミラー(合成用波長変換ユニット)
41…第1全反射ミラー
42…第2全反射ミラー(光路長差付与ユニット)
43…第3全反射ミラー(光路長差付与ユニット)
44…第4全反射ミラー
51…第1偏光ビームスプリッタ(分離用偏光変換ユニット)
52…第2偏光ビームスプリッタ(分離用偏光変換ユニット)
61…高屈折率光学媒質(光路長差付与ユニット)
73…レーザチャンバ(レーザ発振ユニット)

Claims (12)

  1.  複数波長のレーザ光を、波長に応じて分離する分離用波長変換ユニットと、
     前記波長毎のレーザ光を合成して、前記複数波長のレーザ光を出射する合成用波長変換ユニットと、
     を備えると共に、
     レーザ光を、偏光成分に応じて分離する分離用偏光変換ユニットと、
     前記分離用偏光変換ユニットが分離した複数の偏光成分を合成する合成用偏光変換ユニットと、
     前記分離用偏光変換ユニットが分離した偏光成分のうちの少なくとも1つを、他の偏光成分に対して光路長差を与えて前記合成用偏光変換ユニットに導く光路長差付与ユニットと、の組み合わせを、前記分離用波長変換ユニットが分離する波長毎に備え、
     前記分離用波長変換ユニットが分離した各波長のレーザ光それぞれを、前記分離用偏光変換ユニットで偏光成分に分離し、前記合成用偏光変換ユニットが合成した波長毎のレーザ光を前記合成用波長変換ユニットで合成するレーザ発生装置。
  2.  前記分離用波長変換ユニット及び合成用波長変換ユニットによって、各波長のレーザ光の間に光路長差を与え、該光路長差に応じて各波長のレーザ光を前記合成用波長変換ユニットから順次出射させる請求項1記載のレーザ発生装置。
  3.  単一波長のレーザ光を発生するレーザ発振ユニットと、
     前記単一波長のレーザ光を波長変換して高調波を発生する高調波発生ユニットと、
     を更に備えた請求項1記載のレーザ発生装置。
  4.  前記レーザ発振ユニットが、基本波長が1064nmのレーザ光を発生するYAGレーザであり、
     前記高調波発生ユニットが、第2高調波を発生するSHG結晶及び第3高調波を発生するTHG結晶を含み、少なくとも1064nm、532nm、355nmの波長のレーザ光を出力する請求項3記載のレーザ発生装置。
  5.  前記分離用波長変換ユニットで分離した基本波長のレーザ光の光路途中に、前記基本波長と同じ発振波長のレーザ発振ユニットを備える請求項3記載のレーザ発生装置。
  6.  前記分離用波長変換ユニット及び合成用波長変換ユニットを、ダイクロイックミラー又はダイクロイックプリズムで構成した請求項1記載のレーザ発生装置。
  7.  前記分離用波長変換ユニット及び合成用波長変換ユニットが、透過・反射させる波長が相互に異なる複数のダイクロイックミラー又はダイクロイックプリズムを備え、この複数のダイクロイックミラー又はダイクロイックプリズムのうちの1つを光路上に選択的に設置する請求項6記載のレーザ発生装置。
  8.  前記分離用偏光変換ユニット及び合成用偏光変換ユニットを、偏光ビームスプリッタで構成した請求項1記載のレーザ発生装置。
  9.  前記光路長差付与ユニットを、全反射ミラーで構成した請求項1記載のレーザ発生装置。
  10.  前記光路長差付与ユニットが、幾何学的光路長を他に比べて長くした偏光成分の光路上に高屈折率光学媒質を配置してなる請求項1記載のレーザ発生装置。
  11.  基本波と共に少なくとも1つの高調波を含むレーザ光を、波長毎に分離する分離用のダイクロイックミラーと、
     各波長のレーザ光それぞれを2つの偏光成分に分離する分離用の偏光ビームスプリッタと、
     前記分離用の偏光ビームスプリッタで反射した偏光成分の光路を、前記分離用の偏光ビームスプリッタを透過した偏光成分に交差する方向に屈折させる一対の全反射ミラーと、
     前記分離用の偏光ビームスプリッタを透過した偏光成分と、前記分離用の偏光ビームスプリッタで反射し前記全反射ミラーで光路が屈折された偏光成分とを、同一光軸上に合成する合成用の偏光ビームスプリッタと、
     前記合成用の偏光ビームスプリッタで合成した波長毎のレーザ光を、同一光軸上に合成する合成用のダイクロイックミラーと、
     を含むレーザ発生装置。
  12.  基本波と共に少なくとも1つの高調波を含むレーザ光を、波長毎に分離するステップと、
     各波長のレーザ光それぞれを偏光成分に応じて分離するステップと、
     分離した偏光成分間に光路長差を与えるステップと、
     光路長差を与えた偏光成分を合成するステップと、
     偏光成分を合成した波長毎のレーザ光を合成するステップと、
     を含むレーザ発生方法。
PCT/JP2011/062538 2010-06-15 2011-05-31 レーザ発生装置及びレーザ発生方法 WO2011158646A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-135932 2010-06-15
JP2010135932A JP2012002905A (ja) 2010-06-15 2010-06-15 レーザ発生装置及びレーザ発生方法

Publications (1)

Publication Number Publication Date
WO2011158646A1 true WO2011158646A1 (ja) 2011-12-22

Family

ID=45348055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062538 WO2011158646A1 (ja) 2010-06-15 2011-05-31 レーザ発生装置及びレーザ発生方法

Country Status (3)

Country Link
JP (1) JP2012002905A (ja)
TW (1) TW201219830A (ja)
WO (1) WO2011158646A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103427316A (zh) * 2013-08-22 2013-12-04 中国科学院上海光学精密机械研究所 激光脉冲拉伸装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104078339B (zh) * 2013-03-26 2017-08-29 上海微电子装备有限公司 一种激光退火装置和方法
WO2019150549A1 (ja) * 2018-02-02 2019-08-08 株式会社日本製鋼所 レーザ処理装置、レーザ処理方法及び半導体装置の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1174216A (ja) * 1997-08-29 1999-03-16 Japan Steel Works Ltd:The パルス光照射方法およびパルス光照射装置
JP2005224827A (ja) * 2004-02-12 2005-08-25 Sumitomo Heavy Ind Ltd レーザ加工方法及びレーザ加工装置
JP2010107777A (ja) * 2008-10-30 2010-05-13 Univ Of Miyazaki パルス幅制御装置およびレーザー照射装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1174216A (ja) * 1997-08-29 1999-03-16 Japan Steel Works Ltd:The パルス光照射方法およびパルス光照射装置
JP2005224827A (ja) * 2004-02-12 2005-08-25 Sumitomo Heavy Ind Ltd レーザ加工方法及びレーザ加工装置
JP2010107777A (ja) * 2008-10-30 2010-05-13 Univ Of Miyazaki パルス幅制御装置およびレーザー照射装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103427316A (zh) * 2013-08-22 2013-12-04 中国科学院上海光学精密机械研究所 激光脉冲拉伸装置
CN103427316B (zh) * 2013-08-22 2015-09-16 中国科学院上海光学精密机械研究所 激光脉冲拉伸装置

Also Published As

Publication number Publication date
JP2012002905A (ja) 2012-01-05
TW201219830A (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP4736633B2 (ja) レーザ照射装置
JP5580826B2 (ja) レーザ加工装置及びレーザ加工方法
JP5133158B2 (ja) 多重ビームレーザー装置
JP2010534140A (ja) レーザビーム分割を利用したレーザ加工装置及び方法
JP6038301B2 (ja) レーザービーム光源とレーザービームを操作するためのビーム案内装置とを備えたeuv励起光源
KR101582632B1 (ko) 프레넬 영역 소자를 이용한 기판 절단 방법
KR20040063079A (ko) 광 조사 장치 및 레이저 어닐 장치
TWI761081B (zh) 波長變換雷射裝置及波長變換雷射加工機
JP6016086B2 (ja) 紫外レーザ装置、この紫外レーザ装置を備えた露光装置及び検査装置
JPH05104276A (ja) レーザ加工装置およびレーザによる加工方法
WO2011158646A1 (ja) レーザ発生装置及びレーザ発生方法
TWI421543B (zh) 雙脈衝光產生裝置及其雙脈衝光產生的方法
TWI756229B (zh) 波長變換裝置
JP2002176006A (ja) レーザ加工装置及び方法
JP2004200497A (ja) 光照射装置及びレーザアニール装置
CN107924827B (zh) 用于非晶硅衬底的均匀结晶的基于光纤激光器的系统
JP2008205486A (ja) レーザ加工装置
JP7023629B2 (ja) レーザー加工装置
JP2006229080A (ja) 超短パルスレーザ伝達装置
JP5106130B2 (ja) レーザビーム照射方法およびレーザビーム照射装置
JP2009053597A (ja) 光波長変換装置
WO2012090519A1 (ja) レーザ加工装置およびレーザ加工方法
JP2005109359A (ja) レーザ装置及び液晶表示装置の製造方法
JP2003094191A (ja) レーザ加工装置
JP2016107321A (ja) レーザー加工方法及びレーザー加工装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795554

Country of ref document: EP

Kind code of ref document: A1