WO2011158450A1 - 組電池の製造方法及び組電池 - Google Patents

組電池の製造方法及び組電池 Download PDF

Info

Publication number
WO2011158450A1
WO2011158450A1 PCT/JP2011/003074 JP2011003074W WO2011158450A1 WO 2011158450 A1 WO2011158450 A1 WO 2011158450A1 JP 2011003074 W JP2011003074 W JP 2011003074W WO 2011158450 A1 WO2011158450 A1 WO 2011158450A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
connection member
welded
welding
assembled battery
Prior art date
Application number
PCT/JP2011/003074
Other languages
English (en)
French (fr)
Inventor
晋志 大田
福田 真介
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201180029601XA priority Critical patent/CN102947973A/zh
Priority to US13/704,557 priority patent/US20130095370A1/en
Priority to JP2012520268A priority patent/JP5176002B2/ja
Priority to KR1020127031829A priority patent/KR20130090771A/ko
Publication of WO2011158450A1 publication Critical patent/WO2011158450A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention is a technique related to an assembled battery having a plurality of cells arranged in series.
  • Patent Document 1 an assembled battery including a plurality of single cells (cells) arranged in series and a connecting plate provided between adjacent single cells is known (for example, Patent Document 1).
  • one end of a connection plate is welded to the positive electrode of one unit cell (cell), and the other end of the connection plate is welded to the negative electrode of the other unit cell. It is manufactured by folding each unit cell in series.
  • An object of the present invention is to provide an assembled battery manufacturing method capable of reducing mechanical stress generated in at least one cell, and an assembled battery manufactured by the manufacturing method.
  • the present invention is provided between a first cell and a second cell arranged in series so that a positive electrode and a negative electrode face each other, and the first cell and the second cell.
  • a method for manufacturing an assembled battery having a connecting member for electrically connecting the positive and negative electrodes facing each other in the cells, the first welding step welding the connecting member to the first cell; A second welding step of welding the connection member to the second cell after the first welding step, and at least in the second welding step, the first welding step and the second welding step.
  • An assembled battery comprising: melting an end surface of the connection member that rises from the outer surface when the connection member is brought into contact with the outer surface of the two cells, and welding the second member without pressing the connection member.
  • the present invention provides a first cell and a second cell arranged in series, and is provided between the first cell and the second cell, and electrically connects a positive electrode and a negative electrode facing each other.
  • a laser that is provided in a region between the second cell, and at least the second welded portion of the first welded portion and the second welded portion is a laser with respect to an end face of the connection member that rises from the surface of the second cell
  • An assembled battery characterized by being a welded portion is provided.
  • FIG. 5 is a partial side sectional view showing a state in which a cell is laser-welded to the connection member of FIG. 4. It is a perspective view which shows the modification of a connection member. It is side surface partial sectional drawing which shows the manufacturing method of the assembled battery which concerns on another embodiment of this invention, and has shown the state which welds a connection member to a cell.
  • FIG. 8 is a partial side cross-sectional view showing a state in which a cell is laser-welded to the connection member of FIG. 7.
  • FIG. 1 is an exploded perspective view showing the overall configuration of a battery pack according to an embodiment of the present invention.
  • the battery pack 1 includes an assembled battery 2 and a covering member 3 that covers the assembled battery 2.
  • the covering member 3 includes a bottomed container 3b that houses the assembled battery 2, and a lid 3a that covers the opening of the bottomed container 3b and surrounds the side wall of the bottomed container 3b. Note that a safety device electrically connected to the assembled battery 2 is also accommodated in the covering member 3.
  • the assembled battery 2 includes six cells 4a to 4f and connecting members 5A to 5C that electrically connect the cells 4a to 4f.
  • the cells 4a to 4c are arranged in series, and the cells 4d to 4f are arranged in series. These two rows of cells arranged in series are arranged in parallel.
  • the connecting member 5A electrically connects the negative electrode of the cell 4a and the positive electrode of the cell 4b, electrically connects the negative electrode of the cell 4d and the positive electrode of the cell 4e, and connects the negative electrodes of the cell 4a and the cell 4d to each other. Connect electrically.
  • the connecting member 5B electrically connects the negative electrode of the cell 4b and the positive electrode of the cell 4c, electrically connects the negative electrode of the cell 4e and the positive electrode of the cell 4f, and connects the negative electrodes of the cell 4b and the cell 4e to each other. Connect electrically.
  • the connecting member 5C electrically connects the negative electrode of the cell 4c and the negative electrode of the cell 4f.
  • a connecting member (not shown) that electrically connects the positive electrode of the cell 4a and the positive electrode of the cell 4d is provided on the end surface of the assembled battery 2 opposite to the connecting member 5C.
  • the cells 4a to 4f are lithium ion secondary batteries, each having the same configuration.
  • 4 shows a cross-sectional view of the positive side of the cell 4a
  • FIG. 5 shows a cross-sectional view of the negative side of the cell 4b.
  • the configuration of the cells 4a and 4b will be described as an example with reference to the drawings.
  • the cells 4a and 4b include a cylindrical bottomed case 6a, a bottom plate 6b provided at the open end of the bottomed case 6a, and an electrode group provided in a chamber between the bottomed case 6a and the bottom plate 6b. 6c, insulating plates 6d and 6h, a sealing plate 6e, and an exhaust valve 6g.
  • the electrode group 6c is obtained by winding a positive electrode sheet, a negative electrode sheet, and a separator.
  • the outermost peripheral surface of the electrode group 6c is made of a separator.
  • a positive electrode lead 6f is connected to the electrode group 6c, and the positive electrode lead 6f is electrically connected to the sealing plate 6e.
  • the bottom plate 6b serves as end surfaces of the cells 4a and 4b constituting the positive electrode.
  • a negative electrode lead 6i is connected to the electrode group 6c, and the negative electrode lead 6i is electrically connected to the bottom surface of the bottomed case 6a. Therefore, the bottom surface of the bottomed case 6a becomes the end surface of the cells 4a and 4b constituting the negative electrode.
  • the insulating plate 6d is disposed between the electrode group 6c and the bottom plate 6b in order to insulate the electrode group 6c and the bottom plate 6b.
  • the insulating plate 6h is disposed between the electrode group 6c and the bottom surface of the bottomed case 6a in order to insulate the electrode group 6c from the bottomed case 6a.
  • the sealing plate 6e is provided between the insulating plate 6d and the bottom plate 6b so as to close the opening of the bottomed case 6a.
  • the exhaust valve 6g is provided between the sealing plate 6e and the bottom plate 6b, and is fixed to the sealing plate 6e so as to close a hole formed in the sealing plate 6e. The exhaust valve 6g is opened when the pressure of the gas exceeds a predetermined pressure so as to lead the gas generated in the bottomed case 6a to the outside of the bottomed case 6a.
  • the distance between the end face on the positive electrode side (bottom plate 6b) or the end face on the negative electrode side (bottom surface of the bottomed case 6a) and the electrode group 6c is the side surface of the bottomed case 6a and the electrode group. It is larger than the distance between 6c.
  • a space for providing the positive electrode lead 6f, the insulating plate 6d, the sealing plate 6e, and the exhaust valve 6g is required between the bottom plate 6b and the electrode group 6c.
  • a space for providing the negative electrode lead 6i and the insulating plate 6h is required between the bottom surface of the bottomed case 6a and the electrode group 6c.
  • the distance between the positive end face (bottom plate 6b) and the electrode group 6c is larger than the distance between the negative end face (bottom of the bottomed case 6a) and the electrode group 6c.
  • a sealing plate 6e is provided between the end face on the positive electrode side and the electrode group 6c, in addition to the structure corresponding to the negative electrode lead 6i and the insulating plate 6h provided between the end face on the negative electrode side and the electrode group 6c.
  • a space for providing the exhaust valve 6g is required. Therefore, the distance between the end face on the positive electrode side and the electrode group 6c is larger than the distance between the end face on the negative electrode side and the electrode group 6c.
  • connection member 5A or the connection member 5B is attached to the positive end face (bottom plate 6b) of the cells 4b, 4c, 4e, and 4f. Resistance welding.
  • connection member 5A or the connection member 5B is laser-welded to the negative electrode side end face (the bottom face of the bottomed case 6a) of the cells 4a, 4b, 4d, and 4e.
  • FIG. 2 is an enlarged perspective view showing the connecting members 5A and 5B in FIG.
  • FIG. 3 is a side view of the connection members 5A and 5B in FIG. Since each of the connecting members 5A and 5B has the same configuration, the configuration of the connecting member 5A will be described below as an example.
  • the connecting member 5A is formed by bending a metal plate in place.
  • the connection member 5A electrically connects the first connection portion 5a that electrically connects the negative electrode of the cell 4a and the positive electrode of the cell 4b that face each other, and the negative electrode of the cell 4d and the positive electrode of the cell 4e that face each other.
  • a connecting portion 5c that connects the first connecting portion 5a and the second connecting portion 5b.
  • the first connection portion 5a is provided between the end face on the negative electrode side of the cell 4a (the bottom face of the bottomed case 6a) and the end face on the positive electrode side of the cell 4b (bottom plate 6b), and is welded to both end faces. .
  • the welded portion between the first connecting portion 5a and the cell 4a (the portion indicated by the arrow M2 in FIG. 5) and the welded portion between the first connecting portion 5a and the cell 4b (the portion indicated by the arrow M1 in FIG. 4) It is provided in a region between the cell 4a and the cell 4b.
  • the first connecting portion 5a has a size that can fit within the range of the projected shape of the end faces of the cells 4a and 4b when projected along the longitudinal direction (axial direction) of the cells 4a and 4b. ing.
  • the first connecting portion 5a is a metal plate integrally including a pair of base portions 5d and a protruding portion 5e protruding from the base portions 5d to the front side between the base portions 5d.
  • the protrusion 5e is welded to the cell 4b, while the base 5d is welded to the cell 4a.
  • a distance D1 (see FIG. 3) between the front surface of the protruding portion 5e and the back surface of each base portion 5d is set to a distance (for example, 1 mm) necessary for laser welding described later.
  • the first connecting portion 5a is formed with a slit 5f that penetrates the first connecting portion 5a across the base portion 5d and the protruding portion 5e. The slit 5f is provided in order to effectively melt the connecting member 5A by lengthening a current path during resistance welding described later.
  • the connecting part 5c connects the protruding part 5e of the first connecting part 5a and the protruding part 5e of the second connecting part 5b. As clearly shown in FIG. 3, the connecting portions 5c are folded back from the protruding portions 5e so that the back surface of the connecting portion 5c and the back surface of each base portion 5d are located on the same plane.
  • the connection part 5c which connects each protrusion part 5e was demonstrated, as shown in FIG. 6, the connection part 5g which connects the base parts 5d is also employable.
  • FIG. 4 is a partial side sectional view showing a state in which the cells 4b and the connection member 5A are resistance-welded.
  • FIG. 5 is a partial side sectional view showing a state in which the cell 4a is laser-welded to the connecting member 5A of FIG.
  • a connecting member 5A is prepared in which the distance D1 between the surface of the protruding portion 5e and the back surface of each base portion 5d is set to a predetermined distance (for example, 1 mm) necessary for laser welding. (Separation step).
  • a predetermined distance for example, 1 mm
  • the surface of the protruding portion 5e of the first connecting portion 5a is brought into contact with the positive end face (bottom plate 6b) of the cell 4b, and resistance welding is performed on the back surface of the protruding portion 5e.
  • a pair of electrodes (not shown) are brought into contact with each other.
  • each electrode for resistance welding is positioned so as to abut on both sides of the slit 5f with respect to the back surface of the protruding portion 5e.
  • the surface of the first connection portion 5a (protruding portion 5e) is melted by passing a current between the electrodes while pressing each electrode toward the cell 4b, thereby the first connection portion. 5a is resistance-welded to the cell 4b (bottom plate 6b) (first welding step).
  • resistance welding is performed on the end face (bottom plate 6b) of the cell 4b having a relatively long distance from the electrode group 6c. Therefore, compared with the case where resistance welding is performed on the side surface of the bottomed case 6a having a relatively short distance from the electrode group 6c, the mechanical stress received by the electrode group 6c due to pressing during resistance welding can be reduced.
  • resistance welding is applied to the end face on the positive electrode side that is longer than the end face on the negative electrode side from the electrode group 6c. Therefore, compared with the case where resistance welding is performed on the end surface on the negative electrode side, the mechanical stress received by the electrode group 6c due to the pressing force during resistance welding can be reduced.
  • the cell 4a is arrange
  • a gap corresponding to the distance D1 from the surface of the protruding portion 5e to the back surface of each base portion 5d is automatically formed between the cell 4a and the cell 4b.
  • laser welding is performed on the end surface of the base portion 5d rising from the end surface on the negative electrode side of the cell 4a (second welding step).
  • a laser is irradiated to the end surface of the base portion 5d through the gap between the cell 4a and the cell 4b.
  • the laser irradiation range is a part of the long side of one base 5d (the upper side of the upper base 5d in FIG. 2)
  • the laser output is 50 W to 300 W
  • the angle of the optical axis of the laser with respect to the end face of the cell 4a is 5 ° to 30 °.
  • laser welding is performed only on a part of the long side of one base portion 5d. However, laser welding may be performed on the entire long side of the base portion 5d. Laser welding can also be performed on the short side (left and right sides in FIG. 2) of the base 5d and the other base 5d (the lower base 5d in FIG. 2).
  • the above-described steps are performed in parallel with the connection work between the cell 4d and the cell 4e.
  • the assembled battery 2 is manufactured by performing the operation
  • the battery pack 1 is completed by electrically connecting the assembled battery 2 to a safety device or the like (not shown) and then storing it in the covering member 3.
  • the end surface of the connecting member 5A can be melted and welded to the cell 4a without pressing the connecting member 5A. Therefore, mechanical stress on the cell 4a can be reduced.
  • the manufacturing method according to the embodiment after the cell 4b and the connection member 5A are welded, the cell 4a and the connection member 5A arranged so as to sandwich the connection member 5A can be welded. Therefore, a manufacturing process can be simplified compared with the conventional manufacturing method. Specifically, in the conventional manufacturing method, both end portions of the connecting plate are arranged on two unit cells arranged side by side, and both end portions of the connecting plate are welded to each unit cell. A process of arranging the single cells in a row in the vertical direction by folding is required.
  • the cells 4a can be welded to the connecting members 5A in a state where the cells 4a are arranged in the vertical direction with respect to the cells 4b after the welding of the cells 4b and the connecting members 5A. Therefore, the process of folding the connecting plate in half as in the conventional manufacturing method can be omitted.
  • the space is reduced.
  • resistance welding can be effectively performed by lowering the electrode with respect to the connecting member 5A disposed on the end face of the cell 4b.
  • the end surfaces of the cells 4a and 4b with respect to the end surface of the base 5d disposed in the limited space between the end surface of the cell 4b and the end surface (second end surface) of the cell 4a.
  • Laser is irradiated from between (sides of the cells 4a and 4b).
  • the connection member 5A can be reliably welded to the end face of the cell 4a.
  • the connecting member 5A is prepared in which the distance D1 between the back surface of each base portion 5d and the surface of the protruding portion 5e is a distance necessary for laser welding. Therefore, by sandwiching the connecting member 5A between the cells 4a and 4b, a gap capable of irradiating the end surface of the base portion 5d can be formed between the end surface of the cell 4b and the end surface of the cell 4a.
  • the resistance welded portion and the laser welded portion are provided in the region between the cell 4a and the cell 4b. Therefore, it can be set as a compact assembled battery compared with the case where each welding part is formed in the outer side of the area
  • FIG. 7 is a partial cross-sectional side view illustrating a method for manufacturing an assembled battery according to another embodiment of the present invention, and illustrates a state in which the connection member 5D is resistance-welded to the cell 4b.
  • FIG. 8 is a partial side sectional view showing a state in which the cell 4a is laser-welded to the connection member 5D of FIG.
  • the connecting member 5D is a bottomed container-like metal member having a disk-shaped bottom portion 5h and a side wall portion 5i erected over the entire periphery of the peripheral portion of the bottom portion 5h. A method for connecting the cell 4a and the cell 4b using the connecting member 5D will be described below.
  • bottom 5h of connecting member 5D is brought into contact with the positive end surface of cell 4b, and a pair of resistance welding electrodes (not shown) are attached to the back surface of bottom 5h. ).
  • a current is passed between the electrodes while pressing the electrodes toward the cell 4b. Thereby, the surface of the bottom portion 5h is melted and the bottom portion 5h is resistance-welded to the cell 4b (first welding step).
  • the cells 4a and 4b are arranged in a row by inserting the cells 4a inside the side wall 5i of the connecting member 5D welded to the bottom 5h in the first welding step.
  • the inner diameter dimension of the side wall 5i is set corresponding to the outer dimension of the cell 4a so that the outer surface of the cell 4a inserted into the side wall 5i and the inner surface of the side wall 5i are in sliding contact. Yes.
  • the negative electrode of the cell 4a and the side wall part 5i are electrically connected. That is, in the cell 4a, as shown in FIG. 5, the bottomed case 6a itself is electrically connected to the negative electrode of the electrode group 6c. Therefore, the side wall part 5i is connected with the negative electrode of the cell 4a by contacting with the bottomed case 6a.
  • laser welding is performed on the end surface of the side wall 5i rising from the outer peripheral surface of the cell 4a (second welding step). Specifically, in the second welding step, as indicated by an arrow M4, the end surface of the side wall 5i is irradiated with a laser.
  • the laser irradiation conditions are the same as in the above embodiment.
  • the reason why laser welding can be adopted in the second welding process is that, unlike resistance welding, since welding can be performed without pressing, there is a possibility of applying mechanical stress even on the side surface of the cell 4a. It is low.
  • the manufacturing method for resistance welding the cell 4b and the connection members 5A, 5B, and 5D has been described.
  • these weldings can also be performed by laser welding. That is, the welding performed in the first welding process is not limited to resistance welding, and may be laser welding.
  • the present invention is provided between a first cell and a second cell arranged in series so that a positive electrode and a negative electrode face each other, and between the first cell and the second cell, and the positive electrodes facing both the cells.
  • a method of manufacturing an assembled battery is provided, in which an end surface of the connection member that rises from the outer surface when the battery is brought into contact is melted and welded to the second cell without pressing the connection member.
  • the end face of the connecting member can be welded to the second cell without pressing the connecting member. Therefore, mechanical stress on the second cell can be reduced.
  • “without pressing” is not limited to not applying any force toward the second cell side to the connection member, and the second cell and the connection member are held in close contact with each other.
  • the purpose is to allow a force of a degree to be applied to the connecting member.
  • connection member in the first welding step, is welded to a first end surface constituting the electrode of the first cell, and the first connection step after the first welding step is performed with respect to the first connection step.
  • the method further includes an arranging step of arranging the second cell such that the second end surface constituting the electrode of the second cell contacts from the opposite side of the cell, and in the second welding step, the second end surface is a connecting member. It is preferable that the connection member is welded to the second end surface by melting the end surface of the connection member rising from the second end surface in a state of being in contact with the second end surface.
  • the second cell and the connecting member arranged so as to sandwich the connecting member can be welded. Therefore, a manufacturing process can be simplified compared with the conventional manufacturing method. Specifically, in the conventional manufacturing method, both end portions of the connecting plate are arranged on two unit cells arranged side by side, and both end portions of the connecting plate are welded to each unit cell. A process of arranging the single cells in a row in the vertical direction by folding is required. On the other hand, in the said manufacturing method, a 2nd cell can be welded to a connection member in the state which has arrange
  • connection member is laser-welded to the second end surface.
  • the end faces of the connection members arranged in the limited space between the first end face and the second end face. Laser can be irradiated from the side). Therefore, the connection member can be reliably welded to the second end surface.
  • the second welding step is arranged in the arrangement step so that a laser can be irradiated to an end surface of the connection member located in a region between the first cell and the second cell. It is preferable to further include a separation step of separating the first end surface and the second end surface by a predetermined distance.
  • the separation step It by preparing a member in which a first contact surface that contacts the first cell and a second contact surface that contacts the second cell are separated by the predetermined distance, the separation step It can be performed.
  • the connection member in the first welding step, for example, laser welding may be considered, but the present invention is not limited to this.
  • the connection member in the manufacturing method, in the first welding step, can be resistance-welded to the first end surface.
  • the space is used on the first end face. Resistance welding can be effectively performed by lowering the electrode with respect to the arranged connection member.
  • the end surface constituting the electrode of the cell is usually compared with the side surface of the cell in order to insulate the end surface from the contents (for example, electrode group) or to secure a space for arranging a safety device. A large distance to the contents is secured. Therefore, even if a slight pressing force is applied to each end face, the influence on the contents of the cell is relatively small. In other words, the distance from the side surface of the cell to the contents is set to be as small as possible in response to the recent demand for cell miniaturization. For this reason, the side surface of the cell has a greater influence on the pressing force than the end surface of the cell.
  • the present invention also provides an assembled battery manufactured using the manufacturing method.
  • the present invention provides a first cell and a second cell arranged in series, and an electrical connection between the positive and negative electrodes facing each other provided between the first and second cells.
  • a laser that is provided in a region between the second cell, and at least the second welded portion of the first welded portion and the second welded portion is a laser with respect to an end surface of the connection member that rises from the surface of the second cell.
  • An assembled battery characterized by being a welded portion is provided.
  • the first welded portion and the second welded portion are provided in the region between the first cell and the second cell, the first welded portion or the second welded portion is provided. Compared to the case where the battery is formed outside the region between the cells, the battery pack can be made compact.
  • a compact assembled battery can be provided in this way.
  • the connection member is resistance-welded to the end face of the first cell (the first welded portion is formed)
  • the second cell is disposed so as to sandwich the connection member, and the second cell is located in the region between the two cells. It is difficult to resistance weld the connection member. This is because it is difficult to lower the resistance welding electrode in the space between the two cells.
  • the assembled battery according to the present invention in which the two welds are arranged between the two cells can be obtained.
  • At least the second welded portion is a laser welded portion. Therefore, when forming this 2nd welding part, it can weld to a 2nd cell, without pressing a connection member. Therefore, mechanical stress on the second cell can be reduced.
  • “at least the second welded portion is a laser welded portion” means that both the first welded portion and the second welded portion are laser welded portions.
  • connection member includes a first contact surface that contacts the first cell and a second contact surface that contacts the second cell, and the first contact surface and the second contact surface Is preferably formed apart from the end face of the connecting member located in the region between the first cell and the second cell by a predetermined distance that allows laser irradiation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

 少なくとも1つのセルに生じる機械的なストレスを緩和することができる組電池の製造方法及びこの製造方法により製造された組電池を提供すること。 接続部材5Aをセル4bに抵抗溶接する第1溶接工程と、前記第1溶接工程の後に接続部材5Aをセル4aに溶接する第2溶接工程とを含み、第1溶接工程及び第2溶接工程のうち、少なくとも第2溶接工程では、セル4aの外側面に接続部材5Aを接触させたときに当該外側面から立ち上がる接続部材5Aの端面を溶融させて当該接続部材5Aを押圧することなくセル4aに溶接する。

Description

組電池の製造方法及び組電池
 本発明は、直列に配置された複数のセルを有する組電池に関する技術である。
 従来から、直列に配置された複数の単電池(セル)と、隣接する単電池間に設けられた連結板とを備えた組電池が知られている(例えば、特許文献1)。特許文献1の組電池は、連結板の一端部を一方の単電池(セル)の正極に溶接するとともに、連結板の他端部を他方の単電池の負極に溶接し、前記連結板を二つ折りにして各単電池を直列に配置することにより製造される。
 具体的に、特許文献1の組電池の製造に際しては、裏面に溶接用のビードが形成された連結板を表側から単電池の端面に押し付けた状態で、当該連結板に電流を流す。これにより、前記ビードが溶融して連結板と単電池とが溶接される。
 しかしながら、特許文献1の組電池を製造する場合、連結板の裏面(ビード)を溶融させて当該連結板を単電池に溶接するために、抵抗溶接時に連結板を単電池側に押圧することを要する。そのため、両方の単電池においてそれぞれ前記押圧力に起因する機械的なストレスが生じていた。
特開2005-11629号公報
 本発明の目的は、少なくとも1つのセルに生じる機械的なストレスを緩和することができる組電池の製造方法及びこの製造方法により製造された組電池を提供することにある。
 上記課題を解決するために、本発明は、正極と負極とが対向するように直列に配置された第1セル及び第2セルと、前記第1セルと前記第2セルとの間に設けられ、前記両セルの対向する正極と負極とを電気的に接続する接続部材とを有する組電池を製造するための方法であって、前記接続部材を前記第1セルに溶接する第1溶接工程と、前記第1溶接工程の後に前記接続部材を前記第2セルに溶接する第2溶接工程とを含み、前記第1溶接工程及び第2溶接工程のうち、少なくとも前記第2溶接工程では、前記第2セルの外側面に接続部材を接触させたときに当該外側面から立ち上がる前記接続部材の端面を溶融させて当該接続部材を押圧することなく前記第2セルに溶接することを特徴とする組電池の製造方法を提供する。
 また、本発明は、直列に配置された第1セル及び第2セルと、これら第1セルと第2セルとの間に設けられ、前記両セルの対向する正極と負極とを電気的に接続する接続部材とを備え、前記第1セルと前記接続部材とが溶接された第1溶接部、及び前記第2セルと前記接続部材とが溶接された第2溶接部は、前記第1セルと前記第2セルとの間の領域内に設けられ、前記第1溶接部及び前記第2溶接部のうち、少なくとも第2溶接部は、前記第2セルの表面から立ち上がる前記接続部材の端面に対するレーザ溶接部であることを特徴とする組電池を提供する。
 本発明によれば、セルに生じる機械的なストレスを緩和することができる。
本発明の実施形態に係る電池パックの全体構成を示す分解斜視図である。 図1の接続部材を拡大して示す斜視図である。 図2の接続部材の側面図である。 セルと接続部材とを抵抗溶接する状態を示す側面一部断面図である。 図4の接続部材に対してセルをレーザ溶接する状態を示す側面一部断面図である。 接続部材の変形例を示す斜視図である。 本発明の別の実施形態に係る組電池の製造方法を示す側面一部断面図であり、セルに接続部材を抵抗溶接する状態を示している。 図7の接続部材に対してセルをレーザ溶接する状態を示す側面一部断面図である。
 以下添付図面を参照しながら、本発明の実施の形態について説明する。尚、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定する性格のものではない。
 図1は、本発明の実施形態に係る電池パックの全体構成を示す分解斜視図である。
 図1を参照して、電池パック1は、組電池2と、この組電池2を被覆する被覆部材3とを備えている。この被覆部材3は、組電池2を収納する有底容器3bと、この有底容器3bの開口部を覆うとともに有底容器3bの側壁を取り囲む蓋体3aとを備えている。なお、この被覆部材3内には、前記組電池2と電気的に接続された安全装置も収納されている。
 組電池2は、6つのセル4a~4fと、これらセル4a~4fを電気的に接続する接続部材5A~5Cとを備えている。本実施形態では、セル4a~4cが直列に配置されているとともに、セル4d~4fが直列に配置されている。これら直列に配置された2列のセルは、並列に配置されている。接続部材5Aは、セル4aの負極とセル4bの正極とを電気的に接続するとともに、セル4dの負極とセル4eの正極とを電気的に接続し、さらにセル4a及びセル4dの負極同士を電気的に接続する。接続部材5Bは、セル4bの負極とセル4cの正極とを電気的に接続するとともに、セル4eの負極とセル4fの正極とを電気的に接続し、さらにセル4b及びセル4eの負極同士を電気的に接続する。接続部材5Cは、セル4cの負極とセル4fの負極とを電気的に接続する。なお、組電池2の接続部材5Cと反対側の端面には、セル4aの正極とセル4dの正極とを電気的に接続する接続部材(図示せず)が設けられている。以下、組電池2の具体的構成について説明する。
 セル4a~4fは、リチウムイオン二次電池であり、それぞれ同様の構成を有する。図4は、セル4aの正極側の断面図を示し、図5は、セル4bの負極側の断面図を示している。各図を参照してセル4a、4bの構成を例に挙げて説明する。
 セル4a、4bは、円筒状の有底ケース6aと、この有底ケース6aの開口端に設けられた底板6bと、前記有底ケース6aと底板6bとの間の室内に設けられた電極群6c、絶縁板6d、6h、封口板6e、及び排気弁6gとを備えている。電極群6cは、正極シート、負極シート及びセパレータが巻回されたものである。電極群6cの最外周面は、セパレータからなる。この電極群6cには、正極リード6fが接続され、この正極リード6fが封口板6eに電気的に接続されている。この封口板6eと底板6bとは電気的に接続されているため、底板6bは、正極を構成するセル4a、4bの端面となる。一方、電極群6cには、負極リード6iが接続され、この負極リード6iが有底ケース6aの底面に電気的に接続されている。よって、有底ケース6aの底面は、負極を構成するセル4a、4bの端面となる。絶縁板6dは、電極群6cと底板6bとを絶縁するために電極群6cと底板6bとの間に配設されている。同様に、絶縁板6hは、電極群6cと有底ケース6aとを絶縁するために電極群6cと有底ケース6aの底面との間に配設されている。封口板6eは、有底ケース6aの開口を塞ぐように絶縁板6dと底板6bとの間に設けられている。排気弁6gは、封口板6eと底板6bとの間に設けられ、封口板6eに形成された孔を塞ぐように当該封口板6eに固定されている。この排気弁6gは、有底ケース6a内で発生したガスを有底ケース6aの外部に導出するように、前記ガスの圧力が所定圧以上となったときに開放する。
 このようなセル4a~4fにおいては、正極側の端面(底板6b)又は負極側の端面(有底ケース6aの底面)と電極群6cとの間の距離が有底ケース6aの側面と電極群6cとの間の距離よりも大きい。具体的に、底板6bと電極群6cとの間には、正極リード6f、絶縁板6d、封口板6e及び排気弁6gを設けるためのスペースを要する。また、有底ケース6aの底面と電極群6cとの間には、負極リード6i、絶縁板6hを設けるためのスペースを要する。これに対し、有底ケース6aの側面と電極群6cとの間にはこのようなスペースを要しない。特に、近年では、セル4a~4fの小型化の要請に応えるために有底ケース6aの側面と電極群6cとの間の距離が狭く設計される。そのため、有底ケース6aの側面と電極群6cとの間の距離と正極側又は負極側の端面から電極群6cまでの距離との差がより大きくなる傾向にある。
 また、正極側の端面(底板6b)と電極群6cとの間の距離は、負極側の端面(有底ケース6aの底面)と電極群6cとの間の距離よりも大きい。具体的に、正極側の端面と電極群6cとの間には、負極側の端面と電極群6cとの間に設けられる負極リード6i及び絶縁板6hに相当する構成に加えて、封口板6e、排気弁6gを設けるためのスペースが要求される。そのため、正極側の端面と電極群6cとの間の距離は、負極側の端面と電極群6cとの間の距離よりも大きくなる。
 セル4a~4fの上記のような構造的特性を考慮して、本実施形態では、セル4b、4c、4e、4fの正極側の端面(底板6b)に対して接続部材5A又は接続部材5Bを抵抗溶接する。一方、セル4a、4b、4d、4eの負極側の端面(有底ケース6aの底面)に対して接続部材5A又は接続部材5Bをレーザ溶接する。
 図2は、図1の接続部材5A、5Bを拡大して示す斜視図である。図3は、図2の接続部材5A、5Bの側面図である。各接続部材5A、5Bは、それぞれ同様の構成を有するため、以下接続部材5Aの構成を例に挙げて説明する。
 図2及び図3を参照して、接続部材5Aは、金属板を適所で折り曲げたものである。この接続部材5Aは、互いに対向するセル4aの負極とセル4bの正極とを電気的に接続する第1接続部5aと、互いに対向するセル4dの負極とセル4eの正極とを電気的に接続する第2接続部5bと、これら第1接続部5aと第2接続部5bとを連結する連結部5cとを備えている。なお、第1接続部5aと第2接続部5bとは、左右対称の点を除き同様の構成を有するため、以下、第1接続部5aの構成のみを説明する。
 第1接続部5aは、セル4aの負極側の端面(有底ケース6aの底面)とセル4bの正極側の端面(底板6b)との間に設けられ、両端面に対して溶接されている。第1接続部5aとセル4aとの溶接部分(図5の矢印M2で指示する部分)及び第1接続部5aとセル4bとの溶接部分(図4の矢印M1で指示する部分)は、当該セル4aとセル4bとの間の領域内に設けられている。具体的に、第1接続部5aは、セル4a、4bの長手方向(軸線方向)に沿って投影したときに、セル4a、4bの端面の投影形状の範囲内に収まることができる大きさとされている。
 また、第1接続部5aは、一対の基部5dと、これら基部5dの間で当該各基部5dから表側に突出する突出部5eとを一体に有する金属板である。本実施形態では、突出部5eがセル4bに溶接されている一方、基部5dがセル4aに溶接されている。突出部5eの表面と各基部5dの裏面との間の距離D1(図3参照)は、後述するレーザ溶接をするのに必要な距離(例えば、1mm)に設定されている。また、第1接続部5aには、基部5dと突出部5eとに跨って第1接続部5aを貫通するスリット5fが形成されている。このスリット5fは、後述する抵抗溶接時の電流の経路を長くすることにより接続部材5Aを効果的に溶融させるために設けられている。
 連結部5cは、第1接続部5aの突出部5eと第2接続部5bの突出部5eとを連結する。図3に明示するように、連結部5cの裏面と各基部5dの裏面とが同一平面上に位置するように、連結部5cは、各突出部5eから裏側に折り返されている。なお、本実施形態では、各突出部5e同士を連結する連結部5cについて説明したが、図6に示すように、基部5d同士を連結する連結部5gを採用することもできる。
 以下、図2、図4及び図5を参照して、電池パック1の製造方法について説明する。図4は、セル4bと接続部材5Aとを抵抗溶接する状態を示す側面一部断面図である。図5は、図4の接続部材5Aに対してセル4aをレーザ溶接する状態を示す側面一部断面図である。
 まず、図2を参照して、突出部5eの表面と各基部5dの裏面との間の距離D1がレーザ溶接を行うために必要な所定距離(例えば、1mm)とされた接続部材5Aを準備する(離間工程)。このような接続部材5Aを準備することによって、後述する工程でセル4aとセル4bとの間にレーザ溶接に必要な距離D1のスペースを確保することができる。
 次に、図4を参照して、セル4bの正極側の端面(底板6b)に対して第1接続部5aの突出部5eの表面を接触させ、この突出部5eの裏面に対して抵抗溶接用の一対の電極(図示せず)を当接させる。このとき、抵抗溶接用の各電極は、突出部5eの裏面に対しスリット5fを挟んだ両側で当接するように位置決めされる。次いで、矢印M1に示すように、各電極をセル4b側に押圧しつつ各電極間に電流を流すことにより、第1接続部5a(突出部5e)の表面を溶融させて当該第1接続部5aをセル4b(底板6b)に抵抗溶接する(第1溶接工程)。
 本実施形態では、電極群6cからの距離が比較的長いセル4bの端面(底板6b)に対して抵抗溶接を施す。そのため、電極群6cからの距離が比較的短い有底ケース6aの側面に抵抗溶接する場合と比較して、抵抗溶接時の押圧により電極群6cが受ける機械的なストレスを緩和することができる。また、本実施形態では、電極群6cからの距離が負極側の端面よりも長い正極側の端面に対して抵抗溶接を施す。そのため、負極側の端面に抵抗溶接をする場合と比較して抵抗溶接時の押圧力により電極群6cが受ける機械的ストレスを緩和することができる。
 図5を参照して、前記第1溶接工程で底板6bに溶接された第1接続部5aの各基部5dの裏側面に対してセル4aの負極側の端面(有底ケース6aの底面)が接触するように、セル4aを配置する(配置工程)。この配置工程により、突出部5eの表面から各基部5dの裏面までの距離D1に対応する隙間がセル4aとセル4bとの間に自動的に形成される。
 次いで、セル4aの負極側の端面から立ち上がる基部5dの端面に対してレーザ溶接を行う(第2溶接工程)。具体的に、この第2溶接工程では、矢印M2に示すように、セル4aとセル4bとの隙間を通して基部5dの端面に対してレーザを照射する。本実施形態では、レーザの照射範囲は、一方の基部5dの長辺(図2の上側の基部5dの上辺)の一部であり、レーザの出力は、50W~300Wであり、レーザの照射時間は、0.01sec~0.5secであり、セル4aの端面に対するレーザの光軸の角度は、5°~30°である。この条件でレーザを照射することにより、基部5dの端面が溶融し、それが再硬化して第1接続部5aがセル4aに溶接される。なお、本実施形態の第2溶接工程では、一方の基部5dの長辺の一部についてのみレーザ溶接を行うこととしているが、基部5dの長辺の全範囲についてレーザ溶接を行ってもよい。また、基部5dの短辺(図2の左右の辺)や他方の基部5d(図2の下側の基部5d)についてレーザ溶接を行うこともできる。
 前記の各工程は、セル4dとセル4eとの間の接続作業と並行して行われる。そして、上述した作業をセル4bとセル4cとの間、及びセル4eとセル4fとの間でも同様に行うことにより、組電池2が製造される。次いで、図1に示すように、組電池2を図外の安全装置等と電気的に接続した上で、被覆部材3内に収納することにより、電池パック1が完成する。
 以上説明したように、前記実施形態に係る製造方法によれば、接続部材5Aの端面を溶融させて当該接続部材5Aを押圧することなくセル4aに溶接することができる。そのため、当該セル4aに対する機械的なストレスを緩和することができる。
 前記実施形態に係る製造方法によれば、セル4bと接続部材5Aとを溶接した後にこの接続部材5Aを挟むように配置したセル4aと接続部材5Aとを溶接することができる。そのため、従来の製造方法と比較して製造工程を簡素化することができる。具体的に、従来の製造方法では、横に並べた2つの単電池上に連結板の両端部をそれぞれ配置し、連結板の両端部を各単電池にそれぞれ溶接した後に、この連結板を二つ折りにすることにより両単電池を縦方向に一列に配置させる工程を要する。一方、前記実施形態に係る製造方法では、セル4bと接続部材5Aとの溶接の後にセル4bに対してセル4aを縦方向に配置した状態で接続部材5Aにセル4aを溶接することができる。そのため、従来の製造方法のように連結板を二つ折りにする工程を省略することができる。
 前記実施形態に係る製造方法によれば、セル4aが接続される前の段階、つまり、セル4bの端面(第1端面)上のスペースがセル4aにより拘束される前の段階において、このスペースを利用してセル4bの端面上に配置した接続部材5Aに対して電極を下ろして抵抗溶接を有効に行うことができる。そして、第2溶接工程において、セル4bの端面とセル4aの端面(第2端面)との間の限られたスペースに配置された基部5dの端面に対して、セル4a及びセル4bの端面の間(セル4a、4bの側方)からレーザを照射する。これにより接続部材5Aをセル4aの端面に確実に溶接することができる。
 前記実施形態に係る製造方法によれば、各基部5dの裏面と突出部5eの表面との間の距離D1がレーザ溶接に必要な距離とされた接続部材5Aを準備する。そのため、この接続部材5Aを両セル4a、4b間で挟むことにより、基部5dの端面にレーザを照射可能となる間隙をセル4bの端面とセル4aの端面との間に形成することができる。
 また、前記実施形態に係る組電池2によれば、抵抗溶接部及びレーザ溶接部がセル4aとセル4bとの間の領域内に設けられている。そのため、各溶接部がセル4aとセル4bとの間の領域の外側に形成されている場合と比較してコンパクトな組電池とすることができる。
 なお、前記実施形態では、接続部材5Aとセル4a、4bとの溶接部が各セル4a、4bの間の領域内に配置された構成について説明したが、レーザ溶接部は、セル4a、4bの間の領域の外側に配置されていてもよい。図7は、本発明の別の実施形態に係る組電池の製造方法を示す側面一部断面図であり、セル4bに接続部材5Dを抵抗溶接する状態を示している。図8は、図7の接続部材5Dに対してセル4aをレーザ溶接する状態を示す側面一部断面図である。
 本実施形態に係る接続部材5Dは、円板状の底部5hと、この底部5hの周縁部の全周にわたり立設された側壁部5iとを有する有底容器状の金属部材である。この接続部材5Dを用いてセル4aとセル4bとを接続するための方法を以下説明する。
 図7を参照して、まず、セル4bの正極側の端面に対して接続部材5Dの底部5hの表面を接触させ、この底部5hの裏面に対して抵抗溶接用の一対の電極(図示せず)を当接させる。次いで、矢印M3に示すように、各電極をセル4b側に押圧しつつ各電極間に電流を流す。これにより、底部5hの表面を溶融させて当該底部5hをセル4bに抵抗溶接する(第1溶接工程)。
 図8を参照して、次に、前記第1溶接工程で底部5hに溶接された接続部材5Dの側壁部5iの内側にセル4aを挿入することにより、セル4aとセル4bとを一列に配置する。なお、側壁部5iの内径寸法は、当該側壁部5i内に挿入されたセル4aの外側面と側壁部5iの内側面とが摺接するように、セル4aの外周寸法に対応して設定されている。そして、この接触によりセル4aの負極と側壁部5iとが電気的に接続される。つまり、セル4aは、図5に示すように、有底ケース6a自体が電極群6cの負極と電気的に接続されている。そのため、この有底ケース6aと接触することにより、側壁部5iは、セル4aの負極と接続されることになる。
 次いで、セル4aの外周面から立ち上がる側壁部5iの端面に対してレーザ溶接を行う(第2溶接工程)。具体的に、この第2溶接工程では、矢印M4に示すように、側壁部5iの端面に対してレーザを照射する。レーザの照射条件は、上記実施形態と同様である。この第2溶接工程でレーザ溶接を採用することができる理由は、抵抗溶接と異なり、押圧することなく溶接することができるため、セル4aの側面であっても機械的なストレスを与える可能性が低いことにある。
 なお、前記各実施形態では、セル4bと接続部材5A、5B、5Dとを抵抗溶接する製造方法について説明したが、これらの溶接をレーザ溶接により行うこともできる。つまり、第1溶接工程において行われる溶接は、抵抗溶接に限定されず、レーザ溶接であってもよい。
 なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている。
 本発明は、正極と負極とが対向するように直列に配置された第1セル及び第2セルと、前記第1セルと前記第2セルとの間に設けられ、前記両セルの対向する正極と負極とを電気的に接続する接続部材とを有する組電池を製造するための方法であって、前記接続部材を前記第1セルに溶接する第1溶接工程と、前記第1溶接工程の後に前記接続部材を前記第2セルに溶接する第2溶接工程とを含み、前記第1溶接工程及び第2溶接工程のうち、少なくとも前記第2溶接工程では、前記第2セルの外側面に接続部材を接触させたときに当該外側面から立ち上がる前記接続部材の端面を溶融させて当該接続部材を押圧することなく前記第2セルに溶接することを特徴とする組電池の製造方法を提供する。
 本発明によれば、接続部材の端面を溶接させて当該接続部材を押圧することなく第2セルに溶接することができる。そのため、第2セルに対する機械的なストレスを緩和することができる。
 ここで、『押圧することなく』とは、接続部材に対して第2セル側に向けた力を全く与えないことに限定するものではなく、第2セルと接続部材とを密着状態に保持する程度の力が接続部材に与えられることを許容する趣旨である。
 前記製造方法において、前記第1溶接工程では、前記第1セルの電極を構成する第1端面に対して前記接続部材を溶接し、前記第1溶接工程後の前記接続部材に対し、前記第1セルの反対側から前記第2セルの電極を構成する第2端面が接触するように、前記第2セルを配置する配置工程をさらに含み、前記第2溶接工程では、前記第2端面が接続部材に接触した状態で、前記第2端面から立ち上がる前記接続部材の端面を溶融させることにより前記第2端面に前記接続部材を溶接することが好ましい。
 この製造方法によれば、第1セルと接続部材とを溶接した後にこの接続部材を挟むように配置した第2セルと接続部材とを溶接することができる。そのため、従来の製造方法と比較して製造工程を簡素化することができる。具体的に、従来の製造方法では、横に並べた2つの単電池上に連結板の両端部をそれぞれ配置し、連結板の両端部を各単電池にそれぞれ溶接した後に、この連結板を二つ折りにすることにより両単電池を縦方向に一列に配置させる工程を要する。これに対し、前記製造方法では、第1セルと接続部材との溶接の後に第1セルに対して第2セルを縦方向に配置した状態で接続部材に第2セルを溶接することができる。そのため、従来の製造方法のように連結板を二つ折りにする工程を省略することができる。
 前記製造方法において、前記第2溶接工程では、前記第2端面に対して前記接続部材をレーザ溶接することが好ましい。
 この製造方法によれば、第2溶接工程において、第1端面と第2端面との間の限られたスペースに配置された接続部材の端面に対して、各セルの端面の間(各セルの側方)からレーザを照射することができる。したがって、接続部材を第2端面に確実に溶接することができる。
 前記製造方法において、前記第2溶接工程において前記第1セルと前記第2セルとの間の領域内に位置する前記接続部材の端面に対しレーザを照射可能となるように、前記配置工程で配置される前記第1端面と前記第2端面との間を所定距離だけ離間させる離間工程をさらに備えていることが好ましい。
 この方法によれば、第1セルと第2セルとの間の限られたスペースに配置された接続部材の端面に対して有効にレーザを照射することが可能となる。
 具体的に、前記接続部材として、前記第1セルに接触する第1接触面と前記第2セルに接触する第2接触面とが前記所定距離だけ離間したものを準備することにより、前記離間工程を行うことができる。
 前記第1溶接工程では、例えばレーザ溶接をすることが考えられるが、これに限定されない。具体的に、前記製造方法において、前記第1溶接工程では、前記第1端面に対して前記接続部材を抵抗溶接することができる。
 この製造方法によれば、第2セルが接続される前の段階、つまり、第1端面上のスペースが第2セルにより拘束される前の段階において、このスペースを利用して第1端面上に配置した接続部材に対して電極を下ろして抵抗溶接を有効に行うことができる。
 なお、前記製造方法では、第1セルの第1端面に対して抵抗溶接を行っているが、この抵抗溶接が第1セルに与える機械的ストレスは小さい。その理由は次の通りである。セルの電極を構成する端面は、当該端面と内容物(例えば、電極群)との絶縁を図るために、又は安全装置を配置するスペースを確保するために、通常、セルの側面と比較して内容物までの距離が大きく確保されている。そのため、各端面に対して多少の押圧力が与えられてもセルの内容物に与える影響は比較的小さく済む。換言すると、セルの側面から内容物までの距離は、近年のセルの小型化の要請に応じるべく極力小さくなるように設定されている。そのため、セルの側面については、セルの端面と比較して押圧力に対する影響が大きくなる。
 また、本発明は、前記製造方法を用いて製造された組電池を提供する。
 さらに、本発明は、直列に配置された第1セル及び第2セルと、これら第1セルと第2セルとの間に設けられ、前記両セルの対向する正極と負極とを電気的に接続する接続部材とを備え、前記第1セルと前記接続部材とが溶接された第1溶接部、及び前記第2セルと前記接続部材とが溶接された第2溶接部は、前記第1セルと前記第2セルとの間の領域内に設けられ、前記第1溶接部及び前記第2溶接部のうち、少なくとも第2溶接部は、前記第2セルの表面から立ち上がる前記接続部材の端面に対するレーザ溶接部であることを特徴とする組電池を提供する。
 本発明に係る組電池によれば、第1溶接部及び第2溶接部が第1セルと第2セルとの間の領域内に設けられているため、第1溶接部又は第2溶接部が各セルの間の領域の外側に形成されている場合と比較してコンパクトな組電池とすることができる。
 このようにコンパクトな組電池を提供することができる理由は、両セルの領域内に設けられた第1溶接部及び第2溶接部うち、少なくとも第2溶接部がレーザ溶接部であることに起因する。例えば、接続部材を第1セルの端面に抵抗溶接(第1溶接部を形成)した後に、この接続部材を挟むように第2セルを配置して、両セルの間の領域内で第2セルと接続部材とを抵抗溶接することは困難である。なぜなら、両セルの間のスペースに抵抗溶接用の電極を下ろすことは困難だからである。ここで、両セルの間の領域内にレーザを照射することにより、両溶接部が両セルの間に配置された本発明に係る組電池を得ることができる。
 そして、本発明に係る組電池では、上述のように少なくとも第2溶接部がレーザ溶接部である。そのため、この第2溶接部を形成する際に接続部材を押圧することなく第2セルに溶接することができる。したがって、第2セルに対する機械的なストレスを緩和することができる。ここで、『少なくとも第2溶接部がレーザ溶接部である』とは、第1溶接部及び第2溶接部の双方がレーザ溶接部であることを含む趣旨である。
 なお、『押圧することなく』の意味は、上記と同様である。
 前記組電池において、前記接続部材は、前記第1セルに接触する第1接触面と、前記第2セルに接触する第2接触面とを備え、前記第1接触面と前記第2接触面とは、前記第1セルと前記第2セルとの間の領域内に位置する前記接続部材の端面に対しレーザを照射可能となる所定距離だけ離間して形成されていることが好ましい。
 この構成によれば、第1セルと第2セルとの間に接続部材を挟むことによりレーザ溶接に必要なスペースが必然的に形成される。そのため、このスペースを形成するために各セルを窪ませる等の設計変更が不要となる。
 本発明によれば、セルに生じる機械的なストレスを緩和することができる。
 1  電池パック
 2  組電池
 3  被覆部材
 4a~4f  セル
 5A、5B、5D  接続部材
 5a  第1接続部
 5b  第2接続部
 5d  基部
 5e  突出部

Claims (9)

  1.  正極と負極とが対向するように直列に配置された第1セル及び第2セルと、前記第1セルと前記第2セルとの間に設けられ、前記両セルの対向する正極と負極とを電気的に接続する接続部材とを有する組電池を製造するための方法であって、
     前記接続部材を前記第1セルに溶接する第1溶接工程と、
     前記第1溶接工程の後に前記接続部材を前記第2セルに溶接する第2溶接工程とを含み、
     前記第1溶接工程及び第2溶接工程のうち、少なくとも前記第2溶接工程では、前記第2セルの外側面に接続部材を接触させたときに当該外側面から立ち上がる前記接続部材の端面を溶融させて当該接続部材を押圧することなく前記第2セルに溶接することを特徴とする組電池の製造方法。
  2.  前記第1溶接工程では、前記第1セルの電極を構成する第1端面に対して前記接続部材を溶接し、
     前記第1溶接工程後の前記接続部材に対し、前記第1セルの反対側から前記第2セルの電極を構成する第2端面が接触するように、前記第2セルを配置する配置工程をさらに含み、
     前記第2溶接工程では、前記第2端面が接続部材に接触した状態で、前記第2端面から立ち上がる前記接続部材の端面を溶融させることにより前記第2端面に前記接続部材を溶接することを特徴とする請求項1に記載の組電池の製造方法。
  3.  前記第2溶接工程では、前記第2端面に対して前記接続部材をレーザ溶接することを特徴とする請求項2に記載の組電池の製造方法。
  4.  前記第2溶接工程において前記第1セルと前記第2セルとの間の領域内に位置する前記接続部材の端面に対しレーザを照射可能となるように、前記配置工程で配置される前記第1端面と前記第2端面との間を所定距離だけ離間させる離間工程をさらに備えていることを特徴とする請求項3に記載の組電池の製造方法。
  5.  前記離間工程では、前記接続部材として、前記第1セルに接触する第1接触面と前記第2セルに接触する第2接触面とが前記所定距離だけ離間したものを準備することを特徴とする請求項4に記載の組電池の製造方法。
  6.  前記第1溶接工程では、前記第1端面に対して前記接続部材を抵抗溶接することを特徴とする請求項2~5の何れか1項に記載の組電池の製造方法。
  7.  請求項1~6の何れか1項に記載の組電池の製造方法を用いて製造された組電池。
  8.  直列に配置された第1セル及び第2セルと、
     これら第1セルと第2セルとの間に設けられ、前記両セルの対向する正極と負極とを電気的に接続する接続部材とを備え、
     前記第1セルと前記接続部材とが溶接された第1溶接部、及び前記第2セルと前記接続部材とが溶接された第2溶接部は、前記第1セルと前記第2セルとの間の領域内に設けられ、
     前記第1溶接部及び前記第2溶接部のうち、少なくとも第2溶接部は、前記第2セルの表面から立ち上がる前記接続部材の端面に対するレーザ溶接部であることを特徴とする組電池。
  9.  前記接続部材は、前記第1セルに接触する第1接触面と、前記第2セルに接触する第2接触面とを備え、
     前記第1接触面と前記第2接触面とは、前記第1セルと前記第2セルとの間の領域内に位置する前記接続部材の端面に対しレーザを照射可能となる所定距離だけ離間して形成されていることを特徴とする請求項8に記載の組電池。
PCT/JP2011/003074 2010-06-14 2011-06-01 組電池の製造方法及び組電池 WO2011158450A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180029601XA CN102947973A (zh) 2010-06-14 2011-06-01 电池组的制造方法以及电池组
US13/704,557 US20130095370A1 (en) 2010-06-14 2011-06-01 Battery assembly production method and battery assembly
JP2012520268A JP5176002B2 (ja) 2010-06-14 2011-06-01 組電池の製造方法及び組電池
KR1020127031829A KR20130090771A (ko) 2010-06-14 2011-06-01 조전지의 제조 방법 및 조전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-135034 2010-06-14
JP2010135034 2010-06-14

Publications (1)

Publication Number Publication Date
WO2011158450A1 true WO2011158450A1 (ja) 2011-12-22

Family

ID=45347866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003074 WO2011158450A1 (ja) 2010-06-14 2011-06-01 組電池の製造方法及び組電池

Country Status (5)

Country Link
US (1) US20130095370A1 (ja)
JP (1) JP5176002B2 (ja)
KR (1) KR20130090771A (ja)
CN (1) CN102947973A (ja)
WO (1) WO2011158450A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110710017A (zh) * 2017-06-01 2020-01-17 三星Sdi株式会社 电池组
JP2022026171A (ja) * 2020-07-30 2022-02-10 プライムプラネットエナジー&ソリューションズ株式会社 蓄電モジュール、ならびに溶接方法およびそれを用いた蓄電モジュールの製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5570407B2 (ja) * 2010-03-26 2014-08-13 パナソニック株式会社 組電池とその製造方法および電子機器
CN106463685B (zh) * 2014-06-18 2019-10-25 远景Aesc日本有限公司 电池组的极片焊接方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126703A (ja) * 1999-10-29 2001-05-11 Sanyo Electric Co Ltd モジュール電池
JP2005317280A (ja) * 2004-04-27 2005-11-10 Sanyo Electric Co Ltd 組電池
JP2007012406A (ja) * 2005-06-30 2007-01-18 Sanyo Electric Co Ltd 組電池とその製造方法
JP2007179816A (ja) * 2005-12-27 2007-07-12 M & G Eco Battery:Kk 単電池間の接続構造

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345086A (ja) * 2000-05-31 2001-12-14 Sanyo Electric Co Ltd 組電池
JP2006147319A (ja) * 2004-11-18 2006-06-08 Sanyo Electric Co Ltd 電源装置
JP5205805B2 (ja) * 2007-05-16 2013-06-05 ソニー株式会社 バッテリパック

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126703A (ja) * 1999-10-29 2001-05-11 Sanyo Electric Co Ltd モジュール電池
JP2005317280A (ja) * 2004-04-27 2005-11-10 Sanyo Electric Co Ltd 組電池
JP2007012406A (ja) * 2005-06-30 2007-01-18 Sanyo Electric Co Ltd 組電池とその製造方法
JP2007179816A (ja) * 2005-12-27 2007-07-12 M & G Eco Battery:Kk 単電池間の接続構造

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110710017A (zh) * 2017-06-01 2020-01-17 三星Sdi株式会社 电池组
CN110710017B (zh) * 2017-06-01 2023-04-04 三星Sdi株式会社 电池组
JP2022026171A (ja) * 2020-07-30 2022-02-10 プライムプラネットエナジー&ソリューションズ株式会社 蓄電モジュール、ならびに溶接方法およびそれを用いた蓄電モジュールの製造方法
JP7144489B2 (ja) 2020-07-30 2022-09-29 プライムプラネットエナジー&ソリューションズ株式会社 蓄電モジュール

Also Published As

Publication number Publication date
JP5176002B2 (ja) 2013-04-03
US20130095370A1 (en) 2013-04-18
JPWO2011158450A1 (ja) 2013-08-19
KR20130090771A (ko) 2013-08-14
CN102947973A (zh) 2013-02-27

Similar Documents

Publication Publication Date Title
US8986874B2 (en) Prismatic cell and production method for the same
JP6915616B2 (ja) 二次電池
WO2016093338A1 (ja) 蓄電素子
US20100310929A1 (en) Sealed battery and producing method therefor
WO2018159275A1 (ja) 電池モジュール
JP5176002B2 (ja) 組電池の製造方法及び組電池
EP1993161B1 (en) Battery, and battery manufacturing method
JP2013045636A (ja) 角形電池及びその製造方法
JP2017168349A (ja) 蓄電装置
JP6935798B2 (ja) 二次電池の製造方法
JP6696487B2 (ja) 蓄電装置
WO2017071846A1 (en) Energy storage device
JP2005183360A (ja) 角形電池とその製造方法
JP4373049B2 (ja) 蓄電池
JP2014035871A (ja) 蓄電装置及び蓄電装置の製造方法
JP6288215B2 (ja) 二次電池
JP2016195033A (ja) 蓄電素子
WO2023157228A1 (ja) 二次電池
JP2016195014A (ja) 蓄電素子
JP7443321B2 (ja) 二次電池および組電池、ならびにその製造方法
JPWO2019116914A1 (ja) 蓄電素子
WO2024062522A1 (ja) 二次電池および二次電池の製造方法
KR102603743B1 (ko) 원통형 배터리 셀, 그리고 이를 포함하는 배터리 팩 및 자동차
JP6879897B2 (ja) 二次電池
JP7459033B2 (ja) 角型電池および角型電池の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180029601.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795358

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012520268

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127031829

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13704557

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11795358

Country of ref document: EP

Kind code of ref document: A1