WO2011158368A1 - 直流駆動の無機エレクトロルミネッセンス素子と発光方法 - Google Patents

直流駆動の無機エレクトロルミネッセンス素子と発光方法 Download PDF

Info

Publication number
WO2011158368A1
WO2011158368A1 PCT/JP2010/060330 JP2010060330W WO2011158368A1 WO 2011158368 A1 WO2011158368 A1 WO 2011158368A1 JP 2010060330 W JP2010060330 W JP 2010060330W WO 2011158368 A1 WO2011158368 A1 WO 2011158368A1
Authority
WO
WIPO (PCT)
Prior art keywords
type semiconductor
inorganic
layer
type
inorganic electroluminescent
Prior art date
Application number
PCT/JP2010/060330
Other languages
English (en)
French (fr)
Inventor
石村卓良
Original Assignee
光文堂印刷有限会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光文堂印刷有限会社 filed Critical 光文堂印刷有限会社
Priority to EP10773525.0A priority Critical patent/EP2437577A4/en
Priority to CN201080016370.4A priority patent/CN102440072B/zh
Priority to KR1020127024336A priority patent/KR101431476B1/ko
Priority to PCT/JP2010/060330 priority patent/WO2011158368A1/ja
Priority to JP2010536262A priority patent/JP4723049B1/ja
Priority to TW100114865A priority patent/TWI362895B/zh
Priority to US13/240,627 priority patent/US8810123B2/en
Publication of WO2011158368A1 publication Critical patent/WO2011158368A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/57Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing manganese or rhenium
    • C09K11/572Chalcogenides
    • C09K11/574Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0805Chalcogenides
    • C09K11/0822Chalcogenides with rare earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7743Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing terbium
    • C09K11/7744Chalcogenides
    • C09K11/7745Chalcogenides with zinc or cadmium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions
    • H01L33/0016Devices characterised by their operation having p-n or hi-lo junctions having at least two p-n junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the present invention uses a phenomenon called inorganic electroluminescence, and relates to an inorganic electroluminescence element for converting an electricity into light using an inorganic substance as a light emitting material, a light emitting device using the element, and a light emitting method.
  • Typical examples of the self-luminous element capable of obtaining planar light emission include an organic electroluminescence element (hereinafter sometimes referred to as an organic EL element) and an inorganic electroluminescence element (hereinafter also referred to as an inorganic EL element).
  • the organic EL element has a problem that it has a short lifetime and is weak against a high temperature in order to pass a current through an organic substance.
  • inorganic EL devices have many advantageous features such as operating at a wide range of temperatures and long life, and many studies have been made for practical use. Most of them emit light by excitation with an AC power source. Therefore, in order to avoid the disadvantages of the AC excitation EL element, an element that can emit light by DC driving is desired.
  • Inorganic EL elements often use sulfide-based phosphor materials, and most of the driving methods of these elements are alternating current or bipolar pulse voltages.
  • this inorganic EL element as shown in FIG. 14, a phosphor material is thinned by using a vapor deposition method on a glass substrate 21 to form a phosphor layer 23, and the upper and lower sides thereof are sandwiched between insulating layers 25. 22 and the upper back electrode 24. Therefore, a direct current does not flow, and an alternating voltage of about 100 Hz to 10 kHz is applied to the element from the alternating current power source 26 to emit light.
  • the direct current inorganic EL element was announced as a dispersion type EL element in 1968, and since about 1970, a thin film type direct current drive EL element has been studied by a vacuum deposition method. Although this direct current drive EL element has been studied a lot, it has not been developed as a practical element because of its weak emission and short lifetime.
  • the basic structure of a conventional DC drive EL element is one in which a phosphor is directly sandwiched between a transparent electrode and a back metal electrode. Since a direct current flows inside the phosphor, it is necessary to inject charges directly from the electrode into the phosphor, and the phosphor and the electrode are in direct contact with each other. However, in this structure, the flowing current is unstable, and when the voltage exceeds a certain voltage, the current flows rapidly, and the element is likely to be destroyed.
  • the conventional direct-current drive inorganic EL element has an improved structure as shown in FIG. 15 (Non-patent Document 1).
  • a DC power source 28 is connected to the lower transparent electrode 22 and the upper back electrode 24 installed on the glass substrate 21, and stable between the phosphor layer 23 and the upper back electrode 24. It is the structure which inserts the formation layer 27.
  • FIG. By providing the stabilization layer 27, the flowing current is limited to stabilize the element.
  • it is necessary to reduce the film thickness to about several ⁇ m to several tens of ⁇ m in order to reduce the current appropriately. For this reason, problems such as peeling of the thin film occur during production, and there are limitations on the materials that can be used.
  • Non-Patent Documents 2 and 3 In this way, a direct current EL element that emits light with a considerably high luminance can be produced, but the stability and lifetime of the element have not yet reached a practical level.
  • Patent Document 1 yttrium (Y) is dispersed and mixed in a dielectric material of BaTiO 3 and used as a resistor.
  • Y yttrium
  • Patent Documents 2 and 3 there is an invention of an inorganic EL element using a light emission principle similar to that of an organic EL element.
  • Patent Documents 2 and 3 The devices of these inventions can be driven by a direct current power source, and holes are injected into the phosphor layer from the positive electrode through the charge transport layer, and electrons are injected from the negative electrode through the electron injection layer.
  • the phosphor used here is a recombination type, and light emission is obtained by recombining holes and electrons in the light emitting layer through impurity levels inside the phosphor.
  • Patent Document 4 The elements disclosed in these Patent Documents 2, 3, and 4 are inorganic EL elements that can be driven by a DC power source, and are charge injection type EL elements. Light is emitted by recombination by injecting electrons and holes into the phosphor. A recombination type phosphor is used as the phosphor, and recombination light emission through the impurity level inside the phosphor is utilized.
  • problems still remain in luminous efficiency and lifetime.
  • Patent Document 5 a dispersion type direct current driven inorganic EL element in which a metal powder is dispersed and mixed in a phosphor based on zinc sulfide and sandwiched between two electrodes.
  • Patent Document 5 The element disclosed in Patent Document 5 is an element that directly injects electric charge from an electrode into a phosphor powder, and is basically a conventional dispersion type EL element.
  • Japanese Patent Laid-Open No. 5-74572 Japanese Patent Laid-Open No. 2006-4658 JP 2007-123220 A JP 2009-224136 A JP 2008-7755 A
  • An object of the present invention is to provide a collision excitation type inorganic EL element and a light emitting method that enable stable and strong light emission and can be driven by a DC power source in order to solve the conventional problems.
  • a direct-current driven inorganic electroluminescence device is provided by: A structure in which a phosphor layer made of an inorganic material is sandwiched between a first electrode that is formed on an insulating glass substrate and serves as a cathode, and a second electrode that is disposed opposite to the first electrode and serves as an anode.
  • An inorganic electroluminescence device having a semiconductor structure in which an N-type semiconductor and a P-type semiconductor made of an inorganic semiconductor material are joined in an NPN type between a cathode that is the first electrode and the phosphor layer. It is characterized by having.
  • the direct-current driven inorganic electroluminescence element having the above-described structure has an action of applying a forward voltage to a so-called PN junction between the N-type semiconductor and the P-type semiconductor on the cathode side and injecting electrons into the P-type semiconductor.
  • a depletion layer is formed by accelerating electrons by forming a PN junction composed of the N-type semiconductor on the phosphor layer side and the P-type semiconductor in reverse bias.
  • the phosphor layer has an action of being excited by the collision of the accelerated electrons and emitting light.
  • the direct-current driven inorganic electroluminescence element according to the invention of claim 2 is the invention according to claim 1, wherein the phosphor layer has a luminescent center or a phosphor dispersed in the N-type semiconductor material. , Formed by a mixed film.
  • the direct-current driven inorganic electroluminescent element configured as described above has the same function as that of the first aspect of the invention.
  • the direct-current driven inorganic electroluminescent element according to claim 3 is the invention according to claim 1 or claim 2, wherein the material of the N-type semiconductor on the cathode side in the semiconductor structure bonded to the NPN type is Zn. , Ba, Sr, Cd, Ga, Sn, In, Ti, Al, Mg, and Gd oxides, sulfides, phosphides, nitrides, selenides, or mixtures thereof.
  • the direct-current driven inorganic electroluminescent element configured as described above has the same function as that of the first aspect.
  • a direct-current driven inorganic electroluminescent element is the invention according to any one of the first to third aspects, wherein the PPN present in the middle in the semiconductor structure bonded to the NPN type.
  • the type semiconductor material is composed of any of oxides, sulfides, selenides or mixtures of Ni, Mn, Cr, Co, Cu, Ag, La, Pr, Al, Sr, Ba, Ga, and Sn. Is. It is also possible to use a compound semiconductor such as ZnO or ZnS by doping it with impurities to make it P-type. If the deposited thin film exhibits P-type properties as a semiconductor, the device is satisfied as performance.
  • the direct-current driven inorganic electroluminescent element configured as described above has the same function as that of the first aspect.
  • the direct-current driven inorganic electroluminescent element according to the invention described in claim 5 is the phosphor in the semiconductor structure bonded to the NPN type in the invention described in any one of claims 1 to 4.
  • the material of the N-type semiconductor adjacent to the layer is Zn, Ba, Sr, Cd, Ga, Sn, In, Ti, Al, Mg, Gd oxide, sulfide, phosphide, nitride, selenide, or a mixture thereof It is what is.
  • the direct-current driven inorganic electroluminescent element configured as described above has the same function as that of the first aspect.
  • a direct-current driven inorganic electroluminescent element is the invention according to any one of the first to fifth aspects, wherein the first electrode and the second electrode are arranged between the first electrode and the second electrode.
  • a dispersion resistance layer in which a resistor substance containing an inorganic compound of at least one of Ta, Hf, Ti, Nd, Mo, Sn, Zn, Si, Al, and B is used as a thin film.
  • the direct-current driven inorganic electroluminescent element configured as described above has an effect that the dispersion resistance layer disperses current between the first electrode and the second electrode, and an action that uniformly applies an electric field to the surface of the inorganic electroluminescent element.
  • a light emitting method for a direct-current driven inorganic electroluminescent element wherein an NPN type three-layer structure is formed using a first and second N-type semiconductor and a P-type semiconductor.
  • NPN type three-layer structure electrons are injected into the P-type semiconductor by applying a forward voltage to a PN junction composed of the first N-type semiconductor and the P-type semiconductor on the cathode side, Furthermore, by debiasing a PN junction composed of the P-type semiconductor and the second N-type semiconductor, a depletion layer is formed in the PN junction, and an electric field of the depletion layer is used.
  • Electrons injected through the P-type semiconductor are accelerated to collide with a light-emitting center or fluorescent material dispersed and mixed in a phosphor layer adjacent to the second N-type semiconductor to emit light. It is.
  • the light emission method of the direct-current driven inorganic electroluminescence element configured as described above has the same operation as that of the invention described in claims 1 and 2.
  • the semiconductor structure bonded to the NPN type accelerates electrons and excites the phosphor layer to emit light. Is possible.
  • an inorganic material it is possible to extend the life of a direct-current driven inorganic electroluminescent element.
  • FIG. 1 is a cross-sectional structure diagram of a DC-driven inorganic electroluminescence element according to a first embodiment of the present invention. It is an energy band conceptual diagram at the time of non-operation in the direct-current drive inorganic electroluminescent element concerning a 1st embodiment of the present invention. It is an energy band conceptual diagram at the time of operation
  • Equivalent circuit of a direct current driven inorganic electroluminescence element according to Embodiment 1 of the present invention Equivalent circuit of a direct current driven inorganic electroluminescence device according to Example 4 of the invention 3 is a graph showing a typical applied voltage-light emission luminance characteristic of a direct-current driven inorganic electroluminescent device according to Example 1 of the present invention. It is a graph which shows the emission spectrum from the direct-current drive inorganic electroluminescent element which concerns on Example 1 of this invention. It is a cross-section figure of the direct current drive inorganic electroluminescent element which concerns on Example 2 of this invention. It is a cross-sectional block diagram of the direct-current drive inorganic electroluminescent element which concerns on Example 3 of this invention.
  • FIG. 1 is a configuration diagram of a direct-current driven inorganic electroluminescence element according to the present embodiment.
  • an inorganic electroluminescence light emitting device 2a includes an inorganic electroluminescence element 1a provided on a glass substrate 3 and a DC power source 10 connected thereto.
  • the direct-current driven inorganic electroluminescent element 1 a includes a lower anode 13 provided on the glass substrate 3, a phosphor layer 5 provided on the upper surface of the lower anode 13, and an acceleration configured on the upper surface of the phosphor layer 5.
  • a layer 7 (N-type semiconductor layer), a P-type semiconductor layer 8, an N-type semiconductor layer 9, and an upper cathode 12 formed on the upper surface of the N-type semiconductor layer 9.
  • a DC power source 10 is connected to the lower anode 13 and the upper cathode 12 of the inorganic electroluminescence element 1a, and an anode and a cathode of the DC power source 10 are connected to the lower anode 13 and the upper back electrode 6, respectively.
  • the inorganic electroluminescent device 1a shown in FIG. 1 has a structure in which an acceleration layer 7, a P-type semiconductor layer 8 and an N-type semiconductor layer 9 form an NPN junction inside the electroluminescent device, and a phosphor is provided below the structure.
  • An electroluminescent element in which a phosphor layer 5 is formed by vapor deposition of a material is produced.
  • a forward voltage is applied to the PN junction formed by the N-type semiconductor layer 9 and the P-type semiconductor layer 8 on the cathode side of the DC power supply 10, and electrons from the upper cathode 12 are placed inside the P-type semiconductor layer 8. Implanted through the N-type semiconductor 9.
  • the present invention has been able to provide a light emitting device having a new structure by examining a method of injecting electrons into a phosphor material and a method of accelerating electrons.
  • the phosphor layer 5 is formed by depositing a phosphor of 100 nm to 10 ⁇ m on the glass substrate 3 on which the lower anode 13 is formed as shown in FIG.
  • a pure host material is additionally formed on the upper surface of this film with the same host substance as the phosphor of the phosphor layer 5 to form an N-type semiconductor acceleration layer 7 having a thickness of 100 nm to 10 ⁇ m.
  • a P-type semiconductor material is deposited to a thickness of 10 nm to 1 ⁇ m to form a P-type semiconductor layer 8, and a PN junction is formed with the base material of the acceleration layer 7.
  • an N-type semiconductor material is deposited thereon to a thickness of 100 nm to 10 ⁇ m to form an N-type semiconductor layer 9, and the acceleration layer 7, the P-type semiconductor layer 8, and the N-type semiconductor layer 9 have an NPN structure.
  • the upper cathode 12 is vacuum-deposited to complete the inorganic electroluminescent element 1a. This is the basic form of the embodiment according to the present invention.
  • a phosphor substance which is a compound semiconductor, exhibits the properties of an N-type semiconductor when formed into a thin film. Therefore, a thin film of the same base material as the phosphor is formed as an N-type semiconductor. . As a result, a PN junction is formed between the P-type semiconductor layer 8 on the upper surface to be deposited next and the N-type base thin film (acceleration layer 7). When the PN junction portion is reverse-biased, a depletion layer spreads over the acceleration layer 7 and the P-type semiconductor layer 8.
  • a method for injecting electrons into the depletion layer is that when a forward voltage is applied to the PN junction formed by the P-type semiconductor layer 8 and the N-type semiconductor layer 9 thereabove, the forward direction is applied. A current flows and electrons can be injected into the P-type semiconductor layer 8. The electrons diffuse in the P-type semiconductor layer 8, and as a result, the electrons can be injected into the internal electric field of the reverse bias depletion layer.
  • the electrons are accelerated by the internal electric field and collide with the emission center of the phosphor layer 5 to be excited to reach light emission.
  • a negative potential is applied to the upper cathode 12 and a positive potential voltage is applied to the lower anode 13
  • light emission is obtained.
  • Many studies have been made on PN junctions. The essence of the present invention is that the characteristics of the PN junction are positively utilized for a DC EL element so as to operate steadily. According to the present invention, stable and long-lasting light emission can be obtained, and further, the light emission efficiency can be improved by an order of magnitude or more compared with the conventional method, and stable bright light emission can be obtained.
  • FIG. 2 is an energy band conceptual diagram when no external voltage is applied to the direct-current driven inorganic electroluminescent element 1a according to the present embodiment.
  • the left side of the drawing is a cathode (cathode) 12 and the right side is an anode (anode) 13.
  • a phosphor layer 5 containing an emission center 15, an acceleration layer 7, a P-type semiconductor layer 8 and an N-type semiconductor layer 9. Is configured. Fermi level E F for applying voltage from an external zero is constant throughout, the presence of electron 14 is in thermal equilibrium.
  • FIG. 3 is a conceptual diagram of an energy band during operation of the direct-current driven inorganic electroluminescent element 1a according to the present embodiment.
  • the left side of the drawing is a cathode (cathode) 12, the right side is an anode (anode) 13, and the semiconductor has an NPN structure when viewed from the whole of the inorganic electroluminescence element 1 a. It is configured the PN junction in the N-type semiconductor layer 9 and the next P-type semiconductor layer 8 on the cathode side, a forward bias applied voltage V B from the outside. Due to this forward current, electrons 14 from the cathode 12 are injected into the P-type semiconductor layer 8 through the N-type semiconductor layer 9 and diffuse into the P-type semiconductor layer 8.
  • the amount of electrons 14 injected into the next acceleration layer 7 which is an N-type semiconductor can be appropriately limited by the balance of the electric field, and can be controlled to an amount necessary for light emission.
  • the PN junction portion (P-type semiconductor layer 8 and acceleration layer 7) that exists next is reverse-biased with respect to the external voltage, and most of the external voltage V B is applied to this portion.
  • V B most of the external voltage
  • a depletion layer spreads at the junction.
  • the electrons 14 injected through the P-type semiconductor layer 8 are accelerated in the depletion layer and generated as hot electrons.
  • the electrons 14 having obtained this high energy collide with the light emission center 15 in the phosphor layer 5 and are excited to obtain light emission 11. This is the mechanism of direct current light emission.
  • V PN is the P-type semiconductor layer 8 and the N-type semiconductor.
  • the voltage distributed between the acceleration layer 7 which is a semiconductor is represented.
  • the direct-current driven inorganic electroluminescent device realizes the light emission mechanism of a cathode ray tube in a semiconductor solid material, and includes steps of injection and acceleration of electrons 14, collision, excitation of a light emission center, and light emission. Is to do.
  • a direct-current driven inorganic electroluminescence element as a second embodiment according to the practical structure of the present invention, a light emitting device and a light emitting method employing the element will be described with reference to FIG.
  • a lower transparent electrode 4 is formed on a glass substrate 3. This is conductive, and in order to extract light to the outside, it is necessary to make either the upper or lower electrode transparent.
  • Examples of the material constituting the lower transparent electrode 4 include ITO, ZnO, AZO, TiO 2 , SnO 2 , In 2 O 3 , ZnSnO 3 , AgInO 2 , Zn 2 In 2 O 5 , and Zn 2 Ga 2 O 4 . Material is conceivable. These materials are already known materials, and all of them are widely known at the time of filing this application as materials for constituting a transparent electrode. However, it is considered unnecessary to demonstrate each of these functions and effects, and they are not implemented.
  • oxides such as Zn, Ba, Sr, Cd, Ga, Sn, In, Ti, Al, Mg, and Gd, sulfides, phosphides, nitrides, selenides, or mixtures thereof such as ZnO, BaO, SrO, CdO, In 2 O 3, Ga 2 O, SnO 2, TiO, ZnS, BaS, SrS, CdS, GdIn 2 O 4, GaInO 3, ZnSnO 3, InP, GaP, AlP, InN, AlN, GaN , SrSe, ZnSe, GaAlS, MgAl 2 S 4 , MgGa 2 S 4 , SrAl 2 S 4 , SrGa 2 S 4 , BaAl 2 S 4 , BaIn
  • the material of the N-type semiconductor layer 9 is similar to the material used for the transparent electrode, a structure in which this portion is also used as the transparent electrode is conceivable. Since the materials of these N-type semiconductor layers 9 are also generally known at the time of filing of the present application, it is considered that it is not necessary to verify each of the functions and effects by creating each of them, particularly in the present embodiment. ,Not performed.
  • the P-type semiconductor layer 8 in the middle of the NPN-type layer is made of oxides such as Ni, Mn, Cr, Co, Cu, Ag, La, Pr, Al, Ga, Sr, Ba, Sn, sulfide, selenium.
  • Semiconductors that exhibit P-type properties when thinned with a compound or a mixture thereof are targeted.
  • NiO, NiO: Li, MnO, Cr 2 O 3, CoO, Ag 2 O, Pr 2 O 3, SnO, Cu 2 O, CuInO 2, SrCu 2 O 2, CuAlO 2, BaCu 2 O 2, CuGaO 2, LaCuOS, LaCuOSe, etc. can be used.
  • a compound semiconductor such as ZnO doped with nitrogen (N) as an impurity to be p-type can be used. Since the materials of these P-type semiconductor layers 8 are also generally known at the time of filing of the present application, it is considered that it is not necessary to verify each of the functions and effects produced by the respective embodiments, particularly in the present embodiment. ,Not performed.
  • the next acceleration layer 7, which is an N-type semiconductor, relates to the phosphor layer 5 and is made of the same material as the base material of the phosphor layer 5.
  • An acceleration layer 7 for accelerating electrons is formed using this portion.
  • Those listed as materials for the N-type semiconductor layer 9 can be used.
  • oxides such as Zn, Ba, Sr, Cd, Ga, Sn, In, Ti, Al, Mg, and Gd, sulfides, Phosphides, nitrides, selenides or mixtures thereof, such as ZnO, BaO, SrO, CdO, In 2 O 3 , Ga 2 O, SnO 2 , TiO, ZnS, BaS, SrS, CdS, GdIn 2 O 4 , GaInO 3 , ZnSnO 3 , InP, GaP, AlP, InN, AlN, GaN, SrSe, ZnSe, GaAlS, MgAl 2 S 4 , MgGa 2 S 4 , SrAl 2 S 4 , SrGa 2 S 4 , BaAl 2 S 4 , BaIn 2 such as S 4 are available. This demonstration has not been conducted, but the reason is as already
  • the acceleration layer 7 needs to be an N-type semiconductor thin film having as few crystals as possible and having good crystallinity in order to efficiently accelerate the electrons 14 injected through the P-type semiconductor layer 8.
  • This portion functions as an acceleration layer for electrons 14, and the electrons 14 injected through the P-type semiconductor layer 8 are generated by the internal electric field formed by the P-type semiconductor layer 8 and the N-type semiconductor layer (acceleration layer 7). It is accelerated efficiently and large energy is transferred to the electrons.
  • the phosphor layer 5 is embedded in the same material as the N-type semiconductor for acceleration (acceleration layer 7) by dispersing the phosphor or the emission center 15 in a fine form.
  • phosphors or emission centers include ZnS: Mn, ZnS: Tb, ZnS: Sm, ZnS: Pr, ZnS: Dy, ZnS: Eu, ZnS: Cu, Cl, ZnS: Ag, Cl, ZnS: Pr, Ir, SrS: Ce, SrS: Mn, ZnF: Gd, ZnO: Zn, ZnO: Sm, ZnO: Pr, ZnO: Dy, ZnO: Eu, Y 2 O 3 : Eu, Y 2 O 3 : Mn, GaO 3 : Eu, Ga 2 O 3: Mn, Y 2 GeO 5: Mn, CaGa 2 O 4: Mn, Zn 2 SiO 4: Mn, BaAl 2 S 4: Eu, SrGa 2 S 4:
  • these emission centers and phosphors are dispersed in an N-type semiconductor. These are merely examples, and not only the phosphors listed here but also other phosphors are targeted in order to obtain a target emission color.
  • the crystal matrix matrix material
  • the activator is shown on the right side.
  • the upper back electrode 6 is made of transparent materials ITO, ZnO, AZO, Zn 2 In 2 O 5 , In 2 O 3 , TiO 2 , instead of metal.
  • ITO inorganic electroluminescence element 1b
  • ZnO inorganic electroluminescence element 1b
  • TiO 2 instead of metal.
  • SnO 2 may be used.
  • an oxide such as Mo, Ta, or Ti is vapor-deposited to finish the upper back electrode 6 to a black electrode.
  • a positive potential is applied to the upper back electrode 6 and a negative potential is applied to the lower transparent electrode 4 of the inorganic electroluminescent element 1b thus produced, light emission from the phosphor layer 5 is obtained.
  • the direct-current driven inorganic electroluminescence element and the light emitting method according to the present invention can emit light with a direct-current power source, the driving device is simplified, and the entire cost of the display device and the like can be manufactured.
  • the whole inorganic electroluminescent element is comprised with solid, and is strong with respect to mechanical external force. Furthermore, since this inorganic electroluminescent element is entirely composed of an inorganic substance, it operates normally even when the ambient temperature is higher than that of the organic EL element. Since an expensive material is not used, the material cost is reduced, and no special apparatus or special technique is required in the production of the inorganic electroluminescence element, and the production equipment is inexpensive and can be produced by a known production technique.
  • This self-luminous inorganic electroluminescent element has a total thickness of only a few tens of ⁇ m, and a thin display device can be made.
  • a display device when used as a display device, there is no need for a backlight, a polarizing plate, etc.
  • the structure is simple and the price is advantageous. Since the principle of light emission is a collision excitation type inorganic EL element, the emission color can be appropriately adjusted by examining the emission center and the phosphor material.
  • the inorganic electroluminescence element of the present invention has many advantages, and has the potential to be used not only for display devices but also for illumination, etc., particularly as a planar light source.
  • a self-luminous element with high luminous efficiency that can be driven by a DC power source is provided by introducing a semiconductor NPN structure inside the inorganic electroluminescence element. Can do.
  • a number of self-explanatory phosphors that currently exist can be used as a light emitting material, and a desired emission color can be freely controlled.
  • the inorganic electroluminescent device In the inorganic electroluminescent device according to the present invention, electrons are accelerated inside the acceleration layer by an electric field applied from the outside, and light is obtained by colliding with an emission center. Electrons supplied from the cathode side are accelerated to the anode side by the internal electric field. The energy required for light emission is obtained, collides with the light emission center, and is excited to emit light. In this way, in the inorganic electroluminescence element, electrons are accelerated by the electric field applied inside and collide with the emission center. The higher the voltage, the greater the energy of the electrons and the stronger the emitted light.
  • this inorganic electroluminescence element uses a semiconductor material for the phosphor layer and has an NPN internal structure, when the applied voltage is increased, a current starts to flow suddenly from a certain voltage. As the current increases, the current greatly increases. That is, it is sensitive to voltage fluctuations, and the current flowing through it changes greatly. Further, when an inorganic electroluminescence element is manufactured, a thin film element structure is formed using a sputtering apparatus, a vapor deposition apparatus, or the like. For this reason, there is a high possibility that defects such as a difference in film thickness and impurities are formed in the thin film during the manufacturing process, and there may be a locally pointed portion. When an electrode is attached to such a state and a high voltage is applied, the electrically weak part is destroyed first, and the part of destruction spreads from this part in a chain. This tendency is particularly strong in the case of voltage-driven inorganic EL elements.
  • the first drawback of the thin-film inorganic electroluminescence element is that, when an element is produced, if an element having a large area is produced, a difference in the thickness of the film tends to occur between the central part and the end part of the element.
  • the difference in film thickness strongly affects the internal electric field strength, and thus greatly affects the light emission intensity.
  • the voltage-driven inorganic electroluminescent element has a tendency to concentrate an electric field on the end portion of a metal electrode or a conductive transparent electrode, particularly on the end portion. It is easy to wake up. These phenomena are disadvantageous for voltage-driven elements and appear as uneven luminance of light emission. This is a physically fundamental problem and is an unavoidable phenomenon, and destruction is likely to occur from this portion as the applied voltage increases.
  • the first film thickness problem can be improved to some extent by the manufacturing apparatus, but the second problem is a fundamental phenomenon of physics, and it is extremely difficult to remove it.
  • the film is thinned by using a vacuum deposition apparatus or a sputtering apparatus, so that there is a high possibility that the film contains impurities or defects.
  • a locally pointed portion may be formed.
  • the electric field from the outside tends to concentrate on these impurities and defects at the pointed portion, and a high electric field portion is locally formed. For this reason, a local bright part and a dark part generate
  • this part tends to be an electrically weak part, leading to a reduction in the breakdown voltage of the element.
  • an inorganic electroluminescent element when a voltage is applied to emit light over a wide area, a thin part of a film or a part with defects such as impurities causes destruction earlier than the other part. Propagate to the part.
  • the breakdown tends to spread to other parts in a chain, and once the breakdown starts, it leads to a catastrophic breakdown of the entire device and cannot be restarted. It becomes a state. That is, the breakdown voltage of the entire element is determined by the local minimum breakdown voltage.
  • the electroluminescence cell part (phosphor layer 5 and NPN type semiconductor part (7-9)) and electrode
  • a resistance layer was inserted between the cathode and the electroluminescence cell portion as shown in FIG.
  • this resistance layer is referred to as a dispersion resistance layer 30.
  • the dispersion resistance layer 30 if a large current flows locally, the voltage drop in this case becomes large, and the externally applied voltage to the electroluminescence cell portion in this portion is reduced. As a result, voltage concentration on a non-uniform portion existing inside the wide area inorganic electroluminescence element is reduced, and a uniform voltage is applied to the entire element.
  • the voltage applied from the power source is distributed according to the variation of each characteristic by the resistor group connected in series with the electroluminescence cell portion.
  • This resistance group corresponds to the dispersion resistance layer 30 and is an object of the dispersion resistance layer 30 of the direct current driven inorganic electroluminescence element according to the present embodiment.
  • the direct-current driven inorganic electroluminescent element according to the embodiment of the present application is manufactured as a thin film element using a sputtering apparatus, an EB vapor deposition apparatus, etc., but the manufacture of an element with uniform electric characteristics without any variation is a technology. It is almost impossible. When diodes with this variation are driven in parallel, local bias occurs, and in the case of a semiconductor, current concentration occurs in part. As a result, this part is heated, causing thermal runaway and leading to destruction. In the case of an inorganic electroluminescence element, local destruction spreads over the entire surface, and the function as the element cannot be performed. Therefore, the dispersion resistance layer 30 is configured to be inserted in series as shown in FIG.
  • the dispersion resistance layer 30 can prevent current concentration and stably drive the inorganic electroluminescence element. If a large current flows locally, the voltage drop in the dispersion resistance layer becomes large, and the voltage applied to the electroluminescence cell portion in this portion is reduced and protected. For this reason, the dispersion resistance layer preferably has a large resistance value, but since it is formed of a thin film, certain conditions are involved depending on the conditions of vapor deposition. If it is too thick, the thin film tends to peel off and the film itself becomes unstable.
  • TaN, SiO 2 , Al 2 O 3 or the like may be used. Since these substances can be formed as resistance elements when manufactured under certain conditions, they were used as materials for dispersion resistance.
  • the material that can be used can be any material having a property as a resistance element, such as Ta, Hf, Ti, Nd, Mo, Zn, Sn, Si, Al, B oxide, nitride, or a mixture thereof. Available.
  • the dispersion resistance layer 30 can also be used as the dispersion resistance layer 30.
  • the emission intensity is proportional to the current flowing through the phosphor layer, so that the current flowing through the dispersion resistance layer 30 is appropriately dispersed, and the light emission from the element is also adjusted uniformly.
  • an inorganic electroluminescence element actually manufactured by the inventors of the present application a light emitting device employing the inorganic electroluminescence element, and a light emitting method will be described as Example 1 to Example 4.
  • a ZnO layer is formed as an N-type semiconductor layer 9 on the glass substrate 3 with ITO of the lower transparent electrode 4 of the inorganic electroluminescence element 1b.
  • This layer is formed in an atmosphere of argon and a small amount of oxygen by using an active sputtering method using a metal of Zn.
  • the next P-type semiconductor layer 8 using a metal target of Cu and Al, was formed CuAlO 2 in reactive sputtering method in an argon and oxygen atmosphere.
  • the N-type semiconductor layer as the acceleration layer 7 is formed by depositing pure ZnS sintered pellets by an electron beam evaporation method (hereinafter referred to as an EB method). Then, TbF 3 pellets were co-deposited from another source source from the middle as the emission center. A part of the ZnS layer is dispersed and mixed with TbF 3 , which is the emission center, and this part is used as the phosphor layer 5. Then, Al metal was vacuum-deposited on the top to form the upper back electrode 6.
  • the inorganic electroluminescence light emitting device 2b employing the inorganic electroluminescence element 1b thus produced applies a positive voltage to the Al electrode (upper back electrode 6) and a negative voltage to the lower ITO electrode (lower transparent electrode 4). Then, green light emission was obtained at about 30V.
  • FIG. 7 shows the characteristics of the direct current applied voltage and the light emission intensity (light emission luminance) obtained from the direct current driven inorganic electroluminescent element 1b according to Example 1. For this characteristic, a direct-current voltage was applied to the direct-current driven inorganic electroluminescence element according to the example of the present invention with a stabilized power source, and light emission was measured with a luminance meter (SR-3) manufactured by Topcon Technohouse Co., Ltd.
  • SR-3 luminance meter
  • FIG. 7 shows typical characteristics of the inorganic electroluminescence according to Example 1 of the present invention. It was.
  • FIG. 8 is a graph of the emission spectrum.
  • the base material forming the phosphor layer 5 of the inorganic electroluminescent element 1b is ZnS, and emits light having a characteristic strong peak in the vicinity of 540 to 550 nm by light emission from TbF 3 dispersed therein.
  • the inorganic electroluminescent element 1d according to the present example is a so-called top emission type element.
  • a lower metal electrode 16 was formed on a quartz glass substrate 3 by using a Ti metal target by a DC sputtering method.
  • a ZnO N-type semiconductor layer 9 is formed using an active sputtering method in an atmosphere of argon and a small amount of oxygen gas using a Zn metal target.
  • a NiO: Li thin film was formed as a P-type semiconductor layer 8 by a RF magnetron sputtering method in a mixed gas of argon and a small amount of oxygen using a sintered target of NiO and Li 2 O.
  • N-type semiconductor acceleration layer 7 and phosphor layer 5 two types of sintered pellets of ZnS and ZnS: TbF 3 are prepared, and first, a pure ZnS thin film is accelerated using the ZnS pellets using the EB method. Deposit as layer 7. After this step, the phosphor layer 5 was made by switching to a ZnS: TbF 3 pellet. When the deposition was completed, the inside of the vacuum chamber was evacuated to a high vacuum, and heat treatment was performed at 400 ° C. for 10 minutes.
  • a thin film of ZnO: Al is formed by RF magnetron sputtering as the upper transparent electrode 17 in a small amount of oxygen atmosphere, and a top emission type inorganic EL element 1d Is completed.
  • the back electrode upper transparent electrode 17
  • the back electrode is transparent in order to extract light upward.
  • a light-emitting method using the direct-current driven inorganic electroluminescent element 1c, the inorganic electroluminescent light emitting device 2c, and the inorganic electroluminescent element 1c according to Example 3 of the present invention will be described with reference to FIG.
  • both electrodes are made of metal, it is necessary to finish the horizontal inorganic electroluminescent element 1c as shown in FIG.
  • a Zn metal target is used on a glass substrate 3 and RF magnetron sputtering is performed in a mixed gas atmosphere of Ar and O 2 to form a thin film of ZnO to form an N-type semiconductor layer 9.
  • the P-type semiconductor layer 8 two types of sintered targets, SrO and Cu 2 O, were used, and a SrCu 2 O 2 film was formed by EB vapor deposition.
  • the injection layer (the portion in contact with the upper back electrode 6b (reference numeral 29) is specifically called the injection layer) and the acceleration layer 7 were formed by EB using pure ZnS pellets.
  • the phosphor layer 5 was partially covered with a metal mask, and was deposited by local evaporation using an EB method using ZnS: Mn pellets. On this, Al is vapor-deposited in two places by resistance heating vapor deposition as upper back electrode 6a, 6b.
  • the side where the ZnS: Mn phosphor layer 5 is present is the positive electrode, and the side in contact with the pure ZnS film is the negative electrode.
  • a direct current voltage of about 100 V was applied to the inorganic electroluminescence light emitting device 2c employing the inorganic electroluminescence element 1c, orange light emission was obtained from this element.
  • the inorganic electroluminescent element 1e according to the present example is a top emission type element similar to the inorganic electroluminescent element 1d of Example 2, but has a structure in which the dispersion resistance layer 30 is provided inside.
  • a lower metal electrode 16 is formed using a Ta metal target on a glass substrate and using a sputtering method in an argon gas atmosphere. Nitrogen gas was introduced from the middle of this process to form a TaN thin film on the surface of the Ta electrode.
  • This film functions as the dispersion resistance layer 30.
  • a ZnO N-type semiconductor 9 is formed in a thin film by using an active sputtering method in an atmosphere of argon and a small amount of oxygen gas using a Zn metal target.
  • CuAlO 2 was formed on the upper surface of this thin film as a P-type semiconductor 8 by using an active sputtering method in an atmosphere of argon and a small amount of oxygen using a metal target of Cu and Al as in Example 1.
  • the N-type semiconductor acceleration layer 7 and the phosphor layer 5 are formed by preparing two types of ZnS and ZnS: Mn pellets and first depositing them as the acceleration layer 7 by the EB method using the ZnS pellets.
  • the phosphor layer 5 was made by switching to a ZnS: Mn pellet. Finally, a semitransparent film of Au is formed as the upper transparent electrode 17 by resistance heating vapor deposition, and the top emission type inorganic electroluminescent element 1e is completed.
  • a positive voltage was applied to the upper transparent electrode 17 and a negative voltage was applied to the lower metal electrode 16
  • a relationship between applied voltage and light emission intensity as shown in FIG. 12 was obtained.
  • the emission color at this time was emission from Mn, and an orange color tone having a peak in the vicinity of 570 to 600 nm as shown in FIG. 13 was obtained.
  • ZnO and ZnS are used as the N-type semiconductor layer 9
  • CuAlO 2 , NiO: Li, and SrCu 2 O 2 are used as the P-type semiconductor layer 8
  • the acceleration layer 7 is used.
  • the N-type semiconductor layer uses ZnS.
  • a direct-current driven inorganic electroluminescent element and a light emitting method as a direct-current driven inorganic electroluminescent element and a light emitting method, a liquid crystal backlight device, a mobile phone, a personal computer, a television, There is a possibility of being widely used as a lighting device for industrial use and general home use, including a display device used for a monitor.
  • a display device used for a monitor since it is an electroluminescence element and a light-emitting device that employ an inorganic substance that has a long life, there is a possibility of industrial use under severe environmental conditions that require a low replacement frequency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

 無機物の蛍光体物質に直流電圧を印加することにより発光させることができ、蛍光体層中に分散する発光中心または、蛍光体の種類を変えることにより、発光色を適当に変化させることができる無機エレクトロルミネッセンス素子を提供する。 直流駆動発光素子の内部に半導体でNPN型の構造を形成し、それに隣接して蛍光体物質を蒸着した後、第1の電極と第2の電極で挟んだ構造の無機エレクトロルミネッセンス素子を作る。この構造を利用して、陰極側のPN接合に順方向電圧を加えP型半導体層内へ電子を注入する。さらにP型半導体層とN型半導体の加速層によって形成されているPN接合部を、逆バイアスすることにより加速層内部に広がる空乏層の電場を利用して、電子を加速し、発光中心または蛍光体に衝突させ、発光を得る方法である。

Description

直流駆動の無機エレクトロルミネッセンス素子と発光方法
 本発明は無機エレクトロルミネッセンスと呼ばれる現象を利用したもので、無機物を発光の材料に使用して電気から光へ変換するための無機エレクトロルミネッセンス素子とその素子を利用した発光装置と発光方法に関する。
 面状の発光が得られる自発光素子としては、代表的なもので有機エレクトロルミネッセンス素子(以下、有機EL素子ということもある)と無機エレクトロルミネッセンス素子(以下、無機EL素子ということもある)がある。
 有機EL素子は有機物中に電流を流すために、寿命が短いことと、高い温度に対して弱いことが問題となっている。
 その反面、無機EL素子は広い範囲の温度で動作することや、寿命が永いことなど多くの有利な特徴を有しており、実用化に向けて数多く研究がなされてきたが、しかしながらこれらの研究の多くは交流電源で励起発光するものである。そのため交流励起EL素子のデメリットを回避するため、直流駆動で発光が得られる素子が切望されている。
 無機EL素子は、硫化物系の蛍光体材料が多く使用されており、これらの素子の駆動の方法は、ほとんどが交流、または両極性のパルス電圧である。この無機EL素子は図14のように蛍光体材料をガラス基板21上で、蒸着法を利用して薄膜化して蛍光体層23を形成させ、その上下を絶縁層25で挟み、さらに下部透明電極22と上部背面電極24で挟んだ構造をしている。このため直流の電流は流れず素子に100Hz~10kHz程度の交流電圧を交流電源26から印加して発光させている。
 印加電圧の最初の半サイクルで蛍光体の内部で電子を加速して、発光中心に衝突させ発光し、次の反転した半サイクルで反対の方向へ電子を加速、衝突させ再び発光させるものである。このように交流での発光は1サイクル中で2回の発光を起こし、連続したものではない。
 このELの現象を連続して起こさせることができれば、発光の効率も高くなり、より強い発光が得られる可能性がある。そこで、定常的な発光を得るためには、発光素子を直流の電源で駆動し、常時、電子を供給し続ける必要がある。
 直流駆動の無機EL素子は分散型のEL素子として、1968年に発表され、1970年頃からは真空蒸着法によって、薄膜型の直流駆動EL素子が研究されるようになってきた。この直流駆動EL素子は研究が数多くなされているにもかかわらず、発光が弱く寿命が短いため、いまだ実用的な素子としては開発されていない。
 従来からの直流駆動EL素子の基本的な構造は、透明電極と背面の金属電極との間に、直接蛍光体を挟んだものである。これは直流電流を蛍光体内部に流すため、電極から電荷を直接蛍光体に注入する必要があり、蛍光体と電極を直接接触させている。ところがこの構造では、流れる電流が不安定で、ある一定の電圧以上になると急激に電流が流れ、素子の破壊を招きやすい性質がある。
 このため従来の直流駆動無機EL素子は、図15に示されるような構造の改良がなされている(非特許文献1)。図15に示される直流駆動無機EL素子では、ガラス基板21上に設置された下部透明電極22と上部背面電極24に直流電源28を接続し、蛍光体層23と上部背面電極24の間に安定化層27を挿入する構成となっている。この安定化層27を設けることで流れる電流を制限して、素子の安定化を図っている。
 ところが、この構造では電流を適度にしぼるために、膜厚を数μm~数十μm程度にする必要がある。このため製造中に薄膜の剥離などの問題が起こり、使用できる材料に関して制限が生じる。
 そこで、TaやSiO、などの絶縁物を数十nm~数μmの厚さの薄膜に蒸着して形成し、この膜を通して電流を流すことが検討された。(非特許文献2,3)
 このようにして、かなり高輝度に発光する直流EL素子が作れるようになったのであるが、素子の安定性と寿命の点について、まだ実用的なレベルまでは到達していない。
 また、誘電体絶縁物の中に金属不純物を分散させ薄膜として導入し、この不純物レベルを通して電流を流すことにより、安定化を計ったものも提案されている。(特許文献1)
 これはBaTiOの誘電体絶縁物中にイットリウム(Y)を分散混入させ抵抗体として利用している。
 しかしながら、安定性と寿命に問題がある。
 一方、有機EL素子と同様の発光原理を利用した無機EL素子の発明がある。(特許文献2,3)
 これらの発明の素子は直流の電源で駆動でき、蛍光体層の内部に、正電極から電荷輸送層を通して正孔を注入し、負電極からは電子注入層を通して電子を注入する。ここで使用する蛍光体は再結合型のものを用い、蛍光体内部の不純物準位を介して発光層内で正孔と電子を再結合させることによって発光を得ている。
 また、別に薄膜EL素子で蛍光体内部にP型半導体を通して正孔を注入し、N型半導体を通して電子を注入している。こうして蛍光体内で正孔と電子を再結合させ発光を得ているものがある。(特許文献4)
 これらの特許文献2,3,4に開示される素子は、直流の電源で駆動することのできる無機EL素子であり、電荷注入型のEL素子である。電子と正孔を蛍光体内部に注入することによって再結合させ発光を得ている。蛍光体として再結合型の蛍光体を使用し、蛍光体内部の不純物レベルを介しての再結合発光を利用している。ところが、まだ発光効率と寿命に課題が残されている。
 分散型直流駆動の無機EL素子で、硫化亜鉛を母体とした蛍光体に金属の粉末を分散混入し、2つの電極で挟んだ素子も提案された。(特許文献5)
 この特許文献5に開示される素子は電極から蛍光体の粉末に直接電荷を注入する素子で、基本的には従来から存在する分散型EL素子である。
特開平5-74572号公報 特開2006-4658号公報 特開2007-123220号公報 特開2009-224136号公報 特開2008-7755号公報
M. Higton: Digest of 1984 SID InternationalSymposium (1984) 29 H. Matsumoto et al.: Jpn J. Appl Phys. l7 (1978)1543 J. I. Pankove: J. Lumin. 40&41 (1988) 97
 上述のように薄膜無機EL素子における交流での発光は1サイクル中で2回の発光を起こし、連続したものではなく、交流での駆動のため外部回路が複雑になる。また、交流における1サイクルで2回の発光であるがゆえに高い発光効率が得られないという欠点がある。
 このELの現象を連続して起こさせることができれば、より強い発光が得られる可能性を秘めている。そこで定常的な発光を得るためには、EL発光素子を直流の電源で駆動し、常時、蛍光体内に電子を供給し続ける必要がある。
 本発明はかかる従来の課題を解決すべく、安定した強い発光を可能とし、直流電源で駆動できる衝突励起型の無機EL素子と発光方法を提供することを目的とする。
 上記目的を達成するため、請求項1に記載の発明である直流駆動の無機エレクトロルミネッセンス素子は、
 絶縁性のガラス基板上に形成され陰極となる第1の電極と、この第1の電極に対向して配置され陽極となる第2電極との間に無機物からなる蛍光体層を挟んだ構造の無機エレクトロルミネッセンス素子であって、前記第1の電極である陰極と前記蛍光体層との間に、無機物の半導体材料で構成されたN型半導体とP型半導体をNPN型に接合した半導体構造を有することを特徴とするものである。
 上記構成の直流駆動の無機エレクトロルミネッセンス素子においては、陰極側のN型半導体とP型半導体のいわゆるPN接合に順方向電圧を加え、P型半導体の内部に電子を注入する作用を有する。また、蛍光体層側のN型半導体と前記P型半導体によって構成されるPN接合を逆バイアスとすることで空乏層を形成させて電子を加速させる作用を有する。蛍光体層は、この加速された電子の衝突を受けて励起され発光する作用を有する。
 次に、請求項2に記載の発明である直流駆動の無機エレクトロルミネッセンス素子は、請求項1に記載の発明において、前記蛍光体層は、前記N型半導体材料中に発光中心又は蛍光物質を分散、混在させた膜によって形成されるものである。
 このように構成される直流駆動の無機エレクトロルミネッセンス素子においては、請求項1に記載の発明と同様の作用を有する。
 請求項3に記載の発明である直流駆動の無機エレクトロルミネッセンス素子は、請求項1又は請求項2に記載の発明において、前記NPN型に接合した半導体構造における陰極側のN型半導体の材料がZn,Ba,Sr,Cd,Ga,Sn,In,Ti,Al,Mg,Gdの酸化物、硫化物、リン化物、窒化物、セレン化物もしくはこれらの混合物のいずれかから構成されるものである。
 このように構成される直流駆動の無機エレクトロルミネッセンス素子においても請求項1と同様の作用を有する。
 請求項4に記載の発明である直流駆動の無機エレクトロルミネッセンス素子は、請求項1乃至請求項3のいずれか1項に記載の発明において、前記NPN型に接合した半導体構造において中間に存在するP型半導体の材料がNi,Mn,Cr,Co,Cu,Ag,La,Pr,Al,Sr,Ba,Ga,Snの酸化物、硫化物、セレン化物もしくはこれらの混合物のいずれかから構成されるものである。また、ZnO,ZnSなどの化合物半導体に不純物をドーピングしてP型化し使用することも可能である。蒸着された薄膜が半導体としてP型の性質を発現すれば、この素子は性能として満たされる。
 このように構成される直流駆動の無機エレクトロルミネッセンス素子においても請求項1と同様の作用を有する。
 さらに、請求項5に記載される発明である直流駆動の無機エレクトロルミネッセンス素子は、請求項1乃至請求項4のいずれか1項に記載の発明において、前記NPN型に接合した半導体構造における蛍光体層と隣接するN型半導体の材料がZn,Ba,Sr、Cd,Ga,Sn,In,Ti,Al,Mg,Gdの酸化物、硫化物、リン化物、窒化物、セレン化物もしくはこれらの混合物であるものである。
 このように構成される直流駆動の無機エレクトロルミネッセンス素子においても請求項1と同様の作用を有する。
 請求項6に記載される発明である直流駆動の無機エレクトロルミネッセンス素子は、請求項1乃至請求項5のいずれか1項に記載の発明において、前記第1の電極と前記第2の電極の間にTa,Hf,Ti,Nd,Mo,Sn,Zn,Si,Al,Bのうち、少なくとも1種からなる無機化合物を含む抵抗体物質を薄膜とした分散抵抗層を備えるものである。
 このように構成される直流駆動の無機エレクトロルミネッセンス素子は、第1の電極と第2の電極の間で分散抵抗層が電流を分散させる作用と無機エレクトロルミネッセンス素子の面に均一に電界を与える作用を有する。
 請求項7に記載される発明である直流駆動の無機エレクトロルミネッセンス素子の発光方法は、内部に、第1及び第2のN型半導体とP型半導体を用いてNPN型の三層構造を作成し、このNPN型の三層構造において陰極側の前記第1のN型半導体とP型半導体から構成されるPN接合部に順方向電圧を印加することで前記P型半導体内に電子を注入し、さらに前記P型半導体と前記第2のN型半導体とで構成されるPN接合部を逆バイアスすることで、このPN接合部に空乏層を形成させ、この空乏層の部分の電場を利用し、前記P型半導体を通し注入された電子を加速して、前記第2のN型半導体に隣接する蛍光体層に分散、混在させた発光中心又は蛍光物質に衝突、発光させることを特徴とするものである。
 このように構成される直流駆動の無機エレクトロルミネッセンス素子の発光方法においては、請求項1、2に記載される発明と同様の作用を有する。
 本発明の直流駆動の無機エレクトロルミネッセンス素子と発光方法においては、直流電源に接続されても、NPN型に接合した半導体構造を備えることで電子を加速し、蛍光体層を励起して発光させることが可能である。また、無機物からなる材料を採用することで、直流駆動の無機エレクトロルミネッセンス素子の長寿命化を図ることが可能である。
本発明の第1の実施の形態に係る直流駆動の無機エレクトロルミネッセンス素子の断面構造図である。 本発明の第1の実施の形態に係る直流駆動の無機エレクトロルミネッセンス素子における非動作時のエネルギーバンド概念図である。 本発明の第1の実施の形態に係る直流駆動の無機エレクトロルミネッセンス素子における動作時のエネルギーバンド概念図である。 本発明の第2の実施の形態(実施例1)に係る直流駆動の無機エレクトロルミネッセンス素子の断面構造図である。 本発明の実施例1に係る直流駆動の無機エレクトロルミネッセンス素子の等価回路 本発明の実施例4に係る直流駆動の無機エレクトロルミネッセンス素子の等価回路 本発明の実施例1に係る直流駆動の無機エレクトロルミネッセンス素子の代表的な印加電圧-発光輝度特性を示すグラフである。 本発明の実施例1に係る直流駆動の無機エレクトロルミネッセンス素子からの発光スペクトルを示すグラフである。 本発明の実施例2に係る直流駆動の無機エレクトロルミネッセンス素子の断面構造図である。 本発明の実施例3に係る直流駆動の無機エレクトロルミネッセンス素子の断面構成図である。 本発明の実施例4に係る直流駆動の無機エレクトロルミネッセンス素子の断面構造図である。 本発明の実施例4に係る無機エレクトロルミネッセンス素子の代表的な印加電圧-発光輝度特性を示すグラフである。 本発明の実施例4に係る無機エレクトロルミネッセンス素子からの発光スペクトルを示すグラフである。 実用化されている従来の交流駆動薄膜EL素子の断面構造図である。 従来の直流駆動薄膜EL素子の断面構造図である。
 以下に、本発明に係る直流駆動の無機エレクトロルミネッセンス素子と発光方法の第1の実施の形態を、図1を参照しながら説明する。
 図1は、本実施の形態に係る直流駆動の無機エレクトロルミネッセンス素子の構成図である。図1において、無機エレクトロルミネッセンス発光装置2aは、ガラス基板3上に設けられた無機エレクトロルミネッセンス素子1aとこれに接続される直流電源10を備えている。
 直流駆動の無機エレクトロルミネッセンス素子1aは、ガラス基板3上に設けられる下部陽極13と、この下部陽極13の上面に設置される蛍光体層5と、この蛍光体層5の上面に構成される加速層7(N型半導体層)、P型半導体層8及びN型半導体層9及びこのN型半導体層9の上面に形成される上部陰極12からなっている。
 さらに、無機エレクトロルミネッセンス素子1aの下部陽極13と上部陰極12には直流電源10が接続されており、下部陽極13、上部背面電極6に直流電源10の陽極、陰極がそれぞれ接続されている。
 図1に示される無機エレクトロルミネッセンス素子1aにおいては、この電界発光素子の内部に加速層7、P型半導体層8及びN型半導体層9でNPN接合になる構造を有し、その下部に蛍光体物質を蒸着して蛍光体層5を形成した電界発光素子を作る。この構造を利用して、直流電源10の陰極側のN型半導体層9とP型半導体層8によるPN接合に順方向電圧を加え、P型半導体層8の内部に上部陰極12からの電子をN型半導体9を通して注入する。さらにP型半導体層8とN型半導体である加速層7によって形成されているPN接合部を、逆バイアスすることにより、このPN接合部に広がる空乏層の電場を利用して、電子を加速し、蛍光体層5の発光中心または蛍光体に衝突させ、発光11を得るものである。
 本願発明は蛍光体物質へ電子の注入の方法と、電子の加速の方法を検討することによって、新しい構造を有する発光素子を提供することができた。
 無機エレクトロルミネッセンス素子1aの構造は、図1のように下部陽極13を形成したガラス基板3上に蛍光体を100nm~10μm蒸着して蛍光体層5を構成させる。この膜の上面に蛍光体層5の蛍光体と同一の母体物質で、純粋な母体材料を追加形成し、N型の半導体の加速層7として100nm~10μmの厚さに作る。
 次に、P型半導体物質を10nm~1μmに蒸着してP型半導体層8を形成し、加速層7の母体材料との間でPN接合を構成させる。さらに、この上にN型半導体物質を100nm~10μmに蒸着してN型半導体層9として、加速層7、P型半導体層8及びN型半導体層9でNPN型の構造とする。最後に上部陰極12を真空蒸着して無機エレクトロルミネッセンス素子1aは完成する。これが本願発明に係る実施の形態の基本的な形である。
 一般的に化合物半導体である蛍光体物質は、薄膜に形成した場合にN型の半導体の性質を発現するようになり、このため蛍光体と同一の母体の薄膜はN型の半導体となり形成される。この結果、次に蒸着される上面のP型半導体層8と、N型の母体の薄膜(加速層7)との間でPN接合が形成されることになる。
 このPN接合の部分を逆バイアスすると、この加速層7とP型半導体層8の部分に空乏層が広がる。この状態の所に電子を注入し、内部電場である空乏層を利用して電子を加速、蛍光体層5内に含まれる発光中心に衝突させることによって発光11が得られる。
 そこで、空乏層への電子の注入の方法は、前述のP型半導体層8とその上にあるN型半導体層9とで形成されたPN接合の部分に、順方向の電圧を印加すると順方向電流が流れ、P型半導体層8内に電子を注入できる。この電子はP型半導体層8内を拡散し、その結果、逆バイアス空乏層の内部電場内に電子を注入することができる。そして、電子は内部電場で加速され、蛍光体層5の発光中心に衝突し励起することによって、発光に到る。上部陰極12に負電位を、下部陽極13に正電位の電圧を印加すると発光が得られる。
 PN接合については、従来から数多くの研究がなされてきた。PN接合の特性を積極的に直流EL素子に利用し、定常的に動作するようにしたものが、本発明の本質である。
 この発明によって、安定した、寿命の永い発光が得られるようになり、さらに発光の効率を従来の方法より一桁以上向上させることができ、安定した明るい発光を得ることができる。
 図2は本実施の形態に係る直流駆動の無機エレクトロルミネッセンス素子1aに外部電圧を印加していない状態の時のエネルギーバンド概念図である。図面左側が陰極(カソード)12で右側が陽極(アノード)13になっており、その間に、発光中心15を含有する蛍光体層5、加速層7、P型半導体層8及びN型半導体層9が構成されている。外部からの印加電圧がゼロのためフェルミ準位Eは全体を通して一定となり、電子14の存在は熱平衡状態になる。
 図3は本実施の形態に係る直流駆動の無機エレクトロルミネッセンス素子1aにおける動作時のエネルギーバンド概念図である。図面左側が陰極(カソード)12、右側が陽極(アノード)13で、無機エレクトロルミネッセンス素子1a全体から見ると半導体がNPN型の構造になっている。陰極側のN型半導体層9と次のP型半導体層8でPN接合が構成されており、外部からの印加電圧Vに対して順方向のバイアスとなる。この順方向の電流によって陰極12からの電子14はN型半導体層9を通してP型半導体層8内に注入され、P型半導体層8内に拡散していく。その結果、次にあるN型半導体である加速層7に注入される電子14の量を電界のバランスによって適度に制限し、発光に必要な量にコントロールすることができる。
 また、次に存在するPN接合の部分(P型半導体層8及び加速層7)は外部電圧に対して逆バイアスとなり、この部分に外部電圧Vの大部分が加わることになる。その結果、この接合の部分に空乏層が広がる。P型半導体層8を通して注入された電子14は、この空乏層内で加速されホットエレクトロンとして生成される。この高いエネルギーを得た電子14が蛍光体層5内にある発光中心15に衝突し、励起し、発光11が得られる。これが直流発光のメカニズムである。
 図3のVNPはN型半導体層9とP型半導体層8との間に外部電圧が分配される電圧を概念的に表したもので、また、VPNはP型半導体層8とN型半導体である加速層7との間に分配される電圧を表している。
 このように外部から加えられた電場からのエネルギーの大半が空乏層に加えられることによって電子14に効率よくエネルギーを伝達でき、発光の効率が高くなる。
 本実施の形態に係る直流駆動の無機エレクトロルミネッセンス素子は、ブラウン管の発光の機構を半導体の固体物質中で実現したもので、電子14の注入と加速、衝突、そして発光中心の励起、発光という工程を行うものである。
 本発明の実用的な構造に係る第2の実施の形態としての直流駆動の無機エレクトロルミネッセンス素子、それを採用した発光装置と発光方法を、図4を参照しながら説明する。
 図4において、本実施の形態に係る直流駆動の無機エレクトロルミネッセンス素子1b及び無機エレクトロルミネッセンス発光装置2bでは、まずガラス基板3上に下部透明電極4を作る。これは導電性のあるもので、光を外部に取り出すため、上部か下部のいずれか一方の電極を透明にする必要があるのである。この下部透明電極4を構成する材料としては、ITO,ZnO,AZO,TiO,SnO,In,ZnSnO,AgInO,ZnIn,ZnGaなどの材料が考えられる。これらの材料自体は既に知られている材料であり、いずれも透明な電極を構成する際の材料としては本願の出願時に広く一般的に知られているものであるので、特に本願実施の形態において、それぞれを作成してその作用、効果に関する実証は不要と考えられ、実施していない。
 次に、N型半導体層9としては、薄膜にした場合にN型を示す半導体で、無機物の化合物を蒸着したとき、N型の半導体の性質を示すものが考えられる。具体的には、Zn,Ba,Sr,Cd,Ga,Sn,In,Ti,Al,Mg,Gdなどの酸化物、硫化物、リン化物、窒化物、セレン化物もしくはこれらの混合物、例えばZnO,BaO,SrO,CdO,In,GaO,SnO,TiO,ZnS,BaS,SrS,CdS,GdIn,GaInO,ZnSnO,InP,GaP,AlP,InN,AlN,GaN,SrSe,ZnSe,GaAlS,MgAl,MgGa,SrAl,SrGa,BaAl,BaInなどの材料で薄膜に形成する。また、ここで、N型半導体層9の材料は、上記透明電極に使用した材料と似ているため、この部分を透明電極と兼ねた構造も考えられる。これらのN型半導体層9の材料も本願の出願時に広く一般的に知られているものであるので、特に本願実施の形態において、それぞれを作成してその作用、効果に関する実証は不要と考えられ、実施していない。
 また、NPN型の層の中間にあるP型半導体層8はNi,Mn,Cr,Co,Cu,Ag,La,Pr,Al,Ga,Sr,Ba,Snなどの酸化物、硫化物、セレン化物もしくはこれらの混合物で、薄膜化した場合P型の性質を示す半導体が対象となる。例えばNiO,NiO:Li,MnO,Cr,CoO,AgO,Pr,SnO,CuO,CuInO,SrCu,CuAlO,BaCu,CuGaO,LaCuOS,LaCuOSeなどが利用できる。また、ZnOなどの化合物半導体に窒素(N)を不純物としてドーピングし、P型化したものも利用が可能である。これらのP型半導体層8の材料も本願の出願時に広く一般的に知られているものであるので、特に本願実施の形態において、それぞれを作成してその作用、効果に関する実証は不要と考えられ、実施していない。
 次のN型半導体である加速層7は蛍光体層5に関係するもので、蛍光体層5の母体材料と同じ材料にする。この部分を利用して電子を加速するための加速層7を形成する。前記のN型半導体層9の材料として列記したものが利用できる。具体的には無機物の化合物を蒸着したとき、N型の半導体を示すもので、Zn,Ba,Sr,Cd,Ga,Sn,In,Ti,Al,Mg,Gdなどの酸化物、硫化物、リン化物、窒化物、セレン化物もしくはこれらの混合物、例えばZnO,BaO,SrO,CdO,In,GaO,SnO,TiO,ZnS,BaS,SrS,CdS,GdIn,GaInO,ZnSnO,InP,GaP,AlP,InN,AlN,GaN,SrSe,ZnSe,GaAlS,MgAl,MgGa,SrAl,SrGa,BaAl,BaInなどが利用できる。この実証についても実施していないが、その理由は既に述べたとおりである。
 この加速層7はP型半導体層8を通して注入された電子14を効率よく加速するために、できる限り欠陥の少ない結晶性のよいN型の半導体薄膜にする必要がある。この部分が電子14の加速層として働き、前記のP型半導体層8と、このN型半導体層(加速層7)で形成された内部電場によって、P型半導体層8を通して注入された電子14が、効率よく加速され、大きいエネルギーが電子に伝えられるのである。
 次に、蛍光体層5は加速用のN型半導体(加速層7)と同じ物質の中に、蛍光体又は、発光中心15を微細な形で分散して埋め込む。蛍光体又は発光中心の例としては、ZnS:Mn、ZnS:Tb、ZnS:Sm、ZnS:Pr、ZnS:Dy、ZnS:Eu、ZnS:Cu,Cl、ZnS:Ag,Cl、ZnS:Pr,Ir、SrS:Ce、SrS:Mn、ZnF:Gd、ZnO:Zn、ZnO:Sm、ZnO:Pr、ZnO:Dy、ZnO:Eu、Y:Eu、Y:Mn、GaO:Eu、Ga:Mn、YGeO:Mn、CaGa:Mn、ZnSiO:Mn、BaAl:Eu、SrGa:Ce、ZnMgS:Mn、GaS:Eu、TbF、SmF、PrF、MnFなどの蛍光体物質である。蛍光体層として、N型半導体中に、これらの発光中心や蛍光体を分散させる。これらは一例であり、ここに列挙した蛍光体だけではなく、目的とする発光色を得るためには、その他の蛍光体も対象となる。なお、上記のような蛍光体の組成式では、コロン(:)の左側に記載されるものが結晶母体(母体材料)であり、右側に記載されるものが付活剤である。
 最後に上部につける上部背面電極6として、Al,Au,Cu,Ag,Ni,Ptなどの金属を蒸着し、無機エレクトロルミネッセンス素子1bは完成する。
 ここで、無機エレクトロルミネッセンス素子1b全体を透明に仕上げる場合には、上部背面電極6を金属の代わりに、透明物質ITO,ZnO,AZO,ZnIn,In,TiO,SnOなどにすればよく、高コントラストの素子に仕上げる場合にはMo、Ta、Tiなどの酸化物を蒸着して、上部背面電極6を黒色の電極に仕上げればよい。
 このようにして作られた無機エレクトロルミネッセンス素子1bの上部背面電極6に正の電位を、そして下部透明電極4に負電位を加えると蛍光体層5からの発光が得られる。
 本発明による直流駆動の無機エレクトロルミネッセンス素子と発光方法は直流電源で発光が得られるため、駆動装置が簡単になり、ディスプレー装置など全体の価格が安く製造できる。
 また、無機エレクトロルミネッセンス素子全体が固体で構成されており、機械的な外力に対して強い。さらに、この無機エレクトロルミネッセンス素子はすべて無機物で構成されているため有機EL素子に比べ、周囲の温度が高くても正常に動作する。
 高価な材料が使用されていないため材料費が安くおさえられ、無機エレクトロルミネッセンス素子の製造においても特殊な装置や特別な技術は必要なく、製造設備が安価であり、既知の製造技術で作成できる。
 この自発光型の無機エレクトロルミネッセンス素子は全体の厚さが数十μmしかなく、薄い表示装置が作れるうえに、表示装置として利用する場合は、液晶のようにバックライト、偏光板などが必要なく、構造が簡単で価格的に有利である。
 発光の原理が衝突励起型の無機EL素子のため、発光中心や蛍光体の物質を検討することによって、発光色を適当に調整することができる。
 以上のように本発明の無機エレクトロルミネッセンス素子は数多くの利点を有しており、将来はディスプレー装置だけでなく、照明などに、特に平面の光源として活用できる可能性を秘めている。
 以上説明したとおり、本実施の形態に係る無機エレクトロルミネッセンス素子においては、無機エレクトロルミネッセンス素子の内部に半導体のNPN構造を導入することで直流電源で駆動できる発光効率のよい自発光素子を提供することができる。
 また、現在、数多く存在する自明の蛍光体を発光材料に利用することができ、希望する発光色を自由にコントロールすることが可能となる。
 次に、本発明の第3の実施の形態に係る直流駆動の無機エレクトロルミネッセンス素子について図5、図6及び図11を参照しながら説明する。本発明に係る無機エレクトロルミネッセンス素子は、外部から加えられた電界によって、加速層内部で電子が加速され、発光中心に衝突させることにより発光を得ている。
 陰極側から供給された電子が内部電界によって陽極側に加速される。発光に必要なエネルギーを得て発光中心に衝突し、励起することにより光を放出する。
 このように無機エレクトロルミネッセンス素子は内部に加わる電界によって電子が加速され発光中心に衝突する。より大きい電圧をかける程、電子のエネルギーは大きくなり、外部に放出される発光も強くなる。このため、より大きい印加電圧が必要となる訳である。
 ところが、この無機エレクトロルミネッセンス素子は蛍光体層に半導体材料を使用し、NPN型の内部構造をなしているため、印加する電圧を高めていくと、ある電圧から急激に電流が流れ始め、印加電圧の増加に対して電流が大きく増加する。つまり電圧の変動に対して敏感で、内部を流れる電流は大きく変化する。
 また、無機エレクトロルミネッセンス素子を作る際に、スパッタリング装置、蒸着装置などを使い、薄膜化した素子の構造を構成する。このため、製造上の過程で薄膜中に膜厚の差や不純物等の欠陥ができる可能性が高く、さらには局所的に尖った部分ができることもある。このような状態のところに電極を付け高い電圧を印加すると、電気的に弱い部分から先に破壊され、この部分から連鎖的に破壊の部分が広がっていく。特に、電圧駆動型の無機EL素子の場合この傾向が強い。
 薄膜の無機エレクトロルミネッセンス素子の第1の欠点は素子を作製する場合、広い面積の素子を作ると、素子の中央部と端部においては膜の厚さに差が生じやすい。特に電圧駆動型の素子にとって、膜厚の差は内部の電界強度に強く作用するため、発光強度に大きく影響を与える。
 次に、第2の問題として、電圧駆動型のこの無機エレクトロルミネッセンス素子は、金属電極や導電性の透明電極の端の部分、特に先端部には電界が集中しやすく、この部分が絶縁破壊を起こしやすいという性質がある。
 これらの現象は電圧駆動型の素子にとっては不利な現象であり、発光の輝度ムラとなって表れる。これは物理的に基本的な問題で、避けることのできない現象であり、また印加電圧の増加によって、この部分から破壊が起こりやすい。
 最初の膜厚の問題は製造装置によってある程度は改良もできるが、どうしても第2の問題は物理の基本的な現象であり、これを取り除くことは極めて難しい。
 第3の問題として内部の化合物半導体、又は絶縁物などを作るとき真空蒸着装置やスパッタリング装置を使用して薄膜化するため、膜中に不純物や欠陥を含む可能性が高い。また、局部的に尖った部分ができることもある。
 このような状態のところに電極を付けて高い電圧を印加すると、電気的に弱い部分から先に破壊され、この部分から連鎖的に破壊の部分が広がっていく。
 さらには、これら不純物や尖った部分の欠陥には外部からの電界が集中しやすくなり、局所的には高電界部分ができる。このため局所的な明るい部分と暗い部分が発生する。輝度のムラは面光源として好ましくない。また同時にこの部分は電気的に弱い部分となりやすく、素子の破壊電圧の低下を招く。
 無機エレクトロルミネッセンス素子の場合、広い面積で発光させようとして電圧が加えられると、膜厚の薄い部分や、不純物などの欠陥のある部分が他の部分より早く破壊を起こし、その部分の破壊が他の部分へ伝搬する。
 このように弱い所で局部的に破壊が発生し始めると、連鎖的に他の部分へと破壊が広がる傾向があり、一旦破壊が始まると、素子全体の壊滅的な破壊へと繋がり再起不能な状態となる。
 つまり、素子全体の破壊電圧は、この局部的な部分の最低破壊電圧によって決定されることになる。
 この状態を電気的な等価回路で説明すると、基本的な面発光の無機エレクトロルミネッセンス素子は駆動する電源に対して並列に数多く並んだ図5のような状態であると考えられる。
 これはツェナーダイオードが一列に並んだ状態と同じである。この状態でどこか一部のツェナー電圧Vzが低い場合、その部分に電流が集中し、素子の破壊へとつながる。
 並列に並ぶ無機エレクトロルミネッセンス素子は局所的な部分で比較すると、必ずしも全ての部分で均一とはいい難い。ところが外部からの印加電圧は、どの部分にも等しく加わるため、印加電圧の増加に伴って、ツェナー電圧の比較的低い所(図5に示したVz3に相当する。)に、集中的に電流が流れ始める。その結果、この弱い部分は加熱され、半導体の性質上、さらに電流が多く流れるようになる。最終的には、この部分から破壊が始まる。
 そこで、この問題を回避するため本発明の第3の実施の形態に係る直流駆動の無機エレクトロルミネッセンス素子では、エレクトロルミネッセンスセル部(蛍光体層5及びNPN型半導体部(7~9))と電極との間に電流を分散する目的と、広い面に均一に電界を加えるために、図11に示すように、陰極とエレクトロルミネッセンスセル部の間に抵抗層を挿入した。以下、この抵抗層を分散抵抗層30という。ここでは陰極側に挿入したが、陽極との間に挿入しても同じ作用をする。
 この分散抵抗層30は、もし局所的に大きい電流が流れた場合、この場合での電圧降下分が大きくなり、この部分のエレクトロルミネッセンスセル部への外部からの印加電圧が軽減される。この結果広い面積の無機エレクトロルミネッセンス素子の内部に存在する不均一な部分への電圧集中が軽減され、素子全体に均一な電圧が印加されるようになる。
 概念的に等価回路で説明すると図6のように、エレクトロルミネッセンスセル部に直列につながる抵抗群によって、電源から印加される電圧を、それぞれの特性のバラツキに応じて分配するようにした。この抵抗群が分散抵抗層30に相当し、本実施の形態に係る直流駆動の無機エレクトロルミネッセンス素子の分散抵抗層30の目的である。
 本願の実施の形態に係る直流駆動の無機エレクトロルミネッセンス素子は、スパッタリング装置、EB蒸着装置などを利用して、薄膜の素子として作るが、全くバラツキのない電気的特性が均一な素子の製造は技術的に不可能に近い。
 このバラツキがあるダイオードを並列に駆動する場合、局部的な偏りを生じ、半導体の場合には、一部分に電流の集中が起こる。この結果この部分が加熱され、熱暴走を起こし、破壊へとつながる。無機エレクトロルミネッセンス素子の場合には局部的な破壊が全体に広がり、素子としての機能が果たせなくなる。
 そこで前述の図11のように分散抵抗層30を直列に挿入するように構成した。この分散抵抗層30により、電流の集中を防ぐことができ、無機エレクトロルミネッセンス素子を安定して駆動することができる。
 もし局部的に大きな電流が流れた場合、この分散抵抗層での電圧降下分が大きくなり、この部分のエレクトロルミネッセンスセル部への印加電圧が軽減され、保護される。このため分散抵抗層は、大きい抵抗値が望ましいが、薄膜で構成するため蒸着の条件などによって、一定の条件が伴う。あまり厚くし過ぎると薄膜が剥離しやすくなり膜自体が不安定になる。
 このため、少ない厚さで一定の抵抗値を得るために、絶縁物に近い高抵抗率の物質を挿入し、大きい抵抗値を稼ぐ必要がある。そこで、この場合にはTaN,SiO,Alなどを使用するとよい。これらの物質はある一定の条件下で作製すると、抵抗素子として形成できるため、分散抵抗の材料として用いた。
 使用できる材料は、抵抗素子としての性質を有する物質ならば利用が可能で、Ta,Hf,Ti,Nd,Mo,Zn,Sn,Si,Al,Bの酸化物、窒化物又はこれらの混合物が利用できる。例えば、TaN,SiO:Pd,AlO:Zn,AlN,BN,BO,MoO,Hf,Tiまたは、Taの陽極酸化膜、厚膜型の抵抗材料などもこの分散抵抗層30として利用が可能である。
 これらの物質を分散抵抗層30に導入することによって、素子からの発熱による発光への影響は少ないものとなり、また同時に発光は安定した均一なものが得られる。
 無機エレクトロルミネッセンス素子の場合において、発光強度は蛍光体層を流れる電流に比例するため、分散抵抗層30によって流れる電流は適当に分散され、素子からの発光も均一に調整されることになる。
 以下、本願発明者が実際に試作した無機エレクトロルミネッセンス素子とそれを採用した発光装置と発光方法について実施例1乃至実施例4として説明する。
 本発明の実施例1に係る直流駆動の無機エレクトロルミネッセンス素子1b、無機エレクトロルミネッセンス発光装置2b及び無機エレクトロルミネッセンス素子1bを用いた発光方法について、先に説明した図4を参照しながら説明する。
 図4に示すように、無機エレクトロルミネッセンス素子1bの下部透明電極4のITO付ガラス基板3上にN型半導体層9として、ZnOの層を形成する。この層はZnの金属を用いてアクティブスパッタリング法を利用しアルゴンと微量の酸素雰囲気中で作ったものである。
 次のP型半導体層8は、CuとAlの金属ターゲットを利用し、アルゴンと酸素雰囲気中においてアクティブスパッタリング法でCuAlOを形成した。
 加速層7としてのN型半導体層は、純粋なZnSの焼結ペレットを電子ビーム蒸着法(以下EB法という)で蒸着する。そして、この途中から発光中心としてTbFのペレットを別のソース源から同時蒸着した。ZnS層の一部に発光中心であるTbFを分散混在させて、この部分を蛍光体層5として使用する。そして、最上部にAl金属を真空蒸着して上部背面電極6とした。
 このように作られた無機エレクトロルミネッセンス素子1bを採用する無機エレクトロルミネッセンス発光装置2bは、Al電極(上部背面電極6)に正電圧を、下部のITO電極(下部透明電極4)に負電圧を印加すると30V程度で緑色の発光が得られた。
 実施例1に係る直流駆動の無機エレクトロルミネッセンス素子1bから得られた直流印加電圧と発光強度(発光輝度)の特性を図7に示す。
 この特性は、本発明の実施例に係る直流駆動の無機エレクトロルミネッセンス素子に安定化電源で直流電圧を印加し、株式会社トプコンテクノハウス社製の輝度計(SR-3)で発光を測定した。
 無機エレクトロルミネッセンス素子を構成する材料や組成、各層の膜厚によって発光開始電圧や最大発光強度は変化するが、この図7では本発明の実施例1に係る無機エレクトロルミネッセンスの代表的な特性を示した。
 また、図8はその発光スペクトルのグラフである。この無機エレクトロルミネッセンス素子1bの蛍光体層5を形成する母体材料はZnSであり、この中に分散混入したTbFからの発光で540~550nm付近に特徴的な強いピークをもつ発光を示す。
 次に、本発明の実施例2に係る直流駆動の無機エレクトロルミネッセンス素子1d、無機エレクトロルミネッセンス発光装置2d及び無機エレクトロルミネッセンス素子1dを用いた発光方法について、図9を参照しながら説明する。本実施例に係る無機エレクトロルミネッセンス素子1dは、いわゆるトップエミッション型の素子である。
 図9に示されるように、本実施例における直流駆動の無機エレクトロルミネッセンス素子1dは、石英のガラス基板3上に、Tiの金属ターゲットを用い下部金属電極16をDCスパッタリング法で作った。
 ここでは、蛍光体の高温での熱処理が必要なため、高融点物質Tiを使用したが、他にW,Mo,Ta,Pt,Ir,Pdなども利用できる。
 次にZnの金属ターゲットを用い、アルゴンと微量の酸素ガス雰囲気中でアクティブスパッタリング法を利用してZnOのN型半導体層9を形成する。
 この上にP型半導体層8として、NiOとLiOの焼結ターゲットを用い、アルゴンと微量の酸素の混合ガス中RFマグネトロンスパッタリング法でNiO:Liの薄膜を作製した。
 N型の半導体の加速層7と蛍光体層5は、ZnSとZnS:TbFの焼結ペレットを2種類用意し、まずEB法を利用してZnSのペレットを用い純粋なZnSの薄膜を加速層7として蒸着する。この工程の後、ZnS:TbFのペレットに切り換え蛍光体層5を作った。蒸着が終了した時点で真空槽内を高真空に引き、400℃で10分間熱処理を行った。
 最後にZnOとAlの焼結ターゲットを用い、微量の酸素雰囲気中、上部透明電極17として、ZnO:Alの薄膜の形成をRFマグネトロンスパッタリング法で行い、トップエミッション型の無機EL素子1dは完成する。
 このように作られた無機エレクトロルミネッセンス素子1dを採用する無機エレクトロルミネッセンス発光装置2dの場合は、上部に光を取り出すために背面電極(上部透明電極17)は透明である。40V程度の直流電圧を下部金属電極16にマイナス、上部透明電極17にプラスを印加するとTbFに起因する緑色の発光が得られた。
 本発明の実施例3に係る直流駆動の無機エレクトロルミネッセンス素子1c、無機エレクトロルミネッセンス発光装置2c及び無機エレクトロルミネッセンス素子1cを用いた発光方法について、図10を参照しながら説明する。
 両方の電極が金属の場合では、内部の発光を外部に取り出すため、図10のように横型の無機エレクトロルミネッセンス素子1cに仕上げる必要がある。
 まず、ガラス基板3上に、Znの金属ターゲットを使用し、ArとOの混合ガス雰囲気中でRFマグネトロンスパッタリングを行い、ZnOの薄膜を形成してN型半導体層9とする。
 次にP型半導体層8はSrOとCuOの2種類の焼結ターゲットを用い、EB蒸着法でSrCuの膜を作った。注入層(上部背面電極6bと接している部分(符号29)を特に注入層と呼ぶ)と加速層7の部分は純粋なZnSのペレットを使いEB法で形成した。蛍光体層5は金属製のマスクで一部被い、ZnS:Mnのペレットを用いて局部的にEB法で蒸着して成膜した。
 この上に上部背面電極6a,6bとして、Alを抵抗加熱蒸着法で2カ所蒸着する。この無機エレクトロルミネッセンス素子1cの場合、ZnS:Mn蛍光体層5の膜が存在する側が正電極で、純粋なZnSの膜と接する側が負電極となる。無機エレクトロルミネッセンス素子1cを採用する無機エレクトロルミネッセンス発光装置2cに対して直流電圧を100V程度印加すると、この素子から橙色の発光が得られた。
 本発明の実施例4に係る直流駆動の無機エレクトロルミネッセンス素子1e、無機エレクトロルミネッセンス発光装置2e及び無機エレクトロルミネッセンス素子1eを用いた発光方法について図11乃至図13を参照しながら説明する。
 本実施例に係る無機エレクトロルミネッセンス素子1eは、実施例2の無機エレクトロルミネッセンス素子1dと同様にトップエミッション型の素子であるが、内部に分散抵抗層30を設けた構造をしている。
 まず、ガラス基板にTaの金属ターゲットを使用し、アルゴンガス雰囲気中でスパッタリング法を用いて、下部金属電極16を形成する。
 そしてこの工程の途中から窒素ガスを導入して、Ta電極の表面にTaNの薄膜を形成した。この膜が分散抵抗層30として機能することになる。
 次にZnの金属ターゲットを用い、アルゴンと微量の酸素ガス雰囲気中でアクティブスパッタ法を利用してZnOのN型半導体9を薄膜に形成する。
 そしてこの薄膜の上面にP型半導体8として、実施例1と同様にCuとAlの金属ターゲットを用いアルゴンと微量の酸素雰囲気中でアクティブスパッタリング法を利用しCuAlOを形成した。
 N型半導体の加速層7と蛍光体層5の形成は、ZnSとZnS:Mnのペレットを2種類用意し、まずZnSのペレットを用いて加速層7としてEB法で蒸着する。この工程の後、ZnS:Mnのペレットに切り換え蛍光体層5を作った。
 最後に上部透明電極17としてAuの半透明膜を抵抗加熱蒸着法で形成し、トップエミッション型の無機エレクトロルミネッセンス素子1eは完成する。
 この素子の上部透明電極17にプラス、下部金属電極16にマイナスを印加すると図12のような印加電圧と発光強度の関係が得られた。
 この時の発光色はMnからの発光で、図13のように570~600nm付近にピークを持つ橙色の色調が得られた。
[規則91に基づく訂正 20.08.2010] 
 なお、上述の4つの実施例においては、N型半導体層9として、ZnO、ZnSを用い、P型半導体層8としては、CuAlO、NiO:Li、SrCuを用い、加速層7としてのN型半導体層は、ZnSを用いている。これらは、先に述べたすべての材料(物質)のうち一部であるものの、先の材料(物質)は、いずれも個々には知られた材料(物質)であり、それらを組み合わせて実施したとしても十分に成立性があるものである。
 以上説明したように、本発明の請求項1乃至請求項7に記載された発明は、直流駆動の無機エレクトロルミネッセンス素子と発光方法として、液晶のバックライト装置や、携帯電話やパソコン、あるいはテレビやモニターに用いられるディスプレー装置をはじめ、広く産業用や一般家庭用の照明装置として利用される可能性がある。また、特に、長寿命であること無機物を採用したエレクトロルミネッセンス素子、発光装置であることから交換頻度を下げる必要がある過酷な環境条件下での産業上の利用の可能性がある。
1a~1e…無機エレクトロルミネッセンス素子
2a~2e…無機エレクトロルミネッセンス発光装置
3…ガラス基板
4…下部透明電極
5…蛍光体層
6,6a,6b…上部背面電極
7…加速層(N型半導体層)
8…P型半導体層
9…N型半導体層
10…直流電源
11…発光
12…陰極(カソード)
13…陽極(アノード)
14…電子
15…発光中心
16…下部金属電極
17…上部透明電極
21…ガラス基板
22…下部透明電極
23…蛍光体層
24…上部背面電極
25…絶縁層
26…交流電源
27…安定化層
28…直流電源
29…注入層
30…分散抵抗層

Claims (7)

  1. [規則91に基づく訂正 20.08.2010] 
     絶縁性のガラス基板上に形成され陰極となる第1の電極(4,6b,12,16)と、この第1の電極(4,6b,12,16)に対向して配置され陽極となる第2電極(6,6a,13,17)との間に無機物からなる蛍光体層(5)を挟んだ構造の無機エレクトロルミネッセンス素子(1a)であって、前記第1の電極(4,6b,12,16)である陰極と前記蛍光体層(5)との間に、無機物の半導体材料で構成されたN型半導体(7,9)とP型半導体(8)をNPN型に接合した半導体構造(7~9)を有することを特徴とする無機エレクトロルミネッセンス素子(1a~1e)。
  2.  前記蛍光体層(5)は、前記N型半導体材料中に発光中心又は蛍光物質を分散、混在させた膜によって形成されることを特徴とする請求項1記載の無機エレクトロルミネッセンス素子(1a~1e)。
  3.  前記NPN型に接合した半導体構造(7~9)における陰極側のN型半導体(9)の材料がZn,Ba,Sr,Cd,Ga,Sn,In,Ti,Al,Mg,Gdの酸化物、硫化物、リン化物、窒化物、セレン化物もしくはこれらの混合物のいずれかから構成されることを特徴とする請求項1又は請求項2に記載の無機エレクトロルミネッセンス素子(1a~1e)。
  4.  前記NPN型に接合した半導体構造(7~9)において中間に存在するP型半導体(8)の材料がNi,Mn,Cr,Co,Cu,Ag,La,Pr,Al,Sr,Ga,Ba,Snの酸化物、硫化物、セレン化物もしくはこれらの混合物のいずれかから構成されることを特徴とする請求項1乃至請求項3のいずれか1項に記載の無機エレクトロルミネッセンス素子(1a~1e)。
  5. [規則91に基づく訂正 20.08.2010] 
     前記NPN型に接合した半導体構造(7~9)における前記蛍光体層(5)と隣接するN型半導体(7)の材料がZn,Ba,Sr、Cd,Ga,Sn,In,Ti,Al,Mg,Gdの酸化物、硫化物、リン化物、窒化物、セレン化物もしくはこれらの混合物であることを特徴とする請求項1乃至請求項4のいずれか1項に記載の無機エレクトロルミネッセンス素子(1a~1e)。
  6.  前記第1の電極(16)と前記第2の電極(17)の間にTa,Hf,Ti,Nd,Mo,Sn,Zn,Si,Al,Bのうち、少なくとも1種からなる無機化合物を含む抵抗体物質を薄膜とした分散抵抗層(30)を備えることを特徴とする請求項1乃至請求項5のいずれか1項に記載の無機エレクトロルミネッセンス素子(1e)。
  7. [規則91に基づく訂正 20.08.2010] 
     直流駆動の無機エレクトロルミネッセンス素子(1a~1e)の発光方法であって、前記無機エレクトロルミネッセンス素子(1a~1e)の内部に、第1及び第2のN型半導体(7,9)とP型半導体(8)を用いてNPN型の三層構造(7~9)を作成し、このNPN型の三層構造(7~9)において陰極側の前記第1のN型半導体(9)とP型半導体(8)から構成されるPN接合部に順方向電圧を印加することで前記P型半導体(8)内に電子を注入し、さらに前記P型半導体(8)と前記第2のN型半導体(7)とで構成されるPN接合部を逆バイアスすることで、このPN接合部に空乏層を形成させ、この空乏層の部分の電場を利用し、前記P型半導体(8)を通し注入された電子を加速して、前記第2のN型半導体(7)に隣接する蛍光体層(5)に分散、混在させた発光中心又は蛍光物質に衝突、発光させることを特徴とする無機エレクトロルミネッセンス素子(1a~1e)の発光方法。
PCT/JP2010/060330 2010-06-18 2010-06-18 直流駆動の無機エレクトロルミネッセンス素子と発光方法 WO2011158368A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP10773525.0A EP2437577A4 (en) 2010-06-18 2010-06-18 DIRECT-POWER-CONTROLLED INORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHT EMISSION PROCESS THEREFOR
CN201080016370.4A CN102440072B (zh) 2010-06-18 2010-06-18 直流驱动的无机电致发光组件及其发光方法
KR1020127024336A KR101431476B1 (ko) 2010-06-18 2010-06-18 직류구동의 무기이엘소자와 발광방법
PCT/JP2010/060330 WO2011158368A1 (ja) 2010-06-18 2010-06-18 直流駆動の無機エレクトロルミネッセンス素子と発光方法
JP2010536262A JP4723049B1 (ja) 2010-06-18 2010-06-18 直流駆動の無機エレクトロルミネッセンス素子と発光方法
TW100114865A TWI362895B (en) 2010-06-18 2011-04-28 Dc-driven electroluminescence device and light emission method
US13/240,627 US8810123B2 (en) 2010-06-18 2011-09-22 DC-driven electroluminescence device and light emission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/060330 WO2011158368A1 (ja) 2010-06-18 2010-06-18 直流駆動の無機エレクトロルミネッセンス素子と発光方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/240,627 Continuation US8810123B2 (en) 2010-06-18 2011-09-22 DC-driven electroluminescence device and light emission method

Publications (1)

Publication Number Publication Date
WO2011158368A1 true WO2011158368A1 (ja) 2011-12-22

Family

ID=44350524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060330 WO2011158368A1 (ja) 2010-06-18 2010-06-18 直流駆動の無機エレクトロルミネッセンス素子と発光方法

Country Status (7)

Country Link
US (1) US8810123B2 (ja)
EP (1) EP2437577A4 (ja)
JP (1) JP4723049B1 (ja)
KR (1) KR101431476B1 (ja)
CN (1) CN102440072B (ja)
TW (1) TWI362895B (ja)
WO (1) WO2011158368A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016043231A1 (ja) * 2014-09-18 2016-03-24 国立大学法人東京工業大学 発光素子、表示装置および照明装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2807685A1 (en) * 2012-01-27 2014-12-03 Wake Forest University Electroluminescent devices and applications thereof
US9261730B2 (en) 2013-01-03 2016-02-16 Empire Technology Development Llc Display devices including inorganic components and methods of making and using the same
CN113783471B (zh) * 2021-07-16 2023-12-08 浙江大学 一种薄膜动态半导体-聚合物半导体异质结直流发电机及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60134278A (ja) * 1983-12-23 1985-07-17 横河電機株式会社 El表示装置
JPH0574572A (ja) 1991-09-12 1993-03-26 Nikon Corp 薄膜el素子
JPH10214044A (ja) * 1997-01-31 1998-08-11 Sanyo Electric Co Ltd 表示装置
JP2005285401A (ja) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd 発光素子
JP2006004658A (ja) 2004-06-15 2006-01-05 Canon Inc 発光素子及びその製造方法
JP2007123220A (ja) 2005-10-28 2007-05-17 Uchitsugu Minami 正孔注入制御型el装置
JP2007194194A (ja) * 2005-12-22 2007-08-02 Matsushita Electric Ind Co Ltd エレクトロルミネッセンス素子およびこれを用いた表示装置、露光装置、照明装置
JP2008007755A (ja) 2006-06-02 2008-01-17 Semiconductor Energy Lab Co Ltd 発光材料、発光素子及び発光装置
JP2009224136A (ja) 2008-03-14 2009-10-01 Tdk Corp 発光素子
JP2010135259A (ja) * 2008-12-08 2010-06-17 Sharp Corp 発光素子

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3622031B2 (ja) * 2000-04-25 2005-02-23 日本電信電話株式会社 発光素子
KR100459898B1 (ko) * 2002-03-07 2004-12-04 삼성전자주식회사 실리콘 발광소자 및 이를 채용한 디스플레이 장치
WO2005064995A1 (en) * 2003-12-26 2005-07-14 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
EP1624502B1 (en) * 2004-08-04 2015-11-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, and electronic appliance
JP5277430B2 (ja) * 2007-03-29 2013-08-28 国立大学法人島根大学 酸化亜鉛系発光素子
JP2009266551A (ja) * 2008-04-24 2009-11-12 Panasonic Corp 発光素子及び表示装置
KR101154758B1 (ko) * 2008-11-18 2012-06-08 엘지이노텍 주식회사 반도체 발광소자 및 이를 구비한 발광소자 패키지
JP2010219078A (ja) * 2009-03-12 2010-09-30 Kobundo Insatsu Kk 無機エレクトロルミネッセンス素子とその素子を利用した発光装置と発光方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60134278A (ja) * 1983-12-23 1985-07-17 横河電機株式会社 El表示装置
JPH0574572A (ja) 1991-09-12 1993-03-26 Nikon Corp 薄膜el素子
JPH10214044A (ja) * 1997-01-31 1998-08-11 Sanyo Electric Co Ltd 表示装置
JP2005285401A (ja) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd 発光素子
JP2006004658A (ja) 2004-06-15 2006-01-05 Canon Inc 発光素子及びその製造方法
JP2007123220A (ja) 2005-10-28 2007-05-17 Uchitsugu Minami 正孔注入制御型el装置
JP2007194194A (ja) * 2005-12-22 2007-08-02 Matsushita Electric Ind Co Ltd エレクトロルミネッセンス素子およびこれを用いた表示装置、露光装置、照明装置
JP2008007755A (ja) 2006-06-02 2008-01-17 Semiconductor Energy Lab Co Ltd 発光材料、発光素子及び発光装置
JP2009224136A (ja) 2008-03-14 2009-10-01 Tdk Corp 発光素子
JP2010135259A (ja) * 2008-12-08 2010-06-17 Sharp Corp 発光素子

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
H. MATSUMOTO ET AL., JPN. J. APPL. PHYS., vol. 17, 1978, pages 1543
J. I. PANKOVE, J. LUMIN., vol. 40, 41, 1988, pages 97
M. HIGTON, DIGEST OF 1984 SID INTERNATIONAL SYMPOSIUM, 1984, pages 29
See also references of EP2437577A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016043231A1 (ja) * 2014-09-18 2016-03-24 国立大学法人東京工業大学 発光素子、表示装置および照明装置
JPWO2016043231A1 (ja) * 2014-09-18 2017-07-06 国立研究開発法人科学技術振興機構 発光素子、表示装置および照明装置
US10446783B2 (en) 2014-09-18 2019-10-15 Japan Science And Technology Agency Light-emitting device, display apparatus and lighting apparatus

Also Published As

Publication number Publication date
TWI362895B (en) 2012-04-21
US20120068620A1 (en) 2012-03-22
EP2437577A1 (en) 2012-04-04
CN102440072A (zh) 2012-05-02
JP4723049B1 (ja) 2011-07-13
US8810123B2 (en) 2014-08-19
KR20120127506A (ko) 2012-11-21
CN102440072B (zh) 2015-05-06
TW201141308A (en) 2011-11-16
JPWO2011158368A1 (ja) 2013-08-15
KR101431476B1 (ko) 2014-08-20
EP2437577A4 (en) 2013-05-29

Similar Documents

Publication Publication Date Title
JP5014347B2 (ja) 表示装置
WO2003032690A1 (fr) Ecran a emission spontanee a l'etat solide et son procede de production
Heikenfeld et al. Low-voltage GaN: Er green electroluminescent devices
JP4723049B1 (ja) 直流駆動の無機エレクトロルミネッセンス素子と発光方法
JPWO2005004546A1 (ja) 電界発光素子及び表示装置
JP2010219078A (ja) 無機エレクトロルミネッセンス素子とその素子を利用した発光装置と発光方法
JP2006004658A (ja) 発光素子及びその製造方法
WO2008023620A1 (fr) Dispositif électroluminescent et écran
JPWO2008072520A1 (ja) 線状発光装置
US20020125495A1 (en) Thin film alternating current electroluminescent displays
Heikenfeld et al. Rare-earth-doped GaN switchable color electroluminescent devices
WO2008069174A1 (ja) 面状発光装置
JPH04363892A (ja) 直流エレクトロルミネッセンス素子
Kitai Alternating Current Thin Film and Powder Electroluminescence
JP2006120328A (ja) 分散型el素子
KR100799591B1 (ko) 금속-절연체 전이층을 포함하는 전계발광소자
JP5062882B2 (ja) 無機エレクトロルミネッセンス素子
JP5046637B2 (ja) 無機エレクトロルミネッセント素子
Chen et al. AC powder electroluminescence
JP4848181B2 (ja) 正孔注入型el装置
JP5276360B2 (ja) 表示素子
JP2009230967A (ja) 直流型薄膜エレクトロルミネッセンス素子
JPH01102893A (ja) 発光デバイス
Nakajima et al. A solid‐state light‐emitting device based on ballistic electron excitation using an inorganic material as a fluorescent film
Heikenfeld Rare earth-doped gallium nitride flat panel display devices

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080016370.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010536262

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010773525

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10773525

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127024336

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE