WO2011157210A1 - 一种正交频分复用系统中信道估计方法及装置 - Google Patents

一种正交频分复用系统中信道估计方法及装置 Download PDF

Info

Publication number
WO2011157210A1
WO2011157210A1 PCT/CN2011/075665 CN2011075665W WO2011157210A1 WO 2011157210 A1 WO2011157210 A1 WO 2011157210A1 CN 2011075665 W CN2011075665 W CN 2011075665W WO 2011157210 A1 WO2011157210 A1 WO 2011157210A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
unit
pilot
processing
user
Prior art date
Application number
PCT/CN2011/075665
Other languages
English (en)
French (fr)
Inventor
李�杰
耿鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011157210A1 publication Critical patent/WO2011157210A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only

Definitions

  • the present invention relates to Orthogonal Frequency Division Multiplexing (OFDM) technology, and more particularly to a channel estimation method and apparatus in an OFDM system.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the available frequency bands are divided into a plurality of small frequency bands, which may also be referred to as subcarriers, onto which data symbols are modulated for transmission.
  • subcarriers small frequency bands
  • a known pilot signal must be placed on some subcarriers, and the receiver performs corresponding processing on the pilot signal to obtain a channel estimate at the pilot position, and by interpolation, etc. Means get channel estimates at other locations.
  • the usual processing procedure is: first transform to the time domain for noise reduction, and then change back to the frequency domain, and finally obtain the channel estimate at the pilot signal.
  • the received pilot signal is a segment of the signal intercepted from the continuous channel response, the two ends of the frequency domain are discontinuous, therefore, the DFT, Discrete Fourier Transform/Inverse
  • IDFT Discrete Fourier Transform
  • the Gibbs phenomenon occurs, which in turn deteriorates the channel estimation effect.
  • the Gibbs phenomenon refers to the jitter ripple occurring at both ends of the finally obtained frequency domain channel estimation.
  • Chinese Patent Application No. 200780039909.6 discloses a channel estimator which performs IDFT and DFT processing after adding an extension signal to the front and rear of the pilot signal, respectively, thus suppressing the Gibbs phenomenon to some extent. Improved channel estimation.
  • the main object of the present invention is to provide a channel estimation method and apparatus in an OFDM system, which can improve channel estimation quality and is suitable for multi-user channel estimation.
  • the present invention provides a channel estimation method in an OFDM system, the method comprising: sequentially performing a process of canceling a pilot mother code, a tail link, an IDFT, separating a multi-user, a DFT, and a frequency domain truncation on a received pilot signal. , get the channel estimation signal for each user.
  • the method before performing DFT processing, the method further includes:
  • the time domain signal obtained by separating the multi-user processing is subjected to noise elimination processing to obtain a signal required for performing DFT processing.
  • the method before receiving the pilot signal, the method further includes:
  • the OFDM system constrains the pilot signals transmitted by each user terminal
  • the same pilot mother code is used and multiplied by different phase rotations to obtain the pilot signal of each user terminal.
  • phase rotation is:
  • the tail connection processing is performed on the received pilot signal, where: the frequency domain signal after eliminating the pilot mother code is used to construct a curve signal with continuity and differentiability, and the segment curve The signal is added to the tail of the frequency domain signal after the removal of the pilot mother code such that the frequency domain of the mixed channel response signal is kept continuous, and the threshold is the number of user terminals transmitting the pilot signal simultaneously.
  • the constructing ⁇ : segment curve signal, adding the ⁇ : segment curve signal to the tail of the frequency domain signal is: The signal is taken out from the head position and the tail position of the frequency domain signal after the removal of the pilot mother code, and a curve of continuity and differentiability is constructed, and the user constructs a curve of continuous change of the ⁇ ;
  • the tail connection signal is connected to the frequency domain signal after the cancellation of the pilot mother code to obtain a signal after the tail connection processing.
  • the position coordinates in the time domain signal obtained by the first user after IDFT processing are: M + KL
  • the method of constructing the equivalent time domain impulse response signal of each user is: extracting ⁇ signals from the front of the signal, taking N B signals from the back, adding zeros to the signals at other positions, and performing delay Processing, you get:
  • the power and noise thresholds of the non-zero signal in the multi-user processed signal are compared in turn. If the power is greater than the noise threshold, the non-zero signal is retained. Otherwise, the non-zero signal is set to zero.
  • the present invention also provides a channel estimation apparatus in an OFDM system, the apparatus comprising: a pilot processing unit, a tail connection unit, an IDFT unit, a multi-user separation unit, a DFT unit, and a frequency domain truncation unit;
  • a pilot processing unit configured to perform processing for canceling the pilot mother code on the received pilot signal, and send the processed signal to the tail connecting unit
  • a tail connection unit configured to receive a signal sent by the pilot processing unit, perform a tail connection process on the received signal, and send the processed signal to the IDFT unit
  • the IDFT unit is configured to perform IDFT processing on the received signal after receiving the signal sent by the tail connection unit, and send the processed signal to the multi-user separation unit;
  • a multi-user separation unit configured to receive the signal sent by the IDFT unit, separate the received signal from the multi-user, and send the processed signal to the DFT unit;
  • a DFT unit configured to receive a signal sent by the multi-user separation unit, perform DFT processing on the received signal, and send the processed signal to the frequency domain truncating unit;
  • the frequency domain truncating unit is configured to perform frequency domain truncation processing on the received signal after receiving the signal sent by the DFT unit, to obtain a channel estimation signal of each user terminal.
  • the apparatus further includes: a noise cancellation unit, configured to: after receiving the signal sent by the multi-user separation unit, perform noise elimination processing on the received signal, and send the processed signal to the DFT unit;
  • the multi-user separating unit is configured to: after receiving the signal sent by the IDFT unit, perform multi-user processing on the received signal, and send the processed signal to the noise canceling unit; the DFT unit is configured to receive After the signal sent by the noise separation unit, the received signal is subjected to DFT processing, and the processed signal is sent to the frequency domain truncating unit.
  • the apparatus further includes: a configuration unit, configured to use the same pilot mother code and multiply by different phase rotations to obtain pilot signals of the plurality of user terminals.
  • the tail connecting unit is specifically configured to:
  • using the frequency domain signal after eliminating the pilot mother code to construct a curve signal with continuity and differentiability of the K segment, and adding a ⁇ : segment curve signal to the tail of the frequency domain signal after the cancellation of the pilot mother code,
  • the frequency domain of the mixed channel response signal is kept continuous, and the K value is the number of user terminals that simultaneously transmit the pilot signal.
  • the noise cancellation unit further includes: a statistics module, a setting module, And a processing module;
  • a statistics module configured to collect an average power of the residual signal processed by the IDFT unit after being processed by the multi-user separation unit, and send the obtained average power to the setting module;
  • a setting module configured to set a noise threshold after receiving the average power sent by the statistics module; and a processing module, configured to compare a power and a noise threshold of the non-zero signal in the received signal, if the power is greater than the noise The value retains the non-zero signal, otherwise, the non-zero signal is set to zero and the processed signal is sent to the DFT unit.
  • the channel estimation method and apparatus in the OFDM system provided by the present invention sequentially performs the process of canceling the pilot mother code, the tail connection, the IDFT, the separation multi-user, the DFT, and the frequency domain truncation on the received pilot signals, and obtains each
  • the user's channel estimation signal can effectively separate the channel estimation signals of multiple users, suppress the Gibbs phenomenon, and improve the channel estimation quality.
  • FIG. 1 is a schematic flow chart of a method for channel estimation in an OFDM system according to the present invention
  • FIG. 2 is a schematic flowchart of a method for channel estimation according to an embodiment
  • FIG. 3 is a schematic diagram of a signal after the pilot signal cancellation pilot code is processed in the embodiment
  • FIG. 4 is a schematic diagram of a signal after the tail connection processing in the embodiment
  • FIG. 5 is a schematic diagram of signals after IDFT processing in the embodiment
  • FIG. 6 is a schematic diagram of a time domain signal of a first user terminal in an embodiment
  • FIG. 7 is a real channel estimation of an actual user terminal and an ideal channel estimation real part curve
  • FIG. 8 is a schematic structural diagram of an apparatus for channel estimation in an OFDM system according to the present invention. Detailed ways
  • the basic idea of the present invention is to sequentially perform the process of canceling the pilot mother code, the tail link, the IDFT, the split multi-user, the DFT, and the frequency domain truncation on the received pilot signals to obtain a channel estimation signal for each user.
  • the method for channel estimation in the OFDM system of the present invention includes the following steps: Step 101: After receiving the pilot signal, performing a process of canceling the pilot mother code to obtain a first signal;
  • the pilot signal occupies M subcarriers.
  • the signal) (" comprises a product of a pilot signal transmitted by a plurality of user terminals and a corresponding channel transfer function, and a noise signal; a signal; ⁇ ) a mixed channel response including a plurality of users, the mixed channel response containing a noise signal ;
  • the frequency signal is:
  • phase rotation modes specified in the protocol of the OFDM system can also be used, but only the phase rotation method described above can be used to optimize the separation effect of the time domain impulse response signals of a plurality of user terminals.
  • user terminals here are not limited to the number of terminals in the physical sense.
  • a physical terminal transmits pilot signals simultaneously with two antennas.
  • the physical terminal is regarded as two equivalent user terminals; among them, there will be such cases in the future 4G standard.
  • Step 102 Perform a tail connection process on the first signal to obtain a second signal.
  • the received pilot signal is a segment of the signal intercepted from the continuous channel response
  • the two ends of the frequency domain are discontinuous
  • the tail connection processing of the first signal refers to:
  • the frequency domain signal construction segment after the code has a continuous and differentiable curve signal, and adds the segment curve signal to the tail of the first signal, so that the first signal of the second signal is continuous, that is: the mixed channel response
  • the frequency domain of the signal is kept continuous at both ends;
  • Performing a tail connection process on the first signal specifically:
  • the signal is taken out from the head position and the tail position of the frequency domain signal after the removal of the pilot mother code to construct a curve with continuity and differentiability, and the user constructs a curve of continuous change of the ⁇ ;
  • the second signal is represented as /( «), the length is set to M+KL;
  • the curve (/) has continuity and differentiability, but does not guarantee the continuity of the connection signal and Microscopic; specifically, a plurality of design methods can be used to construct the curve (/), and it is only necessary to ensure that the signal sequence of the constructed curve (/) itself is smooth, continuously changing, and without any breakpoints. , ie: the constructed curve (/) has continuity and differentiability;
  • a simple design is to select the curve (/) as a straight line, constructed with a head signal with a position coordinate of ⁇ ) and a tail signal with a position coordinate of +, resulting in a sequence of linearly varying amplitude and phase. You can also choose ( ⁇ ) by some combination of ⁇ ) and + W, or choose any head signal and tail signal to construct ( );
  • connection signal is composed of (/) interleaving, namely:
  • ⁇ ( ⁇ ) [ ⁇ ( ⁇ , ⁇ (1),..., ⁇ ), ⁇ (2), ⁇ (2),..., ⁇ - ⁇ (2),..., signal and convergence
  • the signal constitutes the second signal /( «), then there is
  • f(n) [x(n ⁇ , z(l)] ;
  • Step 103 Perform IDFT processing on the second signal to obtain a third signal.
  • the purpose of performing IDFT processing on the second signal is to obtain a time domain signal, that is, a third signal; if the length of the second signal sequence is an integer power of 2, the IDFT processing performed on the second signal may specifically be inverse fast.
  • An Inverse Fast Fourier Transform (IFFT) process; performing IDFT processing on the second signal means performing an IDFT function operation on the second signal;
  • IFFT Inverse Fast Fourier Transform
  • the time domain signal is:
  • g(n) [g(0),g(l),....,g(M+KL-l)] ;
  • the sequence length of the time domain signal is: M+KL.
  • Step 104 Perform multi-user processing on the third signal to obtain a fourth signal.
  • the fourth signal includes an equivalent time domain impulse response signal of each user, where the sample is extracted from the time domain signal. consist of;
  • Step 105 Perform noise elimination processing on the fourth signal to obtain a fifth signal.
  • the samples taken in step 104 are set to zero, ie: contain (N F + N S +1) zeros, the average power of the remaining signals in the statistics, and the average power is P n ;
  • the methods used in the prior art for statistical noise power are all applicable here;
  • the process of canceling noise on the fourth signal is specifically:
  • the power and noise thresholds of N F + N s + 1 non-zero signals in the sequence of g k (n) are sequentially compared. If the power is greater than the noise threshold, the signal is retained. Otherwise, the signal is set to zero.
  • the above processing is performed on each of ⁇ : to obtain a fifth signal, which is denoted as g k (n), and the fifth signal includes ⁇ : an equivalent time domain impulse response of the user to perform noise elimination processing The resulting signal; the length of the sequence is still
  • step 105 may not be performed.
  • the purpose of this step is to obtain a better channel estimation effect. If this step is not performed, the obtained user signal estimation signal quality is poor.
  • Step 106 Perform DFT processing on the fifth signal to obtain a sixth signal.
  • the purpose of performing DFT processing on the fifth signal is to obtain a frequency domain signal h k (n), that is, a sixth signal; if the length of the five signal sequence is an integer power of 2, DFT processing on the fifth signal Specifically, it may be a Fast Fourier Transform (FFT), and performing DFT processing on the fifth signal refers to performing a DFT function operation on the fifth signal;
  • FFT Fast Fourier Transform
  • the sequence length of the frequency domain signal h is M+KL.
  • Step 107 Perform frequency domain truncation processing on the sixth signal to obtain a channel estimation signal for each user, and end the current processing flow;
  • the length of the frequency domain signal / the tail of the signal is truncated, and only the length of the front surface is M signals, and the channel estimation signal of the first user is obtained;
  • the above processing is performed for each of ⁇ : / each, and the channel estimation signals of the users are obtained.
  • the above scheme is applicable not only to multi-user channel estimation, but also to single-user channel estimation.
  • ⁇ : in the above scheme is 1.
  • the method for channel estimation in this embodiment includes the following steps:
  • Step 201 Obtain a signal by dividing the signal at the received pilot position by the pilot mother code with a sequence length of 60.
  • the signal obtained after performing this step is as shown in Fig. 3; wherein the abscissa indicates the position of each signal, and the ordinate indicates the intensity of each signal.
  • Step 202 Perform a tail connection process on the signal to obtain a signal / ( «);
  • the signal is added to the tail of the signal to obtain the signal / ( «).
  • the sequence length of the signal is 100, where the abscissa indicates the position of each signal and the ordinate indicates the strength of each signal.
  • Step 203 IDFT processing the signal / ( «) to obtain a time domain signal
  • the time domain signal is shown in FIG. 5, and the sequence length of the time domain signal is 100; wherein, the abscissa indicates the position of each signal, and the ordinate indicates the strength of each signal;
  • the time domain signal contains the equivalent time domain impulse response signal of four user terminals.
  • Step 204 Perform multi-user processing on the time domain signal to obtain an equivalent time or response for each user.
  • the signal, 5 signals are taken out from the back, the signals at other positions are set to zero, and the delay processing can be respectively obtained and combined with g. (") construction method, can get the equivalent time domain response of four user terminals
  • Step 205 Perform noise elimination processing on the equivalent time domain response g k (n) of each user terminal, Get the signal
  • the noise threshold is set according to the channel characteristic parameter and the average power; the power and the noise threshold of the 15 non-zero signals in the sequence of ( «) are sequentially compared, and if the power is greater than the noise threshold, the signal is retained, otherwise , set the signal to zero; perform the above processing on each of the four, respectively:
  • the sequence lengths of ("), gi( «), 2 («), and 3 ( «), are
  • signal. that is: the time domain signal of the first user terminal is as shown in Fig. 6, wherein the abscissa indicates the position of each signal, and the ordinate indicates the strength of each signal;
  • Step 206 Perform DFT processing to obtain a frequency domain signal/
  • the sequence length of the frequency domain signal / is 100.
  • Step 207 Perform frequency domain truncation processing on the frequency domain signal/, obtain a channel estimation signal for each user, and end the current processing flow;
  • the 40 signals of the frequency domain signal/tail are removed, and only the first 60 signals are reserved, and the channel estimation signal of the user terminal is obtained;
  • FIG. 7 shows a channel estimation real curve and an ideal channel estimation real curve on 60 subcarriers of the first user terminal,
  • the abscissa indicates the position of each signal, the ordinate indicates the intensity of each signal
  • curve 1 indicates the ideal channel estimation real curve
  • curve 2 indicates the channel estimation real curve obtained by the method of the present invention, which can be seen from the figure Out, the degree of coincidence between curve 2 and curve 1 is very large, indicating that the channel estimation of each user terminal can be well obtained by the method of the present invention.
  • the present invention further provides a channel estimation apparatus in an OFDM system.
  • the apparatus includes: a pilot processing unit 81, a tail connection unit 82, an IDFT unit 83, and a multi-user separation unit 84, as shown in FIG.
  • the tail connection unit 82 is configured to receive the signal sent by the pilot processing unit 81, perform the tail connection processing on the received signal, and send the processed signal to the IDFT unit 83;
  • the IDFT unit 83 is configured to receive the signal sent by the tail connection unit 82, perform IDFT processing on the received signal, and send the processed signal to the multi-user separation unit 84;
  • the multi-user separation unit 84 is configured to receive the signal sent by the IDFT unit 83, separate the received signal from the multi-user, and send the processed signal to the DFT unit 85;
  • the DFT unit 85 is configured to receive the signal sent by the multi-user separating unit 84, perform DFT processing on the received signal, and send the processed signal to the frequency domain truncating unit 86;
  • the frequency domain truncating unit 86 is configured to perform frequency domain truncation processing on the received signal after receiving the signal sent by the DFT unit 85, to obtain a channel estimation signal of each user terminal.
  • the device may further include:
  • the noise canceling unit 87 is configured to receive the signal sent by the multi-user separating unit 84, perform noise elimination processing on the received signal, and send the processed signal to the DFT unit 85;
  • the multi-user separation unit 84 is further configured to send the processed signal to the noise cancellation unit.
  • the DFT unit 85 is configured to perform DFT processing on the received signal after receiving the signal sent by the noise separating unit 87, and send the processed signal to the frequency domain truncating unit 86.
  • the apparatus may further include: a configuration unit, configured to use the same pilot mother code and multiply by different phase rotations to obtain a pilot signal of each user terminal.
  • the noise cancellation unit 87 may further include: a statistics module, a setting module, and And processing module; wherein
  • the statistic module is configured to collect the average power of the residual signal processed by the IDFT unit 83 after being processed by the multi-user separating unit 84, and send the obtained average power to the setting module; and the setting module is configured to receive the statistic module and send the After the average power, the noise threshold is set; the processing module is configured to compare the power and the noise threshold of the non-zero signal in the received signal, and if the power is greater than the noise threshold, the signal is retained; otherwise, the signal is Set to zero and send the processed signal to DFT unit 85.
  • the tail connecting unit 82 is specifically configured to:
  • using the frequency domain signal after eliminating the pilot mother code to construct a curve signal with continuity and differentiability of the K segment, and adding a ⁇ : segment curve signal to the tail of the frequency domain signal after the cancellation of the pilot mother code,
  • the frequency domain of the mixed channel response signal is kept continuous, and the K value is the number of user terminals that simultaneously transmit the pilot signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Noise Elimination (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

本发明公开了一种正交频分复用(OFDM)系统中信道估计方法,包括:对接收到的导频信号依次进行消除导频母码、尾部衔接、逆离散傅立叶变换(IDFT)、分离多用户、离散傅立叶变换(DFT)、以及频域截尾的处理,得到每个用户的信道估计信号。本发明同时公开了一种OFDM系统中信道估计装置,采用本发明的方法及装置,如此,能有效地分离出多个用户的信道估计信号,并能提高信道估计质量。

Description

一种正交频分复用系统中信道估计方法及装置 技术领域
本发明涉及正交频分复用 ( OFDM , Orthogonal Frequency Division Multiplexing )技术, 特别是指一种 OFDM系统中信道估计方法及装置。 背景技术
在 OFDM系统中, 可用的频带被划分为多个小频带,也可称为子载波, 数据符号被调制到这些子载波上进行发射。 为了使接收机能够准确地解调 数据, 必须在某些子载波上放置已知的导频信号, 接收机对导频信号进行 相应的处理, 得到导频位置处的信道估计, 并通过插值等手段得到其它位 置处的信道估计。
用户接收到导频信号后, 通常的处理程序是: 先变换到时域做降噪处 理, 然后再变回到频域, 最终得到导频信号处的信道估计。 在处理过程中, 由于接收到的导频信号是从连续的信道响应中截取的一段信号, 频域的两 端是不连续的,因此, #丈离散傅立叶变换(DFT, Discrete Fourier Transform ) /逆离散傅立叶变换(IDFT, Inverse Discrete Fourier Transform )处理时, 会 导致 Gibbs现象的发生, 进而使信道估计的效果变差。 所述 Gibbs现象是指 最后得到的频域信道估计两端出现抖动波紋。
申请号为 200780039909.6的中国专利, 公开了一种信道估计器, 分别 在导频信号的前部和后部添加扩展信号后, 再进行 IDFT与 DFT处理, 如 此, 在一定程度上抑制了 Gibbs现象, 改善了信道估计效果。
但是, 上述专利只适用于对单用户发射的导频信号进行处理, 当多个 用户同时发射导频信号时, 釆用上述专利公开的技术方案则不能用于处理 多个用户的信道估计。 发明内容
有鉴于此, 本发明的主要目的在于提供一种 OFDM系统中信道估计方 法及装置, 能提高信道估计质量, 并适用于多用户的信道估计。
为达到上述目的, 本发明的技术方案是这样实现的:
本发明提供了一种 OFDM系统中信道估计方法, 该方法包括: 对接收到的导频信号依次进行消除导频母码、 尾部衔接、 IDFT、 分离 多用户、 DFT、 以及频域截尾的处理, 得到每个用户的信道估计信号。
上述方案中, 在进行 DFT处理之前, 该方法进一步包括:
对分离多用户处理后得到的时域信号进行消除噪声的处理, 得到进行 DFT处理所需的信号。
上述方案中, 在接收到导频信号之前, 该方法进一步包括:
OFDM系统对每个用户终端发射的导频信号进行约束;
所述进行约束, 为:
釆用相同的导频母码, 分别乘以不同的相位旋转, 得到每个用户终端 的导频信号。
上述方案中, 所述相位旋转, 为:
若有 ^:个用户终端同时发射导频信号, 个用户终端的相位旋转分别 为 2π—η, k = Q,...,K _ l。
K
上述方案中, 所述对接收到的导频信号进行尾部衔接处理, 为: 釆用消除导频母码后的频域信号构造 Κ段具有连续性和可微性的曲线 信号, 并将 段曲线信号添加到消除导频母码后的频域信号的尾部, 使得 混合信道响应信号的频域两端保持连续, 所述 Κ值为同时发射导频信号的 用户终端数。
上述方案中, 所述构造^:段曲线信号、 将^:段曲线信号添加到频域信 号的尾部, 为: 从消除导频母码处理后的频域信号的头部位置和尾部位置各自取出信 号, 构造出一段连续性和可微性的曲线, 个用户则分别构造出 ^:段连续 变化的曲线;
将^:段曲线的信号交错放置, 合并成所需的尾部衔接信号;
将所述尾部衔接信号衔接在所述消除导频母码后的频域信号的后面, 得到尾部衔接处理后的信号。
上述方案中, 所述进行分离多用户的处理, 为:
令第 个用户在 IDFT处理后得到的时域信号 中的位置坐标为: M + KL
pk = k ,k = 0,1,...,Λ -1,
Κ
当 ≠ 0时, 构造每个用户的等效时域冲击响应信号 的方法为: 从信号 的前面取出 ^个信号, 从后面取出 NB个信号, 其它位置 的信号均添零, 并进行时延处理, 则得到:
8k(n) = ig(pk),8(pk +l),...,g(pk +NB),0, ,...,0,g(pk - NF),..., g(pk—1)]; 当 fc = 0时, 构造 g0(«)的方法为:
Figure imgf000005_0001
1)]。 上述方案中, 所述进行消除噪声的处理, 为:
设置噪声阔值;
依次比较分离多用户处理后的信号中非零信号的功率与噪声阔值的大 小, 如果功率大于噪声阔值, 则保留所述非零信号, 否则, 将所述非零信 号设置为零。
本发明还提供了一种 OFDM系统中信道估计装置, 该装置包括: 导频 处理单元、 尾部衔接单元、 IDFT单元、 多用户分离单元、 DFT单元、 以及 频域截尾单元; 其中,
导频处理单元, 用于对接收到的导频信号进行消除导频母码的处理, 并将处理后的信号发送给尾部衔接单元; 尾部衔接单元, 用于收到导频处理单元发送的信号后, 对收到的信号 进行尾部衔接的处理, 并将处理后的信号发送给 IDFT单元;
IDFT单元, 用于收到尾部衔接单元发送的信号后, 对收到的信号进行 IDFT的处理, 并将处理后的信号发送给多用户分离单元;
多用户分离单元, 用于收到 IDFT单元发送的信号后, 对收到的信号进 行分离多用户的处理, 并将处理后的信号发送给 DFT单元;
DFT单元, 用于收到多用户分离单元发送的信号后, 对收到的信号进 行 DFT的处理, 并将处理后的信号发送给频域截尾单元;
频域截尾单元, 用于收到 DFT单元发送的信号后, 对收到的信号进行 频域截尾的处理, 得到每个用户终端的信道估计信号。
上述方案中, 该装置进一步包括: 噪声消除单元, 用于接收到多用户 分离单元发送的信号后, 对接收到的信号进行消除噪声的处理, 并将处理 后的信号发送给 DFT单元;
所述多用户分离单元, 用于接收到 IDFT单元发送的信号后, 对收到的 信号进行分离多用户的处理, 并将处理后的信号发送给噪声消除单元; 所述 DFT单元, 用于收到噪声分离单元发送的信号后, 对收到的信号 进行 DFT的处理, 并将处理后的信号发送给频域截尾单元。
上述方案中, 该装置进一步包括: 配置单元, 用于釆用相同的导频母 码, 分别乘以不同的相位旋转, 得到多个用户终端的导频信号。
上述方案中, 所述尾部衔接单元, 具体用于:
釆用消除导频母码后的频域信号构造 K段具有连续性和可微性的曲线 信号, 并将^:段曲线信号添加到所述消除导频母码后的频域信号的尾部, 使得混合信道响应信号的频域两端保持连续, 所述 K值为同时发射导频信 号的用户终端数。
上述方案中, 所述噪声消除单元进一步包括: 统计模块、 设置模块、 以及处理模块; 其中,
统计模块,用于统计 IDFT单元处理后的信号经多用户分离单元处理后 的剩余信号的平均功率, 并将得到的平均功率发送给设置模块;
设置模块, 用于在收到统计模块发送的平均功率后, 设置噪声阔值; 处理模块, 用于比较接收到的信号中的非零信号的功率与噪声阔值的 大小, 如果功率大于噪声阔值, 则保留所述非零信号, 否则, 将所述非零 信号设置为零, 并将处理后的信号发送给 DFT单元。
本发明提供的 OFDM系统中信道估计方法及装置, 对接收到的导频信 号依次进行消除导频母码、 尾部衔接、 IDFT、 分离多用户、 DFT、 以及频 域截尾的处理, 得到每个用户的信道估计信号, 如此, 能有效地分离出多 个用户的信道估计信号, 抑制了 Gibbs现象, 并能提高信道估计质量; 另外,规定 ^:个用户终端的相位旋转分别为 2 τ丄 fc = 0,..., - l , 则第
K 个用户的导频信号为: rk (ji、 = riji · 】2π η、, n = 0,...,M ~ k = 0,..., Κ - 1 , 如 κ
此, 能使多个用户终端的时域冲击响应信号的分离效果最佳。 附图说明
图 1为本发明 OFDM系统中信道估计的方法流程示意图;
图 2为实施例的信道估计的方法流程示意图;
图 3为实施例中导频信号消除导频母码处理后的信号示意图; 图 4为实施例中尾部衔接处理后的信号示意图;
图 5为实施例中 IDFT处理后的信号示意图;
图 6为实施例中第一个用户终端的时域信号示意图;
图 7为第一个用户终端实际的信道估计与理想的信道估计实部曲线; 图 8为本发明 OFDM系统中信道估计的装置结构示意图。 具体实施方式
本发明的基本思想是: 对接收到的导频信号依次进行消除导频母码、 尾部衔接、 IDFT、 分离多用户、 DFT、 以及频域截尾的处理, 得到每个用 户的信道估计信号。
下面结合附图及具体实施例对本发明再作进一步详细的说明。
本发明 OFDM系统中信道估计的方法, 如图 1所示, 包括以下步骤: 步骤 101 : 接收到导频信号后, 进行消除导频母码的处理, 得到第一信 号;
这里, 4艮设导频信号占用了 M个子载波, 相应的, 导频母码的序列长 度为 M, 设导频母码为 r(«), n = 0,...., -l , 即: 包含 M个信号的一个序 列;
4叚设接收到的导频位置上的信号为 } («),则所述进行消除导频母码的处 理, 具体为: 将接收到的导频位置上的信号除以导频母码 r(«), 将得到的第 一信号表示为 则有:
x(n) = y(n) I r(n)
其中,信号)(《)包含多个用户终端发射的导频信号与对应的信道传递函 数的乘积、 以及噪声信号; 信号; ζ)包含多个用户的混合信道响应, 该混合 信道响应含有噪声信号;
OFDM系统对每个用户终端发射的导频信号进行约束, 具体为: 釆用一个相同的导频母码 r(«), 分别乘以不同的相位旋转,得到每个用 户终端的导频信号; 具体地, 假设有 ^:个用户终端同时发射导频信号, 规 定^:个用户终端的相位旋转分别为 2 τ丄 fc = 0,..., -l , 则第 个用户的导
K
频信号为:
rk (n) = r(/ ) - exp(;2^― n), n = Ο,.,.,Μ— = Ο,.,.,Π; 其中, OFDM 系统对每个用户终端发射的导频信号进行约束所釆用的 系统在对每个用户终端发射的导频信号进行约束处理完成后, 会通知接收 端所釆用的导频母码;
需要说明的是: OFDM 系统的协议中规定的其它相位旋转方式也可以 使用, 但只有釆用上述的相位旋转方法, 才能使多个用户终端的时域冲击 响应信号的分离效果最佳。 另外, 这里的 ^:个用户终端, 并不局限于物理 意义上的终端个数。 比如: 某个物理终端用 2个天线同时发射导频信号, 该物理终端被视为 2个等效的用户终端; 其中, 将来的 4G标准会有这类情 况出现。
步骤 102: 对第一信号进行尾部衔接处理, 得到第二信号;
这里, 由于接收到的导频信号是从连续的信道响应中截取的一段信号, 因此, 频域的两端是不连续的, 对第一信号进行尾部衔接处理是指: 釆用 消除导频母码后的频域信号构造 段具有连续性和可微性的曲线信号, 并 将 段曲线信号添加到第一信号的尾部, 从而使得到的第二信号的首尾信 号连续, 即: 使混合信道响应信号的频域两端保持连续;
所述对第一信号进行尾部衔接处理, 具体为:
从消除导频母码处理后的频域信号的头部位置和尾部位置各自取出信 号, 构造出一段具有连续性和可微性的曲线, 个用户则分别构造出 ^:段 连续变化的曲线;
将^:段曲线的信号交错放置, 合并成所需的尾部衔接信号;
将所述尾部衔接信号衔接在所述消除导频母码后的频域信号的后面, 得到尾部衔接处理后的信号;
具体地, 将第二信号表示为 /(«), 设置长度为 M+KL; 将衔接信号表示 为 z(/),长度为 ; 其中, 由^段曲线 (/)交错构成, =0,1,..., 1 , 每 段曲线的长度为 L, L值的大小要依据 DFT/IDFT函数的可实施原则进行设 置, 即: 长度为 的信号序列容易用 DFT/IDFT实现;
在构造曲线 (/)时, 需要在 ζ)的头部位置与尾部位置选择某些信号来 构造, 并要求: 曲线 (/)具有连续性和可微性, 但不保证衔接信号 具有 连续性和可微性; 具体地, 可以釆用多种设计方法来构造曲线 (/), 只需要 保证构造出的曲线 (/)的信号序列本身是光滑的、连续变化的、无任何断点 存在即可, 即: 构造出的曲线 (/)具有连续性和可微性;
一种简单的设计是选择曲线 (/)为一段直线, 利用一个位置坐标为 ^) 的头部信号和一个位置坐标为 + 的尾部信号来构造,从而产生一个 幅度和相位都是线性变化的序列;还可以选择;^)和 + W的某种组合 方法来构造 (/), 或者, 选择任意的头部信号和尾部信号来构造 ( );
(/)构造完成后, 釆用 (/)来构造衔接信号 ζ(/), 具体地, 衔接信号 由 (/)交错构成, 即:
ζ(ί) = [ζο(Ό, ζι(1),..., ΖκΜ), Ζο(2), ζι(2),..., ζκ-ι(2),..., 信号 与衔接信号 构成第二信号 /(«), 则有
f(n) =[x(n},z(l)] ;
步骤 103: 对第二信号进行 IDFT处理, 得到第三信号;
这里,对第二信号 进行 IDFT处理的目的是为了得到时域信号 即: 第三信号; 如果第二信号序列的长度为 2 的整数幂时, 对第二信号进 行的 IDFT处理具体可以为逆快速傅立叶变换(IFFT, Inverse Fast Fourier Transform)处理; 所述第二信号 进行 IDFT处理是指对第二信号 进 行 IDFT函数运算;
时域信号 为:
g(n) = [g(0),g(l),....,g(M+KL-l)] ; 时域信号 的序列长度为: M+KL。
步骤 104: 对第三信号进行分离多用户的处理, 得到第四信号; 这里, 所述第四信号包括每个用户的等效时域冲击响应信号 其 中, 是从时域信号 中提取出来的样本组成的;
令某个用户在 中的位置坐标为:
M + KL
pk = k ,k = 0,1,...,Λ -1,
Κ
当 ≠0时, 构造 的方法为:
从信号 的前面取出 ^个信号, 从后面取出 NB个信号, 其它位置 的信号都添零, 并进行时延处理, 则得到:
8k(n) = ig(pk),8(pk +l),...,g(pk+NB),0, ,...,0,g(pk - NF),..., g(pk—1)]; 其中, 的序列长度为 头部信号的序列长度为 NB+1, 尾部 信号的序列长度为 NF; 其中, 依据信道特性参数, 预先设置信道时域冲击 响应信号的长度, ^与 ^的取值要使得构造出的 («)中非零信号的长度大 于预设的信道时域冲击响应信号的长度;
当 fc = 0时, g0(«)的构造方法为:
Figure imgf000011_0001
1)]。 步骤 105: 对第四信号进行消除噪声的处理, 得到第五信号; 这里, 在对第四信号进行消除噪声的处理前, 需要对时域信号 进 行噪声功率估计的处理, 具体地, 将时域信号 在步骤 104中取出来的 样本都设置为零, 即: 包含 (NF + NS+1)个零, 统计 中剩下的信号的平 均功率, 设平均功率为 Pn; 除此之外, 现有技术中用于统计噪声功率的方 法在这里全都适用;
所述对第四信号进行消除噪声的处理, 具体为:
设置噪声阔值;
具体地, 将平均功率 的某个倍数的值设置为噪声阔值; 在实际应用 过程中, 可以取不同的倍数, 进行仿真实验, 选择仿真得到的信道估计信 号与理想的信道估计信号吻合最好的倍数为设置噪声阔值的依据;
依次比较 gk(n)的序列中 NF + Ns + 1个非零信号的功率与噪声阔值的大 小, 如果功率大于噪声阔值, 则保留该信号, 否则, 将该信号设置为零; 对^:个 分别都进行上述处理, 从而得到第五信号, 将第五信号表示为 gk (n) , 第五信号包括^:个用户的等效时域冲击响应进行消除噪声的处理后 得到的信号; 序列的长度仍为
实际上, 步骤 105可以不执行, 本步骤执行的目的是为了得到更好的 信道估计效果, 如果不执行本步骤, 则得到的用户信号估计信号质量较差。
步骤 106: 对第五信号进行 DFT处理, 得到第六信号;
这里, 对第五信号 进行 DFT 处理的目的是为了得到频域信号 hk (n) , 即: 第六信号; 如果五信号 序列的长度为 2的整数幂时, 对第 五信号进行的 DFT 处理具体可以为快速傅立叶变换 ( FFT, Fast Fourier Transform ), 所述对第五信号进行 DFT处理是指对第五信号进行 DFT函数 运算;
频域信号 h»的序列长度为 M+KL。
步骤 107: 对第六信号进行频域截尾的处理,得到每个用户的信道估计 信号, 结束当前处理流程;
具体地,将频域信号/ 中尾部的长度为 个信号都截掉, 只保留前 面的长度为 M个信号, 得到第 个用户的信道估计信号;
对^:个/ 分别都进行上述处理, 得到 个用户的信道估计信号。 上述方案不仅适用于多用户的信道估计, 还适用于单用户的信道估计, 此时, 上述方案中的 ^:为 1。
下面结合实施例对本发明的方案再作进一步的描述。
本实施例的应用场景是: 导频母码的序列长度: M=60, 有四个用户终 端发射导频信号, 则这四个用户终端各自的相位旋转分别是: , n = 0, ..., 59 , = 0, 1, 2, 3。
本实施例信道估计的方法, 如图 2所示, 包括以下步骤:
步骤 201 : 对接收到的导频位置上的信号, 除以序列长度为 60的导频 母码, 得到信号
执行本步骤后得到的信号 ζ) , 如图 3所示; 其中,横坐标表示各信号 的位置, 纵坐标表示各信号的强度。
步骤 202: 对信号 进行尾部衔接处理, 得到信号/ («);
这里, 依据 IDFT函数方便实施的规则, 选择 L=10, 并构造 (/)为四 段直线, 之后由四段直线的信号交错构造成尾部衔接信号 z(/), 并将构造好 的尾部衔接信号 添加到信号 的尾部, 得到信号/ («), 如图 4所示, 信号 的序列长度为 100 , 其中, 横坐标表示各信号的位置, 纵坐标表示 各信号的强度。
步骤 203: 对信号/ («) 进行 IDFT处理, 得到时域信号
这里, 时域信号 见图 5所示, 时域信号 的序列长度为 100; 其 中, 横坐标表示各信号的位置, 纵坐标表示各信号的强度;
时域信号 包含四个用户终端的等效时域冲击响应信号。
步骤 204: 对时域信号 进行分离多用户的处理, 得到每个用户的等 效时 i或响应
这里, 四个用户终端在 中的位置坐标分别为: 0、 25、 50、 75; 选 择 NF= NB=5 , 令/ ¾分别等于 25、 50、 以及 75 , 从信号 的前面取出 9个信号, 从后面取出 5个信号, 其它位置的信号均设置为零, 并进行延时 处理, 可以分别得到 以及 并结合 g。(《)的构造方法, 可 以得到四个用户终端的等效时域响应
步骤 205:对每个用户终端的等效时域响应 gk(n)进行消除噪声的处理, 得到信号
具体地, 依据信道特性参数和平均功率 设置噪声阔值; 依次比较 («)的序列中 15个非零信号的功率与噪声阔值的大小, 如果功率大于噪声 阔值, 则保留该信号, 否则, 将该信号设置为零; 对四个 分别都进行 上述处理, 分别得到: 。(《)、 gi(«), 2(«)、 以及 3(«), 的序列长度为
100, 其中,信号 。(《), 即: 第一个用户终端的时域信号如图 6所示, 其中, 横坐标表示各信号的位置, 纵坐标表示各信号的强度;
在设置噪声阔值之前, 需要对时域信号 进行噪声功率估计的处理, 得到平均功率;
具体地, 在执行步骤 204时, 已从时域信号 取出了 K(NF + NB + l) , 即 4x(9+l+5)=60个样本, 因此, 还剩下 40个样本, 计算这 40个样本的平 均功率 Pn
步骤 206: 对 进行 DFT处理, 得到频域信号/
这里, 频域信号/ 的序列长度为 100。
步骤 207: 对频域信号/ 进行频域截尾的处理,得到每个用户的信道 估计信号, 结束当前处理流程;
具体地, 去除频域信号/ 尾部的 40个信号, 只保留前面的 60个信 号, 得到该用户终端的信道估计信号;
对四个/ ^^分别都进行上述处理, 得到四个用户的信道估计信号; 图 7示出第一个用户终端的 60个子载波上的信道估计实部曲线与理想 的信道估计实部曲线, 其中, 横坐标表示各信号的位置, 纵坐标表示各信 号的强度; 曲线 1表示理想的信道估计实部曲线, 曲线 2表示釆用本发明 方法得到的信道估计实部曲线, 从图中可以看出, 曲线 2与曲线 1的吻合 程度非常大, 说明釆用本发明的方法, 可以很好的得到每个用户终端的信 道估计。 为实现上述方法, 本发明还提供了一种 OFDM系统中信道估计装置, 该装置如图 8所示, 包括: 导频处理单元 81、 尾部衔接单元 82、 IDFT单 元 83、 多用户分离单元 84、 DFT单元 85、 以及频域截尾单元 86; 其中, 导频处理单元 81 ,用于对接收到的导频信号进行消除导频母码的处理, 并将处理后的信号发送给尾部衔接单元 82;
尾部衔接单元 82, 用于收到导频处理单元 81发送的信号后,对收到的 信号进行尾部衔接的处理, 并将处理后的信号发送给 IDFT单元 83;
IDFT单元 83 , 用于收到尾部衔接单元 82发送的信号后, 对收到的信 号进行 IDFT的处理, 并将处理后的信号发送给多用户分离单元 84;
多用户分离单元 84, 用于收到 IDFT单元 83发送的信号后, 对收到的 信号进行分离多用户的处理, 并将处理后的信号发送给 DFT单元 85;
DFT单元 85 ,用于收到多用户分离单元 84发送的信号后,对收到的信 号进行 DFT的处理, 并将处理后的信号发送给频域截尾单元 86;
频域截尾单元 86, 用于收到 DFT单元 85发送的信号后, 对收到的信 号进行频域截尾的处理, 得到每个用户终端的信道估计信号。
其中, 所述装置还可以进一步包括:
噪声消除单元 87, 用于收到多用户分离单元 84发送的信号后,对收到 的信号进行消除噪声的处理, 并将处理后的信号发送给 DFT单元 85;
所述多用户分离单元 84, 还用于将处理后的信号发送给噪声消除单元
87;
所述 DFT单元 85 , 用于收到噪声分离单元 87发送的信号后, 对收到 的信号进行 DFT的处理, 并将处理后的信号发送给频域截尾单元 86。
所述装置还可以进一步包括: 配置单元, 用于釆用相同的导频母码, 分别乘以不同的相位旋转, 得到每个用户终端的导频信号。
所述噪声消除单元 87, 还可以进一步包括: 统计模块、 设置模块、 以 及处理模块; 其中,
统计模块, 用于统计 IDFT单元 83处理后的信号经多用户分离单元 84 处理后的剩余信号的平均功率, 并将得到的平均功率发送给设置模块; 设置模块, 用于收到统计模块发送的平均功率后, 设置噪声阔值; 处理模块, 用于比较接收到的信号中的非零信号的功率与噪声阔值的 大小, 如果功率大于噪声阔值, 则保留该信号, 否则, 将该信号设置为零, 并将处理后的信号发送给 DFT单元 85。
所述尾部衔接单元 82, 具体用于:
釆用消除导频母码后的频域信号构造 K段具有连续性和可微性的曲线 信号, 并将^:段曲线信号添加到所述消除导频母码后的频域信号的尾部, 使得混合信道响应信号的频域两端保持连续, 所述 K值为同时发射导频信 号的用户终端数。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进 等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种正交频分复用 (OFDM ) 系统中信道估计方法, 其特征在于, 该方法包括:
对接收到的导频信号依次进行消除导频母码、 尾部衔接、 逆离散傅立 叶变换(IDFT )、 分离多用户、 离散傅立叶变换(DFT )、 以及频域截尾的 处理, 得到每个用户的信道估计信号。
2、 根据权利要求 1所述的方法, 其特征在于, 在进行 DFT处理之前, 该方法进一步包括:
对分离多用户处理后得到的时域信号进行消除噪声的处理, 得到进行 DFT处理所需的信号。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 在接收到导频信号 之前, 该方法进一步包括:
OFDM系统对每个用户终端发射的导频信号进行约束;
所述进行约束, 为:
釆用相同的导频母码, 分别乘以不同的相位旋转, 得到每个用户终端 的导频信号。
4、 根据权利要求 3所述的方法, 其特征在于, 所述相位旋转, 为: 若有 ^:个用户终端同时发射导频信号, 个用户终端的相位旋转分别 为 2π—η, k = Q,..., K _ l。
K
5、 根据权利要求 1或 2所述的方法, 其特征在于, 所述对接收到的导 频信号进行尾部衔接处理, 为:
釆用消除导频母码后的频域信号构造 Κ段具有连续性和可微性的曲线 信号, 并将 段曲线信号添加到消除导频母码后的频域信号的尾部, 使得 混合信道响应信号的频域两端保持连续, 所述 Κ值为同时发射导频信号的 用户终端数。
6、根据权利要求 5所述的方法,其特征在于,所述构造^:段曲线信号、 将^:段曲线信号添加到频域信号的尾部, 为:
从消除导频母码处理后的频域信号的头部位置和尾部位置各自取出信 号, 构造出一段连续性和可微性的曲线, 个用户则分别构造出 ^:段连续 变化的曲线;
将^:段曲线的信号交错放置, 合并成所需的尾部衔接信号;
将所述尾部衔接信号衔接在所述消除导频母码后的频域信号的后面, 得到尾部衔接处理后的信号。
7、 根据权利要求 1或 2所述的方法, 其特征在于, 所述进行分离多用 户的处理, 为:
令第 个用户在 IDFT处理后得到的时域信号 中的位置坐标为: M + KL
pk = k ,k = 0,1,...,Λ -1,
Κ
当 ≠ 0时, 构造每个用户的等效时域冲击响应信号 的方法为: 从信号 的前面取出 ^个信号, 从后面取出 NB个信号, 其它位置 的信号均添零, 并进行时延处理, 则得到:
8k(n) = ig(pk),8(pk +l),...,g(pk +NB),0, ,...,0,g(pk - NF),..., g(pk—1)];
当 fc = 0时, 构造 g0(«)的方法为:
Figure imgf000018_0001
1)]。
8、 根据权利要求 2所述的方法, 其特征在于, 所述进行消除噪声的处 理, 为:
设置噪声阔值;
依次比较分离多用户处理后的信号中非零信号的功率与噪声阔值的大 小, 如果功率大于噪声阔值, 则保留所述非零信号, 否则, 将所述非零信 号设置为零。
9、 一种 OFDM系统中信道估计装置, 其特征在于, 该装置包括: 导频 处理单元、 尾部衔接单元、 IDFT单元、 多用户分离单元、 DFT单元、 以及 频域截尾单元; 其中,
导频处理单元, 用于对接收到的导频信号进行消除导频母码的处理, 并将处理后的信号发送给尾部衔接单元;
尾部衔接单元, 用于收到导频处理单元发送的信号后, 对收到的信号 进行尾部衔接的处理, 并将处理后的信号发送给 IDFT单元;
IDFT单元, 用于收到尾部衔接单元发送的信号后, 对收到的信号进行 IDFT的处理, 并将处理后的信号发送给多用户分离单元;
多用户分离单元, 用于收到 IDFT单元发送的信号后, 对收到的信号进 行分离多用户的处理, 并将处理后的信号发送给 DFT单元;
DFT单元, 用于收到多用户分离单元发送的信号后, 对收到的信号进 行 DFT的处理, 并将处理后的信号发送给频域截尾单元;
频域截尾单元, 用于收到 DFT单元发送的信号后, 对收到的信号进行 频域截尾的处理, 得到每个用户终端的信道估计信号。
10、 根据权利要求 9所述的装置, 其特征在于, 该装置进一步包括: 噪声消除单元, 用于收到多用户分离单元发送的信号后, 对收到的信号进 行消除噪声的处理, 并将处理后的信号发送给 DFT单元;
所述多用户分离单元, 用于收到 IDFT单元发送的信号后, 对收到的信 号进行分离多用户的处理, 并将处理后的信号发送给噪声消除单元;
所述 DFT单元, 用于收到噪声分离单元发送的信号后, 对收到的信号 进行 DFT的处理, 并将处理后的信号发送给频域截尾单元。
11、 根据权利要求 9或 10所述的装置, 其特征在于, 该装置进一步包 括: 配置单元, 用于釆用相同的导频母码, 分别乘以不同的相位旋转, 得 到多个用户终端的导频信号。
12、 根据权利要求 9或 10所述的装置, 其特征在于, 所述尾部衔接单 元, 具体用于:
釆用消除导频母码后的频域信号构造 K段具有连续性和可微性的曲线 信号, 并将^:段曲线信号添加到所述消除导频母码后的频域信号的尾部, 使得混合信道响应信号的频域两端保持连续, 所述 K值为同时发射导频信 号的用户终端数。
13、 根据权利要求 10所述的装置, 其特征在于, 所述噪声消除单元进 一步包括: 统计模块、 设置模块、 以及处理模块; 其中,
统计模块,用于统计 IDFT单元处理后的信号经多用户分离单元处理后 的剩余信号的平均功率, 并将得到的平均功率发送给设置模块;
设置模块, 用于收到统计模块发送的平均功率后, 设置噪声阔值; 处理模块, 用于比较接收到的信号中的非零信号的功率与噪声阔值的 大小, 如果功率大于噪声阔值, 则保留所述非零信号, 否则, 将所述非零 信号设置为零, 并将处理后的信号发送给 DFT单元。
PCT/CN2011/075665 2010-06-18 2011-06-13 一种正交频分复用系统中信道估计方法及装置 WO2011157210A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010211261.X 2010-06-18
CN201010211261.XA CN102291340B (zh) 2010-06-18 2010-06-18 一种正交频分复用系统中信道估计方法及装置

Publications (1)

Publication Number Publication Date
WO2011157210A1 true WO2011157210A1 (zh) 2011-12-22

Family

ID=45337457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075665 WO2011157210A1 (zh) 2010-06-18 2011-06-13 一种正交频分复用系统中信道估计方法及装置

Country Status (2)

Country Link
CN (1) CN102291340B (zh)
WO (1) WO2011157210A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8787225B2 (en) * 2012-07-11 2014-07-22 Blackberry Limited Phase-rotated reference signals for multiple antennas
CN103856419B (zh) * 2012-12-05 2017-06-06 上海贝尔股份有限公司 对至eNB的上行信道进行信道估计的方法与设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1567762A (zh) * 2003-06-10 2005-01-19 北京邮电大学 一种适用于正交频分多址系统的信道估计方法
WO2005081481A1 (en) * 2004-02-19 2005-09-01 Ntt Docomo, Inc. Channel estimator and method for estimating a channel transfer function and apparatus and method for providing pilot sequences
CN101179540A (zh) * 2006-11-07 2008-05-14 中兴通讯股份有限公司 上行多用户码域导频信道估计系统
CN101179538A (zh) * 2006-11-07 2008-05-14 中兴通讯股份有限公司 接收码域正交的导频信号的接收机及其接收方法
CN101529769A (zh) * 2006-10-31 2009-09-09 飞思卡尔半导体公司 用于减少边缘效应的系统和方法
CN101616104A (zh) * 2009-07-27 2009-12-30 北京天碁科技有限公司 正交频分复用系统的信道估计方法和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101686213B (zh) * 2008-09-24 2013-01-23 中兴通讯股份有限公司 一种频域信道估计方法和系统
CN101557378B (zh) * 2009-05-18 2011-12-28 普天信息技术研究院有限公司 Ofdm系统中导频发送、信道估计和噪声功率估计方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1567762A (zh) * 2003-06-10 2005-01-19 北京邮电大学 一种适用于正交频分多址系统的信道估计方法
WO2005081481A1 (en) * 2004-02-19 2005-09-01 Ntt Docomo, Inc. Channel estimator and method for estimating a channel transfer function and apparatus and method for providing pilot sequences
CN101529769A (zh) * 2006-10-31 2009-09-09 飞思卡尔半导体公司 用于减少边缘效应的系统和方法
CN101179540A (zh) * 2006-11-07 2008-05-14 中兴通讯股份有限公司 上行多用户码域导频信道估计系统
CN101179538A (zh) * 2006-11-07 2008-05-14 中兴通讯股份有限公司 接收码域正交的导频信号的接收机及其接收方法
CN101616104A (zh) * 2009-07-27 2009-12-30 北京天碁科技有限公司 正交频分复用系统的信道估计方法和装置

Also Published As

Publication number Publication date
CN102291340B (zh) 2015-10-21
CN102291340A (zh) 2011-12-21

Similar Documents

Publication Publication Date Title
EP1861972B1 (en) Channel estimation optimization
CN107306238B (zh) 载波调制信号的接收、发送方法及相应接收机与发射机
TW200906091A (en) A symbol time synchronization method for OFDM systems
Ma et al. EM-based channel estimation algorithms for OFDM
US8660200B2 (en) Dual-pass joint channel estimation and data demodulation for OFDM systems
CN101364831B (zh) 信道估计的方法
JP5347203B2 (ja) マルチパスチャネルの遅延スプレッドを推定する方法及び装置
WO2015143621A1 (zh) 导频序列的插入、提取方法和设备
CN101119350A (zh) 正交频分复用系统、快速同步的方法和发送端设备
WO2010054557A1 (zh) 一种数据子载波上的信道估计方法及系统
WO2011044846A1 (zh) 信道估计方法、装置以及通信系统
WO2013178090A1 (zh) 信道估计方法、信道估计装置和接收机
WO2013155908A1 (zh) 一种re检测方法及装置
WO2011157210A1 (zh) 一种正交频分复用系统中信道估计方法及装置
TWI466508B (zh) 一種用於正交多頻分工系統中消除符際干擾的接收器及其訊號接收方法
WO2014153980A1 (zh) 一种接收信号处理方法和信号接收设备
WO2012045244A1 (zh) 低复杂度高性能的信道估计方法及装置
WO2012109928A1 (zh) 信号处理方法、装置及系统
EP1928136A2 (en) Channel estimate optimization for multiple transmit modes
CN107005515B (zh) 无线局域网中的信息发送与接收方法、装置及系统
WO2011063734A1 (zh) Mimo-ofdm系统中信道估计的方法及装置
WO2013056599A1 (zh) 一种实现数据传输的方法及装置
Sudheesh et al. Cyclic prefix assisted sparse channel estimation for OFDM systems
EP2790363A1 (en) A new interpolation algorithm for pilot-based channel estimation in OFDM systems
WO2011157184A2 (zh) 信号处理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795176

Country of ref document: EP

Kind code of ref document: A1