WO2011157184A2 - 信号处理方法及装置 - Google Patents

信号处理方法及装置 Download PDF

Info

Publication number
WO2011157184A2
WO2011157184A2 PCT/CN2011/075338 CN2011075338W WO2011157184A2 WO 2011157184 A2 WO2011157184 A2 WO 2011157184A2 CN 2011075338 W CN2011075338 W CN 2011075338W WO 2011157184 A2 WO2011157184 A2 WO 2011157184A2
Authority
WO
WIPO (PCT)
Prior art keywords
signal
matrix
frequency domain
perform
recursive
Prior art date
Application number
PCT/CN2011/075338
Other languages
English (en)
French (fr)
Other versions
WO2011157184A3 (zh
Inventor
陈少卿
高西奇
王闻今
杨宜进
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201180000836.6A priority Critical patent/CN102217222B/zh
Priority to PCT/CN2011/075338 priority patent/WO2011157184A2/zh
Publication of WO2011157184A2 publication Critical patent/WO2011157184A2/zh
Publication of WO2011157184A3 publication Critical patent/WO2011157184A3/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0242Channel estimation channel estimation algorithms using matrix methods
    • H04L25/0244Channel estimation channel estimation algorithms using matrix methods with inversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0242Channel estimation channel estimation algorithms using matrix methods
    • H04L25/0246Channel estimation channel estimation algorithms using matrix methods with factorisation

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a signal processing method and apparatus.
  • the receiving end after receiving the signal sent by the transmitting end, the receiving end performs CP removal (Cyclic Prefix, Cyclic prefix), channel estimation, signal detection, demodulation, and decoding.
  • CP removal Cyclic Prefix, Cyclic prefix
  • channel estimation signal detection
  • demodulation decoding
  • decoding decoding
  • the inventors have found that at least the following problems exist in the prior art: Since a large number of matrix operations, especially matrix inversion operations, are involved in the process of channel estimation and/or signal detection, Therefore, the computational complexity of the existing channel estimation and/or signal detection process is high, which in turn affects the overall efficiency of signal processing at the receiving end.
  • Embodiments of the present invention provide a signal processing method and apparatus for reducing the implementation complexity of the signal processing at the receiving end of the communication system and improving the overall efficiency.
  • an aspect of the present invention provides a signal processing method, including: receiving a signal transmitted by a transmitting end, and performing channel estimation on the received signal; performing signal detection on a signal for completing channel estimation; The signal is subjected to demodulation and decoding processing; in performing the channel estimation and/or the signal detection, the matrix inversion is performed by using a recursive manner.
  • Another aspect of the present invention provides a signal processing apparatus, including: an estimating unit, configured to receive a signal sent by a transmitting end and perform channel estimation on the received signal; and a detecting unit, configured to perform a signal on the signal output by the estimating unit a processing unit, configured to perform demodulation and decoding processing on a signal output by the detecting unit; the estimating unit is further configured to perform channel estimation, The matrix inversion is performed by using a recursive manner; and/or the detecting unit is further configured to perform matrix inversion by using a recursive manner in the process of performing the signal detection.
  • the signal processing method and device provided by the embodiment of the invention aim at the matrix inversion operation in the signal processing process of the receiving end, and use the recursive method to complete the matrix inversion to achieve the purpose of simplifying the matrix inversion;
  • the solution provided in the embodiment of the present invention significantly reduces the complexity of the matrix calculation, thereby reducing the implementation complexity of the signal processing at the receiving end in the communication system, and improving the efficiency of signal processing.
  • FIG. 1 is a flow chart of a signal processing method in an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a signal processing apparatus according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a signal processing method in another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a signal processing apparatus according to still another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a process of processing a received signal by a signal receiving end according to an embodiment of the present invention.
  • the received signal after receiving the signal, as shown in FIG. 5, the received signal can be subjected to FFT (Fast Fourier Transformation), channel estimation, and signal removal of the CP.
  • FFT Fast Fourier Transformation
  • channel estimation channel estimation
  • signal removal of the CP.
  • a series of operations such as detection, demodulation and decoding.
  • the matrix operation occurring in the above signal estimation and/or signal detection process is mainly simplified to reduce the overall complexity of signal processing at the receiving end.
  • a signal processing method in an embodiment of the present invention includes:
  • the matrix inversion in the channel estimation process can be completed by using a recursive manner.
  • the matrix inversion can be completed by using a recursive manner.
  • the manner in which the matrix inversion is performed by using the recursive method in the above steps 101 and 102 can be adjusted as needed; for example, in the above steps 101 and 102, the matrix inversion can be completed by using the above recursive method in only one step. It is also possible to perform the matrix inversion using the recursive method in both step 101 and step 102.
  • the specific implementation can be adjusted according to the computational complexity of different stages.
  • the matrix inversion operation is performed by using the direct inversion method, so that the operation process of the signal detection is complicated.
  • the recursive matrix inversion is used instead of the existing one.
  • the matrix directly inverts the way, which in turn simplifies the matrix inversion.
  • the LTE uplink single carrier it is also necessary to perform IDFT processing on the signal after the completion of the signal detection, and then demodulate and decode the signal processed by the IDFT; for the case of the LTE uplink multi-carrier, it can be directly completed.
  • the signal after signal detection is demodulated and decoded.
  • the embodiment further provides a signal processing device; as shown in FIG. 2,
  • the signal processing device includes:
  • the estimating unit 21 is configured to receive a signal sent by the transmitting end and perform channel estimation on the received signal;
  • the detecting unit 22 is configured to perform signal detection on the signal output by the estimating unit 21; the processing unit 23 is configured to perform demodulation and decoding processing on the signal output by the detecting unit; the estimating unit 21 is further configured to In the process of performing channel estimation, the matrix inversion is performed by using a recursive manner; and/or the detecting unit 22 is further configured to perform matrix inversion by using a recursive manner in the process of performing the signal detection.
  • the signal processing method and apparatus provided by the embodiments of the present invention perform matrix inversion calculation in channel estimation and/or signal detection process, and use a recursive manner to complete matrix inversion to achieve the purpose of simplifying matrix inversion;
  • the solution provided in the embodiment of the invention significantly reduces the complexity of the matrix calculation, thereby reducing the implementation complexity of the signal processing at the receiving end in the communication system and improving the signal processing efficiency.
  • the signal processing method provided in the embodiment of the present invention will be further described below by taking a communication system adopting MIMO technology as an example and combining with another embodiment.
  • the signal processing method provided in another embodiment of the present invention specifically includes the following steps:
  • the receiving end of the MIMO system receives the signal sent by the transmitting end, and performs channel estimation on the received signal.
  • the receiving end performs linear minimum mean-squaring error (LMMSE) on the signal for completing channel estimation.
  • LMMSE linear minimum mean-squaring error
  • the matrix inversion operation is completed by using a recursive method.
  • the output signal model (time domain) of the equalizer is:
  • r denotes the number of transmitting antennas at the transmitting end in the MIMO system
  • M represents the length of the transmitted symbol block
  • i the output signal of the equalizer
  • represents the variance signal matrix
  • ⁇ 2 represents the noise variance
  • denotes an equivalent frequency domain channel matrix
  • y (f) represents an equivalent frequency domain received signal
  • F represents a normalized fast Fourier transform matrix
  • I m denotes the unit matrix of the X « order
  • e 3 ⁇ 4 indicates that the kth element is 1, and the other elements are 0 unit vectors.
  • denotes the average variance signal in the frequency domain
  • ® denotes Kronecker multiplication
  • the frequency domain model of the signal transmitted by the transmitting end is ' (y - A FE ), D (3) where 33 ⁇ 4), the first sub-block representing the mean signal of the frequency domain, specifically x ⁇ f) ((kl)n T +l), ---, x ⁇ f) (kn T ) It is also known from the time-frequency domain transformation relationship that the mean value signal of the frequency domain in the above equation is specifically
  • is also an upper triangular matrix.
  • the sub-triangular matrix consisting of the front ⁇ row and the front ⁇ column element is ⁇ district, and the "next column element of the nth column of the nth column is composed of w; ⁇ d ⁇ H shell 'J :
  • the quantity is divided into blocks, and then the multiplication of the block matrix is used to perform calculation, which reduces some unnecessary calculations in the direct matrix multiplication.
  • A: It is a Hermitian matrix, so you only need to calculate the matrix elements of the upper triangular (or lower triangular) part including the main diagonal elements, and the elements of the remaining symmetric positions are conjugated using the calculated matrix elements. Transposition To, significantly saved the amount of calculations.
  • Table 1 is obtained in the above-described matrix inversion calculation process £
  • the method of recursive inversion provided in the present example can be greatly reduced compared with the existing direct inversion method.
  • the amount of calculation increases the computational efficiency of signal detection.
  • the matrix inversion is performed only in the recursive manner used in the signal detection process.
  • the matrix inversion may be performed by using the recursive method in the channel estimation in step 301, or in step 301. Both matrix and 302 use the recursive method to complete the matrix inversion.
  • the matrix inversion process in the measurement is similar, but the specific parameters are different; therefore, those skilled in the art can easily introduce the matrix inversion process in the above step 302, and the channel is no longer estimated in this embodiment.
  • the present invention further provides a further embodiment to introduce an apparatus which can be used to implement the above signal processing method.
  • a signal processing apparatus provided in still another embodiment of the present invention includes: an estimating unit 41, a detecting unit 42, and a processing unit 43;
  • An estimating unit 41 configured to receive a signal sent by the transmitting end and perform channel estimation on the received signal Count
  • the detecting unit 42 is configured to perform signal detection on the signal output by the estimating unit 41, and the processing unit 43 is configured to perform demodulation and decoding processing on the signal output by the detecting unit 42.
  • the estimating unit 41 is further used for In the process of performing channel estimation, the matrix inversion is performed by using a recursive manner; and/or the detecting unit 42 is further configured to perform matrix inversion by using a recursive manner in the process of performing the signal detection.
  • the detecting unit 42 performs the matrix inversion by using a recursive method. Further, the detecting unit 42 may include the following functional modules:
  • P is an orthogonal matrix
  • R is an upper triangular matrix
  • a recursive module 423 configured to perform a recursive manner in a formula obtained by the substituting module
  • F denotes a normalized fast Fourier transform matrix
  • M denotes the length of the transmitted symbol block.
  • the signal processing apparatus in the embodiment of the present invention may be a receiving end device including a frequency domain detector, such as a base station or the like.
  • the signal processing device provided by the embodiment of the present invention performs the matrix inversion operation in the signal processing process of the signal receiving end, and uses the recursive manner to complete the matrix inversion to achieve the purpose of simplifying the matrix inversion.
  • the provided solution significantly reduces the complexity of the matrix calculation, thereby reducing the implementation complexity of the signal detection at the receiving end in the communication system and improving the signal detection efficiency.
  • the MIMO system is taken as an example to introduce the solution provided in the embodiment of the present invention.
  • the solution provided by the present invention is not only applicable to the MIMO system, but also can be applied to all the matrixes that need to be performed.
  • the system for inversion is, for example, a communication system using techniques such as OFDM (Orthogonal Frequency Division Multiplexing) or CDMA (Code Division Multiple Access).
  • the present invention can be implemented by means of software plus necessary general hardware, and of course, by hardware, but in many cases, the former is a better implementation. .
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a readable storage medium, such as a floppy disk of a computer.
  • a hard disk or optical disk or the like includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

本发明实施例公开了一种信号处理方法及装置,涉及通信技术领域,用以降低接收端信号检测的实现复杂度,提高信号检测效率。所述信号处理方法,包括:接收发送端发送的信号并对接收到的信号进行信道估计;对接收到的信号进行信号检测;对完成信号检测的信号进行解调和译码处理;在进行所述信道估计和/或所述信号检测的过程中,利用递推的方式完成矩阵求逆。

Description

信号处理方法及装置 技术领域
本发明涉及通信技术领域, 尤其涉及一种信号处理方法及装置。
背景技术
在通信技术领域进行信道估计和信号检测过程中, 常需要涉及到大量的 矩阵运算。
以 LTE ( Long Term Evolution, 长期演进) 系统的 MIMO ( Multiple-Input Multiple-Output, 多输入多输出)技术为例, 接收端在接收到发送端发送的信 号之后, 会进行去除 CP ( Cyclic Prefix, 循环前缀)、 信道估计、 信号检测、 解调和译码等一系列操作。 在实现上述信道估计和信号检测的过程中, 发明人发现现有技术中至少 存在如下问题: 由于在信道估计和 /或信号检测的过程中涉及到大量的矩阵运 算, 尤其是矩阵求逆运算, 因此使得现有的信道估计和 /或信号检测过程的运 算复杂度较高, 进而影响到接收端进行信号处理的整体效率。
发明内容
本发明的实施例提供一种信号处理方法及装置, 用以降低通信系统中接 收端信号处理的实现复杂度、 提高整体效率。
为达到上述目的, 本发明一方面提供一种信号处理方法, 包括: 接收发 送端发送的信号, 并对接收到的信号进行信道估计; 对完成信道估计的信号 进行信号检测; 对完成信号检测的信号进行解调和译码处理; 在进行所述信 道估计和 /或所述信号检测的过程中, 利用递推的方式完成矩阵求逆。
本发明另一方面提供一种信号处理装置, 包括: 估计单元, 用于接收发 送端发送的信号并对接收到的信号进行信道估计; 检测单元, 用于对所述估 计单元输出的信号进行信号检测; 处理单元, 用于对所述检测单元输出的信 号进行解调和译码处理; 所述估计单元, 还用于在进行信道估计的过程中, 利用递推的方式完成矩阵求逆; 和 /或, 所述检测单元, 还用于在进行所述信 号检测的过程中, 利用递推的方式完成矩阵求逆。
本发明实施例提供的信号处理方法及装置, 针对接收端在进行信号处理 过程中的矩阵求逆运算, 利用递推的方式来完成矩阵求逆从而达到对矩阵求 逆进行简化的目的; 相比于现有技术中的矩阵直接求逆方式, 本发明实施例 中提供的方案显著减少了矩阵计算的复杂度, 从而降低通信系统中接收端信 号处理的实现复杂度, 提高信号处理的效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附 图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创 造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明的一实施例中的信号处理方法的流程图;
图 2为本发明的一实施例中的信号处理装置的结构示意图;
图 3为本发明的另一实施例中的信号处理方法的流程图;
图 4为本发明的又一实施例中的信号处理装置的结构示意图;
图 5 为本发明实施例中信号接收端对接收到的信号进行处理的过程示意 图。
具体实施方式
在现有的通信系统中, 信号接收端在接收到信号之后, 如图 5 所示, 可 以对接收到的信号进行去除 CP的 FFT ( Fast Fourier Transformation, 快速傅 里叶变换)、 信道估计、 信号检测、 解调及译码等一系列操作。
对于 LTE上行单载波的情形, 还需要对完成信号检测后的信号进行离散 傅里叶反变换( Inverse Discrete Fourier Transform, IDFT ),之后再对经过 IDFT 处理后的信号进行解调和译码; 对于 LTE上行多载波的情形, 则可以直接对 完成信号检测后的信号进行解调和译码。 在本发明实施例提供的方案中, 主要对上述信号估计和 /或信号检测过程 中出现的矩阵运算进行简化, 以降低接收端进行信号处理的整体复杂度。
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 可以理解的是, 所描述的实施例仅仅是本发明一部分实 施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员 在没有做出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护 的范围。
如图 1所示, 本发明的一个实施例中的信号处理方法, 包括:
101、 接收发送端发送的信号, 并对接收到的信号进行信道估计。 在该步 骤的信道估计过程中, 可以利用递推的方式来完成信道估计过程中的矩阵求 逆。
102、 对完成信道估计的信号进行信号检测; 在进行所述信号检测的过程 中, 可以利用递推的方式完成矩阵求逆。
在上述步骤 101和步骤 102中出现的利用递推方式完成矩阵求逆的方式 可以根据需要进行调整; 例如, 上述步骤 101和步骤 102中可以只有一个步 骤中使用上述递推方式完成矩阵求逆, 也可以是步骤 101和步骤 102中均使 用递推方式完成矩阵求逆。 具体的实现方式可以根据不同阶段的运算复杂度 来进行调整。
在现有的信号检测过程中, 利用直接求逆的方式来进行矩阵求逆运算, 使得信号检测的运算过程实现复杂度较高; 在本实施例, 利用递推矩阵求逆 的方式替代现有的矩阵直接求逆的方式, 进而简化矩阵求逆运算。
103、 对完成信号检测的信号进行解调和译码处理。
对于 LTE上行单载波的情形,还需要对完成信号检测后的信号进行 IDFT 处理, 之后再对经过 IDFT处理后的信号进行解调和译码; 对于 LTE上行多 载波的情形, 则可以直接对完成信号检测后的信号进行解调和译码。
对应于上述方法, 本实施例还提供了一种信号处理装置; 如图 2所示, 所述信号处理装置包括:
估计单元 21 , 用于接收发送端发送的信号并对接收到的信号进行信道估 计;
检测单元 22, 用于对所述估计单元 21输出的信号进行信号检测; 处理单元 23 , 用于对所述检测单元输出的信号进行解调和译码处理; 该估计单元 21 , 还用于在进行信道估计的过程中, 利用递推的方式完成 矩阵求逆; 和 /或, 该检测单元 22, 还用于在进行所述信号检测的过程中, 利 用递推的方式完成矩阵求逆。
本发明实施例提供的信号处理方法及装置, 针对信道估计和 /或信号检测 过程中的矩阵求逆运算, 利用递推的方式来完成矩阵求逆从而达到对矩阵求 逆进行简化的目的; 本发明实施例中提供的方案显著减少了矩阵计算的复杂 度, 从而降低通信系统中接收端进行信号处理的实现复杂度, 提高信号处理 效率。 下面将以采用了 MIMO技术的通信系统中为例, 并结合另一实施例来对 本发明实施例中提供的信号处理方法做进一步介绍。
如图 3 所示, 本发明的另一实施例中提供的信号处理方法, 具体包括以 下步骤:
301、 MIMO系统的接收端接收发送端发送的信号, 并对接收到的信号进 行信道估计。
302、 接收端对完成信道估计的信号进行基于最小均方误差的线性检测 ( Linear Minimum Mean-Squared Error, LMMSE )。 在 LMMSE检测过程中, 利用递推的方式完成矩阵求逆运算。
具体地, 在 LMMSE检测过程中, 均衡器的输出信号模型 (时域) 为:
X = Diag (p- 1 ) (r« (¾ \ητ ) [AHAV + ση 2\Μητ ]- 1 . (AHy (f )― ΛΗΛ (ΓΜ ® I„JX) + X
(i) 均衡器输出的等效信号幅度为:
Figure imgf000007_0001
在上式中, 《r表示 MIMO系统中发送端发送天线的个数;
M表示发送的符号块的长度;
i表示均衡器的输出信号;
表示均值信号;
Ϋ表示方差信号矩阵;
表示均衡器输出的等效信号幅度;
σ2表示噪声方差;
Λ表示等效频域信道矩阵;
表示在第 k个频点上的频域信道矩阵;
y(f)表示等效频域接收信号;
F表示归一化的快速傅里叶变换矩阵;
Im表示《 X «阶的单位矩阵;
e¾表示第 k个元素为 1、 其他元素为 0的单位向量。
假设同一个发射天线上信号的先验方差在一个块内相当, 即
其中, Ϋ表示频域中的平均方差信号; ®表示 Kronecker (克罗内克)乘法。
将上述公式 (1)转换到频域中, 对于任一频点 k, 所述发送端发送的信号 的频域模型为
Figure imgf000007_0002
' (y - AFE ), D (3) 其中, 3¾)、表示频域的均值信号 的第 个子块, 具体地 x{f)((k-l)nT +l),---,x{f)(knT) 又由时频域的变换关系可知, 上式中的频域的均值信号^ 具体为
Figure imgf000008_0001
以及所述发送端发送的信号的幅度均值为
P=—∑ diag [Λ» + σ21ητ ] ■ A Ak), k = 1,- ,Μ (4) 将公式 (4)中的「ΛΑ ΗΛΑΫ + σ„2Ι„ — ·ΛΑ ΗΛΑ记为 , 即
Λ«Λ,ν + σ„2Ι„ Ί" ·Λ , k = l,-,M (5) 对第 k个频点上的频域信道矩阵 进行 QR分解得到 其中, 为正交矩阵, 为上三角矩阵。
将 AfPtl^带入到上述公式 (3)和 (5)中, 得到:
γ( ) k = \、"'
Figure imgf000008_0002
(6)
1 M
^=diag(B^) ; 其中,
Figure imgf000008_0003
(7) 又由矩阵求逆引理可知:
「— 1
R V +
Figure imgf000008_0004
则, 上述公式 (6)和 (7)可改写为:
Figure imgf000008_0005
由于频域中的平均方差信号 Ϋ为对角阵, 则有: 令\\^
Figure imgf000009_0001
由于 和 Ϋ均为上三角矩阵, 因此^也是上三角矩阵。 设取 \ 的前 η行、 前 η列元素组成的子上三角矩阵为 \\^„ , 的第 n 列的前 n行元素组成的 "维列向量为 w ; ^d ^H 贝 'J :
Figure imgf000009_0002
W/c,„— w. W/c,„— w.
+ σ, Ι„
0 lx("— 1 0 lx("— 1
又知: A
Figure imgf000009_0003
—1
Figure imgf000010_0001
利用公式 (12)逐一递推, 则可以很容易地计算得到 W =「Ι^ΫΙ^ +σ„2Ι 的结果, 进而将
Figure imgf000010_0002
]— 1的结果带入公式 (6)和 (7)中就可以得到 ij 和 的最终结果。
303、 对完成信号检测的信号进行解调和译码处理。
对于 LTE上行单载波的情形,还需要对完成信号检测后的信号进行 IDFT 处理, 之后再对经过 IDFT处理后的信号进行解调和译码; 对于 LTE上行多 载波的情形, 则可以直接对完成信号检测后的信号进行解调和译码。 在本发明实施例的运算过程中, 因为 1 + 为实数, 避免
Figure imgf000010_0003
了直接对复矩阵求逆时的复数除法运算, 所以大大的减少了计算量
A
时,可以先对矩阵和向
Figure imgf000010_0004
量进行分块, 再利用分块矩阵的乘法, 进行计算, 减少直接矩阵乘法中不必 要的一些计算量。 同时, 因为 A:.
Figure imgf000010_0005
为 Hermitian (厄米特 ) 矩阵, 所以只需计算包括主对角线元素在内的上三角 (或下三角)部分的矩 阵元素, 其余对称位置的元素, 利用已计算出的矩阵元素进行共轭转置的反 到, 显著节约了计算量。
对上述矩阵求逆的运算过程进行统计, 可得到表 1中的数据£
Figure imgf000011_0002
由表 1 可知, 通过递推的方式对矩阵求逆的计算复杂度明显小于直接进 行矩阵求逆的方式。
进一步, 还可以考虑一下信号检测过程中除了上述矩阵求逆之外的其他 矩阵运算。 如若选择通过公式 (3)中的 Λ ν + σ ΐ
Figure imgf000011_0001
和公式 (5)中的 ΒΑ =[ΛΑ ΗΛΑΫ + σ J— ^ 来完成信号检测过程,则在式中的 逆矩阵结果已知, 且 A y )、 Λέ ΗΛέ、 FM w均已知时, 公式 (3)和 (5)的总计 复杂度(复乘数目) 为: ητ 3 +2ητ 2., 如果选择通过公式 (6)中的 ί =R R.VR +σ„2Ι Ρ -^ )和 公式(7)中的^=1^[1^^^+ 1„了 .1^来完成信号检测过程, 则在式中的逆 矩阵结果已知, 且 P y 、 FM ^^均已知时, 公式 (6)和 (7)的总计算复杂度(复 乘数目 ) 为: nT 3 +? T 2
上述内容可参见表 2。 表 2 检测过程中矩阵求逆以外的运算量统计 复杂度 复乘次数 实乘次数
直接求逆 ητ 3 + 2ητ 2τ 3 + τ 2 递推求逆 4ητ 3 + 12ητ 2 体见表 3。
Figure imgf000012_0001
通过上述数据的对比分析可知, 不管是单独的矩阵求逆运算, 还是就整 个信号检测过程而言, 利用本事实例中提供的递推求逆的方式可以比现有的 直接求逆的方式大大地降低运算量, 进而提高信号检测的计算效率。
在本实施例中, 仅是以信号检测过程中采用的递推方式完成矩阵求逆为 例, 当然还可以是在步骤 301 的信道估计中采用递推方式完成矩阵求逆, 又 或者在步骤 301和 302中均采用递推方式完成矩阵求逆。 测中的矩阵求逆过程类似, 只是具体参数不同; 因此本领域技术人员可以结 合上述步骤 302 中的矩阵求逆过程轻易推出, 本实施例就不再对信道估计过
对应于上述图 3对应的实施例中的方法描述, 本发明还提供了又一实施 例来介绍一种可用于实现上述信号处理方法的装置。
具体如图 4所示, 本发明的又一实施例中提供的信号处理装置, 包括: 估计单元 41、 检测单元 42和处理单元 43; 其中,
估计单元 41 , 用于接收发送端发送的信号并对接收到的信号进行信道估 计;
检测单元 42, 用于对所述估计单元 41输出的信号进行信号检测; 处理单元 43 , 用于对所述检测单元 42输出的信号进行解调和译码处理; 该估计单元 41 , 还用于在进行信道估计的过程中, 利用递推的方式完成 矩阵求逆; 和 /或, 该检测单元 42, 还用于在进行所述信号检测的过程中, 利 用递推的方式完成矩阵求逆。
以检测单元 42利用递推的方式完成矩阵求逆为例, 进一步地, 上述检测 单元 42中可以包含以下功能模块:
分解模块 421 , 用于对频域信道矩阵 Λ进行 QR分解得到 A=PR; 其中,
P为正交矩阵, R为上三角矩阵;
代入模块 422, 用于将所述 A=PR代入到均衡器的输出信号模型,得到所 述发送端发送的信号的频域模型为
Figure imgf000013_0001
以及所述发送端发送的信号的幅度均值为
Figure imgf000013_0002
递推模块 423 , 用于利用递推的方式完成由所述代入模块得到的公式中
R, R V + cr l 的矩阵求逆运算, 进而得到 ij 和 的最终结果; 其中, Ϋ表示频域中的平均方差信号; σ„2表示噪声方差; 《r表示发送端 发送天线的数量; ι„τ表示" ^ 阶的单位矩阵; y 表示等效频域接收信号;
F表示归一化的快速傅里叶变换矩阵; M表示发送的符号块的长度。
在利用上述递推模块 423 进行矩阵递推运算的过程中, 可以记
Π-1 「― 1
W, = R, ^ , 则矩阵 R k R k,V + n2I 就可以转换为
「― 1
此时, 所述递推模块 423具体用于将
Figure imgf000013_0003
记为 A , 首先 计算出 A = W WH + (j2 , 并利用递推公式
Figure imgf000014_0001
来完成所述 R k"R k, V + a nI nT 的矩阵求逆运算。
本发明实施例中的信号处理装置可以是包含有频域检测器的接收端装 置, 比如基站等。
本发明实施例提供的信号处理装置, 针对信号接收端的信号处理过程中 的矩阵求逆运算, 利用递推的方式来完成矩阵求逆从而达到对矩阵求逆进行 简化的目的; 本发明实施例中提供的方案显著减少了矩阵计算的复杂度, 从 而降低通信系统中接收端信号检测的实现复杂度, 提高信号检测效率。
在上述实施例中, 均是以 MIMO系统为例来介绍本发明实施例中提供的 方案, 但是需要注意的是, 本发明提供的方案不只适用于 MIMO系统, 当然 还可以适用于所有需要进行矩阵求逆的系统, 例如采用 OFDM ( Orthogonal Frequency Division Multiplexing , 正交频分复用 )、 CDMA ( Code Division Multiple Access, 码分多址 )等技术的通信系统中。
通过以上的实施方式的描述, 所属领域的技术人员可以清楚地了解到本 发明可借助软件加必需的通用硬件的方式来实现, 当然也可以通过硬件, 但 很多情况下前者是更佳的实施方式。 基于这样的理解, 本发明的技术方案本 质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来, 该 计算机软件产品存储在可读取的存储介质中, 如计算机的软盘, 硬盘或光盘 等, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述的方法。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保 护范围应以权利要求的保护范围为准。

Claims

权利 要求 书
1、 一种信号处理方法, 其特征在于, 包括: 接收发送端发送的信号 , 并对接收到的信号进行信道估计;
对完成信道估计的信号进行信号检测;
对完成信号检测的信号进行解调和译码处理;
在进行所述信道估计和 /或所述信号检测的过程中 , 利用递推的方式完成矩 阵求逆。
2、 根据权利要求 1所述的信号处理方法, 其特征在于, 所述在信号检测过 程中利用递推的方式完成矩阵求逆, 包括 R:
H ^
对频域信道矩阵 Λ进行 QR分解得到 A= RPR; 其中, P为正交矩阵, R为上 三角矩阵;
将所述 A=PR代入到均衡器的输出信号模型, 得到所述发送端发送的信号 的频域模型为 x|¾ = [R«R, V + σ ..,M
Figure imgf000016_0001
以及所述发送端发送的信号的幅度均值为
1 M I _
nT
M k=l 利用递推的方式完成上述公式中「R R^ + σ: ―1的矩阵求逆运算, 进而得 到^ 和 的最终结果; 其中, Ϋ表示频域中的平均方差信号; 表示噪声方差; 《Γ表示发送端发 送天线的数量; 表示 " ^阶的单位矩阵; y )表示等效频域接收信号; F 表示归一化的快速傅里叶变换矩阵; M表示发送的符号块的长度。
3、 根据权利要求 2所述的信号处理方法, 其特征在于, 所述利用递推的方 式完成上述公式中
Figure imgf000016_0002
+ I„r1的矩阵求逆运算, 包括: 设定 \^ = ^ ^ , 则矩阵 R¾V + ^2I 转换为
Figure imgf000017_0001
利用递推公式
Figure imgf000017_0002
来完成所述 [Ι^Ι^Ϋ + σ„2Ι„^_的矩阵求逆运 R算。
Η ^
R
4、 一种信号处理装置, 其特征在于, 包括:
估计单元, 用于接收发送端发送的信号并对接收到的信号进行信道估计; 检测单元, 用于对所述估计单元输出的信号进行信号检测;
处理单元, 用于对所述检测单元输出的信号进行解调和译码处理; 所述估计单元, 还用于在进行信道估计的过程中, 利用递推的方式完成矩 阵求逆; 和 /或, 所述检测单元, 还用于在进行所述信号检测的过程中, 利用递 推的方式完成矩阵求逆。
5、根据权利要求 4所述的信号处理装置,其特征在于, 所述检测单元包括: 分解模块, 用于对频域信道矩阵 Λ进行 QR分解得到 A=PR; 其中, P为正 交矩阵, R为上三角矩阵;
代入模块, 用于将所述 A=PR代入到均衡器的输出信号模型, 得到所述发 送端发送的信号的频域模型为 、 k = l,- - -,M
Figure imgf000017_0003
以及所述发送端发送的信号的幅度均值为
1 Μ I _
Π-1
ητ
Μ k=l 递推模块, 用于利用递推的方式完成由所述代入模块得到的公式中
R R.V + σ V的矩阵求逆运算, 进而得到 和 的最终结果;
其中, Ϋ表示频域中的平均方差信号; 表示噪声方差; 《Γ表示发送端发 送天线的数量; I ^表示 ΜΓχ«Γ阶的单位矩阵; y 表示等效频域接收信号; F 表示归一化的快速傅里叶变换矩阵; M表示发送的符号块的长度。
6、 根据权利要求 5 所述的信号处理装置, 其特征在于, i k
Figure imgf000018_0001
,
Figure imgf000018_0002
记为 η , 计算出
Figure imgf000018_0003
, 并利用递推公式
Figure imgf000018_0004
2i 「_1
来完成所述 的矩阵求逆运算
PCT/CN2011/075338 2011-06-03 2011-06-03 信号处理方法及装置 WO2011157184A2 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180000836.6A CN102217222B (zh) 2011-06-03 2011-06-03 信号处理方法及装置
PCT/CN2011/075338 WO2011157184A2 (zh) 2011-06-03 2011-06-03 信号处理方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/075338 WO2011157184A2 (zh) 2011-06-03 2011-06-03 信号处理方法及装置

Publications (2)

Publication Number Publication Date
WO2011157184A2 true WO2011157184A2 (zh) 2011-12-22
WO2011157184A3 WO2011157184A3 (zh) 2012-04-26

Family

ID=44746743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075338 WO2011157184A2 (zh) 2011-06-03 2011-06-03 信号处理方法及装置

Country Status (2)

Country Link
CN (1) CN102217222B (zh)
WO (1) WO2011157184A2 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103248587B (zh) * 2012-02-14 2016-03-09 电信科学技术研究院 信号处理方法及装置
KR20130104289A (ko) * 2012-03-13 2013-09-25 삼성전자주식회사 오프셋 값을 추정하는 장치, 방법, 수신장치 및 수신장치에서 신호를 처리하는 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7050513B1 (en) * 2001-02-20 2006-05-23 Comsys Communications & Signal Processing Ltd. Block based channel tracking using weighted recursive least squares
CN101909031A (zh) * 2009-06-05 2010-12-08 北京信威通信技术股份有限公司 一种扩频ofdma通信系统的mmse检测方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101374037A (zh) * 2007-08-20 2009-02-25 中兴通讯股份有限公司 一种混合自动重传请求信号检测方法、系统及其接收装置
CN101388868A (zh) * 2007-09-10 2009-03-18 中兴通讯股份有限公司 一种多输入多输出正交频分复用系统的接收方法及接收机

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7050513B1 (en) * 2001-02-20 2006-05-23 Comsys Communications & Signal Processing Ltd. Block based channel tracking using weighted recursive least squares
CN101909031A (zh) * 2009-06-05 2010-12-08 北京信威通信技术股份有限公司 一种扩频ofdma通信系统的mmse检测方法

Also Published As

Publication number Publication date
CN102217222B (zh) 2013-08-07
CN102217222A (zh) 2011-10-12
WO2011157184A3 (zh) 2012-04-26

Similar Documents

Publication Publication Date Title
CN102624652B (zh) Ldpc解码方法和装置及接收终端
EP3002920B1 (en) Method and system of cyclic prefix overhead reduction for enabling cancellation of inter-symbol and inter-carrier interferences in ofdm wireless communication networks
JP4272665B2 (ja) Ofdm伝送システムのチャネルを推定する装置、方法、及びコンピュータプログラム
US9294318B2 (en) Symbol detection for alleviating inter-symbol interference
WO2011054279A1 (zh) 基于多相分解的多天线信道估计方法
Geng et al. Dual-diagonal LMMSE channel estimation for OFDM systems
CN110311872A (zh) 一种水声稀疏信道估计方法、系统、设备及存储介质
CN107171984A (zh) 一种异步多载波系统频域信道估计方法
CN110581813A (zh) 一种多载波系统导频信号的传输方法
KR100816032B1 (ko) 반복적 다중 사용자 검파를 통한 데이터 송수신 방법 및 그장치
Lin et al. Complexity-reduced receiver for universal filtered multicarrier systems
EP2442507B1 (en) Channel estimation method using an improved Expectation Maximization (EM-)Algorithm
US20120213315A1 (en) Process for estimating the channel in a ofdm communication system, and receiver for doing the same
US7826342B2 (en) Correlation method for channel estimation for OFDM
WO2008151518A1 (fr) Procédé et dispositif de détection d'information dans un système ofdm
WO2013155908A1 (zh) 一种re检测方法及装置
WO2022258193A1 (en) Generation and reception of precoded signals based on codebook linearization
US8094760B2 (en) Channel estimation
WO2011140819A1 (zh) Ofdm系统中子载波间干扰消除的方法及装置
WO2011157184A2 (zh) 信号处理方法及装置
CN110011744B (zh) 端口检测方法、系统和终端
Pan et al. Time domain synchronous OFDM based on compressive sensing: A new perspective
CN105991489A (zh) 利用频域过采样来实现信道均衡的方法
CN116192568A (zh) 信道估计方法、信道估计装置和计算机可读存储介质
WO2016082735A1 (zh) Fbmc的发射分集传输方法、发送端装置及接收端装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180000836.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795150

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795150

Country of ref document: EP

Kind code of ref document: A2