WO2011154994A1 - 高圧タンクおよび高圧タンクの製造方法 - Google Patents
高圧タンクおよび高圧タンクの製造方法 Download PDFInfo
- Publication number
- WO2011154994A1 WO2011154994A1 PCT/JP2010/003820 JP2010003820W WO2011154994A1 WO 2011154994 A1 WO2011154994 A1 WO 2011154994A1 JP 2010003820 W JP2010003820 W JP 2010003820W WO 2011154994 A1 WO2011154994 A1 WO 2011154994A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liner
- hoop
- layer
- pressure tank
- dome
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 239000000835 fiber Substances 0.000 claims abstract description 128
- 229920005989 resin Polymers 0.000 claims abstract description 57
- 239000011347 resin Substances 0.000 claims abstract description 57
- 239000012530 fluid Substances 0.000 claims abstract description 8
- 238000004804 winding Methods 0.000 claims description 62
- 238000000034 method Methods 0.000 claims description 20
- 230000007423 decrease Effects 0.000 claims description 4
- 230000003247 decreasing effect Effects 0.000 claims description 3
- 238000010030 laminating Methods 0.000 claims description 3
- 238000004088 simulation Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 10
- 239000002737 fuel gas Substances 0.000 description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 230000003014 reinforcing effect Effects 0.000 description 6
- 229920001187 thermosetting polymer Polymers 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 239000003345 natural gas Substances 0.000 description 3
- 239000012783 reinforcing fiber Substances 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000009730 filament winding Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C1/00—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
- F17C1/02—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
- F17C1/04—Protecting sheathings
- F17C1/06—Protecting sheathings built-up from wound-on bands or filamentary material, e.g. wires
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C1/00—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
- F17C1/16—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of plastics materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C53/00—Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
- B29C53/56—Winding and joining, e.g. winding spirally
- B29C53/562—Winding and joining, e.g. winding spirally spirally
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C53/00—Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
- B29C53/56—Winding and joining, e.g. winding spirally
- B29C53/58—Winding and joining, e.g. winding spirally helically
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C53/00—Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
- B29C53/56—Winding and joining, e.g. winding spirally
- B29C53/58—Winding and joining, e.g. winding spirally helically
- B29C53/60—Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels
- B29C53/602—Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels for tubular articles having closed or nearly closed ends, e.g. vessels, tanks, containers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D22/00—Producing hollow articles
- B29D22/003—Containers for packaging, storing or transporting, e.g. bottles, jars, cans, barrels, tanks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B1/00—Layered products having a non-planar shape
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C1/00—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C1/00—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
- F17C1/02—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
- F17C1/04—Protecting sheathings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0104—Shape cylindrical
- F17C2201/0109—Shape cylindrical with exteriorly curved end-piece
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/01—Reinforcing or suspension means
- F17C2203/011—Reinforcing means
- F17C2203/012—Reinforcing means on or in the wall, e.g. ribs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0604—Liners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0612—Wall structures
- F17C2203/0614—Single wall
- F17C2203/0619—Single wall with two layers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0612—Wall structures
- F17C2203/0614—Single wall
- F17C2203/0621—Single wall with three layers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0636—Metals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0658—Synthetics
- F17C2203/0663—Synthetics in form of fibers or filaments
- F17C2203/0665—Synthetics in form of fibers or filaments radially wound
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0658—Synthetics
- F17C2203/0663—Synthetics in form of fibers or filaments
- F17C2203/0668—Synthetics in form of fibers or filaments axially wound
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0658—Synthetics
- F17C2203/0663—Synthetics in form of fibers or filaments
- F17C2203/0673—Polymers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0302—Fittings, valves, filters, or components in connection with the gas storage device
- F17C2205/0305—Bosses, e.g. boss collars
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0388—Arrangement of valves, regulators, filters
- F17C2205/0394—Arrangement of valves, regulators, filters in direct contact with the pressure vessel
- F17C2205/0397—Arrangement of valves, regulators, filters in direct contact with the pressure vessel on both sides of the pressure vessel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2209/00—Vessel construction, in particular methods of manufacturing
- F17C2209/23—Manufacturing of particular parts or at special locations
- F17C2209/232—Manufacturing of particular parts or at special locations of walls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/036—Very high pressure (>80 bar)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Definitions
- the present invention relates to a high-pressure tank for storing a fluid therein at a pressure higher than normal pressure, and a method for manufacturing the high-pressure tank.
- a vehicle may be equipped with a high-pressure tank that stores fuel gas such as natural gas or hydrogen.
- the high pressure tank In order to increase the travelable distance of the vehicle, it is preferable to fill the high pressure tank with fuel gas at a higher filling pressure (for example, 70 MPa). In order to fill the high-pressure tank with high-pressure fuel gas, it is necessary to improve the strength of the high-pressure tank.
- a technique for forming a reinforcing layer by winding a fiber impregnated with resin on the outer peripheral surface of a liner is known.
- the substantially cylindrical body part constituting the liner is reinforced by a hoop layer, and the hemispherical dome part continuously connected to both ends of the body part is reinforced by a helical layer.
- Patent Document 1 The hoop layer is mainly used for securing the strength in the circumferential direction
- the helical layer is mainly used for securing the strength in the longitudinal direction (axial direction).
- a high-pressure tank having an outer fiber layer formed by high-angle winding (also referred to as “high-angle helical winding”) on the outside of the liner instead of the hoop layer is known (for example, Patent Document 2).
- the reason for forming the outer fiber layer by high-angle winding is that when the hoop winding tries to wind the fiber around the outer surface of the dome-shaped dome part, the fiber slips along the dome part surface and the hoop layer cannot be formed. .
- the thickness of the fiber reinforced resin layer changes at the boundary portion between the substantially cylindrical cylindrical portion and the dome-shaped dome portion formed on both sides of the cylindrical portion. Or stress changes may occur due to changes in rigidity. This stress concentration occurs particularly at the dome portion side in the boundary portion. Therefore, the boundary portion is preferably reinforced with a reinforcing layer.
- the dome portion side portion of the boundary portion is also referred to as a “shoulder portion”.
- the boundary between the cylindrical portion and the dome portion of the high-pressure tank corresponds to the boundary portion between the cylindrical liner cylindrical portion of the liner portion and the dome-shaped liner dome portion connected to both sides of the liner cylindrical portion. Formed.
- the high-angle helical winding has a lower resistance to the circumferential stress acting on the high-pressure tank than the hoop winding. Therefore, the high-angle helical winding has to increase the number of times the fiber is wound compared to the hoop winding. That is, a high-pressure tank in which a reinforcing layer is formed using high-angle helical winding increases the amount of fiber used.
- a problem is not limited to the high-pressure tank for filling the fuel gas, but is a problem common to the high-pressure tank for filling the fluid at a pressure higher than the normal pressure.
- This invention was made in order to solve the above-mentioned subject, and it aims at providing the technique which reduces the amount of fiber usage, suppressing the intensity
- the present invention has been made to solve at least a part of the above problems, and can be realized as the following forms or application examples.
- a high-pressure tank for storing fluid inside comprising a liner and a fiber reinforced resin layer containing fibers and covering the surface of the liner, the liner being a cylindrical liner cylinder And a dome-shaped liner dome portion connected to both sides of the liner cylindrical portion, the outer surface being inclined at a predetermined angle with respect to the outer surface of the liner cylindrical portion and connected to the liner cylindrical portion
- the fiber reinforced resin layer is a hoop layer formed on the outer surface of the liner cylindrical portion so as to cover the outer surface of the liner cylindrical portion
- the fiber is A hoop layer formed by hoop winding wound so as to be substantially perpendicular to the central axis of the liner cylindrical portion, and the hoop layer at the boundary portion with the liner dome portion, It said predetermined angle is formed so as to form an angle less than, the high-pressure tank outer surface to the outer surface of the liner dome portion of the-loop layer.
- the high-pressure tank of Application Example 1 it is possible to reinforce the boundary portion between the cylindrical portion and the dome portion of the high-pressure tank with a hoop layer that covers the outer surface of the liner cylindrical portion. That is, by preparing a liner in which the liner dome portion is inclined at a predetermined angle with respect to the liner cylindrical portion and forming a hoop layer having a predetermined shape on the outer surface of the liner dome portion, the boundary portion including the shoulder portion of the high-pressure tank is previously formed. Can be reinforced. Thereby, it becomes possible to suppress the strength reduction of the high-pressure tank without forming a high-angle helical layer. Moreover, since it is not necessary to form a high angle helical layer, the amount of fiber used can be reduced.
- the hoop layer is formed so that the outer surface of a hoop layer may make an angle smaller than a predetermined angle with respect to the outer surface of a liner dome part in a boundary part with a liner dome part.
- the hoop layer includes a hoop cylindrical portion having a certain thickness, and a hoop dome portion positioned between the hoop cylindrical portion and the liner dome portion.
- a high-pressure tank comprising: a hoop dome portion that gradually decreases from the constant thickness toward the liner dome portion from the hoop cylindrical portion.
- the outer surface of the hoop layer is the liner dome portion at the boundary portion between the hoop layer and the liner dome portion by reducing the thickness of the hoop dome portion in the predetermined direction. It is possible to easily form a hoop layer having an angle smaller than a predetermined angle with respect to the outer surface.
- the hoop cylindrical portion is formed by laminating a predetermined number of the fibers, and the hoop dome portion is formed from the hoop cylindrical portion.
- a high-pressure tank formed by gradually decreasing the number of laminated fibers from the predetermined number toward the liner dome.
- the outer surface of the hoop layer is reduced at the boundary between the hoop layer and the liner dome by reducing the number of fibers stacked in the predetermined direction with respect to the hoop dome. Therefore, a hoop layer having an angle smaller than a predetermined angle with respect to the outer surface of the liner dome can be easily formed.
- the high-pressure tank according to any one of Application Examples 1 to 4, wherein the fiber reinforced resin layer further includes an outer surface of the hoop layer and an outer surface of the liner dome portion.
- a high-pressure tank containing a helical layer According to the high pressure tank described in Application Example 5, the helical layer straddling the hoop layer and the liner dome can be formed smoothly, and the high pressure tank can be reliably reinforced with the helical layer.
- the fiber-reinforced resin layer includes a first type layer formed by the hoop winding and a second type layer formed by the helical winding.
- a high-pressure tank consisting of according to the high-pressure tank described in Application Example 6, the boundary portion including the cylindrical portion of the high-pressure tank and the shoulder portion of the dome portion is reinforced by the fiber reinforced resin layer not including the high-angle helical layer. Accordingly, the high-pressure tank can be reinforced without forming a high-angle helical layer, and the amount of fiber used can be reduced.
- FIG. 1 is a view for explaining a configuration of a high-pressure tank 10 as an embodiment of the present invention.
- FIG. 1A is a cross-sectional view of the high-pressure tank 10.
- FIG. 1B is a partially enlarged cross-sectional view of FIG. 1A, and illustration of a fiber reinforced resin layer 50 described later is omitted.
- the high-pressure tank 10 includes a liner 40, a fiber reinforced resin layer 50 that covers the surface of the liner 40, and two base parts 14. As shown in FIG. As for the liner 40, the nozzle
- the liner 40 is a portion also referred to as an inner shell or an inner container of the high-pressure tank 10 and has a space portion 25 for storing a fluid therein.
- the liner 40 has a gas barrier property and suppresses permeation of gas such as hydrogen gas to the outside.
- the liner 40 is manufactured using a synthetic resin such as a nylon resin or a polyethylene resin, or a metal such as stainless steel. In this embodiment, the liner 40 is integrally formed using a nylon resin.
- the fiber reinforced resin layer 50 is a layer in which a thermosetting resin is reinforced with fibers, and is formed by winding fibers around the surface of the liner 40 by a filament winding method (hereinafter also referred to as “FW method”). .
- the fiber reinforced resin layer 50 has a configuration in which a plurality of fibers are stacked.
- the FW method is a method in which a reinforcing fiber impregnated with a thermosetting resin is wound around a mandrel (in this embodiment, a liner 40) to thermoset the thermosetting resin.
- the fiber winding method will be described later.
- the thermosetting resin an epoxy resin, a polyester resin, a polyamide resin, or the like can be used. In this embodiment, an epoxy resin is used.
- inorganic fibers such as metal fibers, glass fibers, carbon fibers, and alumina fibers, synthetic organic fibers such as aramid fibers, or various natural organic fibers such as cotton can be used.
- a fiber may be used independently and may be used in mixture of 2 or more types.
- carbon fibers are used as the reinforcing fibers.
- the high-pressure tank 10 includes a substantially cylindrical cylindrical portion 20 and dome-shaped dome portions 30 located on both sides of the cylindrical portion 20.
- the dome part 30 is reduced in diameter in the direction of the central axis AX of the liner cylindrical part 42 as the distance from the cylindrical part 20 increases.
- the portion with the smallest diameter is opened, and the base portion 14 is inserted into the opening.
- the liner 40 has a cylindrical liner cylindrical portion 42 and dome-shaped liner dome portions 44 positioned on both sides of the liner cylindrical portion 42.
- the liner dome portion 44 is reduced in diameter in the direction of the central axis AX of the liner cylindrical portion 42 as the distance from the liner cylindrical portion 42 increases.
- the outer surface of the liner dome portion 44 is an isotonic curved surface.
- the liner cylindrical portion 42 and the liner dome portion 44 are formed so that the tangent line of the outer surface is discontinuous at the boundary portion between the liner cylindrical portion 42 and the liner dome portion 44.
- the liner 40 is formed so that the tangent lines of the outer surfaces of the portions 42 and 44 at the boundary portion between the liner cylindrical portion 42 and the liner dome portion 44 are not the same.
- the liner 40 so that the tangent line 44f of the outer surface of the liner dome portion 44 is inclined at an angle ⁇ (23 ° in this embodiment) with respect to the tangent line 42f of the outer surface of the liner cylindrical portion 42. Is molded.
- FIG. 2 is a diagram showing various winding methods used for forming the fiber reinforced resin layer.
- 2A to 2C show a guide 15 for winding the fiber 51 on the liner 40.
- FIG. 2A to 2C show a guide 15 for winding the fiber 51 on the liner 40.
- FIG. 2A is a diagram for explaining hoop winding, and shows a state in which the fibers 51 are wound around the liner 40 by hoop winding.
- the “hoop winding” is a method of winding the fiber 51 so as to be substantially perpendicular to the central axis AX of the liner cylindrical portion 42 and moving the winding position (the position of the guide 15) in the central axis AX direction. That is, the “hoop winding” is a method of winding so that an angle ⁇ (“winding angle ⁇ ”) formed by the central axis AX and the winding direction of the fiber 51 is substantially perpendicular.
- the winding angle of the fiber 51 by hoop winding is substantially vertical” includes 90 ° and an angle of about 90 ° which can be generated by shifting the fiber winding position so that the fibers do not overlap each other.
- a layer formed by this hoop winding is called a “hoop layer”.
- FIG. 2B is a diagram for explaining low-angle helical winding, and shows a state in which the fiber 51 is wound around the liner 40 by the low-angle helical winding.
- “Low-angle helical winding” is a winding method having a winding angle ⁇ that is such that the winding direction of the fiber 51 is folded back at the liner dome portion 44 before the fiber 51 goes around the central axis AX in the liner cylindrical portion 42.
- a layer formed by this low-angle helical winding is called a “low-angle helical layer”.
- FIG. 2 (C) is a diagram for explaining high-angle helical winding, and shows a state in which the fiber 51 is wound around the liner 40 by the high-angle helical winding.
- “High-angle helical winding” refers to a winding method having a winding angle ⁇ that allows the fiber 51 to make at least one round of the central axis AX in the liner cylindrical portion 42 before the winding direction of the fiber 51 is turned back.
- a layer formed by this high-angle helical winding is called a “high-angle helical layer”.
- FIG. 3 is a diagram for explaining a method of manufacturing the high-pressure tank 10 of the embodiment.
- FIGS. 3A to 3B show only a part of the high-pressure tank 10 necessary for explanation.
- a liner 40 is prepared in which the tangent line on the outer surface is discontinuous at the boundary portion between the liner cylindrical portion 42 and the liner dome portion 44.
- a hoop layer 52 is laminated so as to cover the entire outer surface of the liner cylindrical portion 42.
- the hoop layer 52 laminated on the outer surface of the liner cylindrical portion 42 is referred to as an “outer surface hoop layer 52” when used separately from other hoop layers described later.
- the outer surface hoop layer 52 includes a hoop cylindrical portion 52a and a hoop dome portion 52b.
- the hoop cylindrical portion 52a has a configuration in which a predetermined number (13 layers in this embodiment) of fibers are laminated. That is, the hoop cylindrical portion 52a is a layer having a certain thickness.
- the hoop dome portion 52b is formed between the hoop cylindrical portion 52a and the liner dome portion 44 in the central axis AX direction.
- the hoop dome portion 52b is formed so that the thickness of the portion closer to the liner dome portion 44 side is smaller than the hoop cylindrical portion 52a side. That is, in the hoop dome portion 52b, the number of fibers stacked gradually decreases from the hoop cylindrical portion 52a toward the liner dome portion 44.
- the number of fibers stacked in the hoop dome portion 52b is changed so that the outer surfaces of the hoop dome portion 52b and the liner dome portion 44 form the same isotonic curved surface.
- the hoop dome so that the tangential slope of the outer surface of the hoop dome portion 52b and the tangential slope of the outer surface of the liner dome portion 44 coincide.
- the part 52b is formed.
- the object after the outer surface hoop layer 52 is laminated on the liner 40 is also referred to as a “hoop laminated liner 41”.
- the hoop laminated liner 41 has a substantially cylindrical laminated cylindrical portion 22 and a dome-shaped laminated dome portion 32 connected to both sides of the laminated cylindrical portion 22.
- the laminated dome portion 32 includes a liner dome portion 44 and a hoop dome portion 52b, and the outer surface thereof is an isotonic curved surface.
- the low-angle helical layer 54 is laminated so as to cover the entire outer surface of the liner dome 44 and the entire outer surface of the outer surface hoop layer 52.
- the low-angle helical layer 54 laminated on the outer surface of the outer surface hoop layer 52 is used in distinction from other low-angle helical layers described later, it is referred to as an “outer surface low-angle helical layer 54”.
- a plurality of hoop layers 56 and a plurality of low-angle helical layers 57 are further laminated outside the outer surface low-angle helical layer 54 in the fiber reinforced resin layer 50.
- FIG. 3C a plurality of hoop layers 56 and a plurality of low-angle helical layers 57 are schematically shown. The specific lamination
- the high-pressure tank 10 After the fiber 51 is wound around the liner 40 in the above procedure, the high-pressure tank 10 is heated to cure the thermosetting resin. Thereby, the high-pressure tank 10 of the present embodiment is manufactured.
- the high-pressure tank 10 after the fiber reinforced resin layer 50 is formed includes a substantially cylindrical cylindrical portion 20 and a dome portion 30 whose outer diameter is reduced as the distance from the cylindrical portion 20 increases.
- the cylindrical portion 20 includes a part of the liner cylindrical portion 42
- the dome portion 30 includes the other portion of the liner cylindrical portion 42 and the liner dome portion 44.
- the cylindrical portion 20 includes a hoop cylindrical portion 52a
- the dome portion 30 includes a hoop dome portion 52b (FIG. 3B).
- FIG. 4 is a diagram for explaining the effect of the high-pressure tank 10.
- FIG. 4 is a partial cross-sectional view of the high-pressure tank 10, and the outer surface hoop layer 52 necessary for explanation in the fiber reinforced resin layer 50 is hatched.
- the cylindrical portion 20 of the high-pressure tank 10 has hoop layers 52 and 56 and low-angle helical layers 54 and 57 (FIG. 3C), and the portion corresponding to the liner dome portion 44 in the dome portion 30 is a low-angle helical layer. 54 and 57 only (FIG. 3C). Therefore, the fiber reinforced resin layer 50 on the liner cylindrical portion 42 is thicker than the fiber reinforced resin layer 50 on the liner dome portion 44.
- the fiber reinforced resin layer 50 on the liner dome portion 44 is formed of only a low-angle helical layer. This is because the liner dome portion 44 can reinforce the circumferential direction and the central axis AX direction as viewed from the central axis AX with only the low-angle helical layer.
- the low-angle helical layer of the cylindrical portion 20 is mainly strengthened in the central axis AX direction, and a hoop layer for reinforcing the circumferential direction must be wound on the liner cylindrical portion 42. For this reason, the thickness of the fiber reinforced resin layer 50 differs between the cylindrical portion 20 and the dome portion 30.
- a portion that can become the shoulder portion 33 where stress concentration occurs after the high-pressure tank 10 is manufactured is reinforced by the outer surface hoop layer 52 (specifically, the hoop dome portion 52b).
- the shoulder part 33 can be reinforced without using a high-angle helical winding.
- the amount of fiber used can be reduced compared to a high-pressure tank in which a high-angle helical layer is formed to reinforce the shoulder portion 33, the high-pressure tank can be manufactured in a shorter time.
- the outer surface of the hoop dome portion 52b and the outer surface of the liner dome portion 44 form an isotonic curved surface (FIG. 3B).
- this makes it possible to form the low-angle helical layers 54 and 57 in accordance with a predetermined low-angle helical winding specification.
- the outer surface of the hoop dome portion 52b and the outer surface of the liner dome portion 44 form an isotonic curved surface, low-angle helical winding can be performed based on, for example, a mesh theory. Thereby, the reinforcement by a low angle helical layer can be aimed at reliably, and the strength reduction of the high pressure tank 10 whole can be suppressed.
- FIG. 5 is a diagram for explaining the high-pressure tank used in the simulation.
- FIG. 5A is a partial cross-sectional view for explaining a high-pressure tank 10a of a reference example.
- FIG. 5B is a partial cross-sectional view for explaining the high-pressure tank 10 of this embodiment.
- 5A and 5B are cross sections of the liners 40 and 40a and the fiber reinforced resin layers 50 and 50a in the vicinity of the boundary between the cylindrical portions 20 and 20a and the dome portions 30 and 30a in the high-pressure tanks 10 and 10a.
- FIG. The difference between the high pressure tank 10a of the reference example and the high pressure tank 10 of the present embodiment is the shape of the liners 40 and 40a and the configuration of the fiber reinforced resin layers 50 and 50a.
- the material of the base part 14 (FIG. 1A) and the fiber reinforced resin layers 50 and 50a (CFRP) is the same as that of the high pressure tank 10 of the present embodiment.
- FIG. 6 is a diagram showing a detailed configuration of the fiber reinforced resin layer 50a of the high-pressure tank 10a of the reference example.
- the layer number is a number assigned in order from the lower layer to each laminated fiber layer.
- “ ⁇ ” marks in FIG. 6 indicate the types of fiber layers formed in each layer.
- layer numbers 1 and 2 are low-angle helical layers
- layer number 3 is a hoop layer
- layer numbers 4 to 6 are high-angle helical layers.
- “one layer” means that a state where the region to be reinforced is covered without a gap is counted as one layer.
- the fiber reinforced resin layer 50a of the high pressure tank 10a of the reference example is 57 layers, and the thickness of the fiber reinforced resin layer 50a is 36.2 mm at maximum.
- the liner 40a of the high-pressure tank 10a of the reference example has a cylindrical liner cylindrical portion 42a and dome-shaped liner dome portions 44a located on both sides of the liner cylindrical portion 42a.
- the outer surface of the liner dome portion 44a is an isotonic curved surface.
- the high-pressure tank 10a of the reference example has an outer surface of the liner cylindrical portion 42a and the liner dome portion 44a at the boundary between the liner cylindrical portion 42a and the liner dome portion 44a.
- the tangent slope of the outer surface is the same.
- the fiber reinforced resin layer 50a of the reference example has a configuration in which a plurality of low-angle helical layers 54, high-angle helical layers 58, and hoop layers 56 are stacked.
- the low angle helical layer 54 is formed so as to cover the entire liner 40a.
- the high-angle helical layer 58 is formed so as to cover the entire liner cylindrical portion 42a and a part of the liner dome portion 44a.
- the high-angle helical layer 58 is not limited to the liner cylindrical portion 42a but the boundary portion 33 (shoulder portion 33) on the liner dome portion 44a side of the boundary portion between the liner cylindrical portion 42a and the liner dome portion 44a. Is also formed to cover.
- the high-pressure tank 10 a uses the high-angle helical layer 58 for reinforcing the shoulder portion 33.
- the hoop layer 56 is formed so as to cover the entire region of the liner cylindrical portion 42a in order to ensure the strength in the circumferential direction.
- the stacking order of the layers 54, 56, and 58 is as shown in FIG.
- the fiber reinforced resin layer 50 of FIG. A detailed configuration will be described.
- the layer number 1 to 13 is the outer surface hoop layer 52
- the layer numbers 14 and 15 are the outer surface low angle helical layer 54
- the layer numbers 16 to 19 are the hoop layer 56
- the layer numbers 20 and 21 are low.
- Angle helical layer 57, layer number 22-25 is the hoop layer 56
- layer numbers 26 and 27 are the low angle helical layer 57
- layer numbers 28 to 30 are the hoop layer 56
- layer numbers 31 to 47 are the total of the low angle helical layer 57. It consists of 47 layers.
- the fiber reinforced resin layer 50 has a maximum thickness of 28.5 mm.
- FIG. 7 is a diagram for explaining the result of the strength analysis simulation of the reference example.
- the strength analysis simulation is a simulation when an internal pressure of 180 Mpa is applied to the high-pressure tank 10a.
- the simulation was performed using the finite element method.
- the horizontal axis of the graph of FIG. 7A is a direction from the center portion of the liner cylindrical portion 42a toward the base portion 14 (FIG. 1A) and along the outer surface of the high-pressure tank 10a.
- the distance X from the center part of the cylindrical part 42a is shown.
- the vertical axis of the graph of FIG. 7A indicates the fiber direction strain (hereinafter referred to as “fiber strain”) of the hoop layer 56 and the high-angle helical layer 58 (FIG.
- fiber strain fiber direction strain
- FIG. 7B is a schematic cross-sectional view of the high-pressure tank 10a corresponding to the distance X shown in FIG.
- a part of the liner dome portion 44a of the high-angle helical layer 58 and a stacking range at the liner cylindrical portion 42a are conceptually indicated by broken lines.
- the shoulder portion 33 has a smaller fiber direction strain (fiber strain) than the central portion of the high-pressure tank 10a. That is, the shoulder 33 is reinforced by the high-angle helical layer 58, thereby reducing the possibility that the rupture start point of the high-pressure tank 10a becomes the shoulder 33.
- FIG. 8 is a diagram for explaining the result of the strength analysis simulation of the example.
- the strength analysis simulation is a simulation when an internal pressure of 180 Mpa is applied to the high-pressure tank 10. The simulation was performed using the finite element method.
- the horizontal axis and vertical axis of the graph in FIG. 8A are as described in FIG. However, FIG. 8A shows the magnitude of strain in the fiber direction of the hoop layers 52 and 56 (FIG. 5S).
- FIG. 8B is a schematic cross-sectional view of the high-pressure tank 10 corresponding to the distance X shown in FIG. In FIG. 8B, the stacking range of the outer surface hoop layer 52 at the liner cylindrical portion 42 is conceptually indicated by a broken line.
- the high-pressure tank 10 of the example manufactured without using the high-angle helical layer 58 is similar to the high-pressure tank 10a of the reference example manufactured using the high-angle helical layer 58.
- the fiber strain is smaller in the portion 33 than in the central portion of the high-pressure tank 10. That is, it can be seen that the high-pressure tank 10 of the present embodiment can reinforce the shoulder portion 33 by forming the outer surface hoop layer 52.
- the fibers of the hoop dome portion 52b are configured so that the tangential inclination of the outer surface of the hoop dome portion 52b matches the inclination of the tangent line of the outer surface of the liner dome portion 44 (see FIG. 3 (B)), but is not limited to this.
- the outer surface hoop layer forms an angle smaller than an angle ⁇ formed by the tangent line 42f on the outer surface of the liner cylindrical portion 42 and the tangent line 44f on the outer surface of the liner dome portion 44. 52 may be formed.
- the curved surface formed by the outer surface of the hoop dome portion 52b and the curved surface formed by the outer surface of the liner dome portion 44 may not be the same.
- the shoulder portion 33 can be reinforced by the outer surface hoop layer 52 which is a hoop layer, as in the above embodiment.
- the thickness of the hoop dome portion 52b is changed by changing the number of fibers so that the outer surface of the hoop dome portion 52b forms a constant-tension curved surface (FIG. 3B).
- the thickness of the hoop dome portion 52b may be changed by changing the thickness of the fiber. That is, the hoop dome portion 52b shown in FIG. 3B may be configured by gradually decreasing the thickness of the fiber from the hoop cylindrical portion 52a toward the liner dome portion 44. Even if it does in this way, the shoulder part 33 can be reinforced with the outer surface hoop layer similarly to the said Example.
- the number of laminated fibers of the hoop cylindrical portion 52a in the outer surface hoop layer 52 is 13, but the present invention is not limited to this.
- the type of fiber used, the number of layers other than the outer surface hoop layer 52 (for example, the hoop layer 56, the low angle helical layers 54, 57), the winding angle of the low angle helical layers 54, 57, the fiber type According to the specifications, the number of fibers stacked on the hoop cylindrical portion 52a and the hoop dome portion 52b of the outer surface hoop layer 52 is determined so that the fiber strain of the shoulder portion 33 is smaller than the fiber strain of the central portion of the high-pressure tank 10. be able to.
- the outer surface of the hoop dome portion 52b and the outer surface of the liner dome portion 44 have the same isotonic curved surface at the boundary portion between the outer surface hoop layer 52 and the liner dome portion 44.
- the inclination angle ⁇ of the liner 40 (FIG. 3A) can be determined so as to form In the high-pressure tank 10 using CFRP as the fiber reinforced resin layer of the present embodiment, it is preferable to set the inclination angle ⁇ to 20 ° or more. By doing so, it is possible to form the fiber reinforced resin layer 50 that can more reliably make the fiber strain of the shoulder portion 33 smaller than the fiber strain of the central portion of the high-pressure tank 10.
- the high-pressure tank 10 to which the present invention is applied can be used for storing a fluid higher than the normal pressure because the shoulder portion 33 is reinforced.
- it can be used as a hydrogen tank for storing high-pressure hydrogen gas, or as a natural gas tank for storing high-pressure natural gas.
- these gas tanks may be mounted on various moving bodies such as vehicles, ships, and airplanes and used as a fuel gas source. Furthermore, these gas tanks may be used as stationary gas tanks.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Moulding By Coating Moulds (AREA)
- Pressure Vessels And Lids Thereof (AREA)
Abstract
Description
適用例2に記載の高圧タンクによれば、フープドーム部について、所定方向に向かうにしたがって厚みを小さくすることで、フープ層とライナードーム部の境界部において、フープ層の外表面がライナードーム部の外表面に対し所定角度よりも小さい角度を成すフープ層を容易に形成することができる。
適用例3に記載の高圧タンクによれば、フープドーム部について、所定の方向に向かうにしたがって繊維の積層数を少なくすることで、フープ層とライナードーム部の境界部において、フープ層の外表面がライナードーム部の外表面に対し所定角度よりも小さい角度を成すフープ層を容易に形成することができる。
適用例4に記載の高圧タンクによれば、フープ層とライナードーム部との境界部において、フープ層の外表面の接線の傾きと前記ライナードーム部の外表面の接線の傾きとが一致することで、フープ層とライナードーム部にまたがってさらに繊維を巻き付ける場合にも、巻き付けをよりスムーズに行うことができる。これによって、強度確保の点でより好ましい繊維の巻き付けを行うことができ、高圧タンクの強度低下をより抑制することができる。
適用例5に記載の高圧タンクによれば、フープ層とライナードーム部にまたがるヘリカル層の形成をスムーズに行うことができ、ヘリカル層による高圧タンクの補強を確実に図ることができる。
適用例6に記載の高圧タンクによれば、高角度ヘリカル層を含まない繊維強化樹脂層により、高圧タンクの円筒部とドーム部の肩部を含む境界部分を補強している。これにより、高角度ヘリカル層を形成することなく、高圧タンクを補強できると共に、繊維使用量を低減することができる。
A.実施例:
B.変形例:
A-1.全体構成:
図1は、本発明の実施例としての高圧タンク10の構成を説明するためのである。図1(A)は、高圧タンク10の断面図である。また、図1(B)は、図1(A)の部分拡大断面図であり、後述する繊維強化樹脂層50の図示は省略している。
繊維強化樹脂層50の構成を説明する前に、図2を用いて、樹脂強化樹脂層を形成する際に用いられる一般的な繊維の巻き付け方法について説明する。図2は、繊維強化樹脂層を成形するために用いられる種々の巻き付け方法を示した図である。図2(A)~(C)には、繊維51をライナー40上に巻き付けるためのガイド15が図示されている。
次に、本実施例の高圧タンク10が、高角度ヘリカル層を用いて補強を行った参考例の高圧タンク10aと同様に肩部33の補強ができていることを示したシミュレーションについて以下に説明する。
なお、上記実施例における構成要素の中の、特許請求の範囲の独立項に記載した要素以外の要素は、付加的な要素であり、適宜省略可能である。また、本発明の上記実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態において実施することが可能であり、例えば、次のような変形も可能である。
上記実施例では、フープドーム部52bの外表面の接線の傾きと、ライナードーム部44の外表面の接線の傾きとが一致するように、フープドーム部52bの繊維が構成されていたが(図3(B))、これに限定されるものではない。すなわち、図3(A)に示す、ライナー円筒部42の外表面の接線42fと、ライナードーム部44の外表面の接線44fにより形成される角度θよりも小さい角度を成すように外表面フープ層52を形成すれば良い。例えば、フープドーム部52bの外表面が形成する曲面と、ライナードーム部44の外表面が形成する曲面が同一でなくても良い。このようにしても、上記実施例と同様に、肩部33をフープ層である外表面フープ層52で補強することができる。
上記実施例では、フープドーム部52bの外表面が等張力曲面を形成するように、フープドーム部52bにおいて繊維の積層数を変えて厚みを変化させたが(図3(B))、積層数を変化させることに代えて、繊維の太さを変化させることでフープドーム部52bの厚さを変化させても良い。すなわち、図3(B)に示すフープドーム部52bは、フープ円筒部52aからライナードーム部44に向かうにしたがって繊維の太さを次第に小さくすることで構成されても良い。このようにしても、上記実施例と同様に、肩部33を外表面フープ層で補強することができる。
上記実施例では、外表面フープ層52のうちフープ円筒部52aの繊維の積層数は13であったが、これに限定されるものではない。用いる繊維の種類や、外表面フープ層52以外の層(例えば、フープ層56、低角度ヘリカル層54,57)の積層数や、低角度ヘリカル層54,57の巻き付け角度、繊維の種類等の仕様に応じて、肩部33の繊維ひずみが高圧タンク10の中央部の繊維ひずみより小さくなるように、外表面フープ層52のフープ円筒部52aとフープドーム部52bの繊維の積層数を決定することができる。また、外表面フープ層52の積層仕様に応じて、外表面フープ層52とライナードーム部44の境界部において、フープドーム部52bの外表面と、ライナードーム部44の外表面が同じ等張力曲面を形成するように、ライナー40の傾斜角度θ(図3(A))を決定することができる。なお、本実施例の繊維強化樹脂層としてCFRPを用いた高圧タンク10では、傾斜角度θを20°以上に設定することが好ましい。こうすることで、肩部33の繊維ひずみを高圧タンク10中央部の繊維ひずみよりも小さくすることをより確実に可能とする繊維強化樹脂層50を形成できるからである。
本発明を適用した高圧タンク10は、肩部33が補強されているため常圧よりも高い流体を貯蔵するために用いることができる。例えば、高圧の水素ガスを貯蔵するための水素タンクとして用いたり、高圧の天然ガスを貯蔵するための天然ガスタンクとして用いることができる。また、これらのガスタンクを車両、船舶、航空機などの各種移動体に搭載して燃料ガス源として用いても良い。さらには、これらのガスタンクを定置型ガスタンクとして用いても良い。
14…口金部
14a…開口部
15…ガイド
20…円筒部
22…積層円筒部
30…ドーム部
32…積層ドーム部
33…境界部分(肩部)
40,40a…ライナー
41…フープ積層ライナー
42…ライナー円筒部
42a…ライナー円筒部
42f…接線
44…ライナードーム部
44a…ライナードーム部
44f…接線
50…繊維強化樹脂層
50a…繊維強化樹脂層
51…繊維
52…外表面フープ層
52…フープ層
52a…フープ円筒部
52b…フープドーム部
54…低角度ヘリカル層(外表面低角度ヘリカル層)
56…フープ層
57…低角度ヘリカル層
58…高角度ヘリカル層
AX…中心軸
Claims (7)
- 流体を内部に貯蔵するための高圧タンクであって、
ライナーと、
繊維を含み、前記ライナーの表面を覆う繊維強化樹脂層と、を備え、
前記ライナーは、
円筒状のライナー円筒部と、
前記ライナー円筒部の両側にそれぞれ接続されたドーム状のライナードーム部であって、外表面が前記ライナー円筒部の外表面に対して所定角度傾斜して前記ライナー円筒部に接続されているライナードーム部と、を有し、
前記繊維強化樹脂層は、
前記ライナー円筒部の外表面を覆うように前記ライナー円筒部の外表面上に形成されたフープ層であって、前記繊維を前記ライナー円筒部の中心軸に対して略垂直になるように巻き付けるフープ巻きにより形成されたフープ層を有し、
前記フープ層は、
前記ライナードーム部との境界部において、前記フープ層の外表面が前記ライナードーム部の外表面に対して前記所定角度よりも小さい角度を成すように形成されている、高圧タンク。 - 請求項1に記載の高圧タンクであって、
前記フープ層は、
一定の厚みを有するフープ円筒部と、
前記フープ円筒部と前記ライナードーム部の間に位置するフープドーム部であって、前記フープ円筒部から前記ライナードーム部に向かうにしたがって、厚みが前記一定の厚みから次第に小さくなるフープドーム部と、を有する、高圧タンク。 - 請求項1又は請求項2に記載の高圧タンクであって、
前記フープ円筒部は、前記繊維を所定数積層することで形成され、
前記フープドーム部は、前記フープ円筒部から前記ライナードーム部に向かうにしたがって、前記繊維の積層数を前記所定数から次第に少なくすることで形成される、高圧タンク。 - 請求項1乃至請求項3のいずれか1項に記載の高圧タンクであって、
前記境界部において、前記フープ層の外表面の接線の傾きと前記ライナードーム部の外表面の接線の傾きとが一致するように、前記フープ層は形成される、高圧タンク。 - 請求項1乃至請求項4のいずれか1項に記載の高圧タンクであって、
前記繊維強化樹脂層は、さらに、
前記フープ層の外表面上と前記ライナードーム部の外表面上に形成されたヘリカル層であって、前記フープ層上において前記ヘリカル層の前記繊維が前記中心軸を一周する前に前記ライナードーム部において前記繊維の巻き付け方向が折り返されるヘリカル巻きにより形成されるヘリカル層を含む、高圧タンク。 - 請求項5に記載の高圧タンクであって、
前記繊維強化樹脂層は、
前記フープ巻きにより形成される第1種の層と、前記ヘリカル巻きにより形成される第2種の層とからなる、高圧タンク。 - 流体を内部に貯蔵するための高圧タンクの製造方法であって、
(a)円筒状のライナー円筒部と、前記ライナー円筒部の両側にそれぞれ接続されたドーム状の2つのライナードーム部であって、外表面が前記ライナー円筒部の外表面に対して所定角度傾斜して前記ライナー円筒部に接続されているライナードーム部と、を有する、ライナーを準備する工程と、
(b)前記ライナーの表面を覆うように、繊維を含む繊維強化樹脂層を前記ライナーに形成する工程と、を備え、
前記工程(b)は、
前記繊維を前記ライナー円筒部の中心軸に対して略垂直に巻き付けるフープ巻きにより前記ライナー円筒部の外表面を覆うようにフープ層を形成する工程であって、前記フープ層と前記ライナードーム部との境界部において、前記フープ層の外表面が前記ライナードーム部の外表面に対して前記所定角度よりも小さい角度を成すように前記フープ層を形成する工程を含む、製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/003820 WO2011154994A1 (ja) | 2010-06-08 | 2010-06-08 | 高圧タンクおよび高圧タンクの製造方法 |
US13/701,856 US9879825B2 (en) | 2010-06-08 | 2010-06-08 | High-pressure tank and manufacturing method of high-pressure tank |
EP10852836.5A EP2581638B1 (en) | 2010-06-08 | 2010-06-08 | High-pressure tank and manufacturing method of high pressure tank. |
CN201080067303.5A CN102939496B (zh) | 2010-06-08 | 2010-06-08 | 高压罐及高压罐的制造方法 |
JP2012519136A JP5408351B2 (ja) | 2010-06-08 | 2010-06-08 | 高圧タンクおよび高圧タンクの製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/003820 WO2011154994A1 (ja) | 2010-06-08 | 2010-06-08 | 高圧タンクおよび高圧タンクの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011154994A1 true WO2011154994A1 (ja) | 2011-12-15 |
Family
ID=45097629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/003820 WO2011154994A1 (ja) | 2010-06-08 | 2010-06-08 | 高圧タンクおよび高圧タンクの製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9879825B2 (ja) |
EP (1) | EP2581638B1 (ja) |
JP (1) | JP5408351B2 (ja) |
CN (1) | CN102939496B (ja) |
WO (1) | WO2011154994A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160341359A1 (en) * | 2015-05-21 | 2016-11-24 | Toyota Jidosha Kabushiki Kaisha | High pressure tank, method of manufacturing high pressure tank and method of designing liner shape |
US9840048B2 (en) | 2011-02-02 | 2017-12-12 | Toyota Jidosha Kabushiki Kaisha | Manufacturing method for high-pressure tank, and high-pressure tank |
JP2018025287A (ja) * | 2016-08-09 | 2018-02-15 | 現代自動車株式会社Hyundai Motor Company | 高圧容器 |
JP2019019954A (ja) * | 2017-07-21 | 2019-02-07 | トヨタ自動車株式会社 | 高圧タンクの製造方法 |
JP2019510911A (ja) * | 2016-02-02 | 2019-04-18 | エンリッチメント テクノロジー カンパニー リミテッド ツヴァイクニーデルラッスング ドイチュラント | 円筒状回転体 |
JPWO2018066293A1 (ja) * | 2016-10-04 | 2019-06-24 | 八千代工業株式会社 | 圧力容器 |
DE102018129757A1 (de) | 2017-12-27 | 2019-06-27 | Toyota Jidosha Kabushiki Kaisha | Tank |
JP2020520828A (ja) * | 2017-05-19 | 2020-07-16 | エンプロックス バー.ワー. | ポーラーキャップ補強圧力容器 |
CN114646015A (zh) * | 2020-12-17 | 2022-06-21 | 丰田自动车株式会社 | 高压罐及其制造方法 |
JP7517303B2 (ja) | 2021-10-18 | 2024-07-17 | トヨタ自動車株式会社 | 高圧タンク及びその製造方法 |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140291048A1 (en) * | 2013-03-28 | 2014-10-02 | GM Global Technology Operations LLC | Tank for storing compressed natural gas |
JP5999039B2 (ja) * | 2013-07-10 | 2016-09-28 | トヨタ自動車株式会社 | 高圧タンクおよび高圧タンクの製造方法 |
US9562646B2 (en) * | 2013-07-12 | 2017-02-07 | Ut-Battelle, Llc | Hydrogen storage container |
DE102016113782B4 (de) * | 2015-10-08 | 2022-03-24 | Toyota Jidosha Kabushiki Kaisha | Verfahren zum Herstellen eines Hochdrucktanks |
JP6512153B2 (ja) * | 2015-10-08 | 2019-05-15 | トヨタ自動車株式会社 | 高圧タンクの製造方法 |
DE202016100754U1 (de) * | 2016-02-12 | 2016-02-23 | Enrichment Technology Company Ltd. Zweigniederlassung Deutschland | Polkappenverstärkter Druckbehälter |
JP6713920B2 (ja) * | 2016-12-08 | 2020-06-24 | トヨタ自動車株式会社 | 高圧タンク |
KR102322373B1 (ko) * | 2017-05-26 | 2021-11-05 | 현대자동차주식회사 | 후프층 및 헬리컬층이 와인딩된 고압용기 |
JP6881147B2 (ja) * | 2017-08-10 | 2021-06-02 | トヨタ自動車株式会社 | 高圧容器及び胴体補強層巻き付け方法 |
JP6801620B2 (ja) * | 2017-09-27 | 2020-12-16 | トヨタ自動車株式会社 | 高圧タンクの製造方法 |
KR102429178B1 (ko) * | 2017-11-20 | 2022-08-03 | 현대자동차주식회사 | 곡면 형상 라이너를 포함하는 고압용기 |
US11746956B2 (en) * | 2017-12-26 | 2023-09-05 | Honda Motor Co., Ltd. | High-pressure tank liner and method of manufacturing same |
EP3740712B1 (de) * | 2018-01-19 | 2023-04-19 | Linde GmbH | Kryogenbehälter |
DE102018110049B4 (de) * | 2018-04-26 | 2020-07-02 | Nproxx B.V. | Verfahren zur Herstellung eines faserverstärkten Druckbehälters mit Polkappenverstärkung |
JP6927139B2 (ja) * | 2018-05-10 | 2021-08-25 | トヨタ自動車株式会社 | フィラメントワインディング装置、フィラメントワインディングの設計方法およびタンクの製造方法 |
CN108870062A (zh) * | 2018-06-07 | 2018-11-23 | 浙江大学 | 一种变刚度变强度复合材料高压气瓶缠绕方法 |
JP7014060B2 (ja) * | 2018-06-21 | 2022-02-01 | トヨタ自動車株式会社 | 高圧タンク、高圧タンク搭載装置、および高圧タンクの製造方法 |
JP7176287B2 (ja) * | 2018-08-09 | 2022-11-22 | トヨタ自動車株式会社 | 圧力容器及びその製造方法 |
JP2020034121A (ja) * | 2018-08-31 | 2020-03-05 | トヨタ自動車株式会社 | タンクの製造方法 |
JP2020034125A (ja) * | 2018-08-31 | 2020-03-05 | トヨタ自動車株式会社 | タンクの製造方法 |
KR101987595B1 (ko) * | 2018-09-28 | 2019-06-10 | 현대자동차주식회사 | 고압 용기 |
JP7351077B2 (ja) | 2018-09-28 | 2023-09-27 | トヨタ自動車株式会社 | 高圧タンク |
EP3872386A4 (en) | 2018-10-23 | 2022-07-27 | Yachiyo Industry Co., Ltd. | PRESSURE VESSEL |
JP7135727B2 (ja) * | 2018-10-30 | 2022-09-13 | トヨタ自動車株式会社 | 高圧タンク |
JP6815364B2 (ja) * | 2018-11-02 | 2021-01-20 | 本田技研工業株式会社 | 高圧容器 |
JP7059963B2 (ja) * | 2019-02-13 | 2022-04-26 | 株式会社豊田自動織機 | 圧力容器の製造方法及び圧力容器の製造装置 |
JP7259734B2 (ja) * | 2019-12-25 | 2023-04-18 | トヨタ自動車株式会社 | 高圧タンクの製造方法 |
US11649927B2 (en) | 2020-01-30 | 2023-05-16 | Toyota Motor Engineering & Manufacturing North America, Inc. | Dual-inlet valve refilling of a single fuel cylinder |
JP7287293B2 (ja) * | 2020-01-30 | 2023-06-06 | トヨタ自動車株式会社 | 高圧タンクの製造方法 |
JP7196871B2 (ja) * | 2020-02-19 | 2022-12-27 | トヨタ自動車株式会社 | 高圧タンク |
JP7091407B2 (ja) * | 2020-09-08 | 2022-06-27 | 本田技研工業株式会社 | 高圧容器 |
KR102450257B1 (ko) * | 2020-11-10 | 2022-10-05 | 주식회사 에스첨단소재 | 소직경 장축 수소저장탱크의 라이너 |
JP7359167B2 (ja) * | 2021-01-26 | 2023-10-11 | トヨタ自動車株式会社 | 高圧タンクおよび高圧タンクの製造方法 |
JP7223802B2 (ja) * | 2021-03-31 | 2023-02-16 | 本田技研工業株式会社 | 高圧タンク及びその製造方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0666450A1 (de) * | 1994-01-31 | 1995-08-09 | Urenco Deutschland GmbH | Druckbehälter |
JP2005113971A (ja) * | 2003-10-03 | 2005-04-28 | Fuji Heavy Ind Ltd | 耐圧容器用ライナ |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3047191A (en) * | 1957-11-26 | 1962-07-31 | Hercules Powder Co Ltd | Filament wound vessels and methods for forming same |
US3969812A (en) * | 1974-04-19 | 1976-07-20 | Martin Marietta Corporation | Method of manufacturing an overwrapped pressure vessel |
SE463834B (sv) * | 1988-03-15 | 1991-01-28 | Asea Plast Ab | Tryckkaerl |
US5385263A (en) * | 1994-05-02 | 1995-01-31 | Aerojet-General Corporation | Compressed gas mobile storage module and lightweight composite cylinders |
FR2720142B1 (fr) * | 1994-05-20 | 1996-06-28 | Inst Francais Du Petrole | Structure légère PA-12-carbone pour le stockage de fluides sous pression. |
JP3527737B1 (ja) | 2003-03-25 | 2004-05-17 | サムテック株式会社 | 高剛性繊維を用いた高圧タンク及びその製造方法 |
JP5118806B2 (ja) | 2005-06-01 | 2013-01-16 | トヨタ自動車株式会社 | 高圧タンク |
DE102006004121A1 (de) | 2006-01-25 | 2007-07-26 | Hydac Technology Gmbh | Druckbehälter |
JP2008032088A (ja) * | 2006-07-27 | 2008-02-14 | Toyota Motor Corp | タンク |
JP4849324B2 (ja) | 2006-08-15 | 2012-01-11 | トヨタ自動車株式会社 | 高圧タンク |
US8602250B2 (en) * | 2009-05-04 | 2013-12-10 | GM Global Technology Operations LLC | Storage vessel and method of forming |
CN201475632U (zh) | 2009-08-21 | 2010-05-19 | 北京科泰克科技有限责任公司 | 大容积碳纤维全缠绕铝胆储氢复合气瓶 |
-
2010
- 2010-06-08 EP EP10852836.5A patent/EP2581638B1/en active Active
- 2010-06-08 CN CN201080067303.5A patent/CN102939496B/zh active Active
- 2010-06-08 US US13/701,856 patent/US9879825B2/en active Active
- 2010-06-08 WO PCT/JP2010/003820 patent/WO2011154994A1/ja active Application Filing
- 2010-06-08 JP JP2012519136A patent/JP5408351B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0666450A1 (de) * | 1994-01-31 | 1995-08-09 | Urenco Deutschland GmbH | Druckbehälter |
JP2005113971A (ja) * | 2003-10-03 | 2005-04-28 | Fuji Heavy Ind Ltd | 耐圧容器用ライナ |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9840048B2 (en) | 2011-02-02 | 2017-12-12 | Toyota Jidosha Kabushiki Kaisha | Manufacturing method for high-pressure tank, and high-pressure tank |
CN106166845B (zh) * | 2015-05-21 | 2019-04-09 | 丰田自动车株式会社 | 高压罐、高压罐的制造方法、以及内衬形状的设计方法 |
DE102016108603A1 (de) | 2015-05-21 | 2016-11-24 | Toyota Jidosha Kabushiki Kaisha | Hochdrucktank, Herstellungsverfahren eines Hochdrucktanks und Entwurfsverfahren einer Auskleidungsgestalt |
CN106166845A (zh) * | 2015-05-21 | 2016-11-30 | 丰田自动车株式会社 | 高压罐、高压罐的制造方法、以及内衬形状的设计方法 |
US20160341359A1 (en) * | 2015-05-21 | 2016-11-24 | Toyota Jidosha Kabushiki Kaisha | High pressure tank, method of manufacturing high pressure tank and method of designing liner shape |
JP2019510911A (ja) * | 2016-02-02 | 2019-04-18 | エンリッチメント テクノロジー カンパニー リミテッド ツヴァイクニーデルラッスング ドイチュラント | 円筒状回転体 |
JP6994829B2 (ja) | 2016-08-09 | 2022-01-14 | 現代自動車株式会社 | 高圧容器 |
JP2018025287A (ja) * | 2016-08-09 | 2018-02-15 | 現代自動車株式会社Hyundai Motor Company | 高圧容器 |
US11333300B2 (en) | 2016-08-09 | 2022-05-17 | Hyundai Motor Company | High pressure tank |
JPWO2018066293A1 (ja) * | 2016-10-04 | 2019-06-24 | 八千代工業株式会社 | 圧力容器 |
JP2020520828A (ja) * | 2017-05-19 | 2020-07-16 | エンプロックス バー.ワー. | ポーラーキャップ補強圧力容器 |
JP7098261B2 (ja) | 2017-05-19 | 2022-07-11 | エンプロックス バー.ワー. | ポーラーキャップ補強圧力容器 |
JP2019019954A (ja) * | 2017-07-21 | 2019-02-07 | トヨタ自動車株式会社 | 高圧タンクの製造方法 |
DE102018129757A1 (de) | 2017-12-27 | 2019-06-27 | Toyota Jidosha Kabushiki Kaisha | Tank |
US11174990B2 (en) | 2017-12-27 | 2021-11-16 | Toyota Jidosha Kabushiki Kaisha | Tank |
DE102018129757B4 (de) | 2017-12-27 | 2022-01-20 | Toyota Jidosha Kabushiki Kaisha | Tank |
CN114646015A (zh) * | 2020-12-17 | 2022-06-21 | 丰田自动车株式会社 | 高压罐及其制造方法 |
JP7517303B2 (ja) | 2021-10-18 | 2024-07-17 | トヨタ自動車株式会社 | 高圧タンク及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US9879825B2 (en) | 2018-01-30 |
EP2581638A4 (en) | 2014-01-22 |
US20130087567A1 (en) | 2013-04-11 |
EP2581638A8 (en) | 2013-10-09 |
CN102939496A (zh) | 2013-02-20 |
EP2581638A1 (en) | 2013-04-17 |
EP2581638B1 (en) | 2015-11-11 |
CN102939496B (zh) | 2015-01-21 |
JPWO2011154994A1 (ja) | 2013-08-01 |
JP5408351B2 (ja) | 2014-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5408351B2 (ja) | 高圧タンクおよび高圧タンクの製造方法 | |
JP5621631B2 (ja) | 高圧タンクの製造方法、および、高圧タンク | |
JP5741006B2 (ja) | 高圧タンクの製造方法、および、高圧タンク | |
US8727174B2 (en) | Tank and manufacturing method thereof | |
EP3479004B1 (en) | Pressure vessel with a tape-based reinforcement structure | |
US8074826B2 (en) | Damage and leakage barrier in all-composite pressure vessels and storage tanks | |
US10436388B2 (en) | High-pressure container having hoop layers and helical layers | |
WO2016020972A1 (ja) | 高圧タンク及び高圧タンク製造方法 | |
CN114909598B (zh) | 高压容器 | |
JP2008169893A (ja) | 圧力容器及びその製造方法 | |
US11529780B2 (en) | Manufacturing method for high-pressure tank | |
JP2010116980A (ja) | 高圧タンクの設計方法 | |
KR102322371B1 (ko) | 실린더부가 보강된 압력 용기 | |
US20220196206A1 (en) | High-pressure tank and method for producing the same | |
KR20180119956A (ko) | 압력 용기의 제조 방법 | |
US11761583B2 (en) | Tank and method of manufacturing the same | |
JP6726408B2 (ja) | 高圧タンクの製造方法及び高圧タンク | |
JP2022144646A (ja) | 高圧タンク及びその製造方法 | |
US20240093834A1 (en) | Tank | |
JP2008057632A (ja) | 流体貯蔵タンク | |
JP2016125624A (ja) | 圧力容器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080067303.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10852836 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012519136 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010852836 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13701856 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |