WO2011152455A1 - リチウム含有複合酸化物の製造方法 - Google Patents

リチウム含有複合酸化物の製造方法 Download PDF

Info

Publication number
WO2011152455A1
WO2011152455A1 PCT/JP2011/062599 JP2011062599W WO2011152455A1 WO 2011152455 A1 WO2011152455 A1 WO 2011152455A1 JP 2011062599 W JP2011062599 W JP 2011062599W WO 2011152455 A1 WO2011152455 A1 WO 2011152455A1
Authority
WO
WIPO (PCT)
Prior art keywords
source
lithium
solvent
zirconium
composite oxide
Prior art date
Application number
PCT/JP2011/062599
Other languages
English (en)
French (fr)
Inventor
西島 主明
耕司 大平
俊次 末木
正悟 江▲崎▼
田中 功
幸典 小山
勝久 田中
晃司 藤田
俊介 村井
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201180026756.8A priority Critical patent/CN103038169B/zh
Priority to US13/701,273 priority patent/US8968936B2/en
Priority to CA2801280A priority patent/CA2801280C/en
Publication of WO2011152455A1 publication Critical patent/WO2011152455A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a lithium-containing composite oxide, and more particularly to a method for producing a lithium-containing composite oxide used as a positive electrode active material for a non-aqueous electrolyte secondary battery.
  • lithium secondary battery As a non-aqueous electrolyte secondary battery, a lithium secondary battery has been put into practical use and widely used. Further, in recent years, lithium secondary batteries are attracting attention not only as small-sized batteries for portable electronic devices but also as large-capacity devices for in-vehicle use and power storage. Therefore, demands for safety, cost, life, etc. are higher.
  • the lithium secondary battery has a positive electrode, a negative electrode, an electrolytic solution, a separator, and an exterior material as main components.
  • the positive electrode includes a positive electrode active material, a conductive material, a current collector, and a binder (binder).
  • a layered transition metal oxide typified by lithium cobaltate (LiCoO 2 ) is used as the positive electrode active material.
  • the layered transition metal oxide easily causes oxygen desorption at a relatively low temperature of about 150 ° C. in a fully charged state, and the thermal desorption reaction of the battery can occur due to the oxygen desorption. Therefore, when a battery having such a positive electrode active material is used for a portable electronic device, there is a risk that an accident such as heat generation or ignition of the battery may occur.
  • lithium-containing composite oxide such as lithium iron phosphate (LiFePO 4 ), which has a stable olivine structure and has an olivine structure that is safer than LiCoO 2 is expected. Since lithium iron phosphate does not contain cobalt having a low crustal abundance, there is also an advantage that it is relatively inexpensive. In addition, lithium iron phosphate has an advantage that it is structurally more stable than the layered transition metal oxide.
  • an object of the present invention is to provide a method for producing a lithium-containing composite oxide that can produce a lithium-containing composite oxide having a single-phase olivine structure.
  • the present inventors converted a lithium-containing composite oxide obtained by substituting part of the iron element and phosphorus element of LiFePO 4 with another element into a positive electrode active material. It has been found that the life of the battery is improved when used for.
  • the present invention is a method for producing a lithium-containing composite oxide represented by the following general formula (1), wherein a lithium source, an element M source, a phosphorus source, and an element X source as raw materials are dissolved in a solvent.
  • a step of preparing a solution, comprising at least a step of adding a phosphorus source after dissolving at least the element M source, a step of gelling the obtained solution, and a step of baking the obtained gel It is characterized by that.
  • Li x M y P 1-z X z O 4 (1) (Wherein, M is at least one element selected from the group consisting of Fe, Ni, Mn, Zr, Sn, Al and Y, and X is at least one selected from the group consisting of Si and Al)
  • the seeds are in the range of 0 ⁇ x ⁇ 2, 0.8 ⁇ y ⁇ 1.2, and 0 ⁇ z ⁇ 1.)
  • the raw material elements can be uniformly dispersed in the gel, it is possible to produce a lithium-containing composite oxide having a single-phase olivine structure while suppressing the generation of impurities.
  • a positive electrode active material for a lithium secondary battery that is excellent in safety and cost and that can extend the life of the battery.
  • FIG. 3 is an X-ray diffraction pattern showing the structure of a lithium-containing composite oxide obtained in Example 1.
  • FIG. 4 is an X-ray diffraction pattern showing the structure of a lithium-containing composite oxide obtained in Comparative Example 1.
  • FIG. 4 is a diagram showing an X-ray diffraction pattern showing a structure of a lithium-containing composite oxide obtained in Comparative Example 2.
  • FIG. 3 is an X-ray diffraction pattern showing the structure of a lithium-containing composite oxide obtained in Example 2.
  • FIG. 6 is a diagram showing an X-ray diffraction pattern showing a structure of a lithium-containing composite oxide obtained in Example 5.
  • FIG. It is a figure which shows the X-ray-diffraction pattern which shows the structure of the lithium containing complex oxide obtained in Example 7.
  • FIG. 3 is an X-ray diffraction pattern showing the structure of a lithium-containing composite oxide obtained in Example 10.
  • 6 is a diagram showing an X-ray diffraction pattern showing the structure of a lithium-containing composite oxide obtained in Example 11.
  • FIG. 6 is a diagram showing an X-ray diffraction pattern showing the structure of a lithium-containing composite oxide obtained in Example 12.
  • FIG. It is a figure which shows the X-ray-diffraction pattern which shows the structure of the lithium containing complex oxide obtained in Example 13.
  • Lithium-containing composite oxide The lithium-containing composite oxide that is the production target of the present invention is represented by the following general formula (1). Li x M y P 1-z X z O 4 (1)
  • M is at least one element selected from the group consisting of Fe, Ni, Mn, Zr, Sn, Al, and Y.
  • M contains Fe.
  • the valence for prescribing “y” in the general formula (1) means an average value.
  • X is at least one selected from the group consisting of Si and Al. Therefore, two types may be selected simultaneously. By selecting X from this group, it is possible to prevent physical stress (volume shrinkage expansion) of the lithium-containing composite oxide that accompanies repeated charge / discharge (Li insertion / desorption), so that the positive electrode active material having a longer lifespan Can provide. Furthermore, it is preferable to select at least Si that is more ionic than Al. By selecting Si, since the bond between the metal M and the oxygen constituting the lithium-containing composite oxide can be further strengthened, a positive electrode active material that is more resistant to physical stress can be provided.
  • X is in the range of 0 ⁇ x ⁇ 2. Further, x increases or decreases depending on the type of other elements constituting the lithium-containing composite oxide, charging, or discharging. Preferably, the range of x is 0.8 ⁇ x ⁇ 1.2.
  • y is in the range of 0.8 ⁇ y ⁇ 1.2. If it is this range, the lithium containing complex oxide which has the olivine structure which can be charged / discharged can be provided. Preferably, the range of y is 0.9 ⁇ y ⁇ 1.1.
  • Z is in the range of 0 ⁇ z ⁇ 1. If it is this range, the lithium containing complex oxide which has the olivine structure which can be charged / discharged can be provided. Preferably, the range of z is 0.1 ⁇ z ⁇ 0.5.
  • a particularly preferred lithium-containing composite oxide is Li x (Fe, Zr) y P 1-z Si z O 4 (0.8 ⁇ x ⁇ 1.2, 0.8 ⁇ y ⁇ 1.2, 0 ⁇ z ⁇ 0.5), Li x (Fe, Sn) y P 1-z Si z O 4 (0.8 ⁇ x ⁇ 1.2, 0.8 ⁇ y ⁇ 1.2, 0 ⁇ z ⁇ 0.5), Li x (Fe, Y) y P 1-z Si z O 4 (0.8 ⁇ x ⁇ 1.2, 0.8 ⁇ y ⁇ 1.2, 0 ⁇ z ⁇ 0.5), Li x (Fe, Ti) y P 1-z Si z O 4 (0.8 ⁇ x ⁇ 1.2, 0.8 ⁇ y ⁇ 1.2, 0 ⁇ z ⁇ 0.5), Li x (Fe, Nb) y P 1-z Si z O 4 (0.8 ⁇ x ⁇ 1.2, 0.8 ⁇ y
  • a preferable lithium-containing composite oxide is LiFe 1- ⁇ Zr ⁇ P 1-2 ⁇ Si 2 ⁇ O 4 (0 ⁇ ⁇ 0.25), It is.
  • the inclusion of Fe and Si can prevent physical stress (volume shrinkage expansion) of the lithium-containing composite oxide that accompanies repeated charge / discharge (Li insertion / desorption). Can provide material.
  • a cheaper raw material can be used for manufacture of lithium containing complex oxide by containing Fe.
  • Si has an action of strengthening the bond between iron and zirconium and oxygen.
  • the lithium-containing composite oxide is usually used in the form of particles.
  • the particle diameter of the primary particles is 1 ⁇ m or less, preferably 10 nm to 1 ⁇ m, in order to increase the efficiency of lithium ion insertion / extraction.
  • the lower limit of the primary particle size is about 10 nm, which is realistic in view of the efficiency of insertion / desorption and the manufacturing cost.
  • the particle size of the primary particles can be measured by direct observation with an SEM and a particle size distribution measuring device by a laser diffraction / scattering method.
  • the particle size of the secondary particles is 100 ⁇ m or less, preferably 10 nm to 100 ⁇ m, in order to increase the efficiency of lithium ion insertion / desorption.
  • the particle size of the secondary particles can be measured by direct observation with an SEM and a particle size distribution measuring device by a laser diffraction / scattering method.
  • the present invention is a method for producing a lithium-containing composite oxide of the above general formula (1), A step of preparing a solution by dissolving a raw material in a solvent (hereinafter referred to as a dissolution step), a step of gelling the obtained solution (hereinafter referred to as a gelation step), and a step of firing the obtained gel ( Hereinafter referred to as a firing step). If necessary, a step of removing the solvent from the gel obtained in the gelation step (hereinafter referred to as a drying step), a step of pulverizing the obtained gel (hereinafter referred to as a pulverization step), and baking. A step of mixing a carbon source substance into the previous gel (hereinafter referred to as a carbon source mixing step) can also be provided.
  • a carbon source mixing step can also be provided.
  • the lithium source, the element M source, the phosphorus source, and the element X source as raw materials are not particularly limited as long as they are compounds that can be dissolved in a solvent. These compounds are preferably compounds that dissolve in 10 mmol or more in 100 g of a solvent.
  • the substance serving as the lithium source is not particularly limited as long as it is a compound that can be a raw material for the positive electrode active material of the general formula (1), is soluble in a solvent, and does not inhibit the production method of the present invention.
  • Inorganic salts, hydroxides, organic acid salts, metal alkoxides of lithium and hydrates of these salts can be used.
  • the inorganic salt lithium carbonate (Li 2 CO 3 ) which is a salt with a weak acid (hereinafter referred to as a weak acid salt), lithium nitrate (hereinafter referred to as a strong acid salt) with a strong acid.
  • LiNO 3 lithium chloride
  • LiCl lithium chloride
  • organic salts include weak acetates such as lithium acetate (LiCH 3 COO) and lithium oxalate (COOLi) 2 .
  • metal alkoxide include lithium methoxide (LiOCH 3 ), lithium ethoxide (LiOC 2 H 5 ), lithium-n-propoxide (LiO-n-C 3 H 7 ), lithium-i-propoxide (LiO). -i-C 3 H 7 ), lithium-n-butoxide (LiO-n-C 4 H 9 ), lithium-t-butoxide (LiO-t-C 4 H 9 ), lithium-sec-butoxide (LiO-sec -C 4 H 9), and the like.
  • Hydrate may be sufficient about an inorganic salt and organic salt.
  • a weak acid salt or a strong acid salt is preferable from the viewpoint of being easy to produce a uniform solution in an air atmosphere and being inexpensive, and among them, lithium acetate or lithium nitrate is preferable.
  • the “homogeneous solution” refers to a state where no precipitate is observed by visual observation and the phase is not separated into two or more phases.
  • the weak acid salt anhydride When used as the lithium source, it is preferably dissolved after dissolving the iron source salt hydrate or the zirconium source salt hydrate because of its low solubility in ethanol.
  • the iron source salt hydrate or the zirconium source salt hydrate When the iron source salt hydrate or the zirconium source salt hydrate is dissolved before being added, it is preferably dissolved in water in advance.
  • an amount of water required to dissolve the weak acid salt anhydride may be added to ethanol.
  • the amount of water in which the anhydride of the weak acid salt is dissolved is preferably 1 to 100 times the number of moles of Li, more preferably 4 to 20 times.
  • anhydride of weak acid salt is dissolved in an arbitrary order in any combination of an iron source, a zirconium source, and a silicon source, a uniform solution can be obtained. After the obtained uniform solution is reacted in advance, the remaining raw materials may be added. It is preferable that the anhydride of the weak acid salt is previously reacted with the hydrate of the iron source salt. By reacting the anhydride of the weak acid salt and the hydrate of the iron source salt in advance, it is possible to suppress the formation of a precipitate when phosphoric acid is added.
  • the anhydride of the weak acid salt is preferably reacted in advance with tetramethoxysilane or tetraethoxysilane, and particularly preferably reacted with tetramethoxysilane.
  • tetramethoxysilane or tetraethoxysilane it is preferable to dissolve the anhydride of the weak acid salt in water, add ethanol, and then add tetramethoxysilane or tetraethoxysilane.
  • the reaction can be further promoted by heating from 30 ° C. to 60 ° C. after mixing them.
  • the heating time is not particularly limited, but about 30 minutes to 12 hours is appropriate.
  • the substance serving as the element M source is not particularly limited as long as it is a compound that can be a raw material for the positive electrode active material of the general formula (1), is soluble in a solvent, and does not inhibit the production method of the present invention.
  • Inorganic salts, hydroxides, organic acid salts, metal alkoxides and hydrates of these salts of the element M can be used.
  • M is at least one element selected from the group consisting of Fe, Ni, Mn, Zr, Sn, Al, and Y, and preferably contains at least Fe.
  • iron source as an inorganic salt, iron carbonate (II) (Fe (CO 3 )) which is a weak acid salt, iron nitrate (II) (Fe (NO 3 ) 2 ) which is a strong acid salt, iron nitrate (III) ) (Fe (NO 3 ) 3 ), iron (II) chloride (FeCl 2 ) and iron (III) chloride (FeCl 3 ).
  • iron (II) oxalate (FeC 2 O 4 ) iron (III) oxalate (Fe 2 (C 2 O 4 ) 3 ), iron (II) acetate (Fe) which are weak acid salts.
  • a strong acid salt hydrate is preferable, and iron nitrate (III) nonahydrate is particularly preferable.
  • zirconium source zirconium chloride (ZrCl 4 ), zirconium bromide (ZrBr 4 ), zirconium iodide (ZrI 4 ), zirconium oxychloride (ZrOCl) which is an oxyzirconium salt, as an inorganic salt, as an inorganic salt. 2 ) and zirconium oxynitrate (ZrO (NO 3 ) 2 ).
  • Examples of the metal alkoxide include zirconium methoxide (Zr (OCH 3 ) 4 ), zirconium ethoxide (Zr (OC 2 H 5 ) 4 ), zirconium-n-propoxide (Zr (On-C 3 H 7). 4 ), zirconium-i-propoxide (Zr (O-i-C 3 H 7 ) 4 ), zirconium-n-butoxide (Zr (On-C 4 H 8 ) 4 ), zirconium-t-butoxide (Zr (Ot-C 4 H 8 ) 4 ), zirconium-sec-butoxide (Zr (Ot-C 4 H 8 ) 4 ), and the like.
  • Zirconium halides are preferable, and among them, zirconium chloride is preferable.
  • Zirconium halide can obtain a uniform solution even if it is dissolved in an arbitrary order in an arbitrary combination of a lithium source, an iron source, and a silicon source.
  • Zirconium halide is preferably reacted in advance with an iron source comprising a strong acid salt hydrate.
  • an iron source comprising a strong acid salt hydrate.
  • the zirconium halide is preferably reacted in advance with tetramethoxysilane or tetraethoxysilane, particularly preferably with tetramethoxysilane.
  • the substance serving as the phosphorus source is not particularly limited as long as it can be a raw material for the positive electrode active material of the general formula (1), is a compound that is soluble in a solvent and does not inhibit the production method of the present invention.
  • phosphoric acid H 3 PO 4
  • ammonium hydrogen phosphate (NH 4 ) 2 HPO 4 )
  • ammonium dihydrogen phosphate (NH 4 H 2 PO 4 )
  • phosphoric acid is preferable.
  • Phosphoric acid needs to be added after at least a lithium source, an iron source and a zirconium source are dissolved. This is because when phosphoric acid is mixed with lithium weak acid anhydride or zirconium halide, a precipitate is formed.
  • phosphoric acid may be added in excess. By adding phosphoric acid in excess, generation of impurities after firing and substitution of Fe with Li sites in the lithium composite oxide can be suppressed.
  • phosphoric acid is added in excess, it can be added excessively in the range of 5 to 20% by weight, more preferably in the range of 5 to 15% by weight with respect to the stoichiometric ratio of phosphoric acid.
  • the substance serving as the element X source is not particularly limited as long as it is a compound that can be a raw material for the positive electrode active material of the general formula (1), is soluble in a solvent, and does not inhibit the production method of the present invention.
  • a metal alkoxide of the element X can be used.
  • X is at least one element selected from the group consisting of Si and Al, and is preferably Si.
  • tetraethoxysilane Si (OC 2 H 5 ) 4
  • tetramethoxysilane Si (OCH 3 ) 4
  • methyltriethoxysilane CH 3 Si (OC 2 H 5 ) 3
  • Methyltrimethoxysilane CH 3 Si (OCH 3 ) 3
  • ethylmethoxysilane C 2 H 5 Si (OCH 3 ) 3
  • ethyltriethoxysilane C 2 H 5 Si (OC 2 H 5 ) 3
  • various silicon alkoxides Tetraethoxysilane or tetramethoxysilane is preferred.
  • Silicon alkoxide can obtain a uniform solution even if it is dissolved in an arbitrary order in any combination of a lithium source, an iron source and a zirconium source.
  • Water may be added to promote the reaction of silicon alkoxide. The amount of water added is 1 to 100 times, more preferably 2 to 20 times the number of moles of silicon. By adding water, hydrolysis proceeds and the reaction can be promoted. Silicon alkoxide can be pre-reacted with phosphoric acid.
  • the reaction is preferably carried out at 40 ° C. to 80 ° C., more preferably 50 ° C. to 80 ° C.
  • the reaction is preferably performed at 20 ° C to 60 ° C.
  • a weak acid anhydride serving as a lithium source, it is preferable that (number of moles of Li as a lithium source / number of moles of Si as a silicon source) ⁇ 2.
  • the solvent at least one alcohol selected from the group consisting of methanol, ethanol, n-propanol, isopropanol, and n-butanol is used. Ethanol is preferable.
  • a mixed solvent with water may be used as necessary.
  • the amount of the solvent is not particularly limited as long as all raw materials can be dissolved. However, in consideration of the solvent recovery cost, the amount of the solvent is in the range of 1 to 100 times the molar ratio, more preferably in the range of 2 to 15 times the molar ratio with respect to the total moles of all raw materials. .
  • the raw material elements can be uniformly dispersed in the gel, it is possible to produce a lithium-containing composite oxide having a single-phase olivine structure while suppressing the generation of impurities.
  • the silicon source may be dissolved before the phosphorus source is dissolved, or may be dissolved after the phosphorus source is dissolved.
  • This method consists of the above general formula: LiFe 1- ⁇ Zr ⁇ P 1-2 ⁇ Si 2 ⁇ O 4 (0 ⁇ ⁇ 0.25), It can use suitably for manufacture of the lithium containing complex oxide represented by these.
  • the order of dissolving the raw material substances refers to the order of the raw material substances to be charged when the raw material substances are sequentially added to the solvent, but the solution in which a plurality of raw material substances are dissolved in the solvent in advance is used.
  • the solution in which a plurality of raw material substances are dissolved in the solvent in advance is used.
  • the order of preparing the solvent in which the lithium source, the iron source and the zirconium source are dissolved is not particularly limited as long as the zirconium ions can be stabilized by the iron ions.
  • As a method of stabilizing zirconium ions with iron ions after dissolving strong iron salt hydrate in a solvent, dissolving zirconium halide, or after dissolving zirconium halide in the solvent, And a method of dissolving an iron strong acid salt hydrate and a zirconium halide simultaneously in a solvent.
  • dissolution of an iron source and a zirconium source is not specifically limited, Either may melt
  • a salt anhydride such as lithium acetate
  • it does not dissolve unless water is contained in the solvent. Therefore, when a salt anhydride is used as the lithium source, it is preferable to dissolve and dissolve iron salt hydrate and zirconium salt hydrate in a solvent.
  • the raw material When the raw material is dissolved in the solvent, it may be heated to room temperature or higher.
  • the heating temperature is 30 ° C. to 80 ° C., more preferably 30 ° C. to 60 ° C.
  • the elements M and X included in the general formula (1) are all raw material substances. There is no particular limitation as long as it is a combination that can be uniformly dissolved in a solvent.
  • Gelation step In this step, the solution obtained in the dissolution step is gelled.
  • Gelation is a group of aggregates in which Li, Fe, Zr, P and Si are bonded through oxygen atoms, and the aggregates are precipitated as fine particles having a particle diameter of several to several tens of nm in the gel. The inventors believe that this is done by increasing the viscosity of the solution.
  • the solution may be allowed to stand or the solution may be stirred.
  • the solution obtained in the dissolution step is heated at a temperature ranging from room temperature to the boiling point of the solvent used, preferably 30 ° C. to 80 ° C., more preferably 40 ° C. to 60 ° C. Also good.
  • the heating time is 10 minutes to 48 hours, preferably 30 minutes to 24 hours.
  • (Iii) Drying step In this step, the remaining solvent is removed from the gelled gel.
  • a method for removing the solvent a method of leaving at room temperature, a method of removing the solvent by heating to 30 to 80 ° C., a gel is placed in a chamber using a rotary pump, etc., and the solvent is removed by reducing the pressure. A method or the like can be used.
  • the solvent may be removed by the same method as described above after performing solvent exchange with a solvent having higher volatility than the solvent used at the time of preparing the solution or a solvent having a different surface tension.
  • Examples of the solvent used for solvent exchange include toluene, benzene, hexane, tetrahydrofuran, isopropanol, and mixed solvents thereof.
  • the solvent can also be removed by immersing the gel obtained in this step in carbon dioxide in a supercritical state and extracting the solvent. These removed solvents are preferably recovered and reused from an industrial viewpoint.
  • the obtained gel is mechanically pulverized.
  • the pulverization method is not particularly limited, and examples thereof include a method of heating, cooling and controlling the atmosphere as necessary.
  • Examples of the grinding method include, but are not limited to, a planetary ball mill, a ball mill, a bead mill, a vibration mill, a pin mill, an atomizer, a homogenizer, a rotor mill, a roller mill, a hammer mill, and a jet mill.
  • the average particle size of the gel after pulverization is 0.1 ⁇ m to 50 ⁇ m, preferably 0.2 to 10 ⁇ m. This is because if it is larger than 50 ⁇ m, reduction during firing becomes insufficient and impurities such as Fe 2 O 3 and ZrO 2 are likely to be generated. On the other hand, if it is smaller than 0.1 ⁇ m, the surface area becomes large, so that it reacts with moisture in the air or adsorbs carbon dioxide or the like, and impurities are easily generated, and it takes time to grind and is not practical.
  • (V) Carbon source mixing step Sugars, fats and synthetic resin materials may be mixed with the crushed gel. By carbonizing these compounds during firing, a carbon coating can be formed on the surface of the lithium-containing composite oxide particles, and the conductivity of the particles can be improved.
  • the saccharide sucrose, fructose and the like can be used.
  • the synthetic resin material polyethers such as polyethylene glycol and polypropylene glycol, polyvinyl alcohol, polyacrylamide, carboxymethyl cellulose, polyvinyl acetate, and the like can be used as the polyether.
  • (Vi) Firing step In this step, the obtained gel is fired to obtain a lithium-containing composite oxide. Firing is performed at a temperature range of 400 to 700 ° C., preferably 400 to 600 ° C., for 1 to 24 hours.
  • an atmosphere during firing an inert atmosphere (an atmosphere such as argon, nitrogen, or vacuum) or a reducing atmosphere (an atmosphere such as a hydrogen-containing inert gas or carbon monoxide) can be used.
  • an atmosphere during firing an inert atmosphere (an atmosphere such as argon, nitrogen, or vacuum) or a reducing atmosphere (an atmosphere such as a hydrogen-containing inert gas or carbon monoxide) can be used.
  • the gel may be stirred, and in the case where toxic gases such as NOx, SOx, and chlorine are generated during baking, a removal device may be provided.
  • the obtained lithium-containing composite oxide may be adjusted to a desired particle size by subjecting it to a pulverization step and / or a classification step, if necessary.
  • the obtained lithium containing complex oxide can be used for the positive electrode active material of a non-aqueous electrolyte secondary battery.
  • the positive electrode active material in addition to the above-mentioned lithium-containing complex oxide, LiCoO 2, LiNiO 2, LiFeO 2, LiMnO 2, LiMn 2 O4, Li 2 MnO 3, LiCoPO 4, LiNiPO 4, LiMnPO 4, LiFePO 4 or the like other
  • the oxide may be contained.
  • the non-aqueous electrolyte secondary battery has a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator.
  • a positive electrode is producible using a well-known method.
  • a positive electrode active material, a conductive material, and a binder can be kneaded and dispersed using an organic solvent to obtain a paste, and the paste can be applied to a current collector.
  • the conductive material is not necessarily added.
  • Binders include polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, ethylene propylene diene polymer, styrene-butadiene rubber, acrylonitrile-butadiene rubber, fluoro rubber, polyvinyl acetate, polymethyl methacrylate, polyethylene, nitrocellulose, and styrene. Butadiene rubber or the like can be used. If necessary, a thickener such as carboxymethylcellulose can also be used.
  • acetylene black natural graphite, artificial graphite, needle coke, or the like can be used.
  • a foamed (porous) metal having continuous pores a metal formed in a honeycomb shape, a sintered metal, an expanded metal, a nonwoven fabric, a plate, a perforated plate, a foil, or the like can be used.
  • organic solvent N-methyl-2-pyrrolidone, toluene, cyclohexane, dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate, methyl acrylate, diethyltriamine, N, N-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran, etc. are used. be able to.
  • water-soluble binder water can be used as a solvent.
  • the thickness of the positive electrode is preferably about 0.01 to 20 mm. If it is too thick, the conductivity is lowered, and if it is too thin, the capacity per unit area is lowered.
  • the positive electrode obtained by coating and drying may be compacted by a roller press or the like in order to increase the packing density of the active material.
  • Negative electrode A negative electrode can be produced by a known method. For example, a negative electrode active material, a binder, and a conductive material are mixed, the obtained mixed powder is formed into a sheet shape, and the obtained molded body is pressure-bonded to a current collector, for example, a mesh current collector made of stainless steel or copper. Can be produced. Moreover, it can be produced using the method using the paste as described in the above (a) positive electrode. In that case, the negative electrode active material, the conductive material, and the binder are kneaded and dispersed using an organic solvent to obtain a paste. The paste can be produced by applying it to a current collector.
  • a known material can be used as the negative electrode active material.
  • the potential at which lithium is inserted / desorbed is close to the deposition / dissolution potential of metallic lithium.
  • a typical example is a carbon material such as natural or artificial graphite in the form of particles (scale-like, lump-like, fibrous, whisker-like, spherical, pulverized particles, etc.).
  • artificial graphite examples include graphite obtained by graphitizing mesocarbon microbeads, mesophase pitch powder, isotropic pitch powder, and the like. Also, graphite particles having amorphous carbon attached to the surface can be used. Among these, natural graphite is preferable because it is inexpensive and close to the redox potential of lithium and can constitute a high energy density battery.
  • lithium transition metal oxide lithium transition metal nitride, transition metal oxide, silicon oxide, and the like can be used as the negative electrode active material.
  • Li 4 Ti 5 O 12 is preferable because it has high potential flatness and a small volume change due to charge and discharge.
  • Nonaqueous electrolyte for example, an organic electrolyte, a gel electrolyte, a polymer solid electrolyte, an inorganic solid electrolyte, a molten salt, or the like can be used.
  • organic solvent constituting the organic electrolyte examples include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), and butylene carbonate, dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate, and dipropyl carbonate.
  • cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), and butylene carbonate, dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate, and dipropyl carbonate.
  • Chain carbonates such as ⁇ -butyrolactone (GBL), lactones such as ⁇ -valerolactone, furans such as tetrahydrofuran and 2-methyltetrahydrofuran, diethyl ether, 1,2-dimethoxyethane, 1,2-diethoxy
  • Examples include ethers such as ethane, ethoxymethoxyethane, dioxane, dimethyl sulfoxide, sulfolane, methyl sulfolane, acetonitrile, methyl formate, methyl acetate, and the like. Can be.
  • cyclic carbonates such as PC, EC and butylene carbonate are high-boiling solvents, they are suitable as a solvent to be mixed with GBL.
  • Examples of the electrolyte salt constituting the organic electrolyte include lithium borofluoride (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium trifluoroacetate (LiCF 3 COO) ), Lithium salts such as lithium bis (trifluoromethanesulfone) imide (LiN (CF 3 SO 2 ) 2 ), and a mixture of one or more of these can be used.
  • the salt concentration of the electrolytic solution is preferably 0.5 to 3 mol / l.
  • (D) Separator As the separator, a known material such as a porous material or a nonwoven fabric can be used. As a material for the separator, a material that does not dissolve or swell in the organic solvent in the electrolytic solution is preferable. Specific examples include polyester polymers, polyolefin polymers (for example, polyethylene and polypropylene), ether polymers, and glass fibers.
  • the secondary battery includes a laminate including, for example, a positive electrode, a negative electrode, and a separator sandwiched therebetween.
  • the laminate may have, for example, a strip-like planar shape. In the case of producing a cylindrical or flat battery, the laminate may be wound to form a wound body.
  • One or more of the laminates are inserted into the battery container.
  • the positive electrode and the negative electrode are connected to the external conductive terminal of the battery. Thereafter, the battery container is sealed to block the positive electrode, the negative electrode, and the separator from the outside air.
  • the sealing method is generally a method in which a lid having a resin packing is fitted into the opening of the battery container and the battery container and the lid are caulked.
  • a method of attaching a lid called a metallic sealing plate to the opening and performing welding can be used.
  • a method of sealing with a binder and a method of fixing with a bolt via a gasket can also be used.
  • a method of sealing with a laminate film in which a thermoplastic resin is attached to a metal foil can also be used.
  • An opening for electrolyte injection may be provided at the time of sealing. When using an organic electrolyte, the organic electrolyte is injected from the opening, and then the opening is sealed. Gas generated by energization before sealing may be removed.
  • Example 1 ⁇ I. Dissolution process> The following were dissolved in the solvent in the order of iron source, lithium source, zirconium source, silicon source, and phosphorus source.
  • Fe (NO 3 ) 3 .9H 2 O as an iron source was weighed in 30 times the molar amount of ethanol with respect to the molar amount of Li and stirred until it was completely dissolved.
  • LiCH 3 COO is weighed as a lithium source
  • ZrCl 4 is measured as a zirconium source
  • Si (OC 2 H 5 ) 4 is weighed as a silicon source, and dissolved in order.
  • H 3 PO 4 85 wt%) was weighed as a phosphorus source and stirred until a uniform solution was obtained.
  • LiCH 3 COO which is a lithium source is 0.9899 g
  • Li: Fe: Zr: P: Si 1: 0.875: 0.125: 0.75: 0.25 (molar ratio). The raw material was weighed.
  • the gel obtained in the drying step was pulverized using a planetary ball mill.
  • zirconia balls having a diameter of 10 mm were used, and the treatment was performed for 1 hour at a rotation speed of 400 rpm.
  • Carbon source mixing process A carbon source in which the ground precursor was dissolved in water was added. Sucrose was used as the carbon source. The amount added was 15% by weight based on the weight of the precursor. The precursor to which sucrose was added was dried and pulverized in a mortar.
  • ⁇ Vi. Firing step> The precursor obtained by the pulverization step was calcined at 550 ° C. for 12 hours. As a firing process, first, the inside of the furnace was evacuated, then nitrogen was flowed, and the furnace was heated at a temperature rising rate of 200 ° C./h. The cooling rate was furnace cooling.
  • the average particle size of the crushed gel was determined by the following method. About 1 mg of the pulverized gel was dispersed on a flat glass, set on an Olympus BX60M optical microscope, and an image of the gel particles was taken into a personal computer via a CCD camera. The field of view of the image was cut into a region of 100 ⁇ m in length and 200 ⁇ m in width, and the outline of each particle was extracted by adjusting the threshold value for the contrast of the image. Based on this contour data, the average value of the major axis and the minor axis of each particle was determined and used as the particle size of the particle.
  • D50 average particle diameter
  • the powder X-ray-diffraction pattern was measured using the powder X-ray-diffraction apparatus MiniFlex II by Rigaku Corporation. The results are shown in FIG. It was confirmed that a crystal phase having an olivine type structure was generated, and it was confirmed that there was no peak attributed to impurities such as Fe 2 O 3 and ZrO 2 .
  • the battery thus fabricated was charged for the first time in an environment of 25 ° C.
  • the charging current was 0.1 mA, and the charging was terminated when the battery potential reached 4V.
  • discharging was performed at 0.1 mA.
  • the battery potential reached 2.0 V, discharging was terminated, and the measured capacity of the battery was obtained.
  • Comparative Example 1 In an agate mortar, 15 mmol of lithium acetate (LiCH 3 COO) as lithium source, iron oxalate dihydrate as an iron source (FeC 2 O 4 ⁇ 2H 2 O) a 10.50Mmol, zirconium oxychloride as the zirconium source (ZrOCl 2 ) was measured in an amount of 4.50 mmol, 11.25 mmol of ammonium dihydrogen phosphate ((NH 4 H 2 PO 4 ) as a phosphorus source, and 3.75 mmol of SiO 2 powder as a silicon source, and pulverized until uniform.
  • LiCH 3 COO lithium acetate
  • iron oxalate dihydrate as an iron source
  • ZrOCl 2 zirconium oxychloride
  • Example 2 Using the obtained lithium-containing composite oxide as a positive electrode active material, a battery was produced in the same manner as in Example 1, and the battery characteristics were evaluated. The results are shown in Table 1. In this comparative example, only a capacity of about 56.7 mAh / g could be obtained.
  • Comparative Example 2 In the pulverization step, the same method as in Example 1 was used, except that the pulverization conditions using a planetary ball mill were set to 1 minute at a rotational speed of 400 rpm. The average particle size of the gel after pulverization was 60.5 ⁇ m.
  • Example 1 Measurement of powder X-ray diffraction pattern
  • Example 2 Using the obtained lithium-containing composite oxide as a positive electrode active material, a battery was produced in the same manner as in Example 1, and the battery characteristics were evaluated. The results are shown in Table 1. In this comparative example, only a capacity of about 58.9 mAh / g could be obtained.
  • Example 2 ⁇ I. Dissolution process> The following were dissolved in the solvent in the order of iron source, lithium source, zirconium source, silicon source, and phosphorus source.
  • Fe (NO 3 ) 3 .9H 2 O as an iron source was weighed in 30 times the molar amount of ethanol with respect to the molar amount of Li and stirred until it was completely dissolved.
  • LiCH 3 COO is weighed as a lithium source
  • ZrCl 4 is measured as a zirconium source
  • Si (OC 2 H 5 ) 4 is weighed as a silicon source, and dissolved in order.
  • H 3 PO 4 (85 wt%) was weighed as a phosphorus source and stirred until a uniform solution was obtained.
  • the raw material was weighed.
  • the obtained uniform solution was stirred with a stirrer at room temperature for 1 hour.
  • the precursor obtained by drying the gel was pulverized in a mortar.
  • the average particle size of the gel after pulverization was 49.2 ⁇ m.
  • Carbon source mixing process A carbon source in which the ground precursor was dissolved in water was added. Sucrose was used as the carbon source. The amount added was 15% by weight based on the weight of the precursor. The precursor to which sucrose was added was dried and pulverized in a mortar.
  • ⁇ Vi. Firing step> The precursor obtained by the pulverization step was calcined at 550 ° C. for 12 hours. As a firing process, first, the inside of the furnace was evacuated, then nitrogen was flowed, and the furnace was heated at a temperature rising rate of 200 ° C./h. The cooling rate was furnace cooling.
  • the powder X-ray-diffraction pattern was measured using the powder X-ray-diffraction apparatus MiniFlex II by Rigaku Corporation. The results are shown in FIG. It was confirmed that a crystal phase having an olivine type structure was generated and that there were no peaks attributed to impurities such as raw material and ZrO 2 .
  • Example 3 In the dissolving step, a lithium-containing composite oxide is produced by the same method as in Example 2 except that the zirconium source, iron source, silicon source, lithium source, and phosphorus source are dissolved in the solvent in the following order. did.
  • the raw material was weighed.
  • the obtained uniform solution was stirred with a stirrer at room temperature for 1 hour.
  • Example 2 the powder X-ray diffraction pattern was measured in the same manner as in Example 2. An X-ray diffraction pattern similar to that in Example 2 was obtained, and the generation of a crystal phase having an olivine structure was confirmed. It was also confirmed that there was no peak attributed to impurities such as ZrO 2 . The average particle size of the gel after pulverization was 25.6 ⁇ m.
  • Example 4 In the dissolution step, a lithium-containing composite oxide is produced in the same manner as in Example 2 except that the dissolution is performed in the order of iron source + zirconium source, lithium source, phosphorus source, and silicon source as follows. did.
  • the raw material was weighed.
  • the obtained uniform solution was stirred with a stirrer at room temperature for 1 hour.
  • Example 2 the powder X-ray diffraction pattern was measured in the same manner as in Example 2. An X-ray diffraction pattern similar to that in Example 2 was obtained, and the generation of a crystal phase having an olivine structure was confirmed. It was also confirmed that there was no peak attributed to impurities such as ZrO 2 . The average particle size of the gel after pulverization was 25.6 ⁇ m.
  • Embodiment 5 In the dissolution step, the same as in Example 2 except that the iron source, zirconium source, silicon source, phosphorus source, and lithium source were dissolved in the solvent in the following order, and LiNO 3 was used as the lithium source.
  • a lithium-containing composite oxide was produced by the method described above.
  • Fe (NO 3 ) 3 .9H 2 O as an iron source was weighed in 30 times the molar amount of ethanol with respect to the molar amount of Li and stirred until it was completely dissolved. After confirming complete dissolution, ZrCl 4 as a zirconium source and Si (OC 2 H 5 ) 4 as a silicon source were weighed and dissolved in order to prepare a uniform solution. Next, H 3 PO 4 (85 wt%) was weighed as a phosphorus source and stirred until uniform, and finally LiNO 3 was weighed as a lithium source and stirred until a uniform solution was obtained.
  • the powder X-ray diffraction pattern was measured in the same manner as in Example 2. The results are shown in FIG. The generation of crystal phase with olivine type structure was confirmed. It was also confirmed that there was no peak attributed to impurities such as ZrO 2 . The average particle size of the gel after pulverization was 25.6 ⁇ m.
  • Example 6 In the dissolving step, a lithium-containing composite oxide is produced in the same manner as in Example 2 except that the silicon source, iron source, lithium source, zirconium source, and phosphorus source are dissolved in the solvent in the following order. did.
  • the raw material was weighed.
  • the obtained uniform solution was stirred with a stirrer at room temperature for 1 hour.
  • Example 2 the powder X-ray diffraction pattern was measured in the same manner as in Example 2. An X-ray diffraction pattern similar to that in Example 2 was obtained, and the generation of a crystal phase having an olivine structure was confirmed. It was also confirmed that there was no peak attributed to impurities such as ZrO 2 . The average particle size of the gel after pulverization was 25.6 ⁇ m.
  • Example 7 In the dissolution step, the lithium source, the silicon source, the iron source, the zirconium source, and the phosphorus source were dissolved in the solvent in the following order, Si (OCH 3 ) 4 was used as the silicon source, and the lithium source was A lithium-containing composite oxide was produced in the same manner as in Example 2, except that water was added for dissolution and the lithium source and silicon source were reacted in a 60 ° C. atmosphere.
  • LiCH 3 COO was added to 30 times the molar amount of ethanol with respect to the molar amount of Li, and 2.1263 g of water was added to dissolve the LiCH 3 COO.
  • the solution was sufficiently stirred, and after confirming the dissolution of LiCH 3 COO, Si (OCH 3 ) 4 was added and stirred for one hour in an atmosphere of 60 ° C.
  • Fe (NO 3 ) 3 .9H 2 O was weighed as an iron source and stirred until it was completely dissolved.
  • ZrCl 4 was measured as a zirconium source and dissolved in the solution to prepare a uniform solution.
  • H 3 PO 4 85 wt% was weighed as a phosphorus source and stirred until uniform.
  • LiCH 3 COO which is a lithium source is 0.9899 g
  • Li: Fe: Zr: P: Si 1: 0.875: 0.125: 0.75: 0.25 (molar ratio).
  • the raw material was weighed.
  • the obtained uniform solution was stirred with a stirrer at room temperature for 1 hour.
  • the powder X-ray diffraction pattern was measured in the same manner as in Example 2. The results are shown in FIG. The generation of crystal phase with olivine type structure was confirmed. It was also confirmed that there was no peak attributed to impurities such as ZrO 2 . The average particle size of the gel after pulverization was 15.6 ⁇ m.
  • Example 8 In the dissolution step, the lithium source, the silicon source, the zirconium source, the iron source, and the phosphorus source were dissolved in the solvent in the following order, Si (OCH 3 ) 4 was used as the silicon source, and the lithium source was A lithium-containing composite oxide was produced in the same manner as in Example 2, except that water was added for dissolution and the lithium source and silicon source were reacted in a 60 ° C. atmosphere.
  • LiCH 3 COO was added to 30 times the molar amount of ethanol with respect to the molar amount of Li, and 2.1263 g of water was added to dissolve the LiCH 3 COO.
  • the solution was sufficiently stirred, and after confirming the dissolution of LiCH 3 COO, Si (OCH 3 ) 4 was added and stirred for one hour in an atmosphere of 60 ° C.
  • ZrCl 4 was weighed as a zirconium source and stirred until it was completely dissolved.
  • Fe (NO 3 ) 3 .9H 2 O was weighed as an iron source and dissolved in order to prepare a uniform solution.
  • H 3 PO 4 (85 wt%) was weighed as a phosphorus source and stirred until uniform.
  • LiCH 3 COO which is a lithium source is 0.9899 g
  • Li: Fe: Zr: P: Si 1: 0.875: 0.125: 0.75: 0.25 (molar ratio).
  • the raw material was weighed.
  • the obtained uniform solution was stirred with a stirrer at room temperature for 1 hour.
  • the powder X-ray diffraction pattern was measured in the same manner as in Example 2. An X-ray diffraction pattern similar to that in Example 2 was obtained, and the generation of a crystal phase having an olivine structure was confirmed. It was also confirmed that there was no peak attributed to impurities such as ZrO 2 .
  • the average particle size of the gel after pulverization was 0.2 ⁇ m.
  • Example 9 In the dissolution step, the lithium source, the silicon source, the zirconium source + iron source, and the phosphorus source were dissolved in the solvent in the following order, Si (OCH 3 ) 4 was used as the silicon source, and the lithium source was A lithium-containing composite oxide was produced in the same manner as in Example 2, except that water was added for dissolution and the lithium source and silicon source were reacted in a 60 ° C. atmosphere.
  • LiCH 3 COO was added to 15 times the molar amount of ethanol relative to the molar amount of Li, and 2.1263 g of water was added to dissolve the LiCH 3 COO. The solution was sufficiently stirred, and after confirming the dissolution of LiCH 3 COO, Si (OCH 3 ) 4 was added and stirred for one hour in an atmosphere of 60 ° C.
  • Si (OCH 3 ) 4 was added and stirred for one hour in an atmosphere of 60 ° C.
  • ZrCl 4 as a zirconium source and Fe (NO 3 ) 3 .9H 2 O as an iron source were weighed in the same amount of ethanol as above and stirred until it was completely dissolved.
  • the powder X-ray diffraction pattern was measured in the same manner as in Example 2. An X-ray diffraction pattern similar to that in Example 2 was obtained, and the generation of a crystal phase having an olivine structure was confirmed. It was also confirmed that there was no peak attributed to impurities such as ZrO 2 .
  • the average particle size of the gel after pulverization was 0.2 ⁇ m.
  • Example 10 In the dissolution step, Example 2 and Example 2 except that, in the following order, the iron source, silicon source, lithium source, zirconium source, and phosphorus source were dissolved in the solvent, and the amount of the phosphorus source was increased by 5% in molar ratio.
  • a lithium-containing composite oxide was produced by the same method.
  • the raw material was weighed.
  • the obtained uniform solution was stirred with a stirrer at room temperature for 1 hour.
  • the powder X-ray diffraction pattern was measured in the same manner as in Example 2. The results are shown in FIG. The generation of crystal phase with olivine type structure was confirmed. It was also confirmed that there was no peak attributed to impurities such as ZrO 2 . The average particle size of the gel after pulverization was 0.1 ⁇ m.
  • Example 11 In the dissolution step, Example 2 and Example 2 except that, in the following order, the iron source, the zirconium source, the lithium source, the silicon source, and the phosphorus source were dissolved in the solvent, and the amount of the phosphorus source was increased by 10% in molar ratio.
  • a lithium-containing composite oxide was produced by the same method.
  • the raw material was weighed.
  • the obtained uniform solution was stirred with a stirrer at room temperature for 1 hour.
  • the powder X-ray diffraction pattern was measured in the same manner as in Example 2. The results are shown in FIG. The generation of crystal phase with olivine type structure was confirmed. It was also confirmed that there was no peak attributed to impurities such as ZrO 2 . The average particle size of the gel after pulverization was 0.1 ⁇ m.
  • Example 12 In the gelation step, a lithium-containing composite oxide was produced in the same manner as in Example 2 except that the heating temperature was 40 ° C.
  • the powder X-ray diffraction pattern was measured in the same manner as in Example 2. The results are shown in FIG. The generation of crystal phase with olivine type structure was confirmed. It was also confirmed that there was no peak attributed to impurities such as ZrO 2 . The average particle size of the gel after pulverization was 25.6 ⁇ m.
  • Example 13 A lithium-containing composite oxide was produced in the same manner as in Example 2 except that the heating temperature was 30 ° C. in the gelation step.
  • the powder X-ray diffraction pattern was measured in the same manner as in Example 2. The results are shown in FIG. The generation of crystal phase with olivine type structure was confirmed. It was also confirmed that there was no peak attributed to impurities such as ZrO 2 . The average particle size of the gel after pulverization was 25.6 ⁇ m.
  • Comparative Example 3 A lithium-containing composite oxide was produced in the same manner as in Example 2 except that the following method was used in the dissolution step.
  • ⁇ Dissolution process> ZrCl 4 as a zirconium source was weighed in a 15-fold molar amount of ethanol with respect to the molar amount of Li, and stirred until completely dissolved.
  • H 3 PO 4 (85% by weight) was weighed out as a phosphorus source, mixed and stirred to form a white precipitate.
  • Si (OC 2 H 5 ) 4 as a silicon source is weighed in ethanol of 15 times the molar amount of Li in another container, and Fe (NO 3 ) 3 ⁇ 9H 2 O as an iron source.
  • LiCH 3 COO as a lithium source was weighed and dissolved in order to prepare a uniform solution.
  • the homogeneous solution was mixed with the solution in which a white precipitate was first formed, and stirred to obtain an opaque solution.
  • the raw material was weighed.
  • the resulting solution was stirred with a stirrer at room temperature for 1 hour.
  • the powder X-ray diffraction pattern was measured in the same manner as in Example 2. The results are shown in FIG. In the obtained X-ray diffraction pattern, peaks attributable to ZrO 2 and Zr 3 (PO 4 ) 4 were observed. The average particle size of the gel after pulverization was 25.6 ⁇ m.
  • Example 14 Manufacture of batteries
  • This mixture was dispersed in N-methyl-2-pyrrolidone to form a slurry, which was applied to both surfaces of an aluminum foil having a thickness of 20 ⁇ m by a doctor blade method.
  • the coating amount was about 5 mg / cm 2 .
  • the electrode was dried and then pressed to produce a positive electrode.
  • Natural graphite powder was used for the negative electrode active material. About 10 wt% Teflon (registered trademark) resin powder was mixed therewith as a binder. This mixture was dispersed in N-methyl-2-pyrrolidone to form a slurry, which was applied to both sides of a copper foil having a thickness of 20 ⁇ m and dried. Thereafter, pressing was performed to prepare a negative electrode.
  • Teflon registered trademark
  • the prepared positive electrode and negative electrode were each cut out to a size of 30 mm ⁇ 30 mm, and a 3 mm wide and 50 mm long aluminum tab was welded to the positive electrode as a battery current introduction terminal, and a 3 mm wide and 50 mm long copper tab was welded to the negative electrode. did.
  • a porous polyethylene separator was sandwiched between the positive electrode and the negative electrode, and the periphery of the laminate was heat-sealed between laminate films obtained by attaching a thermoplastic resin to two metal foils as a battery exterior.
  • the laminate is provided with an opening for electrolyte injection.
  • the battery thus fabricated was charged for the first time in an environment of 25 ° C.
  • the charging current was 0.1 mA, and the charging was terminated when the battery potential reached 4V.
  • discharging was performed at 0.1 mA, and discharging was terminated when the battery potential reached 2.0V.
  • Table 2 shows the evaluation results of the battery characteristics of the batteries using the lithium-containing composite oxides produced in the examples and comparative examples. It was confirmed that the lithium-containing composite oxide produced using the production method of the present invention has a higher discharge capacity than the comparative example.

Abstract

 本発明は、下記一般式(1)で表されるリチウム含有複合酸化物を製造する方法であって、原料物質となるリチウム源、元素M源、リン源および元素X源を溶媒に溶解させて溶液を調製する工程であって、少なくとも元素M源を溶解させた後でリン源を添加する工程と、得られた溶液をゲル化させる工程と、得られたゲルを焼成する工程とを少なくとも含む。本発明によれば、安全性とコスト面に優れ、さらに電池の長寿命化の可能なリチウム二次電池用の正極活物質を提供することができる。 Li1-z (1) (式中、Mは、Fe、Ni、Mn、Zr、Sn、AlおよびYからなる群から選択される少なくとも1種の元素であり、Xは、Si及びAlから成る群から選択される少なくとも1種であり、0<x≦2、0.8≦y≦1.2、0≦z≦1の範囲である。)

Description

リチウム含有複合酸化物の製造方法
 本発明は、リチウム含有複合酸化物の製造方法に関し、更に詳しくは、非水系電解質二次電池の正極活物質として用いるリチウム含有複合酸化物の製造方法に関する。
 非水系電解質二次電池として、リチウム二次電池が実用化されており、広く普及している。更に近年、リチウム二次電池は、ポータブル電子機器用の小型のものだけでなく、車載用や電力貯蔵用等の大容量のデバイスとしても注目されている。そのため、安全性やコスト、寿命等の要求がより高くなっている。
 リチウム二次電池は、その主たる構成要素として正極、負極、電解液、セパレータ、及び外装材を有する。また、上記正極は、正極活物質、導電材、集電体及びバインダー(結着剤)により構成される。
 一般に、正極活物質としては、コバルト酸リチウム(LiCoO)に代表される層状遷移金属酸化物が用いられている。しかしながら、層状遷移金属酸化物は、満充電状態において、150℃前後の比較的低温で酸素脱離を起こし易く、当該酸素脱離により電池の熱暴走反応が起こり得る。従って、このような正極活物質を有する電池をポータブル電子機器に用いる場合、電池の発熱、発火等の事故が発生する恐れがある。
 このため、構造が安定し異常時に酸素を放出せず、LiCoOより安全なオリビン型構造を有するリチウム含有複合酸化物、例えばリン酸鉄リチウム(LiFePO)が期待されている。リン酸鉄リチウムは、地殻存在度が低いコバルトを含まないため、比較的安価であるという利点もある。また、リン酸鉄リチウムは、層状遷移金属酸化物よりも、構造的に安定であるという利点もある。
 しかしながら、リン酸鉄リチウムを正極活物質として用いた場合、充放電の繰り返しに伴う放電容量の低下が大きく、得られる電池の寿命が短いという問題がある。これは充放電によりLiの挿入脱離に起因する正極活物質の膨張若しくは収縮が大きいため、サイクル数が増えると正極活物質が集電体や導電材から物理的に徐々に欠落し、正極活物質の構造が破壊され、充放電に寄与しない活物質が増加して、放電容量の低下が起きるためである。これに対し、リン酸鉄リチウムを基本構造とし、元素置換を行ったリチウム含有複合酸化物を正極活物質に用いることにより、正極活物質の膨張収縮を抑制する方法が検討されている(例えば、特許文献1および2)。
特開2002-198050号公報 特表2005-519451号公報
 しかしながら、特許文献1や2で用いられている固相法を用いて製造した場合、不純物が生成し、単一相のオリビン型構造を有するリチウム含有複合酸化物を製造するのが困難であるという問題がある。
 そのため、単一相のオリビン型構造を有するリチウム含有複合酸化物を製造できる方法が必要とされている。
 そこで、本発明は、単一相のオリビン型構造を有するリチウム含有複合酸化物を製造できる、リチウム含有複合酸化物の製造方法を提供することを目的とした。
 本発明者らは、オリビン型構造を有するリチウム含有複合酸化物について鋭意検討する過程で、LiFePOの鉄元素とリン元素の一部を別の元素で置換したリチウム含有複合酸化物を正極活物質に用いると電池の寿命が向上することを見出した。
 本発明は、下記一般式(1)で表されるリチウム含有複合酸化物を製造する方法であって、原料物質となるリチウム源、元素M源、リン源および元素X源を溶媒に溶解させて溶液を調製する工程であって、少なくとも元素M源を溶解させた後でリン源を添加する工程と、得られた溶液をゲル化させる工程と、得られたゲルを焼成する工程とを少なくとも含むことを特徴とする。
      Li1-z  (1)
(式中、Mは、Fe、Ni、Mn、Zr、Sn、AlおよびYからなる群から選択される少なくとも1種の元素であり、Xは、Si及びAlから成る群から選択される少なくとも1種であり、0<x≦2、0.8≦y≦1.2、0≦z≦1の範囲である。)
 本発明によれば、ゲル中に原料元素を均一に分散させることができるので、不純物の生成を抑制して単一相のオリビン型構造を有するリチウム含有複合酸化物を製造することができる。これにより、本発明によれば、安全性とコスト面に優れ、さらに電池の長寿命化の可能なリチウム二次電池用の正極活物質を提供することができる。
実施例1で得られたリチウム含有複合酸化物の構造を示すX線回折パターンを示す図である。 比較例1で得られたリチウム含有複合酸化物の構造を示すX線回折パターンを示す図である。 比較例2で得られたリチウム含有複合酸化物の構造を示すX線回折パターンを示す図である。 実施例2で得られたリチウム含有複合酸化物の構造を示すX線回折パターンを示す図である。 実施例5で得られたリチウム含有複合酸化物の構造を示すX線回折パターンを示す図である。 実施例7で得られたリチウム含有複合酸化物の構造を示すX線回折パターンを示す図である。 実施例10で得られたリチウム含有複合酸化物の構造を示すX線回折パターンを示す図である。 実施例11で得られたリチウム含有複合酸化物の構造を示すX線回折パターンを示す図である。 実施例12で得られたリチウム含有複合酸化物の構造を示すX線回折パターンを示す図である。 実施例13で得られたリチウム含有複合酸化物の構造を示すX線回折パターンを示す図である。 比較例3で得られたリチウム含有複合酸化物の構造を示すX線回折パターンを示す図である。
 以下、本発明の実施の形態について詳細に説明する。
(1)リチウム含有複合酸化物
 本発明の製造対象であるリチウム含有複合酸化物は、以下の一般式(1)で表される。
        Li1-z  (1)
 式中、Mは、Fe、Ni、Mn、Zr、Sn、AlおよびYからなる群から選択される少なくとも1種の元素である。この群からMを選択することで、充放電の繰り返し(Liの挿入脱離)に伴うリチウム含有複合酸化物の物理的なストレス(体積収縮膨張)を防止できるので、より寿命の長い正極活物質を提供できる。更に、MにはFeが含まれていることが好ましい。Feを含むことで、リチウム含有複合酸化物の製造に、より安価な原料を使用できる。なお、種々の価数を取り得る元素において、上記一般式(1)中の「y」を規定するための価数は、平均値を意味する。
 また、Xは、Si及びAlから成る群から選択される少なくとも1種である。従って、2種同時に選択してもよい。この群からXを選択することで、充放電の繰り返し(Liの挿入脱離)に伴うリチウム含有複合酸化物の物理的なストレス(体積収縮膨張)を防止できるので、より寿命の長い正極活物質を提供できる。更に、Alよりもイオン性の強いSiを少なくとも選択することが好ましい。Siを選択することで、リチウム含有複合酸化物を構成する金属Mと酸素間の結合をより強固にできるため、より物理的なストレスに強い正極活物質を提供できる。
 また、xは0<x≦2の範囲である。また、xは、リチウム含有複合酸化物を構成する他の元素の種類や、充電や放電により増減する。好ましくは、xの範囲は0.8≦x≦1.2である。
 また、yは0.8≦y≦1.2の範囲である。この範囲であれば充放電が可能なオリビン構造を有するリチウム含有複合酸化物を提供できる。好ましくは、yの範囲は0.9≦y≦1.1である。
 また、zは0≦z≦1の範囲である。この範囲であれば、充放電が可能なオリビン構造を有するリチウム含有複合酸化物を提供できる。好ましくは、zの範囲は0.1≦z≦0.5である。
 リチウム含有複合酸化物の具体例としては、
LiFe1-z
(0.8≦x≦1.2、0.8≦y≦1.2、z=0)、
LiNi1-z
(0.8≦x≦1.2、0.8≦y≦1.2、z=0)、
LiMn1-z
(0.8≦x≦1.2、0.8≦y≦1.2、z=0)、
Li(Fe,Ni)1-z
(0.8≦x≦1.2、0.8≦y≦1.2、z=0)、
Li(Fe,Mn)1-z
(0.8≦x≦1.2、0.8≦y≦1.2、z=0)、
Li(Fe,Zr)1-z
(0.8≦x≦1.2、0.8≦y≦1.2、z=0)、
Li(Fe,Sn)1-z
(0.8≦x≦1.2、0.8≦y≦1.2、z=0)、
Li(Fe,Y)1-z
(0.8≦x≦1.2、0.8≦y≦1.2、z=0)、
Li(Fe,Ni)1-zSi
(0.8≦x≦1.2、0.8≦y≦1.2、0<z≦0.5)、
Li(Fe,Mn)1-zSi
(0.8≦x≦1.2、0.8≦y≦1.2、0<z≦0.5)、
Li(Fe,Zr)1-zSi
(0.8≦x≦1.2、0.8≦y≦1.2、0<z≦0.5)、
Li(Fe,Sn)1-zSi
(0.8≦x≦1.2、0.8≦y≦1.2、0<z≦0.5)、
Li(Fe,Y)1-zSi
(0.8≦x≦1.2、0.8≦y≦1.2、0<z≦0.5)、
等を挙げることができる。Mが複数の元素から構成されている場合、それぞれの原子%の値は、M全量に対して、0原子%より多く、100原子%未満の範囲のいずれの値をも取り得る。
 正極活物質として使用する観点から、特に好ましいリチウム含有複合酸化物は、
Li(Fe,Zr)1-zSi
(0.8≦x≦1.2、0.8≦y≦1.2、0<z≦0.5)、
Li(Fe,Sn)1-zSi
(0.8≦x≦1.2、0.8≦y≦1.2、0<z≦0.5)、
Li(Fe,Y)1-zSi
(0.8≦x≦1.2、0.8≦y≦1.2、0<z≦0.5)、
Li(Fe,Ti)1-zSi
(0.8≦x≦1.2、0.8≦y≦1.2、0<z≦0.5)、
Li(Fe,Nb)1-zSi
(0.8≦x≦1.2、0.8≦y≦1.2、0<z≦0.5)、
Li(Fe,V)1-zSi
(0.8≦x≦1.2、0.8≦y≦1.2、0<z≦0.5)、
である。
 さらに、好ましいリチウム含有複合酸化物は、
LiFe1-αZrα1-2αSi2α (0<α≦0.25)、
である。
 式中、FeとSiを含むことで、充放電の繰り返し(Liの挿入脱離)に伴うリチウム含有複合酸化物の物理的なストレス(体積収縮膨張)を防止できるので、より寿命の長い正極活物質を提供できる。また、Feを含むことで、リチウム含有複合酸化物の製造に、より安価な原料を使用できる。Siは、鉄およびジルコニウムと酸素との結合をより強固にする作用を有する。
 リチウム含有複合酸化物は、通常粒子の形状で使用される。一次粒子の粒径は、リチウムイオンの挿入脱離の効率を高めるために、1μm以下、好ましくは10nm~1μmである。一次粒子の粒径の下限は、10nm程度が挿入脱離の効率と製造コストとの兼ね合いから現実的である。なお、一次粒子の粒径は、SEMによる直接観察およびレーザー回折・散乱法による粒度分布測定装置により測定することができる。
 二次粒子の粒径は、リチウムイオンの挿入脱離の効率を高めるために、100μm以下、好ましくは10nm~100μmである。なお、二次粒子の粒径は、SEMによる直接観察およびレーザー回折・散乱法による粒度分布測定装置により測定することができる。
(2)リチウム含有複合酸化物の製造方法
 本発明は、上記一般式(1)のリチウム含有複合酸化物を製造する方法であり、
原料物質を溶媒に溶解させて溶液を調製する工程(以下、溶解工程という。)、得られた溶液をゲル化させる工程(以下、ゲル化工程という。)、得られたゲルを焼成する工程(以下、焼成工程という。)を少なくとも含む。なお、必要に応じて、ゲル化工程で得られたゲルから溶媒を除去する工程(以下、乾燥工程という。)や、得られたゲルを粉砕する工程(以下、粉砕工程という。)や、焼成前のゲルに炭素源となる物質を混合する工程(以下、炭素源混合工程という。)を設けることもできる。
(i)溶解工程
 原料物質であるリチウム源、元素M源、リン源及び元素X源は、溶媒に溶解しうる化合物であれば特に限定されない。これら化合物は、100gの溶媒に10mmol以上溶解する化合物であることが好ましい。
(リチウム源)
 リチウム源となる物質は、一般式(1)の正極活物質の原料になり得、溶媒に可溶で、本発明の製造方法を阻害しない化合物であれば特に限定されない。リチウムの無機塩、水酸化物、有機酸塩、金属アルコキシドおよびこれら塩の水和物を用いることができる。具体的には、無機塩としては、弱酸との塩(以下、弱酸塩という。)である炭酸リチウム(LiCO)、強酸との塩(以下、強酸塩という。)である硝酸リチウム(LiNO)、塩化リチウム(LiCl)を挙げることができる。また、有機塩としては、弱酸塩である、酢酸リチウム(LiCHCOO)、シュウ酸リチウム(COOLi)を挙げることができる。また、金属アルコキシドとしては、リチウムメトキシド(LiOCH)、リチウムエトキシド(LiOC)、リチウム-n-プロポキシド(LiO-n-C)、リチウム-i-プロポキシド(LiO-i-C)、リチウム-n-ブトキシド(LiO-n-C)、リチウム-t-ブトキシド(LiO-t-C)、リチウム-sec-ブトキシド(LiO-sec-C)等を挙げることができる。無機塩および有機塩については、水和物であってもよい。これらの中でも、大気雰囲気下で均一な溶液を作製しやすい、安価であるという観点から弱酸塩または強酸塩が好ましく、その中でも酢酸リチウムまたは硝酸リチウムが好ましい。なお、本発明において「均一な溶液」とは、目視観察により目視観察により沈殿物の生成が認められず、2相以上に分離していない状態をいう。
 以下、リチウム源の溶解方法について、元素Mに鉄とジルコニウム、元素Xにシリコンを用い、溶媒にエタノールを用いた場合について説明する。
 リチウム源として、弱酸塩の無水物を用いる場合は、エタノールへの溶解性が低いため、鉄源の塩の水和物あるいはジルコニウム源の塩の水和物を溶解した後に溶解させることが好ましい。鉄源の塩の水和物あるいはジルコニウム源の塩の水和物を加える前に溶解させる場合は、予め水に溶解させておくことが好ましい。あるいは、弱酸塩の無水物が溶解するのに必要な量の水をエタノールへ添加しておいてもよい。弱酸塩の無水物を溶解させる水の量としては、Liのモル数の1倍~100倍の水が好ましく、より好ましくは4倍~20倍である。
 また、弱酸塩の無水物は、鉄源、ジルコニウム源、シリコン源との任意の組合せにおいて、任意の順番で溶解させても均一な溶液を得ることができる。得られた均一な溶液を予め反応させた後に、残りの原料を加えてもよい。弱酸塩の無水物は鉄源の塩の水和物と予め反応させておくことが好ましい。弱酸塩の無水物と鉄源の塩の水和物を予め反応させることにより、リン酸を加えた際に沈殿物ができるのを抑制することができる。
 また、弱酸塩の無水物はテトラメトキシシランもしくはテトラエトキシシランと予め反応させておくことが好ましく、特にテトラメトキシシランと反応させることが好ましい。このときの混合の手順としては、弱酸塩の無水物を水に溶解させた後、エタノールを加え、テトラメトキシシランもしくはテトラエトキシシランを加えることが好ましい。これらを混合した後に30℃から60℃に加熱する事で、より反応を促進させることが出来る。加熱の時間は特に限定されないが、30分から12時間程度が適当である。弱酸塩の無水物とシリコン源を予め反応させることにより、焼成後の不純物の発生やリチウム複合酸化物におけるLiサイトへのFeの置換を抑制できる。
 (元素M源)
 元素M源となる物質は、一般式(1)の正極活物質の原料になり得、溶媒に可溶で、本発明の製造方法を阻害しない化合物であれば特に限定されない。元素Mの無機塩、水酸化物、有機酸塩、金属アルコキシドおよびこれら塩の水和物を用いることができる。前述の通り、Mは、Fe、Ni、Mn、Zr、Sn、AlおよびYからなる群から選択される少なくとも1種の元素であり、少なくともFeを含むことが好ましい。例えば、鉄源としては、無機塩として、弱酸塩である炭酸鉄(II)(Fe(CO))、強酸塩である硝酸鉄(II)(Fe(NO))、硝酸鉄(III)(Fe(NO))、塩化鉄(II)(FeCl)および塩化鉄(III)(FeCl)を挙げることができる。また、有機塩としては、弱酸塩である、シュウ酸鉄(II)(FeC)、シュウ酸鉄(III)(Fe(C))、酢酸鉄(II)(Fe(CHCOO))および酢酸鉄(III)(Fe(CHCOO))を挙げることができる。好ましくは強酸塩の水和物、その中でも硝酸鉄(III)の9水和物が好ましい。
 以下、元素M源の溶解方法について、元素Mに鉄とジルコニウム、元素Xにシリコンを用い、溶媒にエタノールを用いた場合について説明する。
 強酸塩の水和物は、リチウム源、ジルコニウム源、シリコン源との任意の組合せにおいて、任意の順番に溶解させても均一な溶液を得ることができる。得られた均一な溶液を予め反応させた後に、残りの原料を加えてもよい。強酸塩の水和物はリン酸よりも先に溶媒に加えることが好ましい。強酸塩の水和物のみを予め反応させることにより、焼成後の不純物の生成を抑制できるので、強酸塩の水和物は、強酸塩の水和物のみをエタノール中に溶解させた後に、沈殿物が生じない程度に熱をかけることにより予め反応させてもよい。
 (ジルコニウム源)
 また、ジルコニウム源としては、無機塩として、ジルコニウムハロゲン化物である塩化ジルコニウム(ZrCl)、臭化ジルコニウム(ZrBr)、ヨウ化ジルコニウム(ZrI)、オキシジルコニウム塩である、オキシ塩化ジルコニウム(ZrOCl)、オキシ硝酸ジルコニウム(ZrO(NO))を挙げることができる。また、金属アルコキシドとしては、ジルコニウムメトキシド(Zr(OCH)、ジルコニウムエトキシド(Zr(OC)、ジルコニウム-n-プロポキシド(Zr(O-n-C)、ジルコニウム-i-プロポキシド(Zr(O-i-C)、ジルコニウム-n-ブトキシド(Zr(O-n-C)、ジルコニウム-t-ブトキシド(Zr(O-t-C)、ジルコニウム-sec-ブトキシド(Zr(O-t-C)等を挙げることができる。好ましくはジルコニウムハロゲン化物、その中でも塩化ジルコニウムが好ましい。
 ジルコニウムハロゲン化物は、リチウム源、鉄源、シリコン源との任意の組合せにおいて、任意の順番に溶解させても均一な溶液を得ることができる。ジルコニウムハロゲン化物を、強酸塩の水和物からなる鉄源と予め反応させておくことが好ましい。ジルコニウムハロゲン化物を強酸塩の水和物からなる鉄源と予め反応させることにより、焼成後にジルコニアやリン酸ジルコニウムなどの不純物が形成するのを抑制できる。また、ジルコニウムハロゲン化物はテトラメトキシシランもしくはテトラエトキシシランと予め反応させておくことが好ましく、特にテトラメトキシシランと反応させることが好ましい。ジルコニウムハロゲン化物とシリコン源を予め反応させることにより、焼成後の不純物の発生やリチウム複合酸化物におけるLiサイトへのFeの置換を抑制できる。
 (リン源)
 リン源となる物質は、一般式(1)の正極活物質の原料になり得、溶媒に可溶で、本発明の製造方法を阻害しない化合物であれば特に限定されない。具体的には、リン酸(HPO)、リン酸水素アンモニウム((NH)HPO)、リン酸二水素アンモニウム(NHPO)等を挙げることができる。これらの中でも、リン酸が好ましい。
 以下、リン源の溶解方法について、元素Mに鉄とジルコニウム、元素Xにシリコンを用い、溶媒にエタノールを用いた場合について説明する。
 リン酸は、少なくともリチウム源、鉄源およびジルコニウム源を溶解させた後で、投入する必要がある。リン酸をリチウムの弱酸塩無水物やジルコニウムハロゲン化物と混合すると、沈殿物が生成するからである。リン酸を加える際は、過剰にリン酸を加えてもよい。リン酸を過剰に加えることにより、焼成後の不純物の発生やリチウム複合酸化物におけるLiサイトへのFeの置換を抑制できる。過剰にリン酸を加える場合、化学量論比のリン酸に対して5~20重量%の範囲で、より好ましくは5~15重量%の範囲で過剰に加えることができる。
 (元素X源)
 元素X源となる物質は、一般式(1)の正極活物質の原料になり得、溶媒に可溶で、本発明の製造方法を阻害しない化合物であれば特に限定されない。元素Xの金属アルコキシドを用いることができる。Xは、SiとAlからなる群から選択される少なくとも1種の元素であり、好ましくはSiである。例えば、シリコン源としては、テトラエトキシシラン(Si(OC))、テトラメトキシシラン(Si(OCH))、メチルトリエトキシシラン(CHSi(OC))、メチルトリメトキシシラン(CHSi(OCH))、エチルメトキシシラン(CSi(OCH))、エチルトリエトキシシラン(CSi(OC))等の種々のシリコンアルコキシドを挙げることができる。テトラエトキシシランあるいはテトラメトキシシランが好ましい。
 以下、元素X源の溶解方法について、元素Mに鉄とジルコニウム、元素Xにシリコンを用い、溶媒にエタノールを用いた場合について説明する。
 シリコンアルコキシドは、リチウム源、鉄源、ジルコニウム源との任意の組合せにおいて、任意の順番に溶解させても均一な溶液を得ることができる。シリコンアルコキシドの反応を促進するため、水を加えてもよい。加える水の量としては、シリコンのモル数の1倍~100倍、より好ましくは2倍~20倍である。水を加えることにより加水分解が進み、反応を促進させることができる。シリコンアルコキシドをリン酸と予め反応させることもできる。テトラエトキシシランを用いる場合は、40℃~80℃で反応をさせることが好ましく、より好ましくは50℃~80℃で反応させることが好ましい。テトラメトキシシランを用いる場合は、20℃~60℃で反応させることが好ましい。テトラメトキシシランと、リチウム源となる弱酸塩無水物を反応させる場合、(リチウム源のLiのモル数/シリコン源のSiのモル数)≧2であることが好ましい。
 溶媒には、メタノール、エタノール、n-プロパノール、イソプロパノールおよびn-ブタノールからなる群から選択された少なくとも1種のアルコールを用いる。好ましくは、エタノールである。なお、アルコールへの溶解性が低い原料物質を溶解させるために、必要に応じて水との混合溶媒としてもよい。溶媒の量は、全原料物質を溶解させることができれば特に限定されない。但し、溶媒の回収コストを考慮すると、溶媒の量は、全原料物質の総モルに対して、1~100倍のモル比の範囲、より好ましくは、2~15倍のモル比の範囲である。
(溶解方法)
 溶解工程においては、原料物質を溶解させる順番によっては沈殿物が生成して均一な溶液ができない場合がある。そのため、原料物質を溶解させる順番が重要となる。
 以下、元素Mに鉄とジルコニウム、元素Xにシリコンを用いた場合について説明する。前述のように、リン酸を弱酸塩のリチウム源、特に塩無水物やジルコニウム源と混合すると沈殿物が生成し、またジルコニウムイオンは鉄イオンの存在により安定化される。そのため、少なくともリチウム源、鉄源およびジルコニウム源を溶解させた溶媒にリン源を溶解させる必要がある。これにより、沈殿物を生じさせることなく、全原料物質が均一に溶解した溶液を調製することができる。その結果、ゲル中に原料元素を均一に分散させることができるので、不純物の生成を抑制して単一相のオリビン型構造を有するリチウム含有複合酸化物を製造することができる。
また、シリコン源は、リン源を溶解させる前に溶解させてもよく、あるいはリン源を溶解させた後に溶解させてもよい。
 この方法は、上記の一般式、
LiFe1-αZrα1-2αSi2α (0<α≦0.25)、
で表されるリチウム含有複合酸化物の製造に好適に用いることができる。
 なお、本発明において、原料物質を溶解させる順番とは、溶媒に順次原料物質を投入する場合には、投入する原料物質の順番をいうが、予め複数の原料物質を溶媒に溶解させた溶液を準備し、その溶液を混合する場合には、その混合する順番をいう。
 リチウム源、鉄源およびジルコニウム源を溶解させた溶媒を調製する順番としては、ジルコニウムイオンを鉄イオンにより安定化させることができれば特に限定されない。ジルコニウムイオンを鉄イオンにより安定化させる方法としては、溶媒中に鉄の強酸塩水和物を溶解させた後に、ジルコニウムハロゲン化物を溶解させる方法や、溶媒中にジルコニウムハロゲン化物を溶解させた後に、鉄の強酸塩水和物を溶解させる方法や、溶媒中に鉄の強酸塩水和物とジルコニウムハロゲン化物を同時に溶解させる方法を挙げることができる。なお、鉄源とジルコニウム源の溶解の順番は特に限定されず、いずれが一方を先に溶解させても、あるいは両者を同時に溶解させてもよい。
 また、リチウム源に塩無水物、例えば酢酸リチウムを用いると、溶媒中に水が含まれていないと溶解しない。そのため、リチウム源に塩無水物を用いる場合には、鉄の塩の水和物、ジルコニウムの塩の水和物を溶媒に溶解させた後に投入して、溶解させることが好ましい。
 原料物質を溶媒に溶解させる際、室温以上となるように加熱してもよい。加熱温度としては、30℃~80℃、より好ましくは30℃~60℃である。
 なお、上記の溶解工程の説明では、元素Mに鉄とジルコニウム、元素Xにシリコンを用いた例について説明したが、上記一般式(1)に含まれる元素MおよびXであって、全原料物質を溶媒に均一に溶解できる組合せであれば特に限定されない。
(ii)ゲル化工程
 本工程では、溶解工程により得られた溶液をゲル化させる。ゲル化は、Li、Fe、Zr、PおよびSiが酸素原子を介して結合する一群の集合体となり、この集合体がゲル中で数nmから数十nmの粒径の微粒子として析出することで溶液の粘度が上昇することにより行われると発明者等は考えている。
 ゲル化工程は、溶液を静置してもよく、あるいは溶液を攪拌してもよい。また、ゲル化を促進するために、溶解工程により得られた溶液を室温から使用する溶媒の沸点の範囲、好ましくは30℃~80℃、より好ましくは40℃~60℃の温度で加熱してもよい。加熱時間は、10分~48時間、好ましくは30分~24時間である。溶液を加熱することによりゲル化を促進させてゲル化に要する時間を短縮することができるので、製造コストの低減が可能となる。また、加熱することにより、ゲル化後にゲルの相分離が抑制され、不純物が生成しにくくなる効果も得られる。
(iii)乾燥工程
 本工程では、ゲル化したゲルから残留する溶媒を除去する。溶媒の除去方法としては、室温で静置する方法や、30~80℃に加熱して溶媒を除去する方法や、ロータリーポンプなど用いたチャンバー内にゲルを設置し、減圧して溶媒を除去する方法等を用いることができる。また、溶液調製時に使用した溶媒よりも揮発性の高い溶媒や表面張力の異なる溶媒と溶媒交換を行った後に前述と同じ方法で溶媒を除去してもよい。溶媒交換に用いる溶媒としてはトルエン、ベンゼン、ヘキサン、テトラヒドロフラン、イソプロパノールおよびこれらの混合溶媒を挙げることができる。また、本工程で得られたゲルを超臨界状態の二酸化炭素に浸して溶媒を抽出することで溶媒を除去することもできる。これらの除去した溶媒は工業的観点から回収して再利用することが好ましい。
(iv)粉砕工程
 本工程では、得られたゲルを機械的に粉砕する。粉砕方法は特に限定されず、必要に応じて加温、冷却および雰囲気制御をする方法が挙げられる。
 粉砕手法としては、遊星式ボールミル、ボールミル、ビーズミル、振動ミル、ピンミル、アトマイザー、ホモジナイザー、ローターミル、ローラーミル、ハンマーミル、ジェットミルなどが上げられるがこれ等に限定されない。
 粉砕後のゲルの平均粒径は0.1μm~50μm、好ましくは0.2~10μmである。50μmより大きいと焼成時の還元が不十分になりFeやZrOなどの不純物が生成しやすくなるからである。また、0.1μmよりも小さいと表面積が大きくなるために空気中の水分と反応したり二酸化炭素などを吸着して不純物が生成し易くなり、また粉砕に時間がかかり実用的でないからである。
 ゲルを粉砕することにより、ゲル同士の接触面積を小さくして、粒子成長を抑制することができる。その結果、一次粒子および二次粒子の凝集を抑制することが可能となるので、焼成後のリチウム含有複合酸化物を粉砕することなく、その粒径を制御することが可能となり、リチウム含有複合酸化物の結晶性を低下させることがない。
(v)炭素源混合工程
 糖類、油脂類や合成樹脂材料を、粉砕したゲルと混合してもよい。これら化合物を焼成時に炭化させることによりリチウム含有複合酸化物粒子の表面に炭素被覆を形成し、該粒子の導電性を向上させることができる。糖類としては、スクロース、フルクトース等を用いることができる。また、合成樹脂材料としては、ポリエーテル類としてはポリエチレングリコールやポリプロピレングリコール等のポリエーテル類や、ポリビニルアルコール、ポリアクリルアミド、カルボキシメチルセルロース、ポリ酢酸ビニル等を用いることができる。
(vi)焼成工程
 本工程では、得られたゲルを焼成することでリチウム含有複合酸化物を得る。焼成は、400~700℃、好ましくは400~600℃の温度範囲で、1~24時間をかけて行う。焼成時の雰囲気は、不活性雰囲気(アルゴン、窒素、真空等の雰囲気)又は還元性雰囲気(水素含有不活性ガス、一酸化炭素等の雰囲気)を用いることができる。均一に焼成を行うため、ゲルを攪拌してもよく、焼成時にNOxやSOx、塩素などの有毒なガスが発生する場合は、除去装置を設けてもよい。
(vii)その他の工程
 得られたリチウム含有複合酸化物は、必要に応じて、粉砕工程及び/又は分級工程に付すことで、所望の粒径に調製してもよい。
(3)用途
 得られたリチウム含有複合酸化物は、非水系電解質二次電池の正極活物質に使用できる。正極活物質には、上記リチウム含有複合酸化物以外に、LiCoO、LiNiO、LiFeO、LiMnO、LiMnO4、LiMnO、LiCoPO、LiNiPO、LiMnPO、LiFePO等の他の酸化物が含まれていてもよい。
 非水系電解質二次電池は、正極と負極と非水系電解質とセパレータとを有する。以下、各構成材料について説明する。
(a)正極
 正極は、公知の方法を用いて作製することができる。例えば、正極活物質と導電材とバインダーとを有機溶剤を用いて混練分散してペーストを得、該ペーストを集電体に塗布することによって作製できる。なお、得られたリチウム含有複合酸化物が十分に高い導電性を有する場合には、導電材は必ずしも添加する必要はない。
 バインダーとしては、ポリテトラフルオロエチレン、ポリビニリデンフルオライド、ポリビニルクロライド、エチレンプロピレンジエンポリマー、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース、スチレンーブタジエンゴム等を用いることができる。必要に応じてカルボキシメチルセルロース等の増粘材を使用することもできる。
 導電材としては、アセチレンブラック、天然黒鉛、人造黒鉛、ニードルコークス等を用いることができる。
 集電体としては、連続孔を持つ発泡(多孔質)金属、ハニカム状に形成された金属、焼結金属、エキスパンドメタル、不織布、板、孔開きの板、箔等を用いることができる。
 有機溶剤としては、N-メチル-2-ピロリドン、トルエン、シクロヘキサン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N-ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン等を用いることができる。バインダーに水溶性のものを使用する場合は溶媒として水を用いることもできる。
 正極の厚さは、0.01~20mm程度が好ましい。厚すぎると導電性が低下し、薄すぎると単位面積当たりの容量が低下するので好ましくない。なお、塗布並びに乾燥によって得られた正極は、活物質の充填密度を高めるためローラープレス等により圧密してもよい。
(b)負極
 負極は公知の方法により作製できる。例えば、負極活物質とバインダーと導電材とを混合し、得られた混合粉末をシート状に成形し、得られた成形体を集電体、例えばステンレスまたは銅製のメッシュ状集電体に圧着して作製できる。また、上記(a)正極で説明したようなペーストを用いる方法を用いて作製することができ、その場合、負極活物質と導電材とバインダーとを有機溶剤を用いて混練分散してペーストを得、該ペーストを集電体に塗布することによって作製できる。
 負極活物質としては公知の材料を用いることができる。高エネルギー密度電池を構成するためには、リチウムの挿入/脱離する電位が金属リチウムの析出/溶解電位に近いものが好ましい。その典型例は、粒子状(鱗片状、塊状、繊維状、ウィスカー状、球状、粉砕粒子状等)の天然もしくは人造黒鉛のような炭素材料である。
 人造黒鉛としては、メソカーボンマイクロビーズ、メソフェーズピッチ粉末、等方性ピッチ粉末等を黒鉛化して得られる黒鉛を挙げることができる。また、非晶質炭素を表面に付着させた黒鉛粒子も使用できる。これらの中で、天然黒鉛は、安価でかつリチウムの酸化還元電位に近く、高エネルギー密度電池が構成できるため好ましい。
 また、リチウム遷移金属酸化物、リチウム遷移金属窒化物、遷移金属酸化物、酸化シリコン等も負極活物質として使用可能である。これらの中では、LiTi12は電位の平坦性が高く、かつ充放電による体積変化が小さいため好ましい。
(c)非水系電解質
 非水系電解質としては、例えば、有機電解液、ゲル状電解質、高分子固体電解質、無機固体電解質、溶融塩等を用いることができる。
 有機電解液を構成する有機溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート類、γ-ブチロラクトン(GBL)、γ-バレロラクトン等のラクトン類、テトラヒドロフラン、2-メチルテトラヒドロフラン等のフラン類、ジエチルエーテル、1,2-ジメトキシエタン、1,2-ジエトキシエタン、エトキシメトキシエタン、ジオキサン等のエーテル類、ジメチルスルホキシド、スルホラン、メチルスルホラン、アセトニトリル、ギ酸メチル、酢酸メチル等を挙げることができ、これらの1種以上を混合して用いることができる。
 また、PC、EC及びブチレンカーボネート等の環状カーボネート類は高沸点溶媒であるため、GBLと混合する溶媒として好適である。
 有機電解液を構成する電解質塩としては、ホウフッ化リチウム(LiBF)、六フッ化リン酸リチウム(LiPF)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、トリフルオロ酢酸リチウム(LiCFCOO)、リチウムビス(トリフルオロメタンスルホン)イミド(LiN(CFSO)等のリチウム塩を挙げることができ、これらの1種以上を混合して用いることができる。電解液の塩濃度は、0.5~3mol/lが好適である。
(d)セパレータ
 セパレータとしては、多孔質材料や不織布等の公知の材料を用いることができる。セパレータの材質としては、電解液中の有機溶媒に対して溶解したり膨潤したりしないものが好ましい。具体的には、ポリエステル系ポリマー、ポリオレフィン系ポリマー(例えば、ポリエチレン、ポリプロピレン)、エーテル系ポリマー、ガラス繊維等を挙げることができる。
(e)他の部材
 電池容器のような他の部材についても公知の各種材料を使用でき、特に制限はない。
(f)二次電池の製造方法
 二次電池は、例えば、正極と負極と、それらの間に挟まれたセパレータとからなる積層体を備えている。積層体は、例えば短冊状の平面形状を有していてもよい。また、円筒型や扁平型の電池を作製する場合は、積層体を巻き取って巻回体としてもよい。
 積層体は、その1つ又は複数が電池容器の内部に挿入される。通常、正極及び負極は電池の外部導電端子に接続される。その後に、正極、負極及びセパレータを外気より遮断するために電池容器を密閉する。
 密封の方法は、円筒電池の場合、電池容器の開口部に樹脂製のパッキンを有する蓋をはめ込み、電池容器と蓋とをかしめる方法が一般的である。また、角型電池の場合、金属性の封口板と呼ばれる蓋を開口部に取りつけ、溶接を行う方法を使用できる。これらの方法以外に、結着剤で密封する方法、ガスケットを介してボルトで固定する方法も使用できる。更に、金属箔に熱可塑性樹脂を貼り付けたラミネート膜で密封する方法も使用できる。なお、密封時に電解質注入用の開口部を設けてもよい。有機電解液を用いる場合、その開口部から有機電解液を注入し、その後でその開口部を封止する。封止の前に通電し発生したガスを取り除いてもよい。
 以下、実施例を用いて本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
実施例1.
<i.溶解工程>
 以下のように、鉄源、リチウム源、ジルコニウム源、シリコン源、リン源の順番で溶媒に溶解させた。
 Liのモル量に対して30倍のモル量のエタノールに、鉄源としてFe(NO3・9HOを量りとり、完全に溶解するまで撹拌した。完全に溶解したことを確認した後、リチウム源としてLiCHCOOを量りとり、ジルコニウム源としてZrCl、シリコン源としてSi(OCを量りとり、順に溶解させていき、均一溶液を調製した。最後にリン源としてHPO(85重量%)を量りとり均一な溶液になるまで撹拌した。リチウム源であるLiCHCOOを0.9899gとして、Li:Fe:Zr:P:Si=1:0.875:0.125:0.75:0.25(モル比)、となるように各原料物質を秤量した。
<ii.ゲル化工程>
 室温で1時間攪拌した均一な溶液を60℃の恒温槽にて24時間、保管することにより、ゲル化を行った。ゲル化時には、容器の蓋をして、溶媒の蒸発を抑制した。
<iii.乾燥工程>
 ゲル化工程により、得られたゲルの容器の蓋を開け、60℃の恒温槽にて1晩放置することにより、溶媒を揮発させた。
<iv.粉砕工程>
 乾燥工程で得られたゲルを遊星式のボールミルを用いて粉砕した。遊星式のボールミルを用いた粉砕条件としては、10mmφのジルコニアボールを使用し、400rpmの回転数で1時間の処理を行った。
<v.炭素源混合工程>
 粉砕した前駆体を水に溶かした炭素源を加えた。炭素源としては、スクロースを使用した。加えた量としては、前駆体の重量に対して15重量%とした。スクロースを加えた前駆体を乾燥後、乳鉢で粉砕した。
<vi.焼成工程>
 粉砕工程により得られた前駆体を550℃で12時間焼成した。焼成プロセスとしては、まず炉内を真空にした後、窒素をフローし、200℃/hの昇温速度で加熱した。降温速度は、炉冷とした。
(粉砕工程における粉砕後のゲルの平均粒径の測定)
 粉砕後のゲルの平均粒径は以下の方法により決定した。
 約1mgの粉砕後のゲルを平板ガラスの上に分散させ、オリンパス社製BX60M光学顕微鏡にセットし、CCDカメラを経由してゲルの粒子の画像をパーソナルコンピュータに取り込んだ。画像の視野を縦100μm、横200μmの領域に切り取り、画像のコントラストに閾値を調整する事で各粒子の輪郭を抽出した。この輪郭のデータを元に、各粒子の長径と短径の平均値を求め、粒子の粒径とした。領域内の全ての粒子について同様の計算を行い、領域内の粒子の粒度の分布を求めた。測定する画像の領域を変えて同じ操作を10回行い、全ての分布を積算した。積算した粒径の分布より、粒径の小さい方から粒径の面積の積算し、総面積の50%となった点の粒子の径を平均粒径(以下D50とする。)と定義した。本実施例のD50は25.6μmであった。
(粉末X線回折パターンの測定)
 得られた複合酸化物について、株式会社理学社製粉末X線回折装置MiniFlex IIを用いて粉末X線回折パターンの測定を行った。結果を図1に示す。オリビン型構造の結晶相が生成していることを確認し、FeやZrO等の不純物に帰属されるピークがないことを確認した。
(電池の特性評価)
 得られた正極活物質を約1g秤量し、メノウ乳鉢にて粉砕し、これに導電剤として、正極活物質に対して約10重量%のアセチレンブラック(商品名:「デンカブラック」、電気化学工業社製)と、結着剤として、正極活物質に対して約10重量%のポリビニリデンフルオライド樹脂粉末とを混合した。この混合物をN-メチル-2-ピロリドン等の溶剤に分散させてスラリー状にし、これを厚さ20μmのアルミニウム箔の両面にドクターブレード法で塗布した。塗布量としては約5mg/cmとなるようにした。この電極を乾燥した後に、プレスを行って正極を得た。
 50mlのビーカー中に1mol/lのLiPFを溶解させた、エチレンカーボネートとジエチルカーボネートの比が1:2となる電解質を約30ml注入し、2cm×2cmの正極と共に、参照電極として金属リチウムを用い、対極として金属リチウムを用いた、ビーカーセルを作製した。
 このように作製した電池を25℃の環境下で初回充電を行った。充電電流は0.1mAとし、電池の電位が4Vに到達した時点で充電を終了させた。充電が終了後0.1mAで放電を行い電池の電位が2.0Vに到達した時点で放電を終了し、この電池の実測容量とした。これらの結果を表1に示す。本実施例では、110.3mAh/gの高い容量が得られた。
比較例1.
 メノウ乳鉢に、リチウム源として酢酸リチウム(LiCHCOO)を15mmol、鉄源としてシュウ酸鉄二水和物(FeC・2HO)を10.50mmol、ジルコニウム源としてオキシ塩化ジルコニウム(ZrOCl)を4.50mmol、リン源としてリン酸二水素アンモニウム((NHPO)を11.25mmol、シリコン源としてSiO粉末を3.75mmol量りとり、均一になるまで粉砕した。試料のモル比をLi:Fe:Zr:P:Si=1:0.875:0.125:0.75:0.25とした。更に、生成予測されるLiFe0.875Zr0.1250.750Si0.250の重量に対して10重量%のスクロース(炭素源)を加え、均一になるまで原料を混合粉砕した。次いで、得られた粉末を窒素雰囲気中、温度600℃で12時間焼成した。
(粉末X線回折パターンの測定)
 得られた複合酸化物について、実施例1と同様の方法により粉末X線回折パターンの測定を行った。結果を図2に示す。Zr(POおよびZrOに帰属されるピークが認められ、不純物としてZr(POおよびZrOが生成していることがわかった。
 得られたリチウム含有複合酸化物を正極活物質とし、実施例1と同様の方法により電池を作製し、電池特性の評価を行った。結果を表1に示す。本比較例では、56.7mAh/g程度の容量しか得ることができなかった。
比較例2.
 粉砕工程において、遊星式のボールミルを用いた粉砕条件として、400rpmの回転数で1分とした以外は実施例1と同様の方法を用いた。粉砕後のゲルの平均粒径は60.5μmであった。
(粉末X線回折パターンの測定)
 得られた複合酸化物について、実施例1と同様の方法により粉末X線回折パターンの測定を行った。結果を図3に示す。ZrOに帰属されるピークが認められ、不純物としてZrOが生成していることがわかった。実施例1では、ZrOに帰属されるピークが認められなかったことから、粉砕工程においてゲルの平均粒径を50μm以下にすれば、不純物であるZrOの生成を抑制できることがわかった。
 得られたリチウム含有複合酸化物を正極活物質とし、実施例1と同様の方法により電池を作製し、電池特性の評価を行った。結果を表1に示す。本比較例では、58.9mAh/g程度の容量しか得ることができなかった。
Figure JPOXMLDOC01-appb-T000001
実施例2.
<i.溶解工程>
 以下のように、鉄源、リチウム源、ジルコニウム源、シリコン源、リン源の順番で溶媒に溶解させた。
 Liのモル量に対して30倍のモル量のエタノールに、鉄源としてFe(NO3・9HOを量りとり、完全に溶解するまで撹拌した。完全に溶解したことを確認した後、リチウム源としてLiCHCOOを量りとり、ジルコニウム源としてZrCl、シリコン源としてSi(OCを量りとり、順に溶解させていき、均一溶液を調製した。最後にリン源としてHPO(85重量%)を量りとり均一な溶液になるまで撹拌した。リチウム源であるLiCHCOOを0.9899gとして、Li:Fe:Zr:P:Si=1:0.875:0.125:0.75:0.25(モル比)、となるように各原料物質を秤量した。得られた均一な溶液を、室温でスターラーにて1時間攪拌した。
<ii.ゲル化工程>
 室温で1時間攪拌した均一な溶液を60℃の恒温槽にて24時間、保管することにより、ゲル化を行った。ゲル化時には、容器の蓋をして、溶媒の蒸発を抑制した。
<iii.乾燥工程>
 ゲル化工程により、得られたゲルの容器の蓋を開け、60℃の恒温槽にて1晩放置することにより、溶媒を揮発させた。
<iv.粉砕工程>
 ゲルを乾燥することにより得られた前駆体を、乳鉢で粉砕した。粉砕後のゲルの平均粒径は、49.2μmであった。
<v.炭素源混合工程>
 粉砕した前駆体を水に溶かした炭素源を加えた。炭素源としては、スクロースを使用した。加えた量としては、前駆体の重量に対して15重量%とした。スクロースを加えた前駆体を乾燥後、乳鉢で粉砕した。
<vi.焼成工程>
 粉砕工程により得られた前駆体を550℃で12時間焼成した。焼成プロセスとしては、まず炉内を真空にした後、窒素をフローし、200℃/hの昇温速度で加熱した。降温速度は、炉冷とした。
(結果)
 得られた複合酸化物について、株式会社理学社製粉末X線回折装置MiniFlex IIを用いて粉末X線回折パターンの測定を行った。結果を図4に示す。オリビン型構造の結晶相の生成および原料物質やZrO等の不純物に帰属されるピークがないことを確認した。
実施例3.
 溶解工程において、以下のように、ジルコニウム源、鉄源、シリコン源、リチウム源、リン源の順番で溶媒に溶解させた以外は、実施例2と同様の方法により、リチウム含有複合酸化物を製造した。
<溶解工程>
 Liのモル量に対して30倍のモル量のエタノールに、ジルコニウム源としてZrClを量りとり、完全に溶解するまで撹拌した。完全に溶解したことを確認した後、鉄源としてFe(NO3・9HOを量りとり、シリコン源としてSi(OCを量りとり、リチウム源としてLiCHCOOを量りとり、順に溶解させていき、均一溶液を調製した。最後にリン源としてHPO(85重量%)を量りとり均一な溶液になるまで撹拌した。リチウム源であるLiCHCOOを0.9899gとして、Li:Fe:Zr:P:Si=1:0.875:0.125:0.75:0.25(モル比)、となるように各原料物質を秤量した。得られた均一な溶液を、室温でスターラーにて1時間攪拌した。
(結果)
 得られた複合酸化物について、実施例2と同様に粉末X線回折パターンの測定を行った。実施例2の場合と同様のX線回折パターンが得られ、オリビン型構造の結晶相の生成を確認した。また、ZrO等の不純物に帰属されるピークがないことを確認した。なお、粉砕後のゲルの平均粒径は、25.6μmであった。
実施例4.
 溶解工程において、以下のように、鉄源+ジルコニウム源、リチウム源、リン源、シリコン源の順番で溶媒に溶解させた以外は、実施例2と同様の方法により、リチウム含有複合酸化物を製造した。
<溶解工程>
 Liのモル量に対して30倍のモル量のエタノールに、鉄源としてFe(NO3・9HOを量りとり、ジルコニウム源としてZrClを量りとり、同時にエタノール中に投入し、完全に溶解するまで撹拌した。完全に溶解したことを確認した後、リチウム源としてLiCHCOOを量りとり、溶液中に投入して撹拌することで、均一溶液を作製した。次にリン源としてHPO(85重量%)を量りとり均一な溶液になるまで撹拌した。最後にシリコン源としてSi(OCを量りとり撹拌することで均一溶液を調製した。リチウム源であるLiCHCOOを0.9899gとして、Li:Fe:Zr:P:Si=1:0.875:0.125:0.75:0.25(モル比)、となるように各原料物質を秤量した。得られた均一な溶液を、室温でスターラーにて1時間攪拌した。
(結果)
得られた複合酸化物について、実施例2と同様に粉末X線回折パターンの測定を行った。実施例2の場合と同様のX線回折パターンが得られ、オリビン型構造の結晶相の生成を確認した。また、ZrO等の不純物に帰属されるピークがないことを確認した。粉砕後のゲルの平均粒径は、25.6μmであった。
実施例5.
 溶解工程において、以下のように、鉄源、ジルコニウム源、シリコン源、リン源、リチウム源の順番で溶媒に溶解させたこと、リチウム源としてLiNOを用いたこと以外は、実施例2と同様の方法により、リチウム含有複合酸化物を製造した。
 Liのモル量に対して30倍のモル量のエタノールに、鉄源としてFe(NO3・9HOを量りとり、完全に溶解するまで撹拌した。完全に溶解したことを確認した後、ジルコニウム源としてZrCl、シリコン源としてSi(OCを量りとり、順に溶解させていき、均一溶液を調製した。次にリン源としてHPO(85重量%)を量りとり、均一になるまで撹拌し、最後にリチウム源としてLiNOを量りとり均一な溶液になるまで撹拌した。リチウム源であるLiNOを1.0342gとして、Li:Fe:Zr:P:Si=1:0.875:0.125:0.75:0.25(モル比)、となるように各原料物質を秤量した。得られた均一な溶液を、室温でスターラーにて1時間攪拌した。
(結果)
得られた複合酸化物について、実施例2と同様に粉末X線回折パターンの測定を行った。結果を図5に示す。オリビン型構造の結晶相の生成を確認した。また、ZrO等の不純物に帰属されるピークがないことを確認した。なお、粉砕後のゲルの平均粒径は、25.6μmであった。
実施例6.
 溶解工程において、以下のように、シリコン源、鉄源、リチウム源、ジルコニウム源、リン源の順番で溶媒に溶解させた以外は、実施例2と同様の方法により、リチウム含有複合酸化物を製造した。
<溶解工程>
 Liのモル量に対して30倍のモル量のエタノールに、シリコン源としてSi(OCを量りとり、次に鉄源としてFe(NO3・9HOを量りとり、順に投入して完全に溶解するまで撹拌した。完全に溶解したことを確認した後、リチウム源としてLiCHCOOを量りとり、ジルコニウム源としてZrClを量りとり、順に溶解させていき、均一溶液を調製した。最後にリン源としてHPO(85重量%)を量りとり均一な溶液になるまで撹拌した。リチウム源であるLiCHCOOを0.9899gとして、Li:Fe:Zr:P:Si=1:0.875:0.125:0.75:0.25(モル比)、となるように各原料物質を秤量した。得られた均一な溶液を、室温でスターラーにて1時間攪拌した。
(結果)
得られた複合酸化物について、実施例2と同様に粉末X線回折パターンの測定を行った。実施例2の場合と同様のX線回折パターンが得られ、オリビン型構造の結晶相の生成を確認した。また、ZrO等の不純物に帰属されるピークがないことを確認した。なお、粉砕後のゲルの平均粒径は、25.6μmであった。
実施例7.
 溶解工程において、以下のように、リチウム源、シリコン源、鉄源、ジルコニウム源、リン源の順番で溶媒に溶解させたこと、シリコン源としてSi(OCH3を用いたこと、リチウム源を溶解させるために水を加えたこと、リチウム源とシリコン源を60℃雰囲気下で反応させたこと以外は、実施例2と同様の方法により、リチウム含有複合酸化物を製造した。
<溶解工程>
 Liのモル量に対して30倍のモル量のエタノールに、LiCHCOOを添加し、LiCHCOOを溶解させるために水を2.1263g投入した。溶液を十分に撹拌して、LiCHCOOの溶解を確認後、Si(OCH3を投入し、60℃雰囲気下で一時間撹拌した。次に鉄源としてFe(NO3・9HOを量りとり、完全に溶解するまで撹拌した。完全に溶解したことを確認した後、ジルコニウム源としてZrClを量りとり、溶液中に溶解させ、均一溶液を調製した。次にリン源としてHPO(85重量%)を量りとり、均一になるまで撹拌した。リチウム源であるLiCHCOOを0.9899gとして、Li:Fe:Zr:P:Si=1:0.875:0.125:0.75:0.25(モル比)、となるように各原料物質を秤量した。得られた均一な溶液を、室温でスターラーにて1時間攪拌した。
(結果)
 得られた複合酸化物について、実施例2と同様に粉末X線回折パターンの測定を行った。結果を図6に示す。オリビン型構造の結晶相の生成を確認した。また、ZrO等の不純物に帰属されるピークがないことを確認した。なお、粉砕後のゲルの平均粒径は、15.6μmであった。
実施例8.
 溶解工程において、以下のように、リチウム源、シリコン源、ジルコニウム源、鉄源、リン源の順番で溶媒に溶解させたこと、シリコン源としてSi(OCH3を用いたこと、リチウム源を溶解させるために水を加えたこと、リチウム源とシリコン源を60℃雰囲気下で反応させたこと以外は、実施例2と同様の方法により、リチウム含有複合酸化物を製造した。
<溶解工程>
 Liのモル量に対して30倍のモル量のエタノールに、LiCHCOOを添加し、LiCHCOOを溶解させるために水を2.1263g投入した。溶液を十分に撹拌して、LiCHCOOの溶解を確認後、Si(OCH3を投入し、60℃雰囲気下で一時間撹拌した。次にジルコニウム源としてZrClを量りとり、完全に溶解するまで撹拌した。完全に溶解したことを確認した後、鉄源としてFe(NO3・9HOを量りとり、順に溶解させていき、均一溶液を調製した。最後にリン源としてHPO(85重量%)を量りとり、均一になるまで撹拌した。リチウム源であるLiCHCOOを0.9899gとして、Li:Fe:Zr:P:Si=1:0.875:0.125:0.75:0.25(モル比)、となるように各原料物質を秤量した。得られた均一な溶液を、室温でスターラーにて1時間攪拌した。
(結果)
 得られた複合酸化物について、実施例2と同様に粉末X線回折パターンの測定を行った。実施例2の場合と同様のX線回折パターンが得られ、オリビン型構造の結晶相の生成を確認した。また、ZrO等の不純物に帰属されるピークがないことを確認した。なお、粉砕後のゲルの平均粒径は、0.2μmであった。
実施例9.
 溶解工程において、以下のように、リチウム源、シリコン源、ジルコニウム源+鉄源、リン源の順番で溶媒に溶解させたこと、シリコン源としてSi(OCH3を用いたこと、リチウム源を溶解させるために水を加えたこと、リチウム源とシリコン源を60℃雰囲気下で反応させたこと以外は、実施例2と同様の方法により、リチウム含有複合酸化物を製造した。
<溶解工程>
 Liのモル量に対して15倍のモル量のエタノールに、LiCHCOOを添加し、LiCHCOOを溶解させるために水を2.1263g投入した。溶液を十分に撹拌して、LiCHCOOの溶解を確認後、Si(OCH3を投入し、60℃雰囲気下で一時間撹拌した。また、別の容器で上記と同量のエタノール中にジルコニウム源としてZrCl、鉄源としてFe(NO3・9HOを量りとり、完全に溶解するまで撹拌しておいた。これら2つの溶液を混合し、均一溶液を調製した後に、最後にリン源としてHPO(85重量%)を量りとり、均一になるまで撹拌し溶液を調製した。リチウム源であるLiCHCOOを0.9899gとして、Li:Fe:Zr:P:Si=1:0.875:0.125:0.75:0.25(モル比)、となるように各原料物質を秤量した。得られた均一な溶液を、室温でスターラーにて1時間攪拌した。
(結果)
 得られた複合酸化物について、実施例2と同様に粉末X線回折パターンの測定を行った。実施例2の場合と同様のX線回折パターンが得られ、オリビン型構造の結晶相の生成を確認した。また、ZrO等の不純物に帰属されるピークがないことを確認した。なお、粉砕後のゲルの平均粒径は、0.2μmであった。
実施例10.
 溶解工程において、以下のように、鉄源、シリコン源、リチウム源、ジルコニウム源、リン源の順番で溶媒に溶解させ、リン源の量をモル比で5%増やした以外は、実施例2と同様の方法により、リチウム含有複合酸化物を製造した。
<溶解工程>
 Liのモル量に対して30倍のモル量のエタノールに、鉄源としてFe(NO3・9HOを量りとり、完全に溶解するまで撹拌した。完全に溶解したことを確認した後、シリコン源としてSi(OCを量りとり、リチウム源としてLiCHCOOを量りとり、ジルコニウム源としてZrClを量りとり、順に溶解させていき、均一溶液を調製した。最後にリン源としてHPO(85重量%)を量りとり均一な溶液になるまで撹拌した。リチウム源であるLiCHCOOを0.9899gとして、Li:Fe:Zr:P:Si=1:0.875:0.125:0.7875:0.25(モル比)、となるように各原料物質を秤量した。得られた均一な溶液を、室温でスターラーにて1時間攪拌した。
(結果)
 得られた複合酸化物について、実施例2と同様に粉末X線回折パターンの測定を行った。結果を図7に示す。オリビン型構造の結晶相の生成を確認した。また、ZrO等の不純物に帰属されるピークがないことを確認した。なお、粉砕後のゲルの平均粒径は、0.1μmであった。
実施例11.
 溶解工程において、以下のように、鉄源、ジルコニウム源、リチウム源、シリコン源、リン源の順番で溶媒に溶解させ、リン源の量をモル比で10%増やした以外は、実施例2と同様の方法により、リチウム含有複合酸化物を製造した。
<溶解工程>
 Liのモル量に対して30倍のモル量のエタノールに、鉄源としてFe(NO3・9HOを量りとり、完全に溶解するまで撹拌した。完全に溶解したことを確認した後、ジルコニウム源としてZrClを量りとり、リチウム源としてLiCHCOOを量りとり、シリコン源としてSi(OCを量りとり、順に溶解させていき、均一溶液を調製した。最後にリン源としてHPO(85重量%)を量りとり均一な溶液になるまで撹拌した。リチウム源であるLiCHCOOを0.9899gとして、Li:Fe:Zr:P:Si=1:0.875:0.125:0.825:0.25(モル比)、となるように各原料物質を秤量した。得られた均一な溶液を、室温でスターラーにて1時間攪拌した。
(結果)
 得られた複合酸化物について、実施例2と同様に粉末X線回折パターンの測定を行った。結果を図8に示す。オリビン型構造の結晶相の生成を確認した。また、ZrO等の不純物に帰属されるピークがないことを確認した。なお、粉砕後のゲルの平均粒径は、0.1μmであった。
実施例12.
 ゲル化工程において、加熱温度を40℃とした以外は、実施例2と同様の方法により、リチウム含有複合酸化物を製造した。
(結果)
 得られた複合酸化物について、実施例2と同様に粉末X線回折パターンの測定を行った。結果を図9に示す。オリビン型構造の結晶相の生成を確認した。また、ZrO等の不純物に帰属されるピークがないことを確認した。なお、粉砕後のゲルの平均粒径は、25.6μmであった。
実施例13.
 ゲル化工程において、加熱温度を30℃とした以外は、実施例2と同様の方法により、リチウム含有複合酸化物を製造した。
(結果)
 得られた複合酸化物について、実施例2と同様に粉末X線回折パターンの測定を行った。結果を図10に示す。オリビン型構造の結晶相の生成を確認した。また、ZrO等の不純物に帰属されるピークがないことを確認した。なお、粉砕後のゲルの平均粒径は、25.6μmであった。
比較例3.
 溶解工程において以下の方法を用いた以外は実施例2と同様の方法により、リチウム含有複合酸化物を製造した。
<溶解工程>
 Liのモル量に対して15倍のモル量のエタノールに、ジルコニウム源としてZrClを量りとり、完全に溶解するまで撹拌した。完全に溶解したことを確認した後、リン源としてHPO(85重量%)を量りとり、混合して撹拌すると白色の沈殿物を生成した。一方、別の容器にLiのモル量に対して15倍のモル量のエタノールに、シリコン源としてSi(OCを量りとり、鉄源としてFe(NO3・9HOを量りとり、リチウム源としてLiCHCOOを量りとり、順に溶解させていき、均一な溶液を調製した。均一な溶液を先に白色の沈殿物が生成した溶液と混合し、撹拌することで不透明な溶液を得た。リチウム源であるLiCHCOOを0.9899gとして、Li:Fe:Zr:P:Si=1:0.875:0.125:0.75:0.25(モル比)、となるように各原料物質を秤量した。得られた溶液を、室温でスターラーにて1時間攪拌した。
(結果)
 得られた複合酸化物について、実施例2と同様に粉末X線回折パターンの測定を行った。結果を図11に示す。得られたX線回折パターンには、ZrOおよびZr(PO)に帰属されるピークが認められた。なお、粉砕後のゲルの平均粒径は、25.6μmであった。
実施例14.
(電池の製造)
 実施例および比較例で製造したリチウム含有複合酸化物をそれぞれ約1g秤量し、メノウ乳鉢にて粉砕し、これに導電剤として約10wt%のアセチレンブラックと、結着剤として約10wt%のテフロン(登録商標)樹脂粉末とを混合した。この混合物をN-メチル-2-ピロリドンに分散させてスラリー状とし、厚さ20μmのアルミニウム箔の両面にドクターブレード法で塗布した。塗布量としては約5mg/cmとなるようした。この電極を乾燥した後に、プレスを行って正極を作製した。
 負極活物質には天然黒鉛粉末を使用した。これに結着剤として約10wt%のテフロン(登録商標)樹脂粉末を混合した。この混合物をN-メチル-2-ピロリドンに分散させてスラリー状とし、厚さ20μmの銅箔の両面に塗布し、乾燥した。その後プレスを行って負極を作製した。
 作製した正極と負極をそれぞれ30mm×30mmに大きさに切り抜き、電池の電流導入端子として正極には幅3mm、長さ50mmのアルミニウム製タブを、負極には幅3mm、長さ50mm銅製タブを溶接した。これらの正極と負極との間に多孔質ポリエチレン製のセパレータをはさみ、電池外装として2枚の金属箔に熱可塑性樹脂を貼り付けたラミネート膜の間にはさみ周囲を熱溶着することにより密封した。なおこのラミネートには電解質注入用の開口部が設けられている。そこに1mol/lのLiPFを溶解させた50体積%のエチレンカーボネートと50体積%のジエチルカーボネートとを電解質として含浸させた。電解質を電池内部に注入した後に、電池容器の開口部を封止して二次電池の作製を完了した。
(電池特性の評価)
 このように作製した電池を25℃の環境下で初回充電を行った。充電電流は0.1mAとし、電池の電位が4Vに到達した時点で充電を終了させた。充電が終了後0.1mAで放電を行い電池の電位が2.0Vに到達した時点で放電を終了した。
(結果)
 実施例および比較例で製造したリチウム含有複合酸化物を用いた電池の電池特性の評価結果を表2に示す。本発明の製造方法を用いて製造したリチウム含有複合酸化物は、比較例に比し、高い放電容量を有することが確認できた。
Figure JPOXMLDOC01-appb-T000002

Claims (6)

  1.  下記一般式(1)で表されるリチウム含有複合酸化物を製造する方法であって、
     原料物質となるリチウム源、元素M源、リン源および元素X源を溶媒に溶解させて溶液を調製する工程であって、少なくとも元素M源を溶解させた後でリン源を添加する工程と、
     得られた溶液をゲル化させる工程と、
     得られたゲルを焼成する工程とを少なくとも含むリチウム含有複合酸化物の製造方法。
          Li1-z  (1)
    (式中、Mは、Fe、Ni、Mn、Zr、Sn、AlおよびYからなる群から選択される少なくとも1種の元素であり、Xは、Si及びAlから成る群から選択される少なくとも1種であり、0<x≦2、0.8≦y≦1.2、0≦z≦1の範囲である。)
  2.  上記一般式(1)中のMがFeおよびZrであり、XがSiである請求項1記載の製造方法。
  3.  上記のゲルを焼成する工程に先立って、ゲルを粉砕して平均粒径を0.1~50μmとする工程を含む請求項1記載の製造方法。
  4.  上記のゲル化させる工程において、調製した溶液を室温から該溶媒の沸点の範囲の温度で加熱する請求項1記載の製造方法。
  5.  ジルコニウム源がジルコニウムハロゲン化物であり、鉄源が強酸塩の水和物である請求項2記載の製造方法。
  6.  シリコン源がシリコンアルコキシドであり、該シリコンアルコキシドをリン源の添加前または添加後に添加する請求項5記載の製造方法。
PCT/JP2011/062599 2010-06-02 2011-06-01 リチウム含有複合酸化物の製造方法 WO2011152455A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180026756.8A CN103038169B (zh) 2010-06-02 2011-06-01 含锂复合氧化物的制造方法
US13/701,273 US8968936B2 (en) 2010-06-02 2011-06-01 Method for producing lithium-containing composite oxide
CA2801280A CA2801280C (en) 2010-06-02 2011-06-01 Method for producing lithium-containing composite oxide

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010-126499 2010-06-02
JP2010126503 2010-06-02
JP2010126504 2010-06-02
JP2010-126504 2010-06-02
JP2010-126503 2010-06-02
JP2010126499 2010-06-02

Publications (1)

Publication Number Publication Date
WO2011152455A1 true WO2011152455A1 (ja) 2011-12-08

Family

ID=45066813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062599 WO2011152455A1 (ja) 2010-06-02 2011-06-01 リチウム含有複合酸化物の製造方法

Country Status (4)

Country Link
US (1) US8968936B2 (ja)
CN (1) CN103038169B (ja)
CA (1) CA2801280C (ja)
WO (1) WO2011152455A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011251874A (ja) * 2010-06-02 2011-12-15 Sharp Corp リチウム含有複合酸化物の製造方法
JP2011251873A (ja) * 2010-06-02 2011-12-15 Sharp Corp リチウム含有複合酸化物の製造方法
WO2013183661A1 (ja) * 2012-06-06 2013-12-12 シャープ株式会社 非水電解質二次電池用正極活物質、非水電解質二次電池用正極および非水電解質二次電池
WO2015019851A1 (ja) * 2013-08-08 2015-02-12 シャープ株式会社 正極活物質、正極及びリチウムイオン二次電池
US20150162611A1 (en) * 2012-07-31 2015-06-11 Sharp Kabushiki Kaisha Cathode active material for non-aqueous electrolyte secondary battery
US10050271B2 (en) 2012-11-28 2018-08-14 Faradion Limited Metal-containing compounds

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5698951B2 (ja) * 2010-10-19 2015-04-08 シャープ株式会社 正極活物質及びその製造方法、正極ならびに非水電解質二次電池
JP5478549B2 (ja) * 2011-04-18 2014-04-23 シャープ株式会社 正極活物質の製造方法
CN104577115A (zh) * 2014-12-26 2015-04-29 青海时代新能源科技有限公司 一种锂离子电池正极材料、其制备方法及应用
JP2022111526A (ja) * 2021-01-20 2022-08-01 Fdk株式会社 ラミネート型蓄電素子

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014341A (ja) * 2002-06-07 2004-01-15 Sumitomo Osaka Cement Co Ltd 電極材料の製造方法及びリチウムイオン電池
JP2005519451A (ja) * 2002-03-06 2005-06-30 ヴァレンス テクノロジー インコーポレーテッド アルカリ/遷移金属リン酸塩およびそれに関する電極活物質
JP2008311067A (ja) * 2007-06-14 2008-12-25 Sumitomo Osaka Cement Co Ltd 電極材料の製造方法と電極材料および電極並びに電池
JP2009004371A (ja) * 2007-05-21 2009-01-08 Toda Kogyo Corp 非水電解質二次電池用オリビン型複合酸化物及びその製造方法、並びに二次電池

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69736803T2 (de) * 1996-11-07 2007-08-09 Matsushita Electric Industrial Co., Ltd., Kadoma Verfahren zur herstellung positiver aktiver materialien für nichtwässrige elektrolytische sekundärzelle
US6085015A (en) 1997-03-25 2000-07-04 Hydro-Quebec Lithium insertion electrode materials based on orthosilicate derivatives
JP3500424B2 (ja) 2000-08-31 2004-02-23 独立行政法人産業技術総合研究所 単相リチウムフェライト系複合酸化物
CA2320661A1 (fr) 2000-09-26 2002-03-26 Hydro-Quebec Nouveau procede de synthese de materiaux limpo4 a structure olivine
JP3988374B2 (ja) 2000-10-06 2007-10-10 ソニー株式会社 非水電解液二次電池
JP4686859B2 (ja) 2000-12-27 2011-05-25 株式会社デンソー 正極活物質および非水電解質二次電池
DE10151308A1 (de) 2001-10-17 2003-05-08 Zf Sachs Ag Nehmerzylinder für eine hydraulische Anlage zur Betätigung einer Reibungskupplung eines Kraftfahrzeuges
JP2003203632A (ja) 2002-01-09 2003-07-18 Hitachi Ltd リチウム二次電池用正極活物質とその製造法及びそれを用いたリチウム二次電池並びに組電池モジュール
CN1171780C (zh) * 2002-11-28 2004-10-20 清华大学 一种橄榄石结构的多晶LiFePO4粉体制备方法
CA2514528A1 (en) * 2003-01-31 2004-08-12 Mitsui Engineering & Shipbuilding Co., Ltd. Cathode material for secondary battery, method for producing same, and secondary battery
US7211237B2 (en) 2003-11-26 2007-05-01 3M Innovative Properties Company Solid state synthesis of lithium ion battery cathode material
KR101501958B1 (ko) 2003-12-23 2015-03-16 유니버시떼 드 몬트리얼 전기활성 삽입 화합물의 제조 방법 및 이로부터 얻은 전극 물질
WO2007093856A1 (en) * 2006-02-14 2007-08-23 High Power Lithium S.A. Lithium manganese phosphate positive material for lithium secondary battery
US7494744B2 (en) 2006-03-08 2009-02-24 Changs-Ascending Enterprise Co. Cathode material for Li-ion battery applications
JP5231535B2 (ja) 2007-05-28 2013-07-10 ビーワイディー カンパニー リミテッド リチウムイオン二次電池用の正極活物質としてのリチウムリン酸鉄の調製方法
JP5383217B2 (ja) 2008-01-28 2014-01-08 住友化学株式会社 正極活物質およびナトリウム二次電池、ならびにオリビン型リン酸塩の製造方法
WO2009124431A1 (en) * 2008-04-07 2009-10-15 Byd Company Limited A method for preparing iron source used for preparing lithium ferrous phosphate, and a method for preparing lithium ferrous phosphate
EP2356069B1 (en) * 2008-10-20 2022-12-07 QinetiQ Limited Synthesis of metal compounds
CA2873820A1 (en) 2009-05-22 2010-11-25 Sharp Kabushiki Kaisha Cathode active material containing lithium, cathode containing lithium, and nonaqueous secondary battery containing lithium
JP5382474B2 (ja) 2009-07-31 2014-01-08 トヨタ自動車株式会社 正極活物質及びその製造方法
JP5698951B2 (ja) 2010-10-19 2015-04-08 シャープ株式会社 正極活物質及びその製造方法、正極ならびに非水電解質二次電池
JP5478549B2 (ja) * 2011-04-18 2014-04-23 シャープ株式会社 正極活物質の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005519451A (ja) * 2002-03-06 2005-06-30 ヴァレンス テクノロジー インコーポレーテッド アルカリ/遷移金属リン酸塩およびそれに関する電極活物質
JP2004014341A (ja) * 2002-06-07 2004-01-15 Sumitomo Osaka Cement Co Ltd 電極材料の製造方法及びリチウムイオン電池
JP2009004371A (ja) * 2007-05-21 2009-01-08 Toda Kogyo Corp 非水電解質二次電池用オリビン型複合酸化物及びその製造方法、並びに二次電池
JP2008311067A (ja) * 2007-06-14 2008-12-25 Sumitomo Osaka Cement Co Ltd 電極材料の製造方法と電極材料および電極並びに電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
G.X.WANG ET AL.: "A study on LiFeP04 and its doped derivatives as cathode materials for lithium-ion batteries", JOURNAL OF POWER SOURCES, vol. 159, no. 1, 2006, pages 282 - 286 *
MIRAN GABERSCEK ET AL.: "Mass and charge transport in hierarchically organized storage materials. Example:Porous active materials with nanocoated walls of pores", SOLID STATE IONICS, vol. 177, no. 35-36, 2006, pages 3015 - 3022 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011251874A (ja) * 2010-06-02 2011-12-15 Sharp Corp リチウム含有複合酸化物の製造方法
JP2011251873A (ja) * 2010-06-02 2011-12-15 Sharp Corp リチウム含有複合酸化物の製造方法
WO2013183661A1 (ja) * 2012-06-06 2013-12-12 シャープ株式会社 非水電解質二次電池用正極活物質、非水電解質二次電池用正極および非水電解質二次電池
JP5442915B1 (ja) * 2012-06-06 2014-03-19 シャープ株式会社 非水電解質二次電池用正極活物質、非水電解質二次電池用正極および非水電解質二次電池
US20150162611A1 (en) * 2012-07-31 2015-06-11 Sharp Kabushiki Kaisha Cathode active material for non-aqueous electrolyte secondary battery
US10050271B2 (en) 2012-11-28 2018-08-14 Faradion Limited Metal-containing compounds
WO2015019851A1 (ja) * 2013-08-08 2015-02-12 シャープ株式会社 正極活物質、正極及びリチウムイオン二次電池
JPWO2015019851A1 (ja) * 2013-08-08 2017-03-02 シャープ株式会社 正極活物質、正極及びリチウムイオン二次電池

Also Published As

Publication number Publication date
CN103038169A (zh) 2013-04-10
CN103038169B (zh) 2015-05-13
US20130075673A1 (en) 2013-03-28
CA2801280A1 (en) 2011-12-08
US8968936B2 (en) 2015-03-03
CA2801280C (en) 2015-02-10

Similar Documents

Publication Publication Date Title
JP5478549B2 (ja) 正極活物質の製造方法
JP5698951B2 (ja) 正極活物質及びその製造方法、正極ならびに非水電解質二次電池
JP5695842B2 (ja) リチウム含有複合酸化物の製造方法
WO2011152455A1 (ja) リチウム含有複合酸化物の製造方法
JP5132727B2 (ja) 正極活物質、正極及び非水電解質二次電池
JP5683890B2 (ja) 正極材料、その製造方法、正極及び非水電解質二次電池
WO2011118302A1 (ja) 電池用活物質および電池
JP5901492B2 (ja) リチウムシリケート化合物の製造方法、リチウムシリケート化合物凝集体の製造方法及びリチウムイオン電池の製造方法
JP5651377B2 (ja) リチウム含有複合酸化物の製造方法
JP5957536B2 (ja) 正極活物質および正極並びに非水電解質二次電池
WO2013183661A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極および非水電解質二次電池
JP5539802B2 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極および非水電解質二次電池
JP5698929B2 (ja) 正極活物質、正極及び非水二次電池
JP6302751B2 (ja) 正極活物質、正極及び非水電解質二次電池
WO2021060044A1 (ja) 硫黄変性ポリアクリロニトリルの製造方法
JP5846983B2 (ja) 電極活物質の製造方法
JP5354091B2 (ja) 電池用活物質および電池
CN115702509A (zh) 电极和锂离子二次电池
JP2015092510A (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180026756.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789857

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2801280

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13701273

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11789857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP