WO2011152410A1 - Cigs型の太陽電池およびcigs型の太陽電池用の基板 - Google Patents

Cigs型の太陽電池およびcigs型の太陽電池用の基板 Download PDF

Info

Publication number
WO2011152410A1
WO2011152410A1 PCT/JP2011/062512 JP2011062512W WO2011152410A1 WO 2011152410 A1 WO2011152410 A1 WO 2011152410A1 JP 2011062512 W JP2011062512 W JP 2011062512W WO 2011152410 A1 WO2011152410 A1 WO 2011152410A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cigs
solar cell
alkali metal
electrode layer
Prior art date
Application number
PCT/JP2011/062512
Other languages
English (en)
French (fr)
Inventor
光井 彰
健 岡東
秀文 小▲高▼
川本 泰
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020127028102A priority Critical patent/KR20130086932A/ko
Priority to EP11789813.0A priority patent/EP2579326A1/en
Priority to CN2011800267708A priority patent/CN102918652A/zh
Priority to JP2012518406A priority patent/JPWO2011152410A1/ja
Publication of WO2011152410A1 publication Critical patent/WO2011152410A1/ja
Priority to US13/690,728 priority patent/US20130087187A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3607Coatings of the type glass/inorganic compound/metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3668Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties
    • C03C17/3678Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties specially adapted for use in solar cells
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Definitions

  • the present invention relates to a CIGS type solar cell and a substrate constituting such a solar cell.
  • a general CIGS type solar cell is configured by laminating a Mo (molybdenum) electrode, a CIGS layer, a buffer layer, and a ZnO (zinc oxide) electrode in this order on a substrate such as glass.
  • the buffer layer is an n-type semiconductor layer
  • the CIGS layer is a p-type semiconductor layer. Therefore, when the CIGS layer (pn junction) is irradiated with light, a photoelectromotive force is generated by photoexcitation of electrons. For this reason, a direct current can be taken out from both electrodes by light irradiation to the solar cell.
  • the CIGS layer is usually composed of a compound such as Cu (In, Ga) Se 2 . Further, it is known that the CIGS layer has a reduced defect density and an improved carrier concentration due to the presence of an alkali metal such as Na (sodium). When a CIGS layer having a high carrier concentration is used, the energy conversion efficiency of the solar cell is improved. Therefore, it has been proposed to provide a layer containing an alkali metal such as Na (sodium) between the Mo electrode and the CIGS layer (Patent Documents 1 and 2). In this case, in the solar cell manufacturing process, the alkali metal can be diffused from the layer containing the alkali metal to the CIGS layer. Thereby, the energy conversion efficiency of the solar cell can be further improved.
  • the layer containing an alkali metal described in the above-mentioned literature has hygroscopicity or has a property of dissolving in water, there is a problem that handling is difficult and durability is inferior.
  • Na 2 S as described in Patent Document 1 an environment in which contact with an atmosphere containing moisture is blocked during the manufacture of a solar cell, or an environment in which humidity is controlled. Is required.
  • the member cannot be washed with water or an aqueous solution when the foreign matter is removed, or the member cannot be washed.
  • SLG soda lime glass
  • SLG has an alkali metal content of only about 22 atomic% with respect to the total amount of other metal cation elements, and an alkali metal source having a higher alkali metal content is desired.
  • the present invention has been made in view of such a background, and the present invention provides a CIGS solar cell capable of diffusing an alkali metal in a CIGS layer with a more realistic configuration. Objective. Moreover, it aims at providing the board
  • the alkali metal supply layer may have a thickness in a range of 20 nm to 200 nm. More preferably, it may have a thickness in the range of 20 nm to 100 nm.
  • the substrate on which the back electrode layer is provided (in this specification, this substrate is referred to as an insulating support substrate) is composed of an insulating base material itself or a conductive substrate. You may comprise by providing an insulating layer in a material.
  • the insulating support substrate is preferably a glass substrate or a plastic substrate.
  • this invention has a back surface electrode layer installed on the 1st surface of an insulating support substrate, and an alkali metal supply layer, and this alkali metal supply layer is the said 1st surface and the said back surface electrode.
  • the alkali metal supply layer Provided between the layers, or on the upper layer of the back electrode layer, or between the first surface and the back electrode layer and on the upper layer of the back electrode layer, The alkali metal supply layer, a substrate for a solar cell of a CIGS type, characterized in that it comprises a NaNbO 3 compound and KNbO 3 Compound 1 or more compounds selected from the group consisting of are provided.
  • the alkali metal supply layer is the said 1st surface and the said back surface electrode.
  • the alkali metal supply layer includes one or more compounds selected from the group consisting of LiNbO 3 , NaNbO 3 compounds, and KNbO 3 compounds, thereby providing a substrate for a CIGS type solar cell.
  • the alkali metal supply layer preferably has a thickness in the range of 20 nm to 200 nm. More preferably, the thickness is in the range of 20 nm to 100 nm.
  • the substrate for a solar cell according to the present invention may be constituted by an insulating base material itself, or may be constituted by providing an insulating layer on a conductive base material.
  • the present invention has an alkali metal supply layer installed on the first surface of the insulating support substrate,
  • the alkali metal supply layer, a substrate for a solar cell of a CIGS type, characterized in that it comprises a NaNbO 3 compound and KNbO 3 Compound 1 or more compounds selected from the group consisting of are provided.
  • it has an alkali metal supply layer installed on the first surface of the insulating support substrate,
  • the alkali metal supply layer includes at least one compound selected from the group consisting of a LiNbO 3 compound, a NaNbO 3 compound, and a KNbO 3 compound, thereby providing a substrate for a CIGS type solar cell.
  • the alkali metal supply layer preferably has a thickness in the range of 20 nm to 200 nm. More preferably, the thickness is in the range of 20 nm to 100 nm.
  • substrate for solar cells by this invention may be comprised by insulating base material itself, or may be comprised by installing an insulating layer in a conductive base material.
  • the alkali metal is diffused into the CIGS layer with a more realistic configuration without impairing water resistance, low hygroscopicity or low solubility in water, and without impairing handling characteristics in the manufacturing process of the solar cell. It is possible to provide a CIGS solar cell that can be made to operate. Moreover, it becomes possible to provide the board
  • FIG. 1 schematically shows a cross-sectional view of an example of a conventional CIGS type solar cell.
  • a conventional CIGS solar cell 10 includes an insulating support substrate 11, a first conductive layer 12a, an alkali metal-containing layer (alkali metal supply layer) 19, and a second conductive layer.
  • the layer 12b, the light absorption layer 13, the first semiconductor layer 14, the second semiconductor layer 15, and the transparent conductive layer 16 are stacked in this order.
  • the solar cell 10 has extraction electrodes 17 and 18.
  • the arrow 90 indicates the incident direction of light with respect to the solar cell 1.
  • the first conductive layer 12 a and the second conductive layer 12 b are made of Mo (molybdenum) and function as the positive electrode of the solar cell 10.
  • the transparent conductive layer 16 is made of ZnO (zinc oxide) or the like and functions as the negative electrode of the solar cell 1.
  • the first semiconductor layer 14 and the second semiconductor layer 15 are also referred to as buffer layers, and a high resistance layer is formed between the light absorption layer 13 and the transparent conductive layer 16, so that a shunt path of the solar cell is formed. ).
  • the light absorption layer 13 is usually composed of a compound such as Cu (In, Ga) Se 2 .
  • this layer is referred to as a “CIGS layer 13”.
  • the alkali metal supply layer 19 is provided to supply the alkali metal to the CIGS layer 13.
  • the alkali metal supply layer 19 is made of a compound such as Na 2 S, Na 2 Se, NaCl, or NaF, for example.
  • the CIGS layer 13 is known to have a reduced defect density and an improved carrier concentration due to the presence of an alkali metal such as Na (sodium). Therefore, when the alkali metal supply layer 19 is installed in the vicinity of the CIGS layer 13, the alkali metal moves from the alkali metal supply layer 19 toward the CIGS layer 13, thereby reducing the defect density of the CIGS layer 13. Carrier concentration is improved. Thereby, the energy conversion efficiency of the solar cell 1 is improved.
  • the buffer layers 14 and 15 are n-type semiconductor layers, and the CIGS layer 13 is a p-type semiconductor layer. Therefore, when the CIGS layer 13 (pn junction) is irradiated with light, a photovoltaic force is generated by photoexcitation of electrons. For this reason, the solar cell 1 was irradiated with light and connected to the extraction electrode 17 connected to the first conductive layer 12a and the second conductive layer 12b (hereinafter positive electrode) and to the transparent conductive layer 16 (negative electrode). A direct current can be taken out through the take-out electrode 18.
  • the above-described compound constituting the alkali metal supply layer 4 has a hygroscopic property or a property of being dissolved in water.
  • the conventional solar cell 1 has the problem that handling is difficult at the time of manufacture of a solar cell, and durability is inferior.
  • the alkali metal supply layer 4 having Na 2 S an environment in which contact with an atmosphere containing moisture is cut off or an environment in which the humidity is controlled is required during manufacturing of the solar cell. Further, in the process of manufacturing the solar cell, the member cannot be washed with water or an aqueous solution when the foreign matter is removed.
  • FIG. 2 schematically shows a cross-sectional view of an example of a CIGS type solar cell 100 according to the present invention.
  • the CIGS solar cell 100 according to the present invention includes an insulating support substrate 110, an alkali metal supply layer 120, a back electrode layer 130, a CIGS layer 160, a buffer layer 170, and a transparent surface.
  • the electrode layer 180 is configured by stacking in this order.
  • the solar cell 100 has an extraction part electrically connected to each electrode layer, such as the extraction electrodes 17 and 18 shown in FIG.
  • An arrow 190 indicates the incident direction of light with respect to the CIGS type solar cell 100.
  • the insulative support substrate 110 has a function of supporting each layer stacked thereon.
  • the alkali metal supply layer 120 functions as a supply source for supplying an alkali metal such as Na (sodium), K (potassium), Li (lithium) or the like into the CIGS layer 160.
  • the back electrode layer 130 and the transparent surface electrode layer 180 function as electrodes for taking out electricity generated in the CIGS layer 160 by light irradiation to the outside.
  • the CIGS layer 160 and the buffer layer 170 those having various known materials, characteristics, and functions used for CIGS type solar cells can be used.
  • NaNbO 3 compound has a feature that it includes a KNbO 3 compound and LiNbO 3 1 or more compounds selected from the group consisting of compounds.
  • NaNbO 3 compounds, KNbO 3 compounds and LiNbO 3 compounds are stable oxides in the atmosphere and have the property of hardly dissolving in water. Therefore, by configuring the alkali metal supply layer 120 to have such a compound, the solar cell 10 is manufactured due to the above-described problems, that is, the hygroscopicity of the alkali metal supply layer 19 and the solubility in water. The problem that handling at the time becomes complicated or the durability is lowered can be significantly suppressed. In addition, in the manufacturing process of the solar cell, the problem that it becomes impossible to wash or wash the member with water or an aqueous solution when removing foreign matters is solved.
  • the solar cell 100 of this invention since the solar cell 100 of this invention has the alkali metal supply layer 120 containing an above-described compound, it can supply an alkali metal in the CIGS layer 160.
  • FIG. 1 In the CIGS layer 160 supplied with the alkali metal, the defect density is reduced and the carrier concentration is improved. Therefore, in the solar cell 100 of the present invention, it can be expected that high energy conversion efficiency can be obtained.
  • the alkali metal supply layer 120 is disposed between the insulating support substrate 110 and the back electrode layer 130.
  • the configuration of the present invention is not limited to this.
  • the alkali metal supply layer 120 may be disposed between the back electrode layer 130 and the CIGS layer 160.
  • the alkali metal supply layer 120 may be provided at two places between the insulating support substrate 110 and the back electrode layer 130 and between the back electrode layer 130 and the CIGS layer 160.
  • the insulating support substrate 110 may be composed of any member as long as it has a function of supporting each member stacked on the insulating support substrate 110. Further, the shape of the insulating support substrate is not limited to a flat plate shape, and may be a curved shape or a tubular shape. As long as it has a function which can form each layer laminated
  • the insulating support substrate is preferably made of an insulator itself, such as glass or polyimide.
  • the composition is not particularly limited, and the glass may be phosphate-based or silica-based.
  • the insulating support substrate 110 is, for example, in terms of oxide, 60 mol% to 80 mol% SiO 2 , 0.5 mol% to 7 mol% Al 2 O 3 , 3 mol% to 10 mol% MgO, 6 mol% ⁇ 9 mol% of CaO, 0 ⁇ 5mol% of SrO, 0 ⁇ 4mol% of BaO, 0 ⁇ 2mol% of ZrO 2, 4mol% ⁇ 13mol% of Na 2 O, and 0.1 mol% ⁇ 7 mol% of K
  • a composition containing 2 O may also be used.
  • the insulating support substrate may be one containing only a small amount of alkali metal, such as non-alkali glass.
  • alkali-free glass in terms of oxide, the sum of Li 2 O + Na 2 O + K 2 O refers to 0.1 mass% of glass.
  • the alkali-free glass include SiO 2 : 50 to 66%, Al 2 O 3 : 10.5 to 22%, B 2 O 3 : 0 to 12%, MgO: 0 in terms of mass% based on oxide.
  • the insulating support substrate 110 may be configured by installing an insulating layer on the surface of a conductive material.
  • the conductive material may be a metal such as stainless steel or an aluminum alloy.
  • the insulating layer may be an oxide or the like.
  • the thickness of the insulating support substrate 110 is, for example, in the range of 0.5 mm to 6 mm.
  • the alkali metal supply layer 120 is made of a niobium oxide containing an alkali metal.
  • the alkali metal supply layer 120 is preferably at least one compound selected from the group consisting of a LiNbO 3 compound, a NaNbO 3 compound, and a KNbO 3 compound.
  • One or more compounds selected from the group consisting of LiNbO 3 compounds, NaNbO 3 compounds, and KNbO 3 compounds have a high alkali atom content of 50 atomic% with respect to the total amount of other metal cation elements. Has metal content.
  • the NaNbO 3 compound has the highest melting point and is sintered at a higher sintering temperature than the LiNbO 3 compound and KNbO 3 compound. Therefore, it is particularly preferable in that a sintered compact sputtering target used for film formation can be easily produced at a high density.
  • the alkali metal supply layer 120 does not have any trouble even if other components are contained to such an extent that the objects and effects of the present invention are not impaired.
  • the alkali metal supply layer 120 contains elements other than Li (lithium), Na (sodium), K (potassium), Nb (niobium), and O (oxygen) in a range of 20% by mass or less based on the total mass. It does not matter. Such a compound is not hygroscopic and has a very low solubility in water and is stable.
  • the thickness of the alkali metal supply layer 120 is, for example, in the range of 20 nm to 200 nm.
  • the thickness of the alkali metal supply layer 120 is more preferably in the range of 20 nm to 100 nm. In such a range, good adhesion can be obtained between the alkali metal supply layer 120 and the back electrode layer 130 or between the back electrode layer 130 and the CIGS layer 160.
  • the back electrode layer 130 is made of, for example, Mo (molybdenum), Ti (titanium), Al (aluminum), or Cr (chromium).
  • the thickness of the back electrode layer 130 is, for example, in the range of 100 nm to 1000 nm (preferably 300 nm to 700 nm, for example, 500 nm).
  • the adhesion with the substrate 110 or the adhesion with the alkali supply layer may be reduced.
  • the film thickness of the back surface electrode layer 130 becomes too thin, the electrical resistance of the electrode increases.
  • the method for forming the back electrode layer 130 is not particularly limited.
  • the back electrode layer 130 can be formed on the surface of the insulating support substrate 110 by, for example, sputtering, vapor deposition, vapor deposition (PVD, CVD), or the like.
  • CIGS layer 160 is made of a compound containing a group Ib element, a group IIIb element, and a group VIb element in the periodic table.
  • the CIGS layer 160 is made of, for example, a semiconductor having a crystal structure typified by chalcopyrite.
  • the CIGS layer 160 includes at least one element M selected from the group consisting of Cu (copper), In (indium), and Ga (gallium), and a group consisting of Se (selenium) and S (sulfur). And at least one selected element A.
  • the CIGS layer 160 can be used as a CIGS layer 160, CuInSe 2, CuIn (Se , S) 2, Cu (In, Ga) Se 2, and Cu (In, Ga) (Se , S) 2 and the like.
  • the CIGS layer 160 may be made of a semiconductor having a crystal structure similar to chalcopyrite.
  • the thickness of the CIGS layer 160 is not particularly limited, but is, for example, in the range of 1000 nm to 3000 nm.
  • the buffer layer 170 is made of, for example, a compound containing Cd (cadmium) or Zn (zinc) that forms a semiconductor layer.
  • the compound containing Cd include CdS (cadmium sulfide), and examples of the compound containing Zn include materials such as ZnO (zinc oxide), ZnS (sulfurized zinc), and ZnMgO (zinc magnesium oxide).
  • the buffer layer 170 may be composed of a plurality of semiconductor layers, as shown in FIG.
  • the first layer on the side close to the CIGS layer 160 is made of the compound containing CdS or Zn as described above, and the second layer on the side far from the CIGS layer 160 is ZnO (zinc oxide). Or a material containing ZnO.
  • the thickness of the buffer layer 170 is not particularly limited, but is, for example, in the range of 50 nm to 300 nm.
  • the transparent surface electrode layer 180 is made of, for example, a material such as ZnO (zinc oxide) or ITO (indium tin oxide). Alternatively, these materials may be doped with a group III element such as Al (aluminum).
  • the transparent surface electrode layer 180 may be formed by laminating a plurality of layers.
  • the thickness of the transparent surface electrode layer 180 (the total thickness in the case of a plurality of layers) is not particularly limited, but is, for example, in the range of 100 nm to 3000 nm. Note that a conductive extraction member may be further electrically connected to the transparent surface electrode layer 180.
  • Such a takeout member is preferably composed of one or more metals selected from, for example, Ni (nickel), Cr (chromium), Al (aluminum), and Ag (silver).
  • the solar cell of the present invention has an alkali supply layer, a back electrode layer, a CIGS layer, a buffer layer, and a transparent surface electrode layer on the surface of the insulating support substrate, or on the surface of the insulating support substrate.
  • the substrate for solar cells of the present invention has an alkali supply layer and a back electrode layer on the surface of the insulating support substrate, or a back electrode layer and an alkali supply layer on the insulating support substrate. Or having an alkali supply layer, a back electrode layer, and an alkali supply layer on the insulating support substrate.
  • the substrate for a solar cell of the present invention is characterized by having an alkali supply layer on the surface of the insulating support substrate.
  • it is durable between the above-described layers, or between the surface of the insulating support substrate and the layer formed thereon, as necessary. Additional layers may be formed to improve the properties, adhesion, electrical characteristics, power generation efficiency, and the like.
  • a NaNbO 3 layer as an alkali supply layer and a Mo layer as a back electrode layer were sequentially formed on a glass substrate to prepare a test sample. Moreover, each characteristic shown below was evaluated using these test samples.
  • a glass substrate was prepared. The dimensions of the glass substrate were 50 mm long ⁇ 50 mm wide ⁇ 1.1 mm thick. The composition of this glass substrate is 72 mol% SiO 2 , 1.1 mol% Al 2 O 3 , 5.5 mol% MgO, 8.6 mol% CaO, 12.6 mol% Na 2 O in terms of oxide. And 0.2 mol% K 2 O.
  • a NaNbO 3 layer was formed on the glass substrate by sputtering.
  • a magnetron RF sputtering apparatus (SPF210H, manufactured by Anerva Corporation) was used.
  • SPF210H magnetron RF sputtering apparatus
  • a NaNbO 3 sintered body target a NaNbO 3 layer was formed on a glass substrate.
  • the NaNbO 3 sintered body target used was Na 2 CO 3 powder (special grade manufactured by Kanto Chemical Co., Ltd.) and Nb 2 O 5 powder (3N grade manufactured by High Purity Chemical Laboratory).
  • a sintered compact target was prepared through pulverization, molding, and sintering (at 1330 ° C. in air for 2 hours).
  • the NaNbO 3 sintered body target used contained 0.01 mass% of K (potassium) with respect to the total mass in terms of K 2 O.
  • the film forming atmosphere was a mixed gas of argon and oxygen. Oxygen in the mixed gas is 3 vol%.
  • the sputtering pressure was 1.3 Pa, and the film formation temperature (substrate temperature) was room temperature.
  • the film thickness of the NaNbO 3 layer was 20 nm, 50 nm, 100 nm, 200 nm, and 500 nm (respectively, test samples No. 1 to No. 5).
  • a Mo layer was formed on the NaNbO 3 layer of each sample.
  • a magnetron DC sputtering apparatus (SPL-711V, manufactured by Tokki Co., Ltd.) was used for forming the Mo layer.
  • Mo target was used for the target.
  • the film forming atmosphere was argon, and the sputtering pressure was 1.3 Pa.
  • the film formation temperature was room temperature.
  • the thickness of the Mo layer was unified to about 500 nm.
  • test sample No. 6 a test sample in which a Mo layer (500 nm) was directly formed on the surface of a glass substrate without forming a NaNbO 3 layer was prepared (referred to as test sample No. 6). Table 1 summarizes the layer structure and the film thickness of NaNbO 3 in each test sample.
  • an ITO (indium tin oxide) film having a thickness of about 300 nm was formed on the top of the Mo layer by sputtering to produce an evaluation sample.
  • the above-described magnetron DC sputtering apparatus was used for forming the ITO film.
  • An ITO target doped with 10% by mass of SnO 2 was used as the target.
  • a mixed gas of argon and oxygen (oxygen 1 vol%) was used as the sputtering gas.
  • the sputtering pressure was 0.4 Pa.
  • the film formation temperature (substrate temperature) was room temperature.
  • this evaluation sample was held at 550 ° C. for 30 minutes in a nitrogen atmosphere to diffuse Na in the glass substrate into the ITO film.
  • the ITO film of the evaluation sample was dry-etched from the outermost surface side using a SIMS (Secondary Ion Mass Spectroscopy) apparatus (ADEPT 1010, manufactured by ULVAC-PHI), and the amount of Na detected at this time was measured.
  • O 2 + ions were used as primary ions.
  • the acceleration voltage was 3 kV and the beam current was 200 nA.
  • the raster size is 300 ⁇ m ⁇ 300 ⁇ m.
  • the etching rate was about 1 nm / second. The measurement was performed at two places for each evaluation sample.
  • FIG. 3 shows that the amount of Na diffusion can be changed by changing the thickness of the NaNbO 3 layer. That is, in the configuration of the present invention, it is considered that the amount of Na diffused into the CIGS layer can be controlled relatively easily by adjusting the thickness of the NaNbO 3 layer.
  • test sample No. 1-No. 6 was used for relative evaluation of the adhesion of the Mo layer by the following method. First, each test sample was held in a nitrogen atmosphere for 10 minutes at 550 ° C. and (2) in an atmosphere adjusted to 50 ° C. and a relative humidity of 50% for 24 hours. Next, an adhesive tape (CT-24, manufactured by Nichiban Co., Ltd.) was applied on the Mo layer, and it was evaluated whether or not the Mo layer was peeled when it was peeled off.
  • CT-24 manufactured by Nichiban Co., Ltd.
  • the present invention has excellent water resistance, low moisture absorption, and poor solubility in water, can diffuse alkali metal in the CIGS layer, can increase the carrier concentration, and can achieve the energy conversion efficiency of the solar cell. It is possible to provide a substrate for a solar cell that can improve the efficiency of the solar cell, and by using such a substrate, it is possible to obtain a CIGS type solar cell with improved energy conversion efficiency, which is useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 耐久性を有するより一般的な構成で、CIGS層にアルカリ金属を供給することが可能な、CIGS型の太陽電池を提供することを目的とする。 絶縁性支持基板と、前記絶縁性支持基板の上に設けられた裏面電極層と、前記裏面電極層の上に設けられたCIGS層と、前記CIGS層の上に設けられたバッファ層と、前記バッファ層の上に設けられた透明表面電極層と、を有するCIGS型の太陽電池であって、さらに、前記絶縁性支持基板と前記裏面電極層の間、または前記裏面電極層と前記CIGS層の間、または前記絶縁性支持基板と前記裏面電極層の間と前記裏面電極層と前記CIGS層の間の双方に、アルカリ金属供給層を有し、該アルカリ金属供給層は、NaNbO化合物、KNbO化合物およびLiNbO化合物からなる群から選ばれる1種以上の化合物を含むことを特徴とする太陽電池。

Description

CIGS型の太陽電池およびCIGS型の太陽電池用の基板
 本発明は、CIGS型の太陽電池、およびそのような太陽電池を構成する基板に関する。
 CIGS型の太陽電池は、高いエネルギー変換効率を示し、光照射による効率の劣化が少ないという特徴から、様々な企業や研究機関において、研究開発が進められている。
 一般的なCIGS型の太陽電池は、ガラス等の基板の上に、Mo(モリブデン)電極、CIGS層、バッファ層、およびZnO(酸化亜鉛)電極を、この順に積層することにより構成される。
 このような構成において、バッファ層は、n型半導体層となり、CIGS層は、p型半導体層となっている。従って、CIGS層(pn接合部)に光が照射されると、電子の光励起によって、光起電力が発生する。このため、太陽電池への光照射によって、両電極から、外部に直流電流を取り出すことができる。
 ここで、CIGS層は、通常、Cu(In,Ga)Seのような化合物で構成される。また、CIGS層は、Na(ナトリウム)のようなアルカリ金属の存在によって、欠陥密度が低下し、キャリア濃度が向上することが知られている。高いキャリア濃度を有するCIGS層を使用した場合、太陽電池のエネルギー変換効率は、向上する。
 そのため、Mo電極とCIGS層の間に、Na(ナトリウム)のようなアルカリ金属を含む層を設けることが提案されている(特許文献1、2)。この場合、太陽電池の製造過程において、アルカリ金属を含む層からCIGS層に、アルカリ金属を拡散させることができる。またこれにより、太陽電池のエネルギー変換効率をさらに向上させることができる。
特開2004-079858号公報 特開2004-140307号公報
 しかしながら、前述の文献に記載されているアルカリ金属を含む層は、吸湿性を有したり、水に対して溶解する特性を有するため、ハンドリングが大変であるとともに、耐久性が劣るという問題がある。例えば、特許文献1に記載されているようなNaSをアルカリ金属供給層に使用した場合、太陽電池の製造の間、水分を含む雰囲気との接触を遮断した環境や、湿度を制御した環境が必要となる。また、太陽電池の製造過程において、異物の除去の際に、部材を、水や水溶液を用いて水洗したり、洗浄したりすることができなくなってしまう。
 このように、特許文献1、2に記載された構成では、基板が大気に触れるような基板の取り扱いは、現実的ではない。
 また、アルカリ金属の供給源として、基板にソーダライムガラス(SLGと称す)を用いることが知られている。しかしながら、SLGは、アルカリ金属含有率が、他の金属カチオン元素の総量に対して、おおよそ22原子%でしかなく、より高いアルカリ金属含有率を有するアルカリ金属の供給源が望まれている。
 本発明は、このような背景に鑑みなされたものであり、本発明では、より現実的な構成で、CIGS層にアルカリ金属を拡散させることが可能な、CIGS型の太陽電池を提供することを目的とする。また、そのような太陽電池を構成するための太陽電池用の基板を提供することを目的とする。
 本発明では、
 絶縁性支持基板と、
 前記絶縁性支持基板の上に設けられた裏面電極層と、
 前記裏面電極層の上に設けられたCIGS層と、
 前記CIGS層の上に設けられたバッファ層と、
 前記バッファ層の上に設けられた透明表面電極層と、
 を有するCIGS型の太陽電池であって、
 さらに、前記絶縁性支持基板と前記裏面電極層の間、または前記裏面電極層と前記CIGS層の間、または前記絶縁性支持基板と前記裏面電極層の間と前記裏面電極層と前記CIGS層の間の双方に、アルカリ金属供給層を有し、
 該アルカリ金属供給層は、NaNbO化合物およびKNbO化合物からなる群から選ばれる1種以上の化合物を含むことを特徴とする太陽電池が提供される。
 また、本発明では、
 絶縁性支持基板と、
 前記絶縁性支持基板の上に設けられた裏面電極層と、
 前記裏面電極層の上に設けられたCIGS層と、
 前記CIGS層の上に設けられたバッファ層と、
 前記バッファ層の上に設けられた透明表面電極層と、
を有するCIGS型の太陽電池であって、
 さらに、前記絶縁性支持基板と前記裏面電極層の間、または前記裏面電極層と前記CIGS層の間、または前記絶縁性支持基板と前記裏面電極層の間と前記裏面電極層と前記CIGS層の間の双方に、アルカリ金属供給層を有し、
 該アルカリ金属供給層は、LiNbO化合物、NaNbO化合物およびKNbO化合物からなる群から選ばれる1種以上の化合物を含むことを特徴とする太陽電池。
 ここで、本発明による太陽電池において、前記アルカリ金属供給層は、20nm~200nmの範囲の厚さを有しても良い。より好ましくは、20nm~100nmの範囲の厚さを有しても良い。
 また、本発明による太陽電池において、裏面電極層が設けられる基板(本明細書において、この基板を絶縁性支持基板と称する。)は、絶縁性の基材自体で構成され、または導電性の基材に絶縁層を設けることにより構成されても良い。
 この場合、特に、前記絶縁性支持基板は、ガラス基板またはプラスチック基板が好ましい。
 また、本発明では、絶縁性支持基板の第1の表面上に設置された裏面電極層と、アルカリ金属供給層とを有し、該アルカリ金属供給層は、前記第1の表面と前記裏面電極層の間、または前記裏面電極層の上層に、または前記第1の表面と前記裏面電極層の間と前記裏面電極層の上層の双方に、設けられ、
 前記アルカリ金属供給層は、NaNbO化合物およびKNbO化合物からなる群から選ばれる1種以上の化合物を含むことを特徴とするCIGS型の太陽電池用の基板が提供される。
 また、本発明では、絶縁性支持基板の第1の表面上に設置された裏面電極層と、アルカリ金属供給層とを有し、該アルカリ金属供給層は、前記第1の表面と前記裏面電極層の間、または前記裏面電極層の上層に、または前記第1の表面と前記裏面電極層の間と前記裏面電極層の上層の双方に、設けられ、
 前記アルカリ金属供給層は、LiNbO、NaNbO化合物およびKNbO化合物からなる群から選ばれる1種以上の化合物を含むことを特徴とするCIGS型の太陽電池用の基板が提供される。
 ここで、本発明による太陽電池用の基板において、前記アルカリ金属供給層は、20nm~200nmの範囲の厚さが好ましい。より好ましくは、20nm~100nmの範囲の厚さである。
 また、本発明による太陽電池用の基板は、絶縁性の基材自体で構成され、または導電性の基材に絶縁層を設けることにより構成されても良い。
 さらに、本発明では、絶縁性支持基板の第1の表面上に設置されたアルカリ金属供給層を有し、
 該アルカリ金属供給層は、NaNbO化合物およびKNbO化合物からなる群から選ばれる1種以上の化合物を含むことを特徴とするCIGS型の太陽電池用の基板が提供される。
 さらに、本発明では、絶縁性支持基板の第1の表面上に設置されたアルカリ金属供給層を有し、
 該アルカリ金属供給層は、LiNbO化合物、NaNbO化合物およびKNbO化合物からなる群から選ばれる1種以上の化合物を含むことを特徴とするCIGS型の太陽電池用の基板が提供される。
 ここで、本発明による太陽電池用の基板において、前記アルカリ金属供給層は、20nm~200nmの範囲の厚さが好ましい。より好ましくは、20nm~100nmの範囲の厚さである。
 また、本発明による太陽電池用の基板は、絶縁性の基材自体で構成され、または導電性の基材に絶縁層を設置することにより構成されても良い。
 本発明では、より現実的な構成で、耐水性、低吸湿性や水に対する低溶解性を損なうことがなく、また太陽電池の製造工程におけるハンドリング特性を損なうことなく、CIGS層にアルカリ金属を拡散させることが可能な、CIGS型の太陽電池を提供することができる。また、そのような太陽電池を構成するための太陽電池用の基板を提供することが可能となる。
従来のCIGS型太陽電池の構成を概略的に示した断面図である。 本発明によるCIGS型太陽電池の構成の一例を概略的に示した断面図である。 各サンプルにおいて得られたNa拡散挙動の測定結果を示すグラフである。
 以下、図面を参照して、本発明について説明する。
 まず、本発明の特徴をより良く理解するため、従来のCIGS型太陽電池の構成について、簡単に説明する。
 図1には、従来のCIGS型の太陽電池の一例の断面図を概略的に示す。
 図1に示すように、従来のCIGS型の太陽電池10は、絶縁性支持基板11と、第1の導電層12aと、アルカリ金属を含む層(アルカリ金属供給層)19と、第2の導電層12bと、光吸収層13と、第1の半導体層14と、第2の半導体層15と、透明導電層16とを、この順に積層することにより構成される。さらに、通常の場合、太陽電池10は、取り出し電極17および18を有する。なお、矢印90は、太陽電池1に対する光の入射方向を示している。
 第1の導電層12aおよび第2の導電層12bは、Mo(モリブデン)で構成され、太陽電池10の正極として機能する。一方、透明導電層16は、ZnO(酸化亜鉛)等で構成され、太陽電池1の負極として機能する。
 第1の半導体層14および第2の半導体層15は、バッファ層とも呼ばれ、光吸収層13と透明導電層16との間に高抵抗層を形成することにより、太陽電池のシャントパス(shuntpass)を低減する機能を有する。
 光吸収層13は、通常、Cu(In,Ga)Seのような化合物で構成される。なお、光吸収層13は、通常、CIGS層とも称されるため、以下、この層を「CIGS層13」と称する。
 アルカリ金属供給層19は、CIGS層13に、アルカリ金属を供給するために設けられる。アルカリ金属供給層19は、例えば、NaS、NaSe、NaCl、またはNaFのような化合物で構成される。CIGS層13は、Na(ナトリウム)のようなアルカリ金属の存在によって、欠陥密度が低下し、キャリア濃度が向上することが知られている。従って、CIGS層13の近傍にアルカリ金属供給層19を設置した場合、このアルカリ金属供給層19から、アルカリ金属がCIGS層13の方に移動することにより、CIGS層13の欠陥密度が低下し、キャリア濃度が向上する。また、これにより、太陽電池1のエネルギー変換効率が向上する。
 このような太陽電池1の構成において、バッファ層14,15は、n型半導体層となり、CIGS層13は、p型半導体層となる。従って、CIGS層13(pn接合部)に光が照射されると、電子の光励起によって、光起電力が発生する。このため、太陽電池1への光照射によって、第1の導電層12aおよび第2の導電層12b(以上、正極)に接続された取り出し電極17と、透明導電層16(負極)に接続された取り出し電極18とを介して、外部に直流電流を取り出すことができる。
 しかしながら、このような構成のCIGS型の太陽電池1において、アルカリ金属供給層4を構成する前述のような化合物は、吸湿性を有したり、水に対して溶解する特性を有する。このため、従来の太陽電池1は、太陽電池の製造時、ハンドリングが大変であるとともに、耐久性が劣るという問題がある。例えば、NaSを有するアルカリ金属供給層4では、太陽電池の製造の間、水分を含む雰囲気との接触を遮断した環境や、湿度を制御した環境が必要となる。また、太陽電池の製造過程において、異物の除去の際に、部材の水や水溶液による水洗、洗浄ができなくなってしまう。従って、基板が大気に触れるような基板の取り扱いは、現実的でなく、このような構成は、耐久性の高い現実的な太陽電池の構成であるとは言い難い。
 これに対して、本発明による太陽電池では、以降に詳細に示すように、特別なハンドリングを行う必要がなく、水洗等が可能であり、前述のような耐久性に対する問題も有意に抑制されるという特徴を有する。
 以下、図面を参照して、本発明によるCIGS型の太陽電池の構成について、詳しく説明する。
 図2には、本発明によるCIGS型の太陽電池100の一例の断面図を概略的に示す。
 図2に示すように、本発明によるCIGS型の太陽電池100は、絶縁性支持基板110と、アルカリ金属供給層120と、裏面電極層130と、CIGS層160と、バッファ層170と、透明表面電極層180とを、この順に積層することにより構成される。なお、図には示さないが、この他、通常の場合、太陽電池100は、図1に示した取り出し電極17、18のような、各電極層と電気的に接続された取り出し部を有する。矢印190は、CIGS型の太陽電池100に対する光の入射方向を示している。
 絶縁性支持基板110は、その上部に積層される各層を支持する機能を有する。
 アルカリ金属供給層120は、CIGS層160中に、アルカリ金属、例えばNa(ナトリウム)、K(カリウム)、Li(リチウム)等を供給するための供給源として機能する。
 裏面電極層130および透明表面電極層180は、光照射によってCIGS層160で生じた電気を外部に取り出すための電極として機能する。
 なお、CIGS層160、バッファ層170としては、CIGS型の太陽電池用として使用されている公知な各種材料、特性、機能を有するものが使用できる。
 ここで、本発明による太陽電池100のアルカリ金属供給層120は、NaNbO化合物、KNbO化合物およびLiNbO化合物からなる群から選ばれる1種以上の化合物を含むという特徴を有する。
 NaNbO化合物、KNbO化合物およびLiNbO化合物は、大気中で安定な酸化物であり、水に対してほとんど溶解しないという特性を有する。
 従って、アルカリ金属供給層120をこのような化合物を有するように構成することにより、前述のような問題、すなわちアルカリ金属供給層19の吸湿性、および水に対する溶解性のため、太陽電池10の製造時のハンドリングが煩雑になったり、耐久性が低下したりするという問題を、有意に抑制することができる。また、太陽電池の製造過程において、異物の除去の際に、部材の水や水溶液による水洗、洗浄ができなくなってしまうという問題が解消される。
 また、本発明の太陽電池100は、上記した化合物を含むアルカリ金属供給層120を有するため、CIGS層160中に、アルカリ金属を供給することができる。アルカリ金属が供給されたCIGS層160は、欠陥密度が低下し、キャリア濃度が向上する。従って、本発明の太陽電池100では、高いエネルギー変換効率が得られることが期待できる。
 なお、図2において、アルカリ金属供給層120は、絶縁性支持基板110と裏面電極層130の間に設置されている。しかしながら、本発明の構成は、これに限られるものではない。例えば、アルカリ金属供給層120は、裏面電極層130とCIGS層160の間に設置されても良い。また、必要な場合、アルカリ金属供給層120は、絶縁性支持基板110と裏面電極層130の間、および裏面電極層130とCIGS層160の間の2箇所に設置されても良い。
 (各構成部材について)
 以下、本発明によるCIGS型の太陽電池100の各構成層、構成部材の仕様等について、詳しく説明する。
 (絶縁性支持基板110)
 絶縁性支持基板110は、その上部に積層された各部材を支持する機能を有する限り、いかなる部材で構成されても良い。また、絶縁性支持基板の形状は、平板状に限らず、湾曲状であってもよく、また管状のものでも良い。絶縁性支持基板の表面に積層された各層を形成することができる機能を有する限り、絶縁性支持基板の形状は、いかなる形状でも良い。より好ましくは、第1の表面とその反対面に第2の表面を有する平板状、あるいは湾曲状の板状体である。
 絶縁性支持基板は、例えば、ガラスやポリイミドのような、それ自体が絶縁体で構成されるのが好ましい。ガラスの場合、その組成は、特に限られず、ガラスは、リン酸塩系のものであっても、シリカ系のものであっても良い。シリカ系ガラスの場合、絶縁性支持基板110は、例えば、酸化物換算で、60mol%~80mol%のSiO、0.5mol%~7mol%のAl、3mol%~10mol%のMgO、6mol%~9mol%のCaO、0~5mol%のSrO、0~4mol%のBaO、0~2mol%のZrO、4mol%~13mol%のNaO、および0.1mol%~7mol%のKOを含む組成であっても良い。
 また、本発明の太陽電池100は、アルカリ金属供給層120を有するため、絶縁性支持基板は、アルカリ金属を少量しか含まないもの、例えば無アルカリガラスであっても良い。なお、無アルカリガラスとは、酸化物換算で、LiO+NaO+KOの総和が0.1質量%以下のガラスを言う。
 無アルカリガラスとしては、例えば、酸化物基準の質量%表示で、SiO:50~66%、Al:10.5~22%、B:0~12%、MgO:0~8%、CaO:0~14.5%、SrO:0~24%、BaO:0~13.5%を含有し、MgO+CaO+SrO+BaO:9~29.5質量%である無アルカリガラスが用いられる。
 あるいは、絶縁性支持基板110は、導電性材料の表面に絶縁層を設置して構成しても良い。導電性材料は、ステンレス鋼またはアルミニウム合金等の金属であっても良い。また、絶縁層は、酸化物等であっても良い。
 絶縁性支持基板110の厚さは、例えば、0.5mm~6mmの範囲である。
 (アルカリ金属供給層120)
 アルカリ金属供給層120は、アルカリ金属を含むニオブ酸化物で構成される。アルカリ金属供給層120は、例えば、LiNbO化合物、NaNbO化合物、およびKNbO化合物からなる群から選ばれる1種以上の化合物が好ましい。また、LiNbO化合物、NaNbO化合物、およびKNbO化合物からなる群から選ばれる1種以上の化合物は、アルカリ金属含有率が、他の金属カチオン元素の総量に対して、50原子%の高いアルカリ金属含有率を有する。また、LiNbO化合物、NaNbO化合物、およびKNbO化合物のうちでは、NaNbO化合物が、融点が最も高く、LiNbO化合物およびKNbO化合物と比較して、高温の焼結温度を選んで焼結できるので、成膜に用いる焼結体スパッタリングターゲットを高密度で作製しやすい点で特に好ましい。
 また、アルカリ金属供給層120には、他の成分が本発明の目的、効果を損なわない程度に含まれていても支障はない。アルカリ金属供給層120には、Li(リチウム)、Na(ナトリウム)、K(カリウム)、Nb(ニオブ)、O(酸素)以外の元素を全質量に対して20質量%以下の範囲で含まれていてもかまわない。
 このような化合物は、吸湿性がなく、水に対しても溶解性が著しく低く、安定である。
 アルカリ金属供給層120の厚さは、例えば、20nm~200nmの範囲である。特に、アルカリ金属供給層120の厚さは、20nm~100nmの範囲であることがより好ましい。この様な範囲の場合、アルカリ金属供給層120と裏面電極層130の間に、または裏面電極層130とCIGS層160の間に、良好な密着性が得られる。
 (裏面電極層130)
 裏面電極層130は、例えば、Mo(モリブデン)、Ti(チタン)、Al(アルミニウム)、またはCr(クロム)等で構成される。
 裏面電極層130の厚さは、例えば、100nm~1000nm(好ましくは、300nm~700nm。例えば500nm)の範囲である。裏面電極層130の膜厚が厚くなると、基板110との密着性が、あるいはアルカリ供給層との密着性が、低下するおそれがある。また、裏面電極層130の膜厚が薄くなりすぎると、電極の電気抵抗が増大する。
 裏面電極層130の形成方法は、特に限られない。裏面電極層130は、例えば、スパッタリング法、蒸着法、気相成膜法(PVD、CVD)等により、絶縁性支持基板110面上に形成することができる。
 (CIGS層160)
 CIGS層160は、周期律表のIb族元素と、IIIb族元素と、VIb族元素とを含む化合物で構成される。
 CIGS層160は、例えば、カルコパイライト(chalcopyrite)に代表される結晶構造を有する半導体で構成される。この場合、CIGS層160は、Cu(銅)、In(インジウム)、およびGa(ガリウム)からなる群から選定された少なくとも一つの元素Mと、Se(セレン)およびS(硫黄)からなる群から選定された少なくとも一つの元素Aとを含むことができる。例えば、CIGS層160として、CuInSe、CuIn(Se,S)、Cu(In,Ga)Se、およびCu(In,Ga)(Se,S)などを使用することができる。また、CIGS層160は、カルコパイライトと同様な結晶構造を有する半導体で構成されてもよい。
 CIGS層160の膜厚は、特に限られるものではないが、例えば1000nm~3000nmの範囲である。
 (バッファ層170)
 バッファ層170は、例えば、半導体層を形成する、Cd(カドミウム)やZn(亜鉛)を含む化合物で構成される。Cdを含む化合物としては、CdS(硫黄化カドミウム)等があり、Znを含む化合物としては、ZnO(酸化亜鉛)、ZnS(硫黄化亜鉛)、ZnMgO(亜鉛マグネシウム酸化物)等の材料がある。
 また、バッファ層170は、図1に示した構成のように、複数の半導体の層で構成されても良い。この場合、CIGS層160に近い側にある第1の層は、前述のような、CdSまたはZnを含む化合物によって構成され、CIGS層160から遠い側にある第2の層は、ZnO(酸化亜鉛)、またはZnOを含む材料等で構成される。
 バッファ層170の膜厚は、特に限られるものではないが、例えば50nm~300nmの範囲である。
 (透明表面電極層180)
 透明表面電極層180は、例えばZnO(酸化亜鉛)、またはITO(インジウムスズ酸化物)のような材料等で構成される。あるいは、これらの材料にAl(アルミニウム)などのIII族元素をドープしても良い。また、透明表面電極層180は、複数の層を積層させて構成しても良い。
 透明表面電極層180の厚さ(複数層の場合は、全厚)は、特に限られるものではないが、例えば100nm~3000nmの範囲である。
 なお、透明表面電極層180には、さらに導電性の取り出し部材が電気的に接続されても良い。そのような取り出し部材は、例えば、Ni(ニッケル)、Cr(クロム)、Al(アルミニウム)およびAg(銀)から選ばれる1種以上の金属で構成されることが好ましい。
 本発明の太陽電池は、絶縁性支持基板の表面に、アルカリ供給層と、裏面電極層と、CIGS層と、バッファ層と、透明表面電極層とを有すること、または絶縁性支持基板の表面に、裏面電極層と、アルカリ供給層と、CIGS層と、バッファ層と、透明表面電極層とを有すること、または絶縁性支持基板の表面に、アルカリ供給層と、裏面電極層と、アルカリ供給層と、CIGS層と、バッファ層と、透明表面電極層とを有すること、を特徴とする。
 また、本発明の太陽電池用の基板は、絶縁性支持基板の表面に、アルカリ供給層と、裏面電極層とを有すること、または絶縁性支持基板に、裏面電極層と、アルカリ供給層とを有すること、または絶縁性支持基板に、アルカリ供給層と、裏面電極層と、アルカリ供給層とを有すること、を特徴とする。また、本発明の太陽電池用の基板は、絶縁性支持基板の表面に、アルカリ供給層を有することを特徴とする。
 しかしながら、上記した本発明の太陽電池、あるいは太陽電池用の基板において、上記した各層の間、あるいは絶縁性支持基板の表面とその上に形成される層との間に、必要に応じて、耐久性向上、密着性向上、電気的特性向上、発電効率向上等のために、付加層を形成してもよい。
 以下、本発明の実施例について説明する。
 以下の方法により、ガラス基板上に、アルカリ供給層としてのNaNbO層および裏面電極層としてのMo層を順次成膜して、試験サンプルを作製した。また、これらの試験サンプルを用いて、以下に示す各特性を評価した。
 (試験サンプルの作製)
 まず、ガラス基板を準備した。ガラス基板の寸法は、縦50mm×横50mm×厚さ1.1mmとした。このガラス基板の組成は、酸化物換算で、72mol%のSiO、1.1mol%のAl、5.5mol%のMgO、8.6mol%のCaO、12.6mol%のNaO、および0.2mol%のKOを含む。
 次に、このガラス基板上に、スパッタリング法により、NaNbO層を成膜した。
 スパッタ装置には、マグネトロンRFスパッタリング装置(SPF210H、アネルバ社製)を使用した。NaNbO焼結体ターゲットを使用し、ガラス基板上にNaNbO層を成膜した。また、使用したNaNbO焼結体ターゲットは、NaCO粉末(関東化学製特級)とNb粉末(高純度化学研究所製3Nグレード)を用いて、粉末混合、仮焼、湿式粉砕、成形、焼結(空気中1330℃、2時間保持)を経て、焼結体ターゲットを作製した。なお、使用したNaNbO焼結体ターゲットには、K(カリウム)が、KO換算で総質量に対して、0.01質量%含有することを、蛍光X線法により確かめた。
 成膜雰囲気は、アルゴンと酸素の混合ガスとした。混合ガス中の酸素は、3vol%である。また、スパッタリング圧力は、1.3Paとし、成膜温度(基板温度)は、室温とした。
 NaNbO層の膜厚は、20nm、50nm、100nm、200nm、および500nmとした(それぞれ、試験サンプルNo.1~No.5とする)。
 次に、各サンプルのNaNbO層上に、Mo層を成膜した。
 Mo層の成膜には、マグネトロンDCスパッタリング装置(SPL-711V、トッキ社製)を使用した。ターゲットには、Moターゲットを使用した。成膜雰囲気は、アルゴンとし、スパッタリング圧力は、1.3Paとした。また、成膜温度(基板温度)は、室温とした。Mo層の厚さは、約500nmに統一した。
 この他、比較例として、NaNbO層の成膜を実施せずに、ガラス基板の表面にMo層(500nm)を直接成膜した試験サンプルを準備した(試験サンプルNo.6とする)
 表1には、各試験サンプルにおける層構造、およびNaNbOの膜厚をまとめて示した。
Figure JPOXMLDOC01-appb-T000001
(特性評価)
 前述の工程で得られた各試験サンプル(No.1~No.6)を用いて、Na拡散挙動の測定、およびMo層の密着性試験を行った。
 (Na拡散挙動の測定)
 サンプルNo.1~No.4、およびサンプルNo.6を用いて、Na拡散挙動の測定を行った。
 まず、各サンプルにおいて、Mo層の上部に、スパッタリング法により、厚さが約300nmのITO(インジウムスズ酸化物)膜を成膜し、評価試料を作製した。
 なお、ITO膜の成膜には、前述のマグネトロンDCスパッタリング装置を使用した。ターゲットには、10質量%のSnOがドープされたITOターゲットを使用した。また、スパッタリングガスには、アルゴンと酸素の混合ガス(酸素1vol%)を使用した。スパッタリング圧力は、0.4Paとした。成膜温度(基板温度)は、室温とした。
 次に、この評価試料を窒素雰囲気下において、550℃で30分間保持し、ガラス基板中のNaを、ITO膜中に拡散させた。
 次に、SIMS(Secondary Ion Mass Spectroscopy)装置(ADEPT1010、アルバック・ファイ社製)を用いて、評価試料のITO膜を最表面側からドライエッチングし、この際に検出されるNa量を測定した。一次イオンには、O イオンを使用した。また、加速電圧は、3kVとし、ビーム電流は、200nAとした。ラスターサイズは、300μm×300μmである。エッチング速度は、約1nm/秒とした。
 測定は、一つの評価試料につき、2箇所で実施した。
 各評価試料において得られた結果を図3に示す。図3において、横軸は、サンプルNo.(No.1~No.4、およびNo.6)を示しており(すなわちNaNbO層の厚さに対応)、縦軸は、測定されたNaの検出量を示している。なお、縦軸のNaの検出量は、検出されたIn(インジウム)(すなわちインジウムカウント数)に対する検出されたNa(ナトリウム)のカウント数の割合として示している。
 この図3から、NaNbO層の厚さを変化させることにより、Na拡散量を変化させることができることがわかる。すなわち、本発明の構成では、NaNbO層の厚さを調整することにより、比較的容易に、CIGS層中に拡散されるNa量を制御することができると考えられる。
 (Mo層の密着性試験)
 次に、試験サンプルNo.1~No.6を用いて、以下の方法により、Mo層の密着性を相対評価した。
 まず、各試験サンプルを(1)窒素雰囲気中に、550℃で10分間、および(2)50℃、相対湿度50%に調整した大気中に24時間、それぞれ保持した。次に、Mo層の上に、接着テープ(CT-24、ニチバン社製)を貼り付け、これを剥がした際に、Mo層に剥離が生じるかどうかを評価した。
 表1の「密着性評価結果(1)」および「密着性評価結果(2)」の欄に、上記のそれぞれの評価結果を示す。表1において、「○」は、試験後に、Mo層の剥離が生じなかった場合を示しており、「×」は、試験後に、Mo層の剥離が生じた場合を示している。
 この結果から、密着性評価結果(2)の耐湿性評価において、NaNbO層の膜厚が20nm~200nmでは、Mo層に剥離は生じておらず、高い耐湿性を示し、耐湿性の改善を確認できた。さらに、密着性評価結果(1)の耐湿性評価において、NaNbO層の膜厚が100nm以下では、Mo層に剥離は生じておらず、密着性評価結果(1)および(2)から、NaNbO層の膜厚が20nm~100nmの範囲にある場合(試験サンプルNo.1~No.3)、NaNbO層とMo層の間には、極めて良好な密着性が得られることがわかった。
 本発明によれば、耐水性、低吸湿性および水に対する難溶解性に優れており、CIGS層にアルカリ金属を拡散させることが可能で、キャリア濃度を高めることができ、太陽電池のエネルギー変換効率を向上させることができる太陽電池用の基板を提供することができ、かかる基板の利用により、エネルギー変換効率を向上させたCIGS型の太陽電池等を得ることができ、有用である。
なお、2010年5月31日に出願された日本特許出願2010-124976号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
 10  従来のCIGS型の太陽電池
 11  絶縁性支持基板
 12a 第1の導電層
 12b 第2の導電層
 13  光吸収層
 14  第1の半導体層
 15  第2の半導体層
 16  透明導電層
 17、18 取り出し電極
 19  アルカリ金属供給層
 90  光の入射方向
 100 本発明によるCIGS型の太陽電池
 110 絶縁性支持基板
 120 アルカリ金属供給層
 130 裏面電極層
 160 CIGS層
 170 バッファ層
 180 透明表面電極層
 190 光の入射方向

Claims (13)

  1.  絶縁性支持基板と、
     前記絶縁性支持基板の上に設けられた裏面電極層と、
     前記裏面電極層の上に設けられたCIGS層と、
     前記CIGS層の上に設けられたバッファ層と、
     前記バッファ層の上に設けられた透明表面電極層と、
    を有するCIGS型の太陽電池であって、
     さらに、前記絶縁性支持基板と前記裏面電極層の間、または前記裏面電極層と前記CIGS層の間、または前記絶縁性支持基板と前記裏面電極層の間と前記裏面電極層と前記CIGS層の間の双方に、アルカリ金属供給層を有し、
     該アルカリ金属供給層は、NaNbO化合物およびKNbO化合物からなる群から選ばれる1種以上の化合物を含むことを特徴とする太陽電池。
  2.  絶縁性支持基板と、
     前記絶縁性支持基板の上に設けられた裏面電極層と、
     前記裏面電極層の上に設けられたCIGS層と、
     前記CIGS層の上に設けられたバッファ層と、
     前記バッファ層の上に設けられた透明表面電極層と、
    を有するCIGS型の太陽電池であって、
     さらに、前記絶縁性支持基板と前記裏面電極層の間、または前記裏面電極層と前記CIGS層の間、または前記絶縁性支持基板と前記裏面電極層の間と前記裏面電極層と前記CIGS層の間の双方に、アルカリ金属供給層を有し、
     該アルカリ金属供給層は、LiNbO化合物、NaNbO化合物およびKNbO化合物からなる群から選ばれる1種以上の化合物を含むことを特徴とする太陽電池。
  3.  前記アルカリ金属供給層は、20nm~200nmの範囲の厚さを有することを特徴とする請求項1または2に記載の太陽電池。
  4.  前記絶縁性支持基板は、絶縁性の基材自体で構成され、または導電性の基材に絶縁層を設けることにより構成されることを特徴とする請求項1~3のいずれか1項に記載の太陽電池。
  5.  前記絶縁性支持基板は、ガラス基板またはプラスチック基板であることを特徴とする請求項1~4のいずれか1項に記載の太陽電池。
  6.  絶縁性支持基板の第1の表面上に設けられた裏面電極層と、アルカリ金属供給層とを有し、
     該アルカリ金属供給層は、前記第1の表面と前記裏面電極層の間、または前記裏面電極層の上層に、または前記第1の表面と前記裏面電極層の間と前記裏面電極層の上層の双方に、設けられ、
     前記アルカリ金属供給層は、NaNbO化合物およびKNbO化合物からなる群から選ばれる1種以上の化合物を含むことを特徴とするCIGS型の太陽電池用の基板。
  7.  絶縁性支持基板の第1の表面上に設けられた裏面電極層と、アルカリ金属供給層とを有し、
     該アルカリ金属供給層は、前記第1の表面と前記裏面電極層の間、または前記裏面電極層の上層に、または前記第1の表面と前記裏面電極層の間と前記裏面電極層の上層の双方に、設けられ、
     前記アルカリ金属供給層は、LiNbO化合物、NaNbO化合物およびKNbO化合物からなる群から選ばれる1種以上の化合物を含むことを特徴とするCIGS型の太陽電池用の基板。
  8.  前記アルカリ金属供給層は、20nm~200nmの範囲の厚さを有することを特徴とする請求項6または7に記載のCIGS型の太陽電池用の基板。
  9.  絶縁性支持基板は、絶縁性の基材自体で構成され、または導電性の基材に絶縁層を設けることにより構成されることを特徴とする請求項6~8のいずれか1項に記載のCIGS型の太陽電池用の基板。
  10.  絶縁性支持基板の第1の表面上に設けられたアルカリ金属供給層を有し、
     該アルカリ金属供給層は、NaNbO化合物およびKNbO化合物からなる群から選ばれる1種以上の化合物を含むことを特徴とするCIGS型の太陽電池用の基板。
  11.  絶縁性支持基板の第1の表面上に設けられたアルカリ金属供給層を有し、
     該アルカリ金属供給層は、LiNbO化合物、NaNbO化合物およびKNbO化合物からなる群から選ばれる1種以上の化合物を含むことを特徴とするCIGS型の太陽電池用のCIGS型の太陽電池用の基板。
  12.  前記アルカリ金属供給層は、20nm~200nmの範囲の厚さを有することを特徴とする請求項10または11に記載のCIGS型の太陽電池用の基板。
  13.  前記絶縁性支持基板は、絶縁性の基材自体で構成され、または導電性の基材に絶縁層を設けることにより構成されることを特徴とする請求項10~12のいずれか1項に記載のCIGS型の太陽電池用の基板。
PCT/JP2011/062512 2010-05-31 2011-05-31 Cigs型の太陽電池およびcigs型の太陽電池用の基板 WO2011152410A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127028102A KR20130086932A (ko) 2010-05-31 2011-05-31 Cigs 형 태양 전지 및 cigs 형 태양 전지용 기판
EP11789813.0A EP2579326A1 (en) 2010-05-31 2011-05-31 Cigs solar cell and substrate for cigs solar cell
CN2011800267708A CN102918652A (zh) 2010-05-31 2011-05-31 Cigs型太阳能电池和cigs型太阳能电池用基板
JP2012518406A JPWO2011152410A1 (ja) 2010-05-31 2011-05-31 Cigs型の太陽電池およびcigs型の太陽電池用の基板
US13/690,728 US20130087187A1 (en) 2010-05-31 2012-11-30 Cigs type solar cell and substrate for cigs type solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010124976 2010-05-31
JP2010-124976 2011-05-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/690,728 Continuation US20130087187A1 (en) 2010-05-31 2012-11-30 Cigs type solar cell and substrate for cigs type solar cell

Publications (1)

Publication Number Publication Date
WO2011152410A1 true WO2011152410A1 (ja) 2011-12-08

Family

ID=45066773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062512 WO2011152410A1 (ja) 2010-05-31 2011-05-31 Cigs型の太陽電池およびcigs型の太陽電池用の基板

Country Status (7)

Country Link
US (1) US20130087187A1 (ja)
EP (1) EP2579326A1 (ja)
JP (1) JPWO2011152410A1 (ja)
KR (1) KR20130086932A (ja)
CN (1) CN102918652A (ja)
TW (1) TW201216486A (ja)
WO (1) WO2011152410A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014075407A (ja) * 2012-10-03 2014-04-24 Asahi Glass Co Ltd Cigs型太陽電池用基板及びそれを用いたcigs型太陽電池の製造方法
JP2014096472A (ja) * 2012-11-09 2014-05-22 Asahi Glass Co Ltd Cigs型太陽電池用基板及びcigs型太陽電池
WO2020090612A1 (ja) * 2018-10-29 2020-05-07 アートビーム有限会社 太陽電池および太陽電池の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9701567B2 (en) * 2013-04-29 2017-07-11 Corning Incorporated Photovoltaic module package
TWI488327B (zh) * 2013-12-13 2015-06-11 Nat Univ Chin Yi Technology Thin film solar cell structure and process
TWI488312B (zh) * 2013-12-13 2015-06-11 Nat Univ Chin Yi Technology Structure and Process of Thin - film Solar Cell Buffer Layer
CN104617183B (zh) * 2014-09-05 2016-09-28 厦门神科太阳能有限公司 一种cigs基薄膜太阳电池及其制备方法
CN107749348A (zh) * 2017-10-27 2018-03-02 重庆科技学院 一种铁电/TiO2纳米晶复合薄膜及其制备方法和在敏化太阳能电池中的应用
KR102524637B1 (ko) * 2020-08-28 2023-04-21 인천대학교 산학협력단 박막 태양전지 및 광흡수층에 대한 용액 기반 알카리 원소 후증착 처리 방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009076690A2 (de) * 2007-12-18 2009-06-25 Plansee Metall Gmbh Dünnschichtsolarzelle mit molybdän-hältiger rückelektrodenschicht

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274534A (ja) * 1998-03-25 1999-10-08 Yazaki Corp I−iii−vi族系化合物半導体及びこれを用いた薄膜太陽電池
KR100798234B1 (ko) * 2000-04-06 2008-01-24 아크조 노벨 엔.브이. 광기전성박의 제조 방법
JP4629151B2 (ja) * 2009-03-10 2011-02-09 富士フイルム株式会社 光電変換素子及び太陽電池、光電変換素子の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009076690A2 (de) * 2007-12-18 2009-06-25 Plansee Metall Gmbh Dünnschichtsolarzelle mit molybdän-hältiger rückelektrodenschicht

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014075407A (ja) * 2012-10-03 2014-04-24 Asahi Glass Co Ltd Cigs型太陽電池用基板及びそれを用いたcigs型太陽電池の製造方法
JP2014096472A (ja) * 2012-11-09 2014-05-22 Asahi Glass Co Ltd Cigs型太陽電池用基板及びcigs型太陽電池
WO2020090612A1 (ja) * 2018-10-29 2020-05-07 アートビーム有限会社 太陽電池および太陽電池の製造方法
JPWO2020090612A1 (ja) * 2018-10-29 2021-09-09 アートビーム有限会社 太陽電池および太陽電池の製造方法

Also Published As

Publication number Publication date
CN102918652A (zh) 2013-02-06
KR20130086932A (ko) 2013-08-05
EP2579326A1 (en) 2013-04-10
JPWO2011152410A1 (ja) 2013-08-01
TW201216486A (en) 2012-04-16
US20130087187A1 (en) 2013-04-11

Similar Documents

Publication Publication Date Title
WO2011152410A1 (ja) Cigs型の太陽電池およびcigs型の太陽電池用の基板
WO2011158841A1 (ja) Cigs型の太陽電池およびそのための電極付きガラス基板
KR20190092220A (ko) 박막 태양 전지
TW201034213A (en) Photovoltaic element and method of manufacturing the same
US20160284882A1 (en) Solar Cell
JP5928612B2 (ja) 化合物半導体太陽電池
JP2011517132A (ja) 電極を支持するガラス基板
KR20130129923A (ko) Cu­In­Ga­Se 태양 전지용 유리 기판 및 그것을 사용한 태양 전지
KR20090123645A (ko) 고효율의 cigs 태양전지 및 그 제조방법
JP2014207477A (ja) 基板及びそれを用いた集光能力のある素子
KR101034150B1 (ko) 태양전지 및 이의 제조방법
JP2005019205A (ja) 透明導電膜及びその製造方法
JP6015994B2 (ja) 光学素子及びその製造方法
KR20150048728A (ko) 화합물 태양 전지 및 그 제조 방법
US9871159B2 (en) Apparatus for generating electricity using solar power and method for manufacturing same
KR20140066087A (ko) 태양전지 및 그 제조방법
US9331218B2 (en) Solar cell module and method of manufacturing the same
JP2014096472A (ja) Cigs型太陽電池用基板及びcigs型太陽電池
JP5594949B2 (ja) 光起電力素子、および、その製造方法
KR101315311B1 (ko) 후면전극 및 이를 포함하는 cis계 태양전지
JP6193851B2 (ja) 太陽電池用の伝導性基材
JP2012182340A (ja) 化合物半導体及び太陽電池
JP2014107510A (ja) 化合物系薄膜太陽電池
JP2012113839A (ja) 色素増感型太陽電池用金属薄膜、及び色素増感型太陽電池素子
KR20120137943A (ko) 태양전지 및 그의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180026770.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789813

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012518406

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127028102

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011789813

Country of ref document: EP