TWI488312B - Structure and Process of Thin - film Solar Cell Buffer Layer - Google Patents

Structure and Process of Thin - film Solar Cell Buffer Layer Download PDF

Info

Publication number
TWI488312B
TWI488312B TW102146055A TW102146055A TWI488312B TW I488312 B TWI488312 B TW I488312B TW 102146055 A TW102146055 A TW 102146055A TW 102146055 A TW102146055 A TW 102146055A TW I488312 B TWI488312 B TW I488312B
Authority
TW
Taiwan
Prior art keywords
layer
gallium selenide
indium gallium
disposed
copper indium
Prior art date
Application number
TW102146055A
Other languages
English (en)
Other versions
TW201440234A (zh
Original Assignee
Nat Univ Chin Yi Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Chin Yi Technology filed Critical Nat Univ Chin Yi Technology
Priority to TW102146055A priority Critical patent/TWI488312B/zh
Publication of TW201440234A publication Critical patent/TW201440234A/zh
Application granted granted Critical
Publication of TWI488312B publication Critical patent/TWI488312B/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

薄膜太陽能電池緩衝層結構及製程
本發明總體上涉及一種薄膜光伏模組(薄膜光伏元件,thin-film photovoltaic module)以及製造其的方法。更具體地,本發明提供了一種用於製造高效薄膜光伏模組的結構和方法。本發明提供了大尺寸且具有電路光伏效率(circuit photovoltaic efficiency)為8-16%以上的單結銅銦鎵二硒化物(CIGS)電池的高效薄膜光伏面板。
為了解決能源問題帶給社會發展的壓力,各國政府紛紛出資支持綠色能源的開發,同時也鼓勵民眾使用綠色能源。其中以太陽能電池最為優勢,其特色為可將太陽光直接轉換為電能,在無維護的情況下可以連續使用20多年,因此被大力推崇且得到了迅速的發展。
薄膜電池技術中所使用的材料量相當稀少,材料供給短缺導致價格暴漲的現象發生機率較低,因此薄膜電池非常有機會實現高效能又低價的目標。其中,銅銦鎵硒(Cu In1-XGaXSe2或者CIGS)薄膜被看作是所有薄膜太陽能電池技術中最有希望實現此目標的光電材料。原因主要有以下幾點:(1)CIGS的帶隙可以調控,達到與太陽光譜相匹配的數值(1.1~1.7eV);(2)CIGS薄膜太陽能電池的性能相當穩定,沒有非晶矽薄膜太陽能所具有的S-W效應,它還具有很強的抗輻射能力,非常適合作為太空衛星的發電機制;(3)CIGS薄膜式一種直接帶隙化合物半導體材料,對太陽光的吸收細數很高(大於105cm-1),因此只需要1~2微 米的厚度就可以吸收90%以上的太陽光;(4)更重要的是,在各種材料的薄膜電池和薄膜光電組件中,CIGS薄膜太陽能電池都取得了最高的轉換效率。
銅銦鎵硒(CIGS)薄膜太陽能電池中的光吸收層為銅銦鎵硒薄膜。一般而言,製作銅銦鎵硒(CIGS)薄膜的方法有共蒸鍍(Co-evaporation)法以及二階段硒化(sequential method)法。在共蒸鍍法中,是以高溫同時蒸鍍銅、銦、鎵以及硒等元素於鍍鉬(Mo)基板上,而形成銅銦鎵硒薄膜。在二階段硒化法中,是先在鍍鉬基板上濺鍍鎵化銅(CuGa)以及銦(In)等金屬前驅疊層,再藉由爐管或快速熱製程(Rapid Thermal Process,RTP)進行高溫硒化製程以於鍍鉬基板上形成銅銦鎵硒薄膜。
CIGS系薄膜太陽能電池之整體製程在現階段可因其所使用的緩衝層(buffer layer)而被分為兩大類,其中一者是以CdS作為其薄膜太陽能電池的緩衝層,其中另一者則是以ZnS作為其薄膜太陽能電池的緩衝層,且前述緩衝層通常是經由化學浴沉積法(chemical baht deposition,CBD)所製得。
以該CdS緩衝層之一薄膜太陽能電池的製作方法舉例來說,其一般是利用化學浴沉積法以將該CdS緩衝層沉積在一硒化銅銦鎵(CIGS)薄膜的表面,並從而使得該CdS緩衝層與該CIGS薄膜間形成一個pn異質接面(pn heterojunction);於完成CdS的沉積製程後,則是依序在該CdS緩衝層上沉積一本質型ZnO層(intrinsic ZnO layer)、一透明導電層及一前側接觸電極(front contact)。
ZnS緩衝層之一薄膜太陽能電池的製作方法舉例來說,其流程大致上是相同於CdS緩衝層之薄膜太陽能電池,不同之處是在於其所使用 的化學鍍浴不同,且最終所完成的緩衝層多半為Zn(O,S,OH)x化合物。然,前述Zn(O,S,OH)x化合物是此技術領域的相關技術人員所不樂見的產物,原因在於此Zn(O,S,OH)x化合物將為薄膜太陽能電池之pn異質接面間提供不必要的缺陷,增加載子的再復合(recombination)機率,進而嚴重地影響到薄膜太陽能電池的光電轉換效率(η)。
連續照光處理可使得緩衝層中的Zn(OH)2進行光化學反應(photochemical reaction),使得Zn(OH)2中的OH鍵被打斷並形成ZnO與H 2 O,以藉此釋放出水分子並使緩衝層留下有雷同於ZnS晶相的ZnO相。經前述說明可知,其pn異質接面間的缺陷密度可因實施連續照光處理而相對地下降,以減少薄膜太陽能電池於運作過程中其內部載子產生再復合的機率,並從而提升薄膜太陽能電池的填充因子(till factor,FF)與光電轉換效率(η)。因此,就具有ZnS緩衝層之薄膜太陽能電池的整體製作方法而言,其另一個不同於具有CdS緩衝層之薄膜太陽能電池之製作方法的差異處在於,其需要進一步地施予連續照光處理來提升其光電轉換效率(η)。
雖然具有CdS緩衝層之薄膜太陽能電池在不需要實施連續照光處理的製程條件下,便可以取得不錯的光電轉換效率(η);然而,製作此CdS緩衝層所使用之化學鍍浴中則是含有大量的鎘重金屬的化合物,其無形中已成為產業界衍生出環境污染的問題。又,就具有ZnS緩衝層之薄膜太陽能電池來看,雖然可以免除掉環境污染的問題;然而,為提升其光電轉換效率(η),仍須對薄膜太陽能電池實施長時間的連續照光處理,無形中也增加了時間成本。
經上述說明可知,改良薄膜太陽能電池的製作方法,在免除掉環境污染問題的前提下,亦能同時減少時間成本上的耗損,是此技術領域的相關技術人員所需改進的課題。
因此,本發明之目的在於:利用在該吸收層上預先形成一種獨特的該界面層,使得該光吸收層表面的缺陷(defect)可由該該界面層填補或修復,從而降低pn異質接面間的缺陷密度,並省略連續照光處理以減少時間成本上的耗損。。
本發明提供了一種銅銦鎵硒化合物薄膜之製造方法,包括如圖1所示:提供一基板100;形成一金屬電極層200於該基板上;形成一銅銦鎵硒化合物層300於該金屬電極層200上,一中間修補層400位於銅銦鎵硒薄膜300之上,一硫化鋅緩衝層500位於中間修補層之上,一包括氧化鋅之窗層600位於硫化鋅緩衝層之上。
【圖式簡單說明】
第2~5圖所示,利用場發式電子顯微鏡(FESEM)觀察氨水濃度在2.6M~4.4M表面形貌,圖1至圖4所示為不同氨水濃度分別為2.6M、3.2M、3.8M、4.4M所得到的ZnS表面形貌,其反應式為Zn(NH3)4 2+ Zn2-+4NH3。由於CIGS是大顆粒晶粒,表面有較多的空洞及孔隙;沉積ZnS後,CIGS晶粒間的間隙被ZnS顆粒填充。由圖可以觀察到CIGS薄膜表面所沉積的ZnS薄膜是以顆粒堆積的型態存在,CIGS薄膜表面所沉機的ZnS薄膜完整覆蓋趨近於100%。這是由於氨水與聯氨兩種配位體的濃度式中時,沉積機制發生了變化。原因是聯氨中的N原子採取SP3軌域,各有一對電子對,不僅可以做配位體,還可以與H原子形成氫鍵,與NH3中的H相比,H2O中的H原子更缺電子,所以N2H4中的N原子更容易與H2O中的H原子形成氫鍵。當較少氨水時,氫鍵的作用加強,薄膜的均 勻性提高,可以看出錯合物對薄膜均勻性有了明顯的改善。
我們從圖1中發現ZnS薄膜並無法完全覆蓋住CIGS吸收層,推斷應該是氨水不足導致薄膜沉績效率下降的關係所引起。到了圖2可以觀察到ZnS幾乎完整覆蓋CIGS薄膜表面,這是由於氨水濃度的上升,使得沉積品質獲得改善的結果。而到了氨水濃度3.8M時,如圖3所示,ZnS薄膜幾乎100%完全披覆在CIGS薄膜上。但是當氨水濃度來到4.4M時,可以發現許多白色顆粒,可能是溶液中形成的ZnS、Zn(OH)2所造成的,如圖4所示。
圖6至圖9所示為不同聯氨濃度分別為0M、0.15M、0.3M、0.45M所得到的ZnS表面形貌,其反應式為SC(NH2)2+OH- HS-+CN2H2+H2O。圖5為完全沒有加入聯氨狀況下在CIGS薄膜上沉基ZnS的表面形貌,可以觀察到其形貌由顆粒狀轉變為片狀結構,主要原因是沒有聯氨擔當錯和劑的成分所導致。圖6為聯氨0.15M濃度下的表面形貌圖,由圖可發現其表面有些許白色顆粒,如同先前圖3的情況相當類似,由此推斷相對於聯氨濃度過量的氨水可能會造成溶液中形成ZnS、Zn(OH)2,導致薄膜上出現白色顆粒沉澱。而圖7為聯氨濃度0.3M時,ZnS薄膜則幾乎100%完全披覆在CIGS薄膜上。當聯氨濃度來到0.45M時(圖8),可以發現ZnS雖然完整披覆在CIGS薄膜上,但似乎過度成長而導致薄膜展生裂痕。
本發明薄膜太陽能電池之製作方法之基本例,是根據以下流程所製得。
首先,在一個鈉玻璃(soda lime-glass)基板上之一厚度為800nm的Mo層上,沉積一Cu-Ga-In三元合金層,並對該Cu-Ga-In三元合金層施予後硒化處理(post-selenization),以製得一厚度為2μm的硒化銅銦鎵(CIGS)吸收層。進一步地,使用一含有0.1M的ZnSO4、2.6M~4.4M的NH 4 OH與0~0.45M的CH 4 N 2 S之水溶液來實施1~30分鐘的化學浴沉積法,以在30~130℃的沉積溫度下於該CIGS吸收層上沉積一厚度為5~150nm的ZnS緩衝層。
另外本發明之ZnS緩衝層除了可以使用化學浴沉積法以可以使用電鍍法來產生。鋅電鍍主成分為硫酸鋅240g/l、氯化銨30g/l、硫酸鋁15g/l、甘草1g/l、溫度25C,3V,30sec。
1、氰化物鍍鋅:由於(CN)屬劇毒,所以環境保護對電鍍鋅中使用氰化物提出瞭嚴格限制,不斷促進減少氰化物和取代氰化物電鍍鋅鍍液體系的發展,要求使用低氰(微氰)電鍍液。采用此工藝電鍍後,產品質量好,特別是彩鍍,經鈍化後色彩保持好。2、鋅酸鹽鍍鋅:此工藝是由氰化物鍍鋅演化而來的。目前國內形成兩大派系,分別為:a)武漢材保所的”DPE”系列;b)廣電所的”DE”系列。都屬於堿性添加劑的鋅酸鹽鍍鋅;PH值為12.5~13。采用此工藝,鍍層晶格結構為柱狀,耐腐蝕性好,適合彩色鍍鋅。注意:產品出槽後─>水洗─>出光(硝酸+鹽酸)─>水洗─>鈍化─>水洗─>水洗─>燙幹─>烘幹─>老化處理(烘箱內80~90oC。3、氯化物鍍鋅:此工藝在電鍍行業應用比較廣泛,所占比例高達40%。鈍化後(蘭白)可以鋅代鉻(與鍍鉻相媲美),特別是在外加水溶性清漆後,外行人是很難辯認出是鍍鋅還是鍍鉻的。此工藝適合於白色鈍化(蘭白,銀白)。4、硫酸鹽鍍鋅:此工藝適合於連續鍍(線材、帶材、簡單、粗大型 零、部件)。
電鍍大部份在液體(solution)下進行,又絕大部份是由水溶液(aqueous solution)中電鍍,約有30種的金屬可由水溶液進行電鍍,由水溶液電鍍的金屬有:銅Cu、鎳Ni、鉻Cr、鋅Zn、鎘Cd"、鉛Pb、金Au、銀Ag、鉑Pt、鈷Co、錳Mn、銻Sb、鉍Bi、汞Hg、鎵Ga、銦In、鉈、As、Se、Te、Pd、Mn、Re、Rh、Os、Ir、Nb、W等。有些必須由非水溶液電鍍如鋰、鈉、鉀、鈹、鎂、鈣、鍶、鋇、鋁、La、Ti、Zr、Ge、Mo等。可油水溶液及非水溶液電鍍者有銅、銀、鋅、鎘、銻、鉍、錳、鈷、鎳等金屬。
電鍍前之處理,稱之前處理(pretreatment),包括下列過程:洗淨:去除金屬表面之油質、脂肪、研磨劑,及污泥。可用噴射洗淨、溶劑洗淨、浸沒洗淨或電解洗淨。清洗:用冷或熱水洗淨過程之殘留洗淨劑或污物。酸浸:去除銹垢或其他氧化物膜,要注意防止基材被腐蝕或產生氫脆。可加抑制劑以避免過度酸浸。酸浸完後要充份清洗。活化:促進鍍層附著性,可用各種酸溶液使金屬表面活化。漂清:電鍍前立刻去除酸膜,然後電鍍。
電鍍操作過程鍍架使用注意事項:鍍件需定位,與陽極保持相同距離,使電鍍層均勻,防止鍍液之帶出(drag-out)損失及帶入(drag-in)污染鍍液。鍍件安排要適當,要使氣泡容易逸出,稍傾斜放置鍍件。空間安排,避免鍍件相互遮蔽。堅固接觸,防止發燒、孤光等現象發生。防止高電流密度的形成,如尖、邊緣、角等處必須適當應用絕緣罩或漏電裝置。使用陽極輔助裝置或雙極鍍架,應小心調整以 確保適當電流分佈。鍍架應經常清洗,維持良好電流接觸,去除舌尖附著之金屬,塗層有損壞需之即修理、操作中隨時注意漏電,鍍浴帶出損失及帶入污染等現象。
鍍浴的成份及其功能 金屬鹽:提供金屬離子之來源如硫酸銅。可分單鹽、鹽,及錯鹽。例如:單鹽:CuSO4;NiSO4,複鹽:NiSO4;(NH4)2SO4.醋鹽:Na2Cu(CN)3。導電鹽:提供導電度,如硫酸鹽、氯鹽,可降低能量花費、鍍液熱蒸發損失,尤其是滾桶電鍍更需優良導電溶液。陽極溶解助劑。陽極有時會形成鈍態膜,不易補充金屬離,則需加陽極溶解助劑。例如鍍鎳時加氯鹽。緩衝劑,電鍍條件通常有一定pH值範圍,防止pH值變動加緩衝劑,尤其是中性鍍浴(pH5~8),pH值控制更為重要。錯合劑,很多情況,錯鹽的鍍層比單鹽的鍍層優良,防止置換沈積,如鐵上鍍銅,則需用錯合劑,或是合金電鍍用錯合劑使不同之合金屬電位拉近才能同時沈積得到合金鍍層。安定劑,鍍浴有些會因某些作用,產生金屬鹽沈澱,鍍浴壽命減短,為使鍍浴安定所加之藥品稱之為安定劑。鍍層性質改良添加劑,例如小孔防止劑、硬度調節劑、澤劑等改變鍍層的物理化學特性之添加劑。潤濕劑(wetting agent),一般為界面活性劑又稱去孔劑。
本發明薄膜太陽能電池之製作方法第1比較例,是根據以下流程所製得。首先,在一個鈉玻璃(soda lime-glass)基板上之一厚度為800nm的Mo層上,沉積一Cu-Ga-In三元合金層,並對該Cu-Ga-In三元合金層施予後硒化處理(post-selenization), 以製得一厚度為2μm的硒化銅銦鎵(CIGS)吸收層。將該CIGS吸收層浸泡在一溫度為5~55℃且酸鹼值為5~10的0~0.5M的InCl 3中1~600秒鐘,以於該CIGS吸收層上形成一界面層。進一步地,使用一含有0.1M的ZnSO 4、2.6M~4.4M的NH 4 OH與0~0.45M的CH 4 N 2 S之水溶液來實施1~30分鐘的化學浴沉積法,以在30~130℃的沉積溫度下於該CIGS吸收層上沉積一厚度為5~150nm的ZnS第一緩衝層。
下表是以InCl 3作為本發明中間修補層之綜合結果
本發明薄膜太陽能電池之製作方法第2比較例,是根據以下流程所製得。首先,在一個鈉玻璃(soda lime-glass)基板上之一厚度為800nm的Mo層上,沉積一Cu-Ga-In三元合金層,並對該Cu-Ga-In三元合金層施予後硒化處理(post-selenization),以製得一厚度為2μm的硒化銅銦鎵(CIGS)吸收層。將該CIGS吸收層浸泡在一溫度為5~55℃且酸鹼值為5~10的0~0.5M的InF3中1~600秒鐘,以於該CIGS吸收層上形成一界面層。進一步地,使用一含有0.1M的ZnSO 4、2.6M~4.4M的NH 4 OH與0~0.45M的CH 4 N 2 S之水溶液來實施1~30分鐘的化學浴沉積法,以在30~130℃的沉積溫度下於該CIGS吸收層上沉積一厚度為5~150nm的ZnS第一緩衝層。
下表是以InF3作為中間修補層之本發明綜合結果
本發明薄膜太陽能電池之製作方法第3比較例,是根據以下流程所製得。首先,在一個鈉玻璃(soda lime-glass)基板上之一厚度為800nm的Mo層上,沉積一Cu-Ga-In三元合金層,並對該Cu-Ga-In三元合金層施予後硒化處理(post-selenization),以製得一厚度為2μm的硒化銅銦鎵(CIGS)吸收層。將該CIGS吸收層浸泡在一溫度為5~55℃且酸鹼值為5~10的0~0.5M的In2S3中1~600秒鐘,以於該CIGS吸收層上形成一界面層。進一步地,使用一含有0.1M的ZnSO 4、2.6M~4.4M的NH 4 OH與0~0.45M的CH 4 N 2 S之水溶液來實施1~30分鐘的化學浴沉積法,以在30~130℃的沉積溫度下於該CIGS吸收層上沉積一厚度為5~150nm的ZnS第一緩衝層。
下表是以In2S 3作為中間修補層之本發明綜合結果
本發明薄膜太陽能電池之製作方法第4比較例,是根據以下流程所製得。首先,在一個鈉玻璃(soda lime-glass)基板上之一厚度為800nm的Mo層上,沉積一Cu-Ga-In三元合金層,並對該Cu-Ga-In三元合金層施予後硒化處理(post-selenization),以製得一厚度為2μm的硒化銅銦鎵(CIGS)吸收層。將該CIGS吸收層浸泡在一溫度為5~55℃且酸鹼值為5~10的0~0.5M的In2O3中1~600秒鐘,以於該CIGS吸收層上形成一界面層。進一步地,使用一含有0.1M的ZnSO 4、2.6M~4.4M的NH 4 OH與0~0.45M的CH 4 N 2 S之水溶液來實施1~30分鐘的化學浴沉積法,以在30~130℃的沉積溫度下於該CIGS吸收層上沉積一厚度為5~150nm的ZnS第一緩衝層。
下表是以In2O3作為中間修補層之本發明綜合結果
本發明薄膜太陽能電池之製作方法第5比較例,是根據以下流程所製得。首先,在一個鈉玻璃(soda lime-glass)基板上之一厚度為800nm的Mo層上,沉積一Cu-Ga-In三元合金層,並對該Cu-Ga-In三元合金層施予後硒化處理(post-selenization),以製得一厚度為2μm的硒化銅銦鎵(CIGS)吸收層。將該CIGS吸收層浸泡在一溫度為5~55℃且酸鹼值為5~10的0~0.5M的Ga2O3中1~600秒鐘,以於該CIGS吸收層上形成一界面層。進一步地,使用一含有0.1M的ZnSO 4、2.6M~4.4M的NH 4 OH與0~0.45M的CH 4 N 2 S之水溶液來實施1~30分鐘的化學浴沉積法,以在30~130℃的沉積溫度下於該CIGS吸收層上沉積一厚度為5~150nm的ZnS第一緩衝層。
下表是以Ga2O3作為中間修補層之本發明綜合結果
本發明薄膜太陽能電池之製作方法第6比較例,是根據以下流程所製得。首先,在一個鈉玻璃(soda lime-glass)基板上之一厚度為800nm的Mo層上,沉積一Cu-Ga-In三元合金層,並對該Cu-Ga-In三元合金層施予後硒化處理(post-selenization),以製得一厚度為2μm的硒化銅銦鎵(CIGS)吸收層。將該CIGS吸收層浸泡在一溫度為5~55℃且酸鹼值為5~10的0~0.5M的Ga2S3中1~600秒鐘,以於該CIGS吸收層上形成一界面層。進一步地,使用一含有0.1M的ZnSO 4、2.6M~4.4M的NH 4 OH與0~0.45M的CH 4 N 2 S之水溶液來實施1~30分鐘的化學浴沉積法,以在30~130℃的沉積溫度下於該CIGS吸收層上沉積一厚度為5~150nm的ZnS第一緩衝層。
下表是以Ga2S3作為中間修補層之本發明綜合結果
本發明薄膜太陽能電池之製作方法第7比較例,是根據以下流程所製得。首先,在一個鈉玻璃(soda lime-glass)基板上之一厚度為800nm的Mo層上,沉積一Cu-Ga-In三元合金層,並對該Cu-Ga-In三元合金層施予後硒化處理(post-selenization),以製得一厚度為2μm的硒化銅銦鎵(CIGS)吸收層。將該CIGS吸收層浸泡在一溫度為5~55℃且酸鹼值為5~10的0~0.5M的GaF3中1~600秒鐘,以於該CIGS吸收層上形成一界面層。進一步地,使用一含有0.1M的ZnSO 4、2.6M~4.4M的NH 4 OH與0~0.45M的CH 4 N 2 S之水溶液來實施1~30分鐘的化學浴沉積法,以在30~130℃的沉積溫度下於該CIGS吸收層上沉積一厚度為5~150nm的ZnS第一緩衝層。
下表是以Ga2F3作為中間修補層之本發明綜合結果
本發明薄膜太陽能電池之製作方法第8比較例,是根據以下流程所製得。首先,在一個鈉玻璃(soda lime-glass)基板上之一厚度為800nm的Mo層上,沉積一Cu-Ga-In三元合金層,並對該Cu-Ga-In三元合金層施予後硒化處理(post-selenization),以製得一厚度為2μm的硒化銅銦鎵(CIGS)吸收層。將該CIGS吸收層浸泡在一溫度為5~55℃且酸鹼值為5~10的0~0.5M的GaCl3中1~600秒鐘,以於該CIGS吸收層上形成一界面層。進一步地,使用一含有0.1M的ZnSO 4、2.6M~4.4M的NH 4 OH與0~0.45M的CH 4 N 2 S之水溶液來實施1~30分鐘的 化學浴沉積法,以在30~130℃的沉積溫度下於該CIGS吸收層上沉積一厚度為5~150nm的ZnS第一緩衝層。
下表是以GaCl3作為中間修補層之本發明綜合結果
發明薄膜太陽能電池之製作方法第9比較例,是根據以下流程所製得。首先,在一個鈉玻璃(soda lime-glass)基板上之一厚度為800nm的Mo層上,沉積一Cu-Ga-In三元合金層,並對該Cu-Ga-In三元合金層施予後硒化處理(post-selenization),以製得一厚度為2μm的硒化銅銦鎵(CIGS)吸收層。將該CIGS吸 收層浸泡在一溫度為5~55℃且酸鹼值為5~10的0~0.1M的CuCl2或CuCl中1~600秒鐘,以於該CIGS吸收層上形成一界面層。進一步地,使用一含有0.1M的ZnSO 4、2.6M~4.4M的NH 4 OH與0~0.45M的CH 4 N 2 S之水溶液來實施1~30分鐘的化學浴沉積法,以在30~130℃的沉積溫度下於該CIGS吸收層上沉積一厚度為5~150nm的ZnS第一緩衝層。
下表是以CuCl2作為中間修補層之本發明綜合結果
發明薄膜太陽能電池之製作方法第10比較例,是根據以下流程所 製得。首先,在一個鈉玻璃(soda lime-glass)基板上之一厚度為800nm的Mo層上,沉積一Cu-Ga-In三元合金層,並對該Cu-Ga-In三元合金層施予後硒化處理(post-selenization),以製得一厚度為2μm的硒化銅銦鎵(CIGS)吸收層。將該CIGS吸收層浸泡在一溫度為5~55℃且酸鹼值為5~10的0~0.1M的CuF2中1~600秒鐘,以於該CIGS吸收層上形成一界面層。進一步地,使用一含有0.1M的ZnSO 4、2.6M~4.4M的NH 4 OH與0~0.45M的CH 4 N 2 S之水溶液來實施1~30分鐘的化學浴沉積法,以在30~130℃的沉積溫度下於該CIGS吸收層上沉積一厚度為5~150nm的ZnS第一緩衝層。
下表是以CuF2作為中間修補層之本發明綜合結果
發明薄膜太陽能電池之製作方法第10比較例,是根據以下流程所製得。首先,在一個鈉玻璃(soda lime-glass)基板上之一厚度為800nm的Mo層上,沉積一Cu-Ga-In三元合金層,並對該Cu-Ga-In三元合金層施予後硒化處理(post-selenization),以製得一厚度為2μm的硒化銅銦鎵(CIGS)吸收層。將該CIGS吸收層浸泡在一溫度為5~55℃且酸鹼值為5~10的0~0.1M的Cu2O中1~600秒鐘,以於該CIGS吸收層上形成一界面層。進一步地,使用一含有0.1M的ZnSO 4、2.6M~4.4M的NH 4 OH與0~0.45M的CH 4 N 2 S之水溶液來實施1~30分鐘的化學浴沉積法,以在30~130℃的沉積溫度下於該CIGS吸收層上沉積一厚度為5~150nm的ZnS第一緩衝層。
下表是以Cu2O作為中間修補層之本發明綜合結果
發明薄膜太陽能電池之製作方法第11比較例,是根據以下流程所製得。首先,在一個鈉玻璃(soda lime-glass)基板上之一厚度為800nm的Mo層上,沉積一Cu-Ga-In三元合金層,並對該Cu-Ga-In三元合金層施予後硒化處理(post-selenization),以製得一厚度為2μm的硒化銅銦鎵(CIGS)吸收層。將該CIGS吸收層浸泡在一溫度為5~55℃且酸鹼值為5~10的0~0.1M的Cu2S中1~600秒鐘,以於該CIGS吸收層上形成一界面層。進一步地,使用一含有0.1M的ZnSO4、2.6M~4.4M的NH4OH與0~0.45M的CH 4 N 2 S之水溶液來實施1~30分鐘的化學浴沉積法,以在30~130℃的沉積溫度下於該CIGS吸收層上沉積一厚度為5~150nm的ZnS第一緩衝層。
下表是以Cu2S作為中間修補層之本發明綜合結果
綜上所述,本發明薄膜太陽能電池之製作方法,利用上述表面改質步驟以在該吸收層上預先形成該中間修補層,使得該吸收層表面的缺陷可由該表面改質溶液中的不同離子所填補或修復,從而降低pn異質接面間的缺陷密度,在免除掉環境污染問題的前提下,亦能同時減少時間成本上的耗損,故確實能達成本發明之目的。
惟以上所述者,僅為本發明之較佳實施例與具體例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。
100‧‧‧基板
200‧‧‧金屬電極層
300‧‧‧銅銦鎵硒化合物層
400‧‧‧中間修補層層
500‧‧‧緩衝層
600‧‧‧窗層
圖1 銅銦鎵硒化合物薄膜之製造方法
圖2 不同氨水濃度分別為2.6M、3.2M、3.8M、4.4M所得到的ZnS表面形貌
圖3 氨水濃度為3.2M所得到的ZnS表面形貌
圖4 氨水濃度為3.8M所得到的ZnS表面形貌
圖5 氨水濃度為4.4M所得到的ZnS表面形貌
圖6 聯氨濃度分別為0M所得到的ZnS表面形貌
圖7 聯氨濃度為0.15M所得到的ZnS表面形貌
圖8 聯氨濃度為0.3M所得到的ZnS表面形貌
圖9 聯氨濃度為0.45M所得到的ZnS表面形貌
100‧‧‧基板
200‧‧‧金屬電極層
300‧‧‧銅銦鎵硒化合物層
400‧‧‧中間修補層層
500‧‧‧緩衝層
600‧‧‧窗層

Claims (11)

  1. 一種銅銦鎵硒薄膜太陽能電池,包括:一基板上之一之金屬電極層,一包括缺陷化合物之一銅銦鎵硒薄膜位於一金屬電極層之上,一氯化銦的中間修補層(InCl3)位於銅銦鎵硒薄膜之上,一硫化鋅緩衝層位於氯化銦中間修補層之上,一包括氧化鋅之窗層位於硫化鋅緩衝層之上。
  2. 一種銅銦鎵硒薄膜太陽能電池,包括:一基板上之一金屬電極層;一包括缺陷化合物之一銅銦鎵硒薄膜位於一金屬電極層之上,一氟化銦的中間修補層(InF3)位於銅銦鎵硒薄膜之上,一硫化鋅緩衝層位於氯化銦中間修補層之上,一包括氧化鋅之窗層位於硫化鋅緩衝層之上。
  3. 一種銅銦鎵硒薄膜太陽能電池,包括:一基板上之一金屬電極層;一包括缺陷化合物之一銅銦鎵硒薄膜位於一金屬電極層之上,一硫化銦的中間修補層(In2S3)位於銅銦鎵硒薄膜之上,一硫化鋅緩衝層位於氯化銦中間修補層之上,一包括氧化鋅之窗層位於硫化鋅緩衝層之上。
  4. 一種銅銦鎵硒薄膜太陽能電池,包括:一基板上之一金屬電極層;一包括缺陷化合物之一銅銦鎵硒薄膜位於一金屬電極層之上,一氧化銦的中間修補層(In2O3)位於銅銦鎵硒薄膜之上,一硫化鋅緩衝層位於氯化銦中間修補層之上,一包括氧化鋅之窗層位於硫化鋅緩衝層之上。
  5. 一種銅銦鎵硒薄膜太陽能電池,包括:一基板上之一金屬電極層;一包括缺陷化合物之一銅銦鎵硒薄膜位於一金屬電極層之上,一氧化銦的中間修補層(Ga2O3)位於銅銦鎵硒薄膜之上,一硫化鋅緩衝層位於氯化銦中間修補層之上,一包括氧化鋅之窗層位於硫化鋅緩衝層之上。
  6. 一種銅銦鎵硒薄膜太陽能電池,包括:一基板上之一金屬電極層;一包括缺陷化合物之一銅銦鎵硒薄膜位於一金屬電極層之上,一氧化銦的中間修補層(Ga2F3)位於銅銦鎵硒薄膜之上,一硫化鋅緩衝層位於氯化銦中 間修補層之上,一包括氧化鋅之窗層位於硫化鋅緩衝層之上。
  7. 一種銅銦鎵硒薄膜太陽能電池,包括:一基板上之一金屬電極層;一包括缺陷化合物之一銅銦鎵硒薄膜位於一金屬電極層之上,一氧化銦的中間修補層(GaCl3)位於銅銦鎵硒薄膜之上,一硫化鋅緩衝層位於氯化銦中間修補層之上,一包括氧化鋅之窗層位於硫化鋅緩衝層之上。
  8. 一種銅銦鎵硒薄膜太陽能電池,包括:一基板上之一金屬電極層;一包括缺陷化合物之一銅銦鎵硒薄膜位於一金屬電極層之上,一氧化銦的中間修補層(CuCl2)位於銅銦鎵硒薄膜之上,一硫化鋅緩衝層位於氯化銦中間修補層之上,一包括氧化鋅之窗層位於硫化鋅緩衝層之上。
  9. 一種銅銦鎵硒薄膜太陽能電池,包括:一基板上之一金屬電極層;一包括缺陷化合物之一銅銦鎵硒薄膜位於一金屬電極層之上,一氧化銦的中間修補層(CuF2)位於銅銦鎵硒薄膜之上,一硫化鋅緩衝層位於氯化銦中間修補層之上,一包括氧化鋅之窗層位於硫化鋅緩衝層之上。
  10. 一種銅銦鎵硒薄膜太陽能電池,包括:一基板上之一金屬電極層;一包括缺陷化合物之一銅銦鎵硒薄膜位於一金屬電極層之上,一氧化銦的中間修補層(Cu2O)位於銅銦鎵硒薄膜之上,一硫化鋅緩衝層位於氯化銦中間修補層之上,一包括氧化鋅之窗層位於硫化鋅緩衝層之上。
  11. 一種銅銦鎵硒薄膜太陽能電池,包括:一基板上之一金屬電極層;一包括缺陷化合物之一銅銦鎵硒薄膜位於一金屬電極層之上,一氧化銦的中間修補層(Cu2S)位於銅銦鎵硒薄膜之上,一硫化鋅緩衝層位於氯化銦中間修補層之上,一包括氧化鋅之窗層位於硫化鋅緩衝層之上。
TW102146055A 2013-12-13 2013-12-13 Structure and Process of Thin - film Solar Cell Buffer Layer TWI488312B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102146055A TWI488312B (zh) 2013-12-13 2013-12-13 Structure and Process of Thin - film Solar Cell Buffer Layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102146055A TWI488312B (zh) 2013-12-13 2013-12-13 Structure and Process of Thin - film Solar Cell Buffer Layer

Publications (2)

Publication Number Publication Date
TW201440234A TW201440234A (zh) 2014-10-16
TWI488312B true TWI488312B (zh) 2015-06-11

Family

ID=52113921

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102146055A TWI488312B (zh) 2013-12-13 2013-12-13 Structure and Process of Thin - film Solar Cell Buffer Layer

Country Status (1)

Country Link
TW (1) TWI488312B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI620335B (zh) * 2015-08-07 2018-04-01 國立勤益科技大學 薄膜太陽能電池氧化鋅緩衝層結構及製程

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201216486A (en) * 2010-05-31 2012-04-16 Asahi Glass Co Ltd Cigs solar cell and substrate for cigs solar cell
TWM462952U (zh) * 2009-12-22 2013-10-01 Nat Univ Chin Yi Technology 薄膜太陽能電池之裝置結構
TW201344943A (zh) * 2012-04-24 2013-11-01 Solar Applied Mat Tech Corp 堆疊式銅鋅錫硒硫薄膜太陽能電池及其製作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM462952U (zh) * 2009-12-22 2013-10-01 Nat Univ Chin Yi Technology 薄膜太陽能電池之裝置結構
TW201216486A (en) * 2010-05-31 2012-04-16 Asahi Glass Co Ltd Cigs solar cell and substrate for cigs solar cell
TW201344943A (zh) * 2012-04-24 2013-11-01 Solar Applied Mat Tech Corp 堆疊式銅鋅錫硒硫薄膜太陽能電池及其製作方法

Also Published As

Publication number Publication date
TW201440234A (zh) 2014-10-16

Similar Documents

Publication Publication Date Title
US9263609B2 (en) Metal plating composition and method for the deposition of copper—zinc—tin suitable for manufacturing thin film solar cell
Colombara et al. Electrodeposition of kesterite thin films for photovoltaic applications: Quo vadis?
US7892413B2 (en) Electroplating methods and chemistries for deposition of copper-indium-gallium containing thin films
CN104962962B (zh) 一种深共晶溶液中电化学共沉积CZTS(Se)薄膜的方法
Jeon et al. Formation and characterization of single-step electrodeposited Cu2ZnSnS4 thin films: Effect of complexing agent volume
JP2010505045A5 (zh)
US20100140098A1 (en) Selenium containing electrodeposition solution and methods
Khalil et al. CZTS layers for solar cells by an electrodeposition-annealing route
Li et al. Cu 2 ZnSnS 4 thin film solar cell fabricated by co-electrodeposited metallic precursor
US20040131792A1 (en) Electroless deposition of cu-in-ga-se film
CN105047753B (zh) 制备铜锡硫或铜锡硫硒薄膜的方法
TWI488312B (zh) Structure and Process of Thin - film Solar Cell Buffer Layer
El Bahi et al. Electrochemical deposition mechanism of copper-zinc-tin alloy and structural characterization
US20110132462A1 (en) Modified copper-zinc-tin semiconductor films, uses thereof and related methods
Nian et al. Laser assisted electro-deposition of earth abundant Cu2ZnSnS4 photovoltaic thin film
Arreguín-Campos et al. Fabrication of CdS/CdTe Heterostructures by Chemical Synthesis Using ap-Type CdTe Film Grown by Electrodeposition Employing EDTA as Strong Complexing Agent
CN102656710A (zh) 具有CdS/(Zn(S,O))缓冲层的黄铜薄膜太阳能电池及其制备方法
TW201427054A (zh) 光電變換元件及其製造方法、光電變換元件的緩衝層的製造方法與太陽電池
CN100580961C (zh) 一种制备CuInS2薄膜的方法
JP5655669B2 (ja) 半導体層の製造方法、及び、太陽電池の製造方法
TWI620335B (zh) 薄膜太陽能電池氧化鋅緩衝層結構及製程
Munn et al. Fabrication of CZTS-based thin film solar cells using all-solution processing and pulsed light crystallization
JP2012124421A (ja) 光電変換素子及びそれを備えた太陽電池
Chung et al. Electrochemically fabricated alloys and semiconductors containing indium
TW201523906A (zh) 太陽能電池與其形成方法及n型ZnS層的形成方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees