CN102656710A - 具有CdS/(Zn(S,O))缓冲层的黄铜薄膜太阳能电池及其制备方法 - Google Patents

具有CdS/(Zn(S,O))缓冲层的黄铜薄膜太阳能电池及其制备方法 Download PDF

Info

Publication number
CN102656710A
CN102656710A CN2010800571794A CN201080057179A CN102656710A CN 102656710 A CN102656710 A CN 102656710A CN 2010800571794 A CN2010800571794 A CN 2010800571794A CN 201080057179 A CN201080057179 A CN 201080057179A CN 102656710 A CN102656710 A CN 102656710A
Authority
CN
China
Prior art keywords
resilient coating
cds
solar cell
deposit solution
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800571794A
Other languages
English (en)
Inventor
亚历山大·梅德
戴安娜·弗尔斯特
克日什托夫·威尔谢米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SULFURCELL SOLARTECHNIK GmbH
Original Assignee
SULFURCELL SOLARTECHNIK GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SULFURCELL SOLARTECHNIK GmbH filed Critical SULFURCELL SOLARTECHNIK GmbH
Publication of CN102656710A publication Critical patent/CN102656710A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种黄铜薄膜太阳能电池,所述黄铜薄膜太阳能电池包含CIS吸收体层(14),直接设置在所述CIS吸收体层上的缓冲层(16)和直接设置在所述缓冲层上的含有ZnO的窗口层(18,20)。所述太阳能电池的特征在于:所述缓冲层由CdS和Zn(S,O)组成,其中,CdS的浓度从所述CIS吸收体层开始向着所述含有ZnO的窗口层降低。

Description

具有CdS/(Zn(S,O))缓冲层的黄铜薄膜太阳能电池及其制备方法
本发明涉及一种黄铜薄膜太阳能电池,所述黄铜薄膜太阳能电池包含CIS吸收体层、直接设置在所述CIS吸收体层上的特殊缓冲层和直接设置在所述缓冲层上的含有ZnO的窗口层。本发明还涉及用于所述缓冲层的制备方法。
现有技术和技术背景
若干年来,为了工业化大量生产黄铜薄膜太阳能电池,人们进行了巨大的努力。所述太阳能电池具有复杂的层结构。通常,首先在适合的基板上,如玻璃上,设置钼制成的接触。在其上随后是一层或多层吸收体层,所述吸收体层包含铜、铟及任选的镓。使其与硒和/或硫反应(CIS、CIGS或CIGSSe,在此共同并在后文称之为CIS太阳能电池)。随后沉积一层CdS缓冲层,所述CdS缓冲层应当还改善所述吸收体层与后续层的匹配,并且还通过表面钝化获得所述吸收体层的低表面态。最后是由几十nm厚的本征ZnO和几百nm至μm厚的高掺杂(例如用Al掺杂)并因此导电的ZnO制成的透明窗口层。
设置CdS缓冲层的常见方法是利用水性沉积溶液的湿化学沉积法(化学浴沉积法——CBD),所述溶液包含乙酸镉、氨和硫脲。
CdS的湿化学沉积是一个复杂的过程,所述过程受到大量因素的影响。镉离子和硫脲在含氨溶液中的反应能够由下列反应式概括:
Cd(NH3)4 2++SC(NH2)2+2OH-→CdS+CH2N2+4NH3+2H2O    (1)
在机理上,所述反应通常分为三步(见I.Kaur,D.K.Pandya,K.L.Chopra;J.Electrochem.Soc.,Solid State Science and Technology,127,No.4,943-948,1980;和R.Ortega-Borges,D.Lincot;J.Electrochem.Soc.,140,No.12,3464-3473,1993):
从氨络合物中释放出Cd2+
Cd(NH3)4 2+→Cd2++4NH3                    (2)
从脲中释放出S2-
SC(NH2)+2OH-→S2-+CH2N2+2H2O        (3)
CdS的沉淀
Cd2++S2-→CdS                       (4)
对于实际的薄膜生成,还对两种可能也同时发生的机理进行了探讨,即胶体从所述溶液中的沉积和离子在所述基体表面的直接反应。此外,也提出了在氢氧化隔表面的硫脲-复分解作为CdS形成的机理。
因此,在薄膜光伏工业中,硫化镉(CdS)作为缓冲层设置在吸收体层和窗口层之间。当前正在进行研究,以利用无毒的材料例如Zn(S,O)替代CdS。与CdS缓冲层相比,这些层除无毒性之外还显示了在两种通用模块性质即电流和电压方面的优化潜力。与之相反,第三种决定效能的因素即填充因数(FF)降低。其原因是在吸收体材料(更适宜为CdS)和窗口材料(更适宜为Zn(S,O))上不同样良好的匹配。
由此产生了对在所有提到的因素的方面都能够得到优化的缓冲层的持续需求。
发明概述
本发明消除了或至少减轻了所述问题中的一种或多种。本发明涉及一种黄铜薄膜太阳能电池,所述黄铜薄膜太阳能电池具有CIS吸收体层、直接设置在所述CIS吸收体层上的缓冲层和直接设置在所述缓冲层上的含有ZnO的窗口层。所述太阳能电池的特征在于:所述缓冲层由CdS和Zn(S,O)构成,其中CdS的浓度由所述CIS吸收体层开始朝向所述含有ZnO的窗口层降低。
本发明基于以下知识:通过结合两种已知的缓冲材料CdS和Zn(S,O),不仅在吸收体材料一侧而且在窗口材料一侧,都可能进行优化,这总体上得到一种太阳能电池,所述太阳能电池的模数性质即电流、电压和填充因数得以改善。通过使用根据本发明所述的缓冲层,可以将通过颜色为黄色的CdS的吸收保持在很低的水平,并且由此优化所述电池的效能。其原因是,与常规的仅由CdS制成的缓冲层相比,能够将CdS次层(Teilschicht)的厚度保持得实际上更小。此外还通过Zn(S,O)层的更大的结构相似性,改善缓冲层和窗口层之间的过渡。两种因素均导致能够保持缓冲层非常薄;优选缓冲层具有仅为10至100nm的厚度。
根据本发明所述的缓冲层的一个特别的特征是,缓冲层中CdS的浓度从所述CIS吸收体层开始向着所述含有ZnO的窗口层下降,或者Zn(S,O)的浓度在相同空间顺序中上升。换言之,可以通过所述两种缓冲材料的逐渐过渡,避免形成另外的边界层和与之相关的形成缺陷的危险。
在特别优选的实施方案中,缓冲层具有朝向CIS吸收体层的CdS次层,这就是说,具有优选1至10nm的深度的缓冲层的第一区域完全由CdS组成,或至少多于90%由CdS组成。由此,可以达成朝向CIS吸收体层的缓冲层的优化。在CdS次层上可以连接渐变的次层,在所述次层中,CdS浓度连续下降。
在特别优选的实施方案中,缓冲层还具有朝向窗口层的Zn(S,O)次层,这就是说,具有优选10至80nm深度的缓冲层与窗口层的交界区域完全由Zn(S,O)组成,或至少90%由Zn(S,O)组成。由此,所述太阳能电池的性能得以优化。此外,含有ZnO的窗口层由朝向缓冲层的本征ZnO次层和与之相连的导电ZnO次层组成。不过当缓冲层的Zn(S,O)次层厚度大于10nm时,可以省略窗口层的ZnO次层,从而不必考虑太阳能电池加工工艺中通常必需的步骤。因此在这种特殊的实施方案中,优选由直接设置在缓冲层上的导电ZnO层构成含有ZnO的窗口层。
本发明的另一个方面是提供一种制备上述的具有根据本发明所述缓冲层的太阳能电池的方法。所述方法的特征在于下述步骤:
(i)制备一种沉积溶液,所述沉积溶液具有预先确定浓度的氨、硫脲、二硫化甲脒、镉(II)离子和锌(II)离子;以及
(ii)在20至80℃范围内的温度,将半导体基板在所述沉积溶液中浸泡60至6000秒。
这表明,从同一沉积溶液中渐变沉积缓冲层的两种组分是可能的,更确切地说,是以首先沉积CdS的方式。在此,利用缓冲层的两种组分在通常相同的介质(NH3、H2O、硫脲(THS))中的不同动力学行为。首先沉积CdS层;反应物NH3、THS和乙酸镉向CdS的转化发生得很快,使得仅沉积几纳米厚的层。随后可能通过簇状物和更大颗粒的形成,CdS沉积急剧下降。在CdS沉积的同时,反应物NH3、THS和ZnSO4成为Zn(S,O)的明显较慢的反应开始。可以另外通过二硫化甲脒的浓度影响平衡。因为两种反应在时间上重叠,所以导致渐变形成缓冲层的两种组分,这样,在太阳能电池中首先在吸收体层上形成一层全部或主要由CdS组成的次层。随着缓冲层层厚的增加,Zn(S,O)的部分显著增加,直至全部或主要由Zn(S,O)组成的次层将与窗口层相邻的缓冲层封闭。由此在缓冲层中形成了CdS或Zn(S,O)的梯度,并且因此形成了与相邻层的最佳带匹配。此外,有毒的镉的含量降低,且达到太阳能电池效率提升。
在步骤(ii)中优选温度是30至80℃。在此温度范围内,可以生产具有对于针对性目的特别有利的形态和均匀性的含有金属的缓冲层。
所述沉积溶液优选含有浓度为0.5至2mol/l的氨。
当所述沉积溶液含有浓度为10-3至10-2mol/l的镉时,是更为优选的。所述沉积溶液优选含有浓度为10-2至1mol/l的锌。为了制备所述沉积溶液,使用在氨的水溶液中具有充足的溶解度的盐,特别是乙酸镉和硫酸锌。
此外,当所述沉积溶液含有浓度为10-2至1mol/l的硫脲时,是优选的。
所述沉积溶液优选含有浓度为10-6至10-4mol/l的二硫化甲脒。
进而优选其中组分氨、金属离子、硫脲和二硫化甲脒的浓度中的2个、3个或特别是全部处于上文给出的浓度范围内的沉积溶液。
最后,当所述沉积溶液中硫脲与二硫化甲脒的摩尔比为1∶100000至1∶100时,是优选的。
附图简述
以下根据实施例和附属的附图进一步说明本发明。附图示出了:
图1一种CIS太阳能电池的横截面示意性结构;
图2根据本发明的改良缓冲层的二次离子质谱(SIMS)图;以及
图3对于具有CdS作为缓冲层的电池和具有根据本发明所述的缓冲层的电池,通过电流-电压特征曲线确定的效率。
发明详述
图1以显著示意性方式示出了一种黄铜薄膜太阳能电池100的结构。所述太阳能电池100包含玻璃制成的基板10,其上设置钼层12。以一种在此未加详述的常规方式在所述钼层12上形成CIS吸收体层14。所述CIS吸收体层14含有铜、铟和任选的镓以及硒和/或硫。在所述CIS吸收体层14上设置缓冲层16,关于其制备将在下文详细探讨。所述缓冲层16由CdS和Zn(S,O)的组合构成,其中在CIS吸收体层14一侧CdS的比例最大,且相应地Zn(S,O)的比例在邻接本征ZnO层18处同样达到在缓冲层16中的最大值。缓冲层16可以具有10至100nm的层厚。在本征ZnO层18上连接着由经掺杂且导电的ZnO构成的层20。18和20两层共同组成太阳能电池100的在此称为含有ZnO的窗口层的区域。
以下将在一个实施例中说明缓冲层16的制备。
使用下述储备溶液:
硫脲:7.685g/100ml H2O;c(硫脲)=195mmol/l
乙酸镉:0.44g/100ml 25%NH3水溶液;c(Cd)=1.24mmol/l+c(NH3)=1mol/l
硫酸锌:16g/200ml H2O;c(Zn)=20mmol/l
二硫化甲脒二盐酸盐:0.098g/20ml H2O;c(Form.)=15μmol/l
向118.5ml H2O中,加入35ml硫脲溶液和13ml硫酸锌溶液并加热至60℃。将涂覆有钼和CIS吸收体层的基板浸入所述溶液。当达到所述温度之后,添加13.5ml含氨的乙酸镉溶液。
在3分钟的反应时间后,向反应溶液中加入0.12ml二硫化甲脒二盐酸盐溶液。再经过30分钟的反应时间后,结束所述过程。用氨溶液(1-5%)清洗基板并且将其干燥。随后在炉中于180℃对其进行热处理。
在常规的ZnO-窗口层设置和电池构造之后,在10min的恒定光照射后测量电池的电流-电压特征曲线(IV测量)。此时,将以常规CdS覆层作为缓冲层的电池与含有上述根据本发明的缓冲层的电池相比较。具有本发明的缓冲层的电池在此显示了提高的效率(提高了0.5%绝对值)。图3示出了对于具有纯CdS缓冲层的电池和具有由CdS和Zn(S,O)构成的缓冲层的电池确定的效率。
图2是显示根据前述方法制备的太阳能电池的表面结构的二次离子质谱图。

Claims (14)

1.一种黄铜薄膜太阳能电池,所述黄铜薄膜太阳能电池包含CIS吸收体层、直接设置在所述CIS吸收体层上的缓冲层和直接设置在所述缓冲层上的含有ZnO的窗口层,
其特征在于:
所述缓冲层由CdS和Zn(S,O)构成,其中,CdS的浓度从所述CIS吸收体层开始向着所述含有ZnO的窗口层下降。
2.根据权利要求1所述的太阳能电池,其中,所述缓冲层具有10-100nm的层厚度。
3.根据在前权利要求中任一项所述的太阳能电池,其中,所述缓冲层具有朝向所述CIS吸收体层的CdS次层。
4.根据权利要求3所述的太阳能电池,其中,所述CdS次层具有1至10nm的层厚度。
5.根据在前权利要求中任一项所述的太阳能电池,其中,所述缓冲层具有朝向所述窗口层的Zn(S,O)次层。
6.根据权利要求6所述的太阳能电池,其中,所述Zn(S,O)次层具有10至80nm的层厚度。
7.根据权利要求5或6所述的太阳能电池,其中,所述含有ZnO的窗口层由直接设置在所述缓冲层上的导电ZnO层构成。
8.一种用于将缓冲层湿化学沉积在CIS吸收体层上以制备黄铜薄膜太阳能电池的方法,其特征在于以下步骤:
(i)制备沉积溶液,所述沉积溶液包含预定浓度的氨、硫脲、二硫化甲脒、镉(II)离子和锌(II)离子;以及
(ii)在20至80℃范围内的温度,将半导体基板在所述沉积溶液中浸泡60至6000秒。
9.根据权利要求8所述的方法,其中,所述沉积溶液含有浓度为0.5至2mol/l的氨。
10.根据权利要求8或9所述的方法,其中,所述沉积溶液含有浓度为10-3至10-2mol/l的镉。
11.根据权利要求8至10中任一项所述的方法,其中,所述沉积溶液含有浓度为10-2至1mol/l的锌。
12.根据权利要求8至11中任一项所述的方法,其中,所述沉积溶液含有浓度为10-2至1mol/l的硫脲。
13.根据权利要求8至12中任一项所述的方法,其中,所述沉积溶液含有浓度为10-6至10-4mol/l的二硫化甲脒。
14.根据权利要求8至13中任一项所述的方法,其中,所述沉积溶液中硫脲与二硫化甲脒的摩尔比为1∶100000至1∶100。
CN2010800571794A 2009-12-18 2010-11-17 具有CdS/(Zn(S,O))缓冲层的黄铜薄膜太阳能电池及其制备方法 Pending CN102656710A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009054973.0 2009-12-18
DE102009054973A DE102009054973A1 (de) 2009-12-18 2009-12-18 Chalkopyrit-Dünnschicht-Solarzelle mit CdS/(Zn(S,O)-Pufferschicht und dazugehöriges Herstellungsverfahren
PCT/EP2010/067697 WO2011072975A2 (de) 2009-12-18 2010-11-17 Chalkopyrit-dünnschicht-solarzelle mit cds/(zn(s,o)-pufferschicht und dazugehöriges herstellungsverfahren

Publications (1)

Publication Number Publication Date
CN102656710A true CN102656710A (zh) 2012-09-05

Family

ID=44167749

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800571794A Pending CN102656710A (zh) 2009-12-18 2010-11-17 具有CdS/(Zn(S,O))缓冲层的黄铜薄膜太阳能电池及其制备方法

Country Status (3)

Country Link
CN (1) CN102656710A (zh)
DE (1) DE102009054973A1 (zh)
WO (1) WO2011072975A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779440A (zh) * 2012-10-18 2014-05-07 台积太阳能股份有限公司 原位制造本征氧化锌层的方法及该方法制造的光伏器件
CN108075015A (zh) * 2017-12-13 2018-05-25 中国科学院深圳先进技术研究院 太阳能电池CdS/Zn(SO)混合缓冲层的制备方法及其应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012204676B4 (de) 2012-03-23 2019-02-21 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Chalkopyrit-Dünnschicht-Solarzelle mit Zn(S,O)-Pufferschicht und dazugehöriges Herstellungsverfahren
KR20150041927A (ko) * 2013-10-10 2015-04-20 엘지이노텍 주식회사 태양전지

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2706352B2 (ja) * 1990-05-08 1998-01-28 三菱重工業株式会社 化合物半導体多結晶薄膜を用いた光電変換素子
JPH05218480A (ja) * 1992-02-03 1993-08-27 Matsushita Electric Ind Co Ltd 太陽電池
JP2005228975A (ja) * 2004-02-13 2005-08-25 Matsushita Electric Ind Co Ltd 太陽電池
US7663057B2 (en) * 2004-02-19 2010-02-16 Nanosolar, Inc. Solution-based fabrication of photovoltaic cell
US7115304B2 (en) * 2004-02-19 2006-10-03 Nanosolar, Inc. High throughput surface treatment on coiled flexible substrates
DE102006039331C5 (de) * 2006-08-15 2013-08-22 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Photovoltaik-Dünnschichtaufbau und Herstellungsverfahren
DE102009001175A1 (de) * 2009-02-26 2010-09-09 Sulfurcell Solartechnik Gmbh Verfahren zur nasschemischen Abscheidung einer schwefelhaltigen Pufferschicht für eine Chalkopyrit-Dünnschicht-Solarzelle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779440A (zh) * 2012-10-18 2014-05-07 台积太阳能股份有限公司 原位制造本征氧化锌层的方法及该方法制造的光伏器件
CN108075015A (zh) * 2017-12-13 2018-05-25 中国科学院深圳先进技术研究院 太阳能电池CdS/Zn(SO)混合缓冲层的制备方法及其应用

Also Published As

Publication number Publication date
DE102009054973A1 (de) 2011-06-22
WO2011072975A2 (de) 2011-06-23
WO2011072975A3 (de) 2012-06-07

Similar Documents

Publication Publication Date Title
Naghavi et al. Buffer layers and transparent conducting oxides for chalcopyrite Cu (In, Ga)(S, Se) 2 based thin film photovoltaics: present status and current developments
US8679893B2 (en) Absorbers for high-efficiency thin-film PV
US20140113403A1 (en) High efficiency CZTSe by a two-step approach
US20130164885A1 (en) Absorbers For High-Efficiency Thin-Film PV
US20130164918A1 (en) Absorbers For High-Efficiency Thin-Film PV
US20140338736A1 (en) Method for manufacturing czts based thin film having dual band gap slope, method for manufacturing czts based solar cell having dual band gap slope and czts based solar cell thereof
Pawar et al. Effect of annealing atmosphere on the properties of electrochemically deposited Cu2ZnSnS4 (CZTS) thin films
US20140110813A1 (en) Absorbers for High Efficiency Thin-Film PV
JP5874645B2 (ja) 化合物半導体薄膜太陽電池及びその製造方法
Saha A Status Review on Cu2ZnSn (S, Se) 4‐Based Thin‐Film Solar Cells
CN102656710A (zh) 具有CdS/(Zn(S,O))缓冲层的黄铜薄膜太阳能电池及其制备方法
US8664033B2 (en) Absorber layer for a thin film photovoltaic device with a double-graded band gap
KR20140066964A (ko) 태양전지 및 이의 제조방법
Zhang Organic nanostructured thin film devices and coatings for clean energy
EP2702615B1 (en) Method of preparing a solar cell
US20130344646A1 (en) Absorbers for High-Efficiency Thin-Film PV
Yang et al. Fabrication of Cu–Zn–Sn–S–O thin films by the electrochemical deposition method and application to heterojunction cells
Rajeshmon et al. Prospects of sprayed CZTS thin film solar cells from the perspective of material characterization and device performance
JP6035122B2 (ja) 光電変換素子および光電変換素子のバッファ層の製造方法
Li et al. Study on the performance of oxygen-rich Zn (O, S) buffers fabricated by sputtering deposition and Zn (O, S)/Cu (In, Ga)(S, Se) 2 interfaces
TW201424027A (zh) 薄膜太陽能電池之製作方法
KR101262529B1 (ko) 태양전지 및 이의 제조방법
US20130164917A1 (en) Absorbers For High-Efficiency Thin-Film PV
US20160312347A1 (en) Morpholine bath and method for chemically depositing a layer
TW201523906A (zh) 太陽能電池與其形成方法及n型ZnS層的形成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120905