KR20150041927A - 태양전지 - Google Patents

태양전지 Download PDF

Info

Publication number
KR20150041927A
KR20150041927A KR20130120498A KR20130120498A KR20150041927A KR 20150041927 A KR20150041927 A KR 20150041927A KR 20130120498 A KR20130120498 A KR 20130120498A KR 20130120498 A KR20130120498 A KR 20130120498A KR 20150041927 A KR20150041927 A KR 20150041927A
Authority
KR
South Korea
Prior art keywords
buffer layer
layer
solar cell
electrode layer
buffer
Prior art date
Application number
KR20130120498A
Other languages
English (en)
Inventor
윤희경
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR20130120498A priority Critical patent/KR20150041927A/ko
Priority to PCT/KR2014/009494 priority patent/WO2015053566A1/ko
Priority to CN201480067627.7A priority patent/CN105814696B/zh
Priority to US15/028,581 priority patent/US20160240700A1/en
Publication of KR20150041927A publication Critical patent/KR20150041927A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022475Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

실시예에 따른 태양전지는, 지지기판; 상기 지지기판 상에 배치되는 후면 전극층; 상기 후면 전극층 상에 배치되는 광 흡수층; 상기 광 흡수층 상에 배치되는 버퍼층; 및 상기 버퍼층 상에 배치되는 전면 전극층을 포함하고, 상기 버퍼층은 Zn(O,S)를 포함하고, 상기 버퍼층에서 황(S)의 함량은 상기 광 흡수층에서 상기 전면 전극층으로 방향으로 갈수록 증가된다.

Description

태양전지{SOLAR CELL}
실시예는 태양전지에 관한 것이다.
최근 환경문제와 천연자원의 고갈에 대한 관심이 높아지면서, 환경오염에 대한 문제가 없으며 에너지 효율이 높은 대체 에너지로서의 태양전지에 대한 관심이 높아지고 있다. 태양전지는 구성성분에 따라 실리콘 반도체 태양전지, 화합물 반도체 태양전지, 적층형 태양전지 등으로 분류되며, 본 발명과 같은 CIGS 광 흡수층을 포함하는 태양전지는 그 중 화합물 반도체 태양전지의 분류에 속한다.
I-III-VI족 화합물반도체인 CIGS는 1 eV 이상의 직접 천이형 에너지 밴드갭을 가지고 있고, 반도체 중에서 가장 높은 광 흡수 계수를 가질 뿐만 아니라, 전기 광학적으로 매우 안정하여 태양전지의 광 흡수층으로 매우 이상적인 소재이다.
CIGS계 태양전지는 지지기판, 후면 전극층, 광 흡수층, 버퍼층 및 전면 전극층이 순차적으로 증착되어 형성된다.
이때, 상기 버퍼층은 2층 이상으로 형성될 수 있다. 즉, 상기 버퍼층 상에는 저항이 높은 고저항 버퍼층이 더 형성될 수 있다. 이러하 고저항 버퍼층은 불순물이 도핑되지 않은 징크 옥사이드(i-ZnO) 등이 형성될 수 있다.
그러나, 상기 버퍼층과 상기 고저항 버퍼층이 서로 다른 공정에 의해 형성됨에 따라 버퍼층 형성시 공정 시간이 증가되는 문제점이 있었다.
이에 따라, 한번의 공정으로 버퍼층을 형성하면서, 버퍼층 형성시 고저항 버퍼층을 대체할 수 있는 새로운 구조의 버퍼층의 필요성이 요구된다.
실시예는 향상된 광-전 변환 효율을 가지는 태양전지를 제공하고자 한다.
실시예에 따른 태양전지는, 지지기판; 상기 지지기판 상에 배치되는 후면 전극층; 상기 후면 전극층 상에 배치되는 광 흡수층; 상기 광 흡수층 상에 배치되는 버퍼층; 및 상기 버퍼층 상에 배치되는 전면 전극층을 포함하고, 상기 버퍼층은 Zn(O,S)를 포함하고, 상기 버퍼층에서 황(S)의 함량은 상기 광 흡수층에서 상기 전면 전극층으로 방향으로 갈수록 증가된다.
실시예에 따른 태양전지는 서로 황의 함량이 서로 다른 제 1 버퍼층 및 제 2 버퍼층을 포한한다. 즉, 상기 광 흡수층 상에 배치되는 제 1 버퍼층은 상기 제 1 버퍼층 상에 배치되는 제 2 버퍼층에 비해 황의 함량이 더 적게 포함된다.
이에 따라, 황의 함량에 따라 달라지는 비저항 값은 상기 제 1 버퍼층에 비해 상기 제 2 버퍼층이 수백 배 이상 더 클 수 있다. 따라서, 상기 제 2 버퍼층은 종래 버퍼층 상에 형성되는 고저항 버퍼층의 역할을 대신할 수 있다.
이에 따라, 버퍼층 형성 후 별도의 공정에 의해서 형성되는 고저항 버퍼층의 형성 공정을 생략할 수 있다.
또한, 버퍼층 내에서 비저항 값의 제어에 따라 전체전으로 태양전지의 직렬 저항을 감소시킬 수 있다.
따라서, 실시예에 따른 태양전지는 공정 효율의 향상 및 전체적으로 향상된 광-전 변환 효율을 가질 수 있다.
도 1은 실시예에 따른 태양전지를 도시한 평면도이다.
도 2는 실시예에 따른 태양전지의 일 단면을 도시한 단면도이다.
도 3은 도 2의 A 부분을 확대하여 도시한 도면이다.
도 4 내지 도 10은 실시예에 따른 태양전지의 제조 방법을 설명하기 위한 도면들이다.
실시예들의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 “상/위(on)”에 또는 “하/아래(under)”에 형성된다는 기재는, 직접(directly) 또는 다른 층을 개재하여 형성되는 것을 모두 포함한다. 각 층의 상/위 또는 하/아래에 대한 기준은 도면을 기준으로 설명한다.
도면에서 각 층(막), 영역, 패턴 또는 구조물들의 두께나 크기는 설명의 명확성 및 편의를 위하여 변형될 수 있으므로, 실제 크기를 전적으로 반영하는 것은 아니다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예를 상세하게 설명하면 다음과 같다.
이하, 도 1 내지 도 10을 참조하여, 실시예에 따른 태양전지 및 이의 제조방법을 상세하게 설명한다. 도 1은 실시예에 따른 태양전지를 도시한 평면도이고, 도 2는 실시예에 따른 태양전지의 일 단면을 도시한 단면도이며, 도 3은 도 2의 A 부분을 확대하여 도시한 도면이고, 도 4 내지 도 10은 실시예에 따른 태양전지의 제조 방법을 설명하기 위한 도면들이다.
도 1 내지 도 3을 참조하면, 실시예에 따른 태양전지는, 지지기판(100). 후면 전극층(200), 광 흡수층(300), 버퍼층(400), 전면 전극층(500) 및 다수 개의 접속부(600)들을 포함한다.
상기 지지기판(100)은 절연체일 수 있다. 상기 지지기판(100)은 유리 기판, 플라스틱 기판 또는 금속 기판일 수 있다. 자세하게, 상기 지지기판(100)은 소다 라임 글래스(soda lime glass) 기판일 수 있다. 상기 지지기판(100)은 투명할 수 있다. 상기 지지기판(100)은 리지드(rigid)하거나 플렉서블(flexible)할 수 있다.
상기 후면 전극층(200)은 상기 지지기판(100) 상에 배치된다. 상기 후면 전극층(200)은 도전층이다. 상기 후면 전극층(200)으로 사용되는 물질의 예로서는 몰리브덴(Mo) 등의 금속을 들 수 있다.
또한, 상기 후면 전극층(200)은 두 개 이상의 층들을 포함할 수 있다. 이때, 각각의 층들은 같은 금속으로 형성되거나 서로 다른 금속으로 형성될 수 있다.
상기 후면전극층(200)에는 제 1 관통홈들(TH1)이 형성된다. 상기 제 1 관통홈들(TH1)은 상기 지지기판(100)의 상면을 노출하는 오픈 영역이다. 상기 제 1 관통홈들(TH1)은 평면에서 보았을 때, 제 1 방향으로 연장되는 형상을 가질 수 있다.
상기 제 1 관통홈들(TH1)의 폭은 약 80㎛ 내지 약 200㎛ 일 수 있다.
상기 제 1 관통홈들(TH1)에 의해서, 상기 후면전극층(200)은 다수 개의 후면전극들로 구분된다. 즉, 상기 제 1 관통홈들(TH1)에 의해서, 상기 후면전극들이 정의된다.
상기 후면 전극들은 상기 제 1 관통홈들(TH1)에 의해서 서로 이격된다. 상기 후면 전극들은 스트라이프 형태로 배치된다.
이와는 다르게, 상기 후면 전극들은 매트릭스 형태로 배치될 수 있다. 이때, 상기 제 1 관통홈들(TH1)은 평면에서 보았을 때, 격자 형태로 형성될 수 있다.
상기 광 흡수층(300)은 상기 후면 전극층(200) 상에 배치된다. 또한, 상기 광 흡수층(300)에 포함된 물질은 상기 제 1 관통홈들(TH1)에 채워진다.
상기 광 흡수층(300)은 Ⅰ-Ⅲ-Ⅵ족 계 화합물을 포함한다. 예를 들어, 상기 광 흡수층(300)은 구리-인듐-갈륨-셀레나이드계(Cu(In,Ga)Se2;CIGS계) 결정 구조, 구리-인듐-셀레나이드계 또는 구리-갈륨-셀레나이드계 결정 구조를 가질 수 있다.
이때, 상기 구리/3족 원소의 비는 약 0.8 내지 0.9일 수 있고, 상기 갈륨/3족 원소의 비는 0.38 내지 0.40일 수 있다.
상기 광 흡수층(300)의 에너지 밴드갭(band gap)은 약 1eV 내지 약 1.8eV일 수 있다.
상기 버퍼층(400)은 상기 광 흡수층(300) 상에 배치된다. 상기 버퍼층(400)은 상기 광 흡수층(300)에 직접 접촉한다.
상기 버퍼층(400)은 황(S)을 포함할 수 있다. 자세하게, 상기 버퍼층(400)은 산소가 도핑된 황화 아연 즉, Zm(0,S)를 포함할 수 있다.
상기 버퍼층(400)은 위치에 따라 서로 다른 함량의 황이 포함될 수 있다. 일례로, 상기 버퍼층(400)은 상기 광 흡수층에서 상기 전면 전극층 방향으로 갈수록 황의 함량이 증가될 수 있다.
도 3에 도시되어 있듯이, 상기 버퍼층(400)은 제 1 버퍼층(410) 및 제 2 버퍼층(420)을 포함할 수 있다. 자세하게, 상기 버퍼층(400)은 상기 광 흡수층(300) 상에 배치되는 상기 제 1 버퍼층(410)과 상기 제 1 버퍼층(410) 상에 배치되는 상기 제 2 버퍼층(420)을 포함할 수 있다.
상기 제 1 버퍼층(410)과 상기 제 2 버퍼층(420)은 동일한 물질을 포함할 수 있다. 일례로, 상기 제 1 버퍼층(410)과 상기 제 2 버퍼층(420)은 산소가 도핑된 황화 아연 즉, Zn(0,S)를 포함할 수 있다.
상기 제 1 버퍼층(410)과 상기 제 2 버퍼층(420)은 서로 다른 조성을 가질 수 있다. 자세하게, 상기 제 1 버퍼층(410)과 상기 제 2 버퍼층(420)은 상기 Zn(0,S)dp 포함되는 황의 함량이 서로 다를 수 있다.
자세하게, 상기 제 2 버퍼층(420)은 상기 제 1 버퍼층(410)보다 황이 적게 포함될 수 있다. 일례로, 상기 제 1 버퍼층(410)은 상기 Zn(O,S) 전체에 대해 약 10 중량% 내지 약 15 중량%의 황을 포함할 수 있다. 또한, 상기 제 2 버퍼층(420)은 상기 Zn(O,S) 전체에 대해 약 20 중량% 내지 약 25 중량%의 황을 포함할 수 있다.
또한, 상기 제 1 버퍼층(410)과 상기 제 2 버퍼층(420)은 서로 다른 두께로 형성될 수 있다. 자세하게, 상기 제 1 버퍼층(410)은 상기 제 2 버퍼층(420)보다 두꺼운 두께로 형성될 수 있다. 일례로, 상기 제 1 버퍼층(410)은 약 20㎚ 내지 약 30㎚의 두께로 형성될 수 있다. 또한, 상기 제 2 버퍼층(420)은 약 10㎚ 내지 약 20㎚의 두께로 형성될 수 있다. 또한, 상기 버퍼층(400) 즉, 상기 제 1 버퍼층(410)과 상기 제 2 버퍼층(420)을 합한 상기 버퍼층(400)의 총 두께는 약 30㎚ 내지 50㎚일 수 있다.
상기 제 1 버퍼층(410) 및 상기 제 2 버퍼층(420)에서 상기 황의 중량% 범위와 상기 두께가 상기 범위를 벗어나는 경우, 각각의 비저항 값의 차이가 원하는 값 이상으로 나오지 않을 수 있다. 또한, 상기 제 2 버퍼층(420)이 절연체 역할을 제대로 수행하지 못할 수 있다.
상기 제 1 버퍼층(410)과 상기 제 2 버퍼층(420)은 약 2.7eV 내지 약 2.8eV의 밴드갭을 가질 수 있다.
상기 제 1 버퍼층(410)과 상기 제 2 버퍼층(420)의 비저항은 서로 다를 수 있다. 자세하게, 상기 제 2 버퍼층의 비저항 값은 상기 제 1 버퍼층의 비저항 값보다 더 클 수 있다. 일례로, 상기 제 1 버퍼층(410)의 비저항 값은 약 10-3Ω 이하일 수 있다. 또한, 상기 제 2 버퍼층(420)의 비저항 값은 약 10-2Ω 이상일 수 있다.
상기 버퍼층들의 비저항 값은 상기 버퍼층 내에 포함되는 Zn(O,S)에서 황의 함량에 따라 달라질 수 있다. 즉, 황의 함량이 증가할수록 버퍼층의 비저항 값은 상승될 수 있다.
즉, 상기 제 2 버퍼층은 상기 제 1 버퍼층에 비해 황의 함량이 더 많게 포함되고, 이에 따라, 상기 제 2 버퍼층의 비저항 값이 상기 제 1 버퍼층의 비저항 값보다 더 클 수 있다.
특히, 상기 제 2 버퍼층은 상기 비저항 값의 증가에 따라 절연체 역할을 할 수 있다. 이에 따라, 종래 버퍼층 상에 형성되는 고저항 버퍼층의 형성을 생략할 수 있다.
즉, 종래에는, 상기 버퍼층을 형성한 후, 상기 버퍼층 상에 절연체 역할을 하는 고저항 버퍼층을 더 형성하였다. 일례로, 불순물이 도핑되지 않은 징크 옥사이드(i-ZnO) 등이 더 형성되었다.
그러나, 실시예에 따른 태양전지는 제 2 버퍼층 형성시 황의 함량을 증가시켜 비저항 값을 증가시킴으로써, 상기 제 2 버퍼층이 종래 형성되던 고저항 버퍼층의 역할을 대신 수행할 수 있다.
이에 따라, 고저항 버퍼층을 형성하는 공정을 생략할 수 있어 공정 시간의 단축에 따라 공정 효율을 향상시킬 수 있다.
또한, 실시예에 따른 태양전지는 버퍼층을 형성시 황의 함량을 조절하여 황의 함량이 적은 즉, 비저항 값이 작은 제 1 버퍼층을 형성한 후, 황의 함량이 큰 즉, 비저항 값이 큰 제 2 버퍼층을 형성함으로써, 버퍼층 내에서 비저항 값을 제어할 수 있다. 이에 따라, 전체적으로 태양전지의 직렬저항(Rs) 값을 감소시킬 수 있다.
따라서, 실시예에 따른 태양전지는 공정 효율의 향상 및 전체적으로 태양전지의 효율을 향상시킬 수 있다.
상기 버퍼층(400) 상에는 제 2 관통홈들(TH2)이 형성될 수 있다. 상기 제 2 관통홈들(TH2)은 상기 지지기판(100)의 상면 및 상기 후면 전극층(200)의 상면을 노출하는 오픈 영역이다. 상기 제 2 관통홈들(TH2)은 평면에서 보았을 때, 일 방향으로 연장되는 형상을 가질 수 있다. 상기 제 2 관통홈들(TH2)의 폭은 약 80㎛ 내지 약 200㎛ 일 수 있으나, 이에 제한되는 것은 아니다.
상기 버퍼층(400)은 상기 제 2 관통홈들(TH2)에 의해서, 다수 개의 버퍼층들로 정의된다.
상기 전면 전극층(500)은 상기 버퍼층(400) 상에 배치된다. 더 자세하게, 상기 전면 전극층(500)은 상기 제 3 버퍼층(430) 상에 배치된다. 상기 전면 전극층(500)은 투명하며 도전층이다. 또한, 상기 전면 전극층(500)의 저항은 상기 후면 전극층(500)의 저항보다 높다.
상기 전면 전극층(500)은 산화물을 포함한다. 일례로, 상기 전면 전극층(500)으로 사용되는 물질의 예로서는 알루미늄이 도핑된 징크 옥사이드(Al doped ZnC;AZO), 인듐 징크 옥사이드(indium zinc oxide;IZO) 또는 인듐 틴 옥사이드(indium tin oxide;ITO) 등을 들 수 있다.
상기 전면 전극층(500)은 상기 제 2 관통홈들(TH2) 내부에 위치하는 접속부(600)들을 포함한다.
상기 버퍼층(400) 및 상기 전면 전극층(500)에는 제 3 관통홈들(TH3)이 형성된다. 상기 제 3 관통홈들(TH3)은 상기 버퍼층(400)의 일부 또는 전부 및 상기 전면 전극층(500)을 관통할 수 있다. 즉, 상기 제 3 관통홈들(TH3)은 상기 후면 전극층(200)의 상면을 노출시킬 수 있다.
상기 제 3 관통홈들(TH3)은 상기 제 2 관통홈들(TH2)에 인접하는 위치에 형성된다. 더 자세하게, 상기 제 3 관통홈들(TH3)은 상기 제 2 관통홈들(TH2) 옆에 배치된다. 즉, 평면에서 보았을 때, 상기 제 3 관통홈들(TH3)은 상기 제 2 관통홈들(TH2) 옆에 나란히 배치된다. 상기 제 3 관통홈들(TH3)은 상기 제 1 방향으로 연장되는 형상을 가질 수 있다.
상기 제 3 관통홈들(TH3)은 상기 전면 전극층(500)을 관통한다. 더 자세하게, 상기 제 3 관통홈들(TH3)은 상기 광 흡수층(300), 상기 버퍼층(400) 및/또는 상기 고저항 버퍼층을 일부 또는 전부 관통할 수 있다.
상기 제 3 관통홈들(TH3)에 의해서, 상기 전면 전극층(500)은 다수 개의 전면전극들로 구분된다. 즉, 상기 전면전극들은 상기 제 3 관통홈들(TH3)에 의해서 정의된다.
상기 전면 전극들은 상기 후면 전극들과 대응되는 형상을 가진다. 즉, 상기 전면 전극들은 스트라이프 형태로 배치된다. 이와는 다르게, 상기 전면 전극들은 매트릭스 형태로 배치될 수 있다.
또한, 상기 제 3 관통홈들(TH3)에 의해서, 다수 개의 태양전지들(C1, C2...)이 정의된다. 더 자세하게, 상기 제 2 관통홈들(TH2) 및 상기 제 3 관통홈들(TH3)에 의해서, 상기 태양전지들(C1, C2...)이 정의된다. 즉, 상기 제 2 관통홈들(TH2) 및 상기 제 3 관통홈들(TH3)에 의해서, 실시예에 따른 태양전지는 상기 태양전지들(C1, C2...)로 구분된다. 또한, 상기 태양전지들(C1, C2...)은 상기 제 1 방향과 교차하는 제 2 방향으로 서로 연결된다. 즉, 상기 태양전지들(C1, C2...)을 통하여 상기 제 2 방향으로 전류가 흐를 수 있다.
즉, 상기 태양전지 패널(10)은 상기 지지기판(100) 및 상기 태양전지들(C1, C2...)을 포함한다. 상기 태양전지들(C1, C2...)은 상기 지지기판(100) 상에 배치되고, 서로 이격된다. 또한, 상기 태양전지들(C1, C2...)은 상기 접속부들(600)에 의해서 서로 직렬로 연결된다.
상기 접속부들(600)은 상기 제 2 관통홈들(TH2) 내측에 배치된다. 상기 접속부들(600)은 상기 전면 전극층(500)으로부터 하방으로 연장되며, 상기 후면 전극층(200)에 접속된다. 예를 들어, 상기 접속부들(600)은 상기 제 1 셀(C1)의 전면전극으로부터 연장되어, 상기 제 2 셀(C2)의 후면전극에 접속된다.
따라서, 상기 접속부들(600)은 서로 인접하는 태양전지들을 연결한다. 더 자세하게, 상기 접속부들(600)은 서로 인접하는 태양전지들에 각각 포함된 전면전극과 후면전극을 연결한다.
상기 접속부(600)는 상기 전면전극층(600)과 일체로 형성된다. 즉, 상기 접속부(600)로 사용되는 물질은 상기 전면전극층(500)으로 사용되는 물질과 동일하다.
앞서 설명하였듯이, 실시예에 따른 태양전지는 서로 황의 함량이 서로 다른 제 1 버퍼층 및 제 2 버퍼층을 포한한다. 즉, 상기 광 흡수층 상에 배치되는 제 1 버퍼층은 상기 제 1 버퍼층 상에 배치되는 제 2 버퍼층에 비해 황의 함량이 더 적게 포함된다.
이에 따라, 황의 함량에 따라 달라지는 비저항 값은 상기 제 1 버퍼층에 비해 상기 제 2 버퍼층이 수백 배 이상 더 클 수 있다. 따라서, 상기 제 2 버퍼층은 종래 버퍼층 상에 형성되는 고저항 버퍼층의 역할을 대신할 수 있다.
이에 따라, 버퍼층 형성 후 별도의 공정에 의해서 형성되는 고저항 버퍼층의 형성 공정을 생략할 수 있다.
또한, 버퍼층 내에서 비저항 값의 제어에 따라 전체전으로 태양전지의 직렬 저항을 감소시킬 수 있다.
따라서, 실시예에 따른 태양전지는 공정 효율의 향상 및 전체적으로 향상된 광-전 변환 효율을 가질 수 있다.
이하, 도 4 내지 도 10을 참조하여, 실시예에 따른 태양전지의 제조방법을 설명한다. 도 4 내지 도 10은 실시예에 따른 태양전지의 제조방법을 설명하기 위한 도면들이다.
먼저, 도 4를 참조하면, 지지기판(100) 상에 후면 전극층(200)이 형성된다.
이어서, 도 5를 참조하면, 상기 후면 전극층(200)은 패터닝되어 제 1 관통홈들(TH1)이 형성된다. 이에 따라서, 상기 지지기판(100) 상에 다수 개의 후면 전극들, 제 1 연결 전극 및 제 2 연결 전극이 형성된다. 상기 후면 전극층(200)은 레이저에 의해서 패터닝 될 수 있다.
상기 제 1 관통홈들(TH1)은 상기 지지기판(100)의 상면을 노출하며, 약 80㎛ 내지 약 200㎛의 폭을 가질 수 있다.
또한, 상기 지지기판(100) 및 상기 후면 전극층(200) 사이에 확산 방지막 등과 같은 추가적인 층이 개재될 수 있고, 이때, 상기 제 1 관통홈들(TH1)은 상기 추가적인 층의 상면을 노출하게 된다.
이어서, 도 6을 참조하면, 상기 후면 전극층(200) 상에 광 흡수층(300)이 형성된다. 상기 광 흡수층(300)은 스퍼터링 공정 또는 증발법 등에 의해서 형성될 수 있다.
예를 들어, 상기 광 흡수층(300)을 형성하기 위해서 구리, 인듐, 갈륨, 셀레늄을 동시 또는 구분하여 증발시키면서 구리-인듐-갈륨-셀레나이드계(Cu(In,Ga)Se2;CIGS계)의 광 흡수층(300)을 형성하는 방법과 금속 프리커서 막을 형성시킨 후 셀레니제이션(Selenization) 공정에 의해 형성시키는 방법이 폭넓게 사용되고 있다.
금속 프리커서 막을 형성시킨 후 셀레니제이션 하는 것을 세분화하면, 구리 타겟, 인듐 타겟, 갈륨 타겟을 사용하는 스퍼터링 공정에 의해서, 상기 후면전극(200) 상에 금속 프리커서 막이 형성된다.
이후, 상기 금속 프리커서 막은 셀레이제이션(selenization) 공정에 의해서, 구리-인듐-갈륨-셀레나이드계(Cu(In,Ga)Se2;CIGS계)의 광 흡수층(300)이 형성된다.
이와는 다르게, 상기 구리 타겟, 인듐 타겟, 갈륨 타겟을 사용하는 스퍼터링 공정 및 상기 셀레니제이션 공정은 동시에 진행될 수 있다.
이와는 다르게, 구리 타겟 및 인듐 타겟 만을 사용하거나, 구리 타겟 및 갈륨 타겟을 사용하는 스퍼터링 공정 및 셀레니제이션 공정에 의해서, CIS계 또는 CIG계 광 흡수층(300)이 형성될 수 있다.
이어서, 도 7을 참조하면, 상기 광 흡수층(300) 상에 버퍼층(400)이 형성된다. 상기 버퍼층(400)은 제 1 버퍼층(410) 및 제 2 버퍼층(420)을 포함하고, 상기 제 1 버퍼층(410) 및 상기 제 2 버퍼층(420)은 순차적으로 증착될 수 있다.
즉, 상기 광 흡수층(300) 상에 상기 제 1 버퍼층(410)이 증착되고, 상기 제 1 버퍼층(410) 상에 제 2 버퍼층(420)이 증착될 수 있다.
일례로, 상기 제 1 버퍼층(410) 및 상기 제 2 버퍼층(420)은 원자층 증착방법을 통해 증착될 수 있다. 그러나, 실시예는 이에 제한되지 않고, 상기 제 1 버퍼층(410) 및 상기 제 2 버퍼층(420)은 화학 증착(chemical vapor deposition, CVD) 또는 유기금속 화학 증착(metal organic chemical vapor deposition, MOCVD) 등의 다양한 방법에 의해 형성될 수 있다.
이때, 상기 제 1 버퍼층(410) 및 상기 제 2 버퍼층(420)은 나노미터 단위로 증착될 수 있다. 자세하게, 상기 제 1 버퍼층(410)은 약 20㎚ 내지 약 30㎚의 두께로 증착되고, 상기 제 2 버퍼층(420)은 약 10㎚ 내지 20㎚ 두께로 증착될 수 있다.
이어서, 도 8을 참조하면, 상기 광 흡수층(300) 및 상기 버퍼층(400)의 일부가 제거되어 제 2 관통홈들(TH2)이 형성된다.
상기 제 2 관통홈들(TH2)은 팁 등의 기계적인 장치 또는 레이저 장치 등에 의해서 형성될 수 있다.
예를 들어, 약 40㎛ 내지 약 180㎛의 폭을 가지는 팁에 의해서, 상기 광 흡수층(300) 및 상기 버퍼층(400)은 패터닝될 수 있다. 또한, 상기 제 2 관통홈들(TH2)은 약 200㎚ 내지 약 600㎚의 파장을 가지는 레이저에 의해서 형성될 수 있다.
이때, 상기 제 2 관통홈들(TH2)의 폭은 약 100㎛ 내지 약 200㎛ 일 수 있다. 또한, 상기 제 2 관통홈들(TH2)은 상기 후면 전극층(200)의 상면의 일부를 노출하도록 형성된다.
이어서, 도 9를 참조하면, 상기 버퍼층(400) 즉, 상기 제 2 버퍼층(420) 상에 투명한 도전물질이 증착되어 전면 전극층(500)이 형성된다.
상기 전면 전극층(500)은 무산소 분위기에서 상기 투명한 도전물질이 증착되어 형성될 수 있다. 더 자세하게, 상기 전면 전극층(500)은 산소를 포함하지 않는 불활성 기체 분위기에서 알루미늄이 도핑된 징크 옥사이드가 증착되어 형성될 수 있다.
상기 전면 전극층을 형성하는 단계는, RF 스퍼터링 방법으로 ZnO 타겟을 사용하여 증착하는 방법 또는 Zn 타겟을 이용한 반응성 스퍼터링 방법으로 알루미늄이 도핑된 징크 옥사이드를 증착하여 형성될 수 있다.
이어서, 도 10을 참조하면, 상기 광 흡수층(300), 상기 버퍼층(400) 및 상기 전면 전극층(500)의 일부가 제거되어 제 3 관통홈들(TH3)이 형성된다. 이에 따라서, 상기 전면 전극층(500)은 패터닝되어, 다수 개의 전면전극들 및 제 1 셀(C1), 제 2 셀(C2) 및 제 3 셀들(C3)이 정의된다. 상기 제 3 관통홈들(TH3)의 폭은 약 80㎛ 내지 약 200㎛ 일 수 있다.
상술한 실시예에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
또한, 이상에서 실시예들을 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예들에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부한 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (9)

  1. 지지기판;
    상기 지지기판 상에 배치되는 후면 전극층;
    상기 후면 전극층 상에 배치되는 광 흡수층;
    상기 광 흡수층 상에 배치되는 버퍼층; 및
    상기 버퍼층 상에 배치되는 전면 전극층을 포함하고,
    상기 버퍼층은 Zn(O,S)를 포함하고,
    상기 버퍼층에서 황(S)의 함량은 상기 광 흡수층에서 상기 전면 전극층으로 방향으로 갈수록 증가되는 태양전지.
  2. 제 1항에 있어서,
    상기 버퍼층은 30㎚ 내지 50㎚의 두께로 형성되는 태양전지.
  3. 제 1항에 있어서,
    상기 버퍼층은,
    제 1 버퍼층; 및
    상기 제 1 버퍼층 상에 배치되는 제 2 버퍼층을 포함하고,
    상기 제 2 버퍼층은 상기 제 1 버퍼층보다 황의 함량이 큰 태양전지.
  4. 제 3항에 있어서,
    상기 제 1 버퍼층의 두께는 상기 제 2 버퍼층의 두께보다 더 크게 형성되는 태양전지.
  5. 제 4항에 있어서,
    상기 제 1 버퍼층의 두께는 20㎚ 내지 30㎚의 두께로 형성되고,
    상기 제 2 버퍼층의 두께는 10㎚ 내지 20㎚의 두께로 형성되는 태양전지.
  6. 제 3항에 있어서,
    상기 제 1 버퍼층 및 상기 제 2 버퍼층은 Zn(O,S)를 포함하고,
    상기 제 1 버퍼층은 상기 Zn(O,S) 전체에 대해 10 중량% 내지 15 중량%의 황을 포함하는 태양전지.
  7. 제 6항에 있어서,
    상기 제 2 버퍼층은 상기 Zn(O,S) 전체에 대해 20 중량% 내지 25 중량%의 황을 포함하는 태양전지.
  8. 제 3항에 있어서,
    상기 제 2 버퍼층의 비저항은 상기 제 1 버퍼층의 비저항보다 더 큰 태양전지.
  9. 제 8항에 있어서,
    상기 제 2 버퍼층의 비저항은 10-2Ω 이상인 태양전지.
KR20130120498A 2013-10-10 2013-10-10 태양전지 KR20150041927A (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR20130120498A KR20150041927A (ko) 2013-10-10 2013-10-10 태양전지
PCT/KR2014/009494 WO2015053566A1 (ko) 2013-10-10 2014-10-09 태양전지
CN201480067627.7A CN105814696B (zh) 2013-10-10 2014-10-09 太阳能电池
US15/028,581 US20160240700A1 (en) 2013-10-10 2014-10-09 Solar Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20130120498A KR20150041927A (ko) 2013-10-10 2013-10-10 태양전지

Publications (1)

Publication Number Publication Date
KR20150041927A true KR20150041927A (ko) 2015-04-20

Family

ID=52813333

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20130120498A KR20150041927A (ko) 2013-10-10 2013-10-10 태양전지

Country Status (4)

Country Link
US (1) US20160240700A1 (ko)
KR (1) KR20150041927A (ko)
CN (1) CN105814696B (ko)
WO (1) WO2015053566A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10121920B2 (en) * 2015-06-30 2018-11-06 International Business Machines Corporation Aluminum-doped zinc oxysulfide emitters for enhancing efficiency of chalcogenide solar cell

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4619388B2 (ja) * 2007-10-15 2011-01-26 三菱電機株式会社 薄膜太陽電池素子及びその製造方法
TW201025632A (en) * 2008-12-19 2010-07-01 Nexpower Technology Corp Thin film solar cell and manufacturing method thereof
US20120037225A1 (en) * 2009-06-16 2012-02-16 Lg Innotek Co., Ltd. Solar cell and method of fabricating the same
JP4745450B2 (ja) * 2009-10-06 2011-08-10 富士フイルム株式会社 バッファ層とその製造方法、反応液、光電変換素子及び太陽電池
DE102009054973A1 (de) * 2009-12-18 2011-06-22 SULFURCELL Solartechnik GmbH, 12487 Chalkopyrit-Dünnschicht-Solarzelle mit CdS/(Zn(S,O)-Pufferschicht und dazugehöriges Herstellungsverfahren
KR20130052478A (ko) * 2011-11-11 2013-05-22 엘지이노텍 주식회사 태양전지 및 이의 제조방법
KR101349484B1 (ko) * 2011-11-29 2014-01-10 엘지이노텍 주식회사 태양전지 모듈 및 이의 제조방법
KR20130084119A (ko) * 2012-01-16 2013-07-24 삼성에스디아이 주식회사 박막형 태양 전지와, 이의 제조 방법
CN103346173A (zh) * 2013-06-18 2013-10-09 南开大学 一种柔性铜铟镓硒薄膜太阳电池组件及其制备方法

Also Published As

Publication number Publication date
WO2015053566A1 (ko) 2015-04-16
US20160240700A1 (en) 2016-08-18
CN105814696B (zh) 2018-08-24
CN105814696A (zh) 2016-07-27

Similar Documents

Publication Publication Date Title
US20160284882A1 (en) Solar Cell
KR101154786B1 (ko) 태양전지 및 이의 제조방법
US20120180869A1 (en) Solar power generation apparatus and manufacturing method thereof
KR20110005444A (ko) 적층형 태양 전지
US9608141B1 (en) Fluorinated tin oxide back contact for AZTSSe photovoltaic devices
KR102042026B1 (ko) 태양전지
KR101210046B1 (ko) 태양전지 및 이의 제조방법
KR101631970B1 (ko) 박막 태양 전지의 제조방법
KR101210110B1 (ko) 태양전지 및 이의 제조방법
KR101154696B1 (ko) 태양전지 및 이의 제조방법
CN105789353B (zh) 具有掺杂缓冲层的太阳能电池和制造太阳能电池的方法
KR20150041927A (ko) 태양전지
KR101405639B1 (ko) 태양전지 및 이의 제조 방법
KR20150039536A (ko) 태양전지
KR20150039534A (ko) 태양전지
KR101393859B1 (ko) 태양전지 및 이의 제조 방법
KR101865953B1 (ko) 태양전지 및 이의 제조방법
KR20150031978A (ko) 태양전지
US20150136223A1 (en) Solar cell and method for manufacturing the same
KR102098113B1 (ko) 태양전지
KR20150031976A (ko) 태양전지
KR101417321B1 (ko) 태양전지 및 이의 제조 방법
KR101428147B1 (ko) 태양광 발전장치 및 이의 제조방법
US20210210645A1 (en) Chalcogenide solar cell having transparent conducting oxide back contact, and method of manufacturing the chalcogenide solar cell
KR101349596B1 (ko) 태양전지 및 이의 제조방법

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid