TWI620335B - 薄膜太陽能電池氧化鋅緩衝層結構及製程 - Google Patents

薄膜太陽能電池氧化鋅緩衝層結構及製程 Download PDF

Info

Publication number
TWI620335B
TWI620335B TW104125742A TW104125742A TWI620335B TW I620335 B TWI620335 B TW I620335B TW 104125742 A TW104125742 A TW 104125742A TW 104125742 A TW104125742 A TW 104125742A TW I620335 B TWI620335 B TW I620335B
Authority
TW
Taiwan
Prior art keywords
layer
zinc
film
zinc oxide
plating
Prior art date
Application number
TW104125742A
Other languages
English (en)
Other versions
TW201613121A (en
Inventor
張子欽
Original Assignee
國立勤益科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立勤益科技大學 filed Critical 國立勤益科技大學
Priority to TW104125742A priority Critical patent/TWI620335B/zh
Publication of TW201613121A publication Critical patent/TW201613121A/zh
Application granted granted Critical
Publication of TWI620335B publication Critical patent/TWI620335B/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

一種銅銦鎵硒薄膜太陽能電池,包括:提供一基板;形成一金屬電極層於該基板上;形成一銅銦鎵硒化合物層於該金屬電極層上,一氧化鋅緩衝層位於銅銦鎵硒化合物層之上,一包括透明導電層位於氧化鋅緩衝層之上。

Description

薄膜太陽能電池氧化鋅緩衝層結構及製程
本發明總體上涉及一種薄膜光伏模組(薄膜光伏元件,thin-film photovoltaic module)以及製造其的方法。更具體地,本發明提供了一種用於製造高效薄膜光伏模組的結構和方法。本發明提供了大尺寸且具有電路光伏效率(circuit photovoltaic efficiency)為8-16%以上的單結銅銦鎵二硒化物(CIGS)電池的高效薄膜光伏面板。
銅銦鎵硒CIGS〔Cu(InGa)Se2〕薄膜型太陽電池,由於高光電效率及低材料成本,被許多人看好。在實驗室完成的CIGS光電池,光電效率最高可達約19%,就模組而言,最高亦可達約13%。CIGS隨著銦鎵含量的不同,其光吸收範圍可從1.02ev至1.68ev,此項特徵可加以利用於多層堆疊模組,已近一步提升電池組織效能。此外由於高吸光效率(α>105cm-1),所需光電材料厚度不需超過1μm,99%以上的光子均可被吸收,因此一般粗估量產製造時,所需半導體原物料可能僅只0.03美元/瓦以。但是CIGS有三個主要困難要克服:(1)製程複雜,投資成本高;(2)關鍵原料的供應;(3)緩衝層CdS潛在毒害。製程改善,如前述有許多單位投入,但類似半導體製程的需求,要改良以降低成本,困難度頗高。奈米技術應用引進了不同思維,可能有機會,但應用至大面積製造,其良率多少?可能是一項挑戰。鎘(Cd)的毒性一直是人們所關注,硫化鎘(CdS)在 電池中會不會不當外露,危害人們,並不能讓所有人放心,因此在許多研究團隊積極開發替代緩衝層材料,並積極投入此型太陽電池研究。
根據文獻,緩衝層之用處除了在於光窗層沉積,能夠保護吸收層不受再濺鍍破壞(Resputter damage)外,也能降低光窗層與吸收層之電子親和力差,減少半導體與金屬之間的接觸電阻,其材料特性必須具備較高的穿透率,以便長波段光能達到吸收層,減少載子複合率。應用於CIGS薄膜太陽能電池之緩街層材料有非常多種,其特性需要高透光率,以便能使入射光順利進入主吸收層材料而被有效的吸收。目前材料選擇仍以硫化鎘(CdS)為主,與CIGS有良好得匹配性,為n型半導體化合物(Eg=2.4eV),多以化學水浴法(Chemical Bath Deposition,CBD)方式製備,能達到低成本與高效率條件,能改善薄膜間的附著性與降低漏電流效應。在薄膜製備過程,Cd將與CIGS表面層進行擴散,在Cd2+置換Cu+情況下,不但使得表面層電性產生反轉,降低少數載子的複合外,亦鈍化吸收層表面缺陷,使載子捕捉率降低。CdS是一種寬能隙(Eg=2.26~2.5eV)的II-VI族半導體材料,能解決CIGS吸收層與ZnO透光層之間的Band-offset現象,並具有最佳的晶格常數與CIGS之品格常數匹配,可以解決吸收層與透光層之間的附著力問題,並改善薄膜表面形貌,以增進效率,亦能保護CIGS表面免於在濺鍍ZnO層時受到破壞。
一般CIGS型太陽能電池通常採用緩衝層硫化鎘薄膜和窗口層氧化鋅薄膜以及CIGS吸收層來達到較高的轉換效率。其中各種緩衝層材料如CdS,(Cd,Zn)S,ZnS,Zn(O,S,OH)x,ZnO,ZnSe,Inx(OH,S)y,In2S3,In(OH)3,SnO2,Sn(S,O)2等由CBD沉積、原子層沉積 (ALD),蒸鍍法(evaporation)、磁控濺射法(sputtering),有機金屬化學氣相沈積法(MOCVD)或其他沉積方法,通過CBD方法製備的CdS緩衝層仍然提供最好的CIGS太陽能電池性能。CIGS太陽能電池結構一般為soda-lime glass substrate/Mo/CIGS/CdS/i-ZnO/ZnO:Al,在模擬太陽光源測量條件AM1.5G下效率超過20%和集中照明測量條件下有21.8%的效率下。
緩衝層在CIGS太陽能電池中需要在銅銦鎵硒之多晶體薄膜結構上擁有良好的覆蓋率,由於高電阻之效能,覆蓋在CIGS薄膜上的緩衝層薄膜可以抑制CIGS薄膜與上一層薄膜形成並聯電流,進而改善了CIGS太陽能電池的開路電壓,儘管較厚的緩衝層,可以提供更好的覆蓋率,不過為了保持較高的填充因子和CIGS太陽能電池的電流密度,厚度應當在幾十奈米。
現今所發展之高效率CIGS太陽電池製程,主要以含鈉鹼玻璃(SLG)作為基板,由下往上依序沉積Mo背電極層(Back contact)、CIGS吸收層(Absorber)、CdS緩衝層(Buffer)、i-ZnO/AZO光窗層(Windows)與Ni/Al上電極層(Front contact)[28],其中,Mo背電極層與i-ZnO/AZO光窗層主要以磁控濺鍍製程(Sputtering)為主,CIGS吸收層則以蒸鍍製程(evaporation)完成,CdS緩衝層則以化學水浴法(Chemical Bath Deposition)製備,最後,透過磁控濺鍍法沉積Ni/Al上電極層。當以此製程方式發展大面積化及走入量產階段時,CdS緩衝層所使用之化學水浴製程,除了無法達成製程一貫性之外,其薄膜品質及均勻性也易受藥劑反應不均而產生劣化。此外,受鎘劇毒影響,大量廢液的回收使得製程成本居高不下。因此,各界正積極以真空製程開發無鎘化物緩衝層。過去曾有人以化學氣相沉積法(Chemical Vapor Deposition)與原子層沉積法(Atomic Layer Deposition)製備硫化鋅(ZnS)緩衝層,雖能有效控制薄膜成長機制而提高結晶品質,卻因前趨物種類稀少與高設備維護成本,使材料發展備受限制。另一方面,使用蒸鍍製程(Evaporation)雖能個別控制金屬或其合金蒸氣溫度進行緩衝層薄膜沉積,但受長期操作穩定性欠佳與薄膜大面積均勻性不足,將影響CIGS吸收層成長之被覆性與p-n接面接合特性。為改善上述缺點,本計劃將以一種新的太陽能電池緩衝層製備方法,於量產階段可以使生產之I-III-VI族化合物薄膜太陽能電池,並使製程一貫性與大面積化同時兼顧發展。
本計畫即將將硒化完成之CIGS試片放入電鍍液中,藉由調整溶液中的鋅含量、電鍍溫度、時間等參數,分析硝酸鋅、硫酸鋅等離子在CIGS薄膜表面的擴散量及深度,接著使用電解法電解製作ZnO薄膜,實驗將藉由電流密度值調整、鍍膜時間及電鍍溫度差控制Zn結晶顆粒大小,並製作出均勻性佳且透光性良好的ZnO薄膜,其厚度約50-60nm,電鍍至已擴散硒化完成之CIGS試片上,使該II-VI族化合物薄膜太陽能電池具有一光學吸收層及一緩衝層,並於該光學吸收層及該緩衝層間形成一P-N接面,其特徵在於:該P-N接面之形成係以電鍍的方式形成N型氧化鋅緩衝層於p型CIGS化合物之光學吸收層上。最後將n-ZnO/p-CIGS樣品進行後退火製程,控制退火溫度、時間、壓力及氣體種類,其目的為(a)烤乾ZnO薄膜內的水氣(b)使Zn離子能有效參雜於銅空缺/硒空缺內。最後在n-ZnO/p-CIGS樣品上鍍製Al/AZO薄膜製作成CIGS元件,在將CIGS元件在大氣下進行低溫退火處理,修補多層薄膜中的缺陷及優化n-ZnO/p-CIGS介面的p-n junction,以提升元件效率。利用有別於傳統 形成p-n接面之創新作法降低減少CIGS元件層數,藉此排除傳統使用化學水浴製程,而影響薄膜品質與鍍膜均勻性之缺失,同時關於大量化學廢液回收而導致成本居高不下之問題,亦可獲得大幅改善。
常用的ZnO製造方法有濺鍍法(sputtering),蒸鍍法(evaporation),脈衝雷積法(pulsed laser deposition),化學蒸氣沉積法(chemical vapor deposition)[8],溶膠-凝膠(sol-gel)及電化學沈積法(electrochemical deposition)。而電化學沉積法,有著成本低、方法簡單以及沉積速度快等優點,因此近來常被廣泛應用。本期中研究是利用硫化鋅水溶液,以電化學法沈積氧化鋅(ECD ZnO)於ITO玻璃上。研究不同的沈積溫度,並比較前後(ECD ZnO)薄膜電性、光性及表面特性之變化。電化學沉積法不需高品質靶材與基板,亦不需使用真空系統,這突顯電化學沉積法在工業發展的最佳優勢。
一般常用電鍍系統有兩類:一為氯化鹽類(Chloride bath),另外一類為硫酸鹽(Sulfate bath),一般硫酸鹽廣泛被使用於電鍍工業上[34-35],因為它具有成本較低、高電流效率等等優勢。而且硫酸鍍浴具備較高導電度,促使能提升電鍍功率(Throwing power)符合經濟需求,而氯化鹽則具有較高的溶解度與電導度[36-37],但明顯使用氯化鹽系為鍍浴時在電鍍期間能趨使金屬陽極發生連續溶解情形。 此外,但用硝化鹽作為電解液則會遇到氯氣產生的問題及氯化鹽類當鍍液時本身具有螫合作用會降低鋅離子遷移速度造成電流效率(current efficiency,CE)下降,使用硫酸及硝酸系當電鍍浴比氯化系成本較具經濟性。
本發明提供了一種銅銦鎵硒化合物薄膜之製造方法,包括如 圖1所示:提供一基板100;形成一金屬電極層200於該基板上;形成一銅銦鎵硒化合物層300於該金屬電極層200上,一氧化鋅緩衝層400位於銅銦鎵硒化合物層300之上,一包括透明導電層500位於氧化鋅緩衝層400之上。
100‧‧‧基板
200‧‧‧金屬電極層
300‧‧‧銅銦鎵硒化合物層
400‧‧‧氧化鋅緩衝層
500‧‧‧透明導電層
第2圖所示,利用硝酸鋅電鍍於(a)電流0.010Amp、電壓1V、時間120sec條件下之氧化鋅薄膜表面形貌圖,(b)為其橫截面圖,厚度為54nm。
第3圖所示,利用硝酸鋅電鍍於(a)電流0.04~0.06Amp、電壓1.25V、時間120sec條件下之氧化鋅薄膜表面形貌圖,(b)為其橫截面圖,厚度為51nm。
第4圖所示,利用硝酸鋅電鍍於(a)電流0.03~0.05Amp、電壓1.55V、時間120sec條件下之氧化鋅薄膜表面形貌圖,(b)為其橫截面圖,厚度為36nm。
第5圖所示,利用硝酸鋅電鍍(a)電流0.06Amp、電壓2.5V、時間120sec條件下之氧化鋅薄膜表面形貌圖,(b)為其橫截面圖,厚度為200nm,為不連續鍍層表面。
第6圖所示,利用硝酸鋅電鍍於(a)電流0.06~0.1Amp、電壓3V、時間120sec條件下之氧化鋅薄膜表面形貌圖,(b)為其橫截面圖,最厚度處達431nm,為尖錐形不連續鍍層表面。
第7圖所示,利用硝酸鋅電鍍於(a)工作電流0.01Amp、電壓1V、時間30sec條件下之氧化鋅層表面形貌(b)為其橫截面,厚度為 17nm。
第8圖所示,利用硝酸鋅電鍍於(a)工作電流0.01Amp、電壓1V、時間60sec條件下之氧化鋅層表面形貌圖,(b)為其橫截面,厚度為26nm。
第9圖所示,利用硝酸鋅電鍍於(a)工作電流0.01Amp、電壓1V、時間120sec條件下之氧化鋅層表面形貌(b)為其橫截面,厚度為36nm。
第10圖所示,利用硝酸鋅電鍍於於(a)工作電流0.015Amp、電壓1.25V、時間30sec條件下之氧化鋅層表面形貌(b)為其橫截面,厚度為47nm。
第11圖所示,利用氯化鋅電鍍液於(a)工作電流0.015Amp、電壓1.25V、時間60sec條件下之氧化鋅層表面形貌(b)為其橫截面,厚度為34nm。
第12圖所示,利用氯化鋅電鍍液於(a)工作電流0.015Amp、電壓1.25V、時間120sec條件下之氧化鋅層表面形貌(b)為其橫截面,厚度為49nm。
第13圖所示,利用氯化鋅電鍍液於(a)工作電流0.04-0.06Amp、電壓1.55V、時間30sec條件下之氧化鋅層表面形貌(b)為其橫截面,厚度為34nm。
第14圖所示,利用氯化鋅電鍍液於(a)(a)工作電流0.04-0.06Amp、電壓1.55V、時間60sec條件下之氧化鋅層表面形貌(b)為其橫截面,厚度為36nm。
第15圖所示,利用氯化鋅電鍍液於(a)工作電流0.04-0.06Amp、電壓1.55V、時間120ec條件下之氧化鋅層表面形貌(b)為其橫截面,厚度為47nm。
第16圖所示,利用氯化鋅電鍍液於(a)工作電流0.06-0.1Amp、電壓2.5V、時間30sec條件下之氧化鋅層表面形貌(b)為其橫截面,厚度為23nm。
第17圖所示,利用氯化鋅電鍍液於(a)工作電流0.06-0.1Amp、電壓2.5V、時間60sec條件下之氧化鋅層表面形貌(b)為其橫截面,厚度為24nm。
第18圖所示,利用氯化鋅電鍍液於氯化鋅電鍍液於(a)工作電流0.06-0.1Amp、電壓2.5V、時間120sec條件下之氧化鋅層表面形貌(b)為其橫截面,厚度為26nm。
第19圖所示,利用氯化鋅電鍍液於(a)工作電流0.1-0.15Amp、電壓3V、時間30sec條件下之氧化鋅層表面形貌(b)為其橫截面,厚度為42nm。
第20圖所示,利用氯化鋅電鍍液於(a)工作電流0.1-0.15Amp、電壓3V、時間60sec條件下之氧化鋅層表面形貌(b)為其橫截面,厚度為44nm。
第21圖所示,利用氯化鋅電鍍液於(a)工作電流0.1-0.15Amp、電壓3V、時間120sec條件下之氧化鋅層表面形貌(b)為其橫截面,厚度為38nm。
第22圖所示,硝酸鋅電鍍液在IZO導電玻璃上沉積120sec 後之氧化鋅薄膜之XRD圖譜,(a)電流0.010Amp、電壓1V,(b)電流0.04~0.06Amp、電壓1.25V,(c)電流0.03~0.05Amp、電壓1.55V,(d)電流0.06Amp、電壓2.5V,(e)電流0.06~0.1Amp、電壓3V,(f)電流0.1~0.15Amp、電壓3V。
第23圖所示,氯化鋅電鍍液在ITO導電玻璃上沉積120sec後之氧化鋅薄膜之XRD圖譜,(a)電流0.03~0.05Amp、電壓1.25V,(b)電流0.04~0.06Amp、電壓1.55V。
第24圖所示,硝酸鋅電鍍液於不同電壓製備之ZnO薄膜的紫外光-可見光穿透光譜圖。
第25圖所示,氯化鋅電鍍液於不同電壓製備之ZnO薄膜的紫外光-可見光穿透光譜圖。
在電化學沉積的過程中,沉積時間相當於反應時間,本實驗已脈衝電壓方式,制定2組時間參數,分別為150s、300s,比較不同沉積時間對薄膜成長造成的影響,並與前一實驗做比較,在相同電壓施加時間下,脈衝電壓的施加對薄膜造成的影響,經SEM進行分析,沉積時間為300s之薄膜其晶粒尺寸及薄膜的緻密成鍍皆較150s之薄膜為高,且從圖中可以觀察到,15V所製備出之薄膜其緻密度為最佳,20V所製備之薄膜緻密性反而不甚優良,可能是電壓過大造成薄膜鍍率降低、附著性不佳的緣故。由此可推論,因為反應的時間較長,以至於氧化鋅薄膜經過不斷的沉積而越來越大。由電化學公式,電流密度=電流/電極表面積及歐姆定律可知,當電阻及電極表面積固定時,電壓和電流密度呈正比。而較高的電流密度會加速金屬沉積並縮短電鍍的時間,但若電流密度過高超 過其限度時,由於陰極處的溶液內缺乏可供沉積的金屬離子(因該金屬離子來不及從陽極處擴散至陰極處),則使得在陰極處加速氫氣產生率,而使其表面pH值上升,以致生成鹼性鹽類或氫氧化物的沉澱,吸藏於鍍層中,造成沉積層容易於剝落,故電鍍均勻度也會降低。
利用SEM觀察其表面形貌,可看出在15V的定電壓沉積下Zn沒有島狀成長,具有較平滑的表面,從表面形貌上可以看到具有較佳的表面,故選用電鍍電壓15V來製備緩衝層氧化鋅薄膜。形成此現象之原因為,當電鍍沉積開始施加電壓後,大量的鋅顆粒於電極附近析出並凝聚,大顆粒因重力而向下移動,致使最上方之區域之顆粒少於其它區威,而在工作電種較上方之區域因電泳僅能獲取少量的顆粒,形成一透明且較薄之鍍膜,反之,下方之區域則因顆粒密度較高.在受到工作電極靜電力之吸引後,以電泳被覆於下方之電極表面,生成較厚且不透明之鍍層。 在電鍍初期之沉積速度較慢,但經過一段時間後鍍膜速率明顯增加,係由於低過電壓在電極表面產生少量的氫氧基離子,須一段時間的累積才能使電極表面附近的pH值增到可以引發大量鋅顆粒析出的程度,施加較大的過電壓(20V)的被覆行為有明顯的不同。當10V所得之鍍膜並未發現電鍍型態之緻密層,其鍍膜皆來自於電鍍液中析出的鋅顆粒顆粒而以電泳方式所得。電泳沉積薄膜可分為定電流製程及定電壓製程兩大類,當製程為定電壓時,電鍍系統需在兩電及間維持一固定電壓差,但因薄膜電阻隨後度增加而增大。當電流通過薄膜會在電極表表面與薄膜表面產生一壓降,而使實際作用於懸浮液中的靜電吸引力降低,造成薄膜成長速率下降。亦即氧化物電鍍於本實驗中需有較大的過電壓才會發生,施加15 V經1min之後才有大量的鋅顆粒顆粒在電極表面附近析出,受工作電極電壓的吸引而被覆於電極表面,使沉積速率在此時突然增加。施加較大過電壓時(施加電壓大15V)在初期即以快速的沉積速率進行,越大的過電壓所得的沉積速率越高,沉積速率在60sec後下降,其乃因是鍍膜電阻增加所致。
本發明兩類鍍鋅電鍍液系統有:硝酸鹽(nitrate bath),另外一類為氯化鹽類(chloride bath),一般,硝酸鹽廣泛被使用電鍍工業上,因為它具有成本較低、高電流效率等等優勢(throwing power)符合經濟需求,而氯化鹽則具有較高的溶解度與電導度,但明顯使用氯化鹽系為鍍浴時在電鍍期間能趨使金屬陽極發生連續溶解情形。此外,使用氯化鹽作為電鍍液則會碰到氯氣產生的問題及以及氯化鹽類當鍍液時本身具有螫合作用會降低鋅離子遷移速度造成電流效率(current efficiency,CE)下降,因此實驗一開始做了一連串硝酸鹽類與氯化鹽類兩種鍍浴所沉積的鍍層,進行放電效率(discharge efficiency,CPs)的比較,這些實驗結果將影響電鍍液的選擇,使用硝酸系當電鍍浴比氯化系成本較便宜,但氯化鹽類電鍍液具備較高導電特性,本實驗在製備鋅鍍層時所制定的條件為溫度25℃、pH=5.5,一般鋅離子在進行沉積時會伴隨氫氣的產生,此時會形成兩項反應:Zn2++2e- Zn
2H++2e- H2
由於氫氣的發生會造成整個電流效率的下降,因此,實驗中在硝酸鋅電鍍液中加入乙二胺,在氯化鋅電鍍液中添加硼酸(H3BO3)當螫 合劑,除了抑止電鍍時所造成樹枝狀結構外並試著改善電流效率。
因此在本電鍍製程實驗中,調整電鍍溶液中的鋅含量、電鍍酸鹼值、電鍍時間、電鍍電壓、電流密度等參數是影響實驗結果的重要因素之一,在本階段之重點實驗,即針對硝酸鋅(Zn(NO)3)、氯化鋅(ZnCl2)系電鍍液,對ZnO緩衝層的成長機制實驗探討,利用各種不同的電沉積時間、電鍍電壓、電流密度做為實驗參數,(分別如表二所示),如同硫酸系電鍍液實驗,經電化學沉積在ITO基材上形成氧化鋅薄膜後,即進行熱退火處理,再由SEM分析作比較,觀察電鍍沉積時間、工作電壓、電流密度對氧化鋅薄膜成長之影響。
實驗方面,操作條件,分別為PH值:5.5-6.5、工作電壓值:0.95V-3V、工作電流值:0.01-0.15Amp及電流密度值;0.1A-0.6A/dm2,電鍍液中硝酸鋅(Zn(NO)3)電鍍液濃度為0.05M,氯化鋅(ZnCl2)電鍍液濃度為0.55M,2.68M氯化鉀KCl、硼酸(H3BO3)濃度為0.05M,PH值:5.5,電沉積溫度為25℃,沉積時間為30-120sec的情況下生長,後續在300℃下熱處理(熱退火)30分鐘,最後經由SEM分析,如圖3至4-16所示,(右半部為橫截面,左邊為表面形貌),為硝酸鋅系電鍍液所成長之氧化鋅薄膜,由圖可看出,無論電鍍時間、電鍍電壓、電流密度等參數如何改變,成長之氧化鋅薄膜皆為不連續晶粒,而且附著性差,薄膜不容易附著於基材上,整體看起來氧化鋅薄膜鬆散。
以硝酸鹽系電鍍液所成長之鋅鍍層,其表面結構透過掃描式電子顯微鏡(SEM)來觀察,FESEM下0.05M硝酸鹽系所製備的鍍層,圖中可發現鍍層表面較為粗糙且顆粒較大,顆粒與顆粒之間有非常大的孔 洞使得整體的鍍層表面粗糙度提高,及形成不連續鍍層,除此之外,孔洞結構易造成樹枝狀結構的產生。仔細觀察顆粒表面有裂開的情況,明顯表示內應力的作用,圖中其中較大孔洞產生可能是電鍍時氫氣氣泡停留在鍍層表面所導致。氯化鹽系製備的鍍層顆粒比硝酸鹽系所製備鍍層顆粒要來的小,且鍍層較為緻密由前面溶解效率的結果來討論,可認為當堆積顆粒比較小時所佔有的表面積較大或基材阻抗較小所導致,而鍍層表面較平滑,會使得樹枝狀產生的情況降低。由此結果推論,這是由於當基材ITO阻抗不均勻,電鍍時電流分布不均,電鍍時給予的初始電流相對較大,造成電鍍電極溶斷。另一原因為硝酸鋅系電鍍液,不適合在具高阻抗之基材上,進行電鍍實驗。
當硝酸鋅鍍浴隨著電鍍時間及電流密度增加,鍍層結構之表面形貌圖,由顯示電流密度增加於鍍浴的鍍層表面結構非常粗糙而不具規則性,且有很多尖錐狀結構的產生之ZnO層,假使應用於CIGS太陽電池緩衝層是不可行的,一般表面粗糙的鍍層具有較容易溶解的特性,也就是放電效率較差,在相同鍍層重量所能釋放出的電荷最少,因此,鍍層表面尖錐狀物使得鍍層在電位較負位置就有溶解電流產生,因此形成尖錐狀鍍層。另外,可發現同樣的參數電鍍純鋅鍍層,會使得堆積顆粒變大且顆粒邊界較於尖銳,可能由於鋅成核位置尖端放電所造成,因此,增加電鍍時間會使得鋅離子沿著尖端成核位置進行堆積,故研判此時為樹枝狀結構產生的初期生成情況。
圖11至21為氯化鹽系實驗所製備的各種參數氧化鋅層,其操作條件,分別為PH值:5.5、工作電壓值:0.95V-3V、工作電流值:0.01-0.15Amp 及電流密度值:0.1A-0.6A/dm2。由FESEM可觀察出鍍層顆粒邊界無法觀測出,也代表表面較緻密、平滑。因此,表面比較平滑也似乎表現出較低的溶解效率,低電流密度可使被鍍物鋅鍍層表面趨向緻密且平整。由圖中可看出在相同電鍍參數下,很明顯可發現以硝酸鹽系電鍍液所沉積之鍍層表面就沒有如氯化鹽系製備的鍍層來得緻密平整,鍍層表面較為粗糙,另外,隨著電流密度增加鍍層所堆積的顆粒變小,其可能原因為電流變大時,鍍層顆粒堆積變的迅速,鋅離子無足夠時間在表面進行有順序堆積,並且瞬間成核導致顆粒變小,另外,由SEM觀測分析發現電流密度愈大粗糙度愈小。
因此不同電鍍液成長氧化鋅鍍層,在相同電鍍參數的鍍層表面結構,硝酸鹽系電鍍液製備的鋅鍍層,很明顯可看到此鍍層顆粒堆積積方式較於散亂無規則,而以氯化鹽系電鍍液所製備的鋅鍍層堆積顆粒排列較具有方向及規則性,且堆疊的顆粒較小。基於以上結果討論,氯化鹽系電鍍液表面鍍層堆積顆粒越小且愈緻密呈現有序的排列,似乎具備較高的放電效率,也較適合本計畫後續將氧化鋅緩衝層鍍至於銅銦鎵硒吸收層上。
圖22為硝酸鋅電鍍液製作之ZnO之XRD結果,而圖23則為氯化鋅電鍍液製作之ZnO之XRD結果。觀察經熱退火處理後之純鋅鍍層,由圖中可清楚觀察到,已完全氧化為氧化鋅之結晶結構;透過X光繞射分析,可觀察出隨著不同電流密度的增加,硝酸鋅電鍍浴所製備之氧化鋅層,其結晶性皆相同,變化不大,可觀察出ZnO的XRD明顯結晶性不足,增加電流密度及時間對鍍層結晶性的變化也一樣。因此,以增加電流密度來 看,在硝酸鹽系電鍍液對於整個鍍層的結晶性並不會有抑制鋅離子在某些方向沉積;但從SEM圖來觀察,卻有抑制鋅沉積樹枝狀結構的產生。
一般而言,ZnO於XRD頻譜中常於2為30~40的區段內出現訊號,經JCPDS卡(no.89-1397)比對觀察後,可以研判出分別是位於31.7的(100)面及位於36.2的(101)面。此外,位於47.5、56.6和62.8也可能會出現(102)、(110)、和(103)的訊號。然而比較硝酸鋅電鍍液以及氯化鋅電鍍液製作之ZnO的XRD結果,可以發現硝酸鋅電鍍之ZnO於3~35之間出現了一群半高寬較差的寬峰群(broad peak),此現象顯示以硝酸鋅電鍍液製備之ZnO的結晶性質屬於微晶狀況(grain size<20nm),而且電壓增加時,半高寬特性卻也隨之下降,此結果也意指其結晶性逐漸變差。若對應於SEM之結果,可以研判出當電壓增加的同時,可能會增加電流傳導過程中對成膜機制的破壞,降低其鍵結品質並破壞薄膜的結晶性與緻密性,甚至導致不成膜的現象。因此在放電方面也呈現不穩定的放電電壓,而形成鍍層表面呈不連續薄膜層,並造成不連續薄膜,電鍍電流密鍍愈高,反而晶粒成團聚集,形成尖錐狀,導致鍍層容易脫落,影響氧化鋅薄膜品質。因此其結晶性不佳,不適合用來鍍製高阻值材料。
圖23為以氯化鋅電鍍液在ITO導電玻璃上,以電流0.03~0.05Amp、電壓1.25V及電流0.04~0.06Amp、電壓1.55V,沉積120sec後之氧化鋅薄膜之XRD圖譜。很明顯可觀察出,以此氯化鹽系電鍍液沉積出的鍍層具有較多的結晶方向,在繞射角度37.58°、41.58°及55.94°附近有ZnO(100)、(101)及(210)的結晶相出現,而且繞射峰之繞射強度較強烈,此顯示此ZnO鍍層有較佳的擇優取向。所以電鍍氧化鋅緩衝層薄膜以氯化鹽 系材料為電鍍液,具較佳鍍著性,薄膜表面也較平整,代表鍍層結晶性較佳。
另一方面,氯化鋅電鍍液製作ZnO薄膜,其XRD結果中便可以觀察出明確的結晶訊號,且以(100)、(101)及(210)的訊號較為強烈。此結果象徵以氯化鋅製作之ZnO較硝酸鋅電鍍液更易使ZnO薄膜結晶化。然而,圖23的訊號卻也同時可以觀察出ITO的訊號,此現象直指ZnO薄膜可能太薄或是成膜性質不佳,致使無法完全覆蓋ITO薄膜使得XRD分析過程中,同時測得ITO的訊號。本實驗同時也比對SEM的結果,證實了以氯化鋅電鍍液製作之ZnO薄膜發生較差的成膜性質,這對於後續CIGS緩衝層的製作可能會是個問題,也就是儘管其結晶性較佳,但較差的披覆性仍將導致元件能帶結構的不健全。
圖24為以硝酸鋅為電鍍液所製備ZnO薄膜的紫外光-可見光穿透光譜圖,電鍍參數分別為:工作電流0.03~0.05Amp、工作電壓1.25V;工作電流0.04~0.06Amp、工作電壓1.55V;工作電流0.06-0.09Amp、工作電壓3V,時間120sec所製備之薄膜,由圖中可以發現在鍍上ZnO薄膜後試片整體的穿透率已大幅降低且偏移的幅度也較氯化鋅所鍍製之薄膜還大,估計是因硝酸鋅薄膜表面粗糙度較高,使光線入射時在表面產生散射,也不排除是薄膜本身缺陷較多因而使穿透率大幅下降,與SEM圖進行對照後,發現穿透率最低的參數工作電壓3V薄膜膜厚是最厚的,故推測偏移的原因可能與薄膜的厚度與其結晶性有關,其中最高穿透率1.55V之參數,在可見光區的穿透率僅達66.32%,最高穿透率為72.91%,其他參數則隨膜厚厚度增加而降低穿透率,比較以硫酸鋅或氯化鋅所製備之ZnO薄 膜,其穿透性明顯較低,較不適用於緩衝層的應用。
圖25為以ZnCl2為電鍍液所製備ZnO薄膜的紫外光-可見光穿透光譜圖,電鍍參數分別為:工作電流0.03~0.05Amp、工作電壓1.25V;工作電流0.04~0.06Amp、工作電壓1.55V;工作電流0.06-0.09Amp、工作電壓3V,時間120sec所製備之ZnO薄膜,由圖中可以觀察到,以ZnCl2所鍍製之薄膜對ITO薄膜在400nm附近有些微的偏移,估計是ZnO結構與ITO能帶差異所造成,而在490nm高穿透點的偏移,則可能是ZnO薄膜的結晶性及厚度差異所造成,但比對以硫酸鋅鍍製之ZnO薄膜,其造成的偏移影響已明顯降低,且適當膜厚的ZnO鍍在ITO透明導電薄膜上仍能保持高穿透率,其中沉積工作電壓3V之薄膜穿透率較其他兩參數明顯降低,對照SEM圖可得知,ZnO薄膜的穿透率隨膜厚的增加而明顯降低,因Zn薄膜厚度較厚時,熱處理無法將Zn薄膜完全氧化成ZnO薄膜,薄膜底層仍殘存未完全氧化之Zn薄膜,且較高的沉積率可能使薄膜內部的缺陷增加,故隨膜厚的增加,穿透率會產生一個較大的下降幅度,且曲線偏移也會增加;由圖中顯示出ITO薄膜在鍍上ZnO薄膜後也能維持高穿透率,其中最高穿透率為參數1.55V鍍製之ZnO薄膜,在可見光區380nm~780nm區間可達86.5%的穿透率,且其最高穿透率可達91.7%。
圖1 銅銦鎵硒化合物薄膜太陽能電池示意圖
圖2(a)~2(b) 利用硝酸鋅電鍍於氧化鋅薄膜表面形貌圖與橫截面圖
圖3(a)~3(b) 利用硝酸鋅電鍍於氧化鋅薄膜表面形貌圖與橫截面圖
圖4(a)~4(b) 利用硝酸鋅電鍍於氧化鋅薄膜表面形貌圖與橫截面圖
圖5(a)~5(b) 利用硝酸鋅電鍍於氧化鋅薄膜表面形貌圖與橫截面圖
圖6(a)~6(b) 利用硝酸鋅電鍍於氧化鋅薄膜表面形貌圖與橫截面圖
圖7(a)~7(b) 利用硝酸鋅電鍍於氧化鋅薄膜表面形貌圖與橫截面圖
圖8(a)~8(b) 利用硝酸鋅電鍍於氧化鋅薄膜表面形貌圖與橫截面圖
圖9(a)~9(b) 利用硝酸鋅電鍍於氧化鋅薄膜表面形貌圖與橫截面圖
圖9(a)~9(b) 利用硝酸鋅電鍍於氧化鋅薄膜表面形貌圖與橫截面圖
圖10(a)~10(b) 利用硝酸鋅電鍍於氧化鋅薄膜表面形貌圖與橫截面圖
圖11(a)~11(b) 利用氯化鋅電鍍於氧化鋅薄膜表面形貌圖與橫截面圖
圖12(a)~12(b) 利用氯化鋅電鍍於氧化鋅薄膜表面形貌圖與橫截面圖
圖13(a)~13(b) 利用氯化鋅電鍍於氧化鋅薄膜表面形貌圖與橫截面圖
圖14(a)~14(b) 利用氯化鋅電鍍於氧化鋅薄膜表面形貌圖與橫截面圖
圖15(a)~15(b) 利用氯化鋅電鍍於氧化鋅薄膜表面形貌圖與橫截面圖
圖16(a)~16(b) 利用氯化鋅電鍍於氧化鋅薄膜表面形貌圖與橫截面圖
圖17(a)~17(b) 利用氯化鋅電鍍於氧化鋅薄膜表面形貌圖與橫截面圖
圖18(a)~18(b) 利用氯化鋅電鍍於氧化鋅薄膜表面形貌圖與橫截面圖
圖19(a)~19(b) 利用氯化鋅電鍍於氧化鋅薄膜表面形貌圖與橫截面圖
圖20(a)~20(b) 利用氯化鋅電鍍於氧化鋅薄膜表面形貌圖與橫截面圖
圖21(a)~21(b) 利用氯化鋅電鍍於氧化鋅薄膜表面形貌圖與橫截面圖
圖22 利用硝酸鋅電鍍氧化鋅薄膜之XRD圖譜
圖23 利用氯化鋅電鍍氧化鋅薄膜之XRD圖譜
圖24 利用硝酸鋅電鍍氧化鋅薄膜之紫外光-可見光穿透光譜圖
圖25 利用氯化鋅電鍍氧化鋅薄膜之紫外光-可見光穿透光譜圖
本發明薄膜太陽能電池之製作方法之基本例,是根據以下流程所製得。
首先,在一個鈉玻璃(soda lime-glass)基板上之一厚度為800nm的Mo層上,沉積一Cu-Ga-In三元合金層,並對該Cu-Ga-In三元合金層施予後硒 化處理(post-selenization),以製得一厚度為2μm的硒化銅銦鎵(CIGS)吸收層。進一步地,在PH值:5.5-6.5、工作電壓值:0.95V-3V、工作電流值:0.01-0.15Amp及電流密度值:0.1A-0.6A/dm2,電鍍液中硝酸鋅(Zn(NO)3)電鍍液濃度為0.05M,氯化鋅(ZnCl2)電鍍液濃度為0.55M,2.68M氯化鉀KCl、硼酸(H3BO3)濃度為0.05M,PH值:5.5,電沉積溫度為25℃,沉積時間為30-120sec的情況下生長,後續在300℃下熱處理(熱退火)30分鐘於該CIGS吸收層上沉積一厚度為5~150nm的ZnO緩衝層。
本發明薄膜太陽能電池之製作方法之基本例,是根據以下流程所製得。
首先,在一個鈉玻璃(soda lime-glass)基板上之一厚度為800nm的Mo層上,沉積一Cu-Ga-In三元合金層,並對該Cu-Ga-In三元合金層施予後硒化處理(post-selenization),以製得一厚度為2μm的硒化銅銦鎵(CIGS)吸收層。進一步地,PH值:5.5、工作電壓值:0.95V-3V、工作電流值:0.01-0.15Amp及電流密度值:0.1A-0.6A/dm2,電鍍液中硝酸鋅(Zn(NO)3)電鍍液濃度為0.05M,氯化鋅(ZnCl2)電鍍液濃度為0.55M,2.68M氯化鉀KCl、硼酸(H3BO3)濃度為0.05M,PH值:5.5,電沉積溫度為25℃,沉積時間為30-120sec的情況下生長,後續在300℃下熱處理(熱退火)30分鐘於該CIGS吸收層上沉積一厚度為5~150nm的ZnO緩衝層。
電鍍前之處理,稱之前處理(pretreatment),包括下列過程:洗淨:去除金屬表面之油質、脂肪、研磨劑,及污泥。可用噴射洗淨、溶劑洗淨、浸沒洗淨或電解洗淨。清洗:用冷或熱水洗淨過程之殘留洗淨 劑或污物。酸浸:去除銹垢或其他氧化物膜,要注意防止基材被腐蝕或產生氫脆。可加抑制劑以避免過度酸浸。酸浸完後要充份清洗。活化:促進鍍層附著性,可用各種酸溶液使金屬表面活化。漂清:電鍍前立刻去除酸膜,然後電鍍。
電鍍操作過程鍍架使用注意事項:鍍件需定位,與陽極保持相同距離,使電鍍層均勻,防止鍍液之帶出(drag-out)損失及帶入(drag-in)污染鍍液。鍍件安排要適當,要使氣泡容易逸出,稍傾斜放置鍍件。空間安排,避免鍍件相互遮蔽。堅固接觸,防止發燒、孤光等現象發生。 防止高電流密度的形成,如尖、邊緣、角等處必須適當應用絕緣罩或漏電裝置。使用陽極輔助裝置或雙極鍍架,應小心調整以確保適當電流分佈。鍍架應經常清洗,維持良好電流接觸,去除舌尖附著之金屬,塗層有損壞需之即修理、操作中隨時注意漏電,鍍浴帶出損失及帶入污染等現象。
鍍浴的成份及其功能金屬鹽:提供金屬離子之來源如硫酸銅。可分單鹽、鹽,及錯鹽。例如:單鹽:CuSO4;NiSO4,複鹽:NiSO4;(NH4)2SO4。醋鹽:Na2Cu(CN)3。導電鹽:提供導電度,如硫酸鹽、氯鹽,可降低能量花費、鍍液熱蒸發損失,尤其是滾桶電鍍更需優良導電溶液。 陽極溶解助劑。陽極有時會形成鈍態膜,不易補充金屬離,則需加陽極溶解助劑。例如鍍鎳時加氯鹽。緩衝劑,電鍍條件通常有一定pH值範圍,防止pH值變動加緩衝劑,尤其是中性鍍浴(pH5~8),pH值控制更為重要。 錯合劑,很多情況,錯鹽的鍍層比單鹽的鍍層優良,防止置換沈積,如鐵上鍍銅,則需用錯合劑,或是合金電鍍用錯合劑使不同之合金屬電位 拉近才能同時沈積得到合金鍍層。安定劑,鍍浴有些會因某些作用,產生金屬鹽沈澱,鍍浴壽命減短,為使鍍浴安定所加之藥品稱之為安定劑。 鍍層性質改良添加劑,例如小孔防止劑、硬度調節劑、澤劑等改變鍍層的物理化學特性之添加劑。潤濕劑(wetting agent),一般為界面活性劑又稱去孔劑。
本發明薄膜太陽能電池之製作方法第1比較例,是根據以下流程所製得。首先,在一個鈉玻璃(soda lime-glass)基板上之一厚度為800nm的Mo層上,沉積一Cu-Ga-In三元合金層,並對該Cu-Ga-In三元合金層施予後硒化處理(post-selenization),以製得一厚度為2μm的硒化銅銦鎵(CIGS)吸收層。將該CIGS吸收層浸泡在一溫度為5~55℃且酸鹼值為5~10的0~0.5M的InCl3中1~600秒鐘,以於該CIGS吸收層上形成一界面層。進一步地,在PH值:5.5-6.5、工作電壓值:0.95V-3V、工作電流值:0.01-0.15Amp及電流密度值:0.1A-0.6A/dm2,電鍍液中硝酸鋅(Zn(NO)3)電鍍液濃度為0.05M,氯化鋅(ZnCl2)電鍍液濃度為0.55M,2.68M氯化鉀KCl、硼酸(H3BO3)濃度為0.05M,PH值:5.5,電沉積溫度為25℃,沉積時間為30-120sec的情況下生長,後續在300℃下熱處理(熱退火)30分鐘於該CIGS吸收層上沉積一厚度為5~150nm的ZnO緩衝層。此外,亦可形成一InCl3界面層在ZnO緩衝層的上側,使得InCl3界面層可以同時位於ZnO緩衝層的兩側,由於上側InCl3界面層未經300℃下熱處理,係為非晶相。
下表是以InCl3作為本發明中間界面層之綜合結果
本發明薄膜太陽能電池之製作方法第2比較例,是根據以下流程所製得。首先,在一個鈉玻璃(soda lime-glass)基板上之一厚度為800nm的Mo層上,沉積一Cu-Ga-In三元合金層,並對該Cu-Ga-In三元合金層施予後硒化處理(post-selenization),以製得一厚度為2μm的硒化銅銦鎵(CIGS)吸收層。將該CIGS吸收層浸泡在一溫度為5~55℃且酸鹼值為5~10的0~0.5M的InF3中1~600秒鐘,以於該CIGS吸收層上形成一界面層。進一步地,在PH值:5.5-6.5、工作電壓值:0.95V-3V、工作電流值:0.01-0.15Amp及電流密度值:0.1A-0.6A/dm2,電鍍液中硝酸鋅 (Zn(NO)3)電鍍液濃度為0.05M,氯化鋅(ZnCl2)電鍍液濃度為0.55M,2.68M氯化鉀KCl、硼酸(H3BO3)濃度為0.05M,PH值:5.5,電沉積溫度為25℃,沉積時間為30-120sec的情況下生長,後續在300℃下熱處理(熱退火)30分鐘於該CIGS吸收層上沉積一厚度為5~150nm的ZnO緩衝層。此外,亦可形成一InF3界面層在ZnO緩衝層的上側,使得InF3界面層可以同時位於ZnO緩衝層的兩側,由於上側InF3界面層未經300℃下熱處理,係為非晶相。
下表是以InF3作為中間界面層之本發明綜合結果
本發明薄膜太陽能電池之製作方法第3比較例,是根據以下流程所製得。首先,在一個鈉玻璃(soda lime-glass)基板上之一厚度為800nm的Mo層上,沉積一Cu-Ga-In三元合金層,並對該Cu-Ga-In三元合金層施予後硒化處理(post-selenization),以製得一厚度為2μm的硒化銅銦鎵(CIGS)吸收層。將該CIGS吸收層浸泡在一溫度為5~55℃且酸鹼值為5~10的0~0.5M的In2S3中1~600秒鐘,以於該CIGS吸收層上形成一界面層。進一步地,在PH值:5.5-6.5、工作電壓值:0.95V-3V、工作電流值:0.01-0.15Amp及電流密度值:0.1A-0.6A/dm2,電鍍液中硝酸鋅(Zn(NO)3)電鍍液濃度為0.05M,氯化鋅(ZnCl2)電鍍液濃度為0.55M,2.68M氯化鉀KCl、硼酸(H3BO3)濃度為0.05M,PH值:5.5,電沉積溫度為25℃,沉積時間為30-120sec的情況下生長,後續在300℃下熱處理(熱退火)30分鐘於該CIGS吸收層上沉積一厚度為5~150nm的ZnO緩衝層。此外,亦可形成一In2S3界面層在ZnO緩衝層的上側,使得In2S3界面層可以同時位於ZnO緩衝層的兩側,由於上側In2S3界面層未經300℃下熱處理,係為非晶相。
下表是以In2S 3作為中間界面層之本發明綜合結果
本發明薄膜太陽能電池之製作方法第4比較例,是根據以下流程所製得。首先,在一個鈉玻璃(soda lime-glass)基板上之一厚度為800nm的Mo層上,沉積一Cu-Ga-In三元合金層,並對該Cu-Ga-In三元合金層施予後硒化處理(post-selenization),以製得一厚度為2μm的硒化銅銦鎵(CIGS)吸收層。將該CIGS吸收層浸泡在一溫度為5~55℃且酸鹼值為5~10的0~0.5M的In2O3中1~600秒鐘,以於該CIGS吸收層上形成一界面層。進一步地,在PH值:5.5-6.5、工作電壓值:0.95V-3V、工作電流值:0.01-0.15Amp及電流密度值:0.1A-0.6A/dm2,電鍍液中硝酸鋅 (Zn(NO)3)電鍍液濃度為0.05M,氯化鋅(ZnCl2)電鍍液濃度為0.55M,2.68M氯化鉀KCl、硼酸(H3BO3)濃度為0.05M,PH值:5.5,電沉積溫度為25℃,沉積時間為30-120sec的情況下生長,後續在300℃下熱處理(熱退火)30分鐘於該CIGS吸收層上沉積一厚度為5~150nm的ZnO緩衝層。此外,亦可將形成一In2O3界面層在ZnO緩衝層的上側,使得In2O3界面層可以同時位於ZnO緩衝層的兩側,由於上側In2O3界面層未經300℃下熱處理,係為非晶相。
下表是以In2O3作為中間界面層之本發明綜合結果
本發明薄膜太陽能電池之製作方法第5比較例,是根據以下流程所製得。首先,在一個鈉玻璃(soda lime-glass)基板上之一厚度為800nm的Mo層上,沉積一Cu-Ga-In三元合金層,並對該Cu-Ga-In三元合金層施予後硒化處理(post-selenization),以製得一厚度為2μm的硒化銅銦鎵(CIGS)吸收層。將該CIGS吸收層浸泡在一溫度為5~55℃且酸鹼值為5~10的0~0.5M的Ga2O3中1~600秒鐘,以於該CIGS吸收層上形成一界面層。進一步地,在PH值:5.5-6.5、工作電壓值:0.95V-3V、工作電流值:0.01-0.15Amp及電流密度值:0.1A-0.6A/dm2,電鍍液中硝酸鋅(Zn(NO)3)電鍍液濃度為0.05M,氯化鋅(ZnCl2)電鍍液濃度為0.55M,2.68M氯化鉀KCl、硼酸(H3BO3)濃度為0.05M,PH值:5.5,電沉積溫度為25℃,沉積時間為30-120sec的情況下生長,後續在300℃下熱處理(熱退火)30分鐘於該CIGS吸收層上沉積一厚度為5~150nm的ZnO緩衝層。此外,亦可形成一Ga2O3界面層在ZnO緩衝層的上側,使得Ga2O3界面層可以同時位於ZnO緩衝層的兩側,由於上側Ga2O3界面層未經300℃下熱處理,係為非晶相。
下表是以Ga2O3作為中間界面層之本發明綜合結果
本發明薄膜太陽能電池之製作方法第6比較例,是根據以下流程所製得。首先,在一個鈉玻璃(soda lime-glass)基板上之一厚度為800nm的Mo層上,沉積一Cu-Ga-In三元合金層,並對該Cu-Ga-In三元合金層施予後硒化處理(post-selenization),以製得一厚度為2μm的硒化銅銦鎵(CIGS)吸收層。將該CIGS吸收層浸泡在一溫度為5~55℃且酸鹼值為5~10的0~0.5M的Ga2S3中1~600秒鐘,以於該CIGS吸收層上形成一界面層。進一步地,在PH值:5.5-6.5、工作電壓值:0.95V-3V、工作電流值:0.01-0.15Amp及電流密度值:0.1A-0.6A/dm2,電鍍液中硝酸鋅 (Zn(NO)3)電鍍液濃度為0.05M,氯化鋅(ZnCl2)電鍍液濃度為0.55M,2.68M氯化鉀KCl、硼酸(H3BO3)濃度為0.05M,PH值:5.5,電沉積溫度為25℃,沉積時間為30-120sec的情況下生長,後續在300℃下熱處理(熱退火)30分鐘於該CIGS吸收層上沉積一厚度為5~150nm的ZnO緩衝層。此外,亦可形成一Ga2S3界面層在ZnO緩衝層的上側,使得Ga2S3界面層可以同時位於ZnO緩衝層的兩側,由於上側Ga2S3界面層未經300℃下熱處理,係為非晶相。
下表是以Ga2S3作為中間界面層之本發明綜合結果
本發明薄膜太陽能電池之製作方法第7比較例,是根據 以下流程所製得。首先,在一個鈉玻璃(soda lime-glass)基板上之一厚度為800nm的Mo層上,沉積一Cu-Ga-In三元合金層,並對該Cu-Ga-In三元合金層施予後硒化處理(post-selenization),以製得一厚度為2μm的硒化銅銦鎵(CIGS)吸收層。將該CIGS吸收層浸泡在一溫度為5~55℃且酸鹼值為5~10的0~0.5M的Ga2F3中1~600秒鐘,以於該CIGS吸收層上形成一界面層。進一步地,在PH值:5.5-6.5、工作電壓值:0.95V-3V、工作電流值:0.01-0.15Amp及電流密度值:0.1A-0.6A/dm2,電鍍液中硝酸鋅(Zn(NO)3)電鍍液濃度為0.05M,氯化鋅(ZnCl2)電鍍液濃度為0.55M,2.68M氯化鉀KCl、硼酸(H3BO3)濃度為0.05M,PH值:5.5,電沉積溫度為25℃,沉積時間為30-120sec的情況下生長,後續在300℃下熱處理(熱退火)30分鐘於該CIGS吸收層上沉積一厚度為5~150nm的ZnO緩衝層。此外,亦可形成一Ga2F3界面層在ZnO緩衝層的上側,使得Ga2F3界面層可以同時位於ZnO緩衝層的兩側,由於上側Ga2F3界面層未經300℃下熱處理,係為非晶相。
下表是以Ga2F3作為中間界面層之本發明綜合結果
本發明薄膜太陽能電池之製作方法第8比較例,是根據以下流程所製得。首先,在一個鈉玻璃(soda lime-glass)基板上之一厚度為800nm的Mo層上,沉積一Cu-Ga-In三元合金層,並對該Cu-Ga-In三元合金層施予後硒化處理(post-selenization),以製得一厚度為2μm的硒化銅銦鎵(CIGS)吸收層。將該CIGS吸收層浸泡在一溫度為5~55℃且酸鹼值為5~10的0~0.5M的GaCl3中1~600秒鐘,以於該CIGS吸收層上形成一界面層。進一步地,在PH值:5.5-6.5、工作電壓值:0.95V-3V、工作電流值:0.01-0.15Amp及電流密度值: 0.1A-0.6A/dm2,電鍍液中硝酸鋅(Zn(NO)3)電鍍液濃度為0.05M,氯化鋅(ZnCl2)電鍍液濃度為0.55M,2.68M氯化鉀KCl、硼酸(H3BO3)濃度為0.05M,PH值:5.5,電沉積溫度為25℃,沉積時間為30-120sec的情況下生長,後續在300℃下熱處理(熱退火)30分鐘於該CIGS吸收層上沉積一厚度為5~150nm的ZnO緩衝層。此外,亦可形成一GaCl3界面層在ZnO緩衝層的上側,使得GaCl3界面層可以同時位於ZnO緩衝層的兩側,由於上側GaCl3界面層未經300℃下熱處理,係為非晶相。
下表是以GaCl3作為中間界面層之本發明綜合結果
發明薄膜太陽能電池之製作方法第9比較例,是根據以下流程所製得。首先,在一個鈉玻璃(soda lime-glass)基板上之一厚度為800nm的Mo層上,沉積一Cu-Ga-In三元合金層,並對該Cu-Ga-In三元合金層施予後硒化處理(post-selenization),以製得一厚度為2μm的硒化銅銦鎵(CIGS)吸收層。將該CIGS吸收層浸泡在一溫度為5~55℃且酸鹼值為5~10的0~0.1M的CuCl2或CuCl中1~600秒鐘,以於該CIGS吸收層上形成一界面層。進一步地,在PH值:5.5-6.5、工作電壓值:0.95V-3V、工作電流值:0.01-0.15Amp及電流密度值:0.1A-0.6A/dm2,電鍍液中硝酸鋅(Zn(NO)3)電鍍液濃度為0.05M,氯化鋅(ZnCl2)電鍍液濃度為0.55M,2.68M氯化鉀KCl、硼酸(H3BO3)濃度為0.05M,PH值:5.5,電沉積溫度為25℃,沉積時間為30-120sec的情況下生長,後續在300℃下熱處理(熱退火)30分鐘於該CIGS吸收層上沉積一厚度為5~150nm的ZnO緩衝層。此外,亦可形成一CuCl2或CuCl界面層在ZnO緩衝層的上側,使得CuCl2或CuCl界面層可以同時位於ZnO緩衝層的兩側,由於上側CuCl2或CuCl界面層未經300℃下熱處理,係為非晶相。
下表是以CuCl2作為中間界面層之本發明綜合結果
發明薄膜太陽能電池之製作方法第10比較例,是根據以下流程所製得。首先,在一個鈉玻璃(soda lime-glass)基板上之一厚度為800nm的Mo層上,沉積一Cu-Ga-In三元合金層,並對該Cu-Ga-In三元合金層施予後硒化處理(post-selenization),以製得一厚度為2μm的硒化銅銦鎵(CIGS)吸收層。將該CIGS吸收層浸泡在一溫度為5~55℃且酸鹼值為5~10的0~0.1M的CuF2中1~600秒鐘,以於該CIGS吸收層上形成一界面層。進一步地,在PH值:5.5-6.5、工作電壓值:0.95V-3V、工作電流值:0.01-0.15Amp及電流密度值:0.1A-0.6A/dm2,電鍍液中硝酸鋅 (Zn(NO)3)電鍍液濃度為0.05M,氯化鋅(ZnCl2)電鍍液濃度為0.55M,2.68M氯化鉀KCl、硼酸(H3BO3)濃度為0.05M,PH值:5.5,電沉積溫度為25℃,沉積時間為30-120sec的情況下生長,後續在300℃下熱處理(熱退火)30分鐘於該CIGS吸收層上沉積一厚度為5~150nm的ZnO緩衝層。此外,亦可形成一CuF2界面層在ZnO緩衝層的上側,使得CuF2界面層可以同時位於ZnO緩衝層的兩側,由於上側CuF2界面層未經300℃下熱處理,係為非晶相。
下表是以CuF2作為中間界面層之本發明綜合結果
發明薄膜太陽能電池之製作方法第10比較例,是根據以 下流程所製得。首先,在一個鈉玻璃(soda lime-glass)基板上之一厚度為800nm的Mo層上,沉積一Cu-Ga-In三元合金層,並對該Cu-Ga-In三元合金層施予後硒化處理(post-selenization),以製得一厚度為2μm的硒化銅銦鎵(CIGS)吸收層。將該CIGS吸收層浸泡在一溫度為5~55℃且酸鹼值為5~10的0~0.1M的Cu2O中1~600秒鐘,以於該CIGS吸收層上形成一界面層。進一步地,在PH值:5.5-6.5、工作電壓值:0.95V-3V、工作電流值:0.01-0.15Amp及電流密度值:0.1A-0.6A/dm2,電鍍液中硝酸鋅(Zn(NO)3)電鍍液濃度為0.05M,氯化鋅(ZnCl2)電鍍液濃度為0.55M,2.68M氯化鉀KCl、硼酸(H3BO3)濃度為0.05M,PH值:5.5,電沉積溫度為25℃,沉積時間為30-120sec的情況下生長,後續在300℃下熱處理(熱退火)30分鐘於該CIGS吸收層上沉積一厚度為5~150nm的ZnO緩衝層。此外,亦可形成一Cu2O界面層在ZnO緩衝層的上側,使得Cu2O界面層可以同時位於ZnO緩衝層的兩側,由於上側Cu2O界面層未經300℃下熱處理,係為非晶相。
下表是以Cu2O作為中間界面層之本發明綜合結果
發明薄膜太陽能電池之製作方法第11比較例,是根據以下流程所製得。首先,在一個鈉玻璃(soda lime-glass)基板上之一厚度為800nm的Mo層上,沉積一Cu-Ga-In三元合金層,並對該Cu-Ga-In三元合金層施予後硒化處理(post-selenization),以製得一厚度為2μm的硒化銅銦鎵(CIGS)吸收層。將該CIGS吸收層浸泡在一溫度為5~55℃且酸鹼值為5~10的0~0.1M的Cu2S中1~600秒鐘,以於該CIGS吸收層上形成一界面層。進一步地,在PH值:5.5-6.5、工作電壓值:0.95V-3V、工作電流值:0.01-0.15Amp及電流密度值:0.1A-0.6A/dm2,電鍍液中硝酸鋅 (Zn(NO)3)電鍍液濃度為0.05M,氯化鋅(ZnCl2)電鍍液濃度為0.55M,2.68M氯化鉀KCl、硼酸(H3BO3)濃度為0.05M,PH值:5.5,電沉積溫度為25℃,沉積時間為30-120sec的情況下生長,後續在300℃下熱處理(熱退火)30分鐘於該CIGS吸收層上沉積一厚度為5~150nm的ZnO緩衝層。此外,亦可形成一Cu2S界面層在ZnO緩衝層的上側,使得Cu2S界面層可以同時位於ZnO緩衝層的兩側,由於上側Cu2S界面層未經300℃下熱處理,係為非晶相。
下表是以Cu2S作為中間界面層之本發明綜合結果
綜上所述,本發明薄膜太陽能電池之製作方法,利用上述 表面改質步驟以在該吸收層上預先形成該中間界面層,使得該吸收層表面的缺陷可由該表面改質溶液中的不同離子所填補或修復,從而降低pn異質接面間的缺陷密度,在免除掉環境污染問題的前提下,亦能同時減少時間成本上的耗損,故確實能達成本發明之目的。惟以上所述者,僅為本發明之較佳實施例與具體例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。

Claims (3)

  1. 一種銅銦鎵硒薄膜太陽能電池,包括:一基板上之一之金屬電極層,一銅銦鎵硒薄膜位於一金屬電極層之上,一氧化鋅緩衝層位於銅銦鎵硒薄膜之上,一透明導電層位於氧化鋅緩衝層之上,一中間界面層同時位於氧化鋅緩衝層的兩側,而其中一側之中間界面層為非晶相。
  2. 如申請專利範圍第1項之銅銦鎵硒薄膜太陽能電池,其中:中間界面層化和物可以選自下面一項化和物InF3、InCl3、In2O3、Ga2O3、Ga2F3、GaCl3、CuCl2、CuF2、Cu2O或Cu2S。
  3. 如申請專利範圍第2項之銅銦鎵硒薄膜太陽能電池,其中:中間界面層化和物之厚度為10~1000nm。
TW104125742A 2015-08-07 2015-08-07 薄膜太陽能電池氧化鋅緩衝層結構及製程 TWI620335B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104125742A TWI620335B (zh) 2015-08-07 2015-08-07 薄膜太陽能電池氧化鋅緩衝層結構及製程

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104125742A TWI620335B (zh) 2015-08-07 2015-08-07 薄膜太陽能電池氧化鋅緩衝層結構及製程

Publications (2)

Publication Number Publication Date
TW201613121A TW201613121A (en) 2016-04-01
TWI620335B true TWI620335B (zh) 2018-04-01

Family

ID=56360951

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104125742A TWI620335B (zh) 2015-08-07 2015-08-07 薄膜太陽能電池氧化鋅緩衝層結構及製程

Country Status (1)

Country Link
TW (1) TWI620335B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117012851B (zh) * 2023-07-10 2024-02-13 中国科学院国家空间科学中心 利用月壤原位制造cigs太阳能薄膜电池并使用其供电的系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102099929A (zh) * 2008-05-19 2011-06-15 法国圣戈班玻璃厂有限公司 用于太阳能电池的层系统
TW201440234A (zh) * 2013-12-13 2014-10-16 Nat Univ Chin Yi Technology 薄膜太陽能電池緩衝層結構及製程
TW201515255A (zh) * 2013-10-08 2015-04-16 Tsmc Solar Ltd 光伏裝置及其製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102099929A (zh) * 2008-05-19 2011-06-15 法国圣戈班玻璃厂有限公司 用于太阳能电池的层系统
TW201515255A (zh) * 2013-10-08 2015-04-16 Tsmc Solar Ltd 光伏裝置及其製造方法
TW201440234A (zh) * 2013-12-13 2014-10-16 Nat Univ Chin Yi Technology 薄膜太陽能電池緩衝層結構及製程

Also Published As

Publication number Publication date
TW201613121A (en) 2016-04-01

Similar Documents

Publication Publication Date Title
Jiang et al. Pure Sulfide Cu 2 ZnSnS 4 Thin Film Solar Cells Fabricated by Preheating an Electrodeposited Metallic Stack.
US10655237B2 (en) Method and chemistry for selenium electrodeposition
US9234291B2 (en) Zinc thin films plating chemistry and methods
Jeon et al. Formation and characterization of single-step electrodeposited Cu2ZnSnS4 thin films: Effect of complexing agent volume
Kondrotas et al. Characterization of Cu2ZnSnSe4 solar cells prepared from electrochemically co-deposited Cu–Zn–Sn alloy
Lakhe et al. Characterization of electrochemically deposited CuInTe2 thin films for solar cell applications
US8187913B2 (en) Process for producing photoelectric conversion devices
CN101824638B (zh) 一种电化学沉积铜锌锡硒半导体薄膜材料的方法
CN103060861A (zh) 一种铜锌锡硫薄膜的共电沉积制备方法
US20070151862A1 (en) Post deposition treatments of electrodeposited cuinse2-based thin films
Layachi et al. Investigation of nucleation and growth mechanism of Cu2ZnSnS4 absorber layer electrodeposition on Indium Tin Oxide coated glass
Georgieva et al. Low cost solar cells based on cuprous oxide
TWI620335B (zh) 薄膜太陽能電池氧化鋅緩衝層結構及製程
Chaudhari et al. Pulsed electrodeposition of Cu2ZnSnS4 absorber layer precursor for photovoltaic application
US20110186125A1 (en) Process for producing electrically conductive zinc oxide layered films and process for producing photoelectric conversion devices
El Bahi et al. Electrochemical deposition mechanism of copper-zinc-tin alloy and structural characterization
Ray Electrodeposition of thin films for low-cost solar cells
US20110186124A1 (en) Electrically conductive zinc oxide layered film and photoelectric conversion device comprising the same
Arreguín-Campos et al. Fabrication of CdS/CdTe Heterostructures by Chemical Synthesis Using ap-Type CdTe Film Grown by Electrodeposition Employing EDTA as Strong Complexing Agent
Kanuru et al. Surface morphological studies of solar absorber layer Cu2ZnSnS4 (CZTS) thin films by non-vacuum deposition methods
TW201427054A (zh) 光電變換元件及其製造方法、光電變換元件的緩衝層的製造方法與太陽電池
TWI496304B (zh) 太陽能電池與其形成方法及n型ZnS層的形成方法
Munn et al. Fabrication of CZTS-based thin film solar cells using all-solution processing and pulsed light crystallization
TWI488312B (zh) Structure and Process of Thin - film Solar Cell Buffer Layer
Perelstein et al. Different routes of fixed pH to electrodeposit Cu2ZnSnS4 for photovoltaic devices

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees