WO2011152261A1 - 欠陥検査方法およびその装置 - Google Patents

欠陥検査方法およびその装置 Download PDF

Info

Publication number
WO2011152261A1
WO2011152261A1 PCT/JP2011/061953 JP2011061953W WO2011152261A1 WO 2011152261 A1 WO2011152261 A1 WO 2011152261A1 JP 2011061953 W JP2011061953 W JP 2011061953W WO 2011152261 A1 WO2011152261 A1 WO 2011152261A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
light
unit
sample
divided
Prior art date
Application number
PCT/JP2011/061953
Other languages
English (en)
French (fr)
Inventor
本田 敏文
雄太 浦野
芝田 行広
敏之 中尾
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to US13/701,030 priority Critical patent/US8711347B2/en
Publication of WO2011152261A1 publication Critical patent/WO2011152261A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8854Grading and classifying of flaws
    • G01N2021/8874Taking dimensions of defect into account

Definitions

  • the present invention relates to a defect inspection method and apparatus for inspecting a minute defect existing on a sample surface, determining a defect type and a defect size, and outputting the result.
  • Patent Document 1 JP-A-9-304289
  • Patent Document 2 JP-A-2006-201179
  • Patent Document 3 US Patent Application Publication No. 2006/0256325
  • the illumination light is condensed and irradiated on the sample surface to a size of several tens of ⁇ m, and the scattered light from the defect is collected and detected, and several tens nm to several ⁇ m or more.
  • Patent Document 1 and Patent Document 2 describe a technique for classifying the types of defects based on the ratio of components emitted at high angles and components emitted at low angles of scattered light from defects.
  • Patent Document 2 describes a technique for calculating the size of a detected defect based on the intensity of scattered light from the defect.
  • Patent Document 3 describes that the power of illumination light, the scanning speed of the illumination spot, or the size of the illumination spot is controlled while inspecting the surface to be inspected in order to reduce thermal damage to the sample. . More specifically, it is assumed that the thermal damage to the sample is determined by the product of the illumination power density to be irradiated and the irradiation time, and the illumination is performed according to the radial position on the sample during scanning so that this does not exceed a certain value. It is stated that the light power, the scanning speed of the illumination spot, or the size of the illumination spot is changed.
  • Patent Document 4 As a technique for inspecting the entire surface of a specimen in a short time by illuminating a wide area on the specimen with a Gaussian beam that is long in one direction and detecting the illumination area at once using a multi-pixel detector such as a CCD. US Pat. No. 6,608,676 (Patent Document 4) is known.
  • Patent Document 5 in short wavelength laser illumination, many high-power lasers are pulsed lasers, and the optical path is divided in order to reduce the thermal damage of the sample due to the rapid temperature rise of the sample due to this instantaneous light emission.
  • a technique for reducing damage to a sample by dividing a pulse using the difference in optical path length is described.
  • Defect inspection used in the manufacturing process of semiconductors, etc. detects minute defects, measures the size of the detected defects with high accuracy, and inspects the sample non-destructively (or without altering the sample)
  • a constant inspection result number of detected defects, position, size, defect type
  • a constant inspection result is always obtained when the same sample is inspected, and it is required to inspect a large number of samples within a predetermined time.
  • Patent Document 1 Patent Document 2, and Patent Document 4 particularly for a minute defect having a size of 20 nm or less, scattered light generated from the defect becomes extremely weak, and noise caused by scattered light generated on the sample surface. , Because the defect signal is buried in the noise of the detector or the noise of the detection circuit, the detection becomes impossible. Alternatively, when the illumination power is increased to avoid this, the temperature rise of the sample due to the illumination light increases and thermal damage to the sample occurs. Alternatively, if the scanning speed of the sample is reduced to avoid this, the area of the sample or the number of samples that can be inspected within a certain time decreases. From the above, it was difficult to detect minute defects at high speed while avoiding thermal damage.
  • Patent Document 3 reduces the thermal damage near the sample center as compared with the conventional technique by changing the illumination power in proportion to the radial position on the sample.
  • the aim was to improve the defect detection sensitivity at the outer periphery of the sample while suppressing the thermal damage in the vicinity to the same level as the prior art.
  • This technique had the following problems because it assumed that thermal damage was proportional to the product of irradiation power density and irradiation time.
  • thermal damage is particularly overestimated in the center of the sample with a long irradiation time. For this reason, the illumination power is reduced more than necessary at the center of the sample, and the defect detection sensitivity is reduced.
  • the illumination power in order not to cause thermal damage on the entire surface of the sample, it is necessary to define the illumination power to be input on the basis that no damage occurs at the center of the sample where the thermal damage is maximum.
  • the scanning speed linear velocity
  • the calculated irradiation time diverges infinitely, and the above assumptions cannot quantitatively estimate thermal damage, and the illumination power could not be prescribed.
  • the illumination power in order to ensure that no thermal damage occurs in the center, the illumination power needs to be zero, and the center cannot be inspected.
  • the pulse duration is often about 15 ps.
  • the distance that the sample moves between is about 0.23 nm, and it can move only a much smaller distance than the optical resolution.
  • the region irradiated in one pulse emission is almost determined not by the moving speed of the position where the illumination is irradiated but by the region of the beam spot. For this reason, the damage to the sample due to an instantaneous temperature rise hardly changes depending on the radial position of the sample.
  • Patent Document 5 divides an optical path into a plurality of paths by a polarizing beam splitter, guides the light to optical paths having different optical path lengths, and guides the light to the polarizing beam splitter again by a time difference when passing through the optical path.
  • the pulses were divided by shifting the arrival timing of the pulses when integrating them.
  • the integration of the optical path by this polarization beam splitter has a configuration in which half of the light intensity is shielded by a beam trap in order to illuminate with linearly polarized light because the integrated light has different polarization directions. It was. For this reason, a laser light source with a higher output is required to irradiate the sample with the same amount of light.
  • An object of the present invention is to provide a defect inspection method and apparatus capable of scanning a sample entire surface in a short time and detecting a minute defect without causing thermal damage to the sample.
  • the light branching means comprising a light splitting means, a delay optical path, and a light integrating means, wherein the light after returning to the common optical path passes through the light splitting means again.
  • the dividing means After passing through the dividing means, it is provided with an optical axis adjusting means for enlarging the beam to increase the absolute amount of beam axis deviation and suppressing the angle variation of each beam, and a condensing means arranged at the subsequent stage.
  • the entire pulse dividing means is put in a sealed container, and the container is filled with an inert gas such as nitrogen. It is characterized by that.
  • the present invention illuminates the collected light on the sample, detects the reflected light and scattered light with an optical sensor, and the light detected by the sensor causes uneven pulse intensity variations generated by the pulse dividing means.
  • a high-frequency signal removal circuit sufficient to suppress variations in pulses generated by the pulse dividing means based on the emission intensity is provided.
  • the present invention is characterized in that a defect is detected with a large signal value in a high frequency band among signals that have passed through the high frequency elimination circuit.
  • the defect inspection apparatus includes a table unit that can be rotated by placing a sample, a light source unit that emits a pulse laser, and a pulse emitted from the light source unit.
  • the illumination optical system means for illuminating the sample placed on the table means with the pulse-divided pulse laser, and the sample illuminated with the laser pulse-divided by the illumination optical system means
  • Detection optical system means for detecting reflected light of the sample
  • signal processing means for detecting a defect on the sample by processing an output signal from the detection optical system means for detecting the reflected light, and processing by the signal processing means
  • Output means for outputting a result to a display screen
  • the illumination optical system means comprising: a pulse dividing unit for pulse-dividing the pulse laser emitted from the light source means;
  • a first beam monitoring unit that monitors the barycentric position of the light intensity of the pulse-divided pulse laser emitted from the unit, and the barycentric position of the light intensity of the pulse-divided pulse laser monitored by the first beam monitoring unit
  • a light intensity gravity center position adjustment unit for adjusting the light intensity.
  • the present invention divides a pulse laser emitted from a light source into pulses, and irradiates the surface of a sample moving in one direction while rotating the pulsed pulse laser. , Detecting reflected light from the sample irradiated with the pulse-divided pulse laser, processing the signal detecting the reflected light to detect defects on the sample, and displaying information on the detected defects
  • the defect inspection method for outputting to the screen the barycentric position of the light intensity of the pulse-divided pulse laser is monitored, and the barycentric position of the light intensity of the monitored pulse-divided pulse laser is adjusted.
  • the entire surface of the sample can be scanned in a short time, and minute defects can be detected without causing thermal damage to the sample.
  • the illumination unit 101 includes a laser light source 2, an attenuator 3, an emitted light adjustment unit 4, a pulse division unit 8, a light beam enlargement unit 5, a polarization control unit 6, and an illumination collection control unit 7.
  • the laser light source 2 is a pulsed or quasi-continuous laser, and typically has a light emission time of 15 ps or less, and outputs pulsed light at intervals of 10 ns.
  • the laser light source 2 emits collimated laser light. If the emitted light is a laser light source that is not collimated light, a separate collimator lens is provided to collimate the illumination.
  • the laser light beam emitted from the laser light source 2 is adjusted to a desired beam intensity by the attenuator 3, adjusted to a desired beam position and beam traveling direction by the emitted light adjustment unit 4, and a pulse-shaped laser by the pulse dividing unit 8.
  • One pulse of light is divided into a plurality of time-divided pulses. This light beam is expanded by the light beam expanding unit 5 and the directional variation of the light beam of each pulse divided by the pulse dividing unit is reduced, adjusted to a desired polarization state by the polarization control unit 6, and the illumination condensing control unit 7 is adjusted to a desired intensity distribution, and the inspection target area of the sample W is illuminated.
  • the pulse splitting unit 8 which is a feature of the present invention, expands the beam in each light beam expanding unit 5, while the variation in the angle direction of the optical axis of each time-divided pulsed light is the light collection performance in the illumination light collection control unit 7. Reduce. For this reason, it is important to have a configuration in which the light beam expanding unit 5 is provided after the pulse dividing unit.
  • the illumination shape on the sample is generally a rectangular shape with a high aspect ratio to minimize damage to heat.
  • the illumination condensing control section 7 typically shapes the illumination light beam with two sets of anamorphic prisms 71 and 72 and then illuminates with the condensing lens 73.
  • a diffractive optical element may be used instead of the condenser lens 73.
  • the incident angle of the illumination light with respect to the sample surface is determined by the position and angle of the reflection mirror 33 in the optical path of the illumination unit 101.
  • the incident angle of the illumination light is set to an angle suitable for detecting minute defects.
  • the larger the illumination incident angle that is, the smaller the illumination elevation angle (the angle formed by the sample surface and the illumination optical axis), the more the scattering from the micro unevenness of the sample surface that becomes noise with respect to the scattered light from the micro foreign matter on the sample surface Since light (called haze) is weakened, it is suitable for detecting minute defects. For this reason, when the scattered light from the minute irregularities on the sample surface hinders detection of minute defects, the incident angle of the illumination light is set to 75 degrees or more (elevation angle of 15 degrees or less).
  • the smaller the illumination incident angle in oblique illumination the larger the absolute amount of scattered light from the minute foreign matter. Therefore, if the insufficient amount of scattered light from the defect hinders detection of the minute defect, the incident angle of the illumination light Is set to 60 degrees to 75 degrees (elevation angle 15 degrees to 30 degrees).
  • the polarization control in the polarization controller 6 of the illumination unit 101 changes the illumination polarization to P-polarized light, which increases the scattered light from defects on the sample surface compared to other polarized light. To do.
  • the mirror 31 is inserted into the optical path of the illuminating unit 101 by the driving means of the mirror 31 (not shown), whereby the illumination optical path is changed and illumination light is irradiated from a direction perpendicular to the sample surface (vertical illumination). ).
  • the illumination intensity distribution on the sample surface is controlled by the illumination condensing controller 7v in the same manner as the oblique incidence illumination.
  • vertical illumination that is substantially perpendicularly incident on the sample surface is suitable.
  • an ultraviolet or vacuum ultraviolet laser beam having a short wavelength (wavelength of 355 nm or less) is oscillated with a wavelength that is difficult to penetrate into the sample, and the output is 2 W.
  • the above high output is used.
  • the outgoing beam diameter is about 1 mm.
  • those that oscillate a visible or infrared laser beam with a wavelength that easily penetrates into the sample are used.
  • the attenuator 3 includes a first polarizing plate 31, a half-wave plate 32 that can rotate around the optical axis of illumination light, and a second polarizing plate 33.
  • the light incident on the attenuator 3 is converted into linearly polarized light by the first polarizing plate 31, and the polarization direction is rotated in an arbitrary direction according to the slow axis azimuth angle of the half-wave plate 32, and the second polarized light Passes through the plate 33.
  • the azimuth angle of the half-wave plate 32 By controlling the azimuth angle of the half-wave plate 32, the light intensity is reduced at an arbitrary ratio.
  • the first polarizing plate 31 is not necessarily required.
  • the attenuator 3 is one in which the relationship between the input signal and the light attenuation rate is calibrated in advance.
  • An ND filter having a gradation density distribution can be used as the attenuator 3.
  • the outgoing light adjustment unit 4 includes a plurality of reflection mirrors.
  • a three-dimensional orthogonal coordinate system (XYZ coordinates) is temporarily defined, and it is assumed that light incident on the reflection mirror travels in the + X direction.
  • the first reflecting mirror 41 is installed to deflect incident light in the + Y direction (incident / reflected in the XY plane), and the second reflecting mirror 42 reflects light reflected by the first reflecting mirror 41 in the + Z direction.
  • Each reflection mirror 41 and 42 adjusts the position and traveling direction (angle) of the light emitted from the emission adjusting unit 4 by translation and tilt angle adjustment.
  • the output adjusting unit is arranged. The position and angle adjustment in the XZ plane and the position and angle adjustment in the YZ plane of the light emitted from 4 (traveling in the + Z direction) can be performed independently.
  • a plurality of detection units 102 are arranged so as to detect scattered light in a plurality of directions emitted from the illumination region 20.
  • the arrangement of the detection unit 102 with respect to the sample W and the illumination area 20 will be described with reference to FIG.
  • FIG. 8A shows a side view of the arrangement of the detection unit 102.
  • the illumination area 20 has a long shape in a direction perpendicular to the paper surface of FIG.
  • the angle formed by the detection direction (center direction of the detection aperture) by the detection unit 102 with respect to the normal line of the sample W is defined as a detection zenith angle.
  • the detection unit 102 includes a high angle detection unit 102h having a detection zenith angle of 45 degrees or less and a low angle detection unit 102l having a detection zenith angle of 45 degrees or more.
  • Each of the high angle detection unit 102h and the low angle detection unit 102l includes a plurality of detection units so as to cover scattered light scattered in multiple directions at each detection zenith angle.
  • FIG. 8B shows a plan view of the arrangement of the low angle detector 102l.
  • the illumination area 20 has a long shape along the direction of oblique incidence illumination indicated by an arrow.
  • an angle formed by the traveling direction of the oblique incident illumination and the detection direction is defined as a detection azimuth angle.
  • the low-angle detection unit 102 includes a low-angle front detection unit 102f, a low-angle side detection unit 102s, a low-angle rear detection unit 102b, and a low-angle front detection unit 102f ′ that is symmetrical with respect to the illumination incident surface.
  • a corner side detection unit 102s ′ and a low angle rear detection unit 102b ′ are provided.
  • the low-angle front detection unit 102f has a detection azimuth angle of 0 to 60 degrees
  • the low-angle side detection unit 102s has a detection azimuth angle of 60 to 120 degrees
  • the low-angle rear detection unit 102b has a detection azimuth angle of 120 degrees. It is installed at 180 degrees or less.
  • FIG. 8 (c) shows a plan view of the arrangement of the high angle detector 102h.
  • the high-angle detection unit 102 includes a high-angle front detection unit 102f, a high-angle side detection unit 102s, a high-angle rear detection unit 102b, and a high-angle side detection unit 102s ′ that is symmetric with respect to the illumination incident surface.
  • the high-angle front detection unit 102f has a detection azimuth angle of 0 to 45 degrees
  • the high-angle side detection unit 102s has a detection azimuth angle of 45 to 135 degrees
  • the high-angle rear detection unit 102b has a detection azimuth angle of 135 to 180 degrees.
  • FIG. 2 shows a specific configuration of the detection unit 102.
  • FIG. 2A shows the configuration of the low angle and high angle side detection units 102ls and 102hs (see FIGS. 8B and 8C) with a detection azimuth angle of 90 degrees.
  • Scattered light generated from the illumination area 20 is collected by the objective lens 201, passed through the polarization filter 202, and then guided to the light receiving surface of the multi-pixel sensor 204 by the imaging lens 203 and detected.
  • the detection NA of the objective lens 201 is 0.3 or more.
  • the lower end of the objective lens 201 is cut out as necessary so that the lower end of the objective lens 201 does not interfere with the sample surface W.
  • the polarizing filter 202 includes a polarizing plate or a polarizing beam splitter, and is installed so as to cut a linearly polarized light component in an arbitrary direction.
  • a polarizing plate a wire grid polarizing plate having a transmittance of 80% or more is used.
  • a polarizing filter 202 including a wave plate and a polarizing plate is installed.
  • the multi-pixel sensor 204 has a plurality of light detection pixels arranged in a line.
  • High-sensitivity detection enables high quantum efficiency (over 30%), can electrically amplify electrons after photoelectric conversion, and multiple devices can read the signal in parallel for higher speed
  • the detection sensitivity electrical amplification gain
  • photo detectors that satisfy these requirements, multi-anode photomultiplier tubes, avalanche photodiode arrays, linear EMCCD (Electron Multiplexing CCD) that can read signals in parallel, linear EBCCD (Electron Bombardment CCD) that can read signals in parallel, Is used.
  • EMCCD Electromography
  • EBCCD Electrode Bombardment CCD
  • the sample surface image is formed on the sample surface conjugate surface 205 by the objective lens 201 and the imaging lens 203.
  • an object at a position where the image height is large in the scanning direction S1 is blurred without defocusing and forming an image on the light receiving surface of the plurality of pixel sensors 205. Since the size of the illumination area 20 is short, an object at a position where the image height is large does not affect the detection.
  • FIG. 2B shows the configuration of the low-angle and high-angle front and rear detectors 102lf, 102hf, 102lb, and 102hb.
  • Scattered light generated from the illumination area 20 is collected by the objective lens 201, passed through the polarization filter 202, and then imaged by the imaging lens 203 on the diffraction grating 206 placed on a plane conjugate with the sample surface. An (intermediate image) is formed. An image of the sample surface formed on the diffraction grating 206 is projected and detected on the light receiving surface of the multi-pixel sensor 204 by the imaging system 207.
  • the plurality of pixel sensors 204 are installed in a plane conjugate with the sample surface so that the arrangement direction of the pixels coincides with the longitudinal direction of the image of the illumination area 20 according to the shape of the illumination area 20 that is long in one direction.
  • the diffraction grating 206 diffracts the light guided by the imaging lens 203 to form an intermediate image in the normal direction of the surface of the diffraction grating 206, so that the diffraction grating 206 is aligned with the optical axis of the light guided by the imaging lens 203 to form the intermediate image.
  • the one in which the diffraction grating shape is formed so that the Nth-order diffracted light of the incident light along the direction of light is directed in the normal direction of the surface of the diffraction grating 206 is used.
  • a blazed diffraction grating is used to increase the diffraction efficiency.
  • an effective field of view can be secured in a wide range by suppressing the focus shift in the S1 direction on the sample surface, and the light quantity Scattered light can be detected with little loss.
  • the signal processing unit 105 includes an analog processing unit 51 and a digital processing unit 52 as shown in FIG. 1C.
  • the analog processing unit 51 will be described with reference to FIG.
  • a description will be given of the configuration of the analog processing unit 51 in the case where two detection systems 102a (corresponding to 102ls in FIG. 8) and 102b (corresponding to 102hs in FIG. 8) are provided.
  • Signal currents 500a and 500b output from detectors (102ls and 102hs in FIG. 8) provided in each of the detection units 102a and 102b are converted into voltages and amplified by the preamplifier units 501a and 501b, respectively.
  • the amplified analog signal is further cut by high-frequency noise components due to non-uniform pulses by a pulse dividing unit 8 described later by low-pass filters 511a and 511b, and then has a sampling rate higher than the cutoff frequency of the low-pass filters 511a and 511b.
  • the analog-digital converters (A / D converters) 502a and 502b provided are converted into digital signals and output.
  • each output signal from the analog processing unit 51 is extracted in the digital processing unit 52 by the high-pass filters 604a and 604b, respectively, and input to the defect determination unit 605. Since the defect is scanned in the S1 direction by the illumination field 20, the waveform of the defect signal is obtained by enlarging or reducing the illuminance distribution profile of the illumination field 20 in the S1 direction. Therefore, each of the high-pass filters 604a and 604b passes through the frequency band including the defect signal waveform and cuts the frequency band and the DC component including relatively much noise, thereby reducing the S / N of the defect signals 603a and 603b. Will improve.
  • the defect determination unit 605 performs threshold processing on the input of the signal including the defect waveform output from each of the high pass filters 604a and 604b, and determines the presence / absence of a defect. That is, since defect signals based on the detection signals from the plurality of detection optical systems are input to the defect determination unit 605, the defect determination unit 605 performs threshold processing on the sum or weighted average of the plurality of defect signals. Or based on a single defect signal by taking OR or AND in the same coordinate system set on the wafer surface for the defect group extracted by threshold processing for a plurality of defect signals It becomes possible to perform a defect inspection with higher sensitivity than defect detection.
  • the defect determination unit 605 uses the defect coordinates indicating the defect position in the wafer and the estimated value of the defect size calculated based on the defect waveform and the sensitivity information signal for the portion determined to have a defect, as defect information. To the control unit 53 and output to the display unit 54 or the like.
  • the defect coordinates are calculated based on the center of gravity of the defect waveform.
  • the defect size is calculated based on the integral value or maximum value of the defect waveform.
  • each output signal from the analog processing unit 51 is input to each of the low-pass filters 601a and 601b in addition to the high-pass filters 604a and 604b constituting the digital processing unit 52, and in each of the low-pass filters 601a and 601b, A low frequency component and a direct current component corresponding to the amount of scattered light (haze) from minute roughness in the illumination area 20 on the wafer are output.
  • the outputs from each of the low-pass filters 601a and 601b are input to the haze processing unit 606, where haze information is processed.
  • the haze processing unit 605 outputs a signal corresponding to the magnitude of the haze for each location on the wafer as a haze signal from the magnitude of the input signal obtained from each of the low-pass filters 601a and 601b.
  • the angular distribution of the amount of scattered light from the roughness changes according to the spatial frequency distribution of the minute roughness, as shown in FIG. 8, from each detector of a plurality of detection units 102 installed at mutually different azimuths and angles.
  • the haze processing unit 606 can obtain information on the spatial frequency distribution of minute roughness from the intensity ratio thereof.
  • the pulse division unit 8 will be described with reference to FIG. 3A.
  • the pulse division unit is housed in a sealed structure container 312 of 312.
  • Reference numeral 300 denotes illumination light emitted from the emitted light adjusting unit 4 and is collimated light.
  • the illumination light 300 is controlled by the half-wave plate 301 so that the polarization direction is a polarization direction that passes through the polarization beam splitter 302.
  • the illumination light that has passed through the polarization beam splitter 302 passes through the aperture 303, and then the polarization direction is controlled by the half-wave plate 304 so that the illumination light is branched by the polarization beam splitter 305, and specified by the polarization beam splitter 305.
  • the light in the polarization direction is emitted.
  • the amplitude intensity of the emitted light is cos ⁇ times that of the input light.
  • Light having a polarization direction orthogonal to the emitted light is branched by the polarization beam splitter 305, reflected by the mirrors 306 and 307, and guided to the polarization beam splitter 302.
  • the amplitude of the light that is branched by the polarization beam splitter 305 and guided to the mirror 306 is expressed by sin ⁇ with the polarization direction of 304 using ⁇ .
  • the light guided to the polarization beam splitter 302 is totally reflected by the polarization beam splitter 302 and polarized by the half-wave plate 304.
  • the amplitude of the light reflected by the polarization beam splitter 302 and multiplied by sin ⁇ with respect to the amplitude of the light incident on the polarization beam splitter 305 is emitted, and the other light, that is, the light incident on 305 is cos ⁇ times.
  • the light having the specified amplitude branches in the direction of the mirror 306.
  • the light passing through the mirrors 306 and 307 initially has the amplitude of sin ⁇ of the light incident on 305, and then Second lap: sin ⁇ cos ⁇ Third lap: sin ⁇ cos2 ⁇ As shown in the figure, the light intensity decreases with each turn.
  • FIG. 3B shows the relationship between the light emitted from the polarization beam splitter 305 and the amount of light reflected on the mirror 306 side for each turn. Note that energy is not lost in the light splitting by the beam splitter.
  • This maximum value is the first passing pulse or the second pulse.
  • the optical path length necessary for pulse division will be described.
  • this pulse is about 16 ps, for example, considering that the sample is silicon, it is 88 mm2 / S, and the spread of heat in the depth direction is It is transmitted only to the surface layer of tens of nm. For this reason, the heat spread can be represented by a one-dimensional model.
  • the spread in the depth direction of the heat is transmitted by approximately 0.5th of the time, and the peak temperature is approximated to be inversely proportional to this spread. For example, when the pulse intensity is 1/25 and the light emission time is 25 times, that is, about 400 ps, the temperature is 1/5.
  • the temperature will be significantly reduced. Since the traveling distance of light at 400 ps is about 12 cm, it can be understood that the distance from the polarizing beam splitter 305 to the polarizing beam splitter via the mirrors 306 and 307 may be about 12 cm.
  • Reference numerals 310 and 311 denote rotation control mechanisms for controlling the rotation angle of the half-wave plate.
  • Reference numeral 112 denotes a cover for blocking the pulse division unit from the outside air, and supplies dry air that has passed through a filter from 313 and discharges it from 314.
  • the dry air is preferably an inert gas such as nitrogen gas or carbon dioxide gas.
  • FIG. 3 In order to illuminate the pulse dividing unit shown in FIG. 3A without damaging the sample with a more intense light amount, it is necessary to divide the pulse more finely.
  • This embodiment is shown in FIG.
  • the optical elements used from the polarizing beam splitter 302 to the mirror 307 via the polarizing beam splitter 305 are the same as those shown in FIG. 3A.
  • 401 is an aperture
  • 402 is a half-wave plate
  • 403 is a polarizing beam splitter 404 and 405 are mirrors.
  • the optical path length of the optical path from the polarizing beam splitter 305 to the polarizing beam splitter 302 via the mirror 306 and the mirror 307 is set to be slightly longer than that of FIG.
  • the optical path length from the polarization beam splitter 403 to the polarization beam splitter 305 via the mirrors 405 and 404 reaches the polarization beam splitter 302 from the polarization beam splitter 305 via the mirrors 306 and 307 in FIG.
  • the length is set to the same length as the optical path length of the optical path.
  • each mirror 306, 307, 404, 405 is provided with a position control mechanism for adjusting the mirror angle corresponding to the position control mechanisms 308 and 309 described in FIG. 3A.
  • each of the half-wave plates 304 and 402 is provided with an angle control mechanism so that the angle as described with reference to FIG. 3A can be rotated.
  • FIG. 5 shows the divided pulses when the optical path in FIG. 4 is set.
  • the rotation angle of the half-wave plate that minimizes the light intensity is the same as that of the pulse division unit in FIG. 3A, and ⁇ is 51 °.
  • FIG. 5A shows the light intensity output from the light source
  • FIG. 5B shows the light intensity output from the pulse dividing unit in the embodiment shown in FIG. 3A.
  • FIG. 5C shows the light intensity in the embodiment of the pulse dividing unit shown in FIG.
  • the maximum value of the light intensity in FIG. 5 (c) is 14.5% of the light intensity in FIG. 5 (a).
  • the pulse dividing unit according to the present invention cannot obtain a pulse having a uniform intensity, and the pulse intensity changes every time. Therefore, the above-described low-pass filters 511a and 511b determine the cut-off frequency so as not to pass through the region where the intensity change of the divided pulses occurs.
  • the cutoff frequency may be made smaller than the oscillation pulse frequency of the laser light source 2.
  • the sampling frequency of the AD converters 502a and 502b may be equal to or less than 1/2 of the oscillation pulse frequency of the laser light source 2.
  • the light beam expanding section 5 has two or more lens groups and has a function of expanding the diameter of the incident parallel light beam.
  • FIG. 1A shows an example of a Galileo beam expander having a combination of a concave lens 501 and a convex lens 502.
  • the light beam expanding unit 5 is installed on a translation stage (not shown) having two or more axes, and is configured so that the position can be adjusted so that a predetermined beam position and the center coincide with each other. Further, a tilt angle adjusting function mechanism (not shown) of the entire light beam expanding unit 5 is provided so that the optical axis of the light beam expanding unit 5 and the beam optical axis from the pulse dividing unit 8 to the deflection control unit 6 coincide with each other.
  • a tilt angle adjusting function mechanism (not shown) of the entire light beam expanding unit 5 is provided so that the optical axis of the light beam expanding unit 5 and the beam optical axis from the pulse dividing unit 8 to the deflection control unit 6 coincide with each other.
  • Magnification magnification of the beam diameter by the light beam enlarging unit 5 is 10 to 20 times, and a 1 mm diameter beam emitted from the light source 2 is expanded from about 10 mm to about 20 mm.
  • the inclination of the optical axis of each divided pulse generated by time-dividing one pulse by the pulse dividing unit 8 is reduced from 1/10 to 1/20. For example, if the variation in the inclination of the optical axis of each divided pulse emitted from the pulse dividing unit 8 is about 100 ⁇ rad, the variation in the divided pulse light emitted from the light beam expanding unit 5 is 5 to 10 ⁇ rad.
  • the polarization controller 6 includes a half-wave plate 61 and a quarter-wave plate 62, and controls the polarization state of the illumination light to an arbitrary polarization state.
  • Illumination light state measuring means 21 for measuring the state of the light emitted from the emitted light adjusting unit 4 and the light emitted from the pulse dividing unit 8 in the middle of the optical path of the illumination unit 101 will be described with reference to FIG.
  • the illumination light state measuring means 21 includes beam monitors 22 and 23.
  • the beam monitor 22 measures and outputs the position and angle (traveling direction) of the illumination light that has passed through the outgoing light adjustment unit 4.
  • the beam monitor 23 measures and outputs the position of the illumination light emitted from the pulse dividing unit 8.
  • the position of the illumination light in the beam monitor 22 is measured by measuring the position of the center of gravity of the light intensity of the illumination light.
  • an optical position sensor PSD: Position Sensitive Detector
  • an image sensor such as a CCD sensor or a CMOS sensor
  • a part of the illumination light that is branched by the mirror 221 and further passes through the outgoing light adjusting unit 4 branched by the half mirror 221 is detected by the half mirror 222.
  • the angle measurement of the illumination light in the beam monitor 22 is performed by detecting the light transmitted through the mirror 224 with an optical position sensor or an image sensor 224 installed at a position farther from the light source than the position measuring means.
  • the illumination light position and illumination light angle measured by the beam monitor 22 are input to the control unit 53 and displayed on the display unit 55.
  • the emitted light adjustment unit 4 adjusts the light to return to the predetermined position.
  • a part of the illumination light that has passed through the pulse dividing unit 8 is branched by the half mirror 231, and the branched light is either the condensing optical system 232 or the imaging optical system 233. This is done by switching with the optical system switching means 234 and detecting with the image sensor 235 such as a CCD sensor or CMOS sensor and measuring the position of the center of gravity of the light intensity of the illumination light.
  • the image sensor 235 such as a CCD sensor or CMOS sensor
  • the illumination condensing controller 7 includes two sets of anamorphic prisms 71 and 72 and a condensing lens 73.
  • FIG. 7C shows a light beam 702 of a pulse (first divided pulse) that arrives from the pulse dividing unit 8 without branching of the optical path and a branched optical path of the pulse dividing unit 8 (from the polarization beam splitter 305 to the mirror 306, the mirror 309, Although the light beam 703 of the second split pulse that has passed through the polarizing beam splitter 302 and again passed through the polarizing beam splitter 305 is incident on the illumination condensing control unit 7 at substantially the same position, And the incident angle to the sample W is different.
  • FIG. 7D the positions of the first divided pulse 706 and the second divided pulse 707 incident on the illumination light collection control unit 7 are different, but the sample W is transmitted through the illumination light collection control unit 7.
  • the direction in which the light enters is the same.
  • the condensing state on the sample is as shown in the profile 704 in FIG. 7E and the profile 708 in FIG. 7F.
  • the angle variation of the light beam incident on the condensing lens 73 is more important for condensing the illumination on the sample W than the light beam variation at the main surface position of the condensing lens 73.
  • the difference between the incident angles of the divided pulse lights to the lens is ⁇ and the focal length of the condensing lens 73 is f
  • the sample w illuminated by the two divided pulse lights Is substantially shifted by f ⁇ ⁇ . Therefore, it is important to reduce ⁇ .
  • ⁇ of the light emitted from the light beam expanding portion 5 is 5 ⁇ rad
  • f is 100 mm
  • the light can be condensed with a deviation of about 0.5 ⁇ m.
  • the beam monitor 23 is provided for the purpose of observing ⁇ .
  • the detector of the beam monitor 23 uses an image sensor 232 such as a CCD sensor or a CMOS sensor, and when the collimated light is set to be condensed on the image sensor 232 via the condensing optical system 232, the obtained image is This is almost the same as the pattern on the sample surface enlarged by the magnification of the light beam enlargement unit 5.
  • This mode is referred to as a focused imaging mode.
  • the detector 232 of the beam monitor 23 is connected to the condensing optical system 232 by the optical system switching means 234 so that the pattern of the light beam just before the incidence of the light beam expanding unit 5 can be imaged via the imaging optical system 233.
  • the imaging optical system 233 can be switched.
  • a mode for capturing an image of this light beam pattern is called a light beam photographing mode.
  • the beam monitor 23 has been described with respect to a configuration in which the optical system switching unit 234 can switch between the condensing optical system 232 and the imaging optical system 233 for each mode and can be imaged with one detector 232.
  • a combination with a detector may be provided separately, and the optical path may be branched so that two modes can be photographed simultaneously. Further, by devising the optical system, it may be possible to photograph two modes simultaneously with one detector.
  • the illumination intensity distribution on the surface of the sample W adjusted in the illumination condensing control unit 7 is obtained by measuring the illumination intensity distribution on the optical axis of the illumination condensing control unit 7v that performs vertical illumination with the illumination intensity distribution monitor 24. Monitored.
  • the illumination intensity distribution monitor 24 is a half mirror 241 arranged on the optical axis of the illumination condensing control unit 7v, and reflects the reflected light from the surface of the sample W onto the image sensor 243 such as a CCD sensor or a CMOS sensor via the lens 242. An image is formed and detected as an image.
  • the image of the illumination intensity distribution detected by the illumination intensity distribution monitor 24 is processed by the control unit 53, and the center of gravity position, the maximum intensity, the maximum intensity position, the width and length of the illumination intensity distribution (greater than a predetermined intensity or the maximum intensity).
  • the width and length of the illumination intensity distribution area that is equal to or greater than a predetermined ratio with respect to the value is calculated, and displayed on the screen of the display unit 55 along with the contour shape and sectional waveform of the illumination intensity distribution on the display unit.
  • a method for adjusting the mirrors 41, 42, 306, and 307 using the beam monitor 23 will be described with reference to FIG.
  • the rotation control mechanisms 310 and 311 for controlling the rotation angle between the half-wave plates 301 and 304 are all applied to the pulse splitting unit 8 so that all the light incident on the pulse splitting unit 8 is polarized.
  • the state (A) is output without branching at 302 and 305 (S1101).
  • the beam monitor 23 is set to the luminous flux photographing mode to photograph a luminous flux pattern (S1102), and the control unit 53 calculates the center of gravity of the bright spot (S1103).
  • the optical axes are automatically adjusted by controlling the mirrors 41 and 42 of the outgoing light adjusting unit 4 so as to pass through the center position (S1104).
  • the angles of the mirrors 41 and 42 at this time can be easily obtained by a generally known geometric optical method. This is performed until the gravity center position of the light beam reaches a desired position (S1105).
  • the optical system switching means 234 adjusts the condensing optical system 232 so that it is positioned on the detection optical axis of the detector 232, and the beam monitor 23 is set to the condensing photographing mode for photographing (S1106), and again controlled.
  • the centroid position of the bright spot is calculated by the unit 53 (S1107), and the mirrors 41 and 42 for condensing the beam at a predetermined position in the condensing mode while maintaining the condition that the light beam enters the center of the beam expanding unit 5 are maintained.
  • the respective control values are calculated, and the angles of the mirrors 41 and 42 are automatically set so as to be in this state (S1108).
  • the operations from S1106 to S1109 are repeated until the optical barycentric position reaches a desired position (S1109).
  • the control unit 53 controls the optical system switching unit 234 while the respective angles of the mirrors 41 and 42 are set, and the imaging optical system 233 images the light beam pattern in the light beam photographing mode, and the condensing optical system.
  • the light flux pattern is photographed in the condensing photographing mode. Based on the photographed light flux pattern, the gravity center position of the light flux in each of the light flux photographing mode and the condensing photographing mode is obtained and stored (S1110).
  • the rotation control mechanism 311 is set to a mode in which all light passes through the polarization beam splitter 302, branches from the polarization beam splitter 305, is sequentially reflected by the mirrors 306 and 307, and reaches the beam splitter 302 again (S1111). .
  • the control unit 53 controls the optical system switching unit 234 to switch between the condensing optical system 232 and the imaging optical system 233, and the imaging monitor 233 sets the beam monitor 23 to the light beam photographing mode again.
  • the luminous flux is photographed (S1112), and the center of gravity position of the bright spot is calculated by the control unit 53 (S1113). Based on this result, the luminous flux matches the pattern of the luminous flux photographing mode of the state A.
  • the angle is calculated, and the angles of the position control mechanisms 308 and 309 are automatically set so as to be this angle (S1114) until the optical barycentric position reaches a desired position (S1115).
  • This angle can also be obtained geometrically. Note that when the total light amount of the obtained pattern is lower than the expected value, there is a high possibility that the light beam does not pass through the center of the aperture 303. Therefore, different angle settings are set under the condition that the barycentric position of the bright spot does not change. Try multiple times and set mirrors 306 and 307 to the angle that gives the maximum brightness.
  • control unit 53 controls the optical system switching means 234 to switch between the imaging optical system 233 and the condensing optical system 232, and the condensing optical system 232 changes the beam monitor 23 to the condensing photographing mode.
  • the light flux in the condensing shooting mode in state A is photographed (S1116), the center of gravity position of the light flux is calculated (S1117), and the angles of the mirrors 306 and 307 are set so as to coincide with the gravity center position in the condensing photographing mode calculated in S1110.
  • the angle of the position control mechanisms 308 and 309 is automatically set so as to be this angle (S1118) until the optical barycentric position reaches a desired position (S1119).
  • FIG. 12 shows a state in which the angle is different while the light beam is incident at a fixed position at the incident portion of the light beam expanding unit 5 in the light beam imaging mode of the beam monitor 23.
  • the mirror 306 is deviated by ⁇ 1 from the ideal mirror position and the mirror 307 by ⁇ 2
  • the amount of deviation from the ideal optical axis in the light beam enlargement unit 5 is a desired optical axis position if ⁇ 1 and ⁇ 2 are very small.
  • ⁇ y which is a deviation amount from can be approximated by the following equation.
  • ⁇ y 2 ((y1 + x2) ⁇ 2 ⁇ (x1 + y1 + x2) ⁇ 1)
  • a distance proportional to ⁇ y can be detected as a shift in the center of gravity.
  • x1 is the distance between the mirrors 306 and 307
  • y1 is the distance between the mirror 307 and the polarizing beam splitter 302
  • x2 is the distance from the polarizing beam splitter 302 to the beam expanding section.
  • the rotation control mechanism 311 is set to an angle at which the maximum value of one pulse emission intensity becomes the smallest (S1120), and the light flux photographing mode and the condensing photographing mode are set to photograph the light flux and calculate the position of the center of gravity. However, if it is different from the position calculated in S1110, the mirror position is adjusted again from S111 (S1122). If the light beam position calculated in S1110 coincides, an image of this light beam is taken and this image is stored.
  • FIG. 13 shows an example of the GUI 1300, which is displayed on the display unit 55, for example.
  • Reference numeral 1301 denotes an image detected by the beam monitor 23 in the luminous flux photographing mode
  • 1302 denotes an image detected by the beam monitor 23 in the condensing photographing mode.
  • the detected image and an arbitrary recorded image stored in the control unit 53 are respectively recorded. Can be displayed simultaneously. At this time, it is desirable to change the colors of the stored image and the detected image, for example.
  • the current adjustment state can be determined on the basis of the pattern acquired in step 1).
  • Reference numeral 1304 denotes an interface for switching saved images, and a saved image name is input.
  • An automatic adjustment button 1305 is automatically adjusted by clicking the button with an external input interface such as a mouse or a trackball.
  • Fig. 14 shows a typical sample inspection method.
  • the sample W is illuminated with light elongated in one direction as indicated by 1401.
  • the position of the elongated illumination light 1401 in one direction while rotating the sample W is moved in the radial direction of the sample W (direction of S2) to scan like the spiral T and inspect the entire surface of the sample. .
  • the spot size is a line width in the S1 direction in order to realize inspection with high throughput even when the stage speed for rotating the sample W is low.
  • the line width is generally increased in the S2 direction. For this reason, it is only necessary to adjust the axis in the pulse dividing unit 8 only in one direction.
  • FIG. 15 shows a portion in which the detection system and the processing system in FIG. 1 are omitted, and the light beam expanding portion is divided before and after the pulse dividing portion 8 and divided into 5A and 5B.
  • 5A expands the light beam only in the direction corresponding to the S2 direction on the sample W surface
  • 5B expands the light beam only in the direction corresponding to the S1 direction.
  • the profile on the sample surface is estimated using the pattern of the condensing imaging mode photographed by the beam monitor 23, and the sensitivity difference between apparatuses and reproducibility are ensured by changing the signal processing parameters.
  • the profile in the S1 direction on the sample surface is assumed to be p (x). At this time, if the defect is sufficiently small with respect to the beam profile in the S1 direction, the output s (t) of the defect determination unit 605 corresponding to the defect obtained in time series coincides with the profile of p (x).
  • a signal converted into a p (x) time series signal is set as PS (t).
  • PS (t) In order to best isolate the defect from the noise, the profile of PS (t) should be convolved with s (t). Therefore, the high-pass filters 604a and 604b are formed using the profile of the beam monitor 23.
  • the expected value of the defect signal obtained at this time is proportional to the square integral of PS (t). Therefore, the detected signal intensity changes due to the change in the profile of the beam monitor 23.
  • the inspection device It is important for the inspection device to detect the defect size as well as the defect.
  • the defect size is sufficiently small with respect to the illumination wavelength, it is a Rayleigh scattering region, and the amount of scattered light is proportional to the sixth power of the defect size.
  • the size of the defect is calculated based on the sixth root of the detection signal intensity, and is output as the size of the detected defect.
  • the beam profile changes in the pulse dividing unit 8 it is proportional to the square of PS (t) in addition to the sixth power of Rayleigh scattering, and it is necessary to normalize this. Therefore, the size of the defect is calculated as (Equation 1).
  • K is a constant.
  • the defect size is obtained by the above formula, so that even if the axis of the light beam is deviated in the pulse dividing unit 8, stable defect detection and size determination are performed. it can.
  • the determined defect size information is displayed on the screen of the display unit 55.
  • the present invention inspects minute defects existing on the surface of a semiconductor substrate, a thin film substrate, etc. in order to maintain and improve the product yield in a production line for a semiconductor substrate, a thin film substrate, etc. It can be applied to a defect inspection method and apparatus for determining and outputting.

Abstract

 本発明は、試料全面を短時間で走査し,試料に熱ダメージを与えることなく微小な欠陥を検出することができるようにするために、光源から発射されたパルスレーザをパルス分割し、パルス分割したパルスレーザを回転しながら一方向に移動している試料の表面に照射し、パルス分割されたパルスレーザが照射された試料からの反射光を検出し、反射光を検出した信号を処理して試料上の欠陥を検出し、検出した欠陥に関する情報を表示画面に出力する欠陥検査方法において、パルス分割したパルスレーザの光強度の重心位置をモニタし、モニタしたパルス分割されたパルスレーザの光強度の重心位置を調整するようにした。

Description

欠陥検査方法およびその装置
 本発明は試料表面に存在する微小な欠陥を検査し,欠陥の種類および欠陥寸法を判定して出力する欠陥検査方法およびその装置に関する。
 半導体基板や薄膜基板等の製造ラインにおいて,製品の歩留まりを維持・向上するために,半導体基板や薄膜基板等の表面に存在する欠陥の検査が行われている。欠陥検査の従来技術としては特開平9-304289号公報(特許文献1),特開2006-201179号公報(特許文献2),米国特許出願公開第2006/0256325号公報(特許文献3)などが知られている。これらは,微小な欠陥を検出するために試料表面上に数十μmの寸法に照明光を集光して照射し,欠陥からの散乱光を集光・検出し,数十nmから数μm以上の寸法の欠陥を検査する技術である。試料(検査対象物)を保持するステージを回転移動および並進移動させることにより,照明スポットが試料表面上をらせん状に走査し,試料全面が検査される。
 また,特許文献1および特許文献2では,欠陥からの散乱光の高角度に出射する成分と低角度に出射する成分を検出しその比によって欠陥の種類を分類する技術が述べられている。
 また,特許文献2では,欠陥からの散乱光の強度に基づいて,検出した欠陥の寸法を算出する技術が述べられている。
 また,特許文献3では,試料に与える熱ダメージを低減するため,検査対象面を検査中に照明光のパワー,あるいは照明スポットの走査速度,あるいは照明スポットの寸法を制御することが述べられている。より具体的には,試料に与える熱ダメージは照射する照明パワー密度と照射時間との積によって決まると仮定し,これが一定値を越えないように,走査中の試料上の半径位置に応じて照明光のパワー,あるいは照明スポットの走査速度,あるいは照明スポットの寸法を変化させることが述べられている。
 また,一方向に長いガウスビームで試料上の広い範囲を照明し,CCDなどの複数画素の検出器を用いて照明領域を一括に検出することで,短い時間で試料全面を検査する技術として,米国特許第6608676号公報(特許文献4)が知られている。
 また, 特許文献5では,短波長レーザ照明において,高出力レーザではパルス発光レーザが多く,この瞬間的な発光による試料の急激な温度上昇による,試料の熱ダメージを低減させるため,光路を分割,その光路長の違いを利用してパルスを分割することで試料のダメージを低減する手法が述べられている。
特開平9-304289号公報 特開2006-201179号公報 米国特許出願公開第2006/0256325号公報 米国特許第6608676号公報 特開2007-85958号公報
 半導体等の製造工程で用いられる欠陥検査には,微小な欠陥を検出すること,検出した欠陥の寸法を高精度に計測すること,試料を非破壊で(あるいは試料を変質させること無く)検査すること,同一の試料を検査した場合に常に一定の検査結果(検出欠陥の個数,位置,寸法,欠陥種)が得られること,一定時間内に多数の試料を検査することなどが求められる。
 前記特許文献1,特許文献2,特許文献4に述べられた技術では,特に寸法20nm以下の微小な欠陥については,欠陥から発生する散乱光が極微弱となり,試料表面で発生する散乱光によるノイズ,検出器のノイズ,あるいは検出回路のノイズに欠陥信号が埋もれるため検出不可能となる。あるいは,これを避けるために照明パワーをあげた場合,照明光による試料の温度上昇が大きくなり,試料への熱ダメージが発生する。あるいは,これを避けるために試料の走査速度を低下させた場合,一定時間内に検査できる試料の面積あるいは試料の数が減少する。以上より,熱ダメージを避けつつ微小な欠陥を高速に検出することが困難であった。
 一方,特許文献3に述べられた技術は,試料上の半径位置に比例して照明パワーを変えることにより,前記従来技術と比較して試料中心付近での熱ダメージを低減すること,あるいは試料中心付近での熱ダメージを従来技術と同等に抑えつつ試料外周部での欠陥検出感度を向上すること,を狙うものであった。この技術は熱ダメージが照射パワー密度と照射時間との積に比例すると仮定したため,以下の問題があった。
 第一に,熱ダメージの見積りにおいて照明スポットからの熱拡散の影響を考慮していないため,特に照射時間の長い試料中心部における熱ダメージが現実より過大に見積られる。このため,試料中心部において必要以上に照明パワーを低下させることになり,欠陥検出感度が低下した。
 第二に,試料全面において熱ダメージを生じさせないためには,熱ダメージが最大となる試料中心部においてダメージが生じないことを基準として投入する照明パワーを規定する必要がある。しかし,回転走査では試料中心部において走査速度(線速度)が0であるため,計算上の照射時間が無限大に発散し,前記仮定では熱ダメージを定量的に見積ることができず,照明パワーを規定することが出来なかった。逆に,中心部で熱ダメージが起きないことを保証するためには,照明パワーを0にする必要があり,中心部の検査が不可能であった。
 第三に,パルスレーザの場合には,パルスの時間長さはおよそ15ps程度であることが多く,試料を回転させながら検査する方式において,試料を例えば1000rpm程度で回転させた場合,この15psの間に試料が移動する距離は0.23nm程度であり,光学分解能に対してはるかに小さい距離しか移動できない。このため,1回のパルス発光において照射される領域は,照明が照射されている位置の移動速度ではなく,ビームスポットの領域によってほぼ決定される。このため,瞬間的な温度上昇による試料に対するダメージは,試料の半径位置によって,ほとんど変化しない。
 また,特許文献5には光路を偏光ビームスプリッタによって複数に分割,この光をそれぞれ異なる光路長の光路に導き,この光路を通過する際の時間差によって再度この光を偏光ビームスプリッタに導いて光路を統合する際のパルスの到着するタイミングをずらすことでパルスを分割していた。しかし,この偏光ビームスプリッタによる光路の統合は,統合された光が異なる偏光方向をもってしまうため,直線偏光で照明するためには光強度の半分をビームトラップで遮光するという構成をとらざるをえなかった。このため,同一の光量を試料に照射するにはより,出力の大きいレーザ光源を必要とする。一般にレーザ光源で高出力を得るためには光を共振させる必要があるため,出力が大きくなるほどパルスの周波数が低くなる,すなわち1パルスあたりのパルスの波高値は大きくなる傾向がある。光強度の半分を失い,高出力のレーザを使わざるを得なくなるこの手法では多くの場合,光源自体の波高値自体が大きくなってしまい,十分な効果を得ることができなかった。
 更に特許文献5の方式では,ビームスポットを小さくすることが困難であった。それぞれ異なる光路を通った光が同一の場所を照明しなければ,それぞれの光路の照明が小さいビームスポットを形成したとしても,全体的に見れば大きなビームスポットとなってしまう。分割した光路を同一の光路に戻すためには,多数のミラーを必要とし,これを偏光ビームスプリッタで同一の光路に戻す際にビームの光軸の角度ずれが一般に発生する。このため,それぞれの光路を通った光は別の位置を照明し,結果として小ビームスポットを得ることができない。欠陥から得られる光量は単位面積あたりの光量で決定されるため,ビームスポットの拡大は欠陥検出性能を低下させていた。
 本発明の目的は、試料全面を短時間で走査し,試料に熱ダメージを与えることなく微小な欠陥を検出することができる欠陥検査方法及びその装置を提供することにある。
 本発明は,光源から出射した光を,所望の光量にした後,光分岐手段により,光を複数に分岐させ,一方を一定の光路長をもつ遅延光路に導き,再度,光を共通の光路に戻す光統合手段を備え,この共通の光路に戻った後の光が再度,前記光分岐手段を通る構成とした,光分割手段と遅延光路と光統合手段よりなるパルス分割手段と,前記パルス分割手段を通過した後に,ビームを拡大させて,ビームの軸ずれの絶対量を大きく,各ビームの角度ばらつきは抑制する光軸調整手段と,その後段に配置する集光手段を備えることを特徴とする。
 また,本発明は,ビームを拡大する前に通過させるパルス分割手段による光学素子へのダメージを低減させるため,パルス分割手段全体を密閉した容器にいれ,容器内に窒素等の不活性ガスで満たすことを特徴とする。
 また,本発明は前記集光した光を試料上に照明し,その反射光および散乱光を光センサで検出し,センサで検出した光がパルス分割手段により発生する不均一なパルス強度のばらつきの影響を抑制するため,その発光強度をもとに,前記パルス分割手段で発生するパルスのばらつきを抑制するに十分な高周波信号除去回路を備えることを特徴とする。
 本発明は前記高周波除去回路を通過した信号のうち,高周波帯域の信号値の大なるをもって欠陥を検出することを特徴とする。
 即ち、上記した課題を解決するために、本発明では、欠陥検査装置を、試料を載置して回転可能なテーブル手段と、パルスレーザを発射する光源手段と、該光源手段から発射されたパルスレーザをパルス分割し、該パルス分割したパルスレーザで前記テーブル手段に載置されている試料を照明する照明光学系手段と、該照明光学系手段によりパルス分割されたレーザで照明された前記試料からの反射光を検出する検出光学系手段と、前記反射光を検出した検出光学系手段からの出力信号を処理して前記試料上の欠陥を検出する信号処理手段と、該信号処理手段で処理した結果を表示画面に出力する出力手段とを備えて構成し、前記照明光学系手段は、前記光源手段から発射されたパルスレーザをパルス分割するパルス分割部と、該パルス分割部から出射したパルス分割されたパルスレーザの光強度の重心位置をモニタする第1のビームモニタ部と、該第1のビームモニタ部でモニタした前記パルス分割されたパルスレーザの光強度の重心位置を調整する光強度重心位置調整部と備えて構成した。
 また、上記した課題を解決するために、本発明では、光源から発射されたパルスレーザをパルス分割し、該パルス分割したパルスレーザを回転しながら一方向に移動している試料の表面に照射し、該パルス分割されたパルスレーザが照射された前記試料からの反射光を検出し、該反射光を検出した信号を処理して前記試料上の欠陥を検出し、該検出した欠陥に関する情報を表示画面に出力する欠陥検査方法において、前記パルス分割したパルスレーザの光強度の重心位置をモニタし、前記モニタしたパルス分割されたパルスレーザの光強度の重心位置を調整するようにした。
 本発明によれば,試料全面を短時間で走査し,試料に熱ダメージを与えることなく,微小な欠陥を検出することができる。
本発明の実施例に係る欠陥検査装置の全体概略構成を示すブロック図である。 アッテネータの構成を示すブロック図である。 信号処理部の構成を示すブロック図である。 本発明の実施例に係る検出部の配置および検出方向を示す検出部のブロック図である。 パルス分割部の構成を示すブロック図である。 パルス分割部の内部で各周回ごとに偏光ビームスプリッタ305を透過するパルスビームの振幅と反射されるパルスビームの振幅との関係を一覧にした図である。 本発明の実施例に係るパルス分割部の構成を示すブロック図である。 本発明の実施例に係るパルス分割部に入射するパルスレーザの光強度(a)と、図3Aの構成のパルス分割部から出力された分割パルスビームの光強度(b)と、図4の構成のパルス分割部から出力された分割パルスビームの光強度(c)を示す図である。 本発明の実施例に係るビームモニタリング部を含む欠陥検査装置の照明部の概略構成を示すブロック図である。 本発明の実施例に係る照明部の集光特性を示す図である。 本発明の実施例に係る検出部の構成を示すブロック図である。 本発明の実施例に係るアナログ処理部の構成を示すブロック図である。 本発明の実施例に係るデジタル処理部の構成を示すブロック図である。 本発明の実施例に係るパルス分割部の光学系を調整する手順を示すシーケンス図である。 本発明の実施例に係るミラーの角度と光束拡大部への入力ばらつきの関係を示すビームモニタリング部を含むパルス分割部のブロック図である。 本発明の実施例に係るミラーの角度のマニュアル設定を可能にするGUIを示す表示画面の正面図である。 本発明の実施例に係る試料の検出視野とその走査方法を示す試料の平面図である。 本発明の実施例に係る欠陥検査装置の変形例を示す欠陥検査装置の照明部の概略構成を示すブロック図である。
 本発明の実施形態の概略構成を図1で説明する。照明部101,検出部102,試料Wを載置して回転して回転中心軸に直角な方向に可能なステージ103,信号処理部105,制御部53,表示部54,入力部55を備える。照明部101はレーザ光源2,アッテネータ3,出射光調整部4,パルス分割部8,光束拡大部5,偏光制御部6,照明集光制御部7を備える。レーザ光源2はパルス発振あるいは擬似連続発振レーザであり,典型的には発光時間は15ps以下であり,10ns毎の間隔でパルス状の光が出力される。また,レーザ光源2からはコリメートされたレーザ光が照射される。発射される光がコリメートされた光でないレーザ光源の場合,別途コリメータレンズを設け,照明をコリメートする。
 レーザ光源2から射出されたレーザ光ビームは,アッテネータ3で所望のビーム強度に調整され,出射光調整部4で所望のビーム位置,ビーム進行方向に調整され,パルス分割部8でパルス状のレーザ光の1つのパルスを時分割された複数のパルスに分割する。この光束は,光束拡大部5で光束を拡大するとともにパルス分割部で分割された各パルスの光束の方位ばらつきを低減し,偏光制御部6で所望の偏光状態に調整され,照明集光制御部7で所望の強度分布に調整され,試料Wの検査対象領域に照明される。本発明の特徴であるパルス分割部8は各光束拡大部5ではビームを拡大する一方,各時分割されたパルス光の光軸の角度方向のばらつきは照明集光制御部7での集光性能を低下させる。このため,パルス分割部の後段に光束拡大部5を備える構成にすることが重要である。
 試料上の照明形状は,熱に対するダメージを最小にするにはアスペクト比の高い矩形形状にすることが一般的である。このため,照明集光制御部7としては典型的には2組のアナモフィックプリズム71及び72で照明光束を整形したのち,集光レンズ73で照明する。また,集光レンズ73の代わりに回折光学素子を用いても良い。
 照明部101の光路中の反射ミラー33の位置と角度により試料表面に対する照明光の入射角(試料表面の法線方向に対する傾き角)が決められる。照明光の入射角は微小な欠陥の検出に適した角度に設定される。照明入射角が大きいほど,すなわち照明仰角(試料表面と照明光軸との成す角)が小さいほど,試料表面上の微小異物からの散乱光に対してノイズとなる試料表面の微小凹凸からの散乱光(ヘイズと呼ばれる)が弱まるため,微小な欠陥の検出に適する。このため,試料表面の微小凹凸らの散乱光が微小欠陥検出の妨げとなる場合には,照明光の入射角は75度以上(仰角15度以下)に設定される。
 一方,斜入射照明において照明入射角が小さいほど微小異物からの散乱光の絶対量が大きくなるため,欠陥からの散乱光量の不足が微小欠陥検出の妨げとなる場合には,照明光の入射角は60度以上75度以下(仰角15度以上30度以下)に設定される。また,斜入射照明を行う場合,照明部101の偏光制御部6における偏光制御により,照明の偏光をP偏光とすることで,その他の偏光と比べて試料表面上の欠陥からの散乱光が増加する。
 図示していないミラー31の駆動手段でミラー31を照明部101の光路中にミラー31を挿入することにより,照明光路が変更され,試料面に垂直な方向から照明光が照射される(垂直照明)。このとき,試料面上の照明強度分布は照明集光制御部7vにより,斜入射照明と同様に制御される。試料面の凹み状の欠陥(研磨キズや結晶材料における結晶欠陥)からの散乱光を得るには,試料表面に実質的に垂直に入射する垂直照明が適する。
 レーザ光源2としては,試料表面近傍の微小な欠陥を検出するには,試料内部に浸透しづらい波長として,短波長(波長355nm以下)の紫外または真空紫外のレーザビームを発振し,かつ出力2W以上の高出力のものが用いられる。出射ビーム径は1mm程度である。試料内部の欠陥を検出するには,試料内部に浸透しやすい波長として,可視あるいは赤外のレーザビームを発振するものが用いられる。
 図1Bに示すように、アッテネータ3は,第一の偏光板31と,照明光の光軸周りに回転可能な1/2波長板32と,第二の偏光板33とを備える。アッテネータ3に入射した光は,第一の偏光板31により直線偏光に変換され,1/2波長板32の遅相軸方位角に応じて偏光方向が任意の方向に回転され,第二の偏光板33を通過する。1/2波長板32の方位角を制御することで,光強度が任意の比率で減光される。アッテネータ3に入射する光の直線偏光度が十分高い場合は第一の偏光板31は必ずしも必要ない。アッテネータ3は入力信号と減光率との関係が事前に較正されたものを用いる。アッテネータ3として,グラデーション濃度分布を持つNDフィルタを用いることも可能である。
 出射光調整部4は複数枚の反射ミラーを備える。ここでは二枚の反射ミラー41と42とで構成した場合の実施例を説明する。ここで,三次元の直交座標系(XYZ座標)を仮に定義し,反射ミラーへの入射光が+X方向に進行しているものと仮定する。第一の反射ミラー41は入射光を+Y方向に偏向するよう設置され(XY面内での入射・反射),第二の反射ミラー42は第一の反射ミラー41で反射した光を+Z方向に偏向するよう設置される(YZ面内での入射・反射)。各々の反射ミラー41と42とは平行移動とあおり角調整により,出射調整部4から出射する光の位置,進行方向(角度)が調整される。前記のように,第一の反射ミラー41の入射・反射面(XY面)と第二の反射ミラー42の入射・反射面(YZ面)が直交するような配置とすることで,出射調整部4から出射する光(+Z方向に進行)のXZ面内の位置,角度調整と,YZ面内の位置,角度調整とを独立に行うことができる。
 検出部102は,照明領域20から発する複数の方向の散乱光を検出するよう,複数配置される。検出部102の試料Wおよび照明領域20に対する配置を図8を用いて説明する。
 図8(a)に検出部102の配置の側面図を示す。照明領域20は図8(a)の紙面に対して垂直な方向に長い形状を有している。試料Wの法線に対して,検出部102による検出方向(検出開口の中心方向)のなす角を,検出天頂角と定義する。検出部102は,検出天頂角が45度以下の高角検出部102hと,検出天頂角が45度以上の低角検出部102lからなる。高角検出部102h,低角検出部102l各々は,各々の検出天頂角において多方位に散乱する散乱光をカバーするよう,複数の検出部からなる。
 図8(b)に,低角検出部102lの配置の平面図を示す。照明領域20は矢印で示した斜入射照明進行方向に沿って長い形状をしている。試料Wの表面と平行な平面内において,斜入射照明の進行方向と検出方向とのなす角を検出方位角と定義する。低角検出部102は,低角前方検出部102f,低角側方検出部102s,低角後方検出部102b,およびそれらと照明入射面に関して対称な位置にある低角前方検出部102f’,低角側方検出部102s’,低角後方検出部102b’を備える。低角前方検出部102fは検出方位角が0度以上60度以下,低角側方検出部102sは検出方位角が60度以上120度以下,低角後方検出部102bは検出方位角が120度以上180度以下に設置される。
 図8(c)に,高角検出部102hの配置の平面図を示す。高角検出部102は,高角前方検出部102f,高角側方検出部102s,高角後方検出部102b,および高角側方検出部102sと照明入射面に関して対称な位置にある高角側方検出部102s’を備える。高角前方検出部102fは検出方位角が0度以上45度以下,高角側方検出部102sは検出方位角が45度以上135度以下,高角後方検出部102bは検出方位角が135度以上180度以下に設置される。
 検出部102の具体的な構成を図2に示す。検出方位角90度の低角および高角の側方検出部102ls,102hs(図8(b)及び(c)参照)の構成を図2(a)に示す。照明領域20から発生する散乱光を対物レンズ201によって集光し,偏光フィルタ202通過させた後,結像レンズ203によって複数画素センサ204の受光面に導かれ,検出される。散乱光を効率良く検出するため,対物レンズ201の検出NAは0.3以上である。低角度検出部の場合,対物レンズ201の下端が試料面Wに干渉しないよう,必要に応じて対物レンズの下端を切り欠く。偏光フィルタ202は偏光板あるいは偏光ビームスプリッタからなり,任意の方向の直線偏光成分をカットするよう設置される。偏光板として,透過率80%以上のワイヤグリッド偏光板などが用いられる。楕円偏光を含む任意の偏光成分をカットする場合は,波長板と偏光板からなる偏光フィルタ202を設置する。
 複数画素センサ204は,複数の光検出画素が線状に並んだものである。高感度検出を行うため,量子効率が高く(30%以上の),光電変換後の電子を電気的に増幅可能なもの,また,高速化のため,複数がその信号を並列して読み出し可能なもの,また,検出ダイナミックレンジ確保のため,検出感度(電気的な増幅のゲイン)が電気的手段などにより短時間で容易に変更可能であるもの,が望ましい。これらを満たす光検出器として,マルチアノード光電子増倍管,アバランシェフォトダイオードアレイ,信号の並列読み出しが可能なリニアEMCCD(Electron Multiplying CCD),信号の並列読み出しが可能なリニアEBCCD(Electron Bombardment CCD),が用いられる。本実施例ではマルチアノード光電子増倍管を用いた構成を説明する。
 対物レンズ201および結像レンズ203によって,試料面の像が試料面共役面205に結像される。試料面に対して傾斜した結像するため,走査方向S1に関して,像高の大きい位置にある物体はデフォーカスにより複数画素センサ205の受光面に像を結ばずにボケるが,走査方向S1は照明領域20の寸法が短いため,像高の大きい位置にある物体は検出に影響を与えない。
 図2(b)に,低角および高角の前方および後方検出部102lf,102hf,102lb,102hbの構成を示す。照明領域20から発生する散乱光を対物レンズ201によって集光し,偏光フィルタ202通過させた後,結像レンズ203によって,試料面と共役な面に設置された回折格子206上に試料面の像(中間像)が結像される。回折格子206上に形成された試料面の像は,結像系207によって複数画素センサ204の受光面上に投影され,検出される。複数画素センサ204は,一方向に長い照明領域20の形状に合せ,画素の配列方向が照明領域20の像の長手方向に一致するよう,試料面に共役な面内に設置される。回折格子206は,結像レンズ203によって導かれ中間像を形成する光を回折格子206の表面の法線方向に回折させるため,結像レンズ203によって導かれ中間像を形成する光の光軸に沿った入射光のN次回折光が回折格子206の表面の法線方向に向かうよう,回折格子形状が形成されたものを用いる。回折効率を高めるため,ブレーズ回折格子が用いられる。
 以上の構成をとり試料面に共役な面に複数画素センサ204を設置することで,試料面上のS1方向についてもピントのずれを抑えて広い範囲で有効視野を確保することができ,かつ光量ロスを少なく散乱光を検出することができる。
 信号処理部105は、図1Cに示すように、アナログ処理部51とデジタル処理部52とを備えている。アナログ処理部51について図9を用いて説明する。ここでは簡単のため複数の検出部102のうち検出部102a(図8の102lsに相当),102b(図8の102hsに相当)の二系統備えた場合のアナログ処理部51の構成について説明する。検出部102a,102b各々に備えられた検出器(図8の102ls及び102hs)から出力された信号電流500a,500bは,プリアンプ部501a,501bにより各々電圧に変換されて増幅される。該増幅されたアナログ信号は,さらにローパスフィルタ511a,511bにより後述するパルス分割部8による不均一パルスによる高周波のノイズ成分がカットされ,その後,ローパスフィルタ511a,511bのカットオフ周波数より高いサンプリングレートを備えたアナログ-デジタル変換部(A/D変換部)502a,502bで,デジタル信号に変換されて出力される。
 次に,信号処理部105を構成するデジタル処理部52について図10を用いて説明する。アナログ処理部51からの各々の出力信号は,デジタル処理部52において,ハイパスフィルター604a,604bの各々により欠陥信号603a,603bの各々が抽出され,欠陥判定部605に入力される。欠陥は照野20によりS1方向に走査されるため,欠陥信号の波形は照野20のS1方向の照度分布プロファイルを拡大縮小したものとなる。従って,ハイパスフィルター604a,604bの各々により,欠陥信号波形の含まれる周波数帯域を通し,ノイズが相対的に多く含まれる周波数帯域および直流成分をカットすることで,欠陥信号603a,603bのS/Nが向上する。各ハイパスフィルター604a,604bとしては,特定のカットオフ周波数を持ちその周波数以上の成分を遮断するよう設計されたハイパスフィルタ,あるいはバンドパスフィルタ,あるいは照明領域20の形状が反映された欠陥信号の波形と相似形を成すフィルタを用いる。
 欠陥判定部605は,ハイパスフィルター604a,604bの各々から出力された欠陥波形を含む信号の入力に対してしきい値処理を行い,欠陥の有無を判定する。即ち,欠陥判定部605には,複数の検出光学系からの検出信号にもとづく欠陥信号が入力されるので,欠陥判定部605は,複数の欠陥信号の和や加重平均に対してしきい値処理を行うか,または複数の欠陥信号に対してしきい値処理により抽出された欠陥群についてウェハの表面に設定された同一座標系でORやANDを取ることなどにより,単一の欠陥信号に基づく欠陥検出と比較して高感度の欠陥検査を行うことが可能となる。
 更に,欠陥判定部605は,欠陥が存在すると判定された箇所について,その欠陥波形と感度情報信号に基づいて算出されるウェハ内の欠陥位置を示す欠陥座標および欠陥寸法の推定値を,欠陥情報として制御部53に提供して表示部54などに出力する。欠陥座標は欠陥波形の重心を基準として算出される。欠陥寸法は欠陥波形の積分値あるいは最大値を元に算出される。
 さらに,アナログ処理部51からの各々の出力信号は,デジタル処理部52を構成するハイパスフィルター604a,604bに加えて,ローパスフィルター601a,601bの各々に入力され,ローパスフィルター601a,601bの各々において,ウェハ上の照明領域20における微小ラフネスからの散乱光量(ヘイズ)に対応する周波数の低い成分および直流成分が出力される。このようにローパスフィルター601a,601bの各々からの出力はヘイズ処理部606に入力されてヘイズ情報の処理が行われる。即ち,ヘイズ処理部605は,ローパスフィルター601a,601bの各々から得られる入力信号の大きさからウェハ上の場所ごとのヘイズの大小に対応する信号をヘイズ信号として出力する。また,微小ラフネスの空間周波数分布に応じてラフネスからの散乱光量の角度分布が変わるため,図8に示したように,互いに異なる方位,角度に設置された複数の検出部102の各検出器からのヘイズ信号をヘイズ処理部606への入力とすることで,ヘイズ処理部606からはそれらの強度比などから微小ラフネスの空間周波数分布に関する情報を得ることができる。
 パルス分割部8を,図3Aを用いて説明する。パルス分割部は312の密閉構造容器312に収められている。300は出射光調整部4から出射された照明光であり、コリメート光である。照明光300は,1/2波長板301により,偏光方向が偏光ビームスプリッタ302を通過するような偏光方向になるよう制御する。偏光ビームスプリッタ302を通過した照明光は、アパーチャ303を通過した後,1/2波長板304によって照明光が偏光ビームスプリッタ305で分岐するように偏光方向を制御し,305の偏光ビームスプリッタで特定の偏光方向の光が出射される。1/2波長板304によって,偏光方向が光の透過方向からθずれていた場合,出射される光の振幅強度は入力の光に対してcosθ倍になる。この出射した光に対して直交する偏光方向の光が偏光ビームスプリッタ305で分岐し,ミラー306および307で反射し,302の偏光ビームスプリッタに導かれる。
 305の偏光ビームスプリッタで分岐してミラー306に導かれる光の振幅は,304の偏光方向がθを用いてsinθで表される。この302の偏光ビームスプリッタに導かれた光は偏光ビームスプリッタ302で全反射し,1/2波長板304で偏光される。偏光ビームスプリッタ302で反射され,偏光ビームスプリッタ305に入射した光の振幅に対してsinθ倍された光の振幅が出射され,それ以外の光,すなわち,305への光の入射に対してcosθ倍された振幅をもつ光がミラー306方向に分岐する。
 このように,ミラー306,307を通る光は,当初,305へ入射された光のsinθの振幅をもち,次いで,
2周回目:sinθcosθ
3周回目:sinθcos2θ
のように,周回毎に光強度が低下する。各周回毎の偏光ビームスプリッタ305からの出射光とミラー306の側に反射される光の光量の関係を図3Bに示す。
  なお,ビームスプリッタでの光の分岐においてエネルギーは失われない。
 試料に対するダメージを最小にするためには,305を光束拡大部5の方向に分岐通過する光の強度の最大値を最小にすることが必要である。この最大値は最初に通過するパルスか,あるいは2回目のパルスである。そこで,この最初のパルスと2回目のパルスの光強度が同一になる条件が試料にダメージを与えない最良の条件であることがわかる。
 すなわち,
  Cos θ=sinθ*sinθ
が条件となり,θは51°,振幅はおよそ入力の62%,エネルギーにして38.1%になることがわかる。逆に言えば,レーザ光源の出力を1/0.381=2.6倍にしても試料にダメージを与えないため,装置の感度を大幅に向上できることになる。更に3パルス目,4パルス目の光のエネルギーは,3パルス目で14.6%,4パルス目で6%と急激に減少する。
 次にパルス分割に必要な光路長について述べる。パルス状の光により,熱が上昇する現象を解析する場合,このパルスが例えば16ps程度とすれば,例えば試料がシリコンである場合を考えると88mm2/Sであり,熱の深さ方向の拡がりは数十nmと極めて表層にしか伝わらない。このため,熱の拡がりは一次元モデルで表すことが可能である。熱の深さ方向の拡がりは時間のおよそ0.5乗で伝わり,ピーク温度はこの拡がりに逆比例すると近似する。例えばパルスの強度が1/25,発光時間が25倍,すなわち400ps程度の時間を経過すると温度は1/5である。パルスの強度が同じで発光間隔が25倍であった場合には,温度はこれよりも大幅に低減する。400psに光の進む距離はおよそ12cmであるため,偏光ビームスプリッタ305から,ミラー306,307を経由して偏光ビームスプリッタまでの距離は12cm程度であれば良いことがわかる。
 308と309はそれぞれミラー306と307の位置を制御するために用いられる位置制御機構である。また,310と311は1/2波長板の回転角度を制御するための回転制御機構である。112はパルス分割部を外気と遮断するためのカバーであり,313からフィルタを通したドライエアを供給,314から排出する。ドライエアとしては窒素ガスや炭酸ガスなど,不活性ガスが望ましい。これにより,比較的小ビーム径で照明光を通すため,塵等がミラーに付着,化学反応をおこして光軸をずらすことを防止する。
 図3Aに示したパルス分割部に対して,更に強い光量を試料にダメージを与えずに照明するためにはより細かくパルスを分割する必要がある。この実施例を図4で示す。偏光ビームスプリッタ302から偏光ビームスプリッタ305を経由してミラー307に至るまでに使われる光学要素は図3Aに示したものと同じである。401はアパーチャ,402は1/2波長板,403は偏光ビームスプリッタ404と405はミラーである。偏光ビームスプリッタ305からミラー306,ミラー307を経由して,偏光ビームスプリッタ302に至る光路の光路長は図3のそれに対して3倍強長く設定する。
 一方,偏光ビームスプリッタ403からミラー405,ミラー404を経由して偏光ビームスプリッタ305に至る光路の光路長は図3のから偏光ビームスプリッタ305からミラー306,307を経由して偏光ビームスプリッタ302に至る光路の光路長と同程度の長さに設定する。なお,図4では図示していないが,各ミラー306,307,404,405には図3Aで説明した位置制御機構308及び309に相当するミラーの角度を調整するための位置制御機構が備えられており,また各1/2波長板304,402には,図3Aで説明したような角度を回転できるように角度制御機構が備えられている。
 図4の光路を設定した場合の分割されたパルスを図5に示す。光強度を最小にする1/2波長板の回転角は図3Aのパルス分割部と同様であり,θは51°である。図5(a)は光源の出力する光強度であり,図5(b)が図3Aに示した実施例におけるパルス分割部が出力する光強度である。図5(c)が図4で示したパルス分割部の実施例における光強度である。図5(c)における光強度の最大値は図5(a)の光強度の14.5%である。このように本発明によるパルス分割部は,均一な強度のパルスを得ることができず,時間毎にパルス強度の変化が発生してしまう。そこで,前述した511a,511bのローパスフィルタは,分割されたパルスの強度変化が発生する領域は通過しないよう遮断周波数を決定する。
 高調波の強度の不均一性は,はじめに入力したレーザ光源2から発射されたレーザの発振パルス周波数よりも高周波で発生するため,遮断周波数はレーザ光源2の発振パルス周波数よりも小さくすれば良い。また,この結果,ナイキストの定理より,AD変換部502a,502bのサンプリング周波数はこのレーザ光源2の発振パルス周波数の1/2以下で良い。
 光束拡大部5は二群以上のレンズ群を有し,入射する平行光束の直径を拡大する機能を持つ。図1Aには、凹レンズ501と凸レンズ502の組合せを備えるガリレオ型のビームエキスパンダの例を示す。光束拡大部5は二軸以上の並進ステージ(図示せず)上に設置され,所定のビーム位置と中心が一致するように位置調整が可能なように構成されている。また,光束拡大部5の光軸とパルス分割部8から偏向制御部6に至るビーム光軸が一致するように光束拡大部5全体のあおり角調整機能機構(図示せず)が備えられる。凹レンズ501と凸レンズ502の間隔を調整することにより,光束直径の拡大率を制御することが可能である(ズーム機構)。
 光束拡大部5によるビーム径の拡大倍率は10倍から20倍であり、光源2から出射した径1mmのビームが10mmから20mm程度に拡大される。このとき,パルス分割部8で1つのパルスを時分割したことによって発生する各分割したパルスの光軸の傾きは逆に1/10から1/20に減少する。たとえばパルス分割部8から出射した各分割したパルスの光軸の傾きのばらつきが100μrad程度とすると,光束拡大部5から出射する各分割したパルス光のばらつきは5~10μradになる。
 偏光制御部6は,1/2波長板61,1/4波長板62を備えて構成され,照明光の偏光状態を任意の偏光状態に制御する。
 照明部101の光路の途中において,出射光調整部4から出射した光、及びパルス分割部8から出射した光の状態を計測する照明光状態計測手段21について図6を用いて説明する。照明光状態計測手段21はビームモニタ22と23とを備えて構成される。ビームモニタ22は,出射光調整部4を通過した照明光の位置および角度(進行方向)を計測して出力する。ビームモニタ23は,パルス分割部8が出射する照明光の位置を計測して出力する。
 ビームモニタ22における照明光の位置計測は,照明光の光強度の重心位置を計測することによって行われる。具体的な位置計測手段としては,光位置センサ(PSD:Position Sensitive Detector)223,あるいはCCDセンサやCMOSセンサなどのイメージセンサが用いられ、出射光調整部4を通過した照明光の一部をハーフミラー221で分岐させ、更にこのハーフミラー221で分岐した出射光調整部4を通過した照明光の一部をハーフミラー222で分岐した光を検出する。ビームモニタ22における照明光の角度計測は前記位置計測手段より光源から遠く離れた位置に設置された光位置センサあるいはイメージセンサ224でフミラー222を透過した光を検出するによって行われる。ビームモニタ22において計測された照明光位置,照明光角度は制御部53に入力され,表示部55に表示される。照明光位置あるいは角度が所定の位置あるいは角度からずれていた場合は,前記出射光調整部4において所定の位置に戻るよう調整される。
 ビームモニタ23における照明光の位置計測は,パルス分割部8を通過した照明光の一部をハーフミラー231で分岐させ、この分岐させた光を集光光学系232または結像光学系233の何れかに光学系切替え手段234で切替えて、CCDセンサやCMOSセンサなどのイメージセンサ235で検出して照明光の光強度の重心位置を計測することによって行われる。
 パルス分割部8で光軸がずれると照明集光制御部7による試料上での集光が困難になる。これを図7を用いて説明する。図7では(a)の701および(b)の705はビームモニタ23で検出された二次元状の光量分布を示す。照明集光制御部7は2組のアナモフィックプリズム71および72と集光レンズ73を備えて構成されている。
 図7(c)には,パルス分割部8から光路の分岐なしに到達するパルス(最初の分割パルス)の光束702とパルス分割部8の分岐光路(偏光ビームスプリッタ305からミラー306、ミラー309、偏光ビームスプリッタ302を通り再び偏光ビームスプリッタ305に至る光路)を通った2回目の分割パルスの光束703で照明集光制御部7に入射する位置はほぼ同一であるが,照明集光制御部7を透過して試料Wへの入射角度が異なっている状態を示す。
 図7(d)には、照明集光制御部7に入射する最初の分割パルス706と2回目の分割パルス707との位置は異なっているが,照明集光制御部7を透過して試料Wへ入射する方向は同一である状態を示す。
 照明集光制御部7へ入射する光がコリメートされたビームであれば,図7(e)のプロファイル704と図7(f)の708のプロファイルとが示すように,試料上の集光状態は集光レンズ73の主面位置における光束のばらつきよりも集光レンズ73に入射する光束の角度ばらつきが試料W上で照明を集光するには重要である。たとえば,この分割されたそれぞれのパルス光のレンズへの入射角度の差がΔφであり,集光レンズ73の焦点距離がfであった場合,この2つの分割パルス光により照明される試料w上の位置は、ほぼf・Δφずれてしまう。したがって,Δφを小さくすることが重要である。たとえば光束拡大部5を出射する光のΔφが5μradであった場合,fが100mmであるとすれば,0.5μm程度のずれで集光することが可能である。
 ビームモニタ23は,Δφを観測する目的で設ける。ビームモニタ23の検出器はCCDセンサやCMOSセンサ等のイメージセンサ232を用い,このイメージセンサ232にコリメート光が集光光学系232を介して集光されるように設定すると,この得られる画像は試料面上のパターンに対して光束拡大部5の倍率分拡大されたものとほぼ等しい。このモードを集光撮影モードと呼ぶ。また,ビームモニタ23の検出器232には,光束拡大部5の入射直前の光束のパターンも結像光学系233を介して結像できるように、光学系切替え手段234で集光光学系232と結像光学系233とを切替え可能な構成にする。この光束パターンの像を撮像するモードを光束撮影モードと呼ぶ。
 ビームモニタ23は,光学系切替え手段234で集光光学系232と結像光学系233とをモード毎に切り替えてひとつの検出器232で撮像できるような構成について説明したが,それぞれの光学系と検出器との組合せを別個に備えて光路を分岐して同時に2つのモードを撮影できるようにしても良い。更に、光学系を工夫することにより、一つの検出器で同時に2つのモードを撮影できるようにしても良い。
 照明集光制御部7において調整された試料Wの表面上の照明強度分布は,垂直照明を行う照明集光制御部7vの光軸上の照明強度分布を照明強度分布モニタ24によって計測することによりモニタされる。照明強度分布モニタ24は、照明集光制御部7vの光軸上に配置したハーフミラー241で試料Wの表面からの反射光をレンズ242を介してCCDセンサやCMOSセンサなどのイメージセンサ243上に結像して画像として検出するものである。照明強度分布モニタ24で検出された照明強度分布の画像は制御部53において処理され,強度の重心位置,最大強度,最大強度位置,照明強度分布の幅,長さ(所定の強度以上あるいは最大強度値に対して所定の比率以上となる照明強度分布領域の幅,長さ)などが算出され,表示部において照明強度分布の輪郭形状,断面波形などと共に表示部55の画面上に表示される。
 ビームモニタ23を用いたミラー41,42,306,307の調整方法について図11を用いて述べる。ここでは,図3Aに示した構成における、まず1/2波長板301と304との回転角度を制御するための回転制御機構310と311をパルス分割部8に入射される光がすべて偏光ビームスプリッタ302および305で分岐をせずに出力される状態(A)に設定する(S1101)。ビームモニタ23を光束撮影モードにして光束パターンを撮影し(S1102),制御部53で輝点の重心位置を計算し(S1103),この結果をもとに光束が光束拡大部部5において光学系の中心位置を通るように出射光調整部4のミラー41,42を制御して光軸を自動的にあわせる(S1104)。このときのミラー41,42の角度は一般的に知られる幾何光学的な手法で容易に求めることができる。これを光束の重心位置が所望の位置に来るまで行う(S1105)。
 次いで光学系切替え手段234で集光光学系232が検出器232の検出光軸上に位置するように調整して、ビームモニタ23を集光撮影モードに設定して撮影し(S1106),再び制御部53で輝点の重心位置を計算し(S1107),光束がビーム拡大部5の中央に入射する条件を維持したまま,集光モードにおいてビームが所定の位置に集光されるミラー41,42それぞれの制御値を算出し,この状態になるようにミラー41,42それぞれの角度を自動設定する(S1108)。このS1106からS1109までの操作を、光重心位置が所望の位置に来るまでくりかえす(S1109)。また,ミラー41,42それぞれの角度が設定された状態で制御部53で光学系切替え手段234を制御して結像光学系233により光束撮影モードで光束パターンを撮像し、また、集光光学系232により集光撮影モードで光束パターンを撮影する。撮影した光束パターンより,光束撮影モード,集光撮影モードそれぞれの光束の重心位置を求め記憶する(S1110)。
 次いで,回転制御機構311を,すべての光が偏光ビームスプリッタ302を透過し偏光ビームスプリッタ305から分岐して,ミラー306,307で順次反射して再びビームスプリッタ302に至るモードに設定する(S1111)。この状態で制御部53で光学系切替え手段234を制御して集光光学系232と結像光学系233とを切替えて、結像光学系233によりビームモニタ23を再度光束撮影モードに設定して光束を撮影し(S1112),制御部53で輝点の重心位置を計算し(S1113),この結果をもとに,光束が状態Aの光束撮影モードのパターンと一致する,ミラー306と307の角度を算出し,この角度になるように位置制御機構308と309の角度を自動設定する(S1114)ことを、光重心位置が所望の位置に来るまで行う(S1115)。
 この角度も幾何光学的に求めることが可能である。なお,得られたパターンの総光量が期待値に対して低い場合はアパーチャ303の中心を光束が通過していない可能性が大きいため,輝点の重心位置が変化しない条件で,異なる角度設定を複数回試行し,最大の明度になる角度にミラー306と307を設定する。
 次いで,制御部53で光学系切替え手段234を制御して結像光学系233と集光光学系232とを切替えて、集光光学系232によりビームモニタ23を集光撮影モードに変更して,状態Aの集光撮影モードの光束を撮影し(S1116),光束の重心位置を算出し(S1117),S1110で算出した集光撮影モードの重心位置と一致するように,ミラー306と307の角度を算出し,この角度になるように位置制御機構308と309の角度を自動設定する(S1118)ことを、光重心位置が所望の位置に来るまで行う(S1119)。
 図12にビームモニタ23の光束撮像モードにおいて光束拡大部5の入射部で,光束が定まった位置に入射されながら,角度が異なっている状態を示す。ミラー306において理想的なミラーの位置からΔθ1,ミラー307においてΔθ2ずれていた場合,光束拡大部5における理想的な光軸からのずれ量はΔθ1,Δθ2が微小であれば,所望の光軸位置からのずれ量であるΔyは以下の式で近似できる。 
 Δy=2((y1+x2)Δθ2-(x1+y1+x2)Δθ1)
光束撮影モードにおいては,このΔyに比例した距離が,重心位置のずれとして検出できる。
 ここで,x1はミラー306,307間の距離,y1はミラー307,偏光ビームスプリッタ302間の距離,x2は偏光ビームスプリッタ302からビーム拡大部までの距離である。
 一方,集光撮影モードにした場合,所望の位置からのずれΔy2に比例した量が観察され,この値は以下の式で表される。
 Δy2=Δθ2-Δθ1
 よって,上記2つの式より,各ミラーのずれ量,Δθ1,Δθ2を算出して,所望の位置にミラーをセットすることができる。また,この式には近似がはいっている,あるいはx1,x2,y1の値の誤差などにより,完全に所望の光軸あわせができていない場合もあるため,再度,光束撮影モード,集光撮影モードにして所望の誤差範囲内になるまで調整を繰り返す。
 また,最後に回転制御機構311を,1回のパルス発光強度の最大値が最も小さくなる角度に設定し(S1120),光束撮影モード,集光撮影モードにして,光束を撮影,重心位置を算出し(S1121),S1110で算出した位置と異なっていた場合には,再度S111よりミラー位置をあわせる(S1122)。S1110で算出した光束位置と一致した場合にはこの光束の像を撮影し,この画像を保存する。
 また,GUIを介して,ビームモニタ23で検出したパターンを表示できるようにする。図13はこのGUI1300の一例であり,例えば表示部55に表示される。1301は光束撮影モード時にビームモニタ23で検出した画像,1302は集光撮影モード時にビームモニタ23で検出した画像であり,それぞれ,検出画像と制御部53に記憶させておいた任意の記録画像が同時に表示できる。 このとき、例えば保存画像と検出画像の色を変えることが望ましい。保存画像としては例えば,前回の調整画像や,回転制御機構311を駆動して1/2波長板301を透過した光がパルス分割されないモードに1/2波長板301を設定した際にビームモニタ23で取得されるパターン等として,これを基準に現在の調整状態を判断できるようにする。
 1303は調整のために用いるパラメータであり,ミラー306の角度,ミラー307の角度やレーザ光源2から出力されるレーザパワー,回転制御機構311で制御する1/2波長板301の角度等である。また,1304は保存画像の切り替え用のインターフェースであり,保存画像名を入力する。1305は自動調整ボタンであり,このボタンを外部入力インターフェース,例えばマウスやトラックボールでクリックすることで自動調整が行われる。
 典型的な試料の検査方法を図14に示す。(a)に示すように、試料Wに1401に示すような一方向に細長い光で照明を行う。(b)のように試料Wを回転させながら一方向に細長い照明光1401の位置試料Wの半径方向(S2の方向)に移動させることにより螺旋Tのように走査して試料全面の検査を行う。検査感度を向上させるには,照明のスポットサイズを狭くする必要があるが,スポットサイズは試料Wを回転させるステージのスピードが低い状態でも高スループットで検査を実現するためにはS1方向に線幅を狭くする必要があるが,S2方向には線幅を一般には拡大させる。このため,パルス分割部8で厳密に軸調整をする必要があるのは一方向のみである。
 一方,パルス分割部に小スポット光を入力すると,光強度の強いレーザではミラーや偏光ビームスプリッタなどの光学機器にダメージが発生しやすくなる。そこで,このダメージを小さくするには,照明スポットを一方向のみ拡大させ,パルス分割部に入力し,もう一方向をパルス分割の後に拡大させる方式がある。この実施例を図15に示す。
 図15では図1の検出系および処理系を省略した部分を示しており,光束拡大部がパルス分割部8の前後に分かれて,5A,5Bに分割されている。5Aは試料W面上のS2方向に対応する方向のみ光束を拡大させ,5BはS1方向に対応する方向のみ光束を拡大させる。このようにすることで,パルス分割部における光束の面積を拡大させ,光学部品の大パワーレーザによるダメージを軽減させる。S2方向は試料上でのビーム径が大きいため,角度方向のばらつきが多少あっても,この変動を受けることが少ないので問題がない。
 本実施例では,上記に示したように調整を行うことで試料面上において,特にS1方向に理想的なガウス分布に近づくようにするが,多数の異なる光路からの光を照明するため,必ずしも理想的なガウス分布にはならない。そこでビームモニタ23で撮影した,集光撮影モードのパターンを用いて試料面上でのプロファイルを推定し,信号処理のパラメータを変更することで,装置間の感度差や,再現性を確保する。試料面でのS1方向のプロファイルがp(x)とする。このとき,欠陥がS1方向のビームプロファイルに対して十分小さければ,時系列的に得られる欠陥に相当する欠陥判定部605の出力s(t)は,p(x)のプロファイルと一致する。p(x)時系列信号に変換した信号をPS(t)とおく。欠陥をノイズと最も分離するには,s(t)に対してPS(t)のプロファイルを畳み込めば良い。そこで,ビームモニタ23のプロファイルを用いてハイパスフィルタ604a,604bを形成する。このとき得られる欠陥信号の期待値はPS(t)の2乗の積分に比例し,このため,ビームモニタ23のプロファイルの変化により検出する信号強度が変化する。
 検査装置は欠陥の検出とともに,欠陥サイズを検出することも重要である。一般に照明波長に対して欠陥のサイズが十分小さい場合は,レイリー散乱領域であり,欠陥のサイズの6乗に散乱光量は比例する。このため,検出信号強度の6乗根をもとに欠陥のサイズを算出して,検出した欠陥のサイズとして出力する。しかし,ビームのプロファイルがパルス分割部8で変化する場合,レイリー散乱の6乗以外にPS(t)の2乗に対しても比例するため,これを正規化する必要がある。そこで,欠陥のサイズを(数1)のように算出する。
Figure JPOXMLDOC01-appb-M000001
ここでKは定数である。
 欠陥判定部605,606において,上記の式で欠陥のサイズを求めることにより,万一,パルス分割部8において光束の軸がずれた場合においても安定した欠陥の検出,およびサイズ判定を行うことができる。 
 この判定した欠陥のサイズの情報は、表示部55の画面上に表示される。
 本発明は半導体基板や薄膜基板等の製造ラインにおいて,製品の歩留まりを維持・向上するために,半導体基板や薄膜基板等の表面に存在する微小な欠陥を検査し,欠陥の種類および欠陥寸法を判定して出力する欠陥検査方法およびその装置に適用することができる。
2…光源  3…アッテネータ  4…出射光調整部  5…光束拡大
部  6…偏光制御部  7…照明集光制御部  7v…照明集光制御部  22…ビームモニタ  23…ビームモニタ  53…制御部  54…表示部  55…入力部  101…照明部  102…検出部  103…ステージ部  105…信号処理部  120…照明光軸。

Claims (16)

  1.  試料を載置して回転可能なテーブル手段と、
     パルスレーザを発射する光源手段と、
     該光源手段から発射されたパルスレーザをパルス分割し、該パルス分割したパルスレーザで前記テーブル手段に載置されている試料を照明する照明光学系手段と、
     該照明光学系手段によりパルス分割されたパルスレーザで照明された前記試料からの反射光を検出する検出光学系手段と、
     前記反射光を検出した検出光学系手段からの出力信号を処理して前記試料上の欠陥を検出する信号処理手段と、
    該信号処理手段で処理した結果を表示画面に出力する出力手段とを備え、
     前記照明光学系手段は、
     前記光源手段から発射されたパルスレーザをパルス分割するパルス分割部と、
     該パルス分割部から出射したパルス分割されたパルスレーザの光強度の重心位置をモニタする第1のビームモニタ部と、
     該第1のビームモニタ部でモニタした前記パルス分割されたパルスレーザの光強度の重心位置を調整する光強度重心位置調整部と
    を有することを特徴とする欠陥検査装置。
  2.  前記出力手段は前記第1のビームモニタ部でモニタしたパルス分割されたパルスレーザの像を前記表示画面に表示することを特徴とする請求項1記載の欠陥検査装置。
  3.  前記照明光学系手段は、前記パルス分割部でパルス分割されたパルスレーザの光束の径を拡大する光束拡大部を更に備えることを特徴とする請求項1記載の欠陥検査装置。
  4.  前記照明光学系手段は、前記光源手段から発射されたパルスレーザのビーム位置及びビーム進行方向を調整する出射光調整部と、該出射光調整部を透過して前記パルス分割部に入射するパルスレーザの位置及び角度をモニタする第2のビームモニタ部とを更に備えたことを特徴とする請求項1記載の欠陥検査装置。
  5.  前記パルス分割部は、1対の偏光ビームスプリッタと1対の反射ミラーとを備えて構成され、前記光強度重心位置調整部で前記1対の反射ミラーの角度を調整するように構成されていることを特徴とする請求項3記載の欠陥検査装置。
  6.  前記パルス分割部は波長板を更に備え、該波長板により前記光源手段から発射された1パルスのパルスビームで前記パルス分割部を通過した最初の分割パルスと2回目の分割パルスの振幅が調整可能に構成されていることを特徴とする請求項5記載の欠陥検査装置。
  7.  前記照明光学系手段は、前記光束拡大部で光束の径を拡大されたパルス分割されたパルスレーザの偏光の状態を制御する偏向制御部と、該偏向制御部で偏光の状態を制御されたパルスレーザの光路を切替える光路切替部と、該光路切替部で光路を一方の側に切替えられた前記偏光の状態を制御されたパルスレーザを前記テーブル手段に載置された試料に対して斜め方向から照射する射方照明部と、前記光路切替部で光路を他方の側に切替えられた前記偏光の状態を制御されたパルスレーザを前記テーブル手段に載置された試料に対して高角度方向から照射する高角度照明部とを更に備えたことを特徴とする請求項5記載の欠陥検査装置。
  8.  前記信号処理手段は、前記照明光学系手段により前記パルス分割された不均一な発光強度のパルスレーザで照明された前記試料からの反射光を検出した検出光学系手段からの出力信号に対して低域通過フィルタリングを行うフィルタリング部と、該フィルタリング部で低域通過フィルタリング処理された信号を処理して欠陥を抽出する欠陥抽出部とを有することを特徴とする請求項6記載の欠陥検査装置。
  9.  光源から発射されたパルスレーザをパルス分割し、
     該パルス分割したパルスレーザを回転しながら一方向に移動している試料の表面に照射し、
     該パルス分割されたパルスレーザが照射された前記試料からの反射光を検出し、
     該反射光を検出した信号を処理して前記試料上の欠陥を検出し、
     該検出した欠陥に関する情報を表示画面に出力する欠陥検査方法であって、
     前記パルス分割したパルスレーザの光強度の重心位置をモニタし、
     前記モニタしたパルス分割されたパルスレーザの光強度の重心位置を調整する
    ことを特徴とする欠陥検査方法。
  10.  前記モニタしたパルス分割されたパルスレーザの像を画面上に表示し、該画面上に表示されたパルス分割されたパルスレーザの像に基づいて該パルス分割されたパルスレーザの光強度の重心位置を調整することを特徴とする請求項9記載の欠陥検査方法。
  11.  前記パルス分割したパルスレーザの光束の径を拡大して前記試料の表面に照射することを特徴とする請求項9記載の欠陥検査方法。
  12.  前記光源から発射されたパルスレーザのビーム位置及びビーム進行方向を調整し、該ビーム位置及びビーム進行方向が調整されたパルスレーザをパルス分割する前に前記パルスレーザの位置及び角度をモニタすることを特徴とする請求項9記載の欠陥検査方法。
  13.  前記パルス分割することを、1対の偏光ビームスプリッタと1対の反射ミラーとを備えて構成された光学系を用いて行い、前記光強度の重心位置を調整することを、前記1対の反射ミラーの角度を調整することにより行うことを特徴とする請求項11記載の欠陥検査方法。
  14.  前記パルス分割することを、前記光源から発射された1パルスのパルスビームを分割した最初の分割パルスと2回目の分割パルスの振幅がほほ同じになるように調整することを特徴とする請求項13記載の欠陥検査方法。
  15.  前記光束の径を拡大したパルス分割したパルスレーザの光路を切替えて、前記試料に対して斜め方向から照射する射方照明又は前記試料に対して高角度方向から照射する高角度照明の何れかの照明により前記パルス分割したパルスレーザを前記試料の表面に照射することを特徴とする請求項14に記載の欠陥検査方法。
  16.  前記パルス分割された不均一な発光強度のパルスレーザで照明された前記試料からの反射光を検出した信号に対して低域通過フィルタリングを行い、該低域通過フィルタリング処理された信号を処理して欠陥を抽出することを特徴とする請求項14記載の欠陥検査方法。
PCT/JP2011/061953 2010-06-03 2011-05-25 欠陥検査方法およびその装置 WO2011152261A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/701,030 US8711347B2 (en) 2010-06-03 2011-05-25 Defect inspection method and device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010128029A JP5538072B2 (ja) 2010-06-03 2010-06-03 欠陥検査方法およびその装置
JP2010-128029 2010-06-03

Publications (1)

Publication Number Publication Date
WO2011152261A1 true WO2011152261A1 (ja) 2011-12-08

Family

ID=45066637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061953 WO2011152261A1 (ja) 2010-06-03 2011-05-25 欠陥検査方法およびその装置

Country Status (3)

Country Link
US (1) US8711347B2 (ja)
JP (1) JP5538072B2 (ja)
WO (1) WO2011152261A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037269A (ja) * 2010-08-04 2012-02-23 Hitachi High-Technologies Corp 欠陥検査方法及びこれを用いた装置
US8786850B2 (en) * 2012-10-29 2014-07-22 Kla-Tencor Corporation Illumination energy management in surface inspection
EP3940371B1 (en) * 2014-06-05 2023-08-30 Universität Heidelberg Method and imaging apparatus for acquisition of fluorescence and reflectance images
JP6369860B2 (ja) * 2014-07-15 2018-08-08 株式会社日立ハイテクノロジーズ 欠陥観察方法及びその装置
CN104795339B (zh) * 2015-03-09 2017-10-20 昆山龙腾光电有限公司 薄膜晶体管阵列基板的检测装置及检测方法
CN114791653A (zh) * 2015-03-24 2022-07-26 申泰公司 具有纹理化表面的光学块
KR101700392B1 (ko) * 2015-05-26 2017-02-14 삼성디스플레이 주식회사 레이저빔 어닐링 장치 및 이를 이용한 디스플레이 장치 제조방법
WO2016189650A1 (ja) * 2015-05-26 2016-12-01 株式会社日立ハイテクノロジーズ 検査装置
WO2017149689A1 (ja) * 2016-03-02 2017-09-08 株式会社日立ハイテクノロジーズ 欠陥検査装置、パターンチップ及び欠陥検査方法
US10324045B2 (en) * 2016-08-05 2019-06-18 Kla-Tencor Corporation Surface defect inspection with large particle monitoring and laser power control
US10908129B2 (en) * 2016-12-13 2021-02-02 Pendar Technologies, Llc Devices and methods for quartz enhanced photoacoustic spectroscopy
NL2020619B1 (en) 2018-01-16 2019-07-25 Illumina Inc Dual optical grating slide structured illumination imaging
WO2020008599A1 (ja) * 2018-07-05 2020-01-09 ギガフォトン株式会社 エネルギ計測装置及びエキシマレーザ装置
JP7134932B2 (ja) 2019-09-09 2022-09-12 株式会社日立製作所 光学条件決定システム、及び光学条件決定方法
JP7392582B2 (ja) * 2020-06-12 2023-12-06 オムロン株式会社 検査システムおよび検査方法
CN112362668A (zh) * 2020-11-05 2021-02-12 益阳市产商品质量监督检验研究院 一种电解电容器外观缺陷检测装置及检测方法
CN112858341B (zh) * 2020-12-23 2022-11-18 北京纬百科技有限公司 一种检测方法、拍摄系统及检测系统
CN113008798A (zh) * 2021-03-15 2021-06-22 上海华力微电子有限公司 一种照明光路、缺陷检测装置及光强测量方法
CN113465884B (zh) * 2021-06-03 2023-06-06 中国科学院空天信息创新研究院 连续激光损伤阈值测试装置
WO2023119589A1 (ja) * 2021-12-23 2023-06-29 株式会社日立ハイテク 光学式異物検査装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021787A (ja) * 2001-07-06 2003-01-24 Nikon Corp 観察装置
JP2003130808A (ja) * 2001-10-29 2003-05-08 Hitachi Ltd 欠陥検査方法及びその装置
JP2004233163A (ja) * 2003-01-29 2004-08-19 Hitachi High-Technologies Corp パターン欠陥検査方法およびその装置
JP2005156516A (ja) * 2003-11-05 2005-06-16 Hitachi Ltd パターン欠陥検査方法及びその装置
JP2008511177A (ja) * 2004-08-25 2008-04-10 ケーエルエー−テンカー テクノロジィース コーポレイション 半導体検査用のファイバ増幅器ベースの光源

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3686160B2 (ja) 1995-04-10 2005-08-24 株式会社日立ハイテクノロジーズ ウエハ表面検査方法および検査装置
US5903342A (en) 1995-04-10 1999-05-11 Hitachi Electronics Engineering, Co., Ltd. Inspection method and device of wafer surface
US6608676B1 (en) 1997-08-01 2003-08-19 Kla-Tencor Corporation System for detecting anomalies and/or features of a surface
JP3996728B2 (ja) 2000-03-08 2007-10-24 株式会社日立製作所 表面検査装置およびその方法
US7295739B2 (en) 2004-10-20 2007-11-13 Kla-Tencor Technologies Corporation Coherent DUV illumination for semiconductor wafer inspection
US7548308B2 (en) 2005-05-11 2009-06-16 Kla-Tencor Corporation Illumination energy management in surface inspection
JP4564910B2 (ja) * 2005-09-26 2010-10-20 株式会社日立ハイテクノロジーズ ウェハ欠陥検査方法および装置
JP4343911B2 (ja) 2006-02-06 2009-10-14 株式会社日立製作所 欠陥検査装置
JP2008020374A (ja) * 2006-07-14 2008-01-31 Hitachi High-Technologies Corp 欠陥検査方法およびその装置
JP5355922B2 (ja) * 2008-03-31 2013-11-27 株式会社日立ハイテクノロジーズ 欠陥検査装置
JP5331586B2 (ja) * 2009-06-18 2013-10-30 株式会社日立ハイテクノロジーズ 欠陥検査装置および検査方法
JP5405956B2 (ja) * 2009-09-24 2014-02-05 株式会社日立ハイテクノロジーズ 欠陥検査装置
JP2012037269A (ja) * 2010-08-04 2012-02-23 Hitachi High-Technologies Corp 欠陥検査方法及びこれを用いた装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021787A (ja) * 2001-07-06 2003-01-24 Nikon Corp 観察装置
JP2003130808A (ja) * 2001-10-29 2003-05-08 Hitachi Ltd 欠陥検査方法及びその装置
JP2004233163A (ja) * 2003-01-29 2004-08-19 Hitachi High-Technologies Corp パターン欠陥検査方法およびその装置
JP2005156516A (ja) * 2003-11-05 2005-06-16 Hitachi Ltd パターン欠陥検査方法及びその装置
JP2008511177A (ja) * 2004-08-25 2008-04-10 ケーエルエー−テンカー テクノロジィース コーポレイション 半導体検査用のファイバ増幅器ベースの光源

Also Published As

Publication number Publication date
JP5538072B2 (ja) 2014-07-02
US20130114078A1 (en) 2013-05-09
US8711347B2 (en) 2014-04-29
JP2011252841A (ja) 2011-12-15

Similar Documents

Publication Publication Date Title
JP5538072B2 (ja) 欠陥検査方法およびその装置
JP5355922B2 (ja) 欠陥検査装置
KR101478476B1 (ko) 결함 검사 방법, 미약광 검출 방법 및 미약광 검출기
US20180067060A1 (en) Defect inspecting method and defect inspecting apparatus
US9182351B2 (en) Optical metrology system for spectral imaging of a sample
JP5676419B2 (ja) 欠陥検査方法およびその装置
US9086389B2 (en) Sample inspection system detector
JP4741986B2 (ja) 光学式検査方法および光学式検査装置
WO2012090367A1 (ja) 欠陥検査方法および欠陥検査装置
US9846122B2 (en) Optical metrology system for spectral imaging of a sample
US20150116702A1 (en) Defect inspection method and defect inspection device
JP5579574B2 (ja) 欠陥検査方法およびその装置
US7952701B2 (en) Surface inspection method and inspecting device using the same
TW201934988A (zh) 缺陷檢查裝置
EP3165903B1 (en) Optical metrology system for spectral imaging of a sample
JP5815798B2 (ja) 欠陥検査方法および欠陥検査装置
JP6117305B2 (ja) 欠陥検査方法、微弱光検出方法および微弱光検出器
JP2015028457A (ja) 欠陥検査装置および欠陥検査方法
WO2021029025A1 (ja) 欠陥検査装置および欠陥検査方法
JP5668113B2 (ja) 欠陥検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13701030

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11789670

Country of ref document: EP

Kind code of ref document: A1