WO2011152230A1 - レーザ加工方法 - Google Patents

レーザ加工方法 Download PDF

Info

Publication number
WO2011152230A1
WO2011152230A1 PCT/JP2011/061674 JP2011061674W WO2011152230A1 WO 2011152230 A1 WO2011152230 A1 WO 2011152230A1 JP 2011061674 W JP2011061674 W JP 2011061674W WO 2011152230 A1 WO2011152230 A1 WO 2011152230A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse waveform
pulse
value
workpiece
laser light
Prior art date
Application number
PCT/JP2011/061674
Other languages
English (en)
French (fr)
Inventor
隆二 杉浦
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to US13/701,031 priority Critical patent/US9409256B2/en
Priority to CN201180027408.2A priority patent/CN102933347B/zh
Priority to KR1020127021574A priority patent/KR101934558B1/ko
Priority to EP11789639.9A priority patent/EP2578349B1/en
Publication of WO2011152230A1 publication Critical patent/WO2011152230A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Definitions

  • the present invention relates to a laser processing method for cutting a workpiece.
  • a conventional laser processing method there is known a method in which a laser beam is focused on a processing target and a modified region is formed on the processing target along a planned cutting line (for example, see Patent Document 1).
  • a laser processing method a plurality of modified spots are formed along a planned cutting line, and a modified region is formed by the plurality of modified spots.
  • the pulse energy of laser light may be changed according to the required quality.
  • the splitting force which is the ease of extension of cracks generated from the modified region, is reduced, and productivity (tact) may be deteriorated.
  • an object of the present invention is to provide a laser processing method capable of increasing the dividing force according to the required quality.
  • the present inventors have intensively studied. As a result, laser beams having a pulse waveform having a half-value width and a time width from rising to falling (so-called skirt width) equal to each other are processed. It was found that the splitting force can be increased when the modified region is formed by irradiation. Further, the present inventors have further intensively studied and found that the splitting force varies depending on the pulse waveform of the laser light when the pulse energy of the laser light changes. Therefore, the present inventors have conceived that if a pulse waveform having a half width and a skirt width equal to each other is optimized according to the pulse energy, a high dividing force can be obtained according to the required quality. Thus, the present invention has been completed.
  • the laser processing method according to the present invention is a laser processing method in which a laser beam is focused on a processing object, and a modified region is formed on the processing object along a planned cutting line.
  • a laser beam is focused on a processing object, and a modified region is formed on the processing object along a planned cutting line.
  • the workpiece By irradiating the workpiece with laser light having a pulse waveform with the same time width until the fall, a plurality of modified spots are formed along the planned cutting line, and the modified region is formed by the plurality of modified spots.
  • the pulse energy of the laser beam is a first value lower than a predetermined value
  • the peak value is located on the first half side and has a saw-tooth shape.
  • the first pulse waveform configured as described above is set as a pulse waveform, and when the pulse energy is a second value higher than a predetermined value, the peak value is located on the second half side and is configured in a sawtooth shape. And setting the second pulse waveform as a pulse waveform.
  • a laser beam having a pulse waveform in which the half width and the skirt width are equal to each other is irradiated to the processing object.
  • the pulse waveform is optimized according to the pulse energy so as to increase. This is because the sawtooth-shaped first pulse waveform whose peak value is located on the first half side has a high splitting force when the pulse energy is the first value, and the sawtooth shape whose peak value is located on the second half side thereof. This is because it is found that the second pulse waveform has a high splitting force when the pulse energy is the second value. Therefore, according to the present invention, it is possible to increase the dividing force according to the required quality.
  • the first pulse waveform is a waveform that rises steeply and reaches a peak value and then gradually falls, and then falls sharply
  • the second pulse waveform rises and peaks gradually after rising steeply.
  • the waveform reaches a value and then falls sharply.
  • a third pulse waveform configured to be rectangular may be set as the pulse waveform.
  • the pulse energy it is preferable to set the pulse energy to the first value when the modified spot is formed on the surface opposite to the laser light irradiation surface in the workpiece. In this case, it is possible to suppress the occurrence of damage on the surface opposite to the laser light irradiation surface of the processing object due to the laser light irradiation.
  • the pulse energy it is preferable to set the pulse energy to the second value when the modified spot is formed on the opposite side of the laser light irradiation surface of the workpiece. In this case, it is possible to reliably expose the crack on the surface opposite to the laser light irradiation surface of the workpiece.
  • the splitting power can be increased according to the required quality.
  • FIG. 3 is a cross-sectional view taken along the line III-III of the workpiece in FIG. 2. It is a top view of the processing target after laser processing.
  • FIG. 5 is a cross-sectional view taken along the line VV of the workpiece in FIG. 4.
  • FIG. 5 is a cross-sectional view taken along line VI-VI of the workpiece in FIG. 4.
  • FIG. 6 is a diagram showing a pulse waveform according to Comparative Example 1.
  • FIG. 6 is a diagram showing a pulse waveform according to Comparative Example 2.
  • FIG. It is a figure which shows the relationship between a pulse waveform and a dividing force.
  • A) is a photograph figure which shows the cut surface of the workpiece which concerns on the comparative example 1
  • (b) is a photograph figure which shows the cut surface of the workpiece according to the comparative example 2.
  • (A) is a photograph showing the cut surface of the workpiece according to the first embodiment
  • (b) is a photograph showing the cut surface of the workpiece according to the second embodiment
  • (c) is a machining according to the third embodiment.
  • A The photograph figure which shows the cut surface of the workpiece which concerns on Example 1 when pulse energy is a low PE value
  • (b) is the workpiece which concerns on Example 2 when pulse energy is a low PE value
  • (C) is a photograph figure which shows the cut surface of the workpiece which concerns on Example 3 when pulse energy is a low PE value. It is a figure which shows the relationship between a pulse waveform and splitting force when pulse energy is a high PE value.
  • (A) The photograph figure which shows the cut surface of the workpiece which concerns on Example 1 when pulse energy is a high PE value
  • (b) is the workpiece according to Example 2 when pulse energy is a high PE value
  • (C) is a photograph figure which shows the cut surface of the workpiece which concerns on Example 3 when pulse energy is a high PE value. It is a figure which shows the output pulse waveform of a normal MOPA fiber laser.
  • the laser beam is focused on the workpiece, a plurality of modified spots are formed along the planned cutting line inside the workpiece, and the plurality of modified spots are used for cutting.
  • a modified region serving as a starting point of the film is formed.
  • a laser processing apparatus 100 includes a laser light source 101 that oscillates a laser beam L, a dichroic mirror 103 that is arranged so as to change the direction of the optical axis (optical path) of the laser beam L, and A condensing lens 105 for condensing the laser light L. Further, the laser processing apparatus 100 includes a support base 107 for supporting the workpiece 1 irradiated with the laser light L condensed by the condensing lens 105, and a stage 111 for moving the support base 107. , A laser light source control unit 102 for controlling the laser light source 101 to adjust the output, pulse width, pulse waveform, and the like of the laser light L, and a stage control unit 115 for controlling the movement of the stage 111.
  • the laser light L emitted from the laser light source 101 has its optical axis changed by 90 ° by the dichroic mirror 103, and the inside of the processing object 1 placed on the support base 107.
  • the light is condensed by the condensing lens 105.
  • the stage 111 is moved, and the workpiece 1 is moved relative to the laser beam L along the planned cutting line 5. As a result, a modified region along the planned cutting line 5 is formed on the workpiece 1.
  • a scheduled cutting line 5 for cutting the workpiece 1 is set in the workpiece 1.
  • the planned cutting line 5 is a virtual line extending linearly.
  • the laser beam L is scheduled to be cut in a state where the focusing point (focusing position) P is aligned with the inside of the workpiece 1. It moves relatively along the line 5 (that is, in the direction of arrow A in FIG. 2).
  • the modified region 7 is formed inside the workpiece 1 along the planned cutting line 5, and the modified region 7 formed along the planned cutting line 5 is formed. It becomes the cutting start area 8.
  • the condensing point P is a location where the laser light L is condensed.
  • the planned cutting line 5 is not limited to a straight line, but may be a curved line, or may be a line actually drawn on the surface 3 of the workpiece 1 without being limited to a virtual line.
  • the modified region 7 may be formed continuously or intermittently. Further, the modified region 7 may be in the form of a line or a dot. In short, the modified region 7 only needs to be formed at least inside the workpiece 1.
  • a crack may be formed starting from the modified region 7, and the crack and the modified region 7 may be exposed on the outer surface (front surface 3, back surface 21, or outer peripheral surface) of the workpiece 1. Good.
  • the laser light incident surface when forming the modified region 7 is not limited to the front surface 3 of the workpiece 1 but may be the back surface 21 of the workpiece 1.
  • the laser light L here passes through the workpiece 1 and is particularly absorbed near the condensing point inside the workpiece 1, thereby forming the modified region 7 in the workpiece 1. (Ie, internal absorption laser processing). Therefore, since the laser beam L is hardly absorbed by the surface 3 of the workpiece 1, the surface 3 of the workpiece 1 is not melted. In general, when a removed portion such as a hole or a groove is formed by being melted and removed from the front surface 3 (surface absorption laser processing), the processing region gradually proceeds from the front surface 3 side to the back surface side.
  • the modified region formed in the present embodiment refers to a region in which density, refractive index, mechanical strength, and other physical characteristics are different from the surroundings.
  • the modified region include a melt treatment region, a crack region, a dielectric breakdown region, a refractive index change region, and the like, and there is a region where these are mixed.
  • the modified region there are a region where the density of the modified region in the material to be processed is changed compared to the density of the non-modified region, and a region where lattice defects are formed. Also known as the metastatic region).
  • the area where the density of the melt-processed area, the refractive index changing area, the modified area is changed compared with the density of the non-modified area, or the area where lattice defects are formed is In some cases, cracks (cracks, microcracks) are included in the interface between the non-modified region and the non-modified region. The included crack may be formed over the entire surface of the modified region, or may be formed in only a part or a plurality of parts.
  • Examples of the processing object 1 include those containing or consisting of silicon, glass, LiTaO 3 or sapphire (Al 2 O 3 ).
  • the modified region 7 is formed by forming a plurality of modified spots (processing marks) along the planned cutting line 5.
  • the modified spot is a modified portion formed by one pulse shot of pulsed laser light (that is, one pulse of laser irradiation: laser shot).
  • Examples of the modified spot include a crack spot, a melting treatment spot, a refractive index change spot, or a mixture of at least one of these.
  • the size of the modified spot and the length of the crack to be generated are appropriately determined. It is preferable to control.
  • FIG. 7 is a block diagram showing the laser light source of the present embodiment.
  • a MOPA Master-Oscillator-Power-Amplifier
  • the laser light source 101 includes a drive power supply 51, a seed laser oscillator 52, and amplifiers 53 and 54.
  • the drive power supply 51 is for driving the seed laser oscillator 52, and inputs a drive current having a predetermined input pulse waveform to the seed laser oscillator 52.
  • the drive power source 51 is connected to the laser light source control unit 102, and the shape of the input pulse waveform is variable.
  • the seed laser oscillator 52 is a diode laser (LD) and oscillates seed laser light having a pulse waveform equal to the input pulse waveform of the input drive current.
  • the amplifiers 53 and 54 amplify the seed laser light oscillated by the seed laser oscillator 52 in this order, and emit it as laser light L.
  • the amplifiers 53 and 54 amplify the seed laser light with a plurality of LDs different from the seed laser oscillator 52.
  • the pulse waveform of the seed laser beam from the seed laser oscillator 52 is deformed in the amplification process, and the laser beam L having a pulse waveform different from the input pulse waveform is emitted.
  • the drive power source 51 is controlled by the laser light source control unit 102, and the input pulse waveform of the drive current input to the seed laser oscillator 52 is switched based on the pulse energy of the laser light L (control).
  • the laser beam L having first to third pulse waveforms different from each other is set and emitted according to the pulse energy of the laser beam L.
  • the pulse energy can be adjusted using an energy adjusting optical component (not shown) such as an attenuator.
  • the laser light source 101 sets a pulse energy value (Pulse Energy: hereinafter referred to as “PE value”) to a low PE value (first value) lower than a normal PE value (predetermined value) during normal laser processing.
  • PE value Pulse Energy
  • first value a low PE value
  • second value a normal PE value
  • a first pulse waveform O1 having a half width and a skirt width equal to each other is set, and a laser beam L having the first pulse waveform O1 is emitted.
  • “half width” means a time width when the pulse waveform has a value equal to or greater than 1 ⁇ 2 of the peak value T1, and “bottom width” corresponds to the pulse width and rises. It means the time width from the start time t1 to the fall completion time t2.
  • the first pulse waveform O1 has a peak value T1 located on the first half side of the first pulse waveform O1 (that is, close to the rising start time t1 in the skirt width), and is sharpened so as to have a saw-tooth shape. Yes. Specifically, the first pulse waveform O1 rises steeply and reaches a peak value T1 and then gradually falls, and after falling to a half value of the peak value T1, falls sharply.
  • the first pulse waveform O1 here has a rise time of about 40 nsec from 10% of the peak value T1 to 90% when the half width is 500 nsec, and from 50% to 10% of the peak value T1. The fall time is about 30 nsec.
  • the laser light L having the first pulse waveform O1 is generated by inputting a drive current having the first input pulse waveform I1 (see FIG. 8A) to the seed laser oscillator 52.
  • the first input pulse waveform I1 is configured so as to be horizontally reversed with respect to the shape of the first pulse waveform O1.
  • the relationship between the first input pulse waveform I1 and the first pulse waveform O1 is not simply set only by the shape but is greatly influenced by the peak value of the rising portion. That is, the peak value of the rising portion in the first input pulse waveform I1 is high, and the peak value of the rising portion in the first pulse waveform O1 is also high.
  • the first pulse waveform O1 a large amount of the excited energy is consumed on the first half side, so that the peak value gradually decreases on the second half side (that is, near the time t2 when the trailing edge is completed at the trailing edge). Recognize.
  • the peak value at the rising portion can be increased by increasing the output of the LD that excites the amplifiers 53 and 54. Further, if the output of the LDs of the amplifiers 53 and 54 is lowered, the average output is lowered, but it is also possible to obtain a laser beam L having a pulse waveform relatively close to a rectangle.
  • the laser light source 101 sets a second pulse waveform O2 in which the half width and the skirt width are equal to each other, for example, as shown in FIG. A laser beam L having the second pulse waveform O2 is emitted.
  • the second pulse waveform O2 is configured to be rectangular. Specifically, after the second pulse waveform O2 rises steeply and reaches the peak value T2, it maintains a substantially unchanged value, and then falls sharply.
  • the second pulse waveform O2 has a rise time of about 50 nsec from 10% of the peak value T1 to 90% when the half width is 500 nsec, and from 90% to 10% of the peak value T1. The fall time is about 70 nsec.
  • the laser light L having the second pulse waveform O2 is generated by inputting a drive current having the second input pulse waveform I2 (see FIG. 9A) to the seed laser oscillator 52.
  • the laser light source 101 when the pulse energy of the laser light L is set to a high PE value (second value) higher than the normal PE value, the laser light source 101 has, for example, a half width and a skirt width as shown in FIG. A third pulse waveform O3 that is equal to each other is set, and laser light L having the third pulse waveform O3 is emitted.
  • the third pulse waveform O3 is configured to be pointed so that the peak value T3 is located on the second half side of the third pulse waveform O3 and has a saw-tooth shape. Specifically, the third pulse waveform O1 rises steeply and reaches a half value of the peak value T1, then gradually rises to reach the peak value T3, and then sharply falls. When the half width is 500 nsec, the third pulse waveform O3 here has a rise time of about 40 nsec from 10% of the peak value T1 to 50%, and from 90% to 10% of the peak value T1. The fall time is about 50 nsec.
  • the laser beam L having the third pulse waveform O3 is generated by inputting a drive current having the third input pulse waveform I3 (see FIG. 10A) to the seed laser oscillator 52.
  • the third input pulse waveform I3 is configured to have a similar (similar) shape to the shape of the third pulse waveform O1.
  • the relationship between the third input pulse waveform I3 and the third pulse waveform O3 is not simply set only by the shape but is greatly influenced by the peak value of the rising portion. That is, it can be seen that the peak value of the rising portion in the third input pulse waveform I3 is low, and the peak value of the rising portion in the third pulse waveform O3 is also low.
  • an expand tape is attached to the back surface 21 of the workpiece 1, and the workpiece 1 is placed on the stage 111. Subsequently, the focusing point is set on the back surface 21 side in the processing object 1 and the laser beam L is projected to be cut while the laser beam L is irradiated to the processing object 1 with the front surface 3 as a laser light irradiation surface. Relative movement (scan) along Thereby, a plurality of modified spots S (see FIG. 14 and the like) are formed along the planned cutting line 5 on the back surface 21 side in the workpiece 1, and the modified region 7 is formed by these modified spots S. (Modified region forming step).
  • the dividing force can be increased by forming the modified region 7 by irradiating the workpiece 1 with the laser beam L having a pulse waveform having the same half width and the bottom width.
  • the laser light L with the first pulse waveform O1 has a high splitting force when the pulse energy is a low PE value
  • the laser light L with the second pulse waveform O2 is when the pulse energy is a normal PE value.
  • the laser beam L having a high splitting force and having the third pulse waveform O3 has a high splitting force when the pulse energy has a high PE value.
  • the laser light L having the third pulse waveform O3 has a tendency that cracks tend to extend from the laser light irradiation surface side (front surface 3) to the opposite surface side (back surface 21 side).
  • the drive power source 51 is controlled by the laser light source controller 102, and the pulse energy of the irradiated laser light L is set to a high PE value.
  • the pulse waveform is set to the third pulse waveform O3.
  • the drive power source 51 is controlled by the laser light source control unit 102, and the pulse energy of the irradiated laser light L is set to a low PE value. And the pulse waveform is set to the first pulse waveform O1.
  • the scan of the laser beam L is repeated while changing the focal point position in the thickness direction of the workpiece 1, and a plurality of modified regions 7 along the planned cutting line 5 are arranged in the order from the back surface 21 to the front surface 3.
  • the pulse energy of the laser beam L to be irradiated is set to the normal PE value, and the pulse waveform is set to the second pulse waveform O2.
  • the pulse energy of the irradiated laser beam L is set to a high PE value
  • the pulse waveform is set to the third pulse waveform O3.
  • the pulse energy increases while increasing the splitting force, so that the straightness of the crack extending from the modified region 7 is improved, and the quality of the cut surface can be improved. If the pulse energy of the laser light L is set to a high PE value, twist hackles can be suppressed.
  • the expanded tape is expanded, and the workpiece 1 is cut along the planned cutting line 5 using the modified region 7 as a starting point for cutting.
  • the workpiece 1 is separated from each other as a plurality of chips (for example, a memory, an IC, a light emitting element, a light receiving element, etc.).
  • the processing target 1 is irradiated with the laser beams having the first to third pulse waveforms O1 to O3 whose half width and skirt width are equal to each other.
  • the pulse energy is set to a low PE value, a normal PE value, and a high PE value according to the required quality (including the processing purpose and the processing status)
  • the first to third pulse waveforms O1 are accordingly set.
  • ⁇ O3 is switched. That is, the pulse waveform of the laser light L is optimized according to the pulse energy so that the splitting force is increased.
  • the first to third pulse waveforms O1 to O3 can be properly used based on the quality, and the workpiece 1 can be cut with a high division force according to the quality.
  • the pulse energy is set to a low PE value, and the pulse waveform is set to the first pulse waveform O1.
  • the back surface 21 can be prevented from being damaged by the irradiation with the laser beam L.
  • the pulse energy is set to a high PE value, and the pulse waveform is set to the third pulse waveform O3.
  • the crack can be reliably exposed on the back surface 21.
  • the laser light source 101 having the seed laser oscillator 52 that is an LD is used.
  • the output of a CW (Continuous Wave) fiber laser is modulated by an AOM (AcoustoOptic Modulator) and pulsed.
  • a laser light source may be used.
  • the pulse waveforms O1 to O3 can be obtained by appropriately changing the transmittance of the AOM.
  • the laser light source 101 includes the two amplifiers 53 and 54.
  • the number of amplifiers may be changed according to the output that the laser light finally needs, or even one. Three or more may be sufficient.
  • the laser processing may of course be performed by changing the PE value and pulse waveform of the laser light L for each scan.
  • Example A A silicon substrate having a thickness of 300 ⁇ m was prepared as a processing target, and this processing target was irradiated with laser light from the surface side, and three rows of modified regions were formed in the thickness direction along the planned cutting line. This was performed a plurality of times by changing the pulse waveform and pulse pitch of the laser beam. And the division
  • the pulse pitch means a distance between a pair of modified spots adjacent to each other along the scheduled cutting line.
  • the repetition frequency of the laser beam was 100 kHz, and the skirt width (pulse width) of the laser beam was 500 nsec.
  • the pulse energy was normally set to 16 ⁇ J / pulse which is a PE value.
  • the pulse waveform according to Comparative Example 1 was a pulse waveform O4 (see FIG. 11B) equivalent to the pulse waveform of the laser light emitted from a normal solid laser light source.
  • the pulse waveform according to Comparative Example 2 is smaller than the 1 ⁇ 2 peak value in the vicinity of the 1 ⁇ 2 peak value by adjusting the fall time with respect to the pulse waveform of the laser beam emitted from the MOPA fiber laser light source.
  • a pulse waveform O5 (see FIG. 12B) having a substantially rectangular time width as a value was used.
  • the pulse waveform according to the first embodiment is the first pulse waveform O1
  • the pulse waveform of the laser beam according to the second embodiment is the second pulse waveform O2
  • the pulse waveform of the laser beam according to the third embodiment is the first pulse waveform.
  • a three-pulse waveform O3 was used.
  • the pulse waveform O4 has a half width of 500 nsec (the bottom width is 900 ms), and the pulse waveform O5 has a half width of 250 nsec.
  • the laser beam having the pulse waveform O4 was obtained by inputting the drive current of the input pulse waveform I4 (see FIG. 11A) to the seed laser oscillator 52.
  • the laser beam having the pulse waveform O5 was obtained by inputting a drive current (a shape obtained by raising the second half of the rectangular wave) of the input pulse waveform I5 (see FIG. 12A) to the seed laser oscillator 52.
  • the output pulse waveform O of a normal MOPA fiber laser has a shape that continuously inclines and falls from a sharply rising peak value.
  • the evaluation of the splitting force includes “cracks exposed on the front and back surfaces of the workpiece”, “no cracks exposed on the front and back surfaces of the workpiece and can be cut by expansion of the expanded tape”, “expansion tape expansion It was evaluated that the splitting force was low in the order of “cannot be cut by”. The result is shown in FIG.
  • FIG. 13 is a diagram showing the relationship between the pulse waveform and the splitting force.
  • FC indicates when cracks are exposed on the front and back surfaces of the workpiece
  • ST indicates when cracks are not exposed on the front and back surfaces of the workpiece and can be cut by expansion of the expanded tape.
  • x is shown.
  • a laser beam having a pulse waveform such that the half width and the skirt width are equal to each other (half width ⁇ skirt width) is effective.
  • the relationship between the pulse waveform of the laser beam and the splitting force is, specifically, “pulse waveform close to a rectangle (Examples 1 to 3)> Gaussian pulse waveform (Comparative Example 1)> half width with respect to the skirt width. It was confirmed that the waveform becomes a short waveform (Comparative Example 2).
  • FIGS. 15 (a) to 15 (c) are workpieces according to Examples 1 to 3. It is each photograph figure which shows the cut surface.
  • a plurality of modified spots S are formed with a pulse pitch of 5.0 ⁇ m.
  • the difference in the split force is small. Therefore, for example, when the pulse energy is set to the normal PE value with emphasis on only the split force. Then, it was found that the difference in splitting force between the first to third pulse waveforms O1 to O3 was small.
  • Example B Next, the pulse waveform of the laser light is changed between the first to third pulse waveforms O1 to O3 according to Examples 1 to 3 described in Example A above, and the pulse energy is set to a low PE value of 12 ⁇ J / The dividing force was evaluated for a plurality of workpieces after forming the modified region in the same manner as in Example A except that the pulse was set.
  • splitting force is “a crack is exposed on the back surface of the workpiece, or a crack is exposed on the front and back surfaces of the workpiece”, and “expansion tape expansion without cracks exposed on the front and back surfaces of the workpiece. It was evaluated that the splitting force was low in the order of “Can be cut with” and “Can not be cut with expansion of expanded tape”. The result is shown in FIG.
  • FIG. 16 is a diagram showing the relationship between the pulse waveform and the splitting force when the pulse energy is a low PE value.
  • BHC when the crack is exposed on the back surface of the workpiece, it is indicated as “BHC”, and when the crack is exposed on the front and back surfaces of the workpiece, it is indicated as “FC”.
  • ST when the crack is exposed on the front and back surfaces of the workpiece, it is indicated as “ST”.
  • the first pulse waveform O1 according to Example 1 can obtain a sufficient split force even when the pulse energy is a low PE value. Further, when the pulse energy is a low PE value, a difference in split force occurs between the first to third pulse waveforms O1 to O3 according to the first to third embodiments, and the relationship between the pulse waveform and the split force is “ It was found that “first pulse waveform O1> second pulse waveform O2> third pulse waveform O3”. Incidentally, as shown in FIGS. 13 and 16, when the pulse energy is a low PE value, any of the first to third pulse waveforms O1 to O3 has a lower splitting force than the laser processing with the normal PE value. I understood.
  • FIGS. 17 (a) to 17 (c) are photographic views showing cut surfaces of the workpieces according to Examples 1 to 3 when the pulse energy has a low PE value.
  • a plurality of modified spots S are formed with a pulse pitch of 3.4 ⁇ m.
  • Example C Next, the pulse waveform of the laser beam is changed between the first to third pulse waveforms O1 to O3 according to Examples 1 to 3 described in Example A above, and the pulse energy is set to 36 ⁇ J / The dividing force was evaluated for a plurality of workpieces after forming the modified region in the same manner as in Example A except that the pulse was set.
  • splitting force is “a crack is exposed on the back surface of the workpiece, or a crack is exposed on the front and back surfaces of the workpiece”, and “expansion tape expansion without cracks exposed on the front and back surfaces of the workpiece. It was evaluated that the splitting force was low in the order of “Can be cut with” and “Can not be cut with expansion of expanded tape”. The result is shown in FIG.
  • FIG. 18 is a diagram showing the relationship between the pulse waveform and the splitting force when the pulse energy has a high PE value.
  • BHC when the crack is exposed on the back surface of the workpiece, it is indicated as “BHC”, and when the crack is exposed on the front and back surfaces of the workpiece, it is indicated as “FC”.
  • ST when the crack is exposed on the front and back surfaces of the workpiece, it is indicated as “ST”.
  • the pulse energy is a high PE value
  • the third pulse waveform O3 cracks tend to easily extend to the back side (opposite side of the laser irradiation surface)
  • the first and second pulse waveforms O1 and O2 It was found that the splitting force on the back side decreased. Therefore, it was found that in order to generate BHC in the object to be processed, it is preferable to perform laser processing with a laser beam having a high PE value and a third pulse waveform O3.
  • the splitting force is reduced in any of the first to third pulse waveforms O1 to O3 as compared with the laser processing with the normal PE value. I understood. Further, as shown in FIGS. 13, 16, and 18, by changing the pulse energy, a difference occurs in the splitting force and quality between the first to third pulse waveforms O1 to O3. It was found that it is important to select and use the optimum pulse waveform according to the scanning depth and quality) in order to achieve both separation power and quality.
  • FIGS. 19 (a) to 19 (c) are photographic views showing cut surfaces of the workpieces according to Examples 1 to 3 when the pulse energy has a high PE value.
  • a plurality of modified spots S are formed with a pulse pitch of 1.8 ⁇ m.
  • FIGS. 19 (a) and 19 (b) in the workpiece 1 according to Examples 1 and 2, a portion where the crack is interrupted (not extended) on the cut surface (black horizontal streaks in the figure). It was found that the smoothness and quality of the cut surface were low.
  • FIG. 19 (c) in the workpiece 1 according to Example 3, there are few portions where the cracks from the modified region 7 are interrupted, and the thickness direction extends from the front surface 3 to the back surface 21. The cracks extend with high accuracy, and the smoothness and quality of the cut surface are high. Therefore, in Example 3, it turned out that sufficient splitting force is acquired.
  • the splitting power can be increased according to the required quality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laser Beam Processing (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Dicing (AREA)

Abstract

 要求される品質に応じて分割力を高めることができるレーザ加工方法を提供する。半値幅と裾幅とが互いに等しいパルス波形を有するレーザ光Lを加工対象物に照射することで、切断予定ラインに沿って改質スポットを加工対象物内に複数形成し、複数の改質スポットによって改質領域を形成する。ここで、レーザ光源(101)は、レーザ光源制御部(102)によって駆動電源51を制御し、レーザ光LのPE値に応じてパルス波形を第1~第3パルス波形の間で切り替える。低PE値の場合、その前半側にピーク値が位置し且つ鋸刃状となるよう構成された第1パルス波形をパルス波形として設定すると共に、高PE値の場合、その後半側にピーク値が位置し且つ鋸刃状となるよう構成された第2パルス波形をパルス波形として設定する。

Description

レーザ加工方法
 本発明は、加工対象物を切断するためのレーザ加工方法に関する。
 従来のレーザ加工方法としては、加工対象物にレーザ光を集光させ、加工対象物に改質領域を切断予定ラインに沿って形成するものが知られている(例えば、特許文献1参照)。このようなレーザ加工方法では、切断予定ラインに沿って改質スポットを複数形成し、これら複数の改質スポットによって改質領域を形成している。
特開2006-108459号公報
 ここで、近年のレーザ加工方法においては、例えば要求される品質に応じてレーザ光のパルスエネルギを変化させる場合がある。しかし、この場合、上述したレーザ加工方法では、改質領域から生じる亀裂の延び易さである分割力が低下してしまい、生産性(タクト)が悪化するおそれがある。
 そこで、本発明は、要求される品質に応じて分割力を高めることができるレーザ加工方法を提供することを課題とする。
  上記課題を解決するために、本発明者らは鋭意検討を重ねた結果、半値幅と立上がりから立下がりまでの時間幅(いわゆる、裾幅)とが互いに等しいパルス波形のレーザ光を加工対象物に照射して改質領域を形成すると、分割力を高めることができるという知見を得た。そして、本発明者らは鋭意検討をさらに重ね、レーザ光のパルスエネルギが変化する場合においては、レーザ光のパルス波形によって分割力が異なることをさらに見出した。そこで、本発明者らは、半値幅と裾幅とが互いに等しいパルス波形をパルスエネルギに応じて最適化すれば、要求される品質に応じて高い分割力を得ることが可能となることに想到し、本発明を完成するに至った。
 すなわち、本発明に係るレーザ加工方法は、加工対象物にレーザ光を集光させ、加工対象物に改質領域を切断予定ラインに沿って形成するレーザ加工方法であって、半値幅と立上がりから立下がりまでの時間幅とが互いに等しいパルス波形を有するレーザ光を加工対象物に照射することで、切断予定ラインに沿って改質スポットを複数形成し、複数の改質スポットによって改質領域を形成する改質領域形成工程を含み、改質領域形成工程においては、レーザ光のパルスエネルギが所定値よりも低い第1値の場合、その前半側にピーク値が位置し且つ鋸刃状となるよう構成された第1パルス波形をパルス波形として設定すると共に、パルスエネルギが所定値よりも高い第2値の場合、その後半側にピーク値が位置し且つ鋸刃状となるよう構成された第2パルス波形をパルス波形として設定することを特徴とする。
 本発明に係るレーザ加工方法では、半値幅と裾幅とが互いに等しいパルス波形のレーザ光が加工対象物に照射される。そしてこのとき、例えば要求される品質に応じてパルスエネルギが第1値又は第2値とされる場合、第1パルス波形又は第2パルス波形がパルス波形としてそれぞれ設定されることから、分割力が高まるようパルス波形がパルスエネルギに応じて最適化されることとなる。これは、その前半側にピーク値が位置する鋸刃状の第1パルス波形では、パルスエネルギが第1値の場合に高い分割力を有し、その後半側にピーク値が位置する鋸刃状の第2パルス波形では、パルスエネルギが第2値の場合に高い分割力を有することが見出されるためである。従って、本発明によれば、要求される品質に応じて分割力を高めることが可能となる。
 ここで、第1パルス波形は、急峻に立ち上がってピーク値に達した後に徐々に下降し、その後急峻に立ち下がる波形であり、第2パルス波形は、急峻に立ち上がった後に徐々に上昇してピーク値に達し、その後急峻に立ち下がる波形である場合がある。また、改質領域形成工程においては、パルスエネルギが所定値の場合、矩形状となるよう構成された第3パルス波形をパルス波形として設定する場合がある。
 また、改質領域形成工程においては、加工対象物におけるレーザ光照射面の反対面側に改質スポットを形成する場合、パルスエネルギを第1値とすることが好ましい。この場合、レーザ光の照射によって加工対象物におけるレーザ光照射面の反対面に損傷が生じるのを抑制することができる。
 また、改質領域形成工程においては、加工対象物におけるレーザ光照射面の反対面側に改質スポットを形成する場合、パルスエネルギを第2値とすることが好ましい。この場合、加工対象物におけるレーザ光照射面の反対面に亀裂を確実に露出させることが可能となる。
 本発明によれば、要求される品質に応じて分割力を高めることが可能となる。
改質領域の形成に用いられるレーザ加工装置の概略構成図である。 改質領域の形成の対象となる加工対象物の平面図である。 図2の加工対象物のIII-III線に沿っての断面図である。 レーザ加工後の加工対象物の平面図である。 図4の加工対象物のV-V線に沿っての断面図である。 図4の加工対象物のVI-VI線に沿っての断面図である。 本実施形態のレーザ光源を示すブロック図である。 本実施形態の第1パルス波形を示す図である。 本実施形態の第2パルス波形を示す図である。 本実施形態の第3パルス波形を示す図である。 比較例1に係るパルス波形を示す図である。 比較例2に係るパルス波形を示す図である。 パルス波形と分割力との関係を示す図である。 (a)は比較例1に係る加工対象物の切断面を示す写真図、(b)は比較例2に係る加工対象物の切断面を示す写真図である。 (a)は実施例1に係る加工対象物の切断面を示す写真図、(b)は実施例2に係る加工対象物の切断面を示す写真図、(c)は実施例3に係る加工対象物の切断面を示す写真図である。 パルスエネルギが低PE値のときのパルス波形と分割力との関係を示す図である。 (a)はパルスエネルギが低PE値のときの実施例1に係る加工対象物の切断面を示す写真図、(b)はパルスエネルギが低PE値のときの実施例2に係る加工対象物の切断面を示す写真図、(c)はパルスエネルギが低PE値のときの実施例3に係る加工対象物の切断面を示す写真図である。 パルスエネルギが高PE値のときのパルス波形と分割力との関係を示す図である。 (a)はパルスエネルギが高PE値のときの実施例1に係る加工対象物の切断面を示す写真図、(b)はパルスエネルギが高PE値のときの実施例2に係る加工対象物の切断面を示す写真図、(c)はパルスエネルギが高PE値のときの実施例3に係る加工対象物の切断面を示す写真図である。 通常のMOPAファイバレーザの出力パルス波形を示す図である。
 以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当要素には同一符号を付し、重複する説明を省略する。
 本実施形態に係るレーザ加工方法では、加工対象物にレーザ光を集光させ、加工対象物の内部に改質スポットを切断予定ラインに沿って複数形成し、これら複数の改質スポットによって、切断の起点となる改質領域を形成する。そこで、まず、改質領域の形成について、図1~図6を参照して説明する。
 図1に示すように、レーザ加工装置100は、レーザ光Lをパルス発振するレーザ光源101と、レーザ光Lの光軸(光路)の向きを90°変えるように配置されたダイクロイックミラー103と、レーザ光Lを集光するための集光用レンズ105と、を備えている。また、レーザ加工装置100は、集光用レンズ105で集光されたレーザ光Lが照射される加工対象物1を支持するための支持台107と、支持台107を移動させるためのステージ111と、レーザ光Lの出力やパルス幅、パルス波形等を調節するためにレーザ光源101を制御するレーザ光源制御部102と、ステージ111の移動を制御するステージ制御部115と、を備えている。
 このレーザ加工装置100においては、レーザ光源101から出射されたレーザ光Lは、ダイクロイックミラー103によってその光軸の向きを90°変えられ、支持台107上に載置された加工対象物1の内部に集光用レンズ105によって集光される。これと共に、ステージ111が移動させられ、加工対象物1がレーザ光Lに対して切断予定ライン5に沿って相対移動させられる。これにより、切断予定ライン5に沿った改質領域が加工対象物1に形成されることとなる。
 加工対象物1としては、半導体材料や圧電材料等が用いられ、図2に示すように、加工対象物1には、加工対象物1を切断するための切断予定ライン5が設定されている。切断予定ライン5は、直線状に延びた仮想線である。加工対象物1の内部に改質領域を形成する場合、図3に示すように、加工対象物1の内部に集光点(集光位置)Pを合わせた状態で、レーザ光Lを切断予定ライン5に沿って(すなわち、図2の矢印A方向に)相対的に移動させる。これにより、図4~図6に示すように、改質領域7が切断予定ライン5に沿って加工対象物1の内部に形成され、切断予定ライン5に沿って形成された改質領域7が切断起点領域8となる。
 なお、集光点Pとは、レーザ光Lが集光する箇所のことである。また、切断予定ライン5は、直線状に限らず曲線状であってもよいし、仮想線に限らず加工対象物1の表面3に実際に引かれた線であってもよい。また、改質領域7は、連続的に形成される場合もあるし、断続的に形成される場合もある。また、改質領域7は列状でも点状でもよく、要は、改質領域7は少なくとも加工対象物1の内部に形成されていればよい。また、改質領域7を起点に亀裂が形成される場合があり、亀裂及び改質領域7は、加工対象物1の外表面(表面3、裏面21、若しくは外周面)に露出していてもよい。また、改質領域7を形成する際のレーザ光入射面は、加工対象物1の表面3に限定されるものではなく、加工対象物1の裏面21であってもよい。
 ちなみに、ここでのレーザ光Lは、加工対象物1を透過すると共に加工対象物1の内部の集光点近傍にて特に吸収され、これにより、加工対象物1に改質領域7が形成される(すなわち、内部吸収型レーザ加工)。よって、加工対象物1の表面3ではレーザ光Lが殆ど吸収されないので、加工対象物1の表面3が溶融することはない。一般的に、表面3から溶融され除去されて穴や溝等の除去部が形成される(表面吸収型レーザ加工)場合、加工領域は表面3側から徐々に裏面側に進行する。
 ところで、本実施形態で形成される改質領域は、密度、屈折率、機械的強度やその他の物理的特性が周囲とは異なる状態になった領域をいう。改質領域としては、例えば、溶融処理領域、クラック領域、絶縁破壊領域、屈折率変化領域等があり、これらが混在した領域もある。さらに、改質領域としては、加工対象物の材料において改質領域の密度が非改質領域の密度と比較して変化した領域や、格子欠陥が形成された領域がある(これらをまとめて高密転移領域ともいう)。
 また、溶融処理領域や屈折率変化領域、改質領域の密度が非改質領域の密度と比較して変化した領域、格子欠陥が形成された領域は、さらに、それら領域の内部や改質領域と非改質領域との界面に亀裂(割れ、マイクロクラック)を内包している場合がある。内包される亀裂は改質領域の全面に渡る場合や一部分のみや複数部分に形成される場合がある。加工対象物1としては、例えばシリコン、ガラス、LiTaO又はサファイア(Al)を含む、又はこれらからなるものが挙げられる。
 また、本実施形態においては、切断予定ライン5に沿って改質スポット(加工痕)を複数形成することによって、改質領域7を形成している。改質スポットとは、パルスレーザ光の1パルスのショット(つまり1パルスのレーザ照射:レーザショット)で形成される改質部分であり、改質スポットが集まることにより改質領域7となる。改質スポットとしては、クラックスポット、溶融処理スポット若しくは屈折率変化スポット、又はこれらの少なくとも1つが混在するもの等が挙げられる。
 この改質スポットについては、要求される切断精度、要求される切断面の平坦性、加工対象物の厚さ、種類、結晶方位等を考慮して、その大きさや発生する亀裂の長さを適宜制御することが好ましい。
 次に、本発明に係る実施形態について詳細に説明する。
 図7は、本実施形態のレーザ光源を示すブロック図である。図7に示すように、本実施形態のレーザ光源101としては、MOPA(Master Oscillator Power Amplifier)方式のパルスファイバレーザが用いられている。このレーザ光源101は、駆動電源51、シードレーザ発振器52、及びアンプ53,54を含んで構成されている。
 駆動電源51は、シードレーザ発振器52を駆動するためのものであり、該シードレーザ発振器52に所定の入力パルス波形を有する駆動電流を入力する。この駆動電源51は、レーザ光源制御部102に接続されており、入力パルス波形の形状が可変とされている。
 シードレーザ発振器52は、ダイオードレーザ(LD)であり、入力された駆動電流の入力パルス波形と等しいパルス波形のシードレーザ光をパルス発振する。アンプ53,54は、シードレーザ発振器52で発振されたシードレーザ光をこの順に増幅し、レーザ光Lとして出射する。アンプ53,54は、シードレーザ発振器52とは異なる複数のLDでシードレーザ光を増幅している。また、これらアンプ53,54では、その増幅過程においてシードレーザ発振器52からのシードレーザ光のパルス波形が変形され、入力パルス波形とは異なるパルス波形を有するレーザ光Lが出射される。
 このようなレーザ光源101にあっては、レーザ光源制御部102によって駆動電源51を制御し、シードレーザ発振器52に入力される駆動電流の入力パルス波形をレーザ光Lのパルスエネルギに基づき切り替える(制御する)ことで、互いに異なる第1~第3パルス波形を有するレーザ光Lを該レーザ光Lのパルスエネルギに応じて設定し出射する。なお、パルスエネルギは、アッテネータ等のエネルギ調整用光学部品(図示せず)を用いて調整することができる。
 具体的には、レーザ光源101は、パルスエネルギ値(Pulse Energy:以下「PE値」という)を通常レーザ加工時の通常PE値(所定値)よりも低い低PE値(第1値)とする場合、例えば図8(b)に示すように、半値幅と裾幅とが互いに等しい第1パルス波形O1を設定し、この第1パルス波形O1を有するレーザ光Lを出射する。なお、本発明では、「半値幅」は、パルス波形においてピーク値T1の1/2以上の値となるときの時間幅を意味し、また、「裾幅」は、パルス幅に該当し、立上がり開始時t1から立下がり完了時t2までの時間幅を意味する。
 この第1パルス波形O1は、該第1パルス波形O1の前半側(つまり、裾幅において立上がり開始時t1寄り)にピーク値T1が位置し、且つ鋸刃状となるように尖って構成されている。具体的には、第1パルス波形O1は、急峻に立ち上がってピーク値T1に達した後に徐々に下降し、ピーク値T1の1/2値となった後、急峻に立ち下がっている。ここでの第1パルス波形O1は、半値幅が500nsecの場合、ピーク値T1の10%から90%になるまでの立上がり時間が40nsec程度となり、ピーク値T1の50%から10%になるまでの立下がり時間が30nsec程度となっている。
 この第1パルス波形O1のレーザ光Lは、第1入力パルス波形I1(図8(a)参照)を有する駆動電流をシードレーザ発振器52に入力することで生成されている。第1入力パルス波形I1は、図8(a),(b)に示すように、第1パルス波形O1の形状に対し左右反転されたように構成されている。
 また、第1入力パルス波形I1と第1パルス波形O1との関係は、単に形状のみで設定されるのではなく、立上がり部分の波高値の影響が大きいことが見出される。つまり、第1入力パルス波形I1での立上がり部分の波高値が高く、第1パルス波形O1での立上がり部分の波高値も高くなっている。そして、第1パルス波形O1では、励起されたエネルギが前半側で多く消費されるため、後半側(つまり、裾幅において立下がり完了時t2寄り)では波高値が徐々に低くなっていくことがわかる。
 なお、立上がり部分の波高値は、アンプ53,54を励起しているLDの出力を上げることで、高めることができる。また、アンプ53,54のLDの出力を下げれば、平均出力が低くなるが、比較的矩形に近いパルス波形のレーザ光Lを得ることも可能である。
 一方、レーザ光源101は、レーザ光Lのパルスエネルギを通常PE値とする場合、例えば図9(b)に示すように、半値幅と裾幅とが互いに等しい第2パルス波形O2を設定し、この第2パルス波形O2を有するレーザ光Lを出射する。この第2パルス波形O2は、矩形状となるように構成されている。具体的には、第2パルス波形O2は、急峻に立ち上がってピーク値T2に達した後、略そのままの値を維持し、その後急峻に立ち下がっている。ここでの第2パルス波形O2は、半値幅が500nsecの場合、ピーク値T1の10%から90%になるまでの立上がり時間が50nsec程度となり、ピーク値T1の90%から10%になるまでの立下がり時間が70nsec程度となっている。
 この第2パルス波形O2を有するレーザ光Lは、第2入力パルス波形I2(図9(a)参照)を有する駆動電流をシードレーザ発振器52に入力することで生成されている。
 他方、レーザ光源101は、レーザ光Lのパルスエネルギを通常PE値よりも高い高PE値(第2値)とする場合、例えば図10(b)に示すように、半値幅と裾幅とが互いに等しい第3パルス波形O3を設定し、この第3パルス波形O3を有するレーザ光Lを出射する。
 この第3パルス波形O3は、該第3パルス波形O3の後半側にピーク値T3が位置し、且つ鋸刃状となるように尖って構成されている。具体的には、第3パルス波形O1は、急峻に立ち上がってピーク値T1の1/2値に達した後、徐々に上昇してピーク値T3に達し、その後急峻に立ち下がっている。ここでの第3パルス波形O3は、半値幅が500nsecの場合、ピーク値T1の10%から50%になるまでの立上がり時間が40nsec程度となり、ピーク値T1の90%から10%になるまでの立下がり時間が50nsec程度となっている。
 この第3パルス波形O3を有するレーザ光Lは、第3入力パルス波形I3(図10(a)参照)を有する駆動電流をシードレーザ発振器52に入力することで生成されている。第3入力パルス波形I3は、図10(a),(b)に示すように、第3パルス波形O1の形状に対し同様な(相似的な)形状となるように構成されている。
 また、第3入力パルス波形I3と第3パルス波形O3との関係についても、単に形状のみで設定されるのではなく、立上がり部分の波高値の影響が大きいことが見出される。つまり、第3入力パルス波形I3での立上がり部分の波高値が低く、第3パルス波形O3での立上がり部分の波高値も低くなっていることがわかる。
 次に、本実施形態のレーザ加工方法により加工対象物1を加工する場合について説明する。なお、ここでは、加工対象物1の厚さ方向に改質領域7を複数列形成する場合を例示する。
 まず、加工対象物1の裏面21に例えばエキスパンドテープを貼り付け、該加工対象物1をステージ111上に載置する。続いて、加工対象物1内部において裏面21側に集光点を合わせると共に、表面3をレーザ光照射面として加工対象物1にレーザ光Lをパルス照射しながら、レーザ光Lを切断予定ライン5に沿って相対移動(スキャン)する。これにより、加工対象物1内の裏面21側に複数の改質スポットS(図14等参照)が切断予定ライン5に沿って形成され、これらの改質スポットSによって改質領域7が形成される(改質領域形成工程)。
 ここで、半値幅と裾幅とが互いに等しいパルス波形のレーザ光Lを加工対象物1に照射して改質領域7を形成すると、分割力を高めることができることが見出される。加えて、第1パルス波形O1のレーザ光Lは、パルスエネルギが低PE値の場合に高い分割力を有し、第2パルス波形O2のレーザ光Lは、パルスエネルギが通常PE値の場合に高い分割力を有し、第3パルス波形O3のレーザ光Lは、パルスエネルギが高PE値の場合に高い分割力を有することが見出される。特に、第3パルス波形O3のレーザ光Lは、レーザ光照射面側(表面3)よりもその反対面側(裏面21側)へと亀裂が延び易い傾向を有している。
 そこで、上述したように加工対象物1内の裏面21側に改質領域7を形成する際、レーザ光源制御部102により駆動電源51を制御し、照射するレーザ光Lのパルスエネルギを高PE値とすると共に、パルス波形を第3パルス波形O3に設定する。これにより、分割力を高めつつ、改質領域7から裏面21側に亀裂が延び易くし、裏面21に露出した亀裂(いわゆるBHC)を確実に得ることが可能となる。
 或いは、上述したように加工対象物1内の裏面21側に改質領域7を形成する際、レーザ光源制御部102により駆動電源51を制御し、照射するレーザ光Lのパルスエネルギを低PE値とすると共に、パルス波形を第1パルス波形O1に設定する。これにより、分割力を高めつつ、パルスエネルギが低くなることから裏面21に及ぶレーザ光Lの影響を小さくし、裏面21のダメージを抑制することが可能となる。
 続いて、レーザ光Lの上記スキャンを、加工対象物1の厚さ方向における集光点位置を変えて繰り返し、切断予定ライン5に沿った改質領域7を裏面21から表面3に向かう順に複数列形成する。このとき、照射するレーザ光Lのパルスエネルギを通常PE値とすると共に、パルス波形を第2パルス波形O2に設定する。これにより、分割力を高めることが可能となる。
 或いは、照射するレーザ光Lのパルスエネルギを高PE値とすると共に、パルス波形を第3パルス波形O3に設定する。これにより、分割力を高めつつ、パルスエネルギが高くなることから改質領域7から延びる亀裂の直進性が高められ、切断面の品質を高めることが可能となる。なお、レーザ光Lのパルスエネルギを高PE値とすると、ツイストハックルを抑制することも可能となる。
 そして最後に、エキスパンドテープを拡張し、改質領域7を切断の起点として加工対象物1を切断予定ライン5に沿って切断する。その結果、加工対象物1が複数のチップ(例えばメモリ、IC、発光素子、受光素子等)として互いに離間される。
 以上、本実施形態では、半値幅と裾幅とが互いに等しい第1~第3パルス波形O1~O3のレーザ光が加工対象物1に照射される。このとき、要求される品質(加工目的及び加工状況を含む)に応じてパルスエネルギが低PE値、通常PE値及び高PE値とされる場合、これに応じて第1~第3パルス波形O1~O3が切り替えられる。すなわち、分割力が高まるようにレーザ光Lのパルス波形がパルスエネルギに応じて最適化されることとなる。
 従って、本実施形態によれば、品質に基づき第1~第3パルス波形O1~O3を使い分けることができ、品質に応じた高い分割力で加工対象物1を切断することができる。換言すると、意図的にレーザ光Lのパルス波形を制御し、PE値に応じてパルス波形を最適化して分割力を向上することができる。その結果、タクトアップ及びスキャン本数を削減することが可能となる。
 また、本実施形態では、上述したように、加工対象物1における裏面21側に改質スポットSを形成する際、パルスエネルギが低PE値とされ、且つパルス波形が第1パルス波形O1とされる。この場合、レーザ光Lの照射によって裏面21に損傷が生じるのを抑制することができる。
 或いは、本実施形態では、上述したように、加工対象物1における裏面21側に改質スポットSを形成する際、パルスエネルギが高PE値とされ、且つパルス波形が第3パルス波形O3とされる。この場合、裏面21に亀裂を確実に露出させることが可能となる。
 以上、本発明の好適な実施形態について説明したが、本発明に係るレーザ加工方法は、上記実施形態に限られるものではなく、各請求項に記載した要旨を変更しない範囲で変形し、又は他のものに適用したものであってもよい。
 例えば、上記実施形態では、LDであるシードレーザ発振器52を有するレーザ光源101を用いたが、CW(Continuous Wave)のファイバレーザの出力をAOM(AcoustoOptic Modulator:音響光学変調器)で変調してパルス化するレーザ光源を用いてもよい。この場合、AOMの透過率を適宜変えることで、上記パルス波形O1~O3を得ることができる。
 また、上記実施形態では、レーザ光源101が2つのアンプ53,54を有しているが、このアンプの数は、レーザ光が最終的に必要な出力に応じて変えてもよく、1つでも3つ以上でもよい。また、加工対象物1に対し複数回スキャンする場合、各スキャン毎にレーザ光LのPE値及びパルス波形を変えてレーザ加工を行っても勿論よい。
 なお、上記における「等しい」は、「略等しい」を含む広義のものであって、例えばその性質、状態又は程度等が互いに共通し(同様で)互いの差異が小さいものを意図する。
 以下、本発明の実施例について説明する。
(実施例A)
 厚さ300μmのシリコン基板を加工対象物として用意し、この加工対象物に対しレーザ光を表面側から照射し、切断予定ラインに沿って改質領域を厚さ方向に3列形成した。これを、レーザ光のパルス波形及びパルスピッチを変えて複数回実施した。そして、改質領域形成後の複数の加工対象物について、分割力を評価した。なお、パルスピッチは、切断予定ラインに沿って隣接する一対の改質スポット間距離を意味する。
 加工条件としては、レーザ光の繰返し周波数は100kHzとし、レーザ光の裾幅(パルス幅)は500nsecとした。また、パルスエネルギは、通常PE値である16μJ/pulseとした。
 ここで、比較例1に係るパルス波形は、通常の固体レーザ光源から出射されるレーザ光が有するパルス波形と同等なパルス波形O4(図11(b)参照)とした。また、比較例2に係るパルス波形は、MOPAファイバレーザ光源から出射されるレーザ光が有するパルス波形に対し、立下り時間を調整して1/2ピーク値付近における1/2ピーク値よりも小さい値での時間幅が略矩形状となるパルス波形O5(図12(b)参照)とした。また、実施例1に係るパルス波形は上記第1パルス波形O1とし、実施例2に係るレーザ光のパルス波形は上記第2パルス波形O2とし、実施例3に係るレーザ光のパルス波形は上記第3パルス波形O3とした。
 なお、パルス波形O4は、半値幅が500nsec(裾幅が900ms)であり、パルス波形O5は、半値幅が250nsecである。パルス波形O4を有するレーザ光は、入力パルス波形I4(図11(a)参照)の駆動電流をシードレーザ発振器52に入力することで得られた。パルス波形O5を有するレーザ光は、入力パルス波形I5(図12(a)参照)の駆動電流(矩形波の後半部を立ち上げた形状)をシードレーザ発振器52に入力することで得られた。なお、図20に示すように、通常のMOPAファイバレーザの出力パルス波形Oは、急峻に立ち上がったピーク値から連続的に傾斜して立ち下がる形状となる。
 また、分割力の評価としては、「加工対象物の表裏面に亀裂が露出」、「加工対象物の表裏面に亀裂が露出せず且つエキスパンドテープの拡張で切断可能」、「エキスパンドテープの拡張で切断不能」の順で分割力が低いとする評価を行った。その結果を図13に示す。
 図13は、パルス波形と分割力との関係を示す図である。図中においては、加工対象物の表裏面に亀裂が露出したときを「FC」として示し、加工対象物の表裏面に亀裂が露出せず且つエキスパンドテープの拡張で切断可能なときを「ST」として示し、エキスパンドテープの拡張で切断不能なときを「×」として示している。
 図13に示すように、比較例1及び実施例1~3に係るパルス波形O1~O4では、パルスピッチによらず切断に好適な分割力が得られたのに対し、比較例2に係るパルス波形O5では、充分な分割力が得られていないことがわかった。特に、実施例1~3では、高い分割力が得られるのがわかった。また、パルスピッチを広げる程、分割力が低下する傾向にあることがわかった。
 以上により、分割力を向上させるためには,半値幅と裾幅と互いに等しくなる(半値幅≒裾幅となる)ようなパルス波形のレーザ光が有効であることが確認された。また、レーザ光が有するパルス波形と分割力との関係は、具体的には、「矩形に近いパルス波形(実施例1~3)>ガウシアンパルス波形(比較例1)>裾幅に対し半値幅の短い波形(比較例2)」となることが確認された。
 図14(a),(b)は比較例1,2に係る加工対象物の切断面を示す各写真図、図15(a)~(c)は、実施例1~3に係る加工対象物の切断面を示す各写真図である。各図中の加工対象物1では、パルスピッチを5.0μmとして複数の改質スポットSが形成されている。
 図14に示すように、比較例1,2に係る加工対象物1では、亀裂が途切れた(延びていない)部分(図中の黒い横筋)が存在し、また、切断面の平滑性や品質が低いことがわかった。これに対し、図15に示すように、実施例1~3に係る加工対象物1では、改質領域7からの亀裂が途切れた部分が少なく、表面3から裏面21に亘って厚さ方向に亀裂が精度よく延びている。また、切断面の平滑性や品質が高いものとなっている。よって、実施例1~3では、高い分割力が得られていることがわかった。
 なお、実施例1~3に係る第1~第3パルス波形O1~O3では、その分割力の差は小さくなっており、よって、例えば分割力のみを重視してパルスエネルギを通常PE値したときでは、第1~第3パルス波形O1~O3の間での分割力の差は小さいことがわかった。
(実施例B)
 次に、レーザ光のパルス波形を、上記実施例Aで記載した実施例1~3に係る第1~第3パルス波形O1~O3の間で変えると共に、パルスエネルギを低PE値である12μJ/pulseとした以外は上記実施例Aと同様にし、改質領域形成後の複数の加工対象物について分割力を評価した。
 分割力の評価としては、「加工対象物の裏面に亀裂が露出、又は、加工対象物の表裏面に亀裂が露出」、「加工対象物の表裏面に亀裂が露出せず且つエキスパンドテープの拡張で切断可能」、「エキスパンドテープの拡張で切断不能」の順で分割力が低いとする評価を行った。その結果を図16に示す。
 図16は、パルスエネルギが低PE値のときのパルス波形と分割力との関係を示す図である。図中においては、加工対象物の裏面に亀裂が露出したときを「BHC」として示し、加工対象物の表裏面に亀裂が露出したときを「FC」として示し、加工対象物の表裏面に亀裂が露出せず且つエキスパンドテープの拡張で切断可能なときを「ST」として示し、エキスパンドテープの拡張で切断不能なときを「×」として示している。
 図16に示すように、実施例1に係る第1パルス波形O1では、パルスエネルギが低PE値でも充分な分割力が得られることがわかった。また、パルスエネルギが低PE値のときにおいては、実施例1~3に係る第1~第3パルス波形O1~O3間で分割力の違いが生じ、パルス波形と分割力との関係が、「第1パルス波形O1>第2パルス波形O2>第3パルス波形O3」となることがわかった。ちなみに、図13,16に示すように、パルスエネルギが低PE値のとき、第1~第3パルス波形O1~O3の何れでも、通常PE値でのレーザ加工に比べて分割力が低下するのがわかった。
 図17(a)~(c)は、パルスエネルギが低PE値のときの実施例1~3に係る加工対象物おける切断面を示す各写真図である。図中の加工対象物1では、パルスピッチを3.4μmとして複数の改質スポットSが形成されている。
 図17(b),(c)に示すように、実施例2,3に係る加工対象物1では、亀裂が途切れた(延びていない)部分(図中の黒い横筋)が存在し、また、切断面の平滑性や品質が低いことがわかった。これに対し、図17(a)に示すように、実施例1に係る加工対象物1では、改質領域7からの亀裂が途切れた部分が少なく、表面3から裏面21に亘って厚さ方向に亀裂が精度よく延びており、また、切断面の平滑性や品質が高いものとなっている。よって、実施例1では、充分な分割力が得られていることがわかった。
(実施例C)
 次に、レーザ光のパルス波形を、上記実施例Aで記載した実施例1~3に係る第1~第3パルス波形O1~O3の間で変えると共に、パルスエネルギを高PE値である36μJ/pulseとした以外は上記実施例Aと同様にし、改質領域形成後の複数の加工対象物について分割力を評価した。
 分割力の評価としては、「加工対象物の裏面に亀裂が露出、又は、加工対象物の表裏面に亀裂が露出」、「加工対象物の表裏面に亀裂が露出せず且つエキスパンドテープの拡張で切断可能」、「エキスパンドテープの拡張で切断不能」の順で分割力が低いとする評価を行った。その結果を図18に示す。
 図18は、パルスエネルギが高PE値のときのパルス波形と分割力との関係を示す図である。図中においては、加工対象物の裏面に亀裂が露出したときを「BHC」として示し、加工対象物の表裏面に亀裂が露出したときを「FC」として示し、加工対象物の表裏面に亀裂が露出せず且つエキスパンドテープの拡張で切断可能なときを「ST」として示し、エキスパンドテープの拡張で切断不能なときを「×」として示している。
 図18に示すように、実施例3に係る第3パルス波形O3では、パルスエネルギが高PE値でも充分な分割力が得られることがわかった。また、パルスエネルギが高PE値のときにおいては、実施例1~3に係る第1~第3パルス波形O1~O3間で分割力の違いが生じ、パルス波形と分割力との関係が、「第3パルス波形O3>第1パルス波形O1≒第2パルス波形O2」となることがわかった。
 また、パルスエネルギが高PE値の場合、第3パルス波形O3では、亀裂が裏面側(レーザ照射面の反対面側)へ延び易い傾向にある一方、第1及び第2パルス波形O1,O2では、裏面側の分割力が低下するのがわかった。よって、加工対象物においてBHCを生じさせるためには、パルスエネルギが高PE値で且つ第3パルス波形O3のレーザ光によってレーザ加工を行うことが好ましいことがわかった。
 ちなみに、図13,18に示すように、パルスエネルギが高PE値のとき、第1~第3パルス波形O1~O3の何れでも、通常PE値でのレーザ加工に比べて分割力が低下するのがわかった。また、図13,16,18に示すように、パルスエネルギを変えることによって、第1~第3パルス波形O1~O3の間で分割力や品質に差が生じることから、求められる品質(サンプルやスキャン深さ、品質上重要視するポイント)によって最適なパルス波形を選択して使用することが、分割力と品質とを両立する上で重要であることがわかった。
 図19(a)~(c)は、パルスエネルギが高PE値のときの実施例1~3に係る加工対象物おける切断面を示す各写真図である。図中の加工対象物1では、パルスピッチを1.8μmとして複数の改質スポットSが形成されている。
 図19(a),(b)に示すように、実施例1,2に係る加工対象物1では、切断面上にて亀裂が途切れた(延びていない)部分(図中の黒い横筋)が存在し、また、切断面の平滑性や品質が低いことがわかった。これに対し、図19(c)に示すように、実施例3に係る加工対象物1では、改質領域7からの亀裂が途切れた部分が少なく、表面3から裏面21に亘って厚さ方向に亀裂が精度よく延びており、また、切断面の平滑性や品質が高いものとなっている。よって、実施例3では、充分な分割力が得られていることがわかった。
 本発明によれば、要求される品質に応じて分割力を高めることが可能となる。
 1…加工対象物、3…表面、5…切断予定ライン、7…改質領域、21…裏面、L…レーザ光、O1…第1パルス波形、O2…第2パルス波形、O3…第3パルス波形、S…改質スポット、T1~T3…ピーク値。

Claims (5)

  1.  加工対象物にレーザ光を集光させ、前記加工対象物に改質領域を切断予定ラインに沿って形成するレーザ加工方法であって、
     半値幅と立上がりから立下がりまでの時間幅とが互いに等しいパルス波形を有する前記レーザ光を前記加工対象物に照射することで、前記切断予定ラインに沿って改質スポットを複数形成し、複数の前記改質スポットによって前記改質領域を形成する改質領域形成工程を含み、
     前記改質領域形成工程においては、
     前記レーザ光のパルスエネルギが所定値よりも低い第1値の場合、その前半側にピーク値が位置し且つ鋸刃状となるよう構成された第1パルス波形を前記パルス波形として設定すると共に、
     前記パルスエネルギが前記所定値よりも高い第2値の場合、その後半側にピーク値が位置し且つ鋸刃状となるよう構成された第2パルス波形を前記パルス波形として設定することを特徴とするレーザ加工方法。
  2.  前記第1パルス波形は、急峻に立ち上がってピーク値に達した後に徐々に下降し、その後急峻に立ち下がる波形であり、
     前記第2パルス波形は、急峻に立ち上がった後に徐々に上昇してピーク値に達し、その後急峻に立ち下がる波形であることを特徴とする請求項1記載のレーザ加工方法。
  3.  前記改質領域形成工程においては、
     前記パルスエネルギが前記所定値の場合、矩形状となるよう構成された第3パルス波形を前記パルス波形として設定することを特徴とする請求項1又は2記載のレーザ加工方法。
  4.  前記改質領域形成工程においては、
     前記加工対象物におけるレーザ光照射面の反対面側に前記改質スポットを形成する場合、前記パルスエネルギを前記第1値とすることを特徴とする請求項1~3の何れか一項記載のレーザ加工方法。
  5.  前記改質領域形成工程においては、
     前記加工対象物におけるレーザ光照射面の反対面側に前記改質スポットを形成する場合、前記パルスエネルギを前記第2値とすることを特徴とする請求項1~3の何れか一項記載のレーザ加工方法。
PCT/JP2011/061674 2010-06-02 2011-05-20 レーザ加工方法 WO2011152230A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/701,031 US9409256B2 (en) 2010-06-02 2011-05-20 Laser processing method
CN201180027408.2A CN102933347B (zh) 2010-06-02 2011-05-20 激光加工方法
KR1020127021574A KR101934558B1 (ko) 2010-06-02 2011-05-20 레이저 가공 방법
EP11789639.9A EP2578349B1 (en) 2010-06-02 2011-05-20 Laser processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010127045A JP5552373B2 (ja) 2010-06-02 2010-06-02 レーザ加工方法
JP2010-127045 2010-06-02

Publications (1)

Publication Number Publication Date
WO2011152230A1 true WO2011152230A1 (ja) 2011-12-08

Family

ID=45066609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061674 WO2011152230A1 (ja) 2010-06-02 2011-05-20 レーザ加工方法

Country Status (7)

Country Link
US (1) US9409256B2 (ja)
EP (1) EP2578349B1 (ja)
JP (1) JP5552373B2 (ja)
KR (1) KR101934558B1 (ja)
CN (1) CN102933347B (ja)
TW (1) TWI515071B (ja)
WO (1) WO2011152230A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5580826B2 (ja) * 2009-08-11 2014-08-27 浜松ホトニクス株式会社 レーザ加工装置及びレーザ加工方法
JP2013063454A (ja) * 2011-09-16 2013-04-11 Hamamatsu Photonics Kk レーザ加工方法及びレーザ加工装置
KR101445829B1 (ko) * 2012-07-27 2014-09-30 주식회사 이오테크닉스 레이저 가공장치 및 레이저 가공방법
JP2016072278A (ja) * 2014-09-26 2016-05-09 株式会社ディスコ ウエーハの加工方法
JP7188886B2 (ja) 2018-01-29 2022-12-13 浜松ホトニクス株式会社 加工装置
US10576585B1 (en) 2018-12-29 2020-03-03 Cree, Inc. Laser-assisted method for parting crystalline material
US10562130B1 (en) 2018-12-29 2020-02-18 Cree, Inc. Laser-assisted method for parting crystalline material
US11024501B2 (en) 2018-12-29 2021-06-01 Cree, Inc. Carrier-assisted method for parting crystalline material along laser damage region
US10611052B1 (en) 2019-05-17 2020-04-07 Cree, Inc. Silicon carbide wafers with relaxed positive bow and related methods
JP2024136181A (ja) * 2023-03-23 2024-10-04 株式会社東京精密 レーザ加工方法、レーザ加工装置及びレーザ光源

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108459A (ja) 2004-10-07 2006-04-20 Disco Abrasive Syst Ltd シリコンウエーハのレーザー加工方法およびレーザー加工装置
JP2008246578A (ja) * 2007-03-07 2008-10-16 Fujitsu Ltd 微細加工物の製造方法およびレーザ加工装置
WO2010116917A1 (ja) * 2009-04-07 2010-10-14 浜松ホトニクス株式会社 レーザ加工装置及びレーザ加工方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273387A (ja) 1994-03-31 1995-10-20 Fanuc Ltd 出力波形制御方式
US6417485B1 (en) * 2000-05-30 2002-07-09 Igor Troitski Method and laser system controlling breakdown process development and space structure of laser radiation for production of high quality laser-induced damage images
JP4244611B2 (ja) 2002-10-22 2009-03-25 パナソニック株式会社 セラミックグリーンシートの穴加工方法
US6998567B2 (en) 2003-01-31 2006-02-14 Trimedyne, Inc. Generation and application of efficient solid-state laser pulse trains
US7173212B1 (en) * 2004-02-13 2007-02-06 Semak Vladimir V Method and apparatus for laser cutting and drilling of semiconductor materials and glass
US7486705B2 (en) * 2004-03-31 2009-02-03 Imra America, Inc. Femtosecond laser processing system with process parameters, controls and feedback
US7491909B2 (en) * 2004-03-31 2009-02-17 Imra America, Inc. Pulsed laser processing with controlled thermal and physical alterations
JP4762653B2 (ja) * 2005-09-16 2011-08-31 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
TWI379724B (en) 2006-02-03 2012-12-21 Gsi Group Corp Laser-based method and system for removing one or more target link structures
JP4322881B2 (ja) * 2006-03-14 2009-09-02 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP4964554B2 (ja) * 2006-10-03 2012-07-04 浜松ホトニクス株式会社 レーザ加工方法
CN101617448B (zh) 2007-01-26 2012-05-23 伊雷克托科学工业股份有限公司 产生用于材料处理的脉冲列的方法和系统
US20090120924A1 (en) * 2007-11-08 2009-05-14 Stephen Moffatt Pulse train annealing method and apparatus
US7817686B2 (en) * 2008-03-27 2010-10-19 Electro Scientific Industries, Inc. Laser micromachining using programmable pulse shapes
US8476552B2 (en) * 2008-03-31 2013-07-02 Electro Scientific Industries, Inc. Laser systems and methods using triangular-shaped tailored laser pulses for selected target classes
US8526473B2 (en) * 2008-03-31 2013-09-03 Electro Scientific Industries Methods and systems for dynamically generating tailored laser pulses
US7813389B2 (en) * 2008-11-10 2010-10-12 Electro Scientific Industries, Inc. Generating laser pulses of prescribed pulse shapes programmed through combination of separate electrical and optical modulators
US8309885B2 (en) * 2009-01-15 2012-11-13 Electro Scientific Industries, Inc. Pulse temporal programmable ultrafast burst mode laser for micromachining
US10307862B2 (en) * 2009-03-27 2019-06-04 Electro Scientific Industries, Inc Laser micromachining with tailored bursts of short laser pulses

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108459A (ja) 2004-10-07 2006-04-20 Disco Abrasive Syst Ltd シリコンウエーハのレーザー加工方法およびレーザー加工装置
JP2008246578A (ja) * 2007-03-07 2008-10-16 Fujitsu Ltd 微細加工物の製造方法およびレーザ加工装置
WO2010116917A1 (ja) * 2009-04-07 2010-10-14 浜松ホトニクス株式会社 レーザ加工装置及びレーザ加工方法

Also Published As

Publication number Publication date
JP2011251314A (ja) 2011-12-15
KR20130081202A (ko) 2013-07-16
EP2578349A1 (en) 2013-04-10
US20130068739A1 (en) 2013-03-21
TWI515071B (zh) 2016-01-01
JP5552373B2 (ja) 2014-07-16
US9409256B2 (en) 2016-08-09
EP2578349A4 (en) 2017-05-31
CN102933347B (zh) 2015-04-22
EP2578349B1 (en) 2019-12-04
CN102933347A (zh) 2013-02-13
TW201210729A (en) 2012-03-16
KR101934558B1 (ko) 2019-01-03

Similar Documents

Publication Publication Date Title
JP5552373B2 (ja) レーザ加工方法
JP5771391B2 (ja) レーザ加工方法
JP5597051B2 (ja) レーザ加工方法
JP5597052B2 (ja) レーザ加工方法
JP5639997B2 (ja) レーザ加工装置
KR101241936B1 (ko) 레이저 가공 방법, 피가공물의 분할 방법 및 레이저 가공 장치
JP5449665B2 (ja) レーザ加工方法
JP5054496B2 (ja) 加工対象物切断方法
JP5480169B2 (ja) レーザ加工方法
JP5632751B2 (ja) 加工対象物切断方法
JP5491761B2 (ja) レーザ加工装置
KR101339556B1 (ko) Led 패턴이 구비된 기판의 가공 방법
JP5670764B2 (ja) レーザ加工方法
WO2012096097A1 (ja) レーザ加工方法
JP2005288503A (ja) レーザ加工方法
JP2011240349A (ja) 加工対象物切断方法
JP2017056469A (ja) レーザ加工方法及びレーザ加工装置
WO2012096093A1 (ja) レーザ加工方法
CN113601027A (zh) 一种双激光复合隐形切割方法及加工系统
JP2000091170A (ja) 半導体ウェハのレーザマーキング方法及び装置
JP2019147166A (ja) 光加工装置及び光加工物の生産方法
KR101445829B1 (ko) 레이저 가공장치 및 레이저 가공방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180027408.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789639

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127021574

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13701031

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011789639

Country of ref document: EP