WO2011152191A1 - 超音波モータの駆動装置および超音波モータユニット - Google Patents

超音波モータの駆動装置および超音波モータユニット Download PDF

Info

Publication number
WO2011152191A1
WO2011152191A1 PCT/JP2011/061143 JP2011061143W WO2011152191A1 WO 2011152191 A1 WO2011152191 A1 WO 2011152191A1 JP 2011061143 W JP2011061143 W JP 2011061143W WO 2011152191 A1 WO2011152191 A1 WO 2011152191A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive
waveform
drive waveform
waveforms
period
Prior art date
Application number
PCT/JP2011/061143
Other languages
English (en)
French (fr)
Inventor
久後 耕一
宮武 賢勝
坪田 浩乃
Original Assignee
船井電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 船井電機株式会社 filed Critical 船井電機株式会社
Priority to US13/701,388 priority Critical patent/US9087976B2/en
Priority to EP11789600.1A priority patent/EP2579444A4/en
Priority to CN201180026904.6A priority patent/CN102918761B/zh
Priority to KR1020127033248A priority patent/KR20130081663A/ko
Publication of WO2011152191A1 publication Critical patent/WO2011152191A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/802Circuitry or processes for operating piezoelectric or electrostrictive devices not otherwise provided for, e.g. drive circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • H02N2/142Small signal circuits; Means for controlling position or derived quantities, e.g. speed, torque, starting, stopping, reversing

Definitions

  • the present invention relates to an ultrasonic motor driving apparatus and an ultrasonic motor unit, and more particularly to an ultrasonic motor driving apparatus and an ultrasonic motor unit including a drive waveform generation unit.
  • an ultrasonic motor driving apparatus including a driving waveform generating unit is known.
  • Such an ultrasonic motor driving device is disclosed in, for example, Japanese Patent Application Laid-Open No. 2008-301563.
  • a rectangular waveform (voltage) generated by a rectangular wave generation circuit (drive waveform generation unit) is converted into an ultrasonic motor via a low-pass filter, an amplifier, and the like. It is comprised so that it may be applied to.
  • the rectangular wave generating circuit is configured to generate a rectangular wave having a desired cycle in response to an instruction from the control unit.
  • the adjustment of the period of the rectangular wave generated by the rectangular wave generation circuit is considered to be adjusted in units of one clock period of the clock of the control unit.
  • the period of the rectangular wave generated by the rectangular wave generation circuit is considered to be adjusted in units of one clock period of the control unit. There is a problem that it is difficult to adjust the period of the rectangular wave at a time interval shorter than one clock.
  • the present invention has been made to solve the above-described problems, and one object of the present invention is an ultrasonic wave capable of adjusting in detail the period of the drive waveform generated by the drive waveform generation unit.
  • a motor drive device and an ultrasonic motor unit are provided.
  • An ultrasonic motor drive device includes a drive waveform generation unit that generates a signal for driving a piezoelectric element of an ultrasonic motor including a piezoelectric element, and the drive waveform generation unit includes a plurality of different cycles.
  • the drive waveform including the drive waveform can be generated.
  • the drive waveform generation unit is configured to be able to generate a drive waveform including a plurality of drive waveforms having different cycles, thereby providing a plurality of cycles having different cycles.
  • a drive waveform composed of drive waveforms is a set of drive waveforms
  • the average period of the drive waveforms can be considered as an average value of a plurality of drive waveforms.
  • the cycle of the drive waveform can be adjusted at an interval smaller than the minimum cycle value (for example, one clock) that can be adjusted by the control unit.
  • the minimum cycle value for example, one clock
  • the cycle of the drive waveform that can be generated by the drive waveform generation unit can be adjusted in detail by reducing the clock cycle of the control unit (increasing the frequency), while the circuit operates at high speed.
  • the cost increases as much as is required.
  • the drive waveform generation unit is configured to be able to generate a drive waveform including a plurality of drive waveforms with different cycles, so that the cycle of the drive waveform generated by the drive waveform generation unit by a circuit operating at low speed Can be adjusted in detail, so that an increase in the cost of the apparatus can be suppressed.
  • the driving waveform generation unit is configured to be able to repeatedly generate a driving waveform in which a plurality of driving waveforms having different periods are set. According to this configuration, a set of drive waveforms having a plurality of drive waveforms with different periods is repeatedly generated. Therefore, the piezoelectric element of the ultrasonic motor is driven by a drive waveform having a set of drive waveforms with different periods. Can be driven continuously.
  • the plurality of drive waveforms having different periods include a first drive waveform and a second drive waveform having a period different from the first drive waveform
  • the drive waveform generation unit includes one first drive waveform.
  • the drive waveform is a set of the drive waveform and one second drive waveform that can be repeatedly generated.
  • the first drive waveform is simulated.
  • the piezoelectric element of the ultrasonic motor can be driven by a cycle (average value) between the cycle and the cycle of the second drive waveform.
  • the drive waveform generation unit includes: By alternately generating one first driving waveform and one second driving waveform, it repeatedly generates a driving waveform that consists of one first driving waveform and one second driving waveform. Is configured to do. With this configuration, unlike the case where one first driving waveform and one second driving waveform are generated in random order, the operation of generating a driving waveform by the driving waveform generation unit can be facilitated. .
  • the ultrasonic motor drive device configured to be able to repeatedly generate a drive waveform in which a plurality of drive waveforms having different periods are set
  • the plurality of drive waveforms having different periods are the first drive waveform
  • the drive waveform generation unit includes one or more second drive waveforms and one or more first drive waveforms as one.
  • a set of drive waveforms can be generated repeatedly. With this configuration, for example, when the plurality of second drive waveforms and one first drive waveform are set as one set, the average cycle of the drive waveforms is equal to the cycle of the first drive waveform and the second drive waveform.
  • the period is between the period of the drive waveform and closer to the period of the second drive waveform.
  • the first drive waveform is simulated. Fine adjustment can be made to a period other than the average value between the period and the period of the second drive waveform. As a result, the piezoelectric element of the ultrasonic motor can be driven with a more finely adjusted period.
  • the drive waveform generation unit alternately generates one or more first drive waveforms and one or more second drive waveforms to thereby generate one or more second drive waveforms.
  • the drive waveform generation unit performs an operation of generating a drive waveform. Can be easily.
  • the plurality of driving waveforms having different periods include a first driving waveform and a second driving waveform
  • the plurality of driving waveforms having different periods include rectangular waveforms
  • the period of the drive waveform is configured to be longer than the period of the second drive waveform by one clock of the clock of the control unit or an integer multiple of one clock.
  • one first driving waveform and one second driving waveform are set as one set, and the period of the first driving waveform is longer by one clock than the period of the second driving waveform.
  • the average period of the drive waveform is a period that is 1/2 clock greater than the period of the first drive waveform.
  • the period of the drive waveform can be adjusted at a time interval smaller than one clock.
  • the period of the drive waveform can be easily adjusted at a time interval smaller than one clock unlike when the clock frequency is changed in order to adjust the period of the drive waveform in detail.
  • the plurality of driving waveforms having different periods include a rectangular waveform
  • the plurality of driving waveforms having different periods include a rectangular waveform
  • the period of the second driving waveform is the first
  • the driving waveform is configured to be longer by one clock of the clock of the control unit than the cycle of the driving waveform, and a driving waveform in which one first driving waveform and one second driving waveform are set as one set is generated.
  • the period of the drive waveform can be adjusted so that it becomes a period 1 ⁇ 2 clock larger than the period of the first drive waveform in a pseudo manner. If comprised in this way, the period of a drive waveform can be easily adjusted with the time interval of 1/2 clock smaller than 1 clock with the 1st drive waveform and the 2nd drive waveform.
  • the plurality of driving waveforms having different periods include a rectangular waveform
  • the plurality of driving waveforms having different periods include a rectangular waveform
  • the period of the second driving waveform is the first
  • the driving waveform is configured to be longer by one clock of the clock of the control unit than the cycle of the driving waveform, and a driving waveform is generated with one first driving waveform and a plurality of second driving waveforms as one set.
  • the drive waveform is simulated so that the period between the first drive waveform period and the second drive waveform period is closer to the second drive waveform period than the first drive waveform.
  • the period can be adjusted.
  • the first drive waveform and the second drive waveform can easily make a time interval smaller than one clock and a cycle closer to the cycle of the second drive waveform than the first drive waveform.
  • the period of the drive waveform can be adjusted so that
  • the plurality of drive waveforms having different periods include rectangular waveforms, and the period of the second drive waveform is longer than the period of the first drive waveform by one clock of the control unit.
  • the drive waveform cycle can be adjusted so that the clock has a longer cycle. If comprised in this way, the period of a drive waveform can be easily adjusted with the time interval of 2/3 clock smaller than 1 clock with a 1st drive waveform and a 2nd drive waveform.
  • the plurality of driving waveforms having different periods include rectangular waveforms
  • the plurality of driving waveforms having different periods include rectangular waveforms
  • the period of the waveform is configured to be an integral multiple of the clock of the control unit. If comprised in this way, a 1st drive waveform and a 2nd drive waveform can be easily produced
  • the driving waveform generation unit includes a rectangular waveform generator capable of generating a rectangular waveform, and the rectangular waveform generator includes a plurality of periods having different periods.
  • a drive waveform including a rectangular waveform can be generated. If comprised in this way, the rectangular waveform generator can produce
  • the drive waveform generation unit further includes a filter that receives a plurality of rectangular waveforms having different periods generated from the rectangular waveform generator and blocks a rectangular waveform having a frequency equal to or higher than a predetermined frequency. If comprised in this way, a rectangular waveform can be made into a substantially sine waveform with the filter for interrupting
  • the filter includes a plurality of filters
  • the rectangular waveform generator includes a plurality of filters, each having a plurality of different periods generated from the rectangular waveform generator.
  • the rectangular waveforms are output with different phases, and the plurality of rectangular waveforms having different periods respectively input to the plurality of filters are output from the plurality of filters to the piezoelectric element.
  • An ultrasonic motor unit includes an ultrasonic motor having a piezoelectric element, and a drive waveform generation unit that generates a signal for driving the piezoelectric element of the ultrasonic motor. And a driving device configured to be able to generate a driving waveform including a plurality of different driving waveforms.
  • the drive waveform generation unit is configured to be able to generate a drive waveform including a plurality of drive waveforms having different periods, thereby providing a plurality of drive waveforms having different periods.
  • the drive waveform consisting of is a set of drive waveforms
  • the average period of the drive waveforms can be considered as an average value of a plurality of drive waveforms.
  • the cycle of the drive waveform can be adjusted at an interval smaller than the minimum cycle value (for example, one clock) that can be adjusted by the control unit.
  • the cycle of the drive waveform generated by the drive waveform generation unit can be adjusted in detail.
  • the cycle of the drive waveform that can be generated by the drive waveform generation unit can be adjusted in detail by reducing the clock cycle of the control unit (increasing the frequency), while the circuit operates at high speed.
  • the cost increases as much as is required.
  • the drive waveform generation unit is configured to be able to generate a drive waveform including a plurality of drive waveforms with different cycles, so that the cycle of the drive waveform generated by the drive waveform generation unit by a circuit operating at low speed Therefore, it is possible to configure an ultrasonic unit that can suppress an increase in the cost of the apparatus.
  • the drive waveform generation unit is configured to be able to repeatedly generate a drive waveform with a plurality of drive waveforms having different periods as one set. According to this configuration, a set of drive waveforms having a plurality of drive waveforms with different periods is repeatedly generated. Therefore, the piezoelectric element of the ultrasonic motor is driven by a drive waveform having a set of drive waveforms with different periods. Can be configured to continuously drive the ultrasonic unit.
  • the plurality of drive waveforms having different periods include a first drive waveform and a second drive waveform having a period different from the first drive waveform
  • the drive waveform generation unit includes one first drive waveform.
  • the drive waveform is a set of the drive waveform and one second drive waveform that can be repeatedly generated.
  • the control unit cannot control to generate a drive waveform having a period between the period of the first drive waveform and the period of the second drive waveform
  • the first drive waveform is simulated.
  • An ultrasonic unit that can drive the piezoelectric element of the ultrasonic motor by an intermediate (average value) period between the period and the period of the second drive waveform can be configured.
  • the ultrasonic motor unit configured to be able to repeatedly generate a drive waveform in which a plurality of drive waveforms having different periods are set, preferably, the plurality of drive waveforms having different periods are the first drive waveform and the first drive waveform. And a second drive waveform having a different period, and the drive waveform generation unit includes one or more second drive waveforms and one or more first drive waveforms as one set.
  • the drive waveform can be repeatedly generated. With this configuration, for example, when the plurality of second drive waveforms and one first drive waveform are set as one set, the average cycle of the drive waveforms is equal to the cycle of the first drive waveform and the second drive waveform.
  • the period is between the period of the drive waveform and closer to the period of the second drive waveform.
  • the plurality of drive waveforms having different periods include a first drive waveform and a second drive waveform
  • the plurality of drive waveforms having different periods include a rectangular waveform
  • the first drive The period of the waveform is configured to be longer than the period of the second drive waveform by one clock of the clock of the control unit or an integral multiple of one clock.
  • one first driving waveform and one second driving waveform are set as one set, and the period of the first driving waveform is longer by one clock than the period of the second driving waveform.
  • the average period of the drive waveform is a period that is 1/2 clock greater than the period of the first drive waveform.
  • FIG. 1 is a block diagram of an ultrasonic motor driving apparatus according to a first embodiment of the present invention.
  • FIG. It is a waveform diagram of a rectangular waveform generated by the rectangular waveform generator of the ultrasonic motor driving device according to the first embodiment of the present invention.
  • It is a waveform diagram of a rectangular waveform generated by a rectangular waveform generator of an ultrasonic motor driving device according to a comparative example. It is a figure which shows the result of the simulation performed about the rotational speed of the ultrasonic motor with respect to the frequency.
  • It is a waveform diagram of a rectangular waveform generated by the ultrasonic motor drive device according to the second embodiment of the present invention.
  • the driving device 2 is connected to the ultrasonic motor 1.
  • the driving device 2 includes a control unit 21, a rectangular waveform generator 22, low pass filters (LPF) 23a and 23b, and amplifiers 24a and 24b.
  • the rectangular waveform generator 22, the LPFs 23a and 23b, and the amplifiers 24a and 24b are examples of the “drive waveform generation unit” in the present invention.
  • the low-pass filters (LPF) 23a and 23b are examples of the “filter” of the present invention.
  • the control unit 21 is connected to the rectangular waveform generator 22.
  • the control unit 21 is configured to control the rectangular waveform generated by the rectangular waveform generator 22.
  • the rectangular waveform generator 22 is connected to the LPF 23a and the LPF 23b.
  • the rectangular waveform generator 22 has a function of generating a rectangular waveform (voltage) and outputting the generated rectangular waveform to the LPF 23a and the LPF 23b with different phases.
  • the rectangular waveform generator 22 is configured to be able to generate a rectangular waveform including a plurality of rectangular waveforms having different periods.
  • the rectangular waveform generator 22 is configured to be able to repeatedly generate a rectangular waveform with a set of a plurality of rectangular waveforms having different periods.
  • LPF 23a and LPF 23b are connected to amplifier 24a and amplifier 24b, respectively.
  • the LPF 23a and the LPF 23b have a function of blocking a rectangular waveform having a frequency equal to or higher than a predetermined frequency.
  • the rectangular waveforms input to the LPF 23a and the LPF 23b are output as a substantially sine waveform.
  • the substantially sinusoidal waveforms (voltages) output from the LPF 23a and the LPF 23b are configured to be input to the amplifier 24a and the amplifier 24b and to be amplified and output, respectively.
  • a voltage (for example, cos (t) wave) amplified by the amplifier 24a is input to the piezoelectric element 11a of the ultrasonic motor 1, and a voltage ( ⁇ cos ( t) wave) is input to the piezoelectric element 11c.
  • the voltage (sin (t) wave) amplified by the amplifier 24b is input to the piezoelectric element 11b, and the voltage ( ⁇ sin (t) wave) obtained by inverting the sign of the voltage input to the piezoelectric element 11b. Is input to the piezoelectric element 11d.
  • the rectangular waveform generator 22 has a rectangular waveform 221 having a period of T clocks (T is a natural number) of the clock of the control unit 21 and a rectangular waveform having a period of T + 1 clocks. 222 are alternately generated. That is, the rectangular waveform generator 22 repeatedly generates a set of rectangular waveforms, with a rectangular waveform 221 having a T clock period and a rectangular waveform 222 having a T + 1 clock period as one set. As a result, when the rectangular waveform 221 having a period of T clock and the rectangular waveform 222 having a period of T + 1 clock are taken as one set, the average period of the rectangular waveform is T + 1/2 clock.
  • the rectangular waveform 221 is an example of the “first driving waveform” in the present invention.
  • the rectangular waveform 222 is an example of the “second driving waveform” in the present invention.
  • the rectangular waveform generator 22 according to the comparative example is configured to continuously generate rectangular waveforms 221 having a period of a length corresponding to T clocks of the clock of the control unit 21.
  • a simulation was performed on the rotational speed of the ultrasonic motor 1 with respect to a frequency that is the reciprocal of the cycle (1 / cycle).
  • the rectangular waveform generator 22 generates a rectangular waveform having a single period (frequency) as shown in the comparative example of FIG.
  • the frequency that can be adjusted by the control unit 21 is assumed to be three, 83.6 kHz, 85.5 kHz, and 87.5 kHz.
  • the maximum rotation speed (224.7 rpm) was obtained at a frequency of 85.5 kHz.
  • the rectangular waveform generator 22 generates a rectangular waveform having a plurality of periods as shown in FIG. 2 (first embodiment). That is, a plurality of rectangular waveforms having different frequencies are output from the rectangular waveform generator 22.
  • the frequencies that can be adjusted by the control unit 21 are three, 83.6 kHz, 85.5 kHz, and 87.5 kHz, as in the comparative example.
  • the frequency has a frequency of 85.5 kHz.
  • the rectangular waveform generator 22 is configured to be able to generate a rectangular waveform including a plurality of rectangular waveforms having different periods (rectangular waveforms 221 and 222), whereby a plurality of periods having different periods are generated.
  • a rectangular waveform composed of rectangular waveforms is a set of rectangular waveforms
  • the average period of the rectangular waveforms can be considered as an average value of a plurality of rectangular waveforms.
  • the period of the rectangular waveform can be adjusted at intervals smaller than the minimum value of the period that can be adjusted by the control unit 21 (for example, 1 clock).
  • the period of the rectangular waveform generated by the rectangular waveform generator 22 can be adjusted in detail.
  • the period of the rectangular waveform that can be generated by the rectangular waveform generator 22 can be adjusted in detail by decreasing the clock period of the control unit 21 (increasing the frequency), while operating at high speed.
  • the cost is increased by the amount of circuitry required.
  • the rectangular waveform generator 22 is configured to generate a rectangular waveform including a plurality of rectangular waveforms having different periods, thereby generating a rectangular waveform generated by the rectangular waveform generator 22 by a circuit operating at a low speed. Since the period can be adjusted in detail, an increase in the cost of the apparatus can be suppressed.
  • the rectangular waveform generator 22 is configured so that a rectangular waveform having a plurality of rectangular waveforms (rectangular waveforms 221 and 222) having different periods can be repeatedly generated. Since a rectangular waveform having a set of a plurality of rectangular waveforms having different periods is repeatedly generated, the piezoelectric elements 11a to 11d of the ultrasonic motor 1 are continuously connected by a rectangular waveform having a set of a plurality of rectangular waveforms having different periods. Can be driven automatically.
  • the plurality of rectangular waveforms having different periods include the rectangular waveform 221 and the rectangular waveform 222 having a different period from the rectangular waveform 221, and the rectangular waveform generator 22 is A rectangular waveform having a set of the rectangular waveform 221 and one rectangular waveform 222 can be generated repeatedly.
  • the average period of the rectangular waveforms when one rectangular waveform 221 and one rectangular waveform 222 are set as one set is the period of the rectangular waveform 221 (T clock) and the period of the rectangular waveform 222 (T + 1 clock). Average value (T + 1/2 clock).
  • the control unit 21 cannot control to generate a rectangular waveform having a period between the period of the rectangular waveform 221 and the period of the rectangular waveform 222, the period of the rectangular waveform 221 and the rectangular waveform 222 are simulated.
  • the piezoelectric elements 11a to 11d of the ultrasonic motor 1 can be driven with a period (average value) intermediate to the period of.
  • the rectangular waveform generator 22 generates one rectangular waveform 221 and one rectangular waveform by alternately generating one rectangular waveform 221 and one rectangular waveform 222.
  • 222 is configured to repeatedly generate a drive waveform as a set.
  • the operation of the rectangular waveform generator 22 generating a rectangular waveform can be facilitated.
  • one rectangular waveform 222 is configured such that the period of the rectangular waveform 222 is longer than the period of the rectangular waveform 221 by one clock of the clock of the control unit 21.
  • the average period of the rectangular waveform when 221 and one rectangular waveform 222 are a set is a period that is 1/2 clock larger than the period of the rectangular waveform 221.
  • the rectangular waveform 221 and the rectangular waveform 222 are repeatedly generated to generate a rectangular waveform between the period of the rectangular waveform 221 and the period of the rectangular waveform 222.
  • the period of the rectangular waveform can be adjusted at a time interval smaller than one clock.
  • the period of the rectangular waveform 221 and the period of the rectangular waveform 222 are configured to be an integral multiple (T times and T + 1 times) of the clock of the control unit 21. Thereby, the rectangular waveform 221 and the rectangular waveform 222 can be easily generated based on the clock of the control unit 21.
  • the rectangular waveforms 221 and 222 having different periods generated from the rectangular waveform generator 22 are input, and the LPF 23a for cutting off a rectangular waveform having a frequency equal to or higher than a predetermined frequency.
  • An LPF 23b is provided.
  • the rectangular waveforms 221 and 222 can be made into a substantially sine waveform by the LPF 23a and the LPF 23b.
  • the rectangular waveform generator 22 causes the LPF 23a and the LPF 23b to change the phases of the rectangular waveforms 221 and 222 having different periods generated from the rectangular waveform generator 22, respectively.
  • rectangular waveforms 221 and 222 having different periods respectively input to the LPF 23a and the LPF 23b are output from the LPF 23a (LPF 23b) to the piezoelectric elements 11a and 11c (11b and 11d).
  • the signals output to the piezoelectric elements 11a to 11d can be adjusted to a frequency suitable for increasing the rotational speed of the ultrasonic motor 1 by the rectangular waveforms 221 and 222 having different periods.
  • the rotational speed of 1 can be increased.
  • the rectangular waveform generator 22 is configured to generate a plurality of (two in FIG. 5) rectangular waveforms 222 and one rectangular waveform 221 as a set. Yes. Further, the rectangular waveform generator 22 is configured to repeatedly generate a rectangular waveform having a plurality of (two in FIG. 5) rectangular waveforms 222 and one rectangular waveform 221 as a set. As shown in FIG. 5, when one rectangular waveform 221 having a period of T clock and two rectangular waveforms 222 having a period of T + 1 clock are taken as one set, the average period is T + 2/3 clock. Become.
  • the average period is close to the period of the rectangular waveform 222. That is, the average period is closer to the period of a large number of rectangular waveforms to be generated from a set of rectangular waveforms.
  • the rectangular waveform generator 22 alternately generated a rectangular waveform having a frequency of 85.9 kHz and a rectangular waveform having a frequency of 85.1 kHz once each. That is, in condition 1, the average frequency of the rectangular waveform is 85.5 kHz.
  • the rectangular waveform generator 22 generated a rectangular waveform having a frequency of 85.9 kHz once, and then generated a rectangular waveform having a frequency of 85.1 kHz three times. That is, under condition 2, the average frequency of the rectangular waveform is 85.3 kHz.
  • the rectangular waveform generator 22 In Condition 3, the rectangular waveform generator 22 generates a rectangular waveform having a frequency of 85.9 kHz once and then generates a rectangular waveform having a frequency of 85.1 kHz four times. That is, under condition 3, the average frequency of the rectangular waveform is 85.26 kHz. In condition 4, the rectangular waveform generator 22 generated a rectangular waveform having a frequency of 85.1 kHz, and then generated a rectangular waveform having a frequency of 85.1 kHz nine times. That is, in condition 4, the average value of the frequency of the rectangular waveform is 85.18 kHz. As shown in FIG. 6, by generating many rectangular waveforms having a frequency of 85.1 kHz, the average value of the frequencies of the rectangular waveform approaches 85.1 kHz.
  • FIG. 7 shows a waveform after the rectangular waveform is converted into a substantially sine waveform by the LPFs 23a and 23b.
  • the rotational speed of the ultrasonic motor 1 gradually decreases as the average value of the frequency decreases in the order of Condition 4, Condition 3, Condition 2, and Condition 1.
  • the rectangular waveform generator 22 when the rectangular waveform generator 22 generates a plurality of rectangular waveforms having different periods (frequency) (solid line (square) in FIG. 8), the rectangular waveform generator 22 has a single period (frequency).
  • the rotation speed in the case where the rectangular waveform generator 22 generates a plurality of rectangular waveforms having different periods (frequency) (solid line (square) in FIG. 8).
  • substantially the same rotational speed was obtained. That is, it was confirmed that the same rotational speed can be obtained when a plurality of rectangular waveforms having different periods (frequency) are synthesized and when a single period is generated.
  • the plurality of rectangular waveforms having different periods include the rectangular waveform 221 and the rectangular waveform 222 having a different period from the rectangular waveform 221, and the rectangular waveform generator 22 is configured as one rectangular waveform.
  • a rectangular waveform having a set of 221 and a plurality of rectangular waveforms 222 is configured to be repeatedly generated.
  • the average period of the rectangular waveform when the plurality of rectangular waveforms 222 and one rectangular waveform 221 are set as one set is between the period of the rectangular waveform 221 and the period of the rectangular waveform 222 and the rectangular waveform 222. It becomes a cycle closer to the cycle.
  • the control unit 21 cannot control to generate a rectangular waveform having a period between the period of the rectangular waveform 221 and the period of the rectangular waveform 222, the period of the rectangular waveform 221 and the rectangular waveform 222 are simulated. It is possible to finely adjust a period other than the average value between the periods. As a result, the piezoelectric elements 11a to 11d of the ultrasonic motor 1 can be driven with a more finely adjusted cycle.
  • the rectangular waveform generator 22 alternately generates one rectangular waveform 221 and a plurality of (two) rectangular waveforms 222, thereby generating one rectangular waveform 221 and It is configured to repeatedly generate a drive waveform with one rectangular waveform 222 as one set.
  • the operation of the rectangular waveform generator 22 generating a rectangular waveform can be facilitated.
  • the ultrasonic motor driving device may directly generate a sine waveform (cosine waveform) without generating a rectangular waveform.
  • the period of a rectangular waveform having two different periods (T clock, T + 1 clock) generated by the rectangular waveform generator is different by one clock is shown. Not limited to this.
  • the period of a rectangular waveform having two different periods generated by the rectangular waveform generator may be different by two clocks or more.
  • a rectangular waveform having two different periods is generated, but the present invention is not limited to this. In the present invention, a rectangular waveform having three or more different periods may be generated.
  • one set of rectangular waveforms having a plurality of different periods is taken as one set, and one set of rectangular waveforms is repeatedly generated.
  • the present invention is not limited to this.
  • a plurality of rectangular waveforms having different periods may be generated separately without forming a set.
  • a rectangular waveform having one T clock cycle and a plurality of T + 1 clock cycles are generated.
  • the present invention is not limited to this.
  • a rectangular waveform having a plurality of T clock cycles and a rectangular waveform having one T + 1 clock cycle may be generated. That is, a plurality of generated rectangular waveforms may be a rectangular waveform having a shorter cycle or a longer rectangular waveform.
  • a rectangular waveform having a plurality of T clock cycles and a rectangular waveform having a plurality of T + 1 clock cycles may be generated.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

 駆動波形生成部が生成する駆動波形の周期を詳細に調整することが可能な超音波モータの駆動装置を提供する。この超音波モータ(1)の駆動装置(2)は、圧電素子(11a、11b、11cおよび11d)を含む超音波モータの圧電素子を駆動する信号を生成する駆動波形生成部(22、23a、23b、24aおよび24b)を備え、駆動波形生成部は、周期の異なる複数の駆動波形(221および222)を含む駆動波形を生成可能に構成されている。

Description

超音波モータの駆動装置および超音波モータユニット
 この発明は、超音波モータの駆動装置および超音波モータユニットに関し、特に、駆動波形生成部を備える超音波モータの駆動装置および超音波モータユニットに関する。
 従来、駆動波形生成部を備える超音波モータの駆動装置が知られている。このような超音波モータの駆動装置は、たとえば、特開2008-301563号公報に開示されている。
 特開2008-301563号公報に記載の超音波モータの駆動装置では、矩形波発生回路(駆動波形生成部)により生成された矩形波形(電圧)が、ローパスフィルタ、増幅器などを介して超音波モータに印加されるように構成されている。また、矩形波発生回路は、制御部からの指示によって、所望の周期を有する矩形波を生成するように構成されている。なお、矩形波発生回路が生成する矩形波の周期の調整は、制御部のクロックの1クロックの期間を単位として調整されていると考えられる。
特開2008-301563号公報
 しかしながら、特開2008-301563号公報に記載の超音波モータでは、矩形波発生回路が生成する矩形波の周期の調整は、制御部の1クロックの期間を単位として調整されていると考えられるため、1クロックより短い時間間隔での矩形波の周期の調整が困難であるという問題点がある。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、駆動波形生成部が生成する駆動波形の周期を詳細に調整することが可能な超音波モータの駆動装置および超音波モータユニットを提供することである。
課題を解決するための手段および発明の効果
 この発明の第1の局面による超音波モータの駆動装置は、圧電素子を含む超音波モータの圧電素子を駆動する信号を生成する駆動波形生成部を備え、駆動波形生成部は、周期の異なる複数の駆動波形を含む駆動波形を生成可能に構成されている。
 この第1の局面による超音波モータの駆動装置では、上記のように、駆動波形生成部を、周期の異なる複数の駆動波形を含む駆動波形を生成可能に構成することによって、周期の異なる複数の駆動波形からなる駆動波形を1組の駆動波形とした場合、駆動波形の平均の周期は、複数の駆動波形の平均値と考えることができる。これにより、制御部が調整可能な周期の最小値(たとえば1クロック)よりも小さい間隔で駆動波形の周期を調整することができる。その結果、駆動波形生成部が生成する駆動波形の周期を詳細に調整することができる。なお、駆動波形生成部が生成可能な駆動波形の周期は、制御部のクロックの周期を小さくする(周波数を大きくする)ことにより、詳細に調整することが可能である一方、高速に動作させる回路が必要となる分、コストが上昇する。一方、上記のように、駆動波形生成部を、周期の異なる複数の駆動波形を含む駆動波形を生成可能に構成することによって、低速で動作する回路により駆動波形生成部が生成する駆動波形の周期を詳細に調整することができるので、装置のコストの上昇を抑制することができる。
 上記第1の局面による超音波モータの駆動装置において、好ましくは、駆動波形生成部は、周期の異なる複数の駆動波形を1組とした駆動波形を繰り返し生成可能に構成されている。このように構成すれば、周期の異なる複数の駆動波形を1組とした駆動波形が繰り返し生成されるので、周期の異なる複数の駆動波形を1組とした駆動波形によって、超音波モータの圧電素子を連続的に駆動することができる。
 この場合、好ましくは、周期の異なる複数の駆動波形は、第1の駆動波形と第1の駆動波形と異なる周期を有する第2の駆動波形とを含み、駆動波形生成部は、1つの第1の駆動波形と1つの第2の駆動波形とを1組とした駆動波形を繰り返し生成可能に構成されている。このように構成すれば、1つの第1の駆動波形と1つの第2の駆動波形とを1組とした場合の駆動波形の平均の周期は、第1の駆動波形の周期と第2の駆動波形の周期との平均値になる。これにより、制御部が、第1の駆動波形の周期と第2の駆動波形の周期との間の周期を有する駆動波形を生成するように制御できない場合でも、擬似的に第1の駆動波形の周期と第2の駆動波形の周期との中間(平均値)の周期によって超音波モータの圧電素子を駆動することができる。
 上記駆動波形生成部が1つの第1の駆動波形と1つの第2の駆動波形とを1組とした駆動波形を繰り返し生成する超音波モータの駆動装置において、好ましくは、駆動波形生成部は、1つの第1の駆動波形と1つの第2の駆動波形とを交互に生成することにより、1つの第1の駆動波形と1つの第2の駆動波形とを1組とした駆動波形を繰り返し生成するように構成されている。このように構成すれば、1つの第1の駆動波形と1つの第2の駆動波形とを順不同に生成する場合と異なり、駆動波形生成部が駆動波形を生成する動作を容易にすることができる。
 上記周期の異なる複数の駆動波形を1組とした駆動波形を繰り返し生成可能に構成されている超音波モータの駆動装置において、好ましくは、周期の異なる複数の駆動波形は、第1の駆動波形と第1の駆動波形と異なる周期を有する第2の駆動波形とを含み、駆動波形生成部は、1つまたは複数の第2の駆動波形と、1つまたは複数の第1の駆動波形とを1組とした駆動波形を繰り返し生成可能に構成されている。このように構成すれば、たとえば複数の第2の駆動波形と1つの第1の駆動波形とを1組とした場合の駆動波形の平均の周期は、第1の駆動波形の周期と第2の駆動波形の周期との間でかつ第2の駆動波形の周期寄りの周期になる。これにより、制御部が、第1の駆動波形の周期と第2の駆動波形の周期との間の周期を有する駆動波形を生成するように制御できない場合でも、擬似的に第1の駆動波形の周期と第2の駆動波形の周期との間の平均値以外の周期にも微調整することができる。その結果、より細かく調整された周期によって超音波モータの圧電素子を駆動することができる。
 この場合、好ましくは、駆動波形生成部は、1つまたは複数の第1の駆動波形と、1つまたは複数の第2の駆動波形とを交互に生成することにより、1つまたは複数の第2の駆動波形と、1つまたは複数の第1の駆動波形とを1組とした駆動波形を繰り返し生成するように構成されている。このように構成すれば、1つまたは複数の第2の駆動波形と1つまたは複数の第1の駆動波形とを順不同に生成する場合と異なり、駆動波形生成部が駆動波形を生成する動作を容易にすることができる。
 上記周期の異なる複数の駆動波形が第1の駆動波形と第2の駆動波形とを含む超音波モータの駆動装置において、好ましくは、周期の異なる複数の駆動波形は、矩形波形を含み、第1の駆動波形の周期は、第2の駆動波形の周期よりも制御部のクロックの1クロック分、または、1クロックの整数倍分、長くなるように構成されている。このように構成すれば、たとえば1つの第1の駆動波形と1つの第2の駆動波形とを1組とし、第1の駆動波形の周期を第2の駆動波形の周期よりも1クロック分長くした場合の駆動波形の平均の周期は、第1の駆動波形の周期よりも1/2クロック大きい周期になる。これにより、制御部が、1クロックの時間間隔でしか駆動波形の周期を調整できない場合でも、1クロックよりも小さい時間間隔で駆動波形の周期を調整することができる。
 この場合、好ましくは、第1の駆動波形と第2の駆動波形とを1組とした駆動波形を生成することにより、第1の駆動波形の周期と第2の駆動波形の周期との間で、かつ、1クロックよりも小さい時間間隔で駆動波形の周期を調整可能に構成されている。このように構成すれば、たとえば駆動波形の周期を詳細に調整するためにクロックの周波数を変化させる場合と異なり、容易に、1クロックよりも小さい時間間隔で駆動波形の周期を調整することができる。
 上記周期の異なる複数の駆動波形が矩形波形を含む超音波モータの駆動装置において、好ましくは、周期の異なる複数の駆動波形は、矩形波形を含み、第2の駆動波形の周期は、第1の駆動波形の周期よりも制御部のクロックの1クロック分、長くなるように構成されており、1つの第1の駆動波形と1つの第2の駆動波形とを1組とした駆動波形を生成することにより、擬似的に第1の駆動波形の周期よりも1/2クロック大きい周期になるように駆動波形の周期を調整可能に構成されている。このように構成すれば、第1の駆動波形と第2の駆動波形とにより、容易に、1クロックよりも小さい1/2クロックの時間間隔で駆動波形の周期を調整することができる。
 上記周期の異なる複数の駆動波形が矩形波形を含む超音波モータの駆動装置において、好ましくは、周期の異なる複数の駆動波形は、矩形波形を含み、第2の駆動波形の周期は、第1の駆動波形の周期よりも制御部のクロックの1クロック分、長くなるように構成されており、1つの第1の駆動波形と複数の第2の駆動波形とを1組とした駆動波形を生成することにより、擬似的に第1の駆動波形の周期と第2の駆動波形の周期との間でかつ第1の駆動波形よりも第2の駆動波形の周期に近い周期になるように駆動波形の周期を調整可能に構成されている。このように構成すれば、第1の駆動波形と第2の駆動波形とにより、容易に、1クロックよりも小さい時間間隔でかつ第1の駆動波形よりも第2の駆動波形の周期に近い周期になるように駆動波形の周期を調整することができる。
 この場合、好ましくは、周期の異なる複数の駆動波形は、矩形波形を含み、第2の駆動波形の周期は、第1の駆動波形の周期よりも制御部のクロックの1クロック分、長くなるように構成されており、1つの第1の駆動波形と2つの第2の駆動波形とを1組とした駆動波形を生成することにより、擬似的に第1の駆動波形の周期よりも2/3クロック大きい周期になるように駆動波形の周期を調整可能に構成されている。このように構成すれば、第1の駆動波形と第2の駆動波形とにより、容易に、1クロックよりも小さい2/3クロックの時間間隔で駆動波形の周期を調整することができる。
 上記周期の異なる複数の駆動波形が矩形波形を含む超音波モータの駆動装置において、好ましくは、周期の異なる複数の駆動波形は、矩形波形を含み、第1の駆動波形の周期および第2の駆動波形の周期は、制御部のクロックの整数倍になるように構成されている。このように構成すれば、第1の駆動波形および第2の駆動波形を制御部のクロックに基づいて容易に生成することができる。
 上記第1の局面による超音波モータの駆動装置において、好ましくは、駆動波形生成部は、矩形波形を生成することが可能な矩形波形生成器を含み、矩形波形生成器は、周期の異なる複数の矩形波形を含む駆動波形を生成可能に構成されている。このように構成すれば、矩形波形生成器により容易に周期の異なる複数の矩形波形を生成することができる。
 この場合、好ましくは、駆動波形生成部は、矩形波形生成器から生成された周期の異なる複数の矩形波形が入力され所定の周波数以上の周波数を有する矩形波形を遮断するためのフィルタをさらに備える。このように構成すれば、所定の周波数以上の周波数を有する矩形波形を遮断するためのフィルタにより、矩形波形を略正弦波形にすることができる。
 上記フィルタを備える超音波モータの駆動装置において、好ましくは、フィルタは、複数のフィルタを含み、矩形波形生成器は、複数のフィルタに、それぞれ、矩形波形生成器から生成された周期の異なる複数の矩形波形を位相を異ならせて出力するとともに、複数のフィルタにそれぞれ入力された周期の異なる複数の矩形波形は、複数のフィルタから圧電素子に出力されるように構成されている。このように構成すれば、圧電素子に出力される信号を、周期の異なる複数の矩形波形により超音波モータの回転速度が大きなるのに適した周波数に調整することができるので、超音波モータの回転速度を大きくすることができる。
 この発明の第2の局面による超音波モータユニットは、圧電素子を有する超音波モータと、超音波モータの圧電素子を駆動する信号を生成する駆動波形生成部を含み、駆動波形生成部が、周期の異なる複数の駆動波形を含む駆動波形を生成可能に構成されている駆動装置とを備える。
 この第2の局面による超音波モータユニットでは、上記のように、駆動波形生成部を、周期の異なる複数の駆動波形を含む駆動波形を生成可能に構成することによって、周期の異なる複数の駆動波形からなる駆動波形を1組の駆動波形とした場合、駆動波形の平均の周期は、複数の駆動波形の平均値と考えることができる。これにより、制御部が調整可能な周期の最小値(たとえば1クロック)よりも小さい間隔で駆動波形の周期を調整することができる。その結果、駆動波形生成部が生成する駆動波形の周期を詳細に調整することができる。なお、駆動波形生成部が生成可能な駆動波形の周期は、制御部のクロックの周期を小さくする(周波数を大きくする)ことにより、詳細に調整することが可能である一方、高速に動作させる回路が必要となる分、コストが上昇する。一方、上記のように、駆動波形生成部を、周期の異なる複数の駆動波形を含む駆動波形を生成可能に構成することによって、低速で動作する回路により駆動波形生成部が生成する駆動波形の周期を詳細に調整することができるので、装置のコストの上昇を抑制することができる超音波ユニットを構成することができる。
 上記第2の局面による超音波モータユニットにおいて、好ましくは、駆動波形生成部は、周期の異なる複数の駆動波形を1組とした駆動波形を繰り返し生成可能に構成されている。このように構成すれば、周期の異なる複数の駆動波形を1組とした駆動波形が繰り返し生成されるので、周期の異なる複数の駆動波形を1組とした駆動波形によって、超音波モータの圧電素子を連続的に駆動することができる超音波ユニットを構成することができる。
 この場合、好ましくは、周期の異なる複数の駆動波形は、第1の駆動波形と第1の駆動波形と異なる周期を有する第2の駆動波形とを含み、駆動波形生成部は、1つの第1の駆動波形と1つの第2の駆動波形とを1組とした駆動波形を繰り返し生成可能に構成されている。このように構成すれば、1つの第1の駆動波形と1つの第2の駆動波形とを1組とした場合の駆動波形の平均の周期は、第1の駆動波形の周期と第2の駆動波形の周期との平均値になる。これにより、制御部が、第1の駆動波形の周期と第2の駆動波形の周期との間の周期を有する駆動波形を生成するように制御できない場合でも、擬似的に第1の駆動波形の周期と第2の駆動波形の周期との中間(平均値)の周期によって超音波モータの圧電素子を駆動することができる超音波ユニットを構成することができる。
 上記周期の異なる複数の駆動波形を1組とした駆動波形を繰り返し生成可能に構成されている超音波モータユニットにおいて、好ましくは、周期の異なる複数の駆動波形は、第1の駆動波形と第1の駆動波形と異なる周期を有する第2の駆動波形とを含み、駆動波形生成部は、1つまたは複数の第2の駆動波形と、1つまたは複数の第1の駆動波形とを1組とした駆動波形を繰り返し生成可能に構成されている。このように構成すれば、たとえば複数の第2の駆動波形と1つの第1の駆動波形とを1組とした場合の駆動波形の平均の周期は、第1の駆動波形の周期と第2の駆動波形の周期との間でかつ第2の駆動波形の周期寄りの周期になる。これにより、制御部が、第1の駆動波形の周期と第2の駆動波形の周期との間の周期を有する駆動波形を生成するように制御できない場合でも、擬似的に第1の駆動波形の周期と第2の駆動波形の周期との間の平均値以外の周期にも微調整することができる。その結果、より細かく調整された周期によって超音波モータの圧電素子を駆動することができる超音波ユニットを構成することができる。
 上記周期の異なる複数の駆動波形が第1の駆動波形と第2の駆動波形とを含む超音波モータユニットにおいて、好ましくは、周期の異なる複数の駆動波形は、矩形波形を含み、第1の駆動波形の周期は、第2の駆動波形の周期よりも制御部のクロックの1クロック分、または、1クロックの整数倍分、長くなるように構成されている。このように構成すれば、たとえば1つの第1の駆動波形と1つの第2の駆動波形とを1組とし、第1の駆動波形の周期を第2の駆動波形の周期よりも1クロック分長くした場合の駆動波形の平均の周期は、第1の駆動波形の周期よりも1/2クロック大きい周期になる。これにより、制御部が、1クロックの時間間隔でしか駆動波形の周期を調整できない場合でも、1クロックよりも小さい時間間隔で駆動波形の周期を調整することができる超音波ユニットを構成することができる。
本発明の第1実施形態による超音波モータの駆動装置のブロック図である。 本発明の第1実施形態による超音波モータの駆動装置の矩形波形生成器が生成する矩形波形の波形図である。 比較例による超音波モータの駆動装置の矩形波形生成器が生成する矩形波形の波形図である。 周波数に対する超音波モータの回転速度について行ったシミュレーションの結果を示す図である。 本発明の第2実施形態による超音波モータの駆動装置が生成する矩形波形の波形図である。 周波数に対する超音波モータの回転速度について行ったシミュレーションにおける矩形波形生成器が生成する矩形波形の条件を示す図である。 図6に示す条件3の場合のLPFから出力される正弦波形を示す図である。 図6に示す条件の矩形波形を超音波モータに印加した場合の周波数に対する超音波モータの回転速度について行ったシミュレーションの結果を示す図である。
 以下、本発明を具体化した実施形態を図面に基づいて説明する。
 (第1実施形態)
 図1を参照して、本発明の第1実施形態による超音波モータ1の駆動装置2について説明する。
 図1に示すように、駆動装置2は、超音波モータ1に接続されている。駆動装置2は、制御部21と、矩形波形生成器22と、ローパスフィルタ(LPF)23aおよび23bと、増幅器24aおよび24bとを含んでいる。なお、矩形波形生成器22、LPF23aおよび23b、増幅器24aおよび24bは、本発明の「駆動波形生成部」の一例である。また、ローパスフィルタ(LPF)23aおよび23bは、本発明の「フィルタ」の一例である。
 制御部21は、矩形波形生成器22に接続されている。制御部21は、矩形波形生成器22によって生成される矩形波形を制御するように構成されている。また、矩形波形生成器22は、LPF23aおよびLPF23bに接続されている。矩形波形生成器22は、矩形波形(電圧)を生成するとともに、生成した矩形波形の位相を異ならせてLPF23aおよびLPF23bに出力する機能を有する。ここで、第1実施形態では、矩形波形生成器22は、周期の異なる複数の矩形波形を含む矩形波形を生成可能に構成されている。また、矩形波形生成器22は、周期の異なる複数の矩形波形を1組とした矩形波形を繰り返し生成可能に構成されている。
 LPF23aおよびLPF23bは、それぞれ、増幅器24aおよび増幅器24bに接続されている。また、LPF23aおよびLPF23bは、所定の周波数以上の周波数を有する矩形波形を遮断する機能を有する。また、LPF23aおよびLPF23bに入力された矩形波形は、略正弦波形として出力される。LPF23aおよびLPF23bから出力された略正弦波形(電圧)は、それぞれ、増幅器24aおよび増幅器24bに入力されるとともに増幅されて出力されるように構成されている。増幅器24aによって増幅された電圧(たとえばcos(t)波)は、超音波モータ1の圧電素子11aに入力されるとともに、圧電素子11aに入力された電圧の正負を反転させた電圧(-cos(t)波)が、圧電素子11cに入力されるように構成されている。また、増幅器24bによって増幅された電圧(sin(t)波)は、圧電素子11bに入力されるとともに、圧電素子11bに入力された電圧の正負を反転させた電圧(-sin(t)波)が、圧電素子11dに入力されるように構成されている。
 次に、図2を参照して、第1実施形態による矩形波形生成器22の生成する矩形波形について説明する。
 図2に示すように、第1実施形態では、矩形波形生成器22は、制御部21のクロックのTクロック(Tは自然数)の周期を有する矩形波形221と、T+1クロックの周期を有する矩形波形222とを交互に生成する。つまり、矩形波形生成器22は、Tクロックの周期を有する矩形波形221と、T+1クロックの周期を有する矩形波形222とを1組として、1組の矩形波形を繰り返して生成する。これにより、Tクロックの周期を有する矩形波形221と、T+1クロックの周期を有する矩形波形222とを1組とした場合の矩形波形の平均の周期は、T+1/2クロックになる。なお、矩形波形221は、本発明の「第1の駆動波形」の一例である。また、矩形波形222は、本発明の「第2の駆動波形」の一例である。
 次に、図3および図4を参照して、超音波モータ1の周波数に対する回転速度について行ったシミュレーションについて説明する。なお、図3に示すように、比較例による矩形波形生成器22は、制御部21のクロックのTクロック分の長さの周期を有する矩形波形221が連続して生成するように構成されている。また、周期の逆数(1/周期)である周波数に対する超音波モータ1の回転速度についてシミュレーションを行った。
 まず、超音波モータ1の圧電素子11a~11dに印加する電圧の周波数を細かな刻みで設定可能な理想的な場合についてシミュレーションを行った。その結果、図4の1点鎖線で示すように、周波数が83kHzから超音波モータ1の回転速度は、徐々に大きくなり、84kHzを超えてから急激に大きくなった。そして、84.29kHzの周波数において、回転速度が最大(413.05rpm)になった。その後、回転速度は、周波数の増加とともに、徐々に減少した。
 次に、矩形波形生成器22が図3の比較例に示されるような単一の周期(周波数)を有する矩形波形を生成する場合についてシミュレーションを行った。なお、制御部21が調整可能な周波数は、83.6kHz、85.5kHzおよび87.5kHzの3つであるとした。その結果、図4の点線(三角)で示すように、85.5kHzの周波数において、最大の回転速度(224.7rpm)が得られた。一方、比較例では、上記理想的な場合(図4の1点鎖線)と異なり、最大の回転速度(413.05rpm)が得られる周波数である84.29kHz近傍に制御部21が周波数を調整できないため、比較例による最大の回転速度は、理想的な場合の約54.4%(=224.7/413.05×100)になった。
 次に、矩形波形生成器22が図2に示されるような複数の周期を有する矩形波形を生成する場合(第1実施形態)についてシミュレーションを行った。つまり、周波数の異なる複数の矩形波形が矩形波形生成器22より出力される。なお、第1実施形態では、制御部21が調整可能な周波数は、上記比較例と同様に、83.6kHz、85.5kHzおよび87.5kHzの3つとした。そして、83.6kHzの周波数を有する矩形波形と、85.5kHzの周波数を有する矩形波形とを交互に生成する場合(平均84.55kHzの周波数を有する矩形波形)と、85.5kHzの周波数を有する矩形波形と、87.5kHzの周波数を有する矩形波形とを交互に生成する場合(平均86.5kHzの周波数を有する矩形波形)とについてシミュレーションを行った。その結果、図4の実線(四角)で示すように、平均の周波数が84.55kHzである場合において、最大の回転速度(346.1rpm)が得られた。第1実施形態では、矩形波形生成器22が、2つの異なる周期(周波数)を有する矩形波形を交互に生成するので、上記理想的な場合(図4の1点鎖線)の最大の回転速度(413.05rpm)が得られる周波数である84.29kHz近傍に平均の周波数を設定できる。これにより、第1実施形態による最大の回転速度は、理想的な場合の約83.8%(=346.1/413.05×100)になった。
 第1実施形態では、上記のように、矩形波形生成器22を、周期の異なる複数の矩形波形(矩形波形221、222)を含む矩形波形を生成可能に構成することによって、周期の異なる複数の矩形波形からなる矩形波形を1組の矩形波形とした場合、矩形波形の平均の周期は、複数の矩形波形の平均値と考えることができる。これにより、制御部21が調整可能な周期の最小値(たとえば1クロック)よりも小さい間隔で矩形波形の周期を調整することができる。その結果、矩形波形生成器22が生成する矩形波形の周期を詳細に調整することができる。なお、矩形波形生成器22が生成可能な矩形波形の周期は、制御部21のクロックの周期を小さくする(周波数を大きくする)ことにより、詳細に調整することが可能である一方、高速に動作させる回路が必要となる分、コストが上昇する。一方、上記のように、矩形波形生成器22を、周期の異なる複数の矩形波形を含む矩形波形を生成可能に構成することによって、低速で動作する回路により矩形波形生成器22が生成する矩形波形の周期を詳細に調整することができるので、装置のコストの上昇を抑制することができる。
 また、第1実施形態では、上記のように、矩形波形生成器22を、周期の異なる複数の矩形波形(矩形波形221、222)を1組とした矩形波形を繰り返し生成可能に構成することによって、周期の異なる複数の矩形波形を1組とした矩形波形が繰り返し生成されるので、周期の異なる複数の矩形波形を1組とした矩形波形によって、超音波モータ1の圧電素子11a~11dを連続的に駆動することができる。
 また、第1実施形態では、上記のように、周期の異なる複数の矩形波形が、矩形波形221と矩形波形221と異なる周期を有する矩形波形222とを含み、矩形波形生成器22を、1つの矩形波形221と1つの矩形波形222とを1組とした矩形波形を繰り返し生成可能に構成する。これにより、1つの矩形波形221と1つの矩形波形222とを1組とした場合の矩形波形の平均の周期は、矩形波形221の周期(Tクロック)と矩形波形222の周期(T+1クロック)との平均値(T+1/2クロック)になる。その結果、制御部21が、矩形波形221の周期と矩形波形222の周期との間の周期を有する矩形波形を生成するように制御できない場合でも、擬似的に矩形波形221の周期と矩形波形222の周期との中間(平均値)の周期によって超音波モータ1の圧電素子11a~11dを駆動することができる。
 また、第1実施形態では、上記のように、矩形波形生成器22を、1つの矩形波形221と1つの矩形波形222とを交互に生成することにより、1つの矩形波形221と1つの矩形波形222とを1組とした駆動波形を繰り返し生成するように構成する。これにより、1つの矩形波形221と1つの矩形波形222とを順不同に生成する場合と異なり、矩形波形生成器22が矩形波形を生成する動作を容易にすることができる。
 また、第1実施形態では、上記のように、矩形波形222の周期を、矩形波形221の周期よりも制御部21のクロックの1クロック分、長くなるように構成することによって、1つの矩形波形221と1つの矩形波形222とを1組とした場合の矩形波形の平均の周期は、矩形波形221の周期よりも1/2クロック大きい周期になる。これにより、制御部21が、1クロックの時間間隔でしか矩形波形の周期を調整できない場合でも、1クロックよりも小さい時間間隔で矩形波形の周期を調整することができる。
 また、第1実施形態では、上記のように、矩形波形221と矩形波形222とを1組とした矩形波形を繰り返し生成することにより、矩形波形221の周期と矩形波形222の周期との間で、かつ、1クロックよりも小さい時間間隔で矩形波形の周期を調整可能に構成することによって、たとえば矩形波形の周期を詳細に調整するためにクロックの周波数を変化させる場合と異なり、容易に、1クロックよりも小さい時間間隔で矩形波形の周期を調整することができる。
 また、第1実施形態では、上記のように、矩形波形221の周期および矩形波形222の周期を、制御部21のクロックの整数倍(T倍およびT+1倍)になるように構成する。これにより、矩形波形221および矩形波形222を制御部21のクロックに基づいて容易に生成することができる。
 また、第1実施形態では、上記のように、矩形波形生成器22から生成された周期の異なる矩形波形221および222が入力され所定の周波数以上の周波数を有する矩形波形を遮断するためのLPF23aおよびLPF23bを設ける。これにより、LPF23aおよびLPF23bにより、矩形波形221および222を略正弦波形にすることができる。
 また、第1実施形態では、上記のように、矩形波形生成器22が、LPF23aおよびLPF23bに、それぞれ、矩形波形生成器22から生成された周期の異なる矩形波形221および222を位相を異ならせて出力するとともに、LPF23aおよびLPF23bにそれぞれ入力された周期の異なる矩形波形221および222を、LPF23a(LPF23b)から圧電素子11aおよび11c(11bおよび11d)に出力するように構成する。これにより、圧電素子11a~11dに出力される信号を、周期の異なる矩形波形221および222により超音波モータ1の回転速度が大きなるのに適した周波数に調整することができるので、超音波モータ1の回転速度を大きくすることができる。
 (第2実施形態)
 次に、図5を参照して、第2実施形態について説明する。この第2実施形態では、上記1つの矩形波形221と1つの矩形波形222とが交互に生成される第1実施形態と異なり、複数の矩形波形222と1つの矩形波形221とが1組として生成される。
 図5に示すように、第2実施形態では、矩形波形生成器22は、複数(図5では2つ)の矩形波形222と1つの矩形波形221とを1組として生成するように構成されている。また、矩形波形生成器22は、複数(図5では2つ)の矩形波形222と1つの矩形波形221とを1組とした矩形波形を繰り返し生成するように構成されている。図5に示すように、Tクロックの周期を有する1つの矩形波形221と、T+1クロックの周期を有する2つの矩形波形222とを1組とした場合では、平均の周期は、T+2/3クロックとなる。つまり、Tクロックの周期を有する1つの矩形波形221と、T+1クロックの周期を有する2つの矩形波形222とを1組とした場合では、平均の周期は、矩形波形222の周期に近くなる。すなわち、平均の周期は、1組の矩形波形のうち、生成される数の大きい矩形波形の周期寄りになる。
 次に、図6~図8を参照して、矩形波形222の数を異ならせた場合の超音波モータ1の周波数に対する回転速度について行ったシミュレーションについて説明する。
 まず、超音波モータ1の圧電素子11a~11dを駆動する電圧の波形(矩形波形)の調整について説明する。図6に示すように、条件1では、矩形波形生成器22は、85.9kHzの周波数を有する矩形波形と、85.1kHzの周波数を有する1つの矩形波形とを1回ずつ交互に生成した。つまり、条件1では、矩形波形の周波数の平均値は、85.5kHzとなる。また、条件2では、矩形波形生成器22は、85.9kHzの周波数を有する矩形波形を1回生成した後に、85.1kHzの周波数を有する矩形波形を3回生成した。つまり、条件2では、矩形波形の周波数の平均値は、85.3kHzとなる。また、条件3では、矩形波形生成器22は、85.9kHzの周波数を有する矩形波形を1回生成した後に、85.1kHzの周波数を有する矩形波形を4回生成した。つまり、条件3では、矩形波形の周波数の平均値は、85.26kHzとなる。また、条件4では、矩形波形生成器22は、85.9kHzの周波数を有する矩形波形を1回生成した後に、85.1kHzの周波数を有する矩形波形を9回生成した。つまり、条件4では、矩形波形の周波数の平均値は、85.18kHzとなる。なお、図6に示すように、85.1kHzの周波数の矩形波形を多く生成することにより、矩形波形の周波数の平均値は、85.1kHzに近づく。
 そして、図7に示すように、たとえば条件2では、1つの85.9kHzの周波数を有する電圧と、3つの85.1kHzの周波数を有する電圧とが1組として超音波モータ1の圧電素子11a~11d(図1参照)に印加される。なお、図7では、LPF23aおよび23bによって、矩形波形が略正弦波形に変換された後の波形を示している。
 次に、上記条件1~条件4の場合おいて生成された矩形波形(電圧)によって、超音波モータ1の圧電素子11a~11dを駆動するシミュレーションを行った。また、比較例として、周波数が85.1kHz、85.18kHz、85.26kHz、85.3kHz、85.5kHzおよび85.9kHzであり、かつ、単一の周波数(周期)からなる電圧によって、超音波モータ1の圧電素子11a~11dを駆動するシミュレーションを行った。その結果、図8の実線(四角)に示すように、条件4、条件3、条件2および条件1の順に周波数の平均値が小さくなるにしたがって徐々に超音波モータ1の回転速度が低下することが確認された。また、矩形波形生成器22が周期(周波数)の異なる複数の矩形波形を生成する場合(図8の実線(四角))の回転速度と、矩形波形生成器22が単一の周期(周波数)を生成する場合(図8の点線(ひし形))の回転速度とでは、矩形波形生成器22が周期(周波数)の異なる複数の矩形波形を生成する場合(図8の実線(四角))の回転速度が多少大きくなる一方、略同様の回転速度が得られることが確認された。つまり、周期(周波数)の異なる複数の矩形波形を合成した場合と、単一の周期を生成する場合とでは、同様の回転速度が得られることが確認された。
 第2実施形態では、上記のように、周期の異なる複数の矩形波形が、矩形波形221と矩形波形221と異なる周期を有する矩形波形222とを含み、矩形波形生成器22を、1つの矩形波形221と、複数の矩形波形222とを1組とした矩形波形を繰り返し生成可能に構成する。これにより、複数の矩形波形222と1つの矩形波形221とを1組とした場合の矩形波形の平均の周期は、矩形波形221の周期と矩形波形222の周期との間でかつ矩形波形222の周期寄りの周期になる。その結果、制御部21が、矩形波形221の周期と矩形波形222の周期との間の周期を有する矩形波形を生成するように制御できない場合でも、擬似的に矩形波形221の周期と矩形波形222の周期との間の平均値以外の周期にも微調整することができる。その結果、より細かく調整された周期によって超音波モータ1の圧電素子11a~11dを駆動することができる。
 また、第2実施形態では、上記のように、矩形波形生成器22を、1つの矩形波形221と複数(2つ)の矩形波形222とを交互に生成することにより、1つの矩形波形221と1つの矩形波形222とを1組とした駆動波形を繰り返し生成するように構成する。これにより、1つの矩形波形221と複数(2つ)の矩形波形222とを順不同に生成する場合と異なり、矩形波形生成器22が矩形波形を生成する動作を容易にすることができる。
 なお、第2実施形態のその他の効果は、上記第1実施形態と同様である。
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 たとえば、上記第1および第2実施形態では、矩形波形生成器が矩形波形を生成した後に、LPFによって矩形波形が略正弦波形に変換される例を示したが、本発明はこれに限らない。たとえば、超音波モータの駆動装置が矩形波形を生成せずに、直接正弦波形(余弦波形)を生成するようにしてもよい。
 また、上記第1および第2実施形態では、矩形波形生成器が生成する2つの異なる周期(Tクロック、T+1クロック)を有する矩形波形の周期が1クロック分異なる例を示したが、本発明はこれに限らない。たとえば、矩形波形生成器が生成する2つの異なる周期を有する矩形波形の周期が2クロック分以上異なるようにしてもよい。
 また、上記第1および第2実施形態では、2つの異なる周期を有する矩形波形が生成される例を示したが、本発明はこれに限らない。本発明では、3つ以上の異なる周期を有する矩形波形が生成されてもよい。
 また、上記第1および第2実施形態では、複数の異なる周期を有する矩形波形を1組として、1組の矩形波形が繰り返し生成される例を示したが、本発明はこれに限らない。複数の異なる周期を有する矩形波形が組をなさずにばらばらに生成されるようにしてもよい。
 また、上記第2実施形態では、1つのTクロックの周期を有する矩形波形と、複数のT+1クロックの周期を有する矩形波形とが生成される例を示したが、本発明はこれに限らない。本発明では、複数のTクロックの周期を有する矩形波形と、1つのT+1クロックの周期を有する矩形波形とが生成されるようにしてもよい。つまり、複数生成される矩形波形が、周期が短い方の矩形波形でもよいし、長い方の矩形波形でもよい。また、本発明では、複数のTクロックの周期を有する矩形波形と、複数のT+1クロックの周期を有する矩形波形とが生成されるようにしてもよい。

Claims (20)

  1.  圧電素子(11a、11b、11cおよび11d)を含む超音波モータ(1)の前記圧電素子を駆動する信号を生成する駆動波形生成部(22、23a、23b、24aおよび24b)を備え、
     前記駆動波形生成部は、周期の異なる複数の駆動波形(221および222)を含む駆動波形を生成可能に構成されている、超音波モータの駆動装置。
  2.  前記駆動波形生成部は、前記周期の異なる複数の駆動波形を1組とした駆動波形を繰り返し生成可能に構成されている、請求項1に記載の超音波モータの駆動装置。
  3.  前記周期の異なる複数の駆動波形は、第1の駆動波形(221)と前記第1の駆動波形と異なる周期を有する第2の駆動波形(222)とを含み、
     前記駆動波形生成部は、1つの前記第1の駆動波形と1つの前記第2の駆動波形とを1組とした駆動波形を繰り返し生成可能に構成されている、請求項2に記載の超音波モータの駆動装置。
  4.  前記駆動波形生成部は、1つの前記第1の駆動波形と1つの前記第2の駆動波形とを交互に生成することにより、1つの前記第1の駆動波形と1つの前記第2の駆動波形とを1組とした駆動波形を繰り返し生成するように構成されている、請求項3に記載の超音波モータの駆動装置。
  5.  前記周期の異なる複数の駆動波形は、第1の駆動波形と前記第1の駆動波形と異なる周期を有する第2の駆動波形とを含み、
     前記駆動波形生成部は、1つまたは複数の前記第2の駆動波形と、1つまたは複数の前記第1の駆動波形とを1組とした駆動波形を繰り返し生成可能に構成されている、請求項2に記載の超音波モータの駆動装置。
  6.  前記駆動波形生成部は、1つまたは複数の前記第1の駆動波形と、1つまたは複数の前記第2の駆動波形とを交互に生成することにより、1つまたは複数の前記第2の駆動波形と、1つまたは複数の前記第1の駆動波形とを1組とした駆動波形を繰り返し生成するように構成されている、請求項5に記載の超音波モータの駆動装置。
  7.  前記周期の異なる複数の駆動波形は、矩形波形を含み、前記第2の駆動波形の周期は、前記第1の駆動波形の周期よりも制御部(21)のクロックの1クロック分、または、1クロックの整数倍分、長くなるように構成されている、請求項3に記載の超音波モータの駆動装置。
  8.  前記第1の駆動波形と前記第2の駆動波形とを1組とした駆動波形を生成することにより、前記第1の駆動波形の周期と前記第2の駆動波形の周期との間で、かつ、1クロックよりも小さい時間間隔で駆動波形の周期を調整可能に構成されている、請求項7に記載の超音波モータの駆動装置。
  9.  前記周期の異なる複数の駆動波形は、矩形波形を含み、前記第2の駆動波形の周期は、前記第1の駆動波形の周期よりも前記制御部のクロックの1クロック分、長くなるように構成されており、
     1つの前記第1の駆動波形と1つの前記第2の駆動波形とを1組とした駆動波形を生成することにより、擬似的に前記第1の駆動波形の周期よりも1/2クロック大きい周期になるように駆動波形の周期を調整可能に構成されている、請求項7に記載の超音波モータの駆動装置。
  10.  前記周期の異なる複数の駆動波形は、矩形波形を含み、前記第2の駆動波形の周期は、前記第1の駆動波形の周期よりも前記制御部のクロックの1クロック分、長くなるように構成されており、
     1つの前記第1の駆動波形と複数の前記第2の駆動波形とを1組とした駆動波形を生成することにより、擬似的に前記第1の駆動波形の周期と前記第2の駆動波形の周期との間でかつ前記第1の駆動波形よりも前記第2の駆動波形の周期に近い周期になるように駆動波形の周期を調整可能に構成されている、請求項7に記載の超音波モータの駆動装置。
  11.  前記周期の異なる複数の駆動波形は、矩形波形を含み、前記第2の駆動波形の周期は、前記第1の駆動波形の周期よりも前記制御部のクロックの1クロック分、長くなるように構成されており、
     1つの前記第1の駆動波形と2つの前記第2の駆動波形とを1組とした駆動波形を生成することにより、擬似的に前記第1の駆動波形の周期よりも2/3クロック大きい周期になるように駆動波形の周期を調整可能に構成されている、請求項10に記載の超音波モータの駆動装置。
  12.  前記周期の異なる複数の駆動波形は、矩形波形を含み、前記第1の駆動波形の周期および前記第2の駆動波形の周期は、前記制御部のクロックの整数倍になるように構成されている、請求項7に記載の超音波モータの駆動装置。
  13.  前記駆動波形生成部は、矩形波形を生成することが可能な矩形波形生成器(22)を含み、
     前記矩形波形生成器は、周期の異なる複数の矩形波形を含む駆動波形を生成可能に構成されている、請求項1に記載の超音波モータの駆動装置。
  14.  前記駆動波形生成部は、前記矩形波形生成器から生成された周期の異なる複数の矩形波形が入力され所定の周波数以上の周波数を有する矩形波形を遮断するためのフィルタ(23a、23b)をさらに備える、請求項13に記載の超音波モータの駆動装置。
  15.  前記フィルタは、複数のフィルタを含み、
     前記矩形波形生成器は、前記複数のフィルタに、それぞれ、前記矩形波形生成器から生成された周期の異なる複数の矩形波形を位相を異ならせて出力するとともに、前記複数のフィルタにそれぞれ入力された周期の異なる複数の矩形波形は、前記複数のフィルタから前記圧電素子に出力されるように構成されている、請求項14に記載の超音波モータの駆動装置。
  16.  圧電素子(11a、11b、11cおよび11d)を有する超音波モータ(1)と、
     前記超音波モータの前記圧電素子を駆動する信号を生成する駆動波形生成部(22、23a、23b、24aおよび24b)を含み、前記駆動波形生成部が、周期の異なる複数の駆動波形を含む駆動波形(221および222)を生成可能に構成されている駆動装置(2)とを備える、超音波モータユニット。
  17.  前記駆動波形生成部は、前記周期の異なる複数の駆動波形を1組とした駆動波形を繰り返し生成可能に構成されている、請求項16に記載の超音波モータユニット。
  18.  前記周期の異なる複数の駆動波形は、第1の駆動波形(221)と前記第1の駆動波形と異なる周期を有する第2の駆動波形(222)とを含み、
     前記駆動波形生成部は、1つの前記第1の駆動波形と1つの前記第2の駆動波形とを1組とした駆動波形を繰り返し生成可能に構成されている、請求項17に記載の超音波モータユニット。
  19.  前記周期の異なる複数の駆動波形は、第1の駆動波形と前記第1の駆動波形と異なる周期を有する第2の駆動波形とを含み、
     前記駆動波形生成部は、1つまたは複数の前記第2の駆動波形と、1つまたは複数の前記第1の駆動波形とを1組とした駆動波形を繰り返し生成可能に構成されている、請求項17に記載の超音波モータユニット。
  20.  前記周期の異なる複数の駆動波形は、矩形波形を含み、前記第2の駆動波形の周期は、前記第1の駆動波形の周期よりも制御部(21)のクロックの1クロック分、または、1クロックの整数倍分、長くなるように構成されている、請求項18に記載の超音波モータユニット。
PCT/JP2011/061143 2010-06-02 2011-05-16 超音波モータの駆動装置および超音波モータユニット WO2011152191A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/701,388 US9087976B2 (en) 2010-06-02 2011-05-16 Ultrasonic-motor-driving device and ultrasonic motor unit
EP11789600.1A EP2579444A4 (en) 2010-06-02 2011-05-16 DRIVE DEVICE FOR A ULTRASONIC MOTOR AND ULTRASONIC MOTOR UNIT
CN201180026904.6A CN102918761B (zh) 2010-06-02 2011-05-16 超声波马达的驱动装置以及超声波马达单元
KR1020127033248A KR20130081663A (ko) 2010-06-02 2011-05-16 초음파 모터의 구동 장치 및 초음파 모터 유닛

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-126421 2010-06-02
JP2010126421A JP2011254610A (ja) 2010-06-02 2010-06-02 超音波モータの駆動装置

Publications (1)

Publication Number Publication Date
WO2011152191A1 true WO2011152191A1 (ja) 2011-12-08

Family

ID=45066570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061143 WO2011152191A1 (ja) 2010-06-02 2011-05-16 超音波モータの駆動装置および超音波モータユニット

Country Status (7)

Country Link
US (1) US9087976B2 (ja)
EP (1) EP2579444A4 (ja)
JP (1) JP2011254610A (ja)
KR (1) KR20130081663A (ja)
CN (1) CN102918761B (ja)
TW (1) TW201218608A (ja)
WO (1) WO2011152191A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101580374B1 (ko) * 2013-12-30 2015-12-28 삼성전기주식회사 피에조 구동 회로 및 구동 신호 생성 회로, 그를 이용한 피에조 구동 장치 및 방법
EP2953177B1 (en) * 2014-05-30 2017-01-25 Canon Kabushiki Kaisha Piezoelectric material, piezoelectric element, and electronic device
JP6529468B2 (ja) * 2016-08-23 2019-06-12 ミクロン精密株式会社 振動信号生成方法および共振周波数探索方法
CN114788159A (zh) * 2019-12-13 2022-07-22 米尼斯怀斯股份公司 驱动单元的动作方法及控制器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02184277A (ja) * 1989-01-09 1990-07-18 Olympus Optical Co Ltd 超音波モータの駆動回路
JPH06339289A (ja) * 1993-03-30 1994-12-06 Asmo Co Ltd 超音波モータの駆動方法及び駆動回路
JP2006314161A (ja) * 2005-05-09 2006-11-16 Matsushita Electric Ind Co Ltd 圧電素子駆動装置
JP2008301563A (ja) 2007-05-29 2008-12-11 Olympus Corp 超音波モータ駆動回路及び超音波モータの駆動信号生成方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975650A (en) * 1975-01-30 1976-08-17 Payne Stephen C Ultrasonic generator drive circuit
US4081706A (en) * 1976-10-21 1978-03-28 Delta Sonics, Inc. Oscillatory circuit for an ultrasonic cleaning device with feedback from the piezoelectric transducer
US4933918A (en) * 1988-02-11 1990-06-12 Landsrath Walter J Apparatus for frightening noxious animals by means of ultrasonic signals
JP2828222B2 (ja) 1991-11-28 1998-11-25 株式会社ニコン 超音波モーターの駆動回路
JP3415203B2 (ja) * 1993-07-12 2003-06-09 立花 克郎 治療用超音波発生装置
JP5037767B2 (ja) * 2001-09-19 2012-10-03 キヤノン株式会社 振動型アクチュエータの制御装置
JP2007089384A (ja) 2005-08-22 2007-04-05 Seiko Epson Corp 圧電アクチュエータの駆動制御装置、電子機器、および圧電アクチュエータの駆動制御方法
CN1921282A (zh) * 2005-08-22 2007-02-28 精工爱普生株式会社 压电致动器的驱动控制装置和驱动控制方法、电子设备
JP4838567B2 (ja) * 2005-10-26 2011-12-14 キヤノン株式会社 周波数制御回路、モータ駆動装置、周波数制御方法、モータ駆動装置の制御方法、及び、制御方法をコンピュータに実行させるプログラム
CN101345493B (zh) * 2007-07-13 2012-03-28 微邦科技股份有限公司 压电式微型帮浦及其驱动电路
JP2009284635A (ja) 2008-05-21 2009-12-03 Konica Minolta Opto Inc 駆動装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02184277A (ja) * 1989-01-09 1990-07-18 Olympus Optical Co Ltd 超音波モータの駆動回路
JPH06339289A (ja) * 1993-03-30 1994-12-06 Asmo Co Ltd 超音波モータの駆動方法及び駆動回路
JP2006314161A (ja) * 2005-05-09 2006-11-16 Matsushita Electric Ind Co Ltd 圧電素子駆動装置
JP2008301563A (ja) 2007-05-29 2008-12-11 Olympus Corp 超音波モータ駆動回路及び超音波モータの駆動信号生成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2579444A4

Also Published As

Publication number Publication date
JP2011254610A (ja) 2011-12-15
KR20130081663A (ko) 2013-07-17
CN102918761B (zh) 2015-09-16
US9087976B2 (en) 2015-07-21
CN102918761A (zh) 2013-02-06
EP2579444A4 (en) 2015-07-08
US20130069563A1 (en) 2013-03-21
TW201218608A (en) 2012-05-01
EP2579444A1 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
US7301417B2 (en) Pulse width modulation method and apparatus
WO2011152191A1 (ja) 超音波モータの駆動装置および超音波モータユニット
JP2008092670A (ja) Pwm信号生成回路およびそれを備えた電源装置
JP2009290867A (ja) 信号を合成するためのシステムおよび方法
EP1798855A3 (en) Class D Amplifier
KR20100020954A (ko) 파형 처리 회로
JP2013247981A5 (ja)
JP2006129683A (ja) モーター制御回路およびその制御方法
JP2013003309A (ja) 電子音発生装置
JP2016111430A (ja) Pwm変調装置および音声信号出力装置
JP2009276223A (ja) ステッピングモータ駆動回路及びアナログ電子時計
JP2010278669A (ja) Da変換回路
KR20150134627A (ko) 피에조 액추에이터 구동 장치 및 그 구동 방법
KR101836705B1 (ko) 정현파 생성 장치 및 방법
CN101013607A (zh) 防止由于转动惯量而产生的滑差的显示器转动装置
KR102165667B1 (ko) 유도기의 제어를 위한 방법과 장치, 그리고 압축기 시스템
JP5616138B2 (ja) ステッピングモータ駆動装置
JP6259252B2 (ja) バックライト駆動装置
JP2008295292A (ja) モーター制御方法及びその装置
JP5972026B2 (ja) 振動型アクチュエータの振動検出装置及び制御装置
JP5219873B2 (ja) 周波数シンセサイザ
JP2012013455A (ja) 任意信号発生装置
JP6611547B2 (ja) 多段インバータ制御装置
JPH08162850A (ja) 周波数合成回路
JP2012231625A5 (ja) 駆動制御方法、および駆動制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180026904.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789600

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13701388

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127033248

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011789600

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011789600

Country of ref document: EP