WO2011149021A1 - 光起電力素子の製造方法及び光起電力素子 - Google Patents
光起電力素子の製造方法及び光起電力素子 Download PDFInfo
- Publication number
- WO2011149021A1 WO2011149021A1 PCT/JP2011/062108 JP2011062108W WO2011149021A1 WO 2011149021 A1 WO2011149021 A1 WO 2011149021A1 JP 2011062108 W JP2011062108 W JP 2011062108W WO 2011149021 A1 WO2011149021 A1 WO 2011149021A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor film
- amorphous semiconductor
- film
- conductive
- type
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 42
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 32
- 239000004065 semiconductor Substances 0.000 claims abstract description 227
- 239000000758 substrate Substances 0.000 claims abstract description 130
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 61
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 33
- 239000000377 silicon dioxide Substances 0.000 claims description 27
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 22
- 239000013078 crystal Substances 0.000 claims description 22
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 22
- 238000005229 chemical vapour deposition Methods 0.000 claims description 19
- 230000015572 biosynthetic process Effects 0.000 claims description 18
- 238000005530 etching Methods 0.000 claims description 10
- 229910021419 crystalline silicon Inorganic materials 0.000 claims description 9
- 239000007772 electrode material Substances 0.000 claims description 8
- 238000002161 passivation Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- 230000010287 polarization Effects 0.000 claims description 6
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 3
- 238000007639 printing Methods 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 230000035484 reaction time Effects 0.000 claims 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 abstract description 5
- 239000010408 film Substances 0.000 description 241
- 229910052710 silicon Inorganic materials 0.000 description 91
- 239000010703 silicon Substances 0.000 description 91
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 90
- 239000007789 gas Substances 0.000 description 18
- 238000000151 deposition Methods 0.000 description 17
- 230000008021 deposition Effects 0.000 description 17
- 238000009792 diffusion process Methods 0.000 description 13
- 239000012535 impurity Substances 0.000 description 12
- 238000012545 processing Methods 0.000 description 11
- 238000001816 cooling Methods 0.000 description 9
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 8
- 238000005215 recombination Methods 0.000 description 8
- 230000006798 recombination Effects 0.000 description 8
- 229910000077 silane Inorganic materials 0.000 description 8
- 239000000969 carrier Substances 0.000 description 7
- 229910052814 silicon oxide Inorganic materials 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000010248 power generation Methods 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 244000126211 Hericium coralloides Species 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000004017 vitrification Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- ZOCHARZZJNPSEU-UHFFFAOYSA-N diboron Chemical compound B#B ZOCHARZZJNPSEU-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- -1 silicon alkoxide Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/022425—Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
- H01L31/022441—Electrode arrangements specially adapted for back-contact solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/072—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
- H01L31/0745—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
- H01L31/0747—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1804—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a photovoltaic device manufacturing method and a photovoltaic device including positive and negative electrodes on the back side of a light receiving surface and a carrier polarization layer electrically connected to these electrodes.
- Photovoltaic elements used in solar cells are classified into silicon-based and compound-based depending on the type of semiconductor used, and silicon-based is classified into crystal-based and thin-film-based.
- Crystalline photovoltaic devices are classified into a double-sided electrode type and a backside electrode type depending on the electrode arrangement.
- the double-sided electrode type has a structure in which positive and negative electrodes are provided on the light-receiving surface and the back side of the semiconductor substrate
- the back-side electrode type has a structure in which positive and negative electrodes are provided on the back side of the semiconductor substrate. Since it can be manufactured relatively easily, most of the crystalline photovoltaic elements currently produced are of the double-sided electrode type.
- the double-sided electrode type photovoltaic device has an electrode formed on the light receiving surface, power generation corresponding to the area of the electrode is hindered, and if the electrode area is reduced, the ability to extract the generated power is reduced. Decrease.
- the electrode shape and area on the light receiving surface side are determined so that the output power is maximized, but since the electrodes are present on the light receiving surface, further increase in the amount of power generation cannot be expected.
- the back electrode type is further classified into a contact hole type and a parallel type.
- the contact hole type semiconductor portions of the first conductivity type and the second conductivity type are formed on the front and back surfaces of the silicon crystal substrate, respectively, and the same impurity as the first conductivity type semiconductor portion is formed on the inner wall surface of the hole opened in the silicon crystal substrate. By conducting this doping, a conduction portion from the front surface to the back surface is formed.
- electrodes connected to the first conductive type semiconductor portion on the front surface side and electrodes connected to the second conductive type semiconductor portion on the back surface side are alternately arranged.
- first conductive type and second conductive type semiconductor portions are formed on the back surface of the silicon crystal substrate, and electrodes connected to the respective conductive type semiconductor portions are alternately arranged.
- a laser processing method is adopted as a method of forming a contact hole in a crystal substrate.
- the first conductivity type semiconductor part is formed by a high concentration n-type impurity diffusion process
- the second conductivity type semiconductor part is formed by a high concentration p type impurity diffusion process.
- high concentration n type impurity diffusion processing and high concentration p type impurity diffusion processing are performed on the back surface of the n type silicon crystal substrate using a mask using a lithograph. These impurity diffusion treatments are usually performed for several hours in a diffusion furnace at 900 ° C. or higher.
- a silicon nitride film (Si 3 N 4 ) or a silicon oxide film (SiO 2 ) is used as a mask material.
- These silicon nitride film and silicon oxide film function as a passivation film for suppressing photogenerated carrier recombination on the surface, and play an important role in the photovoltaic element.
- the use of a silicon nitride film (Si 3 N 4 ) or a silicon oxide film (SiO 2 ) as a mask material is a common technique in a semiconductor process, and masking and impurity diffusion are performed in the following procedure. .
- a silicon crystal substrate is oxidized in a furnace (900 ° C.
- Patent Documents 4 to 9 describe a method of forming a microcrystalline or amorphous conductive semiconductor film on a crystalline silicon substrate. That is, in Patent Documents 4 to 6, after forming a microcrystalline or amorphous intrinsic semiconductor film on one surface of a crystalline silicon substrate, a microcrystalline or amorphous n-type semiconductor film or p-type semiconductor film is formed. The basic concept of film formation and suppression of recombination of photogenerated carriers is described.
- Patent Document 8 shows a symmetrical structure in which an intrinsic semiconductor film and a p-type semiconductor film are formed on one surface of a crystalline silicon substrate, and an intrinsic semiconductor film and an n-type semiconductor film are formed on the other surface of the substrate. Yes.
- Patent Document 7 a p-type semiconductor film is formed on a high-purity silicon layer on the light-receiving surface, and an n-type semiconductor film is formed at a position different from the p-type semiconductor film on the high-purity silicon layer.
- the structure is shown.
- the high-purity silicon layer functions as a place where photogenerated carriers are generated.
- an intrinsic amorphous semiconductor film, an n-type amorphous semiconductor film, and a first electrode are formed in this order in a first region on one surface of an n-type single crystal silicon substrate.
- a structure in which an intrinsic amorphous semiconductor film, a p-type amorphous semiconductor film, and a second electrode are formed in this order in the second region is shown.
- the second electrode is formed so as to cover the entire surface of the p-type amorphous semiconductor film for the purpose of efficiently collecting carriers.
- substantially the entire one surface of the n-type single crystal silicon substrate is included in either the first region or the second region. Therefore, the second electrode may not be sufficiently insulated from the n-type amorphous semiconductor film or the first electrode in the first region.
- the back electrode type can be expected to improve the photoelectric conversion efficiency as compared with the double-sided electrode type, the manufacturing process is complicated, and thus there is a limit to the reduction in manufacturing cost.
- high temperature processing (batch processing) exceeding 900 ° C. and patterning (single wafer processing) are repeatedly performed in silicon oxidation or impurity diffusion processing. Therefore, the bulk lifetime of the silicon crystal substrate due to the high-temperature treatment is reduced, and performance degradation as a photovoltaic element occurs.
- the problem to be solved by the present invention is to reduce the complexity of the manufacturing process in a photovoltaic device having positive and negative electrodes and a carrier polarization layer electrically connected to these electrodes on the back side, and can be processed even at low temperatures. It is providing the manufacturing method of a photovoltaic device which can be performed, and a photovoltaic device.
- the first aspect of the method for manufacturing a photovoltaic device according to the present invention which has been made to solve the above problems, A method for producing a photovoltaic device having a light receiving surface and a back surface opposite to the light receiving surface, and a positive and negative electrode on the back surface side and a carrier polarization layer electrically connected to these electrodes, a) forming an intrinsic amorphous semiconductor film on the back side surface of the first conductivity type crystalline semiconductor substrate; b) A first conductive type amorphous semiconductor film having the same conductivity as the first conductive type crystalline semiconductor substrate on the surface of the intrinsic amorphous semiconductor film using a first mask having an opening of a predetermined shape And having a conductivity opposite to that of the first conductivity type on the surface of the intrinsic amorphous semiconductor film using a second mask having an opening of a predetermined shape at a position different from the opening of the first mask.
- Forming a second conductive type amorphous semiconductor film c) forming an insulating film so as to cover at least the back-side surface of the first conductive crystalline semiconductor substrate; d) forming a plurality of conduction holes communicating with the first conductive type amorphous semiconductor film and the second conductive type amorphous semiconductor film in the insulating film; e) forming an electrode in a region including the conduction hole on the insulating film; It is characterized by providing.
- the intrinsic amorphous semiconductor film may be formed on almost the entire back surface of the first conductivity type crystalline semiconductor substrate, and at the same position as the opening of the first mask and the opening of the second mask. Using a mask having an opening, it may be formed only at a position where the first conductive type amorphous semiconductor film and the second conductive type amorphous semiconductor film are formed.
- the intrinsic amorphous semiconductor film of those shapes is formed only at the position where the first conductive crystal semiconductor film and the second conductive crystal semiconductor film are formed, and the intrinsic amorphous semiconductor film as a whole.
- the difference from the case of forming is that recombination of photogenerated carriers until reaching each conductive type semiconductor film does not occur in the intrinsic amorphous semiconductor film in the former, but may occur in the latter.
- the former requires patterning using a mask, but the latter is unnecessary.
- a mask for the intrinsic amorphous semiconductor film, the first conductive crystal semiconductor A mask for the film, a mask for the second conductivity type crystalline semiconductor film, three types of masks, and three types of film formation chambers are required.
- a gas for an intrinsic amorphous semiconductor film is flowed into the same film formation chamber using a mask for the first conductive crystal semiconductor film, and then the first conductive crystal semiconductor film is formed. By flowing the gas for use, a two-layer structure of the first intrinsic amorphous semiconductor film and the first conductive type amorphous semiconductor film can be formed.
- the second intrinsic type amorphous semiconductor film and the second conductive type crystalline system are used in the same deposition chamber using the mask for the second conductive type crystalline semiconductor film.
- a two-layer structure of a semiconductor film can be formed.
- the photovoltaic device which has been made to solve the above problems, a) a first conductivity type crystalline semiconductor substrate; b) an intrinsic amorphous semiconductor film formed on the back-side surface of the first conductivity type crystalline semiconductor substrate; c) a first conductivity type amorphous semiconductor film having the same conductivity as the first conductivity type formed on the surface of the intrinsic amorphous semiconductor film, and the first conductivity type amorphous semiconductor film; A second conductivity type amorphous semiconductor film having a second conductivity opposite to the first conductivity type, formed on a surface of the intrinsic amorphous semiconductor film so as not to contact with the first conductivity type; d) The first conductive crystalline semiconductor substrate after the formation of the intrinsic amorphous semiconductor film, the first conductive amorphous semiconductor film, and the second conductive amorphous semiconductor film An insulating film having a plurality of conduction holes that cover at least the surface on the back surface side of the first conductive type amorphous semiconductor film
- the steps of the method for manufacturing a photovoltaic device according to the present invention will be described in order.
- a case where a crystalline silicon substrate is used as the first conductivity type crystalline semiconductor substrate will be described as an example, but the present invention is not limited thereto.
- the crystalline silicon substrate is placed in an alkali or acid etching tank, the damaged layer in the vicinity of the surface is removed, and an inverted pyramid-shaped texture structure is formed on the substrate surface.
- a surface passivation treatment is performed to reduce the recombination rate of photogenerated carriers on the substrate surface.
- a silicon nitride film is formed on the surface (light-receiving surface) by a chemical vapor deposition method at a low temperature (200 ° C. or less) that does not reduce the bulk lifetime of the crystal.
- the first conductive type amorphous semiconductor film and the second conductive type amorphous semiconductor film are preferably formed by a chemical vapor deposition method. Also, it is preferable to form a film by a chemical vapor deposition method.
- a crystalline silicon substrate after texture etching (hereinafter referred to as a silicon substrate) is placed in a mold of a predetermined tray (first tray).
- a silicon substrate is placed in a mold of a predetermined tray (first tray).
- One or more silicon substrates may be arranged in the mold.
- the back surface of the silicon substrate is brought into contact with the first tray.
- a chemical vapor deposition system (hereinafter referred to as PE-CVD apparatus), which is a vacuum apparatus, carries a tray with a silicon substrate, heats and evacuates, then enters silane gas and ammonia gas, generates plasma, and generates a silicon substrate surface.
- a silicon nitride film is formed.
- the temperature of the silicon substrate is set to 200 ° C. or lower.
- the first tray is sent to the next inversion chamber, and the second tray waiting in the inversion chamber is overlaid on the first tray. Then, when the trays are reversed by 180 ° with the two trays overlapped, the silicon substrate in the first tray is transferred to the second tray with the front and back reversed. The second tray on which the silicon substrate is placed is transferred to the next processing chamber (intrinsic amorphous silicon film forming chamber). The first tray left in the reversing chamber is used as the second tray of the silicon substrate group disposed in the form of the next tray to be transferred. In this way, the trays waiting in the reversing chamber are sequentially replaced.
- the second tray transferred from the inversion chamber enters the intrinsic amorphous silicon film deposition chamber
- silane gas is supplied after heating and pressure adjustment.
- plasma is generated to form an intrinsic amorphous silicon film (intrinsic amorphous semiconductor film) on the surface of the silicon substrate.
- the intrinsic amorphous silicon film may be formed on the entire back surface of the silicon substrate, or a mask having an opening having a predetermined shape may be formed on the silicon substrate.
- the opening having a predetermined shape means an opening having a shape obtained by combining the shape of a first conductivity type amorphous silicon film, which will be described later, and the shape of a second conductivity type amorphous silicon film.
- the shape of the intrinsic amorphous silicon film formed on the silicon substrate is a combination of the shape of the first conductivity type amorphous silicon film and the shape of the second conductivity type amorphous silicon film. It becomes.
- the mask is removed from the silicon substrate.
- the second tray is transferred to the first conductivity type amorphous silicon film forming chamber.
- a first mask having an opening with a predetermined shape is accurately superimposed on the silicon substrate, and silane gas and diborane are supplied to generate plasma.
- a first conductivity type amorphous silicon film (first conductivity type amorphous semiconductor film, for example, a p-type semiconductor silicon thin film) is formed on the silicon substrate.
- the first mask is removed from the silicon substrate and retracted, and the second tray is transferred to the next second conductivity type amorphous silicon film forming chamber.
- a second mask having an opening of a predetermined shape is accurately superimposed on the silicon substrate, and silane gas and phosphine are supplied to generate plasma.
- a second conductivity type amorphous silicon film (second conductivity type amorphous semiconductor film, n-type semiconductor silicon thin film) is formed on the silicon substrate.
- the opening of the first mask and the opening of the second mask are positioned so as not to overlap with each other.
- the first conductive type amorphous silicon film and the second conductive type amorphous silicon film are mutually connected. It is formed on a silicon substrate so as not to contact. Thereafter, the second mask is removed from the silicon substrate and retracted, and the second tray is carried out.
- intrinsic amorphous silicon is formed on the back surface of the silicon substrate by the same chemical vapor deposition method (PE-CVD) as the method of forming the silicon nitride film on the light receiving surface (front surface) of the silicon substrate.
- PE-CVD chemical vapor deposition method
- a first amorphous silicon film and a second amorphous silicon film that are not in contact with each other are formed on the film. Any film can be formed at a low temperature of 200 ° C. or lower.
- a silicon oxide (silica) film material is applied to the back surface or the light-receiving surface and all of the back surface and subjected to a vitrification treatment at 200 ° C. or lower.
- a silica insulating film is formed on the surface.
- an etching agent is printed at a position where the first conductive type amorphous silicon film and the second conductive type amorphous silicon film can be joined to corrode the silica insulating film, and after cleaning, a conduction hole is formed. Further, an electrode material is printed on the upper surface of the silica insulating film in a region corresponding to the first conductive type amorphous silicon film and the second conductive type amorphous silicon film so as not to cross each other, and heat bonding is performed. Process. This heat bonding process is also performed at 200 ° C. or lower.
- the electrode material in the conduction hole joined to the first conductivity type amorphous silicon film and the electrode material in the conduction hole joined to the second conductivity type amorphous silicon film are surely insulated by the silica insulating film existing between them. Is done.
- the silica insulating film formed on the light receiving surface side has a function as an antireflection film for suppressing light incident on the light receiving surface from being reflected on the surface in addition to an electrical insulating function.
- the insulating film made of silica also functions as a passivation film that suppresses carrier recombination. Insulating films having these functions are not limited to those made of silica.
- a photovoltaic element can be manufactured at a low temperature and by a relatively simple process. it can. Moreover, since the photovoltaic element of this invention can be manufactured at low temperature and there is no electrode in a light-receiving surface, it can improve electric power generation efficiency.
- FIG. 1 shows an embodiment of a back electrode type photovoltaic device of the present invention
- (a) is a view of the back electrode type photovoltaic device viewed from the back side
- (b) is a cross section along the AA line of (a).
- Figure. It is explanatory drawing of the 1st process of the manufacturing method which concerns on this embodiment, (a) is explanatory drawing of the process of forming a texture structure in a silicon substrate, (b) is a silicon substrate before a process, (c) is after a process. Silicon substrate. It is explanatory drawing of a 2nd process, (a) The top view which shows the state which installed the silicon substrate in the mold of a 1st tray, (b) is sectional drawing which follows the BB line of (a).
- FIG. 1 is a diagram schematically showing a photovoltaic element according to this embodiment.
- the photovoltaic element of this embodiment is a back electrode type photovoltaic element, which has a light receiving surface and a back surface corresponding to both surfaces of the silicon substrate 1, and has a comb-shaped positive electrode 5 and a comb-shaped negative electrode 8 on the back surface side. Is provided.
- the positive electrode 5 and the negative electrode 8 are arranged such that the comb teeth are nested.
- the silicon substrate 1 is an n-type single crystal silicon substrate, and an intrinsic amorphous semiconductor film 2 and a p-type conductive part (first conductive type) are formed in order from the silicon substrate 1 side on the back surface of the positive electrode 5.
- Amorphous semiconductor film 3, silica insulating film 4, and positive electrode 5 are formed.
- an intrinsic amorphous semiconductor film 6 and an n-type conductive film are sequentially formed from the silicon substrate 1 side.
- Part (second conductivity type amorphous semiconductor film) 7, silica insulating film 4, and negative electrode 8 are formed, thereby forming a pn junction photovoltaic device.
- the positive electrode 5 has a comb tooth portion connected by a connecting portion 11
- the negative electrode 8 has a comb tooth portion connected by a connecting portion 12.
- Conductive holes 13 are formed in the silica insulating film 4, and the electrodes 5 and 8 are joined to the p-type conductive portion 3 and the n-type conductive portion 7 through electrode materials filled in the conductive holes 13, respectively.
- a texture structure 10 for containing light is formed on the surface (front surface) of the silicon substrate 1, that is, the light receiving surface, and a silicon nitride film 9 and a silica insulating film 4 are formed thereon.
- the light incident from the light receiving surface is separated into electron and hole minority carriers in the silicon substrate 1 and transported to the n-type conductive portion 7 and the p-type conductive portion 3, respectively, and a current flows.
- Carrier recombination that reduces power generation efficiency depends on the amount of impurities and crystal defects in the silicon crystal. Therefore, in this embodiment, in order to avoid mutual mixing of the high-purity silicon substrate 1 and the p-type and n-type conductive portions 3 and 7, that is, the impurity diffusion portions, the silicon substrate 1 and the p-type and n-type are mixed. Intrinsic amorphous semiconductor films 2 and 6 are inserted between conductive portions 3 and 7.
- the silica insulating film 4 and the silicon nitride film 9 on both the light receiving surface side and the back surface side function as a passivation film that suppresses carrier recombination.
- the silica insulating film 4 is not only a function as a passivation film, but also a function to protect the photovoltaic element, a function of an antireflection film for suppressing reflection of incident light on the light receiving surface side, and conduction on the back surface side. It also has a function of insulating the electrode materials filled in the holes 13 from each other.
- FIGS. 2 to 12 are diagrams showing manufacturing steps in order
- FIG. 13 is a schematic configuration diagram of a chemical vapor deposition apparatus (PE-CVD apparatus) used in the manufacturing method of this embodiment.
- PE-CVD apparatus chemical vapor deposition apparatus
- FIG. 13A is a plan view of the chemical vapor deposition apparatus
- FIG. 13B is a longitudinal sectional view.
- the right side shows the inlet side of the chemical vapor deposition apparatus and the left side shows the outlet side.
- the chemical vapor deposition apparatus 100 includes a tray carry-in conveyor 41, a gate valve 42, a vacuuming / heating chamber 43, a gate valve 44, a silicon nitride film deposition chamber 45, a gate valve 46, from the inlet side toward the outlet side.
- Inversion chamber 47, gate valve 48, intrinsic semiconductor film deposition chamber 49, gate valve 50, p-type conductive semiconductor film deposition chamber 51, gate valve 52, n-type conductive semiconductor film deposition chamber 53, gate valve 54, A cooling chamber 55, a gate valve 56, and a tray carry-out conveyor 57 are arranged in this order.
- a vacuum pump 58 necessary for evacuation is connected to the heating chamber 43, the film forming chambers 45, 49, 51, 53, the inversion chamber 47, and the cooling chamber 55.
- the exhaust side of the vacuum pump 58 is connected to an abatement device (not shown).
- the film forming chambers 45, 49, 51, 53 are supplied with a source gas adjusted by a flow rate adjusting valve (Mass Control Valve; MFC) 60 from a source gas supply source (such as a cylinder) 59.
- MFC Mass Control Valve
- a heater 61 is installed below the tray 18 in the heating chamber 43 and the film forming chambers 45, 49, 51, 53. Further, an additional heater 62 is installed above the heating chamber 43, and plasma generating electrodes 20, 25, 28, 31 are installed above the film forming chambers 45, 49, 51, 53.
- the intrinsic semiconductor film forming chamber 49, the p-type conductive semiconductor film forming chamber 51, and the n-type conductive semiconductor film forming chamber 53, masks 24, 27, and 30 between the tray and the plasma generating electrode are provided.
- a mask carrier (not shown) is installed to be movable up and down. Furthermore, gate valves 42, 44, 46, 48, 50, 52, 54, 56 that open only when the tray and the silicon substrate pass in order to maintain the airtightness of each chamber and close during processing are provided at the entrance of each chamber. is set up.
- an elevating device (not shown) for waiting the second tray 22, and a reversing mechanism 47a for reversing 180 ° after the first tray 18 and the second tray 22 are overlapped are installed.
- a cooling plate 63 that circulates cooling water is installed in the cooling chamber 55. By bringing the tray transferred into the cooling chamber 55 into contact with the cooling plate 63, the tray and the silicon substrate are cooled.
- the tray carry-out conveyor 57 the tray from which the silicon substrate 1 has been removed is lowered and returned to the tray carry-in conveyor 41 by the tray return conveyor 64.
- First step (FIG. 2): The silicon substrate 1 is placed in the cassette 15 in the container 14. An aqueous solution 16 of alkali and IPA (isopropyl alcohol) is accommodated in the container 14, and the silicon substrate 1 is immersed in the aqueous solution 16. The aqueous solution 16 is heated to a constant temperature (50 to 80 ° C.) by the heater 17. As a result, the texture structure 10 is formed on both surfaces of the silicon substrate 1 by anisotropic etching.
- aqueous solution 16 of alkali and IPA isopropyl alcohol
- Second step (FIG. 3): A plurality of silicon substrates 1 on which the texture structure 10 is formed are placed in the mold 19 of the first tray 18 made of aluminum alloy.
- a first tray 18 on which a plurality of silicon substrates 1 are installed is placed in a preheating chamber of a plasma chemical vapor deposition apparatus (PE-CVD), evacuated, and then a silicon nitride film deposition chamber 45 (see FIG. 13).
- PE-CVD plasma chemical vapor deposition apparatus
- SiH 4 SiH 4
- NH 3 ammonia gas
- plasma 21 is generated between the plasma generating electrode 20 and the silicon substrate 1 to form a silicon nitride film on the surface of the silicon substrate 1. 9 is formed.
- the first tray 18 is transferred to the reversing chamber 47, and the second tray 22 is overlaid on the first tray 18 (FIG. 5A). Then, the whole of the first tray 18 and the second tray 22 is inverted by 180 °, and the silicon substrate 1 installed in the first tray 18 is transferred to the second tray 22. At this time, the silicon substrate 1 in the second tray 22 has the silicon nitride film 9 side (light receiving side) on the bottom and the non-film-formed surface (back surface) on the top (FIG. 5B). Note that the first tray 18 placed on the second tray 22 by reversing it stands by as the second tray of the silicon substrate 1 to be transferred next.
- Step 5-1 (FIG. 6): The second tray 22 on which the silicon substrate 1 is placed is transferred to the intrinsic semiconductor film forming chamber 49. Then, the intrinsic semiconductor film mask 23 waiting in the upper part of the intrinsic semiconductor film deposition chamber 49 is lowered and is superimposed on the silicon substrate 1. Here, since the non-film-formed surface (back surface) of the silicon substrate 1 is the upper surface, the mask 23 is superimposed on the back surface of the silicon substrate 1.
- the mask 23 is made of a ceramic material such as alumina (Al 2 O 3 ) or a metal mask (aluminum alloy, stainless steel, etc.), and has an opening 23 a in the shape of the intrinsic amorphous semiconductor film 2, 6. Yes.
- the film formation shapes of intrinsic amorphous semiconductor films 2 and 6 are the same as the film formation shapes of p-type conductive portion 3 and n-type conductive portion 7 (that is, the comb shape shown in FIG. 1).
- Each mask 23 is installed in a frame (not shown) so that it can be moved minutely independently for each silicon substrate 1.
- the mask positioning guide 24 is fitted into the guide groove 19 a provided in the mold 19 of the second tray 22, thereby positioning on the upper surface (back surface) of the silicon substrate 1.
- Step 5-2 (FIG. 7): Silane gas (SiH 4 ) and hydrogen gas (H 2 ) as a dilution gas are supplied into the intrinsic semiconductor film deposition chamber 49, and plasma is generated between the electrode 25 and the silicon substrate 1. 26 is generated. As a result, intrinsic amorphous semiconductor films 2 and 6 are formed on the silicon substrate 1. After film formation, the mask 23 is raised and the second tray 22 is transferred to the p-type conductive semiconductor film formation chamber 51.
- FIG. 8 In the p-type conductive semiconductor film forming chamber 51, the p-type conductive film mask 27 waiting on the top is lowered and overlaid on the silicon substrate 1.
- the p-type conductive film mask 27 has an opening 27 a having a shape corresponding to the p-type conductive portion 3.
- the opening 27 a is an intrinsic amorphous type.
- silane gas (SiH 4 ), diborane (B 2 H 6 ), and diluting hydrogen gas are supplied into the p-type conductive semiconductor film deposition chamber 51, and a plasma 29 is provided between the electrode 28 and the silicon substrate 1. Is generated.
- an amorphous p-type conductive portion 3 (p-type conductive semiconductor film) is formed on the intrinsic amorphous semiconductor film 2.
- the mask 27 is raised and the second tray 22 is transferred to the n-type conductive semiconductor film formation chamber 53.
- the n-type conductive film mask 30 waiting on the upper part is lowered and overlaid on the silicon substrate 1.
- the n-type conductive film mask 30 has an opening 30 a having a shape corresponding to the n-type conductive portion 7.
- the opening 30 a is an intrinsic amorphous type.
- silane gas (SiH 4 ), phosphine (PH 3 ), and hydrogen gas for dilution are supplied into the n-type conductive semiconductor film deposition chamber 53 to generate plasma 32 between the electrode 31 and the silicon substrate 1.
- an n-type conductive portion 7 made of an amorphous n-type conductive semiconductor film is formed on the intrinsic amorphous semiconductor film 6.
- the mask 30 is raised, the second tray 22 is transferred to the cooling chamber 55, and after cooling, it is carried out from the chemical vapor deposition apparatus to the atmosphere.
- the silicon substrate 1 after chemical vapor deposition is taken out from the second tray 22 and installed in a cassette 35 in a container 34 containing a solution 33 containing a silicon oxide (silica) film material. To do. Thereafter, the silicon substrate 1 is pulled up from the solution 33, dried in a furnace at 200 ° C. or lower, and vitrification treatment of silica adhering to the surface of the silicon substrate 1 is performed.
- a material of the silicon oxide (silica) film for example, silicon alkoxide (TEOS) can be used. If TEOS is used, low temperature firing is possible.
- TEOS silicon alkoxide
- the silica insulating film 4 is formed on the light receiving surface side and the back surface side of the silicon substrate 1.
- An etching paste 36 is printed in an island shape by screen printing on the silica insulating film 4 covering the surfaces of the p-type conductive portion 3 and the n-type conductive portion 7 of the silicon substrate 1 (FIG. 11). (A)). Each of the island-shaped etching pastes 36 is located on the p-type conductive part 3 and the n-type conductive part 7. After a predetermined time, the etching paste is removed by washing with water (FIG. 11 (b)). As a result, a plurality of circular conduction holes 13 are formed on the p-type conductive part 3 and the n-type conductive part 7.
- Electrodes 5 and 8 are printed from above the insulating film 4 and the conduction hole 13 of the silicon substrate 1 by screen printing.
- the electrodes 5 and 8 are made of a material containing silver (Ag) as a component, and are positioned on the p-type conductive part 3 and the n-type conductive part 7 with the insulating film 4 interposed therebetween, and the p-type conductive part 3 and n It is printed in the same shape as the mold conductive part 7.
- a part of the electrode material P enters the conduction hole 13, and the p-type conductive part 3 and the n-type conductive part 7 are joined to the electrodes 5 and 8, respectively.
- drying and baking at 200 ° C or lower.
- the intrinsic amorphous semiconductor film 2 having a shape corresponding to the p-type conductive portion 3 and the intrinsic amorphous semiconductor film 6 having a shape corresponding to the n-type conductive portion 7 are provided separately.
- the intrinsic amorphous semiconductor film 2 and the intrinsic amorphous semiconductor film 6 may be formed as one intrinsic semiconductor film and formed on the entire back surface of the silicon substrate 1. In this case, it is not necessary to use the mask 23 in the step 5-2 (FIG. 7).
- the intrinsic amorphous semiconductor film 2 (corresponding to the first intrinsic amorphous semiconductor film) and the p-type conductive portion 3 are formed using the p-type conductive film mask 27, and the n-type conductive film mask 30 is formed.
- the intrinsic amorphous semiconductor film 6 (corresponding to the second intrinsic amorphous semiconductor film) and the n-type conductive portion 7 may be formed by using them. In this case, if the gas for the intrinsic semiconductor film is switched to the gas for the p-type conductive film, the intrinsic amorphous semiconductor film 2 and the p-type conductive portion 3 can be formed in the same film formation chamber.
- the intrinsic amorphous semiconductor film 6 and the n-type conductive portion 7 can be formed in the same film formation chamber.
- the intrinsic amorphous semiconductor films 2 and 6, the p-type conductive portion 3, and the n-type conductive portion 7 can be formed in two types of masks and two types of film formation chambers.
Landscapes
- Engineering & Computer Science (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electromagnetism (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Sustainable Development (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
Abstract
本発明の課題は、製造工程の煩雑さを低減し、低温でも処理できる光起電力素子の製造方法及び光起電力素子を提供することである。n型単結晶シリコン基板1の一面に真性非晶質系半導体膜2,6を形成し、第1マスクを用いて前記真性非晶質系半導体膜6の表面にn型導電部(n型非晶質系半導体膜)7を形成し、第2マスクを用いて前記真性非晶質系半導体膜の表面にp型導電部(p型非晶質系半導体膜)3を形成し、前記n型単結晶シリコン基板1の少なくとも前記非晶質系半導体膜2,6が形成された面を覆うように絶縁膜4を形成し、前記絶縁膜4に、非晶質系半導体膜2,6と連通する複数の導通穴13を形成し、前記導通穴13を含む前記絶縁膜4上の領域に電極5,8を形成することにより、本発明の光起電力素子が得られる。
Description
本発明は、受光面の裏面側に正負の電極及びこれら電極と電気的に接続されたキャリア分極層を備えた光起電力素子の製造方法及び光起電力素子に関する。
太陽電池に用いられる光起電力素子は、用いられる半導体の種類により、シリコン系、化合物系に分類され、さらに、シリコン系は、結晶系、薄膜系に分類される。また、結晶系光起電力素子は、電極の配置形態から両面電極型と裏面電極型に分類される。両面電極型は半導体基板の受光面と裏面に正と負の電極を設けた構造であり、裏面電極型は、半導体基板の裏面に正負の電極を設けた構造である。比較的簡単に製造できることから、現在、生産されているほとんどの結晶系光起電力素子は両面電極型である。
しかし、両面電極型光起電力素子は、受光面に電極が形成されているため、その電極の面積に相当する分の発電が妨げられ、電極面積を減少させると発電された電力を取り出す能力が減少する。出力電力が最大になるように受光面側の電極形状や面積が決定されるが、受光面に電極が存在することから発電量の更なる増加は望めない。
一方、裏面電極型は、さらに、コンタクトホール型と並列型に分類される。コンタクトホール型では、シリコン結晶基板の表面及び裏面に第1導電型及び第2導電型の半導体部がそれぞれ形成され、シリコン結晶基板に開けた穴の内壁面に第1導電型半導体部と同じ不純物のドーピングを行うことにより表面から裏面への導通部が形成されている。そして、裏面には、表面側の第1導電型半導体部と接続された電極及び裏面側の第2導電型半導体部と接続された電極が交互に配置されている。
並列型は、シリコン結晶基板の裏面に第1導電型及び第2導電型の半導体部が形成されていると共に、各導電型半導体部に接続された電極が交互に配置されている。
並列型は、シリコン結晶基板の裏面に第1導電型及び第2導電型の半導体部が形成されていると共に、各導電型半導体部に接続された電極が交互に配置されている。
コンタクトホール型裏面電極型光起電力素子では、結晶基板にコンタクトホールを形成する方法としてレーザー加工法が採用されている。また、第1導電型半導体部は、高濃度n型不純物拡散処理により形成され、第2導電型半導体部は高濃度p型不純物拡散処理により形成される。
並列型裏面電極型光起電力素子では、n型シリコン結晶基板の裏面に、リソグラフを利用したマスクを用いて、高濃度n型不純物拡散処理、高濃度p型不純物拡散処理が行われる。これらの不純物拡散処理は、通常900℃以上の拡散炉の中で数時間行われる。
並列型裏面電極型光起電力素子では、n型シリコン結晶基板の裏面に、リソグラフを利用したマスクを用いて、高濃度n型不純物拡散処理、高濃度p型不純物拡散処理が行われる。これらの不純物拡散処理は、通常900℃以上の拡散炉の中で数時間行われる。
このような高温に耐えるために、マスク材として窒化シリコン膜(Si3N4)、酸化シリコン膜(SiO2)が用いられる。また、これらの窒化シリコン膜、酸化シリコン膜は表面の光生成キャリア再結合を抑制するためのパッシベーション膜として機能し、光起電力素子の重要な役割を担っている。マスク材として窒化シリコン膜(Si3N4)、酸化シリコン膜(SiO2)を用いることは、半導体プロセスでは一般的な手法であり、それらのマスキング及び不純物拡散は次のような手順で行われる。まず、シリコン結晶基板を炉の中(900℃以上)で酸化させてその表面に酸化シリコン膜を形成し、さらに化学気相成膜法により窒化シリコン膜を成膜する。そして、リソグラフィとエッチングにより窒化シリコン膜、シリカ膜のパターニングを行う。これを拡散炉に入れると、窒化ケイ素膜やシリカ膜を除去した場所で不純物拡散が進行する。第1導電型半導体部及び第2導電型半導体部を形成する場合は、マスク膜生成・パターニングと拡散を別々に行う必要があり、処理工程が増加する。
なお、このような製造法については、特許文献1~3に詳細に記載されている。
なお、このような製造法については、特許文献1~3に詳細に記載されている。
高温の不純物拡散処理に代わる方法として、特許文献4~9には、結晶系シリコン基板に微結晶あるいは非晶質の導電型半導体膜を成膜する方法が記載されている。
即ち、特許文献4~6には、結晶系シリコン基板の片面に微結晶あるいは非晶質の真性半導体膜を成膜後に、微結晶あるいは非晶質のn型半導体膜又はp型半導体膜を成膜し、光生成キャリアの再結合を抑制する基本的な考え方が記載されている。
即ち、特許文献4~6には、結晶系シリコン基板の片面に微結晶あるいは非晶質の真性半導体膜を成膜後に、微結晶あるいは非晶質のn型半導体膜又はp型半導体膜を成膜し、光生成キャリアの再結合を抑制する基本的な考え方が記載されている。
特許文献8には、結晶系シリコン基板の一方の面に真性半導体膜とp型半導体膜、基板の他方の面に真性半導体膜とn型半導体膜を成膜した対称形の構造が示されている。
特許文献7には、表面の受光面の高純度シリコン層の上にp型半導体膜が形成され、該高純度シリコン層上の該p型半導体膜とは異なる位置にn型半導体膜が形成された構造が示されている。なお、特許文献4~6,8と異なり、特許文献7の光起電力素子では、高純度シリコン層は光生成キャリアの発生場所として機能する。
特許文献9には、n型単結晶シリコン基板の一方の面における第1領域に真性非晶質半導体膜、n型非晶質半導体膜及び第1電極がこの順に形成され、前記一方の面における第2領域に真性非晶質半導体膜、p型非晶質半導体膜及び第2電極がこの順に形成された構造が示されている。ここで第2電極は、キャリアを効率良く収集することを目的として、p型非晶質半導体膜の全面を覆うように形成される。一方、この光起電力素子では、n型単結晶シリコン基板の一方の面のほぼ全面が第1領域又は第2領域のいずれかに含まれている。そのため、第2電極は第1領域のn型非晶質半導体膜や第1電極と十分に絶縁されないおそれがある。
このように、裏面電極型は、両面電極型に比べて光電変換効率の向上が期待できるものの、製造工程が煩雑であるため、製造コスト低減に限界がある。特に、従来の裏面電極型光起電力素子の製造工程では、シリコン酸化や不純物拡散処理において900℃を超える高温処理(バッチ処理)とパターニング(枚葉処理)が繰り返し行われる。そのため、高温処理によるシリコン結晶基板のバルクライフタイムを低下させ、光起電力素子としての性能劣化を発生させる。さらには、シリコン結晶基板を高温炉に入れるための治具に当該基板を出し入れする作業の煩雑さ、昇温、処理、冷却に時間を要すること、エネルギー消費量等、生産コストを上げる要因が多い。
本発明が解決しようとする課題は、裏面側に正負の電極及びこれら電極と電気的に接続されたキャリア分極層を備えた光起電力素子において、製造工程の煩雑さを低減し、低温でも処理できる光起電力素子の製造方法及び光起電力素子を提供することである。
上記課題を解決するために成された本発明に係る光起電力素子の製造方法の第1の態様は、
受光面とその反対側の裏面とを有し、前記裏面側に正負の電極及びこれら電極と電気的に接続されたキャリア分極層を備えた光起電力素子の製造方法であって、
a) 第1導電型結晶系半導体基板の前記裏面側の面に真性非晶質系半導体膜を形成する工程と、
b) 所定形状の開口を有する第1マスクを用いて前記真性非晶質系半導体膜の表面に前記第1導電型結晶系半導体基板と同じ導電性を有する第1導電型非晶質系半導体膜を形成し、前記第1マスクの開口とは異なる位置に所定形状の開口を有する第2マスクを用いて前記真性非晶質系半導体膜の表面に前記第1導電型と逆の導電性を有する第2導電型非晶質系半導体膜を形成する工程と、
c) 少なくとも前記第1導電型結晶系半導体基板の前記裏面側の面を覆うように絶縁膜を形成する工程と、
d) 前記絶縁膜に、前記第1導電型非晶質系半導体膜及び第2導電型非晶質系半導体膜と連通する複数の導通穴を形成する工程と、
e) 前記絶縁膜上の前記導通穴を含む領域に電極を形成する工程と、
を備えることを特徴とする。
受光面とその反対側の裏面とを有し、前記裏面側に正負の電極及びこれら電極と電気的に接続されたキャリア分極層を備えた光起電力素子の製造方法であって、
a) 第1導電型結晶系半導体基板の前記裏面側の面に真性非晶質系半導体膜を形成する工程と、
b) 所定形状の開口を有する第1マスクを用いて前記真性非晶質系半導体膜の表面に前記第1導電型結晶系半導体基板と同じ導電性を有する第1導電型非晶質系半導体膜を形成し、前記第1マスクの開口とは異なる位置に所定形状の開口を有する第2マスクを用いて前記真性非晶質系半導体膜の表面に前記第1導電型と逆の導電性を有する第2導電型非晶質系半導体膜を形成する工程と、
c) 少なくとも前記第1導電型結晶系半導体基板の前記裏面側の面を覆うように絶縁膜を形成する工程と、
d) 前記絶縁膜に、前記第1導電型非晶質系半導体膜及び第2導電型非晶質系半導体膜と連通する複数の導通穴を形成する工程と、
e) 前記絶縁膜上の前記導通穴を含む領域に電極を形成する工程と、
を備えることを特徴とする。
この場合、真性非晶質系半導体膜は、第1導電型結晶系半導体基板の裏面側の面のほぼ全体に形成しても良く、第1マスクの開口及び第2マスクの開口と同じ位置に開口を有するマスクを用いて、第1導電型非晶質系半導体膜及び第2導電型非晶質系半導体膜が形成される位置にのみ形成しても良い。
第1導電型結晶系半導体膜及び第2導電型結晶系半導体膜が形成される位置にのみそれらの形状の真性非晶質系半導体膜を形成する場合と、全体に真性非晶質系半導体膜を形成する場合との違いは、各導電型半導体膜に達するまでの光生成キャリヤの再結合が、前者では真性非晶質系半導体膜で発生しないが、後者では発生する可能性がある。前者はマスクを使用したパターニングが必要であるが後者は不要である。
第1導電型結晶系半導体膜及び第2導電型結晶系半導体膜が形成される位置にのみそれらの形状の真性非晶質系半導体膜を形成する場合と、全体に真性非晶質系半導体膜を形成する場合との違いは、各導電型半導体膜に達するまでの光生成キャリヤの再結合が、前者では真性非晶質系半導体膜で発生しないが、後者では発生する可能性がある。前者はマスクを使用したパターニングが必要であるが後者は不要である。
第1導電型結晶系半導体膜及び第2導電型結晶系半導体膜の位置に真性非晶質系半導体膜を形成する場合、真性非晶質系半導体膜用のマスク、第1導電型結晶系半導体膜用のマスク、第2導電型結晶系半導体膜用のマスク、と3種のマスク、及び3種の成膜室が必要である。これを簡素化するため、第1導電型結晶系半導体膜用のマスクを用い、同じ成膜室内に、真性非晶質系半導体膜用のガスを流し、続いて第1導電型結晶系半導体膜用のガスを流すことで、第1真性非晶質系半導体膜、第1導電型非結晶系半導体膜の2層構造を形成することができる。第2導電型結晶系半導体膜についても、同様に、第2導電型結晶系半導体膜用のマスクを用い、同じ成膜室で、第2真性非晶質系半導体膜、第2導電型結晶系半導体膜の2層構造を形成することができる。このように成膜室に流すガスを途中で切り替えれば、2種のマスク、2種の成膜室を用いて、本発明の光起電力素子を製造することができる。
また、上記課題を解決するために成された本発明に係る光起電力素子は、
a) 第1導電型結晶系半導体基板と、
b) 前記第1導電型結晶系半導体基板の前記裏面側の面に形成された真性非晶質系半導体膜と、
c) 前記真性非晶質系半導体膜の表面に形成された前記第1導電型と同じ導電性を有する第1導電型非晶質系半導体膜、及び該第1導電型非晶質系半導体膜と接触しないように前記真性の非晶質系半導体膜の表面に形成された、前記第1導電型と逆の第2導電性を有する第2導電型非晶質系半導体膜と、
d) 前記真性非晶質系半導体膜、前記第1導電型非晶質系半導体膜、及び前記第2導電型非晶質系半導体膜が形成された後の前記第1導電型結晶系半導体基板の少なくとも前記裏面側の面を覆い、前記第1導電型非晶質系半導体膜及び前記第2導電型非晶質系半導体膜と連通する複数の導通穴を有する絶縁膜と、
e) 前記絶縁膜上の前記導通穴を含む領域に形成され、前記第1導電型非晶質系半導体膜及び前記第2導電型非晶質系半導体膜と電気的に接続された電極と、
を備えることを特徴とする。
a) 第1導電型結晶系半導体基板と、
b) 前記第1導電型結晶系半導体基板の前記裏面側の面に形成された真性非晶質系半導体膜と、
c) 前記真性非晶質系半導体膜の表面に形成された前記第1導電型と同じ導電性を有する第1導電型非晶質系半導体膜、及び該第1導電型非晶質系半導体膜と接触しないように前記真性の非晶質系半導体膜の表面に形成された、前記第1導電型と逆の第2導電性を有する第2導電型非晶質系半導体膜と、
d) 前記真性非晶質系半導体膜、前記第1導電型非晶質系半導体膜、及び前記第2導電型非晶質系半導体膜が形成された後の前記第1導電型結晶系半導体基板の少なくとも前記裏面側の面を覆い、前記第1導電型非晶質系半導体膜及び前記第2導電型非晶質系半導体膜と連通する複数の導通穴を有する絶縁膜と、
e) 前記絶縁膜上の前記導通穴を含む領域に形成され、前記第1導電型非晶質系半導体膜及び前記第2導電型非晶質系半導体膜と電気的に接続された電極と、
を備えることを特徴とする。
以下、本発明に係る光起電力素子の製造方法の各工程について順を追って説明する。以下では、第1導電型結晶系半導体基板として結晶系シリコン基板を用いる場合を例として説明するが、本発明はそれには限られない。
一般には、基板表面の光封じ込め機能を増すため、結晶系シリコン基板をアルカリまたは酸のエッチング槽に入れ、表面近傍のダメージ層を除去し基板表面に逆ピラミッド形状のテクスチャー構造を形成する。次に基板表面の光生成キャリアの再結合速度を低減するための表面パッシベーション処理がなされる。本発明では、結晶のバルクライフタイムを低下させない低温(200℃以下)での化学気相成膜法で、窒化シリコン膜を表面(受光面)に形成する。
一般には、基板表面の光封じ込め機能を増すため、結晶系シリコン基板をアルカリまたは酸のエッチング槽に入れ、表面近傍のダメージ層を除去し基板表面に逆ピラミッド形状のテクスチャー構造を形成する。次に基板表面の光生成キャリアの再結合速度を低減するための表面パッシベーション処理がなされる。本発明では、結晶のバルクライフタイムを低下させない低温(200℃以下)での化学気相成膜法で、窒化シリコン膜を表面(受光面)に形成する。
本発明では、第1導電型非晶質系半導体膜及び第2導電型非晶質系半導体膜は、化学気相成膜法で形成することが好ましいことから、表面パッシベーション処理も、窒化ケイ素膜も化学気相成膜法で成膜すると良い。
具体的には、まず、テクスチャーエッチング後の結晶系シリコン基板(以下、シリコン基板という)を所定のトレイ(第1トレイ)の型枠内に配置する。型枠内に配置するシリコン基板は1枚でも複数枚でも良い。また、シリコン基板の裏面は第1トレイに接触させる。真空装置である化学気相成膜装置(以下、PE-CVD装置)にシリコン基板を配置したトレイを搬入し、加熱・真空引き後、シランガスとアンモニアガスを入れ、プラズマを発生させ、シリコン基板表面に窒化ケイ素を成膜する。このとき、シリコン基板の温度は200℃以下とする。
窒化ケイ素成膜後、第1トレイを次の反転室に送り、反転室内で待機している第2トレイを第1トレイに重ね合わせる。そして、両トレイを重ね合わせた状態で180°反転させると、第1トレイ内のシリコン基板が第2トレイに表裏が反転した状態で移される。シリコン基板が載せられた第2トレイは、次の処理室(真性非晶質シリコン膜成膜室)に移送される。なお、反転室内に残された第1トレイは、次に移送されてくるトレイの型枠内に配置されたシリコン基板群の第2トレイとして使用される。このように、反転室内で待機するトレイは順次入れ替わっていく。
反転室から移送された第2トレイが真性非晶質シリコン膜成膜室に入ると、加熱・圧力調整がなされた後、シランガスが供給される。同時にプラズマを発生させ、シリコン基板の表面に真性非晶質シリコン膜(真性非晶質半導体膜)が成膜される。このとき、真性非晶質シリコン膜はシリコン基板の裏面側の面全体に形成しても良く、所定形状の開口を有するマスクをシリコン基板に重ね合わせて形成しても良い。所定形状の開口とは、後述する第1導電型非晶質シリコン膜の形状と第2導電型非晶質シリコン膜の形状を合わせた形状の開口をいう。このようなマスクを用いると、シリコン基板に形成される真性非晶質シリコン膜の形状は第1導電型非晶質シリコン膜の形状と第2導電型非晶質シリコン膜の形状を合わせた形状となる。真性非晶質シリコン膜を形成した後、マスクは、シリコン基板から取り外される。
真性非晶質シリコン膜の成膜後、第2トレイは、第1導電型非晶質シリコン膜成膜室に移送される。そして、所定形状の開口を有する第1マスクがシリコン基板に正確に重ね合わされ、シランガスおよびジボランが供給されて、プラズマが生成される。この結果、第1導電型非晶質シリコン膜(第1導電型非晶質半導体膜、例えばp型半導体のシリコン薄膜)がシリコン基板に成膜される。この後、第1マスクをシリコン基板から外して待避させ、第2トレイを次の第2導電型非晶質シリコン膜成膜室に移送する。
第2導電型非晶質シリコン膜成膜室では、所定形状の開口を有する第2マスクがシリコン基板に正確に重ね合わされ、シランガスおよびホスフィンが供給されて、プラズマを発生させる。この結果、第2導電型非晶質シリコン膜(第2導電型非晶質半導体膜、n型半導体のシリコン薄膜)がシリコン基板に成膜される。第1マスクの開口と第2マスクの開口は、互いに重ならないような位置にあり、これらマスクを用いることで第1導電型非晶質シリコン膜と第2導電型非晶質シリコン膜とが互いに接触しないようにシリコン基板上に形成される。この後、第2マスクをシリコン基板から外して待避させ、第2トレイを外部に搬出する。
以上のように、本発明では、シリコン基板の受光面(表面)に窒化ケイ素膜を形成する方法と同じ化学気相成膜法(PE-CVD)で、シリコン基板の裏面に真性非晶質シリコン膜、その上に、互いに接触しない第1非晶質シリコン膜と第2非晶質シリコン膜が形成される。いずれの膜も200℃以下の低温で成膜できる。
上記した化学気相成膜法による成膜のあと、酸化ケイ素(シリカ)膜の材料を裏面あるいは受光面及び裏面の全てに塗布して、200℃以下の加熱ガラス化処理を行うことにより、これらの面にシリカ絶縁膜を形成する。
その後、第1導電型非晶質シリコン膜及び第2導電型非晶質シリコン膜と接合可能な位置にエッチング剤を印刷してシリカ絶縁膜を腐食させ、洗浄後、導通穴を形成する。さらに、シリカ絶縁膜の上面のうち、上述の第1導電型非晶質シリコン膜及び第2導電型非晶質シリコン膜に対応する領域に、互いに交わらないように電極材料を印刷し、加熱接合処理を行う。この加熱接合処理も200℃以下で行う。この結果、導通穴内の電極材料を通じて第1導電型非晶質シリコン膜及び第2導電型非晶質シリコン膜と導通する正負の電極がシリカ絶縁膜の上面に形成される。
以上の工程を経て、裏面電極型の光起電力素子が完成する。
以上の工程を経て、裏面電極型の光起電力素子が完成する。
第1導電型非晶質シリコン膜と接合する導通穴内の電極材料と第2導電型非晶質シリコン膜と接合する導通穴内の電極材料は、それらの間に存在するシリカ絶縁膜により確実に絶縁される。また、受光面側に形成されたシリカ絶縁膜は、電気的な絶縁機能の他、受光面に入射する光が表面で反射されることを抑える反射防止膜としての機能も有する。さらに、シリカ製の絶縁膜は、キャリア再結合を抑制するパッシベーション膜としても機能する。なお、これらの機能を有する絶縁膜はシリカ製のものには限られない。
本発明によれば、パッシベーションおよびpinの半導体素子の基本構造を化学気相成膜法で形成するようにしたので、低温で、且つ、比較的簡単な処理で光起電力素子を製造することができる。また、本発明の光起電力素子は、低温で製造できること、及び受光面に電極がないことから、発電効率を向上することができる。
図1~図13を用いて、本発明の一実施の形態について説明する。
図1は、本実施形態に係る光起電力素子を概略的に示す図である。本実施形態の光起電力素子は裏面電極型光起電力素子であり、シリコン基板1の両面に対応する受光面と裏面とを有し、裏面側に櫛形の正極電極5及び櫛形の負極電極8が設けられている。正極電極5と負極電極8は、櫛の歯部分が互いに入れ子状態になるように配置されている。
図1は、本実施形態に係る光起電力素子を概略的に示す図である。本実施形態の光起電力素子は裏面電極型光起電力素子であり、シリコン基板1の両面に対応する受光面と裏面とを有し、裏面側に櫛形の正極電極5及び櫛形の負極電極8が設けられている。正極電極5と負極電極8は、櫛の歯部分が互いに入れ子状態になるように配置されている。
前記シリコン基板1はn型単結晶シリコン基板であり、その裏面の正極電極5の部分には、シリコン基板1側から順に、真性非晶質系半導体膜2、p型導電部(第1導電型非晶質系半導体膜)3、シリカ絶縁膜4、正極電極5の各層が形成され、負極電極8の部分には、シリコン基板1側から順に、真性非晶質系半導体膜6、n型導電部(第2導電型非晶質系半導体膜)7、シリカ絶縁膜4、負極電極8の各層が形成され、以て、pn接合の光起電力素子が構成されている。正極電極5はその櫛歯部分が連結部11で連結され、負極電極8はその櫛歯部分が連結部12で連結されている。シリカ絶縁膜4には導通穴13が形成されており、各電極5,8は該導通穴13に充填された電極材料を通じてp型導電部3及びn型導電部7にそれぞれ接合されている。
シリコン基板1の表面(おもて面)、すなわち受光面には、光を封じ込めるためのテクスチャー構造10が形成され、その上に窒化シリコン膜9とシリカ絶縁膜4が成膜されている。受光面から入射した光は、シリコン基板1の中で、電子と正孔の少数キャリアに別れ、それぞれn型導電部7とp型導電部3に輸送されて電流が流れる。二種の少数キャリアが、途中で再結合せずにp型導電部3及びn型導電部7に到達する率が高いほど大きな電流を取り出すことができ、光起電力素子として発電効率が高くなる。発電効率を低下させるキャリア再結合は、シリコン結晶中の不純物や結晶欠陥の量に依存する。そこで、本実施形態では、高純度のシリコン基板1と、p型,n型の導電部3,7、すなわち不純物拡散部との相互混入を避けるために、シリコン基板1とp型,n型の導電部3,7との間に真性非晶質系半導体膜2,6が挿入されている。
また、受光面側及び裏面側双方のシリカ絶縁膜4、並びに窒化シリコン膜9は、キャリア再結合を抑制するパッシベーション膜として機能する。このうちシリカ絶縁膜4は、パッシベーション膜としての機能だけではなく、光起電力素子を保護する機能、受光面側において入射する光が反射することを抑える反射防止膜の機能、及び裏面側において導通穴13に充填された各電極材料同士を絶縁する機能を併せ持つ。
次に、本実施形態に係る光起電力素子の製造方法について図2~図13を用いて説明する。図2~図12は、製造工程を順に示す図、図13は本実施形態の製造方法で用いる化学気相成膜装置(PE-CVD装置)の概略構成図である。
まず、化学気相成膜装置(PE-CVD)について説明する。図13(a)は化学気相成膜装置の平面図、図13(b)は縦断面図を示す。
図13において右側が化学気相成膜装置の入口側、左側が出口側を示す。化学気相成膜装置100は、入口側から出口側に向かって、トレイ搬入コンベア41、ゲートバルブ42、真空引き・加熱室43、ゲートバルブ44、窒化シリコン膜成膜室45、ゲートバルブ46、反転室47、ゲートバルブ48、真性半導体膜成膜室49、ゲートバルブ50、p型導電性半導体膜成膜室51、ゲートバルブ52、n型導電性半導体膜成膜室53、ゲートバルブ54、冷却室55、ゲートバルブ56、トレイ搬出コンベア57が順に配置されている。加熱室43、各成膜室45,49,51,53、反転室47、冷却室55には、真空引きに必要な真空ポンプ58が接続されている。真空ポンプ58の排気側は除害装置(図示せず)に接続されている。
図13において右側が化学気相成膜装置の入口側、左側が出口側を示す。化学気相成膜装置100は、入口側から出口側に向かって、トレイ搬入コンベア41、ゲートバルブ42、真空引き・加熱室43、ゲートバルブ44、窒化シリコン膜成膜室45、ゲートバルブ46、反転室47、ゲートバルブ48、真性半導体膜成膜室49、ゲートバルブ50、p型導電性半導体膜成膜室51、ゲートバルブ52、n型導電性半導体膜成膜室53、ゲートバルブ54、冷却室55、ゲートバルブ56、トレイ搬出コンベア57が順に配置されている。加熱室43、各成膜室45,49,51,53、反転室47、冷却室55には、真空引きに必要な真空ポンプ58が接続されている。真空ポンプ58の排気側は除害装置(図示せず)に接続されている。
成膜室45,49,51,53には、原料ガスの供給源(ボンベなど)59から流量調整弁(Mass Flow Control Valve ; MFC)60で調整された原料ガスが供給される。加熱室43及び成膜室45,49,51,53には、トレイ18の下方に加熱ヒータ61が設置されている。また、加熱室43の上部には追加ヒータ62が設置され、成膜室45,49,51,53の上部にはプラズマ発生電極20,25,28,31が設置されている。さらに、真性半導体膜成膜室49、p型導電性半導体膜成膜室51、n型導電性半導体膜成膜室53には、トレイとプラズマ発生電極との間にマスク24,27,30及びマスクキャリア(図示せず)が上下可動に設置されている。さらに、各室の入口には、各室の気密を保つためにトレイ及びシリコン基板が通過するときのみ開き、処理中は閉まるゲートバルブ42,44,46,48,50,52,54,56が設置されている。
反転室47には、第2トレイ22を待機させる昇降装置(図示せず)、第1トレイ18と第2トレイ22を重ね合わせた後、180°反転させる反転機構47aが設置されている。冷却室55内には、冷却水を循環させている冷却板63が設置されている。冷却室55内に移送されてきたトレイを冷却板63に接触させることで、トレイ及びシリコン基板の冷却を行う。
トレイ搬出コンベア57では、シリコン基板1が取り除かれたトレイが下降し、トレイ返送コンベア64によってトレイ搬入コンベア41に戻される。
トレイ搬出コンベア57では、シリコン基板1が取り除かれたトレイが下降し、トレイ返送コンベア64によってトレイ搬入コンベア41に戻される。
続いて、製造工程について説明する。
第1工程(図2):シリコン基板1を、容器14内のカセット15に設置する。容器14内には、アルカリとIPA(イソプロピルアルコール)の水溶液16が収容されており、シリコン基板1は当該水溶液16中に浸漬されている。ヒータ17によって水溶液16を一定温度(50~80℃)に加熱する。この結果、異方性エッチングによってシリコン基板1の両面にテクスチャー構造10が形成される。
第1工程(図2):シリコン基板1を、容器14内のカセット15に設置する。容器14内には、アルカリとIPA(イソプロピルアルコール)の水溶液16が収容されており、シリコン基板1は当該水溶液16中に浸漬されている。ヒータ17によって水溶液16を一定温度(50~80℃)に加熱する。この結果、異方性エッチングによってシリコン基板1の両面にテクスチャー構造10が形成される。
第2工程(図3):アルミニウム合金製の第1トレイ18の型枠19内に、テクスチャー構造10が形成されたシリコン基板1を複数設置する。
第3工程(図4):複数のシリコン基板1が設置された第1トレイ18をプラズマ化学気相成膜装置(PE-CVD)の予熱室に入れ、真空引き後、窒化シリコン膜成膜室45(図13参照)に移送する。窒化シリコン膜成膜室内にシランガス(SiH4)とアンモニアガス(NH3)を供給し、プラズマ発生電極20とシリコン基板1との間にプラズマ21を発生させてシリコン基板1の表面に窒化シリコン膜9を成膜する。
第4工程(図5):第1トレイ18を反転室47に移送し、第1トレイ18の上に第2トレイ22を重ね合わせる(図5(a))。そして、第1トレイ18及び第2トレイ22の全体を180°反転させ、第1トレイ18の内部に設置されていたシリコン基板1を第2トレイ22に移し替える。このとき、第2トレイ22内のシリコン基板1は、窒化シリコン膜9側(受光側)が下に、未成膜面(裏面)が上になる(図5(b))。なお、反転させたことにより第2トレイ22の上に配置された第1トレイ18は、次に移送されてくるシリコン基板1の第2トレイとして待機される。
第5-1工程(図6):シリコン基板1を載せた第2トレイ22を真性半導体膜成膜室49に移送する。そして、真性半導体膜成膜室49内の上部に待機している真性半導体膜用マスク23を下降させ、シリコン基板1の上に重ね合わせる。ここではシリコン基板1の未成膜面(裏面)が上面となっているため、マスク23はシリコン基板1の裏面の上に重ね合わされる。マスク23は、アルミナ(Al2O3)等のセラミックス材料やメタルマスク(アルミ合金、ステンレスなど)から形成され、真性非晶質系半導体膜2,6の成膜形状の開口23aを有している。真性非晶質系半導体膜2,6の成膜形状は、それぞれp型導電部3とn型導電部7の成膜形状(つまり、図1に示す櫛形状)と同じである。各マスク23はシリコン基板1毎に独立して、フレーム(図示せず)に微小移動可能に設置されている。マスク23の下降時、第2トレイ22の型枠19に設けられた案内溝19aにマスク位置決めガイド24がはめ合わされることにより、シリコン基板1の上面(裏面)に位置決めされる。
第5-2工程(図7):真性半導体膜成膜室49内にシランガス(SiH4)と希釈ガスである水素ガス(H2)を供給し、電極25とシリコン基板1との間にプラズマ26を発生させる。この結果、真性非晶質系半導体膜2,6がシリコン基板1上に成膜される。成膜後、マスク23を上昇させ、第2トレイ22をp型導電性半導体膜成膜室51に移送する。
第6工程(図8):p型導電性半導体膜成膜室51では、その上部に待機しているp型導電膜用マスク27を下降させ、シリコン基板1の上に重ね合わせる。p型導電膜用マスク27は、p型導電部3に対応する形状の開口27aを有しており、マスク27をシリコン基板1の上に重ね合わせたとき、前記開口27aは真性非晶質系半導体膜2の上に位置する。この状態でp型導電性半導体膜成膜室51内にシランガス(SiH4)とジボラン(B2H6)、及び希釈用水素ガスを供給し、電極28とシリコン基板1との間にプラズマ29を発生させる。この結果、真性非晶質系半導体膜2の上に非晶質のp型導電部3(p型導電性半導体膜)が成膜される。成膜後、マスク27を上昇させ、第2トレイ22をn型導電性半導体膜成膜室53に移送する。
第7工程(図9):n型導電性半導体膜成膜室53では、その上部に待機しているn型導電膜用マスク30を下降させ、シリコン基板1の上に重ね合わせる。n型導電膜用マスク30は、n型導電部7に対応する形状の開口30aを有しており、マスク30をシリコン基板1の上に重ね合わせたとき、前記開口30aは真性非晶質系半導体膜6の上に位置する。この状態でn型導電性半導体膜成膜室53内にシランガス(SiH4)とホスフィン(PH3)、及び希釈用水素ガスを供給し、電極31とシリコン基板1との間にプラズマ32を発生させる。この結果、真性非晶質系半導体膜6の上に非晶質のn型導電性半導体膜からなるn型導電部7が形成される。成膜後、マスク30を上昇させ、第2トレイ22を冷却室55に移送し、冷却後、化学気相成膜装置から大気中に搬出する。
第8工程(図10):第2トレイ22から化学気相成膜後のシリコン基板1を取り出し、酸化ケイ素(シリカ)膜の材料を含む溶液33が収容された容器34内のカセット35に設置する。その後、溶液33中からシリコン基板1を引き上げ、200℃以下の炉中にいれて乾燥し、シリコン基板1の表面に付着したシリカのガラス化処理を行う。酸化ケイ素(シリカ)膜の材料としては、例えばシリコンアルキシド(TEOS)を用いることができる。TEOSを用いれば、低温焼成が可能となる。この工程により、シリコン基板1の受光面側及び裏面側にシリカ絶縁膜4が形成される。
第9工程(図11):シリコン基板1のp型導電部3及びn型導電部7の表面を覆っているシリカ絶縁膜4に、スクリーン印刷によりエッチングペースト36を島状に印刷する(図11(a))。島状のエッチングペースト36はいずれもp型導電部3及びn型導電部7の上に位置する。所定時間後水洗してエッチングペーストを除去する(図11(b))。この結果、p型導電部3及びn型導電部7の上に複数の円形状の導通穴13が形成される。
第10工程(図12):シリコン基板1の絶縁膜4及び導通穴13の上からスクリーン印刷により電極5,8を印刷する。電極5,8は銀(Ag)を成分に含む材料から成り、絶縁膜4を挟んでp型導電部3及びn型導電部7の上に位置するように、且つp型導電部3及びn型導電部7と同じ形状で印刷される。このとき、電極材料Pの一部は導通穴13に入り込み、p型導電部3及びn型導電部7と電極5,8とがそれぞれ接合される。印刷後、200℃以下で乾燥・焼成を行う。
尚、上記実施の形態では、p型導電部3に対応する形状の真性非晶質系半導体膜2とn型導電部7に対応する形状の真性非晶質系半導体膜6とを別に設けたが、真性非晶質系半導体膜2と真性非晶質系半導体膜6とを1つの真性半導体膜とし、シリコン基板1の裏面側の面全体に形成しても良い。この場合は、第5-2工程(図7)においてマスク23の使用が不要となる。
p型導電膜用マスク27を用いて真性非晶質系半導体膜2(上記第1真性非晶質系半導体膜に相当)とp型導電部3を形成し、n型導電膜用マスク30を用いて真性非晶質系半導体膜6(上記第2真性非晶質系半導体膜に相当)及びn型導電部7を形成するようにしても良い。この場合、真性半導体膜用のガスからp型導電性膜用のガスに切り替えるようにすれば、真性非晶質系半導体膜2とp型導電部3を同じ成膜室で形成することができ、真性半導体膜用のガスからn型導電性膜用のガスに切り替えるようにすれば、真性非晶質系半導体膜6とn型導電部7を同じ成膜室で形成することができる。この場合、2種のマスク、2種の成膜室で真性非晶質系半導体膜2及び6とp型導電部3、n型導電部7を形成することができる。
1…結晶シリコン基板
2…真性非晶質系半導体膜
3…p型導電部(第1導電型非晶質系半導体膜)
4…シリカ絶縁膜
5…正極電極
6…非結晶真性半導体膜
7…n型導電部(第2導電型非晶質系半導体膜)
8…負極電極
9…窒化シリコン膜
10…テクスチャー構造
13…導通穴
19,22…トレイ
23,27,30…マスク
45…窒化シリコン膜成膜室
47…反転室
47a…反転機構
49…真性半導体膜成膜室
51…p型導電性半導体膜成膜室
53…n型導電性半導体膜成膜室
2…真性非晶質系半導体膜
3…p型導電部(第1導電型非晶質系半導体膜)
4…シリカ絶縁膜
5…正極電極
6…非結晶真性半導体膜
7…n型導電部(第2導電型非晶質系半導体膜)
8…負極電極
9…窒化シリコン膜
10…テクスチャー構造
13…導通穴
19,22…トレイ
23,27,30…マスク
45…窒化シリコン膜成膜室
47…反転室
47a…反転機構
49…真性半導体膜成膜室
51…p型導電性半導体膜成膜室
53…n型導電性半導体膜成膜室
Claims (14)
- 受光面とその反対側の裏面とを有し、前記裏面側に正負の電極及びこれら電極と電気的に接続されたキャリア分極層を備えた光起電力素子の製造方法であって、
a) 第1導電型結晶系半導体基板の前記裏面側の面に真性非晶質系半導体膜を形成する工程と、
b) 所定形状の開口を有する第1マスクを用いて前記真性非晶質系半導体膜の表面に前記第1導電型結晶系半導体基板と同じ導電性を有する第1導電型非晶質系半導体膜を形成し、前記第1マスクの開口とは異なる位置に所定形状の開口を有する第2マスクを用いて前記真性非晶質系半導体膜の表面に前記第1導電型と逆の導電性を有する第2導電型非晶質系半導体膜を形成する工程と、
c) 少なくとも前記第1導電型結晶系半導体基板の前記裏面側の面を覆うように絶縁膜を形成する工程と、
d) 前記絶縁膜に、前記第1導電型非晶質系半導体膜及び第2導電型非晶質系半導体膜と連通する複数の導通穴を形成する工程と、
e) 前記絶縁膜上の前記導通穴を含む領域に電極を形成する工程と、
を備える光起電力素子の製造方法。 - 前記真性非晶質系半導体膜を形成する前の前記第1導電型結晶系半導体基板の前記受光面側及び前記裏面側の面にテクスチャー構造を形成する工程と、
前記テクスチャー構造を有する前記第1導電型結晶系半導体基板の前記受光面側及び前記裏面側の面に化学気相成膜法により窒化シリコン膜を形成する工程と、
を更に有することを特徴とする請求項1に記載の光起電力素子の製造方法。 - 前記第1導電型結晶系半導体基板が、n型結晶系シリコン基板であり、
前記真性非晶質系半導体膜が、真性の非晶質シリコン半導体膜であり、
前記第1導電型非晶質系半導体膜及び前記第2導電型非晶質系半導体膜が、それぞれn型及びp型の非晶質シリコン半導体膜であることを特徴とする請求項1又は2に記載の光起電力素子の製造方法。 - 受光面とその反対側の裏面とを有し、前記裏面側に正負の電極及びこれら電極と電気的に接続されたキャリア分極層を備えた光起電力素子の製造方法であって、
a) 第1導電型結晶系半導体基板の前記裏面側の面に、所定形状の開口を有する第1マスクを用いて第1真性非晶質系半導体膜を形成し、前記第1マスクを用いて前記第1真性非晶質系半導体膜の表面に前記第1導電型と同じ導電性を有する第1導電型非晶質系半導体膜を形成する工程と、
b) 前記第1導電型結晶系半導体基板の前記裏面側の面に、前記第1マスクの開口とは異なる位置に所定形状の開口を有する第2マスクを用いて第2真性非晶質系半導体膜を形成し、前記第2マスクを用いて前記第2真性非晶質系半導体膜の表面に前記第1導電型と逆の導電性を有する第2導電型非晶質系半導体膜を形成する工程と、
c) 少なくとも前記第1導電型結晶系半導体基板の前記裏面側の面を覆うように絶縁膜を形成する工程と、
d) 前記絶縁膜に、前記第1導電型非晶質系半導体膜及び前記第2導電型非晶質系半導体膜と連通する複数の導通穴を形成する工程と、
e) 前記絶縁膜上の前記導通穴を含む領域に電極を形成する工程と、
を備える光起電力素子の製造方法。 - 前記第1真性非晶質系半導体膜及び前記第2真性非晶質系半導体膜を形成する前の前記第1導電型結晶系半導体基板の前記受光面側及び前記裏面側の面にテクスチャー構造を形成する工程と、
前記テクスチャー構造を有する前記第1導電型結晶系半導体基板の前記受光面側及び前記裏面側の面に化学気相成膜法により窒化シリコン膜を形成する工程と、
を更に有することを特徴とする請求項4に記載の光起電力素子の製造方法。 - 前記第1導電型結晶系半導体基板が、n型結晶系シリコン基板であり、
前記第1真性非晶質系半導体膜及び前記第2真性非晶質系半導体膜が、真性の非晶質シリコン半導体膜であり、
前記第1導電型非晶質系半導体膜及び前記第2導電型非晶質系半導体膜が、それぞれn型及びp型の非晶質シリコン半導体膜であることを特徴とする請求項4又は5に記載の光起電力素子の製造方法。 - 前記絶縁膜を形成する工程において、該絶縁膜を前記第1導電型結晶系半導体基板の前記受光面側にも形成することを特徴する請求項1~6のいずれかに記載の光起電力素子の製造方法。
- 前記第1導電型結晶系半導体基板の前記受光面側に、前記絶縁膜とは別にパッシべーション膜を形成する工程を有することを特徴とする請求項7に記載の光起電力素子の製造方法。
- 前記絶縁膜が、シリカ系コーティング材をガラス化処理を行うことで形成されたシリカ絶縁膜(SiO2膜)から成り、
前記シリカ絶縁膜のうち前記第1導電型非晶質系半導体膜及び前記第2導電型非晶質系半導体膜に対応する位置にエッチング液をスクリーン印刷し、所定の反応時間が経過した後、前記エッチング液を除去することで前記導通穴を形成することを特徴する請求項1~8のいずれかに記載の光起電力素子の製造方法。 - 前記シリカ絶縁膜の上面のうち、前記第1導電型非晶質系半導体膜及び第2導電型非晶質系半導体膜に対応する領域に電極材料を印刷し、加熱接合処理を行うことにより正負の電極を形成することを特徴とする請求項9に記載の光起電力素子の製造方法。
- 受光面とその反対側の裏面とを有し、前記裏面側に正負の電極及びこれら電極と電気的に接続されたキャリア分極層を備えた光起電力素子であって、
a) 第1導電型結晶系半導体基板と、
b) 前記第1導電型結晶系半導体基板の前記裏面側の面に形成された真性非晶質系半導体膜と、
c) 前記真性非晶質系半導体膜の表面に形成された前記第1導電型と同じ導電性を有する第1導電型非晶質系半導体膜、及び該第1導電型非晶質系半導体膜と接触しないように前記真性の非晶質系半導体膜の表面に形成された、前記第1導電型と逆の第2導電性を有する第2導電型非晶質系半導体膜と、
d) 前記真性非晶質系半導体膜、前記第1導電型非晶質系半導体膜、及び前記第2導電型非晶質系半導体膜が形成された後の前記第1導電型結晶系半導体基板の少なくとも前記裏面側の面を覆い、前記第1導電型非晶質系半導体膜及び前記第2導電型非晶質系半導体膜と連通する複数の導通穴を有する絶縁膜と、
e) 前記絶縁膜上の前記導通穴を含む領域に形成され、前記第1導電型非晶質系半導体膜及び前記第2導電型非晶質系半導体膜と電気的に接続された電極と、
を備えることを特徴とする光起電力素子。 - 前記真性非晶質系半導体膜が、前記第1導電型結晶系半導体基板の前記裏面側の面のうち前記第1導電型非晶質系半導体膜及び前記第2導電型非晶質系半導体膜が形成される位置にのみ形成された、該第1導電型非晶質系半導体膜と同じ形状の第1真性非晶質系半導体膜、及び前記第2導電型非晶質系半導体膜と同じ形状の第2真性非晶質系半導体膜から成ることを特徴とする請求項11に記載の光起電力素子。
- 前記絶縁膜が前記第1導電型結晶系半導体基板の前記受光面側を覆っていることを特徴とする請求項11又は12に記載の光起電力素子。
- 前記第1導電型結晶系半導体基板の前記受光面側に、前記絶縁膜とは別にパッシべーション膜を備えることを特徴とする請求項13に記載の光起電力素子。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-122937 | 2010-05-28 | ||
JP2010122937 | 2010-05-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011149021A1 true WO2011149021A1 (ja) | 2011-12-01 |
Family
ID=45004006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/062108 WO2011149021A1 (ja) | 2010-05-28 | 2011-05-26 | 光起電力素子の製造方法及び光起電力素子 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011149021A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015192077A (ja) * | 2014-03-28 | 2015-11-02 | 株式会社カネカ | プラズマcvd装置およびそれを用いた太陽電池の製造方法 |
WO2016068052A1 (ja) * | 2014-10-31 | 2016-05-06 | シャープ株式会社 | 光電変換素子、それを備えた太陽電池モジュールおよび太陽光発電システム |
JP2016082006A (ja) * | 2014-10-14 | 2016-05-16 | 積水化学工業株式会社 | 太陽電池の製造方法 |
EP3029740A1 (en) * | 2014-12-03 | 2016-06-08 | Sharp Kabushiki Kaisha | Photovoltaic device |
JP2016541105A (ja) * | 2013-12-20 | 2016-12-28 | サンパワー コーポレイション | 内蔵バイパスダイオード |
WO2017047375A1 (ja) * | 2015-09-14 | 2017-03-23 | シャープ株式会社 | 光電変換素子、それを備えた太陽電池モジュールおよび太陽光発電システム |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001044463A (ja) * | 1999-07-27 | 2001-02-16 | Canon Inc | 太陽電池およびその製造方法 |
JP2001189481A (ja) * | 1999-12-30 | 2001-07-10 | Honda Motor Co Ltd | ソーラーセルの製造方法 |
JP2003298078A (ja) * | 2002-03-29 | 2003-10-17 | Ebara Corp | 光起電力素子 |
JP2005101240A (ja) * | 2003-09-24 | 2005-04-14 | Sanyo Electric Co Ltd | 光起電力素子およびその製造方法 |
JP2007281156A (ja) * | 2006-04-06 | 2007-10-25 | Japan Advanced Institute Of Science & Technology Hokuriku | 裏面電極型半導体へテロ接合太陽電池ならびにその製造方法と製造装置 |
JP2008311291A (ja) * | 2007-06-12 | 2008-12-25 | Sharp Corp | 太陽電池の製造方法 |
JP2010080888A (ja) * | 2008-09-29 | 2010-04-08 | Sanyo Electric Co Ltd | 太陽電池の製造方法及び太陽電池 |
-
2011
- 2011-05-26 WO PCT/JP2011/062108 patent/WO2011149021A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001044463A (ja) * | 1999-07-27 | 2001-02-16 | Canon Inc | 太陽電池およびその製造方法 |
JP2001189481A (ja) * | 1999-12-30 | 2001-07-10 | Honda Motor Co Ltd | ソーラーセルの製造方法 |
JP2003298078A (ja) * | 2002-03-29 | 2003-10-17 | Ebara Corp | 光起電力素子 |
JP2005101240A (ja) * | 2003-09-24 | 2005-04-14 | Sanyo Electric Co Ltd | 光起電力素子およびその製造方法 |
JP2007281156A (ja) * | 2006-04-06 | 2007-10-25 | Japan Advanced Institute Of Science & Technology Hokuriku | 裏面電極型半導体へテロ接合太陽電池ならびにその製造方法と製造装置 |
JP2008311291A (ja) * | 2007-06-12 | 2008-12-25 | Sharp Corp | 太陽電池の製造方法 |
JP2010080888A (ja) * | 2008-09-29 | 2010-04-08 | Sanyo Electric Co Ltd | 太陽電池の製造方法及び太陽電池 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11967655B2 (en) | 2013-12-20 | 2024-04-23 | Maxeon Solar Pte. Ltd. | Built-in bypass diode |
JP2016541105A (ja) * | 2013-12-20 | 2016-12-28 | サンパワー コーポレイション | 内蔵バイパスダイオード |
JP2015192077A (ja) * | 2014-03-28 | 2015-11-02 | 株式会社カネカ | プラズマcvd装置およびそれを用いた太陽電池の製造方法 |
JP2016082006A (ja) * | 2014-10-14 | 2016-05-16 | 積水化学工業株式会社 | 太陽電池の製造方法 |
WO2016068052A1 (ja) * | 2014-10-31 | 2016-05-06 | シャープ株式会社 | 光電変換素子、それを備えた太陽電池モジュールおよび太陽光発電システム |
JPWO2016068052A1 (ja) * | 2014-10-31 | 2017-08-10 | シャープ株式会社 | 光電変換素子、それを備えた太陽電池モジュールおよび太陽光発電システム |
EP3029740A1 (en) * | 2014-12-03 | 2016-06-08 | Sharp Kabushiki Kaisha | Photovoltaic device |
CN105679846A (zh) * | 2014-12-03 | 2016-06-15 | 夏普株式会社 | 光电转换装置 |
CN105679846B (zh) * | 2014-12-03 | 2017-12-08 | 夏普株式会社 | 光电转换装置 |
WO2017047375A1 (ja) * | 2015-09-14 | 2017-03-23 | シャープ株式会社 | 光電変換素子、それを備えた太陽電池モジュールおよび太陽光発電システム |
JPWO2017047375A1 (ja) * | 2015-09-14 | 2018-06-28 | シャープ株式会社 | 光電変換素子、それを備えた太陽電池モジュールおよび太陽光発電システム |
CN108028290B (zh) * | 2015-09-14 | 2019-09-03 | 夏普株式会社 | 光电转换元件 |
US10505064B2 (en) | 2015-09-14 | 2019-12-10 | Sharp Kabushiki Kaisha | Photovoltaic device |
CN108028290A (zh) * | 2015-09-14 | 2018-05-11 | 夏普株式会社 | 光电转换元件、包括该光电转换元件的太阳能电池模块及太阳光发电系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6746854B2 (ja) | ワイドバンドギャップ半導体材料含有のエミッタ領域を有する太陽電池 | |
US7910823B2 (en) | Solar cell and manufacturing method thereof | |
WO2011149021A1 (ja) | 光起電力素子の製造方法及び光起電力素子 | |
CN109346536A (zh) | 一种接触钝化晶体硅太阳能电池结构及制备方法 | |
US8198115B2 (en) | Solar cell, and method and apparatus for manufacturing the same | |
KR102120147B1 (ko) | 태양 전지의 제조 방법 및 태양 전지 | |
WO2018198683A1 (ja) | 太陽電池素子および太陽電池素子の製造方法 | |
JP2007281156A (ja) | 裏面電極型半導体へテロ接合太陽電池ならびにその製造方法と製造装置 | |
JP7228561B2 (ja) | 太陽電池の製造方法 | |
JP5884911B2 (ja) | 太陽電池の製造方法 | |
KR20110062598A (ko) | 적층막 제조방법, 이를 이용한 태양전지의 제조방법 | |
WO2019163646A1 (ja) | 太陽電池の製造方法 | |
WO2018083722A1 (ja) | 高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法 | |
JP2006344883A (ja) | 太陽電池の製造方法 | |
JP2013115057A (ja) | 結晶シリコン太陽電池の製造方法 | |
TWI629804B (zh) | 太陽電池之製造方法 | |
JP6346022B2 (ja) | 薄膜形成方法および太陽電池素子の製造方法 | |
JP2009272428A (ja) | 反射防止膜成膜方法および反射防止膜成膜装置 | |
US20200105963A1 (en) | Method for manufacturing high efficiency solar cell | |
WO2009131115A1 (ja) | 太陽電池の製造方法,太陽電池の製造装置,及び太陽電池 | |
TWI713230B (zh) | 太陽電池及其製造方法 | |
KR20100061122A (ko) | 웨이퍼 제조 방법 | |
WO2020137582A1 (ja) | 太陽電池の製造方法および太陽電池の製造装置 | |
TWI492403B (zh) | 太陽能電池及其製造方法與太陽能電池模組 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11786720 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11786720 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |