WO2011147354A1 - 横磁模介质谐振器、横磁模介质滤波器与基站 - Google Patents

横磁模介质谐振器、横磁模介质滤波器与基站 Download PDF

Info

Publication number
WO2011147354A1
WO2011147354A1 PCT/CN2011/075294 CN2011075294W WO2011147354A1 WO 2011147354 A1 WO2011147354 A1 WO 2011147354A1 CN 2011075294 W CN2011075294 W CN 2011075294W WO 2011147354 A1 WO2011147354 A1 WO 2011147354A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric resonator
cover plate
column
transverse magnetic
magnetic mode
Prior art date
Application number
PCT/CN2011/075294
Other languages
English (en)
French (fr)
Inventor
毛延
蔡磊
朱运涛
欧胜军
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to RU2013114828/08A priority Critical patent/RU2531570C1/ru
Priority to EP11786126.0A priority patent/EP2605330B1/en
Priority to JP2013526302A priority patent/JP2013537011A/ja
Priority to BR112013005204A priority patent/BR112013005204B8/pt
Priority to AU2011257686A priority patent/AU2011257686B2/en
Priority to KR1020137006000A priority patent/KR101479152B1/ko
Publication of WO2011147354A1 publication Critical patent/WO2011147354A1/zh
Priority to US13/781,014 priority patent/US9070960B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/2002Dielectric waveguide filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • H01P1/2084Cascaded cavities; Cascaded resonators inside a hollow waveguide structure with dielectric resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/10Dielectric resonators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • Transverse magnetic mode dielectric resonator Transverse magnetic mode dielectric filter and base station
  • the present application is filed on September 3, 2010, the Chinese Patent Office, application number 201010276357. 4
  • the invention name is "transverse magnetic mode dielectric resonator, transverse magnetic Priority of the Chinese Patent Application for Modal Dielectric Filters and Base Stations, the entire contents of which are incorporated herein by reference.
  • Technical field is "transverse magnetic mode dielectric resonator, transverse magnetic Priority of the Chinese Patent Application for Modal Dielectric Filters and Base Stations, the entire contents of which are incorporated herein by reference.
  • the present invention relates to a resonator, and in particular to a transverse magnetic (TM: Transver se Magnet i c ) mode dielectric resonator, a transverse magnetic mode dielectric filter and a base station.
  • TM Transver se Magnet i c
  • the TM mode dielectric filter can meet the above requirements, and can increase the quality factor value (Q value) by about 30% compared with the commonly used metal coaxial filter in the same volume.
  • the TM mode dielectric filter can be cascaded in a certain manner by a number of TM mode dielectric resonators.
  • a typical TM mode dielectric resonator is composed of a dielectric resonator column and a metal resonator, and the upper and lower end faces of the dielectric resonator column and the upper and lower end faces of the metal resonator cavity need to be closely attached, so that the current can smoothly flow through the dielectric resonator column and the metal.
  • the contact surface of the cavity forms a good current loop.
  • the dielectric resonator column of the TM mode resonator has a large current with the upper and lower surfaces of the metal resonator, the contact between the two contact faces is good and important.
  • TM mode dielectric resonator it is necessary to ensure good contact of the contact surface from the structure and/or process, and the long-term reliability of the structure, in order to achieve good Q value and intermodulation (PIM) of the TM mode resonator. Value, as well as stable performance.
  • PIM intermodulation
  • the existing dielectric resonator may not achieve good contact of the contact surface, or the assembly is complicated, or the welding process is required to make the upper and lower end faces of the dielectric resonator column contact with the metal cavity, because the welding cost is 4 ⁇ , and the welding process Maturity will seriously affect the yield of the product, so the welding process needs to be strictly controlled, and the performance of the dielectric resonator column is unstable due to the presence of the solder joint.
  • Embodiments of the present invention provide a transverse magnetic mode dielectric resonator, a transverse magnetic mode dielectric filter, and a base station, which can achieve good contact of the contact surface and convenient assembly.
  • transverse magnetic mode dielectric resonator including a resonant cavity (201) having an opening at one end, and a dielectric resonant column (202) located within the resonant cavity (201), the dielectric resonant column ( The lower end surface of the resonant cavity (201) is in contact with the inner bottom surface of the resonant cavity (201), and the inner surface of the resonant cavity (201) is covered by a conductive material, and the transverse magnetic mode dielectric resonator further includes:
  • a thin cover plate (203) covering the opening, and a thick cover plate (204) covering the thin cover plate (203), the surface of the thin cover plate (203) and the thick cover plate (204) is made of a conductive material Cover
  • a side of the thick cover plate (204) in contact with the thin cover plate (203) is provided with a slot, the slot is filled with a filler (205), and the filler (205) is used for the thick cover
  • the plate (204) covers the thin cover plate (203) the thin cover plate (203) is elastically deformed.
  • transverse magnetic mode dielectric resonator comprising a resonant cavity (201) having an opening at one end, and a dielectric resonant column (202) located within the resonant cavity (201), the dielectric resonance a lower end surface of the column (202) is in contact with an inner bottom surface of the resonant cavity (201), an inner surface of the resonant cavity (201) is covered by a conductive material, and a height of the dielectric resonant column (202) is greater than the resonant cavity a height of an inner bottom surface of (201) to an end of the opening of the resonant cavity (201); the transverse magnetic mode dielectric resonator further comprising:
  • a thin cover plate (203) covering the opening, and a thick cover plate (204) covering the thin cover plate (203), the surface of the thin cover plate (203) and the thick cover plate (204) is made of a conductive material cover.
  • transverse magnetic mode dielectric resonator comprising a resonant cavity (201) having an opening at one end, and a dielectric resonant column (202) located within the resonant cavity (201), the dielectric resonance
  • the lower end surface of the column (202) is in contact with the inner bottom surface of the resonant cavity (201), the inner surface of the resonant cavity (201) is covered by a conductive material, and the height of the dielectric resonant column (202) is greater than the inner bottom surface.
  • the transverse magnetic mode dielectric resonator further comprising:
  • a thick cover plate (204) covering the opening, a lower bottom surface of the thick cover plate (204) is in contact with an upper end surface of the dielectric resonator column (202), and a bottom surface of the thick cover plate (204) and/or A slot is provided on the upper top surface, and a surface of the thick cover (204) is covered by a conductive material.
  • Another aspect of the present invention also provides a transverse magnetic mode dielectric filter comprising the above transverse magnetic mode dielectric resonator.
  • the embodiment of the invention further provides a base station, which comprises a transverse magnetic mode dielectric filter provided by an embodiment of the invention.
  • the transverse magnetic mode dielectric resonator provided by the embodiment of the present invention has good structural stability, convenient assembly, high achievability, mass production, and uniform mass production. Good sex.
  • FIG. 1 is a schematic structural view of a TM mode dielectric resonator according to an embodiment of the present invention
  • FIG. 2 is a longitudinal sectional view showing a contact portion between a thin cover plate and a dielectric resonator column in an embodiment of the present invention
  • FIG. 3 is a schematic longitudinal cross-sectional view of a contact portion between a thin cover plate and a dielectric resonator column in another embodiment of the present invention.
  • FIG. 4 is a schematic longitudinal cross-sectional view of a contact portion between a thin cover plate and a dielectric resonator column in another embodiment of the present invention.
  • FIGS. 6a, 6b, 6c, and 6d are magnetic mode dielectric resonances in various stages of an assembly process of a magnetic mode dielectric resonator according to an embodiment of the present invention; Schematic diagram of the device;
  • Figure 7 is a block diagram showing the structure of a TM mode dielectric resonator in another embodiment of the present invention.
  • the transverse magnetic mode dielectric resonator provided by the embodiment of the present invention is introduced as follows, and FIG. 1 describes the present invention.
  • One embodiment provides a structure of a transverse magnetic mode dielectric resonator, as shown in FIG. 1, the transverse magnetic mode dielectric resonator includes:
  • the height of the dielectric resonator column 202 may be greater than the height of the inner bottom surface of the resonant cavity 201 to the end of the opening of the resonant cavity 201; the height of the dielectric resonant column 202 may also be lower than the inner bottom surface of the resonant cavity 201 to the opening of the resonant cavity 201.
  • the height of one end; the height of the dielectric resonator column 202 may also be equal to the height of the inner bottom surface of the resonant cavity 201 to the end of the opening of the resonant cavity 201.
  • the conductive material may be a metal capable of conducting electricity, such as gold, silver, copper, or the like.
  • the electrically conductive material may also be a non-metallic material that is electrically conductive.
  • the resonant cavity 201 in the embodiment of the present invention may be a metal resonant cavity.
  • the upper end surface and/or the lower end surface of the dielectric resonator column 202 may be covered by a conductive material, and the metalized surface treatment may be performed on the upper end surface and/or the lower end surface of the dielectric resonator column 202. To achieve this coverage.
  • the stopper post 206 on the inner bottom surface of the cavity 201 defines a position in contact with the lower end surface of the dielectric resonator column 202.
  • the limiting pillar 206 may be located at a hollow portion of the dielectric resonator column 202.
  • the horizontal cross section of the limiting pillar 206 may be circular, and the diameter of the limiting pillar 206 is less than or equal to the dielectric resonance.
  • the diameter of the hollow portion of the column 202 when the inner bottom surface of the resonant cavity 201 is in contact with the lower end surface of the dielectric resonator column 202, the lower end surface of the dielectric resonator column 202 may be contacted by a limiting groove disposed on the inner bottom surface of the resonant cavity 201. s position.
  • the dielectric resonant column 202 When the dielectric resonant column 202 is located in the resonant cavity 201, the dielectric resonant column 202 is directly located in the limiting slot, and the diameter of the limiting slot is greater than or equal to the diameter of the dielectric resonant column 202.
  • the horizontal cross section of the limiting groove can be circular or concentric.
  • a thin cover plate 203 covering the opening of the cavity 201, and a thick cover plate 204 covering the thin cover plate 203, the surface of the thin cover plate 203 and the thick cover plate 204 are covered by a conductive material.
  • the thick cover may be a thick metal cover and the thin cover may be a thin metal cover.
  • thick The side of the cover plate 204 that is in contact with the thin cover plate 203 is slotted, and the slot is filled with a filler 205. When the filler 205 is used to cover the thin cover plate 203, the thin cover plate 203 is elastically deformed.
  • the thin cover plate 203 is in close contact with the upper end surface of the dielectric resonator column 202, so that the contact portion of the thin cover plate 203 and the dielectric resonator column 202 has good electrical conductivity; and the lower end surface of the dielectric resonator column 202 and the inside of the cavity 201 can also be The bottom surface is in close contact so that the contact portion of the inner bottom surface of the resonant cavity 201 with the dielectric resonator column 202 has good electrical conductivity.
  • the thickness of the filler 205 may be determined according to the height relationship between the upper end surface of the dielectric resonator column 202 and the resonant cavity 201, and the height of the groove on the thick cover 204; for example, when the height of the groove on the thick cover 204 is constant If the upper end surface of the dielectric resonator column 202 is higher than the cavity 201, the thickness of the filler 205 may be lower than, or equal to, or greater than the height of the groove on the thick cover plate 204; if the upper end surface of the dielectric resonator column 202 is lower than In the cavity 201, the thickness of the filler 205 must be higher than the height of the groove on the thick cover 204; if the upper end surface of the dielectric resonator 202 is flush with the top surface of the cavity 201, the thickness of the filler 205 may be greater than the thickness The height of the groove on the cover plate 204.
  • the filler in the embodiment of the present invention may be any object that can be compressed and can be filled with a groove on the thick cover 204.
  • the material may be plastic, metal shrapnel, etc., or may be air or vacuum, such as an aerated filler.
  • the longitudinal section of the contact between the thin cover plate 203 and the dielectric resonator column 202 may be square, or circular arc, or inverted trapezoidal, etc. Of course, the embodiment of the present invention does not exclude the thin cover plate 203 and the dielectric resonator column 202.
  • the longitudinal section of the contact is the possibility of an irregular pattern.
  • 2 is a longitudinal cross-sectional view of the contact portion of the thin cover plate 203 and the dielectric resonator column 202 in an embodiment of the present invention. As shown in FIG. 2, the longitudinal section of the contact between the thin cover plate 203 and the dielectric resonator column 202 is square.
  • FIG. 3 is a longitudinal cross-sectional view showing a contact between a thin cover plate 203 and a dielectric resonator column 202 according to another embodiment of the present invention.
  • a longitudinal section of the contact between the thin cover plate 203 and the dielectric resonator column 202 is a circle.
  • arc. 4 is a longitudinal cross-sectional view showing a contact between the thin cover plate 203 and the dielectric resonator column 202 in another embodiment of the present invention.
  • the longitudinal section of the contact between the thin cover plate 203 and the dielectric resonator column 202 is inverted. Trapezoidal.
  • the thin cover plate 203 may be fixed to the opening of the resonant cavity 201 by screws; the thick cover plate 204 may also be fixed on the thin cover plate 203 by screws.
  • the embodiment of the present invention does not exclude that the thin cover plate 203 is fixedly covered in the opening of the resonant cavity 201 by other means, or the thick cover plate 204 is fixedly covered on the thin cover plate 203 by other means.
  • the thick cover, the thin cover and the resonant cavity are fixed together by screws.
  • this embodiment can cover the resonant cavity with a thin cover plate, cover the thin cover plate with a thick cover plate, and have a groove on the side of the thick cover plate contacting the thin cover plate, and fill the filler in the groove, Therefore, when the thin cover plate is covered by the thick cover plate, the filler can elastically deform the thin cover plate, so that the thin cover plate is in close contact with the upper end surface of the dielectric resonator column, and the lower end surface of the dielectric resonator column and the cavity of the resonant cavity are also The inner bottom surface is in close contact, so that the transverse magnetic mode dielectric resonator can obtain good Q value and PIM value when used.
  • connection between the various components in the transverse magnetic mode dielectric resonator in this embodiment can be used without welding, so that not only the structural stability of the transverse magnetic mode dielectric resonator is good, but also the assembly is convenient and the achievability is strong. , is conducive to mass production, and mass production consistency.
  • FIG. 5 depicts a structure of a transverse magnetic mode dielectric resonator according to an embodiment of the present invention. As shown in FIG. 5, the transverse magnetic mode dielectric resonator includes:
  • the resonant cavity 201 having one end opening, and the dielectric resonant column 202 located in the resonant cavity 201, the lower end surface of the dielectric resonant column 202 is in contact with the inner bottom surface of the resonant cavity 201, and the inner surface of the resonant cavity 201 is covered by a conductive material.
  • the height of the dielectric resonator column 202 is greater than the height of the inner bottom surface of the resonant cavity 201 to the end of the opening of the resonant cavity 201.
  • the upper end surface and/or the lower end surface of the dielectric resonator column 202 are covered by a conductive material.
  • a conductive material In order to ensure the high efficiency of assembly and to ensure the stability of the transverse magnetic mode dielectric resonator after assembly, in an embodiment of the present invention, when the inner bottom surface of the resonant cavity 201 is in contact with the lower end surface of the dielectric resonator column 202, The stopper post 206 on the inner bottom surface of the cavity 201 defines a position in contact with the lower end surface of the dielectric resonator column 202.
  • the limiting post When the dielectric resonant column 202 is located in the resonant cavity 201, the limiting post may be located at a hollow portion of the dielectric resonant column 202.
  • the horizontal cross section of the limiting post may be circular, and the diameter of the limiting post is less than or equal to the dielectric resonant column 202. The diameter of the hollow part.
  • the lower end surface of the dielectric resonator column 202 may be contacted by a limiting groove disposed on the inner bottom surface of the resonant cavity 201. s position.
  • the dielectric resonator column 202 When the dielectric resonator column 202 is located in the resonant cavity 201, the dielectric resonator column 202 is located in the limiting slot, and the diameter of the limiting slot is greater than or equal to the diameter of the dielectric resonator column 202.
  • the horizontal cross section of the limiting groove may be circular or concentric.
  • a thin cover plate 203 covering the opening of the cavity 201, and a thick cover plate 204 covering the thin cover plate 203, the surface of the thin cover plate 203 and the thick cover plate 204 are covered by a conductive material. Due to the dielectric resonator column The height of 202 is greater than the height of the inner bottom surface of the resonant cavity 201 to one end of the opening, thus causing the upper end surface of the dielectric resonator column 202 to rise above the resonant cavity 201, and when the thin cover plate 203 is covered with the thick cover plate 204, the thin cover plate can be made
  • the 203 is in close contact with the upper end surface of the dielectric resonator column 202, so that the contact portion of the thin cover plate 203 and the dielectric resonator column 202 has good electrical conductivity, and the lower end surface of the dielectric resonator column 202 can also be in close contact with the inner bottom surface of the resonant cavity 201. Thereby, the conductive portion of the contact
  • the longitudinal section of the contact between the thin cover plate 203 and the dielectric resonator column 202 may be a square shape, a circular arc shape, or an inverted trapezoidal shape.
  • the thin cover 203 may be fixed to the opening of the cavity 201 by screws; the thick cover 204 may also be fixed to the thin cover 203 by screws.
  • the embodiment of the present invention does not exclude that the thin cover plate 203 is fixedly covered in the opening of the resonant cavity 201 by other means, or the thick cover plate 204 is fixedly covered on the thin cover plate 203 by other means, such as by screws.
  • the thick cover, thin cover and resonant cavity are fixed together.
  • this embodiment can cover the resonant cavity with a thin cover plate, and then cover the thin cover plate with a thick cover plate, wherein the height of the dielectric resonator column is greater than the height of the inner bottom surface of the resonant cavity to the end of the opening, thus making the dielectric resonance
  • the upper end surface of the column is higher than the resonant cavity.
  • the thin cover plate can be in close contact with the upper end surface of the dielectric resonator column, and the lower end surface of the dielectric resonator column is close to the inner bottom surface of the resonant cavity. Contact makes the transverse magnetic mode dielectric resonator obtain good Q and PIM values when in use.
  • connection between the various components in the transverse magnetic mode dielectric resonator in this embodiment can be used without welding, so that not only the structural stability of the transverse magnetic mode dielectric resonator is good, but also the assembly is convenient and the achievability is strong. , is conducive to mass production, and mass production consistency.
  • FIG. 6 depicts a magnetic mode in each stage of the assembly process of the magnetic mode dielectric resonator provided by an embodiment of the present invention.
  • the dielectric resonator column 202 is located in the cavity 202, the lower end surface of the dielectric resonator column 202 is in contact with the inner bottom surface of the cavity, and the contact portion between the lower end surface of the dielectric resonator column 202 and the inner bottom surface of the cavity is limited.
  • the column is defined.
  • the dielectric resonator column 202 is located in the cavity 202, the lower end surface of the dielectric resonator column 202 is in contact with the inner bottom surface of the cavity, and the thin cover plate 203 covers the opening of the cavity 201.
  • the cover plate 203 can be fixedly covered by the opening of the cavity 201 by screws.
  • the figure shows the case where the upper end surface of the dielectric resonator column 202 is higher than the cavity 201.
  • the dielectric resonator column 202 is located in the resonant cavity 202, the lower end surface of the dielectric resonator column 202 is in contact with the inner bottom surface of the resonant cavity, the thin cover plate 203 covers the opening of the resonant cavity 201, and the thick cover plate 204 covers the thin cover plate. 203.
  • the slot on the side of the thick cover 204 contacting the thin cover 203 is filled with the filler 205.
  • the thick cover 204 can be fixedly covered by the thin cover 203 by screws.
  • Figure 6d depicts the structure of an assembled magnetic mode dielectric resonator.
  • the transverse magnetic mode dielectric resonator provided by the embodiment of the present invention does not need to undergo complicated processes (such as soldering) during assembly, and the assembly is simple.
  • FIG. 7 illustrates a structure of a transverse magnetic mode dielectric resonator according to an embodiment of the present invention.
  • the transverse magnetic mode dielectric resonator includes:
  • the height of the dielectric resonator column 202 is greater than the height of the inner bottom surface of the resonant cavity 201 to one end of the opening.
  • the upper end surface and/or the lower end surface of the dielectric resonator column 202 are covered by a conductive material.
  • a conductive material In order to ensure the high efficiency of assembly and to ensure the stability of the transverse magnetic mode dielectric resonator after assembly, in an embodiment of the present invention, when the inner bottom surface of the resonant cavity 201 is in contact with the lower end surface of the dielectric resonator column 202, The limiting post of the inner bottom surface of the resonant cavity 201 defines a position in contact with the lower end surface of the dielectric resonator column 202.
  • the limiting post When the dielectric resonant column 202 is located in the resonant cavity 201, the limiting post may be located at a hollow portion of the dielectric resonant column 202.
  • the horizontal cross section of the limiting post may be circular, and the diameter of the limiting post is less than or equal to the dielectric resonant column 202. The diameter of the hollow part.
  • the lower end surface of the dielectric resonator column 202 may be contacted by a limiting groove disposed on the inner bottom surface of the resonant cavity 201. s position.
  • the dielectric resonator column 202 When the dielectric resonator 202 is located in the resonant cavity 201, the dielectric resonator column 202 is located in the limiting slot, and the diameter of the limiting slot is greater than or equal to the diameter of the dielectric resonant column 202.
  • the horizontal cross section of the limiting groove may be circular or concentric.
  • the lower bottom surface of the thick cover plate 204 is in contact with the upper end surface of the dielectric resonator column 202, and the lower bottom surface and/or the upper top surface of the thick cover plate 204 is provided with a groove 207, and FIG. 7 shows the lower bottom surface of the thick cover plate 204.
  • the horizontal cross section of the slot 207 may be circular.
  • the slotting can make the thickness of the thick cover 204 at the slotted portion smaller than the thickness of the portion of the contact with the dielectric resonator 202, so that the slotted portion of the thick cover 204 can be warped to generate sufficient elasticity to make the thick cover.
  • the lower bottom surface of the cover plate 204 is in good contact with the upper end surface of the dielectric resonator column 202, so that the contact portion of the thick cover plate 204 and the dielectric resonator column 202 has good electrical conductivity; and also the lower end surface of the dielectric resonator column 202 and the resonant cavity 201
  • the inner bottom surface is in good contact, so that the contact portion of the lower end surface of the dielectric resonator column 202 and the inner bottom surface of the resonant cavity 201 has good electrical conductivity.
  • the warpage deformation of the grooved portion can be more obvious, and the generated elastic force is larger, further ensuring the lower bottom surface of the thick cover plate 204 and The upper end surface of the dielectric resonator column 202 is in good contact.
  • the slots provided in the upper bottom surface may be symmetrically distributed with the slots in the lower bottom surface.
  • the thick cover plate covering the opening of the resonant cavity is directly in contact with the upper end surface of the dielectric resonator column, and the height of the dielectric resonator column is greater than the height from the inner bottom surface of the resonant cavity to the end of the opening, thereby ensuring
  • the lower bottom surface of the thick cover plate is in close contact with the upper end surface of the dielectric resonator column, and at the same time, the bottom surface of the thick cover plate is provided with a slot, so that the thickness of the thick cover plate in the slotted portion is smaller than the contact portion with the dielectric resonator column.
  • the thickness of the thick cover plate can be warped and deformed to generate sufficient elastic force to make the lower bottom surface of the thick cover plate in good contact with the upper end surface of the dielectric resonator column.
  • the bottom surface of the thick cover plate is also provided with a groove, so that the warping deformation of the grooved portion is more obvious, and the generated elastic force is larger, further ensuring that the lower bottom surface of the thick cover plate resonates with the medium.
  • the upper end faces of the columns are in good contact, and the structure of the transverse magnetic mode dielectric resonator can also be stabilized.
  • connection between the various components in the transverse magnetic mode dielectric resonator is not welded, so that not only the structural stability of the transverse magnetic mode dielectric resonator is good, but also the assembly is convenient and the achievability is strong. Conducive to mass production, and mass production consistency.
  • An embodiment of the present invention also provides a transverse magnetic mode dielectric filter comprising a transverse magnetic mode dielectric resonator provided by an embodiment of the present invention.
  • a transverse magnetic mode dielectric filter comprising a transverse magnetic mode dielectric resonator provided by an embodiment of the present invention.
  • a different number of transverse magnetic mode dielectric resonators can be selected and cascaded in different ways to obtain a transverse magnetic mode dielectric filter with desired performance, and the specific obtaining method can be referred to.
  • the prior art in the prior art may not be limited in the present invention.
  • An embodiment of the present invention further provides a base station, where the base station includes a transverse magnetic mode dielectric filter according to an embodiment of the present invention, and the transverse magnetic mode dielectric filter may be specifically located in an antenna feed system portion of the base station.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

横磁模介质谐振器、 横磁模介质滤波器与基站 本申请要求于 2010年 9月 3 日 提交中 国专利局、 申请号为 201010276357. 4 , 发明名称为 "横磁模介质谐振器、 横磁模介质滤波器与 基站" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及谐振器, 具体涉及一种横磁(TM: Transver se Magnet i c ) 模介质谐振器、 横磁模介质滤波器与基站。
背景技术
随着无线通信技术的日益发展, 无线通信系统对高灵敏度发射、 高灵 敏度接收和高质量的通话的要求越来越高。 对于基站中的滤波器来说, 就 需要实现更低的插入损耗和更佳的抑制性能。 同时, 对于滤波器来说, 滤 波器小型化的需求也非常强烈。 而 TM模介质滤波器正好能满足上述需求, 能在同等体积的情况下,相较常用的金属同轴滤波器, 能有 30%左右的品质 因素值(Q值)提升。 TM模介质滤波器可以由一定数量的 TM模介质谐振器 按照一定的方式级联组成。
其中, 典型的 TM模介质谐振器由介质谐振柱及金属谐振腔构成, 并且 介质谐振柱上下端面和金属谐振腔腔体上下端面需要紧密贴好, 使电流能 够顺畅的流经介质谐振柱和金属谐振腔的接触面, 从而形成一个良好的电 流环路。 同时, 由于 TM模谐振器的介质谐振柱与金属谐振腔上下表面接触 面存在较大电流, 因此这两处接触面的接触良好很必要并且很重要。 因此 在 TM模介质谐振器设计过程中, 需要从结构上和 /或工艺上保证接触面的 良好接触, 以及结构的长期可靠性, 才能实现 TM模谐振器良好的 Q值和互 调 (PIM )值, 以及稳定的性能。
现有的介质谐振器或者不能实现接触面的良好接触, 或者装配复杂, 或者需要釆用焊接工艺将使介质谐振柱的上下端面与金属腔进行接触, 由 于焊接成本 4艮高, 并且焊接工艺的成熟度会严重影响产品的良品率, 因此 需要严格控制焊接工艺, 同时由于焊接点的存在会导致介质谐振柱在振动 时性能不稳定。 发明内容
本发明实施例提供了横磁模介质谐振器、 横磁模介质滤波器与基站, 可以实现接触面的良好接触和较方便的装配。
本发明一方面提供了一种横磁模介质谐振器, 包括具有一端开口的谐 振腔 (201), 以及位于所述谐振腔 (201)内的介质谐振柱 (202), 所述介质谐振 柱 (202)的下端面与所述谐振腔 (201)的内底面接触, 所述谐振腔 (201)的内表 面由导电材质覆盖, 所述横磁模介质谐振器还包括:
覆盖所述开口的薄盖板 (203) , 以及覆盖所述薄盖板 (203)的厚盖板 (204), 所述薄盖板 (203)和厚盖板 (204)的表面由导电材质覆盖;
所述厚盖板 (204)与所述薄盖板 (203)接触的一面设置有开槽, 所述开槽 填充有填充物 (205), 所述填充物 (205)用于所述厚盖板 (204)覆盖所述薄盖板 (203)时, 使所述薄盖板 (203)产生弹性形变。
本发明另一方面还提供了一种横磁模介质谐振器, 包括具有一端开口 的谐振腔 (201), 以及位于所述谐振腔 (201)内的介质谐振柱 (202), 所述介质 谐振柱 (202)的下端面与所述谐振腔 (201)的内底面接触, 所述谐振腔 (201)的 内表面由导电材质覆盖, 所述介质谐振柱 (202)的高度大于所述谐振腔 (201 ) 的内底面至所述谐振腔 (201)的开口的一端的高度; 所述横磁模介质谐振器 还包括:
覆盖所述开口的薄盖板 (203) , 以及覆盖所述薄盖板 (203)的厚盖板 (204) , 所述薄盖板 (203)和厚盖板 (204)的表面由导电材质覆盖。
本发明另一方面还提供了一种横磁模介质谐振器, 包括具有一端开口 的谐振腔 (201), 以及位于所述谐振腔 (201)内的介质谐振柱 (202), 所述介质 谐振柱 (202)的下端面与所述谐振腔 (201)的内底面接触, 所述谐振腔 (201)的 内表面由导电材质覆盖, 所述介质谐振柱 (202)的高度大于所述内底面至所 述开口的一端的高度; 所述横磁模介质谐振器还包括:
覆盖所述开口的厚盖板 (204), 所述厚盖板 (204)的下底面与所述介质谐 振柱 (202)的上端面接触, 所述厚盖板 (204)下底面和 /或上顶面上设置有开 槽, 所述厚盖板 (204)的表面由导电材质覆盖。
本发明另一方面还提供了一种横磁模介质滤波器, 包括上述横磁模介 质谐振器。 本发明实施例还提供了一种基站, 包括本发明实施例提供的横磁模介 质滤波器。
从本发明实施例提供的以上技术方案可以看出, 本发明实施例提供的 横磁模介质谐振器的结构稳定性好, 而且装配方便, 可实现性强, 有利于 量产, 并且量产一致性好。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的 附图。
图 1为本发明一个实施例中 TM模介质谐振器的结构示意图;
图 2 为本发明一个实施例中薄盖板与介质谐振柱的接触处的纵切面示 意图;
图 3 为本发明另一个实施例中薄盖板与介质谐振柱的接触处的纵切面 示意图;
图 4 为本发明另一个实施例中薄盖板与介质谐振柱的接触处的纵切面 示意图;
图 5为本发明另一个实施例中 TM模介质谐振器的结构示意图; 图 6a、 6b、 6c、 6d为本发明一个实施例中磁模介质谐振器的装配流程 的各个阶段中磁模介质谐振器的结构示意图;
图 7为本发明另一个实施例中 TM模介质谐振器的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有做出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的 范围。
如下介绍本发明实施例提供的横磁模介质谐振器, 图 1描述了本发明 一个实施例提供的横磁模介质谐振器的结构, 如图 1 所示, 该横磁模介质 谐振器包括:
具有一端开口的谐振腔 201 ,以及位于谐振腔 201内的介质谐振柱 202, 介质谐振柱 202的下端面与谐振腔 201的内底面接触, 谐振腔 201的内表 面由导电材质覆盖。 其中, 介质谐振柱 202的高度可以大于谐振腔 201 的 内底面至谐振腔 201的开口的一端的高度; 介质谐振柱 202的高度也可以 低于谐振腔 201的内底面至谐振腔 201的开口的一端的高度; 介质谐振柱 202的高度也可以等于谐振腔 201的内底面至谐振腔 201的开口的一端的高 度。
需要说明的是, 在本发明实施例中, 导电材质可以是能够导电的金属, 如金、 银、 铜等。 在本发明的另一个实施例中, 导电材质也可以是能够导 电的非金属。
本发明实施例中的谐振腔 201可以为金属谐振腔。
其中, 在本发明的另一个实施例中, 介质谐振柱 202的上端面和 /或下 端面可以由导电材质覆盖, 可以通过对介质谐振柱 202的上端面和 /或下端 面进行金属化表面处理来实现该覆盖。 其中, 为了保证装配的高效和确保 装配后横磁模介质谐振器的稳定, 在本发明的一个实施例中, 谐振腔 201 的内底面与介质谐振柱 202 的下端面接触时, 可以通过设置在谐振腔 201 内底面的限位柱 206限定与介质谐振柱 202的下端面接触的位置。 在介质 谐振柱 202位于谐振腔 201 内时, 限位柱 206可以位于介质谐振柱 202的 中空部位, 限位柱 206的水平横截面可以为圓形, 限位柱 206的直径小于 或等于介质谐振柱 202 的中空部位的直径。 在本发明的另一个实施例中, 谐振腔 201的内底面与介质谐振柱 202的下端面接触时, 可以通过设置在 谐振腔 201 内底面的限位槽限定与介质谐振柱 202的下端面接触的位置。 在介质谐振柱 202位于谐振腔 201 内时, 介质谐振柱 202直接位于该限位 槽内, 该限位槽的直径大于或等于所述介质谐振柱 202 的直径。 限位槽的 水平横截面可以为圓形, 也可以为同心圓环形。
覆盖谐振腔 201 的开口的薄盖板 203 , 以及覆盖薄盖板 203的厚盖板 204, 薄盖板 203和厚盖板 204的表面由导电材质覆盖。 在本发明的一个实 施例中, 厚盖板可以为金属厚盖板, 薄盖板可以为金属薄盖板。 其中, 厚 盖板 204与薄盖板 203接触的一面有开槽, 该开槽填充有填充物 205 , 填充 物 205用于厚盖板 204覆盖薄盖板 203时, 使薄盖板 203产生弹性形变, 使得薄盖板 203与介质谐振柱 202的上端面紧密接触,从而使得薄盖板 203 与介质谐振柱 202的接触部位导电性能良好;并且也可以使介质谐振柱 202 的下端面与谐振腔 201 的内底面紧密接触, 从而使得谐振腔 201 的内底面 与介质谐振柱 202的接触部位导电性能良好。
其中, 填充物 205的厚度可以根据介质谐振柱 202的上端面与谐振腔 201的高低关系, 以及厚盖板 204上开槽的高度确定; 例如, 在厚盖板 204 上开槽的高度一定时, 如果介质谐振柱 202的上端面高出谐振腔 201 , 则填 充物 205的厚度可以低于、 或等于、 或大于厚盖板 204上开槽的高度; 如 果介质谐振柱 202的上端面低于谐振腔 201 ,则填充物 205的厚度必须比厚 盖板 204上开槽的高度高; 如果介质谐振柱 202的上端面与谐振腔 201上 顶面平齐, 则填充物 205的厚度可以大于厚盖板 204上开槽的高度。 本发 明实施例中填充物可以是任何可被压缩、 可以填充厚盖板 204上开槽的物 体, 其材质可以是塑料、 金属弹片等, 也可以是空气或真空, 比如充气的 填充物。
其中, 薄盖板 203与介质谐振柱 202的接触处的纵切面可以为方形、 或圓弧形、 或倒梯形等, 当然, 本发明实施例也不排除薄盖板 203 与介质 谐振柱 202的接触处的纵切面为非规则图形的可能性。 图 2为本发明一个 实施例中薄盖板 203与介质谐振柱 202的接触处的纵切面示意图, 如图 2 所示, 薄盖板 203与介质谐振柱 202的接触处的纵切面为方形。 图 3为本 发明另一个实施例中薄盖板 203与介质谐振柱 202的接触处的纵切面示意 图, 如图 3所示, 薄盖板 203与介质谐振柱 202的接触处的纵切面为圓弧 形。 图 4为本发明另一个实施例中薄盖板 203与介质谐振柱 202的接触处 的纵切面示意图, 如图 4所示, 薄盖板 203与介质谐振柱 202的接触处的 纵切面为倒梯形。
在本发明的一个实施例中, 薄盖板 203 可以通过螺钉固定覆盖在谐振 腔 201的开口; 厚盖板 204也可以通过螺钉固定覆盖在薄盖板 203上。 当 然, 本发明实施例并不排除釆用其他方式将薄盖板 203 固定覆盖在谐振腔 201的开口, 或者釆用其他方式将厚盖板 204固定覆盖在薄盖板 203上, 比 如通过螺钉将厚盖板、 薄盖板和谐振腔三者固定在一起。
从上可知, 本实施例可以使用薄盖板覆盖谐振腔, 再使用厚盖板覆盖 薄盖板, 并且在厚盖板与薄盖板接触的一面有开槽, 在该开槽填充填充物, 因此在使用厚盖板覆盖薄盖板时, 填充物可以使得薄盖板产生弹性形变, 从而使得薄盖板与介质谐振柱的上端面紧密接触, 也使得介质谐振柱的下 端面与谐振腔的内底面紧密接触, 使横磁模介质谐振器在使用时可以获得 很好的 Q值和 PIM值。 同时, 本实施例中横磁模介质谐振器中各个部件之 间的连接可以均不釆用焊接的方式, 因此不仅横磁模介质谐振器的结构稳 定性好, 而且装配方便, 可实现性强, 有利于量产, 并且量产一致性好。
图 5描述了本发明一个实施例提供的横磁模介质谐振器的结构,如图 5 所示, 该横磁模介质谐振器包括:
具有一端开口的谐振腔 201 ,以及位于谐振腔 201内的介质谐振柱 202, 介质谐振柱 202的下端面与谐振腔 201的内底面接触, 谐振腔 201的内表 面由导电材质覆盖。 介质谐振柱 202的高度大于谐振腔 201的内底面至谐 振腔 201开口的一端的高度。
其中, 在本发明的另一个实施例中, 介质谐振柱 202的上端面和 /或下 端面由导电材质覆盖。 其中, 为了保证装配的高效和确保装配后横磁模介 质谐振器的稳定, 在本发明的一个实施例中, 谐振腔 201 的内底面与介质 谐振柱 202的下端面接触时, 可以通过设置在谐振腔 201 内底面的限位柱 206限定与介质谐振柱 202的下端面接触的位置。在介质谐振柱 202位于谐 振腔 201 内时, 限位柱可以位于介质谐振柱 202的中空部位, 限位柱的水 平横截面可以为圓形, 限位柱的直径小于或等于介质谐振柱 202 的中空部 位的直径。 在本发明的另一个实施例中, 谐振腔 201 的内底面与介质谐振 柱 202的下端面接触时, 可以通过设置在谐振腔 201 内底面的限位槽限定 与介质谐振柱 202的下端面接触的位置。在介质谐振柱 202位于谐振腔 201 内时, 介质谐振柱 202位于该限位槽内, 该限位槽的直径大于或等于所述 介质谐振柱 202 的直径。 限位槽的水平横截面可以为圓形, 也可以为同心 圓环形。
覆盖谐振腔 201 的开口的薄盖板 203 , 以及覆盖薄盖板 203的厚盖板 204 , 薄盖板 203和厚盖板 204的表面由导电材质覆盖。 由于介质谐振柱 202的高度大于谐振腔 201的内底面至开口的一端的高度,因此使得介质谐 振柱 202的上端面高出谐振腔 201 , 当使用厚盖板 204覆盖薄盖板 203时, 可以使得薄盖板 203与介质谐振柱 202的上端面紧密接触,使得薄盖板 203 与介质谐振柱 202的接触部位导电性能良好,并且也可以使介质谐振柱 202 的下端面与谐振腔 201 的内底面紧密接触, 从而使得介质谐振柱 202的下 端面与谐振腔 201的内底面的接触部位导电性能良好。
其中, 薄盖板 203与介质谐振柱 202的接触处的纵切面可以为方形、 或圓弧形、 或倒梯形等。
在本发明的一个实施例中, 薄盖板 203 可以通过螺钉固定覆盖在谐振 腔 201的开口; 厚盖板 204也可以通过螺钉固定覆盖在薄盖板 203上。 当 然, 本发明实施例并不排除釆用其他方式将薄盖板 203 固定覆盖在谐振腔 201的开口, 或者釆用其他方式将厚盖板 204固定覆盖在薄盖板 203上, 比 如通过螺钉将厚盖板、 薄盖板和谐振腔三者固定在一起。
从上可知, 本实施例可以使用薄盖板覆盖谐振腔, 再使用厚盖板覆盖 薄盖板, 其中, 介质谐振柱的高度大于谐振腔的内底面至开口的一端的高 度, 因此使得介质谐振柱的上端面高出谐振腔, 当使用厚盖板覆盖薄盖板 时, 可以使得薄盖板与介质谐振柱的上端面紧密接触, 也使得介质谐振柱 的下端面与谐振腔的内底面紧密接触, 使横磁模介质谐振器在使用时可以 获得很好的 Q值和 PIM值。 同时, 本实施例中横磁模介质谐振器中各个部 件之间的连接可以均不釆用焊接的方式, 因此不仅横磁模介质谐振器的结 构稳定性好, 而且装配方便, 可实现性强, 有利于量产, 并且量产一致性 好。
由于本发明实施例提供的磁模介质谐振器, 不需要经过焊接, 在装配 时也非常简单, 图 6描述了本发明一个实施例提供的磁模介质谐振器的装 配流程中各个阶段中磁模介质谐振器的结构。
如图 6a所示, 介质谐振柱 202位于谐振腔 202内, 介质谐振柱 202的 下端面与谐振腔的内底面接触, 并且介质谐振柱 202 的下端面与谐振腔的 内底面的接触部位由限位柱限定。
如图 6b所示, 介质谐振柱 202位于谐振腔 202内, 介质谐振柱 202的 下端面与谐振腔的内底面接触, 薄盖板 203覆盖谐振腔 201的开口, 具体 地, 可以通过螺钉将薄盖板 203 固定覆盖在谐振腔 201 的开口, 本图示出 的是介质谐振柱 202的上端面高出谐振腔 201的情况。
如图 6c所示, 介质谐振柱 202位于谐振腔 202内, 介质谐振柱 202的 下端面与谐振腔的内底面接触, 薄盖板 203覆盖谐振腔 201的开口, 厚盖 板 204覆盖薄盖板 203 ,厚盖板 204与薄盖板 203接触一面的开槽填充有填 充物 205 , 具体地, 可以通过螺钉将厚盖板 204固定覆盖于薄盖板 203。
图 6d描述的是组装好的磁模介质谐振器的结构。
从图 6 的描述过程可知, 本发明实施例提供的横磁模介质谐振器在装 配时不需要经过复杂的工序 (如焊接等), 装配简单。
图 7描述了本发明一个实施例提供的横磁模介质谐振器的结构,如图 7 所示, 该横磁模介质谐振器包括:
具有一端开口的谐振腔 201 ,以及位于谐振腔 201内的介质谐振柱 202, 介质谐振柱 202的下端面与谐振腔 201的内底面接触。 介质谐振柱 202的 高度大于谐振腔 201的内底面至开口的一端的高度。
其中, 在本发明的另一个实施例中, 介质谐振柱 202的上端面和 /或下 端面由导电材质覆盖。 其中, 为了保证装配的高效和确保装配后横磁模介 质谐振器的稳定, 在本发明的一个实施例中, 谐振腔 201 的内底面与介质 谐振柱 202的下端面接触时, 可以通过设置在谐振腔 201 内底面的限位柱 限定与介质谐振柱 202的下端面接触的位置。 在介质谐振柱 202位于谐振 腔 201 内时, 限位柱可以位于介质谐振柱 202的中空部位, 限位柱的水平 横截面可以为圓形, 限位柱的直径小于或等于介质谐振柱 202 的中空部位 的直径。 在本发明的另一个实施例中, 谐振腔 201 的内底面与介质谐振柱 202的下端面接触时,可以通过设置在谐振腔 201内底面的限位槽限定与介 质谐振柱 202的下端面接触的位置。 在介质谐振柱 202位于谐振腔 201 内 时, 介质谐振柱 202位于该限位槽内, 该限位槽的直径大于或等于所述介 质谐振柱 202 的直径。 限位槽的水平横截面可以为圓形, 也可以为同心圓 环形。
覆盖谐振腔 201的开口的厚盖板 204,厚盖板 204的表面由导电材质覆 盖。 厚盖板 204的下底面与介质谐振柱 202的上端面接触, 厚盖板 204下 底面和 /或上顶面上设置有开槽 207, 图 7示出的是厚盖板 204的下底面设 置有开槽的情况。 开槽 207 的水平横截面可以为圓环形。 其中, 开槽可以 使厚盖板 204在开槽部位的厚度小于与介质谐振柱 202接触部位的厚度, 从而使厚盖板 204 的开槽部位可以产生翘曲变形, 以产生足够的弹力使厚 盖板 204的下底面与介质谐振柱 202的上端面良好接触, 从而使得厚盖板 204与介质谐振柱 202 的接触部位导电性能良好; 并且也使得介质谐振柱 202的下端面与谐振腔 201的内底面良好接触,从而使得介质谐振柱 202的 下端面与谐振腔 201的内底面的接触部位导电性能良好。
其中, 在厚盖板 204 的下底面和上顶面上都设置有开槽时, 可以使开 槽部位的翘曲变形更明显, 产生的弹力更大, 进一步确保厚盖板 204 的下 底面与介质谐振柱 202 的上端面良好接触。 在本发明的一个实施例中, 上 底面设置的开槽可以与下底面上开槽对称分布。
从上可知, 本实施例中由覆盖谐振腔的开口的厚盖板直接与介质谐振 柱的上端面接触, 并且介质谐振柱的高度大于谐振腔的内底面至开口的一 端的高度, 因此可以确保厚盖板的下底面与介质谐振柱的上端面接触紧密 贴合, 同时, 在厚盖板下底面上设置有开槽, 从而使厚盖板在开槽部位的 厚度小于与介质谐振柱接触部位的厚度, 使厚盖板的开槽部位可以产生翘 曲变形, 以产生足够的弹力使厚盖板的下底面与介质谐振柱的上端面良好 接触。 在本发明的另一个实施例中, 厚盖板上底面也设置有开槽, 从而使 开槽部位的翘曲变形更明显, 产生的弹力更大, 进一步确保厚盖板的下底 面与介质谐振柱的上端面良好接触, 同时也可以使横磁模介质谐振器的结 构稳定。 同时, 本实施例中横磁模介质谐振器中各个部件之间的连接均不 釆用焊接的方式, 因此不仅横磁模介质谐振器的结构稳定性好, 而且装配 方便, 可实现性强, 有利于量产, 并且量产一致性好。
本发明一个实施例还提供了横磁模介质滤波器, 该横磁模介质滤波器 包括本发明实施例提供的横磁模介质谐振器。 根据所需要的横磁模介质滤 波器的性能不同, 可以选择不同数量的横磁模介质谐振器釆用不同的方式 级联获得所需性能的横磁模介质滤波器 , 具体的获得方式可以参考现有技 术中的已有方式, 在本发明中可以不予限定。
本发明一个实施例还提供了基站, 该基站包括本发明实施例提供的横 磁模介质滤波器, 该横磁模介质滤波器具体可以位于基站的天馈系统部分。 实施例的说明只是用于帮助理解本发明的方法及其思想; 同时, 对于本领 域的一般技术人员, 依据本发明的思想, 在具体实施方式及应用范围上均 会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的限制。

Claims

权利要求
1、 一种横磁模介质谐振器, 其特征在于, 包括具有一端开口的谐振腔 (201),以及位于所述谐振腔 (201)内的介质谐振柱 (202),所述介质谐振柱 (202) 的下端面与所述谐振腔 (201)的内底面接触, 所述谐振腔 (201)的内表面由导 电材质覆盖, 所述横磁模介质谐振器还包括:
覆盖所述开口的薄盖板 (203) , 以及覆盖所述薄盖板 (203)的厚盖板 (204), 所述薄盖板 (203)和厚盖板 (204)的表面由导电材质覆盖;
所述厚盖板 (204)与所述薄盖板 (203)接触的一面设置有开槽, 所述开槽 填充有填充物 (205), 所述填充物 (205)用于所述厚盖板 (204)覆盖所述薄盖板 (203)时, 使所述薄盖板 (203)产生弹性形变。
2、 如权利要求 1所述的横磁模介质谐振器, 其特征在于, 所述薄盖板
(203)与所述介质谐振柱 (202)的接触处的纵切面为方形、 或圓弧形、 或倒梯 形。
3、 如权利要求 1或 2所述的横磁模介质谐振器, 其特征在于, 所述介 质谐振柱 (202)的上端面和 /或下端面由导电材质覆盖。
4、如权利要求 1至 3任意一项所述的横磁模介质谐振器,其特征在于, 所述填充物 (205)为塑料或金属弹片。
5、 一种横磁模介质谐振器, 其特征在于, 包括具有一端开口的谐振腔 (201),以及位于所述谐振腔 (201)内的介质谐振柱 (202),所述介质谐振柱 (202) 的下端面与所述谐振腔 (201)的内底面接触, 所述谐振腔 (201)的内表面由导 电材质覆盖, 所述介质谐振柱 (202)的高度大于所述谐振腔 (201)的内底面至 所述谐振腔 (201)的开口的一端的高度; 所述横磁模介质谐振器还包括:
覆盖所述开口的薄盖板 (203) , 以及覆盖所述薄盖板 (203)的厚盖板
(204) , 所述薄盖板 (203)和厚盖板 (204)的表面由导电材质覆盖。
6、 如权利要求 5所述的横磁模介质谐振器, 其特征在于, 所述薄盖板
(203)与所述介质谐振柱 (202)的接触处的纵切面为方形、 或圓弧形、 或倒梯 形。
7、 如权利要求 5或 6所述的横磁模介质谐振器, 其特征在于, 所述介 质谐振柱 (202)的上端面和 /或下端面由导电材质覆盖。
8、 一种横磁模介质谐振器, 其特征在于, 包括具有一端开口的谐振腔 (201),以及位于所述谐振腔 (201)内的介质谐振柱 (202),所述介质谐振柱 (202) 的下端面与所述谐振腔 (201)的内底面接触, 所述谐振腔 (201)的内表面由导 电材质覆盖, 所述介质谐振柱 (202)的高度大于所述内底面至所述开口的一 端的高度; 所述横磁模介质谐振器还包括:
覆盖所述开口的厚盖板 (204), 所述厚盖板 (204)的下底面与所述介质谐 振柱 (202)的上端面接触, 所述厚盖板 (204)下底面和 /或上顶面上设置有开 槽, 所述厚盖板 (204)的表面由导电材质覆盖。
9、 一种横磁模介质滤波器, 其特征在于, 包括如权利要求 1至 8任一 所述的横磁模介质谐振器。
10、 一种基站, 其特征在于, 包括如权利要求 9所述的横磁模介质滤波 器。
PCT/CN2011/075294 2010-09-03 2011-06-03 横磁模介质谐振器、横磁模介质滤波器与基站 WO2011147354A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2013114828/08A RU2531570C1 (ru) 2010-09-03 2011-06-03 Диэлектрический резонатор поперечной магнитной волны, диэлектрический фильтр поперечной магнитной волны и базовая станция
EP11786126.0A EP2605330B1 (en) 2010-09-03 2011-06-03 Transverse magnetic mode dielectric resonator, transverse magnetic mode dielectric filter and base station
JP2013526302A JP2013537011A (ja) 2010-09-03 2011-06-03 横磁界モード誘電体共振器、横磁界モード誘電体フィルタ、及び基地局
BR112013005204A BR112013005204B8 (pt) 2010-09-03 2011-06-03 Ressonador dielétrico de modo magnético transversal, filtro dielétrico de modo magnético transversal, e estação de base
AU2011257686A AU2011257686B2 (en) 2010-09-03 2011-06-03 Transverse magnetic mode dielectric resonator, transverse magnetic mode dielectric filter and base station
KR1020137006000A KR101479152B1 (ko) 2010-09-03 2011-06-03 횡자기 모드 유전체 공진기 및 기지국
US13/781,014 US9070960B2 (en) 2010-09-03 2013-02-28 TM mode dielectric resonator filter including a dielectric resonant column secured within a resonant cavity by elastic deformation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010276357.4 2010-09-03
CN2010102763574A CN102136620B (zh) 2010-09-03 2010-09-03 横磁模介质谐振器、横磁模介质滤波器与基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/781,014 Continuation US9070960B2 (en) 2010-09-03 2013-02-28 TM mode dielectric resonator filter including a dielectric resonant column secured within a resonant cavity by elastic deformation

Publications (1)

Publication Number Publication Date
WO2011147354A1 true WO2011147354A1 (zh) 2011-12-01

Family

ID=44296315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075294 WO2011147354A1 (zh) 2010-09-03 2011-06-03 横磁模介质谐振器、横磁模介质滤波器与基站

Country Status (9)

Country Link
US (1) US9070960B2 (zh)
EP (1) EP2605330B1 (zh)
JP (1) JP2013537011A (zh)
KR (1) KR101479152B1 (zh)
CN (1) CN102136620B (zh)
AU (1) AU2011257686B2 (zh)
BR (1) BR112013005204B8 (zh)
RU (1) RU2531570C1 (zh)
WO (1) WO2011147354A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103035980B (zh) * 2011-09-30 2015-09-09 深圳市大富科技股份有限公司 介质滤波器及其安装方法、弹性片和通信射频器件
CN102368574A (zh) * 2011-10-31 2012-03-07 华为技术有限公司 Tm模介质滤波器
CN102509826A (zh) * 2011-11-17 2012-06-20 摩比天线技术(深圳)有限公司 一种tm模介质滤波器
CN102496765B (zh) * 2011-11-25 2015-02-11 深圳市国人射频通信有限公司 介质滤波器及其介质谐振器
CN103296370B (zh) * 2012-02-29 2018-02-16 深圳光启创新技术有限公司 谐振腔
CN102637940A (zh) * 2012-04-27 2012-08-15 深圳市国人射频通信有限公司 介质滤波器及其介质谐振器
WO2014027461A1 (ja) * 2012-08-13 2014-02-20 パナソニック株式会社 誘電体フィルタ
CN103151581B (zh) * 2012-11-30 2016-03-30 摩比天线技术(深圳)有限公司 Tm模介质滤波器
CN203434278U (zh) 2013-01-30 2014-02-12 中兴通讯股份有限公司 减少多个基站天线间干扰的装置
CN109509942B (zh) * 2013-04-16 2021-01-29 华为技术有限公司 一种介质谐振器和介质滤波器
WO2015051520A1 (zh) * 2013-10-10 2015-04-16 华为技术有限公司 滤波器及应用其的通信模块
WO2015168883A1 (zh) 2014-05-07 2015-11-12 华为技术有限公司 一种横磁(tm)模介质滤波器
CN103956543B (zh) * 2014-05-21 2016-02-10 西安空间无线电技术研究所 一种低气压大功率阈值的介质滤波器
CN105280994A (zh) * 2014-06-27 2016-01-27 摩比天线技术(深圳)有限公司 一种tm模介质滤波器和多工器
CN104282977A (zh) * 2014-10-17 2015-01-14 张家港保税区灿勤科技有限公司 高q值ku波段介质谐振器
CN104733828B (zh) * 2014-12-26 2018-09-18 东莞鸿爱斯通信科技有限公司 Tm模介质谐振器
CN105870569A (zh) * 2016-05-04 2016-08-17 成都天奥电子股份有限公司 一种在金属腔体中稳固安装介质谐振器的方法
CN110168802B (zh) 2017-01-18 2021-07-20 华为技术有限公司 一种横磁模介质谐振器、滤波器及通信设备
CN107275743B (zh) * 2017-07-21 2020-05-19 武汉凡谷陶瓷材料有限公司 Tm模介质谐振器
KR102034603B1 (ko) * 2017-12-29 2019-10-21 주식회사 에이스테크놀로지 데브리(debris) 유입 방지를 위해 고탄성 플레이트 탄성체를 갖는 RF 캐비티 필터 및 이의 제조 방법
CN113228411B (zh) 2018-12-28 2023-04-04 华为技术有限公司 Tm模滤波器及其制造方法
CN112072259A (zh) * 2019-06-11 2020-12-11 中兴通讯股份有限公司 介质谐振器
CN110837722B (zh) * 2019-11-13 2021-05-28 中国船舶重工集团公司第七二四研究所 一种大功率微波收发前端电路的设计方法
KR102378832B1 (ko) * 2020-07-22 2022-03-25 주식회사 알에프텍 캐비티 필터 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1330430A (zh) * 2000-06-15 2002-01-09 松下电器产业株式会社 谐振器及高频滤波器
CN1389001A (zh) * 2000-07-10 2003-01-01 株式会社村田制作所 电介质谐振器装置、滤波器、天线共用器以及通信装置
CN1581569A (zh) * 2003-08-04 2005-02-16 松下电器产业株式会社 介质谐振器、介质过滤器、以及支撑介质谐振元件的方法
CN101546857A (zh) * 2009-04-21 2009-09-30 华为技术有限公司 一种介质谐振器及其装配方法、介质滤波器
CN102148417A (zh) * 2010-08-18 2011-08-10 深圳市大富科技股份有限公司 介质滤波器、介质谐振器及盖板单元和通信设备

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966204A (ja) * 1982-10-07 1984-04-14 Murata Mfg Co Ltd 誘電体共振器
DE4113302C2 (de) * 1991-04-24 1999-10-14 Bosch Gmbh Robert Topfkreis oder belasteter Hohlraumresonator mit Temperaturkompensation
RU2057384C1 (ru) * 1993-06-10 1996-03-27 Научно-исследовательский институт механики и физики при Саратовском государственном университете им.Н.Г.Чернышевского Резонатор на магнитостатических волнах
JP3085205B2 (ja) * 1996-08-29 2000-09-04 株式会社村田製作所 Tmモード誘電体共振器とこれを用いたtmモード誘電体フィルタ及びtmモード誘電体デュプレクサ
JPH1146102A (ja) * 1997-05-30 1999-02-16 Murata Mfg Co Ltd 誘電体フィルタ、誘電体デュプレクサ及び通信機装置
JP3518656B2 (ja) * 1997-08-19 2004-04-12 アルプス電気株式会社 誘電体フィルタ及びそれを用いた電子機器
JP3506076B2 (ja) * 1999-11-24 2004-03-15 株式会社村田製作所 多重モード誘電体共振器装置、フィルタ、デュプレクサおよび通信装置
JP3506121B2 (ja) * 2000-03-30 2004-03-15 株式会社村田製作所 誘電体共振器、フィルタ、デュプレクサおよび通信装置
JP2002094308A (ja) * 2000-09-20 2002-03-29 Hitachi Kokusai Electric Inc Tmモード誘電体共振器
WO2004066430A1 (ja) * 2003-01-24 2004-08-05 Murata Manufacturing Co., Ltd. 多重モード誘電体共振器装置、誘電体フィルタ、複合誘電体フィルタおよび通信装置
JP3985790B2 (ja) * 2003-03-12 2007-10-03 株式会社村田製作所 誘電体共振器装置、誘電体フィルタ、複合誘電体フィルタおよび通信装置
JP2005033327A (ja) * 2003-07-08 2005-02-03 Hitachi Kokusai Electric Inc 誘電体共振器及び誘電体共振器を用いた空中線共用装置
JP2005073242A (ja) * 2003-08-04 2005-03-17 Matsushita Electric Ind Co Ltd 誘電体共振器、誘電体フィルタ、誘電体共振素子の支持方法
JP2005223665A (ja) * 2004-02-06 2005-08-18 Tamagawa Electronics Co Ltd 誘電体共振器及びフィルタ装置
JP2006217308A (ja) * 2005-02-04 2006-08-17 Yagi Antenna Co Ltd Tmモード誘電体共振器
CN101933193B (zh) * 2008-01-31 2013-04-24 艾利森电话股份有限公司 滤波器组件
WO2010013982A2 (en) * 2008-08-01 2010-02-04 Kmw Inc. Dielectric resonator in rf filter and assembly method therefor
KR101072284B1 (ko) * 2008-08-01 2011-10-11 주식회사 케이엠더블유 고주파 필터의 유전체 공진기 및 그 조립 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1330430A (zh) * 2000-06-15 2002-01-09 松下电器产业株式会社 谐振器及高频滤波器
CN1389001A (zh) * 2000-07-10 2003-01-01 株式会社村田制作所 电介质谐振器装置、滤波器、天线共用器以及通信装置
CN1581569A (zh) * 2003-08-04 2005-02-16 松下电器产业株式会社 介质谐振器、介质过滤器、以及支撑介质谐振元件的方法
CN101546857A (zh) * 2009-04-21 2009-09-30 华为技术有限公司 一种介质谐振器及其装配方法、介质滤波器
CN102148417A (zh) * 2010-08-18 2011-08-10 深圳市大富科技股份有限公司 介质滤波器、介质谐振器及盖板单元和通信设备

Also Published As

Publication number Publication date
AU2011257686A1 (en) 2013-04-04
EP2605330A1 (en) 2013-06-19
BR112013005204A2 (pt) 2016-05-03
KR20130042007A (ko) 2013-04-25
EP2605330B1 (en) 2015-08-12
CN102136620A (zh) 2011-07-27
JP2013537011A (ja) 2013-09-26
US20130176088A1 (en) 2013-07-11
CN102136620B (zh) 2013-11-06
BR112013005204B1 (pt) 2021-10-19
KR101479152B1 (ko) 2015-01-05
AU2011257686B2 (en) 2015-03-05
RU2013114828A (ru) 2014-10-10
RU2531570C1 (ru) 2014-10-20
BR112013005204B8 (pt) 2021-12-21
EP2605330A4 (en) 2013-07-03
US9070960B2 (en) 2015-06-30

Similar Documents

Publication Publication Date Title
WO2011147354A1 (zh) 横磁模介质谐振器、横磁模介质滤波器与基站
US7106152B2 (en) Dielectric resonator, dielectric filter, and method of supporting dielectric resonance element
WO2017045261A1 (zh) 受话器
CN102324617B (zh) 一种两端接地tm模介质谐振器
US8300876B2 (en) Micro-speaker and method for manufacturing same
CN1203570C (zh) 电介质谐振器、滤波器、双工器和通信器件
CN103367849A (zh) 一种表贴式微波铁氧体环行器引脚结构
WO2018119669A1 (zh) 谐振器及通信装置
CN104678230A (zh) 一种三维微波组件测试装置
CN202217778U (zh) 一种两端接地tm模介质谐振器
CN210136995U (zh) 腔体滤波器
CN105140615B (zh) 超小型介质谐振器
CN205811024U (zh) Tm模介质滤波器
CN203590454U (zh) 压电驻极体传声器
CN202841073U (zh) 高基频石英晶体谐振器
CN210326065U (zh) 一种滤波器
CN206774655U (zh) 一种介质谐振器
CN201804986U (zh) 通信设备、介质滤波器和介质谐振杆
KR102341975B1 (ko) 신호 전송 커넥터용 소켓 조립체
CN104852118A (zh) 一种介质加载谐振器
KR102349967B1 (ko) 신호 전송 커넥터 및 신호 전송 커넥터용 소켓 조립체의 제조방법
US6895665B2 (en) Method of manufacturing a housing for electronic parts
US11784444B2 (en) Fully-shielded high-frequency connector and connector assembly
WO2022226704A1 (zh) 一种连接装置及射频模块
CN110311208B (zh) 在pcb集成喇叭天线的无线通信设备、生产方法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786126

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013526302

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137006000

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011786126

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013114828

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011257686

Country of ref document: AU

Date of ref document: 20110603

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013005204

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013005204

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130304