WO2011147313A1 - 左旋异戊酰螺旋霉素i、ii或iii,及其制剂、制备方法及应用 - Google Patents

左旋异戊酰螺旋霉素i、ii或iii,及其制剂、制备方法及应用 Download PDF

Info

Publication number
WO2011147313A1
WO2011147313A1 PCT/CN2011/074644 CN2011074644W WO2011147313A1 WO 2011147313 A1 WO2011147313 A1 WO 2011147313A1 CN 2011074644 W CN2011074644 W CN 2011074644W WO 2011147313 A1 WO2011147313 A1 WO 2011147313A1
Authority
WO
WIPO (PCT)
Prior art keywords
isovalerylspiramycin
iii
preparation
compound
injection
Prior art date
Application number
PCT/CN2011/074644
Other languages
English (en)
French (fr)
Inventor
姜洋
郝玉有
Original Assignee
沈阳同联集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BR112012029913-1A priority Critical patent/BR112012029913B1/pt
Priority to RU2012156420/04A priority patent/RU2593498C2/ru
Application filed by 沈阳同联集团有限公司 filed Critical 沈阳同联集团有限公司
Priority to JP2013511523A priority patent/JP5945868B2/ja
Priority to US13/699,459 priority patent/US8778896B2/en
Priority to PL17166118T priority patent/PL3210991T3/pl
Priority to EP17166118.4A priority patent/EP3210991B1/en
Priority to KR1020167002374A priority patent/KR101706518B1/ko
Priority to DK11786085.8T priority patent/DK2578595T3/en
Priority to CA2800021A priority patent/CA2800021C/en
Priority to PL11786085T priority patent/PL2578595T3/pl
Priority to ES11786085.8T priority patent/ES2633723T3/es
Priority to EP17166117.6A priority patent/EP3210990B1/en
Priority to PL17166117T priority patent/PL3210990T3/pl
Priority to MX2012013470A priority patent/MX340626B/es
Priority to KR1020127033721A priority patent/KR20130041829A/ko
Priority to EP11786085.8A priority patent/EP2578595B1/en
Publication of WO2011147313A1 publication Critical patent/WO2011147313A1/zh
Priority to ZA2012/09738A priority patent/ZA201209738B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • C07H17/04Heterocyclic radicals containing only oxygen as ring hetero atoms
    • C07H17/08Hetero rings containing eight or more ring members, e.g. erythromycins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • C12P19/60Preparation of O-glycosides, e.g. glucosides having an oxygen of the saccharide radical directly bound to a non-saccharide heterocyclic ring or a condensed ring system containing a non-saccharide heterocyclic ring, e.g. coumermycin, novobiocin
    • C12P19/62Preparation of O-glycosides, e.g. glucosides having an oxygen of the saccharide radical directly bound to a non-saccharide heterocyclic ring or a condensed ring system containing a non-saccharide heterocyclic ring, e.g. coumermycin, novobiocin the hetero ring having eight or more ring members and only oxygen as ring hetero atoms, e.g. erythromycin, spiramycin, nystatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin

Definitions

  • the present invention relates to a novel antibiotic for genetic engineering of macrolides, particularly L-isoamylylspiramycin I, II or III, crystals thereof, pharmaceutical preparations thereof, preparation methods and use thereof in anti-infective diseases. Background technique
  • Macrolide antibiotics play an important role in the clinic, because they have good activity against Gram-positive bacteria and mycoplasma, and also have some effects on some Gram-negative bacteria, and some increasingly popular toxoplasma and Legionella
  • uncontrollable pathogens have good antibacterial activity and tissue permeability, rapid oral absorption, less adverse reactions, no effect on liver and kidney function, and potential immunomodulatory effects.
  • it was considered to treat adult respiratory infections. It will compete with ⁇ -lactam drugs.
  • Chirality is a basic property of three-dimensional objects and one of the essential properties of nature.
  • Biomacromolecules such as proteins, polysaccharides, nucleic acids, and enzymes, which are important foundations of life activities, are almost entirely chiral. These macromolecules often have important physiological functions in the body.
  • Chiral drug refers to a pair of mutually enantiomerically and mirrored enantiomers obtained after the introduction of a chiral center in the molecular structure of a drug.
  • the physicochemical properties of these enantiomers are basically similar, only differing in optical rotation, and are named R-type (right-handed) or S-type (left-handed), racemic, respectively.
  • the well-known DL-(+-)mycin has only half the efficacy of D (-) chloramphenicol; propranolol L - The drug activity of the isomer is 100 times greater than that of the D-isomer; (-) methadone is a strong analgesic, and (+) is ineffective.
  • the two enantiomers of thalidomide have similar sedative effects on mice, but only the S (-) isomer and its metabolites have embryotoxic and teratogenic effects; Ketamine is a widely used anesthetic and analgesic, but it has side effects such as hallucinations.
  • Colimycin is a novel spiramycin derivative developed by genetic engineering technology. It was originally named as Bitter Spiramycin and was once called biochemical [patent number: ZL97104440.6]. According to the "Chinese Drug Generic Name Naming Principle", the Chinese generic name of Bitter Spiramycin was changed to Coriomycin, and the chemical structure of Carrimyci Coriomycin was 4 "-Isovalylspiramycin is the main component, including 4"-isovalerylspiramycin I, II, III, and secondly contains about 6 kinds of 4"-position hydroxyacylated spiromycin, so its chemical name Collectively referred to as 4"-acylated spiromycin. Colimycin main ingredient
  • R in isovalerylspiramycin I is selected from the group consisting of H;
  • R in isovalerylspiramycin II is selected from COCH 3 ,
  • Colimycin is a 16-membered cyclic macrolide antibiotic whose mechanism of action is to inhibit protein synthesis by binding to bacterial ribosomes.
  • the results of pharmacokinetic studies showed that the active components of colimycin were mainly isovaleryl spiromycin I, II, III. After entering the body, the colimycin is rapidly metabolized to spiramycin, with the parent drug, isovaleryl spiromycin I, II, III, and the AUC of the active metabolites spiramycin I, II, III. — t Total calculation, whose oral absolute bioavailability averaged 91.6%.
  • colimycin is effective against Gram-positive bacteria, especially certain resistant bacteria (such as ⁇ -lactam-resistant Staphylococcus aureus, erythromycin-resistant Staphylococcus aureus, etc.), and is not obvious with similar drugs.
  • Cross-resistance At the same time, it has good antibacterial activity against mycoplasma and chlamydia, and also has antibacterial activity against some Gram-negative bacteria, and has good antibacterial activity and tissue permeability to toxoplasma and Legionella, and has potential immunomodulatory effects. Its antibacterial activity in vivo is significantly better than in vitro (ZL200310122420.9).
  • colimycin is an oral safe and effective antibiotic.
  • colimycin itself is a product obtained by fermentation and is a multi-component drug, further separation and purification of the plurality of components is difficult.
  • the currently established high performance liquid chromatography method can separate a variety of acylated spiromycins in colimycin samples, such as isovaleryl spiromycin II and (iso)butyryl spiromycin III, (different)
  • the resolution of butyrylspiramycin II and propionylspiramycin III, propionylspiramycin III and its former small components, propionylspiramycin II and acetylspiramycin III reached 1.5 or more as prescribed by the Chinese Pharmacopoeia; The degree of separation of acetylspiramycin III from its earlier small component was 1.2.
  • the inventors have found through a large number of studies that, by adjusting and optimizing the culture conditions and fermentation conditions, a L-colimycin is unexpectedly obtained, which has more excellent anti-infective activity.
  • the primary object of the present invention is to provide L-isovalerylspiramycin I, L-isoamylylspiramycin II, and L-isopyrylspiramycin III.
  • a second object of the present invention is to provide a preparation comprising L-isoamyl spironomycin I, L-isoamyl spiromycin II, and L-isovaleryl spiramycin III, respectively.
  • a third object of the present invention is to provide a process for producing L-isovalerylspiramycin I, L-isoamylylspiramycin II, and L-isopyrylspiramycin III.
  • a fourth object of the present invention is to provide an application of L-isovalerylspiramycin I, L-isoamylylspiramycin II, and L-isopyrylspiramycin III.
  • a fifth object of the present invention is to provide crystals of L-isovalerylspiramycin I, L-isoamylylspiramycin II, L-isopyrylspiramycin III, and a preparation containing the same.
  • the technical solution adopted by the present invention is:
  • the present invention relates to a left-handed isomorphism as shown in the formula (I),
  • the present invention relates to a left-handed configuration as shown in formula (II);
  • the present invention relates to a compound of L-isovalerylspiramycin III, wherein the chemical structural formula of the L-isovaleryl spiramycin III is as shown in the formula (III).
  • the present invention relates to a preparation of L-isovalerylspiramycin I, characterized in that the preparation comprises isovaleryl spiromycin I, a pharmaceutically acceptable salt of isovaleryl spiromycin I, isovalerylspiramycin And a pharmaceutically acceptable adjuvant, or a pharmaceutically acceptable salt of isovalerylspiramycin I, and a pharmaceutically acceptable adjuvant, said isovalylspiramycin I having a purity greater than 90 wt%, preferably a purity greater than 95 wt %, more preferably, the purity is greater than 98
  • the present invention relates to a preparation of L-isovalerylspiramycin II, characterized in that the preparation comprises isovalerylspiramycin II, a pharmaceutically acceptable salt of isovalerylspiramycin II, isovalerylspiramycin And a pharmaceutically acceptable adjuvant, or a pharmaceutically acceptable salt of isovalerylspiramycin II, and a pharmaceutically acceptable adjuvant, said isovalerylspiramycin II having a purity greater than 90 wt%, preferably having a purity greater than 95 wt %, more preferably more than 98 wt% ;
  • the present invention relates to a preparation of L-isovalerylspiramycin in, characterized in that the preparation comprises isovalerylspiramycin III, a pharmaceutically acceptable salt of isovalerylspiramycin III, isovalerylspiramycin And a pharmaceutically acceptable adjuvant, or a pharmaceutically acceptable salt of isovalerylspiramycin III, and a pharmaceutically acceptable adjuvant, said isovalylspiramycin III having a purity greater than 90 wt%, preferably having a purity greater than 95 wt More preferably, the purity is greater than 98 wt%.
  • a first preferred embodiment of the present invention is:
  • the preparation of the present invention is a liquid preparation, a solid preparation, a semi-solid preparation or a gas preparation, and the liquid preparation is selected from the group consisting of an injection, an infusion solution, a solution, a mixture, a syrup, an expectorant, a sol.
  • Agent aromatic liquid, glycerin, colloidal solution, sizing agent, suspension or emulsion
  • the solid preparation is selected from the group consisting of powder, lyophilized powder, tablets, capsules, powders, granules, pills , the agent or the film
  • the semi-solid preparation is selected from the group consisting of an ointment, a plaster, a suppository, an extract, a gel
  • the gas preparation is selected from an aerosol or a spray, preferably a water injection, injection Use powder injection, freeze-dried powder injection.
  • a second preferred embodiment of the present invention is that the preparation of the present invention comprises isopyryl spiromycin I in a unit dose of 10 to 1500 mg, preferably 50 to 100 mg, more preferably 100 to 500 mg ; the preparation of the present invention comprises isovaleryl spirulina
  • the unit dose of themycin II is 10 to 1500 mg, preferably 50 to 100 mg, more preferably 100 to 500 mg; the unit dosage of the preparation of the present invention comprising isovalerylspiramycin III is 10 to 1500 mg, preferably 50 to 100 mg, more preferably 100 ⁇ 500 mg.
  • a third preferred embodiment of the present invention is: In the preparation, the weight percentage of L-isovalerylspiramycin I in the preparation is 10 to 95%, preferably 50 to 95%, more preferably 75 to 95%; L-isovaleryl The weight percentage of spiramycin II in the preparation is 10 to 95%, preferably 50 to 95%, more preferably 75 to 95%; and the weight percentage of L-isovalerylspiramycin III in the preparation is 10 to 95%, preferably 50 to 95%, more preferably 75 to 95%.
  • the invention also relates to a preparation comprising L-iso Isoflavylspiramycin I, L-Isoamylspiramycin II or L-Isovalylspiramycin III, respectively:
  • the preparation includes isopyryl spunmycin I and an injection for injection, at least one of citric acid, adipic acid, and maleic acid, an injection for injection or a lyophilized powder;
  • the preparation includes isoprene Injection molding water injection, injection powder injection or lyophilized powder injection prepared by at least one of acyl spiromycin II and citric acid, adipic acid, and maleic acid;
  • the preparation includes isovaleryl spiromycin III and An injection for injection, a powder for injection or a lyophilized powder injection prepared from at least one of citric acid, adipic acid and maleic acid.
  • the molar ratio of L-isovalerylspiramycin I to citric acid is 1: 0.8 ⁇ 1.2
  • the molar ratio of L-isovalerylspiramycin I to adipic acid is 1: 0.8 ⁇ 1.2
  • L-isovaleryl The molar ratio of spiramycin I to maleic acid is 1: 0.8-1.2
  • the molar ratio of L-isovalerylspiramycin oxime to citric acid is 1: 0.8 ⁇ 1.2, L-isoamylyl spiromycin II
  • the molar ratio of diacid is 1: 0.8 ⁇ 1.2
  • the molar ratio of L-isovalerylspiramycin II to maleic acid is 1: 0.8-1.2
  • the molar ratio of L-isovalerylspiramycin III to citric acid is 1 : 0.8-1.2
  • the molar ratio of L-isovalerylspiramycin III to adipic acid is 1: 0.8 ⁇ 1.2
  • the preparation process of levocomycin comprises culturing the Helicobacter pylori-producing strain WSP-195 containing the 4"-prenyltransferase gene, then performing biological fermentation, and extracting the fermentation broth; at pH 6.0
  • the pH value of the fermentation process is changed with time by adjusting and optimizing the fermentation conditions of the culture, especially by strictly controlling the pH value in the fermentation process by the pH adjuster.
  • the curve has three consecutive stages, and each stage satisfies a certain equation, thereby obtaining optically active levocomycin. L-Isoamylspiramycin I, L-isoamylylspiramycin II, L-isoamylylspiramycin III were isolated.
  • the conditions for biological fermentation in the present invention are: a spiromycin producing strain WSJ-195 containing a 4"-isovalyl transferase gene, containing 2% soybean powder, 1% glucose, 3% starch , CaCO 3 0.5%, NaCl 0.4% and agar 2% on the slant medium, cultured at pH 6.5 ⁇ 7.5, temperature 28 ⁇ 38 °C for 8 ⁇ 15 days, inoculated with soybean meal 1.5%, Seed culture medium of starch 3.0%, NaCl 0.4%, CaCO 3 0.5%, fish protein ⁇ 0.3% and KH 2 P0 4 0.05%, cultured at pH 6.5 ⁇ 7.5, 25 ⁇ 30 °C for 40 80 hours, 0.1 to 20% inoculum is added to contain glucose 0.5%, starch 6.0%, yeast powder 0.5%, fish meal 2.0%, NH 4 N0 3 0.6%, NaCl 1.0%, CaC0 3 0.5%, KH 2 P0 4 0.05%, MgS0 4 0.1%, soybean oil 0.5% and def
  • the pH adjusting agent is at least one selected from the group consisting of hydrochloric acid, acetic acid, aqueous ammonia, sodium hydroxide, and potassium hydroxide.
  • the step of extracting the biological fermentation broth of the present invention is: treating the obtained fermentation broth with aluminum sulfate to obtain a filtrate, adjusting the pH to 8.5 to 9.0, extracting with butyl acetate, and using butyl acetate extract without brine and %NaH 2 P0 4 was washed separately, and then extracted with water of pH 2.0 ⁇ 2.5 to obtain aqueous phase extract, adjusted to pH 4.5 ⁇ 5.5, evaporated to remove residual butyl acetate to obtain aqueous extract, filtered, and the filtrate was adjusted to pH 8.5 ⁇ 9.0, precipitated, rinsed with purified water to obtain a wet product, dried to obtain levocomycin;
  • At least one of hydrochloric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide, sodium hydrogencarbonate, and sodium carbonate is used to adjust the pH.
  • the purification step of isovalerylspiramycin I, II or III comprises: performing a chromatographic separation method on the levocomycin sample Purification, gradient elution with ODS column, acetonitrile and ammonia acetate buffer, target peak for L-isovalerylspiramycin I component, target peak of L-isoamylyl spiromycin II component, L-isopylated acyl chloride The target peak of themycin III component is separated.
  • the collected L-isovalerylspiramycin I, II or III is separately subjected to rotary evaporation to remove acetonitrile, and then extracted with ethyl acetate. Ethyl acetate in the extract was evaporated to obtain a creamy sample; the obtained sample was re-dissolved with petroleum ether, and petroleum ether was evaporated to obtain a white powdery solid of L-isovalerylspiramycin I, II or III, respectively.
  • the specific conditions for the purification of the L-isovalerylspiramycin ruthenium, osmium or III are as follows: linear gradient: 0-60 minutes, ⁇ is 25% ⁇ 65%; 61 ⁇ 90 minutes, A is 65% ⁇ 90% ;
  • Injection concentration 0.5g/mL
  • the present invention also relates to a crystalline compound of L-isovalerylspiramycin I, which is obtained by Cu- ⁇ ray measurement using X-ray powder diffraction at 7.6°, 8.0°, 10.0. Characteristic peaks are shown at °, 11.4, 16.4, 17.0, 17.5, 17.9, 19.5, 22.7, 23.7 and 24.4. Its X-ray powder diffraction pattern is shown in Figure 5.
  • the L-isovalerylspiramycin I crystalline compound is prepared by first dissolving a solid of L-isovalerylspiramycin I in a mixed solvent of no methanol, absolute ethanol and anhydrous acetone, and then adding pure water. The mixture is stirred while being added, and after the completion of the addition of pure water, the temperature is lowered to 5 ° C to 15 ° C, and the mixture is further stirred while cooling to obtain a crystal compound of L-isoamylpyroxymycin I.
  • the first preferred technical solution of the method for preparing the L-isovalerylspiramycin I crystal compound is that the volume of the purified water added is the sum of the volume of ethyl acetate, absolute ethanol and anhydrous acetone. 9 times, preferably 2.5 to 7.5 times; the speed of adding pure water is 4 to 10 ml/min, preferably 6 to 8 ml/min.
  • a third preferred embodiment of the method for preparing the L-isovalerylspiramycin I crystal compound is that the stirring speed of the added pure water is 30 to 60 rpm, preferably 45 to 60 rpm; Thereafter, the stirring speed is 10 to 30 rpm, preferably 10 to 20 rpm.
  • a fourth preferred embodiment of the method for preparing the L-isovalerylspiramycin I crystal compound is that the cooling rate after the completion of the addition of pure water is 1 to 3 ° C per hour, preferably 1 to 1.5 ° C per hour.
  • the present invention also relates to a crystalline compound of L-isovalerylspiramycin II, which is obtained by Cu-Ka ray measurement using X-ray powder diffraction at 2 ° of 10.0°, 11.6°, 16.4. °, 17.3°, 19.1°, 21.2°, 22.1°, 22.7°, 26.4°, 26.9°, 27.5° and 31.5. A characteristic peak is displayed. Its X-ray powder diffraction pattern is shown in Figure 6.
  • the method for preparing a crystal compound of L-isovalerylspiramycin II is prepared by first dissolving a solid of L-isoamylylspiramycin II compound In a mixed solvent of no methanol, anhydrous acetone and absolute ethanol, then adding pure water, stirring while adding, cooling the water to 5 ° C ⁇ 15 ° C after cooling, continue to stir while cooling, to obtain left-handed Pentylylspiramycin II crystalline compound.
  • the first preferred technical solution of the method for preparing the L-isovalerylspiramycin II crystal compound is that the volume of the purified water added is the sum of the volume of anhydrous methanol, absolute ethanol and anhydrous acetone. 9 times, preferably 2.5 to 7.5 times; the speed of adding pure water is 4 to 10 ml/min, preferably 6 to 8 ml/min.
  • a third preferred embodiment of the method for preparing the crystal compound of the L-isovalerylspiramycin II is that the stirring speed of the added pure water is 30 to 60 rpm, preferably 45 to 60 rpm; Thereafter, the stirring speed is 10 to 30 rpm, preferably 10 to 20 rpm.
  • a fourth preferred embodiment of the method for preparing the L-isovalerylspiramycin II crystal compound is that the rate of cooling after completion of the addition of pure water is 1 to 3 ° C per hour, preferably 1 to 1.5 ° C per hour.
  • the present invention also relates to a crystalline compound of L-isovalerylspiramycin III which is obtained by Cu-Ka ray measurement using X-ray powder diffraction at 8.0 °, 10.0 °, 11.2 Characteristic peaks are shown for °, 11.7°, 16.4°, 19.1°, 19.6°, 20.0°, 21.4°, 22.9°, 23.6°, and 29.4°. Its X-ray powder diffraction pattern is shown in Figure 7.
  • the method for preparing the crystal of L-isovalerylspiramycin III is prepared by first dissolving a solid of L-isovalerylspiramycin III in a mixed solvent of anhydrous methanol, absolute ethanol and anhydrous acetone, and then adding pure The water is stirred while being added, and after the completion of the addition of pure water, the temperature is lowered to 5 ° C to 15 ° C, and stirring is continued while the temperature is lowered to obtain a crystal compound of L-isovalerylspiramycin III.
  • the first preferred technical solution of the method for preparing the crystal compound of L-isovalerylspiramycin III is that the volume of pure water added is the sum of the volume of anhydrous methanol, absolute ethanol and anhydrous acetone. 9 times, preferably 2.5 to 7.5 times; the speed of adding pure water is 4 to 10 ml/min, preferably 6 to 8 ml/min.
  • a third preferred embodiment of the method for preparing the crystal compound of L-isovalerylspiramycin III is that the stirring speed of the added pure water is 30 to 60 rpm, preferably 45 to 60 rpm; Thereafter, the stirring speed is 10 to 30 rpm, preferably 10 to 20 rpm.
  • a fourth preferred embodiment of the method for preparing the L-isovalerylspiramycin III crystalline compound is that the rate of cooling after completion of the addition of pure water is 1 to 3 ° C per hour, preferably 1 to 1.5 ° C per hour.
  • the intracellular molecules of different crystal forms differ in their spatial configuration, conformation and arrangement, and their solubility is significantly different, resulting in different dissolution rates of the preparation in the body, which directly affects the absorption, distribution, excretion and metabolism of the preparation in the body. The difference in clinical efficacy is ultimately due to differences in bioavailability.
  • the present invention is prepared for the crystal of L-isovalerylspiramycin I, L-isoamyl spiromycin II crystal or L-Isoamyl spiromycin III crystal, respectively, with L-isoamylyl spiromycin I and L-isoamyl
  • the therapeutic effects of spiramycin II or L-isoamyl spironomycin III were compared, and it was found that the L-isoamylyl spiromycin I crystal prepared by the present invention is superior to L-isoamylyl spiromycin I, left-handed.
  • isovalerylspiramycin II crystal is better than that of L-isoamylylspiramycin II, and the effect of L-isovalerylspiramycin III crystal is better than that of L-isoamylylspiramycin III.
  • the present invention also relates to a formulation of a compound of L-isovalerylspiramycin I crystal, which comprises a crystal compound of isovaleryl spiromycin I, a pharmaceutically acceptable salt of a compound of isovaleryl spiromycin I crystal, and isovaleryl a crystalline compound with a pharmaceutically acceptable adjuvant, or isovaleryl a pharmaceutically acceptable salt of a spiramycin I crystalline compound and a pharmaceutically acceptable adjuvant, the isovalylspiramycin I crystalline compound having a purity greater than 99
  • the present invention also relates to a formulation of a compound of L-isovalerylspiramycin II crystal, which comprises a compound of isovaleryl spiromycin II crystal, a pharmaceutically acceptable salt of a compound of isovaleryl spiromycin II crystal, and a solution of Isovaleryl a pharmaceutically acceptable salt of a crystalline compound of the formula II and a pharmaceutically acceptable adjuvant, or a compound of the isovalerylspiramycin II crystal, and a pharmaceutically acceptable adjuvant, the crystal of the isovalerylspiramycin II crystal having a purity greater than 99 wt % ;
  • the present invention also relates to a formulation of a compound of L-isovalerylspiramycin III crystal, the formulation comprising a compound of isovalerylspiramycin III crystal, a pharmaceutically acceptable salt of isovalerylspiramycin in crystalline compound, and isovaleryl a pharmaceutically acceptable salt of a crystalline compound of the formula II and a pharmaceutically acceptable adjuvant, or a compound of isovalerylspiramycin III, and a pharmaceutically acceptable adjuvant, the crystal of the isopovaromycin III crystal having a purity greater than 99 wt %.
  • the present invention also relates to the use of isoprazine I or a crystal thereof, and a preparation thereof for the preparation of a medicament for treating and/or preventing an anti-infective disease; the present invention also relates to an amoxicillin II or a crystal thereof, and Use of a preparation for the preparation of a medicament for the treatment and/or prevention of an anti-infectious disease; the present invention also relates to the use of isopramide III or a crystal thereof, and a preparation thereof for the preparation of a medicament for the treatment and/or prevention of an anti-infective disease.
  • infectious diseases are Gram-positive bacteria, Staphylococcus aureus, Streptococcus pneumoniae, Mycoplasma pneumoniae, Chlamydia pneumoniae, Ureaplasma urealyticum, Chlamydia trachomatis, Streptococcus pyogenes, catarrhalis, Neisseria gonorrhoeae, Influenza, A disease caused by Legionella or anaerobic infection.
  • the present invention also relates to the use of isoprazine I or a crystal thereof, and a preparation thereof for preparing an antibacterial agent, and to a method for preparing an antibacterial agent, which comprises isopramide II or a crystal thereof, and a preparation thereof Application, the present invention also relates to the use of isopramide in crystal or a preparation thereof for preparing an antibacterial agent, which is Streptococcus pneumoniae, Streptococcus aureus, Streptococcus pyogenes, Enterococcus, Staphylococcus aureus, Epibacterium, catarrhalis, Neisseria gonorrhoeae, Influenza, Escherichia coli, E.
  • the present invention relates to a L-isovalerylspiramycin I.
  • the present invention obtains L-isovalerylspiramycin I by strictly controlling the pH of a solution by adjusting and optimizing the culture conditions and fermentation conditions.
  • the present invention relates to a L-isovalerylspiramycin II.
  • the present invention obtains L-isoamylylspiramycin II by strictly controlling the pH of the solution by adjusting and optimizing the culture conditions and fermentation conditions.
  • the present invention relates to a L-isovalerylspiramycin III.
  • the present invention obtains L-isoamylylspiramycin III by strictly controlling the pH of the solution by adjusting and optimizing the culture conditions and fermentation conditions.
  • the L-isovalerylspiramycins I, II and III of the invention have good antibacterial activity, and a new variety for injection of antibiotics is added, which provides a technical problem for the existing antibiotic resistance. New solution.
  • the method for determining the specific rotation of L-isovalerylspiramycin I, II and III of the present invention is as follows: The product is accurately weighed, dissolved and diluted with chloroform to form a solution containing about 20 mg per 1 ml, using sodium spectrum D-line (589.3 nm), the optical rotation was measured, and the measurement length was ldm. The temperature was 25 ° C, using a reading to 0.0001 °, and a certified polarimeter.
  • the method for determining the melting point of the L-isovalerylspiramycin I, II or III of the present invention is as follows: taking a dry amount of L-isovalerylspiramycin I, II or III, and determining the melting point in a capillary for measuring the melting point, The measurement was repeated 3 times and averaged.
  • the present invention also relates to a preparation containing L-isovalerylspiramycin I, II or III, which comprises L-isovalerylspiramycin I and a pharmaceutically acceptable carrier and/or adjuvant, wherein Isovaleryl
  • the purity of the compounds I, II and III is greater than 90% by weight, preferably greater than 95% by weight, more preferably greater than 98% by weight.
  • the preparation containing L-isovalerylspiramycin I, II or III or a crystal thereof of the present invention is preferably an injection for injection, a powder for injection, or a lyophilized powder.
  • the preparation of the single component-containing L-isovalerylspiramycin I, II or III of the present invention is prepared as an injection for injection or a powder injection, thereby enabling the preparation of the L-isoamylylspiramycin I, II or III of the present invention. It is absorbed more quickly by the human body to achieve anti-infective effects.
  • the preparation containing L-isovalerylspiramycin I of the present invention comprises the following unit dose: L-isoamylylspiramycin I 10 ⁇ 1500mg, preferably 50 ⁇ 1000mg, more preferably 100 ⁇ 500mg;
  • the preparation containing L-isovalerylspiramycin II of the present invention comprises the following unit dose: L-isoamylylspiramycin II 10 to 1500 mg, preferably 50 to 1000 mg, more preferably 100 to 500 mg.
  • the preparation containing L-isovalerylspiramycin III of the present invention comprises the following unit dose: L-isoamylylspiramycin III 10 to 1500 mg, preferably 50 to 1000 mg, more preferably 100 to 500 mg.
  • the preparation containing crystals of L-isovalerylspiramycin I of the present invention comprises the following unit dose: L-isoamylpyroxymycin I crystal 10 ⁇ 1500mg, preferably 50 ⁇ 1000mg, more preferably 100 ⁇ 500mg;
  • the preparation containing crystals of L-isovalerylspiramycin II compound of the present invention comprises the following unit dose: L-isoamylyl spiromycin II crystal 10 ⁇ 1500mg, preferably 50 ⁇ 1000mg, more preferably 100 ⁇ 500mg;
  • the preparation containing crystals of L-isovalerylspiramycin III compound of the present invention comprises the following unit dose: L-isoamylylspiramycin III crystal 10 to 1500 mg, preferably 50 to 1000 mg, more preferably 100 to 500 mg.
  • the weight percentage of L-isovalerylspiramycin I in the preparation containing L-isovalerylspiramycin I of the present invention is 10 to 90%, preferably 50 to 90%, more preferably 75 to 90%;
  • the weight percentage of L-isoamylylspiramycin II in the preparation containing L-isovalerylspiramycin II of the present invention is 10 to 90%, preferably 50 to 90%, more preferably 75 to 90%;
  • the weight percentage of L-isoamylylspiramycin III in the preparation containing L-isoamylylspiramycin III of the present invention is 10 to 90%, preferably 50 to 90%, more preferably 75 to 90%.
  • the crystals of the L-isoamylylspiramycin I compound in the preparation containing the crystal of the L-isovalerylspiramycin I compound in the present invention have a weight percentage of 10 to 90%, preferably 50 to 90%, more preferably 75 to 90%.
  • the crystals of the crystals of the L-isoamylylspiramycin II compound in the preparation containing the crystal of the L-isovalerylspiramycin II compound of the present invention have a weight percentage of 10 to 90%, preferably 50 to 90%, more preferably 75 to 90%.
  • the crystals of the crystal of the L-isoamylylspiramycin III compound in the preparation containing the crystal of the L-isovalerylspiramycin III compound of the present invention have a weight percentage of 10 to 90%, preferably 50 to 90%, more preferably 75 to 90%.
  • the oral preparation of the present invention may contain usual excipients such as a binder, a filler, a diluent, a compressed tablet, a lubricant, a disintegrant, a coloring agent, a flavoring agent, and a humectant, and if necessary, a tablet Carry out the coating.
  • suitable fillers include cellulose, mannitol, lactose and other similar fillers.
  • Suitable disintegrants include starch, polyvinylpyrrolidone and starch derivatives such as sodium starch glycolate.
  • Suitable lubricants include, for example, magnesium stearate.
  • Suitable pharmaceutically acceptable wetting agents include sodium lauryl sulfate.
  • the solid oral preparation of the present invention can be prepared by a usual method such as mixing, filling, tableting or the like.
  • the oral liquid preparation of the present invention may be in the form of, for example, an aqueous or oily suspension, solution, emulsion, syrup or elixir, or may be a dry product which may be formulated with water or other suitable carrier before use.
  • Such liquid preparations may contain conventional additives such as suspending agents such as sorbitol, syrup, methylcellulose, gelatin, hydroxyethylcellulose, carboxymethylcellulose, aluminum stearate or hydrogenated edible fats.
  • Emulsifiers such as lecithin, sorbitan monooleate or gum arabic; nonaqueous vehicles (which may include edible oils), such as almond oil, tiller coconut oil, oily esters of esters such as glycerol, propylene glycol or ethanol; A preservative such as p-hydroxybenzyl or propylparaben or sorbic acid, and if desired, may contain conventional flavoring or coloring agents.
  • the injection of the present invention may contain any usual pharmaceutically acceptable carrier and/or excipient, stabilizer, antioxidant, complexing agent, and may also contain a pharmaceutically acceptable preservative, a buffer or a local anesthetic.
  • the preparation method is prepared by a usual method.
  • the pharmaceutically acceptable carrier used in the preparation of the present invention is selected from the group consisting of: mannitol, sorbitol, sodium metabisulfite, sodium hydrogen sulfite, sodium thiosulfate, cysteine hydrochloride, thioglycolic acid, methionine, vitamin C, EDTA Disodium, EDTA calcium sodium, monovalent alkali metal carbonate, acetate, phosphate or its aqueous solution, hydrochloric acid, acetic acid, sulfuric acid, phosphoric acid, amino acid, sodium chloride, potassium chloride, sodium lactate, xylitol, Maltose, glucose, fructose, dextran, glycine, starch, sucrose, lactose, mannitol, silicon derivatives, cellulose and its derivatives, alginate, gelatin, polyvinylpyrrolidone, glycerol, Tween-80, Agar, calcium carbonate, calcium hydrogencarbonate, surfact
  • the L-isovalerylspiramycin I, L-isoamylylspiramycin II, and L-isoamylylspiramycin III of the present invention have good antibacterial properties. According to modern pharmacological studies, due to the difference in stereoselectivity of the enantiomers of the drug, the affinity with each receptor is different, resulting in a great difference in pharmacological action. Therefore, the L-isovalerylspiramycin I of the present invention, left-handed Isovalerylspiramycin II, L-isovalerylspiramycin in has strong pharmacological activity;
  • the intracellular molecules of different crystal forms differ in their spatial configuration, conformation and arrangement, so that their solubility is significantly different, which leads to different dissolution rates of the preparation in the body, which directly affects the absorption, distribution and excretion of the preparation in the body. And metabolism, and ultimately the difference in clinical efficacy due to different bioavailability.
  • the present invention compares the therapeutic effects of the prepared crystals of L-isovalerylspiramycin I, II or III with L-Isoamylspiramycin I, II or III, and finds the L-aspartic acid Spirulina prepared by the present invention.
  • the effect of the crystal of I, II or III is better than that of L-isoamyl spiromycin I, II or ⁇ ;
  • An injection containing a single component of L-isovalerylspiramycin I, II or III of the present invention a single component injection containing crystals of L-isovalerylspiramycin I, II or III, which is a clinically critical patient Patients who are not orally administrable provide the possibility of a quick and acceptable dosage form;
  • the quality standard is easy to control and is suitable for large-scale industrial production.
  • Figure 1 is a chromatogram obtained by UV-trigger collection of L-isoamylylspiramycin I, II and III in Example 1;
  • Example 2 is a graph showing changes in pH value of a fermentation process according to Example 1 of the present invention.
  • Figure 3 is a graph showing the change of the pH value of the fermentation process with time in Example 2 of the present invention.
  • Figure 4 is a graph showing the pH value of the fermentation process as a function of time in Example 3 of the present invention.
  • Figure 5 is an X-ray powder diffraction pattern of L-isovalerylspiramycin I of the present invention
  • Figure 6 is an X-ray powder diffraction pattern of L-isovalerylspiramycin II of the present invention.
  • Figure 7 is an X-ray powder diffraction pattern of L-isovalerylspiramycin III of the present invention.
  • the following specific embodiments are merely illustrative of the invention and are not intended to limit the scope of the invention.
  • Fermentation containing 4 "- isovaleryl acylase helicase gene induces the production of bacterial clones strain WSJ-195, containing soybean meal 2%, glucose 1% starch 3%, CaCO 3 0.5%, On a slant medium of 0.4% NaCl and 2% agar, cultured for 8-15 days at pH 6.5-7.5 and temperature 28-38 °C, inoculated with soybean meal 1.5%, starch 3.0%, NaCl 0.4.
  • the pH value of the solution is strictly controlled, and the fermentation is carried out at a pH of 6.0 to 9.0, and the fermentation is carried out at a pH of 6.0 to 9.0, and the fermentation time is 120 h, and the pH is adjusted.
  • the value change curve with time is in three consecutive stages.
  • step (2) Extraction of biological fermentation broth: The obtained fermentation broth is treated with aluminum sulfate in step (1) to obtain a filtrate, adjusted to pH 8.5, extracted with butyl acetate, and the butyl acetate extract is free of saline and 1% NaH 2 Wash P0 4 separately, then extract with water of pH 2.0, obtain the aqueous phase extract, adjust the pH to 4.5, volatilize and remove the residual butyl acetate to obtain the water extract, filter, adjust the pH of the filtrate to 8.5, precipitate, and pour the water with purified water. Wash, get wet, dry, get levocomycin;
  • Injection concentration 0.5g/mL
  • the sample of isopyryl spiromycin I was collected according to the retention time of L-isovalerylspiramycin II for 43.34min, according to L-isoamylylspiramycin
  • the sample was collected at a retention time of 48.009 min; the acetonitrile was removed by rotary evaporation, and then extracted with 1 time of ethyl acetate.
  • the ethyl acetate in the extract was removed by rotary evaporation to obtain a paste sample; the obtained sample was re-dissolved with petroleum ether.
  • (1) Biological fermentation a Helicobacter pylori-producing strain WSJ-195 containing a 4"-prenyltransferase gene, containing soybean meal 2%, glucose 1%, starch 3%, CaC03 0.5%, NaCl 0.4% and agar 2% slant culture medium, incubated at pH 7.2, temperature 32 ° C for 12 days, inoculated with soybean meal 1.5%, starch 3.0%, NaCl 0.4%, CaC03 0.5%, fish The seed medium of peptone 0.3% and KH2P04 0.05% was cultured at pH 7.2 and 27 ° C for 70 hours, and was seeded with glucose 0.5%, starch 6.0%, yeast powder 0.5%, fish meal 2.0 at 12% inoculum.
  • Injection concentration 0.5g/mL; Detection wavelength: 231nm;
  • the L-isovalerylspiramycin I sample was collected according to the retention time of L-isovalerylspiramycin I at RT 44.759 min, and the sample was collected according to the retention time of L-Isoamylspiramycin II at 43.34 min, according to L-isovaleryl The sample was collected by the retention time of spiramycin III at 48.009 min;
  • Culture fermentation The spiromycin producing strain WSJ-195 containing the 4"-isovalyl transferase gene is cultured on a slant medium, inoculated into a seed medium, and then cultured. It is inoculated into the fermentation medium, and the fermentation process is controlled by glucose and citric acid. The fermentation is carried out under the condition of pH 6.0 ⁇ 7.5, the fermentation time is 115h, and the pH value changes with time in three consecutive stages.
  • Injection concentration 0.5g/mL
  • Isovalerylspiramycin I 100 mg is mixed with an equimolar amount of adipic acid, and dissolved in 1 to 5 ml of distilled water to obtain a pale yellow clear solution having a pH of 4.6 to 5.6.
  • Isovalerylspiramycin I 100 mg is mixed with an equimolar amount of citric acid, and dissolved in 1 to 5 ml of distilled water to obtain a pale yellow clear solution having a pH of 4.6 to 5.6.
  • Isoamylspiramycin I 100 mg is uniformly mixed with an equimolar amount of maleic acid, and dissolved in 1 to 5 ml of distilled water to obtain a pale yellow clear solution having a pH of 4.6 to 5.6.
  • L-isovalerylspiramycin I 100 mg is uniformly mixed with an equimolar amount of citric acid, and dissolved in 1 to 5 ml of distilled water to obtain a pale yellow clear solution having a pH of 4.6 to 5.6.
  • L-isovalerylspiramycin I 100 mg is uniformly mixed with an equimolar amount of maleic acid, and dissolved in 1 to 5 ml of distilled water to obtain a pale yellow clear solution having a pH of 4.6 to 5.6.
  • L-isovalerylspiramycin I 100 mg is uniformly mixed with an equimolar amount of citric acid, and dissolved in 1 to 5 ml of distilled water to obtain a pale yellow clear solution having a pH of 4.6 to 5.6.
  • Preparation process Weigh the appropriate amount of starch, dilute to 15% concentration, heat to a paste, to make a binder; main material can be lignin, adjuvant starch, low-substituted hydroxypropyl cellulose, sodium carboxymethyl starch, hard Magnesium citrate was passed through a 100 mesh sieve, and the required main ingredients and auxiliary materials were weighed according to the prescription amount; L-isovalerylspiramycin I, starch, and low-substituted hydroxypropyl cellulose were mixed well, and then 15% starch concentration was used.
  • main material can be lignin, adjuvant starch, low-substituted hydroxypropyl cellulose, sodium carboxymethyl starch, hard Magnesium citrate was passed through a 100 mesh sieve, and the required main ingredients and auxiliary materials were weighed according to the prescription amount; L-isovalerylspiramycin I, starch, and low-substituted hydroxypropyl cellulose were mixed well
  • Preparation process The main ingredient L-isovalerylspiramycin I and the medicinal starch of the auxiliary materials are separately weighed according to the process formula amount, and then mixed into the mixer for 1.5 ⁇ 2 hours; the data obtained by sampling and detecting content should be basically the same as the theoretical data. Consistent (each capsule has a weight of about 0.105g), and the qualified medicinal No. 3 capsules and the mixed materials to be loaded are filled according to the operation requirements of the automatic capsule machine, filled into the loader for filling, and will be filled.
  • Example 11 According to the method of Example 11, the tested core piece is placed in a sugar coating pan, the prepared syrup (concentration is 65 ⁇ 70%) is slowly put into the pot, and then the temperature is raised to 40. About °C, add appropriate amount of talcum powder, blast dry for 25-30 minutes, repeat the coating layer several times, then carry out the sugar coating layer for 15 ⁇ 20 minutes to coat the sugar coating layer, and then apply the desired color tone after the sugar coating layer is flattened. Coating the coating layer, adjust the color paste, put it into the syrup and mix it into the pot, about 15 ⁇ 20 minutes each time, stir it several times.
  • Example 13 L-Isovalylspiramycin I Syrup (calculated in 1000 bags)
  • Citric acid 0.5%) (tannic acid) 1.5g Total weight of sucrose - other raw materials
  • the total weight is about 50g
  • Preparation process core preparation According to the operation of Example 5, the core piece that meets the requirements is placed in a sugar coating pan, and the bottom coat layer is coated with 60-70% syrup and talc powder, and then coated with a barrier layer. Add 10% corn mash alcohol solution, blow dry for 10 15 minutes, then use diethyl phthalate, acetone, phthalic acid acetate, alcohol solution, ie enteric solution into the pot, roll method 10 15 minutes to dry 2 to 3 times. After passing the test, the sugar coating was carried out as in Example 13.
  • Example 15 L-Isovalylspiramycin I Gastrointestinal Tablets (calculated by 1000 tablets)
  • Example 16 Core preparation According to the operation of Example 11, the core piece which meets the requirements is placed in a high-efficiency coating machine, and then the standard coating powder (including fat-soluble and water-soluble) is prepared into a coating liquid as required. The coating liquid is placed in a colloid mill and pulverized and filtered for use. Preheat the high-efficiency coating pan with the core, the speed is controlled at 5 ⁇ 10 rpm, the temperature is controlled at 45 ⁇ 60 °C, and the coating liquid is sprayed into the pot with an aerosol nozzle (>300 mesh). Then, dry for 25 ⁇ 35 minutes, repeat 8-12 times, until the package is even, and dry and pass the test.
  • Example 16 L-Isovalylspiramycin I Granules (calculated in 1000 bags)
  • L-isovalerylspiramycin I original powder, powdered sugar, dextrin over 120 mesh sieve, according to the prescription amount of L-isovalerylspiramycin I, powdered sugar, dextrin mixed evenly, will be evenly mixed
  • the above materials were made of soft material with 5% PVP-K30 cement, and the granulated granules were granulated at 70 ° C for drying and granulation.
  • Example 17 Preparation of L-isovalerylspiramycin
  • Isovalerylspiramycin II lOOmg is uniformly mixed with an equimolar amount of adipic acid, and dissolved in 1 to 5 ml of distilled water to obtain a pale yellow clear solution having a pH of 4.6 to 5.6.
  • the isovalerylspiramycin II lOOmg is uniformly mixed with an equimolar amount of citric acid, and dissolved in 1 to 5 ml of distilled water to obtain a pale yellow clear solution having a pH of 4.6 to 5.6.
  • the L-isovalerylspiramycin II lOOmg is uniformly mixed with an equimolar amount of citric acid, and dissolved in 1 ⁇ 5 ml of distilled water to obtain a pale yellow clear solution having a pH of 4.6 to 5.6.
  • Preparation process Weigh the appropriate amount of starch, dilute to 15% concentration, heat to a paste, to make a binder; main material can be lignin, adjuvant starch, low-substituted hydroxypropyl cellulose, sodium carboxymethyl starch, hard Magnesium citrate was passed through a 100 mesh sieve, and the required main ingredients and auxiliary materials were weighed according to the prescription amount; L-isovalerylspiramycin II, starch, and low-substituted hydroxypropyl cellulose were mixed well, and then 15% starch concentration was used.
  • main material can be lignin, adjuvant starch, low-substituted hydroxypropyl cellulose, sodium carboxymethyl starch, hard Magnesium citrate was passed through a 100 mesh sieve, and the required main ingredients and auxiliary materials were weighed according to the prescription amount; L-isovalerylspiramycin II, starch, and low-substituted hydroxypropyl cellulose were mixed well
  • Preparation process The main ingredient L-isovalerylspiramycin II and the medicinal starch of the auxiliary materials are respectively weighed according to the process formula amount, and then mixed into the mixer for 1.5 ⁇ 2 hours; the data obtained by sampling and detecting content should be basically the same as the theoretical data. Consistent (each capsule has a weight of about 0.105g), and the qualified medicinal No. 3 capsules and the mixed materials to be loaded are filled according to the operation requirements of the automatic capsule machine, filled into the loader for filling, and will be filled.
  • Isovalerylspiramycin III lOOmg is uniformly mixed with an equimolar amount of maleic acid, and dissolved in 1 to 5 ml of distilled water to obtain a pale yellow clear solution having a pH of 4.6 to 5.6.
  • the L-isovalerylspiramycin III lOOmg is uniformly mixed with an equimolar amount of maleic acid, and dissolved in 1 to 5 ml of distilled water to obtain a pale yellow clear solution having a pH of 4.6 to 5.6.
  • Preparation process The main ingredient L-isovalerylspiramycin III and the medicinal starch of the auxiliary materials are respectively weighed according to the process formula amount, and then mixed into the mixer for 1.5 ⁇ 2 hours; the data obtained by sampling and detecting content should be basically the same as the theoretical data. Consistent (each capsule has a weight of about 0.105g), and the qualified medicinal No. 3 capsules and the mixed materials to be loaded are filled according to the operation requirements of the automatic capsule machine, filled into the loader for filling, and will be filled.
  • the total weight is about 50g
  • the white powdery solid of L-isovalerylspiramycin I prepared in Example 1 was further prepared into crystals.
  • Example 1 The solid solution of the L-isovalerylspiramycin I obtained in Example 1 is first dissolved in a mixed solvent of ethyl acetate, absolute ethanol and anhydrous acetone, and the mixed solvent used is ethyl acetate, absolute ethanol and The volume ratio of anhydrous acetone is 1:10:1;
  • the X-ray powder obtained by the preparation of the L-isovalerylspiramycin I crystal compound obtained by Cu- ⁇ ray diffraction is 7.6°, 8.0°, 10.0°, 11.4°, 16.4°, 17.0°, 17.5° at 2 ⁇ . , 17.9°, 19.5°, 22.7°, 23.7°, and 24.4° show characteristic peaks,
  • the white powdery solid of L-isovalerylspiramycin I prepared in Example 1 was further prepared into crystals.
  • the solid solution of the L-isovalerylspiramycin I compound is dissolved in a mixed solvent of ethyl acetate, absolute ethanol and anhydrous acetone, and the volume ratio of ethyl acetate, absolute ethanol and anhydrous acetone in the mixed solvent is used. For 1: 10: 1;
  • Example 30 Preparation of L-isovalerylspiramycin I Crystal Compound Injection Powder Injection
  • Example 31 Preparation of Tablets of L-Isoamylpyroxymycin I Crystalline Compound
  • Example 32 A tablet of the L-isovalerylspiramycin I crystal compound prepared in Example 27 was prepared, and the preparation method was the same as before.
  • Example 32 A tablet of the L-isovalerylspiramycin I crystal compound prepared in Example 27 was prepared, and the preparation method was the same as before.
  • the white powdery solid of L-isovalerylspiramycin II prepared in Example 1 was further prepared into crystals.
  • the solid solution of the L-isovalerylspiramycin II compound obtained in Example 1 is first dissolved in a mixed solvent of methanol, anhydrous ethanol and anhydrous acetone, and the mixed solvent is anhydrous methanol, anhydrous acetone and no
  • the volume ratio of water ethanol is 1:10:1;
  • the X-ray powder obtained by the preparation of the L-isoprevalylspiramycin II crystal compound was measured by Cu- ⁇ ray to be 10.0°, 11.6°, 16.4°, 17.3°, 19.1°, 21.2°, 22.1° at 2 ⁇ . Characteristic peaks are shown at 22.7°, 26.4°, 26.9°, 27.5° and 31.5°, and the X-ray powder diffraction pattern thereof is shown in Fig. 6.
  • the white powdery solid of L-isovalerylspiramycin II prepared in Example 1 was further prepared into crystals.
  • the L-isovalerylspiramycin II compound solid is dissolved in a mixed solvent of no methanol, absolute ethanol and anhydrous acetone, and the volume ratio of anhydrous methanol, anhydrous acetone and absolute ethanol in the mixed solvent used is 1 : 10: 0.8;
  • the white powdery solid of L-isovalerylspiramycin II prepared in Example 2 was further prepared into crystals.
  • the solid solution of the L-isovalerylspiramycin II compound is first dissolved in a mixed solvent of methanol, anhydrous ethanol and anhydrous acetone.
  • the volume ratio of anhydrous methanol, anhydrous acetone and absolute ethanol in the mixed solvent is 1 : 5: 1;
  • the white powdery solid of L-isovalerylspiramycin II prepared in Example 3 was further prepared into crystals.
  • the solid solution of the L-isovalerylspiramycin II compound is first dissolved in a mixed solvent of methanol, anhydrous ethanol and anhydrous acetone.
  • the volume ratio of anhydrous methanol, anhydrous acetone and absolute ethanol in the mixed solvent is 1 : 3: 1;
  • the white powdery solid of L-isovalerylspiramycin II prepared in Example 3 was further prepared into crystals.
  • the solid solution of the L-isovalerylspiramycin II compound is first dissolved in a mixed solvent of methanol, anhydrous ethanol and anhydrous acetone.
  • the volume ratio of anhydrous methanol, anhydrous acetone and absolute ethanol in the mixed solvent is 1 : 6: 0.8;
  • Example 34 The L-isopyroylspiramycin II crystal compound prepared in Example 34 was prepared by injection of water for injection, and the preparation method was the same as before.
  • Example 38 Preparation of a water injection for injection of L-isovalerylspiramycin II crystal compound
  • Example 39 Preparation of L-isovalerylspiramycin II Crystal Compound Injection Powder Injection
  • Example 40 Preparation of L-isovalerylspiramycin II Crystal Compound Injection Powder Injection
  • Example 41 Preparation of tablets of L-isovalerylspiramycin ruthenium crystalline compound
  • Example 42 Preparation of a capsule of a compound of L-isovalerylspiramycin II crystal
  • Capsules were prepared by taking the L-isovalerylspiramycin II crystal compound prepared in Example 32, and the preparation method was the same as before.
  • Example 43 Preparation of granules of L-isovalerylspiramycin II crystal compound
  • Example 44 The granules were prepared by using the L-isovalerylspiramycin II crystal compound prepared in Example 33, and the preparation method was the same as before.
  • Example 44 The granules were prepared by using the L-isovalerylspiramycin II crystal compound prepared in Example 33, and the preparation method was the same as before.
  • the white powdery solid of L-isovalerylspiramycin III prepared in Example 1 was further prepared into crystals.
  • the solid solution of the L-isovalerylspiramycin III compound obtained in Example 1 is first dissolved in a mixed solvent of no methanol, absolute ethanol and anhydrous acetone, and the mixed solvent is anhydrous methanol, absolute ethanol and no The volume ratio of water acetone is 1:10:1;
  • the X-ray powder obtained by the preparation of the L-isovalerylspiramycin III crystal compound obtained by Cu- ⁇ ray diffraction was 8.0°, 10.0°, 11.2°, 11.7°, 16.4°, 19.1°, 19.6° at 2 ⁇ . Characteristic peaks are shown at 20.0°, 21.4°, 22.9°, 23.6° and 29.4°, and their X-ray powder diffraction patterns are shown in Fig. 7.
  • the white powdery solid of L-isovalerylspiramycin III prepared in Example 2 was further prepared into crystals.
  • the L-isovalerylspiramycin in compound solid is first dissolved in a mixed solvent of no methanol, absolute ethanol and anhydrous acetone.
  • the volume ratio of anhydrous methanol, absolute ethanol and anhydrous acetone in the mixed solvent is 1 : 10: 1;
  • the white powdery solid of L-isovalerylspiramycin III prepared in Example 2 was further prepared into crystals.
  • the L-isovalerylspiramycin in compound solid is first dissolved in a mixed solvent of no methanol, absolute ethanol and anhydrous acetone.
  • the volume ratio of anhydrous methanol, absolute ethanol and anhydrous acetone in the mixed solvent is 1 : 5: 0.8;
  • the white powdery solid of L-isovalerylspiramycin III prepared in Example 3 was further prepared into crystals.
  • the L-isovalerylspiramycin in compound solid is first dissolved in a mixed solvent of no methanol, absolute ethanol and anhydrous acetone.
  • the volume ratio of anhydrous methanol, absolute ethanol and anhydrous acetone in the mixed solvent is 1 : 2: 1;
  • the water-injection injection was prepared by taking the L-isovalerylspiramycin III crystal compound prepared in Example 44, and the preparation method was the same as before.
  • Example 49 Preparation of L-isovalerylspiramycin III Crystal Compound Injection Powder Injection
  • Example 50 Preparation of a Tablet of L-Isoamylpyroxymycin III Crystal Compound
  • a tablet was prepared by using the L-isovalerylspiramycin III crystal compound prepared in Example 46, and the preparation method was the same as before.
  • Example 51 Preparation of a Capsule of L-Isoamylpyroxymycin III Crystal Compound
  • mice and rats were observed for 2 days before the test, and no abnormalities were observed in the animals. Mice and rats were fasted overnight before the test. According to the results of the pre-test, the test drugs were administered to the mice and rats respectively at a dose of 4000 mg/kg, and no animal died. The test was administered to mice and rats at 4000 mg/kg. The mice were given 100 mg/ml and the gavage capacity was 0.6-0.8 ml/head; the rats were 173 mg/ml, and the gavage capacity was 0.8-1.0 ml. /50 grams. Animal toxicity and death were observed for one week after intragastric administration.
  • Test dose (mg kg) Number of animals (only) Number of dead animals (only) Mortality (%) LD 50 (mg/kg) L-isoamyl I 4500 20 15 >4500
  • Test method Preparation of infectious bacterial solution: Take the test bacterial solution stored in the -80 °C refrigerator and put it at room temperature for about 1 hour, then inoculate 0.1 ml of bacterial solution by Streptococcus pneumoniae, Streptococcus pyogenes and Enterococcus, respectively, in 2 ml of MH soup.
  • Staphylococcus aureus was also inoculated with 0.1 ml of bacterial solution in 2 ml of MH soup as described above, placed in a 37 ° C incubator for 18 h after the original bacterial solution, with 5% gastric membrane The original bacterial solution was diluted to infect the animal with 100% lethal bacteria as the infected bacterial solution.
  • L-isovalerylspiramycin I prepared in Example 1
  • L-isoamylyl spiromycin I crystal prepared in Example 27
  • mice After the mice were intraperitoneally injected with 0.5 ml of lethal bacteria, the animals showed signs of decreased activity, lying down, and hair pine. After infection, each mouse was intragastrically administered with 0.2 ml at 0.5 ⁇ 6h without any adverse reactions. Observing the number of animal deaths on the 7th day, the Bliss program was used to calculate the half protective dose (ED 5 ) of each drug after infection in mice, and the protective effect was compared with each drug.
  • ED 5 half protective dose
  • Streptococcus 102 Azithromycin 0.5 159.06 Acetylspiramycin 0.5 227.07 Erythromycin 0.5 361.01 Isoprene I 0.12 57.25 Isoprene I crystal 0.12 54.58 Purulent Corylmycin 0.25 68.48
  • Streptococcus 119 Azithromycin 0.25 68.48 Acetylspiramycin 0.5 117.53 Erythromycin 0.5 233.72
  • Table 4 Comparison of five antibiotics in the treatment of intestinal infection of Enterococcus and Staphylococcus aureus in mice
  • Acetylspiramycin 1 66. 63
  • Azithromycin 0.12 18.29 Acetylspiramycin 0.5 66.96 Erythromycin 1 85.08 Isovaleryl 0.03 8.98 Isoprenoid crystal 0.03 8.09 Colimycin 0.03 10.06 Streptococcus pneumoniae 18 9.6x l0 4
  • Streptococcus 772 Azithromycin 0.25 46.89 Acetylspiramycin 0.25 98.11 Erythromycin 0.5 101.33 Isoprene 0.12 63.21 Isoprenoid crystal 0.12 58.00 Purulent 7.8x l0 4 Corytidine 0.25 87.84 Streptococcus 102 Azithromycin 0.5 159.06 Acetylspiramycin 0.5 227.07 Erythromycin 0.5 361.01 Isopentose 0.12 52.77 Isoprenoid II crystal 0.12 49.94 Purulent 4.9x l0 4 Coriomycin 0.25 68.48 Streptococcus 119 Azithromycin 0.25 68.48 Acetylspiramycin 0.5 117.53 Erythromycin 0.5 233.72 Table 6: Comparison of five antibiotics in the treatment of intestinal infection of Enterococcus and Staphylococcus aureus in mice
  • Acetylspiramycin 1 66. 63
  • the efficacy of the isovalerylspiramycin II crystal compound on 12 strains of bacteria in mice is shown in Table 13 and Table 14. It shows a good protective effect and is superior to the isovalerylspiramycin II compound.
  • Example 1 The L-isoprevalylspiramycin III crystal compound prepared in Example 1 and the L-isoamylyl spiromycin III crystal compound prepared in Example 45 were tested in the same manner as in Experimental Example 2.
  • Azithromycin 0.12 18.29 Acetylspiramycin 0.5 66.96 Erythromycin 1 85.08 Isoprene III 0.03 8.98 Isoprene crystal 0.03 8.68 Colimycin 0.03 10.06 Streptococcus pneumoniae 18 9.6X10 4
  • Acetylspiramycin 1 66.63
  • Test method using the plate two-fold dilution method: the molten agar medium is quantitatively poured into a plate containing a series of drug concentrations and mixed with the drug solution (streptococci and enterococci added 5% defibrinated sheep blood to make a blood culture base, flu Add 7% to the bacillus, and add 7% defibrinated sheep blood to the gonococcal culture medium to make chocolate broth. After solidification, dilute the fresh culture broth to 10 6 CFU/mL and inoculate with a multi-point inoculation device.
  • agar containing antibacterial drugs cultured at 37 ° C for 18 h; gonococcus was incubated in a 5% C0 2 incubator for 24 h; Legionella was cultured in a 5% C0 2 incubator for 48 h; anaerobic bacteria were placed in an anaerobic chamber Anaerobic culture at 37 ° C for 48 h.
  • the lowest concentration at which the antibacterial agent inhibits bacterial growth is the minimum inhibitory concentration (MIC) and the drug MIC 5 is calculated. And MIC 9 . Compare with the control drug.
  • HEp-2 and McCoy cell lines were planted in 96-well cell culture plates (Costar), and cultured at 37 ° C, 5 % CO 2 for 48 hours to become monolayer cells.
  • centrifuge 96 3 ⁇ 4ffl cell culture 3 ⁇ 4 using Beckman-Coulter J-6MC centrifuge, centrifugal force xl500g, centrifugation temperature 35 °C, centrifugation time 60 minutes.
  • Chlamydia and Chlamydia pneumoniae susceptibility test plates were added with purified anti-Chlamydia trachomatis monoclonal antibody (N54 clone) and Chlamydia pneumoniae monoclonal antibody (P33 clone), 50 ⁇ 1/well, 37°C wet box Incubate for 30 minutes, then wash the plate
  • rabbit anti-mouse fluorescent antibody (Sigma) was added, 50 ⁇ l/well, and the plates were incubated and washed in the same manner and under the conditions.
  • the glycerin, ⁇ /well was added and the results were observed under a Nikon inverted fluorescence microscope (Diaphot-200).
  • Table 10 Comparison of the minimum inhibitory concentrations of five macrolide antibiotics against trachoma and Chlamydia pneumoniae in vitro (MIC) Isoprene ic is carried out by isoprene lie to perform isoprene m spirulina acetyl helminth erythromycin azithromycin Example 1 prepared) Example 1 prepared) Example 1 prepared by (AT-SPM) (EM) (AM Chlamydia trachomatis 0.25 g/ml 0.25 g/ml 0.25 g/ml 0.25 g/ml 0.25 g/ml 4 g/ml
  • Chlamydia trachomatis 0.25 g/ml 0.25 g/ml 0.25 g/ml 0.25 g/ml 0.25 g/ml 2 g/ml 0.25 g/ml DUW-3/Cx
  • isovaleryl spiromycin I, II, III is superior to colimycin, erythromycin, azithromycin, acetylspiramycin (MIC 4 g/ml) Poor.
  • isoprene II and erythromycin are most sensitive in vitro, MIC ⁇ 0.016 g / ml, azithromycin and colimycin, isoprene I, isoprene III are more sensitive; acetylspiramycin ( The MIC is 0.5 g/ml) is poor.
  • Test method U-PPLO 0.8ml was added to each well of a sterile 12-well cell culture plate (0.9 ml was added to the control well of the culture solution, and 1.0 ml was added to the control well of the medium).
  • the above holes are mixed, and the culture plate is sealed with a tape and placed in a 37 ° C incubator.
  • the MIC was measured against the Ureaplasma urealyticum and Mycoplasma pneumoniae strains, and four measurements were performed. The results are as follows:
  • the MIC value of isoprene I is 0.025 ⁇ 0.125 g/ml
  • the MIC value of isoprene II is 0.025 ⁇ 0.125 g/ml
  • the MIC value of isoprenic III is 0.025 ⁇ 0.125 g/ml
  • Acute acute respiratory infections caused by L-isovalerylspiramycin I, II, III (prepared in Example 1) and azithromycin for sensitive bacteria include acute bacterial pharyngitis, suppurative tonsillitis, acute tracheal-bronchitis, mild pneumonia Efficacy and safety.
  • a multicenter, randomized, double-blind, double-dummy controlled trial was used.
  • the five clinical hospitals were conducted simultaneously according to a unified clinical trial program.
  • Acute respiratory infections caused by sensitive bacteria include acute bacterial pharyngitis, acute suppurative tonsillitis, acute tracheal-bronchitis, mild pneumonia and acute sinusitis;
  • the bacterial clearance rates of isoprenoid I, isoprene II, isoprene III, and azithromycin were: 97.56%, 97.56%, 97.56%, and 92.86%, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Description

说 明 书 左旋异戊酰螺旋霉素 I、 II或 III, 及其制剂、 制备方法及应用 技术领域
本发明涉及一种大环内酯类基因工程新抗生素, 特别是左旋异戊酰螺旋霉素 I、 II或 III, 其晶体、 其 药用制剂、 制备方法以及在抗感染疾病药物中的应用。 背景技术
大环内酯类抗生素在临床上占有重要地位, 因其对革兰氏阳性菌和支原体有很好的活性, 对部分革兰 氏阴性菌也有作用, 且对一些日趋流行的弓形体、 军团菌等难以控制的病原体有良好的抗菌活性和组织渗 透性, 口服吸收快, 不良反应少, 对肝、 肾功能基本无影响, 还有潜在的免疫调节作用, 九十年代被认为 在治疗成人呼吸道感染上将会与 β-内酰胺类药物竞争。
手性 (Chirality) 是三维物体的基本属性, 是自然界的本质属性之一。 作为生命活动重要基础的生物 大分子, 如蛋白质、 多糖、 核酸和酶等, 几乎全是手性的, 这些大分子在体内往往具有重要的生理功能。 手性药物 (chiral drug) 是指药物分子结构中引入手性中心后, 得到的一对互为实物与镜像的对映异构体。 这些对映异构体的理化性质基本相似,仅仅是旋光性有所差别,分别被命名为 R-型(右旋)或 S-型(左旋)、 外消旋。 而近 20年以来随着药学研究工作的深入, 已表明药物对映体的立体选择性 (stereoselectivity) 的 不同, 使其与各受体的亲和力不同而导致药理作用的极大差异。 人们将手性药物中活性高的对映体称为优 对映体(Eutomer) ; 而活性低的或无活性的对映体称为劣对映体(Distomer)。 在许多情况下, 劣对映体不 仅没有药效, 而且还会部分抵消优对映体的药效, 有时甚至还会产生严重的毒副反应, 表现出药效差异的 复杂性, 也决定了单一对映体的治疗指数与其消旋体有着相当的差异, 如熟知的 DL- (+- ) 合霉素的疗效 仅为 D ( - )氯霉素的一半; 普萘洛尔 (propranolol) L-异构体的药物活性比 D-异构体大 100倍; (-)美沙 酮是强止痛剂, 而(+ )无效。 而且毒性也存在差别, 如沙立度胺(thalidomide) 的两个对映体对小鼠的镇 静作用相近, 但只有 S ( -)异构体及其代谢物才有胚胎毒及致畸作用; 氯胺酮为一有特点的广泛应用的麻 醉和镇痛药, 但存在产生幻觉等副作用, 研究发现, S (+) 体作用比 R (- ) 体强 3〜4倍, 而毒副作用明 显与后者有关。 手性药物疗效的极大差异促进了手性药物的研究开发以及分离分析的发展。 利用"手性"技 术,人们可以有效地将药物中不起作用或有毒副作用的成分剔除,生产出具有单一定向结构的纯手性药物, 从而让药物成分更纯, 在治疗疾病时疗效更快、 疗程更短。 因此, 手性药物的研究目前已成为国际新药研 究的新方之一, 各国政府和各大医药公司纷纷投入巨资, 在手性药物制剂、 手性原材料和手性中间体等领 域进行研究开发, 抢占世界手性制药市场。 此外, 随着手性技术的不断改进, 尤其是液相色谱法的迅速广 泛应用, 积极地推动了手性药物对映体的分离分析和测定。 单一对映体手性药物已得到了广泛的应用。
可利霉素是利用基因工程技术研制的新型螺旋霉素衍生物, 原命名为必特螺旋霉素, 曾用名为生技霉 素 [专利号: ZL97104440.6 ]。根据"中国药品通用名称命名原则", 经国家药典委员会技术审核及研究确定, 必特螺旋霉素的中文通用名称更改为可利霉素,英文名称为 Carrimyci 可利霉素的化学结构是以 4"-异戊 酰螺旋霉素为主成分,包括 4"-异戊酰螺旋霉素 I、 II、 III,其次还含有约 6种 4"-位羟基酰基化的螺旋霉素, 故其化学名统称为 4"-酰化螺旋霉素。 可利霉素主成分
Figure imgf000003_0001
( 1 )
其中: 异戊酰螺旋霉素 I中的 R选自 H;
异戊酰螺旋霉素 II中的 R选自 COCH3
异戊酰螺旋霉素 ΠΙ中的 RCOCH2CH3
可利霉素为 16元环大环内酯类抗生素, 其作用机制是通过与细菌核糖体结合而抑制其蛋白质合成。 药代动力学研究结果表明, 可利霉素中具活性的有效组分主要为异戊酰螺旋霉素 I、 II、 III。 可利霉 素进入体内后很快代谢为螺旋霉素, 以母体药物异戊酰螺旋霉素 I、 II、 III和活性代谢物螺旋霉素 I、 II、 III 的 AUC。— t总和计算, 其口服绝对生物利用度平均为 91.6%。 文献报道, 螺旋霉素人体口服绝对生物利用 度为 30~40% (Frydman AM et al J Antimicrob Chemother. l988,22(suppl B):93-103 )。 说明异戊酰螺旋霉素的 结构明显改善了活性成分螺旋霉素的生物利用度。 单次服药可利霉素消除较慢, T1/2在 23~27小时之间。
体外试验结果表明, 可利霉素对革兰氏阳性菌、 尤其对某些耐药菌(如耐 β-内酰胺金葡菌、 耐红霉素 金葡菌等)有效, 与同类药无明显的交叉耐药性。 同时它对支原体、 衣原体有很好的抗菌活性, 对部分革 兰氏阴性菌也有抗菌活性, 且对弓形体、 军团菌等有良好抗菌活性和组织渗透性, 还有潜在的免疫调节作 用。 其体内抗菌活性明显优于体外 (ZL200310122420.9 )。 临床研究表明, 每日服用可利霉素片剂 200mg~400mg 5~7天, 可适用于治疗化脓性链球菌引起的急性细菌性咽炎、 急性化脓性扁桃体炎; 敏感细 菌引起的细菌性鼻窦炎、 急性支气管炎; 肺炎链球菌、 流感嗜血杆菌以及肺炎支原体所致的轻症肺炎; 支 原体、衣原体引起的非淋球菌性尿道炎; 敏感细菌引起的皮肤软组织感染、牙周炎、 中耳炎等感染性疾病。 其总有效率为 92.68%。
临床研究证明, 可利霉素是一个口服安全有效的抗生素。 然而, 由于可利霉素本身是经过发酵得到 的产品, 为多组分药物, 因此多组分的进一步分离和提纯很困难。 目前建立的高效液相色谱法, 能 将可利霉素样品中的多种酰化螺旋霉素进行分离, 如异戊酰螺旋霉素 II与(异)丁酰螺旋霉素 III、(异) 丁酰螺旋霉素 II与丙酰螺旋霉素 III、 丙酰螺旋霉素 III与其前面的小组分、 丙酰螺旋霉素 II与乙酰螺旋霉 素 III的分离度达到中国药典规定的 1.5以上; 而乙酰螺旋霉素 III与其前面的小组分的分离度为 1.2。
本发明人通过大量的研究发现, 通过对培养、 发酵条件的调整和优化, 意外的得到了一种左旋可利霉 素, 该左旋可利霉素具有更加优良的抗感染活性。
目前采用高效液相色谱法, 测定可利霉素 9个酰化螺旋霉素组分, 其中异戊酰螺旋霉素(Ι+Π+ΠΙ) 总含量应不低于 60%, 酰化螺旋霉素总含量应不低于 80%。 对于发酵产生的多组分抗生素, 很难达到化学 药品对于注射剂的质量控制标准, 但是对于临床危重病人或不宜口服用药的病人, 注射给药见效迅速, 因 此研制异戊酰螺旋霉素的单一组分的制剂则具有非常深远的意义。本发明通过对左旋可利霉素的进一步研 究得到了左旋异戊酰螺旋霉素 I的单一组分, 纯度可达到 98wt%。 发明内容
本发明的首要发明目的在于提供左旋异戊酰螺旋霉素 I、 左旋异戊酰螺旋霉素 II、 左旋异戊酰螺旋霉 素 III。
本发明的第二发明目的在于提供一种分别含有左旋异戊酰螺旋霉素 I、 左旋异戊酰螺旋霉素 II、 左旋 异戊酰螺旋霉素 III的制剂。
本发明的第三发明目的在于提供左旋异戊酰螺旋霉素 I、 左旋异戊酰螺旋霉素 II、 左旋异戊酰螺旋霉 素 III的制备方法。
本发明的第四发明目的在于提供左旋异戊酰螺旋霉素 I、 左旋异戊酰螺旋霉素 II、 左旋异戊酰螺旋霉 素 III的应用。
本发明的第五发明目的在于提供左旋异戊酰螺旋霉素 I、 左旋异戊酰螺旋霉素 II、 左旋异戊酰螺旋霉 素 III的晶体, 以及分别含有该晶体的制剂。 为了实现本发明的发明目的, 本发明采用的技术方案为:
本发明涉及左旋异 构式如式 (I) 所示,
Figure imgf000004_0001
(I)
其比旋光度为 [a]D=-49°〜- 62°, 优选 -51°〜- 60°, 更优选 -60°〜- 62°, 更优选 -51°〜- 58°, 更优选 -53°〜 -58°, 更优选 -55°〜- 58°, 更优选 -55°〜- 57°, 更优选 -58°〜- 60°, 更优选 -51°〜- 55°, 更优选 -53°〜- 55°, 更 优选 -49°〜- 51° (C=0.02g/ml, CHC13, 25V,
Figure imgf000004_0002
; 熔点为 116〜122, 优选 118〜120°C;
本发明涉及左旋 构式如式(II)所示,;
Figure imgf000004_0003
(II)
其比旋光度为 [a]D=-55°〜- 61°, 优选 -57°〜- 59° (C=0.02g/ml, CHC13, 25°C,
Figure imgf000004_0004
; 熔点为 120°C〜128°C, 优选 123°C〜125°C;
本发明涉及左旋异戊酰螺旋霉素 III化合物, 所述左旋异戊酰螺旋霉素 III的化学结构式如式 (III)所 示,
Figure imgf000005_0001
(III)
其比旋光度为 [a]D = (-)-49°〜- 51° ( C=0.02g/ml, CHC13, 25 °C ,
Figure imgf000005_0002
; 熔点为 116°C〜118°C。 本发明涉及一种左旋异戊酰螺旋霉素 I的制剂, 其特征在于, 所述制剂包括异戊酰螺旋霉素 I、 异戊 酰螺旋霉素 I的药用盐、 异戊酰螺旋霉素 I与药学上可接受的辅料、 或异戊酰螺旋霉素 I的药用盐与药学 上可接受的辅料, 所述异戊酰螺旋霉素 I的纯度大于 90 wt %, 优选纯度大于 95 wt %, 更优选纯度大于 98
Wt % ;
本发明涉及一种左旋异戊酰螺旋霉素 II的制剂, 其特征在于, 所述制剂包括异戊酰螺旋霉素 II、 异戊 酰螺旋霉素 II的药用盐、 异戊酰螺旋霉素 II与药学上可接受的辅料、 或异戊酰螺旋霉素 II的药用盐与药 学上可接受的辅料, 所述异戊酰螺旋霉素 II的纯度大于 90 wt %, 优选纯度大于 95 wt %, 更优选纯度大于 98 wt %;
本发明涉及一种左旋异戊酰螺旋霉素 in的制剂, 其特征在于, 所述制剂包括异戊酰螺旋霉素 III、 异 戊酰螺旋霉素 III的药用盐、 异戊酰螺旋霉素 III与药学上可接受的辅料、 或异戊酰螺旋霉素 III的药用盐 与药学上可接受的辅料, 所述异戊酰螺旋霉素 III的纯度大于 90 wt %, 优选纯度大于 95 wt %, 更优选纯 度大于 98 wt %。 本发明的第一优选方案为: 本发明的制剂为液体制剂、 固体制剂、 半固体制剂或气体制剂, 所述的液 体制剂选自注射剂、 输液剂、 溶液剂、 合剂、 糖浆剂、 酊剂、 溶胶剂、 芳香水剂、 甘油剂、 胶体溶液剂、 胶浆剂、 混悬剂或乳剂; 所述的固体制剂选自粉针、 冻干粉针、 片剂、 胶囊剂、 散剂、 颗粒剂、 丸剂、 丹 剂或膜剂; 所述的半固体制剂选自软膏剂、 硬膏剂、 栓剂、 浸膏剂、 凝胶剂; 所述的气体制剂选自气雾剂 或喷雾剂, 优选注射用水针剂、 注射用粉针剂、 冻干粉针剂。
本发明的第二优选方案为:本发明的制剂包含异戊酰螺旋霉素 I的单位剂量为 10〜1500mg,优选 50〜 lOOOmg,更优选 100〜500 mg;本发明的制剂包含异戊酰螺旋霉素 II的单位剂量为 10〜1500mg,优选 50〜 lOOOmg,更优选 100〜500 mg;本发明的制剂包含异戊酰螺旋霉素 III的单位剂量为 10〜1500mg,优选 50〜 lOOOmg, 更优选 100〜500 mg。
本发明的第三优选方案为: 在制剂中, 左旋异戊酰螺旋霉素 I在制剂中的重量百分比为 10〜95%, 优 选 50〜95%,更优选 75〜95%;左旋异戊酰螺旋霉素 II在制剂中的重量百分比为 10〜95%,优选 50〜95%, 更优选 75〜95%;左旋异戊酰螺旋霉素 III在制剂中的重量百分比为 10〜95%,优选 50〜95%,更优选 75〜 95%。 本发明还涉及一种分别含有左旋异戊酰螺旋霉素 I、 左旋异戊酰螺旋霉素 II或左旋异戊酰螺旋霉素 III 的制剂: 所述制剂包括异戊酰螺旋霉素 I和枸橼酸、 己二酸、 马来酸中的至少一种制备的注射用水针剂、 注射 用粉针剂或冻干粉针剂; 所述制剂包括异戊酰螺旋霉素 II和枸橼酸、 己二酸、 马来酸中的至少一种制备的 注射用水针剂、 注射用粉针剂或冻干粉针剂; 所述制剂包括异戊酰螺旋霉素 III和枸橼酸、 己二酸、 马来 酸中的至少一种制备的注射用水针剂、 注射用粉针剂或冻干粉针剂。
其中, 左旋异戊酰螺旋霉素 I与枸橼酸的摩尔比为 1 : 0.8〜1.2, 左旋异戊酰螺旋霉素 I与己二酸的摩 尔比为 1 : 0.8〜1.2、 左旋异戊酰螺旋霉素 I与马来酸的摩尔比为 1 : 0.8- 1.2 ; 左旋异戊酰螺旋霉素 Π与 枸橼酸的摩尔比为 1 : 0.8〜1.2, 左旋异戊酰螺旋霉素 II与己二酸的摩尔比为 1 : 0.8〜1.2、 左旋异戊酰螺 旋霉素 II与马来酸的摩尔比为 1 : 0.8- 1.2; 左旋异戊酰螺旋霉素 III与枸橼酸的摩尔比为 1 : 0.8- 1.2, 左 旋异戊酰螺旋霉素 III与己二酸的摩尔比为 1 : 0.8〜1.2、 左旋异戊酰螺旋霉素 III与马来酸的摩尔比为 1 : 0.8〜1.2。 本发明还涉及左旋异戊酰螺旋霉素 I、 II或 III的制备方法: 包括左旋可利霉素的制备、 左旋异戊酰螺 旋霉素 I、 II或 III的纯化。
其中, 左旋可利霉素的制备过程包括将含有 4"-异戊酰基转移酶基因的螺旋酶素产生菌克隆菌株 WSP-195培养后进行生物发酵, 并对发酵液进行提取; 在 pH值 6.0〜9.0, 优选 6.0〜8.0, 更优选 6.0〜7. 5 的条件下进行发酵, 且 pH值随时间的变化曲线呈三个连续的阶段, 第一阶段满足方程式 yi=klXl+6. 0, 其 中 0. 0227 ¾≡ki ¾≡0. 1364, 0< Xl¾≡22 ;第二阶段满足方程式 y2=k2x2+ b2,其中- 0. 0735 ¾≡k2<0, 6. 5 <b2«≡10. 62 , 22 ¾≡56 ; 第三阶段满足方程式 y3=k3x3+ b3, 其中 0<k3¾≡0. 0078, 6. 06¾≡b3<6. 5 , 56¾≡x3¾≡120 o 本发 明中, 通过对培养发酵条件的调整和优化, 尤其是通过 pH调节剂严格控制发酵过程中的 pH值, 使发酵 过程中 pH值随时间的变化曲线呈三个连续的阶段, 并且每个阶段各满足一定的方程式, 从而得到了具有 光学活性的左旋可利霉素。 进而分别分离得到左旋异戊酰螺旋霉素 I、 左旋异戊酰螺旋霉素 II、 左旋异戊 酰螺旋霉素 III。
优选的, 本发明中生物发酵的条件为: 将含有 4"-异戊酰基转移酶基因的螺旋霉素产生菌克隆菌株 WSJ- 195 , 在含有黄豆饼粉 2%、 葡萄糖 1%、 淀粉 3%、 CaCO3 0.5%、 NaCl 0.4%和琼脂 2%的斜面培养基 上,于 pH6.5~7.5、温度 28~38 °C的条件下培养 8~15天,接种于含有黄豆饼粉 1.5%、淀粉 3.0%、 NaCl 0.4%、 CaCO3 0.5%、 鱼蛋白胨 0.3%和 KH2P04 0.05%的种子培养基, 于 pH6.5~7.5、 25~30°C的条件下培养 40 80 小时, 以 0.1〜20%接种量种入含有葡萄糖 0.5%、 淀粉 6.0%、 酵母粉 0.5%、 鱼粉 2.0%、 NH4N03 0.6%、 NaCl 1.0%、 CaC03 0.5%、 KH2P04 0.05%、 MgS04 0.1%、 豆油 0.5%和消沫剂 0.02%的发酵培养基, 于 pH6.5~7.5、 26~30°C的条件下培养 72 120小时, 获得发酵液;
所述 pH调节剂选自盐酸、 醋酸、 氨水、 氢氧化钠、 氢氧化钾中的至少一种。
优选的, 本发明的生物发酵液的提取的步骤为: 将得到的发酵液用硫酸铝处理得滤液, 调 pH至 8.5〜 9.0, 用乙酸丁酯提取, 乙酸丁酯提取液用无盐水及 l%NaH2P04分别洗涤, 再用 pH2.0〜2.5水提取, 得水 相提取液, 调 pH至 4.5〜5.5, 挥发除去残余乙酸丁酯得水提取液, 过滤, 滤液调 pH8.5〜9.0, 沉淀, 用 纯化水进行淋洗, 得湿品, 干燥, 得左旋可利霉素;
其中, 采用盐酸、 醋酸、 枸橼酸、 氢氧化钠、 氢氧化钾、 碳酸氢钠、 碳酸钠中的至少一种来调节 pH 值。
其中, 异戊酰螺旋霉素 I、 II或 III的纯化的步骤包括: 采用色谱分离的方法对左旋可利霉素样品进行 纯化, 采用 ODS色谱柱, 乙腈和醋酸氨缓冲液进行梯度洗脱, 对左旋异戊酰螺旋霉素 I组分目标峰、 左旋 异戊酰螺旋霉素 II组分目标峰、 左旋异戊酰螺旋霉素 III组分目标峰进行分离。
优选的, 在左旋异戊酰螺旋霉素 I、 II或 III的纯化过程中, 采用制备型高效液相色谱、 紫外检测, 记 录分离的紫外谱图, 按照左旋异戊酰螺旋霉素 I的保留时间 44.759min收集样品, 按照左旋异戊酰螺旋霉 素 II的保留时间 43.34min样品, 按照左旋异戊酰螺旋霉素 III的保留时间 48.009min收集样品。
进一步优选的, 左旋异戊酰螺旋霉素 I、 II或 III的纯化过程中, 将收集到的左旋异戊酰螺旋霉素 I、 II或 III分别采用旋转蒸发除去乙腈, 然后用乙酸乙酯萃取, 蒸发除去萃取液中乙酸乙酯, 得膏状样品; 用石油醚重溶所得样品, 再蒸发除去石油醚, 分别获得左旋异戊酰螺旋霉素 I、 II或 III白色粉末状固体。
其中, 所述的流动相为乙腈 A和 pH=8.5、 150mM醋酸氨水溶液的混合溶剂。
所述的左旋异戊酰螺旋霉素 Ι、Π或 III纯化的具体条件为:采用线性梯度: 0-60分钟, Α为 25%〜65%; 61〜90分钟, A为 65%〜90%;
流速: 260 mL/min;
进样量: 10mL;
进样浓度: 0.5g/mL;
检测波长: 231nm;
收集方式: 紫外触发收集。 本发明还涉及左旋异戊酰螺旋霉素 I的晶体化合物, 该左旋异戊酰螺旋霉素 I晶体化合物使用 Cu-Κα射 线测量得到的 X-射线粉末衍射在 2Θ为 7.6°、 8.0°、 10.0°、 11.4°、 16.4°、 17.0°、 17.5°、 17.9°、 19.5°、 22.7 °、 23.7°和 24.4°显示有特征峰。 其 X-射线粉末衍射图谱如附图 5所示。
所述左旋异戊酰螺旋霉素 I晶体化合物的制备方法为,先将左旋异戊酰螺旋霉素 I化合物固体溶解于 无甲醇、无水乙醇和无水丙酮的混合溶剂中,然后加入纯水,边加入边搅拌,纯水加完后降温至 5°C〜15°C, 降温的同时继续搅拌, 得到左旋异戊酰螺旋霉素 I晶体化合物。
其中, 所述左旋异戊酰螺旋霉素 I晶体化合物的制备方法的第一优选技术方案为, 所加入的纯水的体 积为乙酸乙酯、 无水乙醇和无水丙酮体积之和的 2〜9倍, 优选 2.5〜7.5倍; 加入纯水的速度为 4〜 10ml/ 分钟, 优选 6〜 8ml/分钟。
所述左旋异戊酰螺旋霉素 I晶体化合物的制备方法的第二优选技术方案为,所用混合溶剂中乙酸乙酯、 无水乙醇和无水丙酮的体积比为 1 : 0.1〜10: 0.5- 1 , 优选 1 : 2〜8: 0.8- 1 =
所述左旋异戊酰螺旋霉素 I晶体化合物的制备方法的第三优选技术方案为, 所加入纯水的搅拌速度为 30〜60转 /分钟, 优选 45〜60转 /分钟; 纯水加完后, 搅拌速度为 10〜30转 /分钟, 优选 10〜20转 /分钟。
所述左旋异戊酰螺旋霉素 I晶体化合物的制备方法的第四优选技术方案为, 纯水加完后降温的速度为 每小时 1〜3 °C, 优选每小时 1〜 1.5 °C。 本发明还涉及左旋异戊酰螺旋霉素 II的晶体化合物, 该左旋异戊酰螺旋霉素 II晶体化合物使用 Cu-Ka 射线测量得到的 X-射线粉末衍射在 2Θ为 10.0°、 11.6°、 16.4°、 17.3°、 19.1°、 21.2°、 22.1°、 22.7°、 26.4° 、 26.9°、 27.5°和 31.5 。显示有特征峰。 其 X-射线粉末衍射图谱如附图 6所示。
所述左旋异戊酰螺旋霉素 II晶体化合物的制备方法为, 先将左旋异戊酰螺旋霉素 II化合物固体溶解 于无甲醇、 无水丙酮和无水乙醇的混合溶剂中, 然后加入纯水, 边加入边搅拌, 纯水加完后降温至 5°C〜 15°C, 降温的同时继续搅拌, 得到左旋异戊酰螺旋霉素 II晶体化合物。
其中, 所述左旋异戊酰螺旋霉素 II晶体化合物的制备方法的第一优选技术方案为, 所加入的纯水的体 积为无水甲醇、 无水乙醇和无水丙酮体积之和的 2〜9倍, 优选 2.5〜7.5倍; 加入纯水的速度为 4〜 10ml/ 分钟, 优选 6〜 8ml/分钟。
所述左旋异戊酰螺旋霉素 II 晶体化合物的制备方法的第二优选技术方案为, 所用混合溶剂中无水甲 醇、 无水丙酮和无水乙醇的体积比为 1 : 0.1〜10: 0.5- 1 , 优选 1 : 2〜8: 0.8- 1 =
所述左旋异戊酰螺旋霉素 II晶体化合物的制备方法的第三优选技术方案为,所加入纯水的搅拌速度为 30〜60转 /分钟, 优选 45〜60转 /分钟; 纯水加完后, 搅拌速度为 10〜30转 /分钟, 优选 10〜20转 /分钟。
所述左旋异戊酰螺旋霉素 II晶体化合物的制备方法的第四优选技术方案为,纯水加完后降温的速度为 每小时 1〜3°C, 优选每小时 1〜1.5°C。 本发明还涉及左旋异戊酰螺旋霉素 III的晶体化合物,该左旋异戊酰螺旋霉素 III晶体化合物使用 Cu-Ka 射线测量得到的 X-射线粉末衍射在 2Θ为 8.0°、 10.0°、 11.2°、 11.7°、 16.4°、 19.1°、 19.6°、 20.0°、 21.4° 、 22.9°、 23.6°和 29.4°显示有特征峰。 其 X-射线粉末衍射图谱如附图 7所示。
所述左旋异戊酰螺旋霉素 III晶体化合物的制备方法为, 先将左旋异戊酰螺旋霉素 III化合物固体溶 解于无水甲醇、无水乙醇和无水丙酮的混合溶剂中,然后加入纯水,边加入边搅拌,纯水加完后降温至 5°C〜 15°C, 降温的同时继续搅拌, 得到左旋异戊酰螺旋霉素 III晶体化合物。
其中, 所述左旋异戊酰螺旋霉素 III 晶体化合物的制备方法的第一优选技术方案为, 所加入的纯水的 体积为无水甲醇、无水乙醇和无水丙酮体积之和的 2〜9倍,优选 2.5〜7.5倍;加入纯水的速度为 4〜 10ml/ 分钟, 优选 6〜 8ml/分钟。
所述左旋异戊酰螺旋霉素 III 晶体化合物的制备方法的第二优选技术方案为, 所用混合溶剂中无水甲 醇、 无水乙醇和无水丙酮的体积比为 1 : 0.1〜10: 0.5- 1 , 优选 1 : 2〜8: 0.8- 1 =
所述左旋异戊酰螺旋霉素 III 晶体化合物的制备方法的第三优选技术方案为, 所加入纯水的搅拌速度 为 30〜60转 /分钟, 优选 45〜60转 /分钟; 纯水加完后, 搅拌速度为 10〜30转 /分钟, 优选 10〜20转 /分钟。
所述左旋异戊酰螺旋霉素 III 晶体化合物的制备方法的第四优选技术方案为, 纯水加完后降温的速度 为每小时 1〜3 °C, 优选每小时 1〜1.5°C。 不同晶型的晶胞内分子在空间构型、 构象与排列不同, 使其溶解性存在显著差异, 导致制剂在体内有 不同的溶出速率, 直接影响制剂在体内的吸收、 分布、 排泄和代谢, 最终因其生物利用度不同而导致临床 药效的差异。 本发明对所制备的左旋异戊酰螺旋霉素 I晶体、 左旋异戊酰螺旋霉素 II晶体或左旋异戊酰螺 旋霉素 III晶体分别与左旋异戊酰螺旋霉素 I、 左旋异戊酰螺旋霉素 II或左旋异戊酰螺旋霉素 III的疗效相 应的进行了比较, 发现本发明所制备的左旋异戊酰螺旋霉素 I晶体的疗效优于左旋异戊酰螺旋霉素 I, 左 旋异戊酰螺旋霉素 II晶体的疗效优于左旋异戊酰螺旋霉素 II, 左旋异戊酰螺旋霉素 III晶体的疗效优于左 旋异戊酰螺旋霉素 III。
本发明还涉及左旋异戊酰螺旋霉素 I晶体化合物的制剂,所述制剂包括异戊酰螺旋霉素 I晶体化合物、 异戊酰螺旋霉素 I晶体化合物的药用盐、 异戊酰螺旋霉素 I晶体化合物与药学上可接受的辅料、 或异戊酰 螺旋霉素 I晶体化合物的药用盐与药学上可接受的辅料, 所述异戊酰螺旋霉素 I晶体化合物的纯度大于 99
Wt % ;
本发明还涉及左旋异戊酰螺旋霉素 II晶体化合物的制剂,所述制剂包括异戊酰螺旋霉素 II晶体化合物、 异戊酰螺旋霉素 II晶体化合物的药用盐、异戊酰螺旋霉素 II晶体化合物与药学上可接受的辅料、或异戊酰 螺旋霉素 II晶体化合物的药用盐与药学上可接受的辅料, 所述异戊酰螺旋霉素 II晶体化合物的纯度大于 99 wt %;
本发明还涉及左旋异戊酰螺旋霉素 III晶体化合物的制剂, 所述制剂包括异戊酰螺旋霉素 III晶体化合 物、 异戊酰螺旋霉素 in晶体化合物的药用盐、 异戊酰螺旋霉素 II晶体化合物与药学上可接受的辅料、 或 异戊酰螺旋霉素 III晶体化合物的药用盐与药学上可接受的辅料, 所述异戊酰螺旋霉素 III晶体化合物的纯 度大于 99 wt %。 本发明还涉及含有异戊螺旋霉素 I或其晶体、 及其制剂在制备治疗和 /或预防抗感染疾病药物中的应 用; 本发明还涉及含有异戊螺旋霉素 II或其晶体、 及其制剂在制备治疗和 /或预防抗感染疾病药物中的应 用; 本发明还涉及含有异戊螺旋霉素 III或其晶体、 及其制剂在制备治疗和 /或预防抗感染疾病药物中的应 用。 所述的感染性疾病为革兰氏阳性菌、 金黄色葡萄球菌、 肺炎链球菌、 肺炎支原体、 肺炎衣原体、 解脲 支原体、 沙眼衣原体、 化脓性链球菌、 卡他球菌、 淋球菌、 流感杆菌、 军团菌或厌氧菌感染引起的疾病。
本发明还涉及含有异戊螺旋霉素 I或其晶体、 及其制剂在制备抗菌药物中的应用, 本发明还涉及含有 异戊螺旋霉素 II或其晶体、 及其制剂在制备抗菌药物中的应用, 本发明还涉及含有异戊螺旋霉素 in或其 晶体、 及其制剂在制备抗菌药物中的应用, 所述的菌为肺炎链球菌、 甲类链球菌、 化脓性链球菌、 肠球菌、 金葡菌、 表葡菌、 卡他球菌、 淋球菌、 流感杆菌、 大肠杆菌、 产毒大肠杆菌、 致病性大肠杆菌、 侵龚性大 肠杆菌、 绿脓杆菌、 肺炎克雷伯氏菌、 普通变形杆菌、 伤寒杆菌、 不动杆菌、 枸橼酸杆菌枸橼酸杆菌、 粘 质沙雷氏菌、 宋内氏痢疾杆菌、 福氏痢疾杆菌、 白色念球菌; 军团菌如嗜肺军团菌、 高曼军团菌、 博茨曼 军团菌、 杜莫夫军团菌、 佐丹军团菌、 米克戴德军团菌; 厌氧菌如脆弱类杆菌、 多形类菌、 普通类杆菌、 吉氏类杆菌、 吉氏类杆菌、 栖瘤胃类杆菌、 不解糖普氏杆菌、 口腔普氏杆菌、 具核酸杆菌、 拉式梭杆菌、 双岐杆菌、 乳杆菌、 消化链球菌、 疮疱丙酸杆菌、 产气荚膜梭菌、 酵母样真菌。 下面对本发明进行进一步的详细描述。
本发明涉及一种左旋异戊酰螺旋霉素 I, 本发明通过对培养、 发酵条件的调整和优化, 严格控制溶液 的 pH值, 得到了左旋异戊酰螺旋霉素 I。
本发明涉及一种左旋异戊酰螺旋霉素 II, 本发明通过对培养、 发酵条件的调整和优化, 严格控制溶液 的 pH值, 得到了左旋异戊酰螺旋霉素 II。
本发明涉及一种左旋异戊酰螺旋霉素 III, 本发明通过对培养、 发酵条件的调整和优化, 严格控制溶 液的 pH值, 得到了左旋异戊酰螺旋霉素 III。
本发明的左旋异戊酰螺旋霉素 I、 II和 III具有较好的抗菌活性, 为抗生素类药物增加了一个新的可用 于注射的品种, 为现有抗生素耐药性这一技术难题提出了新的解决方案。
其中, 本发明的左旋异戊酰螺旋霉素 I、 II和 III比旋度测定方法为: 取本品精密称定, 加氯仿溶解并 稀释成每 lml中约含 20mg的溶液, 采用钠光谱的 D线 (589.3nm) 测定旋光度, 测定长度为 ldm, 测定 温度为 25°C, 使用读数至 0.0001°, 并经过检定的旋光计。
本发明的左旋异戊酰螺旋霉素 I、 II或 III的熔点的测定方法为: 取干燥的左旋异戊酰螺旋霉素 I、 II 或 III适量, 置熔点测定用毛细管中, 进行熔点测定, 重复测定 3次, 取平均值。
本发明还涉及含有左旋异戊酰螺旋霉素 I、 II或 III的制剂, 其组成为左旋异戊酰螺旋霉素 I和药学上 可接受的载体和 /或辅料, 其中, 异戊酰螺旋霉素 I、 II和 III的纯度大于 90wt%, 优选大于 95wt%, 更优 选大于 98wt%。
本发明的含有左旋异戊酰螺旋霉素 I、 II或 III或其晶体的制剂优选注射用水针剂、 注射用粉针剂、 冻 干粉针剂。 将本发明的含有单一组分的左旋异戊酰螺旋霉素 I、 II或 III制剂制成注射用水针剂或粉针剂, 从而使本发明的左旋异戊酰螺旋霉素 I、 II或 III制剂能够更加迅速的为人体所吸收, 从而达到抗感染的作 用。
本发明的含有左旋异戊酰螺旋霉素 I的制剂,包含下述单位剂量:左旋异戊酰螺旋霉素 I 10〜1500mg, 优选 50〜1000mg, 更优选 100〜500 mg;
本发明的含有左旋异戊酰螺旋霉素 II的制剂,包含下述单位剂量:左旋异戊酰螺旋霉素 II 10〜1500mg, 优选 50〜1000mg, 更优选 100〜500 mg。
本发明的含有左旋异戊酰螺旋霉素 III 的制剂, 包含下述单位剂量: 左旋异戊酰螺旋霉素 III 10〜 1500mg, 优选 50〜1000mg, 更优选 100〜500 mg。 本发明的含有左旋异戊酰螺旋霉素 I化合物晶体的制剂,包含下述单位剂量:左旋异戊酰螺旋霉素 I 晶 体 10〜1500mg, 优选 50〜1000mg, 更优选 100〜500 mg;
本发明的含有左旋异戊酰螺旋霉素 II化合物晶体的制剂, 包含下述单位剂量: 左旋异戊酰螺旋霉素 II 晶体 10〜1500mg, 优选 50〜1000mg, 更优选 100〜500 mg;
本发明的含有左旋异戊酰螺旋霉素 III化合物晶体的制剂, 包含下述单位剂量: 左旋异戊酰螺旋霉素 III晶体 10〜1500mg, 优选 50〜1000mg, 更优选 100〜500 mg。 本发明的含有左旋异戊酰螺旋霉素 I的制剂中左旋异戊酰螺旋霉素 I的重量百分比为 10〜90%, 优选 50〜90%, 更优选 75〜90%;
本发明的含有左旋异戊酰螺旋霉素 II的制剂中左旋异戊酰螺旋霉素 II的重量百分比为 10〜90%, 优 选 50〜90%, 更优选 75〜90%;
本发明的含有左旋异戊酰螺旋霉素 III的制剂中左旋异戊酰螺旋霉素 III的重量百分比为 10〜90%, 优 选 50〜90%, 更优选 75〜90%。 本发明的含有左旋异戊酰螺旋霉素 I化合物晶体的制剂中左旋异戊酰螺旋霉素 I化合物晶体的重量百 分比为 10〜90%, 优选 50〜90%, 更优选 75〜90%。
本发明的含有左旋异戊酰螺旋霉素 II化合物晶体的制剂中左旋异戊酰螺旋霉素 II化合物晶体的重量 百分比为 10〜90%, 优选 50〜90%, 更优选 75〜90%。
本发明的含有左旋异戊酰螺旋霉素 III化合物晶体的制剂中左旋异戊酰螺旋霉素 III化合物晶体的重量 百分比为 10〜90%, 优选 50〜90%, 更优选 75〜90%。 本发明的口服制剂可含有常用的赋形剂, 如粘合剂、 填充剂、 稀释剂、 压片剂、 润滑剂、 崩解剂、 着 色剂、 调味剂和湿润剂, 必要时可对片剂进行包衣。 其中, 适用的填充剂包括纤维素、 甘露糖醇、 乳糖和 其它类似的填充剂。 适宜的崩解剂包括淀粉、 聚乙烯吡咯烷酮和淀粉衍生物, 例如羟基乙酸淀粉钠。 适宜 的润滑剂包括, 例如硬脂酸镁。 适宜的药物可接受的湿润剂包括十二烷基硫酸钠。
本发明的固体口服制剂可通过混合, 填充, 压片等常用的方法制备。
本发明的口服液体制剂的形式, 例如: 水性或油性悬浮液、 溶液、 乳剂、 糖浆剂或酏剂, 或者可以是 一种在使用前可用水或其它适宜的载体复配的干燥产品。 这种液体制剂可含有常规的添加剂, 如悬浮剂, 例如山梨醇、 糖浆、 甲基纤维素、 明胶、 羟乙基纤维素、 羧甲基纤维素、 硬脂酸铝凝胶或氢化食用脂肪, 乳化剂, 例如卵磷脂、 脱水山梨醇一油酸酯或阿拉伯胶; 非水性载体 (它们可以包括食用油), 例如杏仁 油、 分熘椰子油、 诸如甘油的酯的油性酯、 丙二醇或乙醇; 防腐剂, 例如对羟基苯甲酯或对羟基苯甲酸丙 酯或山梨酸, 并且如果需要, 可含有常规的香味剂或着色剂。
本发明的注射剂中可含有任何常用的药用载体和 /或赋形剂、 稳定剂、 抗氧化剂、 络合剂, 还可以含有 药用的防腐剂、 缓冲剂或局部麻醉剂等。 其制备方法采用常用方法制备。
本发明的制剂所采用的药学上可接受的载体选自: 甘露醇、 山梨醇、 焦亚硫酸钠、 亚硫酸氢钠、 硫代 硫酸钠、 盐酸半胱氨酸、 巯基乙酸、 蛋氨酸、 维生素 C、 EDTA二钠、 EDTA钙钠, 一价碱金属的碳酸盐、 醋酸盐、 磷酸盐或其水溶液、 盐酸、 醋酸、 硫酸、 磷酸、 氨基酸、 氯化钠、 氯化钾、 乳酸钠、 木糖醇、 麦 芽糖、 葡萄糖、 果糖、 右旋糖苷、 甘氨酸、 淀粉、 蔗糖、 乳糖、 甘露糖醇、 硅衍生物、 纤维素及其衍生物、 藻酸盐、 明胶、 聚乙烯吡咯烷酮、 甘油、 吐温 -80、 琼脂、 碳酸钙、 碳酸氢钙、 表面活性剂、 聚乙二醇、 环 糊精、 β-环糊精、 磷脂类材料、 高岭土、 滑石粉、 硬脂酸钙、 硬脂酸镁等。 本发明的制剂在使用时根据病人的实际情况确定用法用量, 可每日口服或注射给药 1〜3次, 每次 1〜 20剂。 本发明的有益效果为:
( 1 ) 本发明的左旋异戊酰螺旋霉素 I、 左旋异戊酰螺旋霉素 II、 左旋异戊酰螺旋霉素 III具有良好的 抗菌性能。 根据现代药理学研究, 由于药物对映体的立体选择性的不同, 使其与各受体的亲和力不同而导 致药理作用发生很大差异, 因此本发明的左旋异戊酰螺旋霉素 I、 左旋异戊酰螺旋霉素 II、 左旋异戊酰螺 旋霉素 in具有很强的药理活性;
(2 ) 不同晶型的晶胞内分子在空间构型、 构象与排列不同, 使其溶解性存在显著差异, 导致制剂在 体内有不同的溶出速率, 直接影响制剂在体内的吸收、 分布、 排泄和代谢, 最终因其生物利用度不同而导 致临床药效的差异。 本发明对所制备的左旋异戊酰螺旋霉素 I、 II或 III晶体与左旋异戊酰螺旋霉素 I、 II 或 III的疗效进行了比较, 发现本发明所制备的左旋异戊酰螺旋霉素 I、 II或 III晶体的疗效优于左旋异戊 酰螺旋霉素 I、 II或 ΙΠ;
( 3 ) 本发明的含有左旋异戊酰螺旋霉素 I、 II或 III单一组分的注射剂, 含有左旋异戊酰螺旋霉素 I、 II或 III晶体的单一组分的注射剂, 为临床危重病人或不宜口服给药的病人提供了见效迅速、 易于接受的 用药剂型的可能性; (4 ) 本发明的含有左旋异戊酰螺旋霉素 I、 II或 III单一组分的制剂, 含有左旋异戊酰螺旋霉素 I、 II 或 III晶体的单一组分的制剂, 其生产工艺稳定、 质量标准易控, 适用于大规模工业化生产。 附图说明
图 1为实施例 1中左旋异戊酰螺旋霉素 I、 II和 III紫外触发收集所得的色谱图;
图 2为本发明实施例 1发酵过程的 pH值随时间的变化曲线图;
图 3为本发明实施例 2中发酵过程的 pH值随时间的变化曲线图;
图 4为本发明实施例 3中发酵过程的 pH值随时间的变化曲线图;
图 5 为本发明的左旋异戊酰螺旋霉素 I的 X-射线粉末衍射图谱;
图 6 为本发明的左旋异戊酰螺旋霉素 II的 X-射线粉末衍射图谱;
图 7 为本发明的左旋异戊酰螺旋霉素 III的 X-射线粉末衍射图谱。 以下具体实施方式仅用于说明和解释本发明, 并不对本发明的内容构成限制。
具体实施方式
实施例 1 左旋异戊酰螺旋霉素 I、 II和 III的分离制备
( 1 )生物发酵:将含有 4"-异戊酰基转移酶基因的螺旋酶素产生菌克隆菌株 WSJ-195,在含有黄豆饼粉 2%、 葡萄糖 1%、淀粉 3%、 CaCO3 0.5%、 NaCl 0.4%和琼脂 2%的斜面培养基上,于 pH6.5~7.5、温度 28~38°C 的条件下培养 8~15天, 接种于含有黄豆饼粉 1.5%、 淀粉 3.0%、 NaCl 0.4%、 CaC03 0.5%、 鱼蛋白胨 0.3%和 KH2P04 0.05%的种子培养基, 于 pH6.5~7.5、 25~30°C的条件下培养 40 80小时, 以 0.1〜20% 接种量种入含有葡萄糖 0.5%、淀粉 6.0%、酵母粉 0.5%、鱼粉 2.0%、 NH4N03 0.6%、 NaCl 1.0%、 CaC03 0.5%、 KH2PO4 0.05%、 MgSO4 0.1%、 豆油 0.5%和消沫剂 0.02%的发酵培养基, 于 pH6.5~7.5、 26-30°C 的条件下培养 72 120小时, 获得发酵液;
其中, 通过对培养、 发酵条件的调整和优化, 严格控制溶液的 pH值, 在 pH值 6.0〜9.0条件下 进行发酵, 在 pH值 6.0〜9.0的条件下进行发酵, 发酵时间为 120h, 且 pH值随时间的变化曲线呈三 个连续的阶段, 第一阶段满足方程式 yi=0.1364Xl+6.0, 其中 0 < Xl≤22 ; 第二阶段满足方程式 y2=-0.0735x2+10.64, 其中 22≤x2≤56; 第三阶段满足方程式 y3=0.0078x3+6.06, 其中 56≤x3≤120, 曲线变 化如图 2所示, 获得发酵液。
(2 )生物发酵液的提取: 将步骤(1 )将得到的发酵液用硫酸铝处理得滤液, 调 pH至 8.5, 用乙酸丁酯提 取, 乙酸丁酯提取液用无盐水及 l%NaH2P04分别洗涤, 再用 pH2.0水提取, 得水相提取液, 调 pH至 4.5, 挥发除去残余乙酸丁酯得水提取液, 过滤, 滤液调 pH8.5, 沉淀, 用纯化水进行淋洗, 得湿品, 干燥, 得左旋可利霉素;
( 3 ) 左旋异戊酰螺旋霉素 I、 II、 III纯化: 采用制备型高效液相色谱对初步分离得到的样品进行纯化, 采 用 ODS制备色谱柱, 用乙腈和醋酸氨缓冲液进行梯度洗脱, 通过紫外检测, 记录分离的紫外谱图, 对 异戊酰螺旋霉素 I组分目标峰、 左旋异戊酰螺旋霉素 II组分目标峰、 左旋异戊酰螺旋霉素 III组分目标 峰进行收集:
色谱柱: ODS制备色谱柱;
流动相: 乙腈 (A), lOOmM醋酸氨水溶液 (B); 梯度条件: 采用线性梯度 0~60分钟, A为 25%〜65%; 61〜90分钟, A为 65%〜90%;
流速: 260 mL/min;
进样量: 10mL;
进样浓度: 0.5g/mL;
检测波长: 231nm;
收集方式: 紫外触发收集;
按照异戊酰螺旋霉素 I的保留时间 RT 44.759min, 收集的异戊酰螺旋霉素 I样品, 按照左旋异戊酰螺 旋霉素 II的保留时间 43.34min样品, 按照左旋异戊酰螺旋霉素 III的保留时间 48.009min收集样品; 分别采用旋转蒸发除去乙腈, 然后用 1倍量乙酸乙酯萃取, 用旋转蒸发除去萃取液中乙酸乙酯, 得膏 状样品; 用石油醚重溶所得样品, 再用旋转蒸发除去石油醚, 分别获得异戊酰螺旋霉素 I的白色粉末状固 体、 异戊酰螺旋霉素 II的白色粉末状固体、 异戊酰螺旋霉素 III的白色粉末状固体。 实施例 2·· 左旋异戊酰螺旋霉素 I、 Π和 III的分离制备
( 1 )生物发酵:将含有 4"-异戊酰基转移酶基因的螺旋酶素产生菌克隆菌株 WSJ-195,在含有黄豆饼粉 2%、 葡萄糖 1%、 淀粉 3%、 CaC03 0.5%、 NaCl 0.4%和琼脂 2%的斜面培养基上, 于 pH7.2、 温度 32°C的 条件下培养 12天, 接种于含有黄豆饼粉 1.5%、 淀粉 3.0%、 NaCl 0.4%, CaC03 0.5%、鱼蛋白胨 0.3% 和 KH2P04 0.05%的种子培养基, 于 pH7.2、 27°C的条件下培养 70小时, 以 12%接种量种入含有葡萄 糖 0.5%、 淀粉 6.0%、 酵母粉 0.5%、 鱼粉 2.0%、 NH4N03 0.6% ^ NaCl 1.0%、 CaC03 0.5%、 KH2P04 0.05%、 MgSO4 0.1%、豆油 0.5%和消沫剂 0.02%的发酵培养基, 于 pH6.0~9.0、 26°C的条件下培养 100 小时, 获得发酵液; 在 pH值 6.0〜8.0的条件下进行发酵, 发酵时间为 110h, 且 pH值随时间的变化 曲线呈三个连续的阶段, 第一阶段满足方程式 yi=0.0909Xl+6.4, 其中 0<Xl<22; 第二阶段满足方程 式 y2=-0.0441x2+7.8, 其中 22<x2<56; 第三阶段满足方程式 y3=0.0078x3+6.06, 其中 56≤x3≤110, 曲 线变化如图 3所示, 获得发酵液。 具体控制曲线见附图 3。
(2 )生物发酵液的提取: 将步骤(1 )得到的发酵液用硫酸铝处理得滤液, 调 pH至 8.6, 用乙酸丁酯提取, 乙酸丁酯提取液用无盐水及 l%NaH2P04洗涤, 再用 pH2.3水提取, 得水相提取液, 调 pH至 5.0, 挥发 除去残余乙酸丁酯得水提取液, 过滤, 滤液调 pH8.6, 沉淀, 用纯化水进行淋洗, 得湿品, 干燥, 得左 旋可利霉素。
( 3 ) 左旋异戊酰螺旋霉素 I、 II、 III纯化: 采用制备型高效液相色谱对初步分离得到的样品进行纯化, 采 用 ODS制备色谱柱, 用乙腈和醋酸氨缓冲液进行梯度洗脱, 通过紫外检测, 记录分离的紫外谱图, 对 左旋异戊酰螺旋霉素 I组分目标峰、 左旋异戊酰螺旋霉素 II组分目标峰、 左旋异戊酰螺旋霉素 III组分 目标峰进行收集:
色谱柱: ODS制备色谱柱;
流动相: 乙腈 (A), lOOmM醋酸氨水溶液 (B);
梯度条件: 采用线性梯度 0~60分钟, A为 25%〜65%; 61〜90分钟, A为 65%〜90%;
流速: 260 mL/min;
进样量: 10mL;
进样浓度: 0.5g/mL; 检测波长: 231nm;
收集方式: 紫外触发收集;
按照左旋异戊酰螺旋霉素 I的保留时间 RT 44.759min, 收集的左旋异戊酰螺旋霉素 I样品, 按照左旋 异戊酰螺旋霉素 II的保留时间 43.34min收集样品, 按照左旋异戊酰螺旋霉素 III的保留时间 48.009min收 集样品;
采分别采用旋转蒸发除去乙腈, 然后用 1倍量乙酸乙酯萃取, 用旋转蒸发除去萃取液中乙酸乙酯, 得 膏状样品; 用石油醚重溶所得样品, 再用旋转蒸发除去石油醚, 分别获得异戊酰螺旋霉素 I的白色粉末状 固体、 异戊酰螺旋霉素 II的白色粉末状固体、 异戊酰螺旋霉素 III的白色粉末状固体。 实施例 3 左旋异戊酰螺旋霉素 I、 II、 III的分离制备
( 1 ) 培养发酵: 将含有 4"-异戊酰基转移酶基因的螺旋霉素产生菌克隆菌株 WSJ-195, 在斜面培养基上培 养后, 将其接种于种子培养基, 培养后, 再将其接种于发酵培养基, 通过葡萄糖和枸橼酸控制发酵过 程, 在 pH值 6.0〜7.5的条件下进行发酵, 发酵时间为 115h, 且 pH值随时间的变化曲线呈三个连续的阶 段, 第一阶段满足方程式 =0.0682 ^+6.0, 其中 0<Xl <22; 第二阶段满足方程式 y2=-0.0294x2+8.147, 其中 22<x2<56; 第三阶段满足方程式 y3=0.0078x3+6.06, 其中 56<x3< 115, 变化曲线如图 4, 获得发 酵液。
(2 )生物发酵液的提取: 将步骤(1 )得到的发酵液用硫酸铝处理得滤液, 调 pH至 8.6, 用乙酸丁酯提取, 乙酸丁酯提取液用无盐水及 l%NaH2P04洗涤, 再用 pH2.3水提取, 得水相提取液, 调 pH至 5.0, 挥 发除去残余乙酸丁酯得水提取液, 过滤, 滤液调 pH8.6, 沉淀, 用纯化水进行淋洗, 得湿品, 干燥, 得左旋可利霉素。
(3 ) 左旋异戊酰螺旋霉素 I、 II、 III纯化: 采用制备型高效液相色谱对初步分离得到的样品进行纯化, 采 用 ODS制备色谱柱, 用乙腈和醋酸氨缓冲液进行梯度洗脱, 通过紫外检测, 记录分离的紫外谱图, 对左旋异戊酰螺旋霉素 I组分目标峰、 左旋异戊酰螺旋霉素 II组分目标峰、 左旋异戊酰螺旋霉素 III 组分目标峰进行收集:
色谱柱: ODS制备色谱柱;
流动相: 乙腈 (A), lOOmM醋酸氨水溶液 (B);
梯度条件: 采用线性梯度 0~60分钟, A为 25%〜65%; 61〜90分钟, A为 65%〜90%;
流速: 260 mL/min;
进样量: 10mL;
进样浓度: 0.5g/mL;
检测波长: 231nm;
收集方式: 紫外触发收集;
按照左旋异戊酰螺旋霉素 I的保留时间 RT 44.759min收集样品,按照左旋异戊酰螺旋霉素 II的保留时 间 43.34min收集样品, 按照左旋异戊酰螺旋霉素 III的保留时间 48.009min收集样品;
分别采用旋转蒸发除去乙腈, 然后用 1倍量乙酸乙酯萃取, 用旋转蒸发除去萃取液中乙酸乙酯, 得膏 状样品; 用石油醚重溶所得样品, 再用旋转蒸发除去石油醚, 分别获得异戊酰螺旋霉素 I的白色粉末状固 体、 异戊酰螺旋霉素 II的白色粉末状固体、 异戊酰螺旋霉素 III的白色粉末状固体。 实施例 4左旋异戊酰螺旋霉素 I注射用水针剂的制备
(1) 将异戊酰螺旋霉素 I lOOmg与等摩尔数的己二酸混合均匀, 溶解于 l〜5ml蒸熘水中, 得到淡黄色澄明溶 液, pH为 4.6〜5.6。
(2) 在步骤 (1 ) 所配制好的溶液中加入溶液体积 0.1%的活性炭, 过滤;
(3) 在无菌条件下灌封、 灭菌、 检査和包装。 实施例 5 异戊酰螺旋霉素 I注射用水针剂的制备
(1) 将异戊酰螺旋霉素 I lOOmg与等摩尔数的枸橼酸混合均匀, 溶解于 l〜5ml蒸熘水中, 得到淡黄色澄明溶 液, pH为 4.6〜5.6。
(2) 在步骤 (1 ) 所配制好的溶液中加入溶液体积 0.1%的活性炭, 过滤;
(3) 在无菌条件下灌封、 灭菌、 检査和包装。 实施例 6异戊酰螺旋霉素 I注射用水针剂的制备
(1) 将异戊酰螺旋霉素 I lOOmg与等摩尔数的马来酸混合均匀, 溶解于 l〜5ml蒸熘水中, 得到淡黄色澄明溶 液, pH为 4.6〜5.6。
(2) 在步骤 (1 ) 所配制好的溶液中加入溶液体积 0.1%的活性炭, 过滤;
(3) 在无菌条件下灌封、 灭菌、 检査和包装。 实施例 7 左旋异戊酰螺旋霉素 I注射用粉针剂的制备
(1) 将左旋异戊酰螺旋霉素 I lOOmg与等摩尔数的枸橼酸混合均匀, 溶解于 l〜5ml蒸熘水中, 得到淡黄色澄 明溶液, pH为 4.6〜5.6。
(2) 在步骤 (1 ) 所配制好的溶液中加入溶液体积 0.1%的活性炭, 过滤;
(3) 再加入甘露醇 30〜150mg作为冻干支撑剂, 低温快速冷冻 9h后, 冷冻干燥, 获得淡黄色疏松块状物,在 无菌条件下压盖、 检査和包装。 实施例 8 左旋异戊酰螺旋霉素 I注射用粉针剂的制备
(1) 将左旋异戊酰螺旋霉素 I lOOmg与等摩尔数的马来酸混合均匀, 溶解于 l〜5ml蒸熘水中, 得到淡黄色澄 明溶液, pH为 4.6〜5.6。
(2) 在步骤 (1 ) 所配制好的溶液中加入溶液体积 0.1%的活性炭, 过滤;
(3) 再加入甘露醇 30〜150mg作为冻干支撑剂, 低温快速冷冻 9h后, 冷冻干燥, 获得淡黄色疏松块状物,在 无菌条件下压盖、 检査和包装。 实施例 9 左旋异戊酰螺旋霉素 I注射用粉针剂的制备
(1) 将左旋异戊酰螺旋霉素 I lOOmg与等摩尔数的枸橼酸混合均匀, 溶解于 l〜5ml蒸熘水中, 得到淡黄色澄 明溶液, pH为 4.6〜5.6。
(2) 在步骤 (1 ) 所配制好的溶液中加入溶液体积 0.1%的活性炭, 过滤; (3) 再加入甘露醇 30〜150mg作为冻干支撑剂, 低温快速冷冻 9h后, 冷冻干燥, 获得淡黄色疏松块状物,在 无菌条件下压盖、 检査和包装。 实施例 10左旋异戊酰螺旋霉素 I片 (按 1000片计算)
处方: 左旋异戊酰螺旋霉素 I 100g
低取代羟丙基纤维素 (5% ) 9.25g
羧甲基淀粉钠 (3%) 5.55g
硬脂酸镁 (1%) 1.85g
淀粉 总重-其它原辅料重量
总重 185g
制备工艺: 称取适量淀粉, 稀释至 15%浓度, 加热至糊状, 制成粘合剂; 主料可利霉素、 辅料淀粉、 低取代羟丙基纤维素、 羧甲基淀粉钠、 硬脂酸镁分别过 100目筛, 按处方量, 称取所需主料和辅料; 左旋 异戊酰螺旋霉素 I、 淀粉、 低取代羟丙基纤维素充分混合均匀后, 用 15%淀粉浓度的淀粉糊制成软材, 14 目筛制粒, 50-60°C干燥, 水份控制在 3-5%, 14目筛整粒, 加羧甲基淀粉钠, 硬脂酸镁混合, 测定颗粒含 量; 根据颗粒含量, 计算片重, 压片 (Φ9ιηιη浅凹冲头), 检测片重差异; 经检验合格后进行包装。 实施例 11 左旋异戊酰螺旋霉素 I胶囊剂 (按 1000粒计算)
处方: 左旋异戊酰螺旋霉素 I原粉 100g
淀粉 (药用) 108-左旋异戊酰螺旋霉素 I原粉重量
药用 3号胶囊 100粒
液体石蜡 5ml
制备工艺: 将主料左旋异戊酰螺旋霉素 I、辅料药用淀粉按工艺配方量分别称取后, 装入混合器充分混 合后 1.5〜2小时; 取样检测含量所得数据应和理论数据基本一致 (每粒胶囊所装重量约为 0.105g), 将经检 验合格的药用 3号胶囊及混合好的待装原料按全自动胶囊机操作要求, 分别填入装料器进行填充, 将填充 好的胶囊进行差异检验 (±10%以内, <0.3g), 溶出度符合要求, 将检验后符合要求的胶囊, 放入打光机 内加入液体石蜡进行 15-20分钟的打光, 然后取出进行成品包装盒检验。 实施例 12左旋异戊酰螺旋霉素 I糖衣片 (按 1000片计算)
处方: 同实施例 10。
制备工艺:按照实施例 11的方法操作,将检验合格后的片芯放入糖衣锅中,将配好的糖浆(浓度为 65〜 70%)慢慢放入锅中, 然后将温度升至 40°C左右, 加入适量滑石粉, 鼓风干燥 25-30分钟反复几次粉衣层包 平后, 再进行糖衣层 15〜20分钟进行糖衣层包衣, 待糖衣层包平后进行所需色调的包衣层包衣, 将色浆调 好后放入糖浆中搅匀倒入锅内, 每次约 15〜20分钟, 分别几次搅拌均匀。 实施例 13 左旋异戊酰螺旋霉素 I糖浆 (按 1000袋计算)
处方: 左旋异戊酰螺旋霉素 I原粉 125g
柠檬酸 (0.5%) (枸橼酸) 1.5g 蔗糖 总重 -其它原辅料
总重约 50g
色素 (姜黄素) 约 O. lg
制备工艺: 左旋异戊酰螺旋霉素 I原粉, 柠檬酸、 蔗糖分别用高速气流粉碎机粉碎成颗粒 85%通过 300 目, 15%通过 180目, 然后将粉碎后的细粉按处方量称取后充分混合 1 1.5小时, 测其含量, 计算装量 (理 论装量为每袋 500mg),然后将混合物装入袋装机中,装好铝箔纸,按分装机操作要求分装,装量差异在 ±5% 以内, 装好后进行检验合格后外包装。 实施例 14 左旋异戊酰螺旋霉素 I肠溶片 (按 1000片计算)
处方: 参照实施例 10。
制备工艺: 片芯制备按实施例 5操作, 将符合要求的片芯放入糖衣锅中, 用 60~70%浓度的糖浆和滑石 粉进行底衣层包衣三层, 然后进行隔离层包衣, 加入 10%玉米朊酒精溶液, 滚转法 10 15分钟吹干, 再用苯 二甲酸二乙酯、 丙酮、邻苯二甲酸醋酸纤维、 酒精溶液, 即肠溶液滴入锅内, 滚转法 10 15分钟吹干 2~3次。 检验合格后, 按实施例 13进行糖衣包衣。 实施例 15 左旋异戊酰螺旋霉素 I胃溶片 (按 1000片计算)
处方: 参照实施例 10。
制备工艺: 片芯制备按实施例 11操作, 将符合要求的片芯放入高效包衣机中, 然后将符合标准的包衣 粉(包括脂溶性和水溶性) 按要求配制成包衣液, 再将包衣液放入胶体磨粉碎、 过滤待用。 将装好片芯的 高效包衣锅预热, 转速控制在 5~10转 /分, 温度控制在 45~60°C, 用气雾喷头(>300目)将包衣孔液喷入锅 内, 然后干燥 25~35分钟, 反复进行 8-12次, 直至包匀, 晾干检验合格后包装。 实施例 16 左旋异戊酰螺旋霉素 I颗粒剂 (按 1000袋计算)
处方: 左旋异戊酰螺旋霉素 I原粉 125g
糖粉 2000g
糊精 900g
5%PVP-K30 适量
制备工艺: 左旋异戊酰螺旋霉素 I 原粉、糖粉、糊精过 120目筛, 按处方量称取左旋异戊酰螺旋霉素 I、 糖粉、 糊精混合均匀, 将混合均匀的上述物料用 5%PVP-K30胶浆制成软材, 摇摆式颗粒剂制粒 70°C干燥、 整粒, 送检合格后分装。 实施例 17 左旋异戊酰螺旋霉素 Π注射用水针剂的制备
(1) 将异戊酰螺旋霉素 II lOOmg与等摩尔数的己二酸混合均匀, 溶解于 l〜5ml蒸熘水中, 得到淡黄色澄明 溶液, pH为 4.6〜5.6。
(2) 在步骤 (1 ) 所配制好的溶液中加入溶液体积 0.1%的活性炭, 过滤;
(3) 在无菌条件下灌封、 灭菌、 检査和包装。 实施例 18 左旋异戊酰螺旋霉素 II注射用水针剂的制备
(1) 将异戊酰螺旋霉素 II lOOmg与等摩尔数的枸橼酸混合均匀, 溶解于 l〜5ml蒸熘水中, 得到淡黄色澄明 溶液, pH为 4.6〜5.6。
(2) 在步骤 (1 ) 所配制好的溶液中加入溶液体积 0.1%的活性炭, 过滤;
(3) 在无菌条件下灌封、 灭菌、 检査和包装。 实施例 19 左旋异戊酰螺旋霉素 II注射用粉针剂的制备
(1) 将左旋异戊酰螺旋霉素 II lOOmg与等摩尔数的枸橼酸混合均匀, 溶解于 l〜5ml蒸熘水中, 得到淡黄色 澄明溶液, pH为 4.6〜5.6。
(2) 在步骤 (1 ) 所配制好的溶液中加入溶液体积 0.1%的活性炭, 过滤;
(3) 再加入甘露醇 30〜150mg作为冻干支撑剂, 低温快速冷冻 9h后, 冷冻干燥, 获得淡黄色疏松块状物,在 无菌条件下压盖、 检査和包装。 实施例 20左旋异戊酰螺旋霉素 II片 (按 1000片计算)
处方: 左旋异戊酰螺旋霉素 II 100g
低取代羟丙基纤维素 (5%) 9.25g
羧甲基淀粉钠 (3% ) 5.55g
硬脂酸镁 (1%) 1.85g
淀粉 总重-其它原辅料重量
总重 185g
制备工艺: 称取适量淀粉, 稀释至 15%浓度, 加热至糊状, 制成粘合剂; 主料可利霉素、 辅料淀粉、 低取代羟丙基纤维素、 羧甲基淀粉钠、 硬脂酸镁分别过 100目筛, 按处方量, 称取所需主料和辅料; 左旋 异戊酰螺旋霉素 II、 淀粉、 低取代羟丙基纤维素充分混合均匀后, 用 15%淀粉浓度的淀粉糊制成软材, 14 目筛制粒, 50-60°C干燥, 水份控制在 3-5%, 14目筛整粒, 加羧甲基淀粉钠, 硬脂酸镁混合, 测定颗粒含 量; 根据颗粒含量, 计算片重, 压片 (Φ9ιηιη浅凹冲头), 检测片重差异; 经检验合格后进行包装。 实施例 21 左旋异戊酰螺旋霉素 II胶囊剂 (按 1000粒计算)
处方: 左旋异戊酰螺旋霉素 II原粉 100g
淀粉 (药用) 108g-左旋异戊酰螺旋霉素 II原粉重量
药用 3号胶囊 100粒
液体石蜡 5ml
制备工艺: 将主料左旋异戊酰螺旋霉素 II、 辅料药用淀粉按工艺配方量分别称取后, 装入混合器充分 混合后 1.5〜2小时; 取样检测含量所得数据应和理论数据基本一致(每粒胶囊所装重量约为 0.105g), 将经 检验合格的药用 3号胶囊及混合好的待装原料按全自动胶囊机操作要求, 分别填入装料器进行填充, 将填 充好的胶囊进行差异检验 (±10%以内, <0.3g), 溶出度符合要求, 将检验后符合要求的胶囊, 放入打光 机内加入液体石蜡进行 15-20分钟的打光, 然后取出进行成品包装盒检验。 实施例 22异戊酰螺旋霉素 III注射用水针剂的制备
(1) 将异戊酰螺旋霉素 III lOOmg与等摩尔数的马来酸混合均匀, 溶解于 l〜5ml蒸熘水中, 得到淡黄色澄明 溶液, pH为 4.6〜5.6。
(2) 在步骤 (1 ) 所配制好的溶液中加入溶液体积 0.1%的活性炭, 过滤;
(3) 在无菌条件下灌封、 灭菌、 检査和包装。 实施例 23 左旋异戊酰螺旋霉素 III注射用粉针剂的制备
(1) 将左旋异戊酰螺旋霉素 III lOOmg与等摩尔数的马来酸混合均匀, 溶解于 l〜5ml蒸熘水中, 得到淡黄色 澄明溶液, pH为 4.6〜5.6。
(2) 在步骤 (1 ) 所配制好的溶液中加入溶液体积 0.1%的活性炭, 过滤;
(3) 再加入甘露醇 30〜150mg作为冻干支撑剂, 低温快速冷冻 9h后, 冷冻干燥, 获得淡黄色疏松块状物,在 无菌条件下压盖、 检査和包装。 实施例 24 左旋异戊酰螺旋霉素 III胶囊剂 (按 1000粒计算)
处方: 左旋异戊酰螺旋霉素 III原粉 100g
淀粉 (药用) 108g-左旋异戊酰螺旋霉素 III原粉重量
药用 3号胶囊 100粒
液体石蜡 5ml
制备工艺: 将主料左旋异戊酰螺旋霉素 III、 辅料药用淀粉按工艺配方量分别称取后, 装入混合器充分 混合后 1.5〜2小时; 取样检测含量所得数据应和理论数据基本一致(每粒胶囊所装重量约为 0.105g), 将经 检验合格的药用 3号胶囊及混合好的待装原料按全自动胶囊机操作要求, 分别填入装料器进行填充, 将填 充好的胶囊进行差异检验 (±10%以内, <0.3g), 溶出度符合要求, 将检验后符合要求的胶囊, 放入打光 机内加入液体石蜡进行 15-20分钟的打光, 然后取出进行成品包装盒检验。 实施例 25 左旋异戊酰螺旋霉素 III糖浆 (按 1000袋计算)
处方: 左旋异戊酰螺旋霉素 III原粉 125g
柠檬酸 (0.5%) (枸橼酸) 1.5g
蔗糖 总重 -其它原辅料
总重约 50g
色素 (姜黄素) 约 O. lg
制备工艺:左旋异戊酰螺旋霉素 III原粉,柠檬酸、蔗糖分别用高速气流粉碎机粉碎成颗粒 85%通过 300 目, 15%通过 180目, 然后将粉碎后的细粉按处方量称取后充分混合 1 1.5小时, 测其含量, 计算装量 (理 论装量为每袋 500mg),然后将混合物装入袋装机中,装好铝箔纸,按分装机操作要求分装,装量差异在 ±5% 以内, 装好后进行检验合格后外包装。 实施例 26 左旋异戊酰螺旋霉素 III颗粒剂 (按 1000袋计算)
处方: 左旋异戊酰螺旋霉素 III原粉 125g 糖粉 2000g
糊精 900g
5%PVP-K30 适』
制备工艺: 左旋异戊酰螺旋霉素 III 原粉、 糖粉、 糊精过 120目筛, 按处方量称取左旋异戊酰螺旋霉素 III、 糖粉、 糊精混合均匀, 将混合均匀的上述物料用 5%PVP-K30胶浆制成软材, 摇摆式颗粒剂制粒 70°C干 燥、 整粒, 送检合格后分装。 实施例 27
将实施例 1中制备的左旋异戊酰螺旋霉素 I白色粉末状固体进一步制备成晶体。
左旋异戊酰螺旋霉素 I晶体化合物的制备方法:
1. 先将实施例 1 中得到的左旋异戊酰螺旋霉素 I化合物固体溶解于乙酸乙酯、 无水乙醇和无水丙酮的混 合溶剂中, 所用混合溶剂中乙酸乙酯、 无水乙醇和无水丙酮的体积比为 1 : 10: 1;
2. 然后加入纯水, 边加入边搅拌, 所加入的纯水的体积为乙酸乙酯、 无水乙醇和无水丙酮体积之和的 2.5 倍; 加入纯水的速度为 4ml/分钟; 加入纯水时的搅拌速度为 30转 /分钟;
3. 纯水加完后降温至 5°C, 降温的速度为每小时 1 °C, 降温的同时继续搅拌, 搅拌速度为 10转 /分钟; 得 到左旋异戊酰螺旋霉素 I晶体化合物。
将制备得到的左旋异戊酰螺旋霉素 I晶体化合物使用 Cu-Κα射线测量得到的 X-射线粉末衍射在 2Θ为 7.6°、 8.0°、 10.0°、 11.4°、 16.4°、 17.0°、 17.5°、 17.9°、 19.5°、 22.7°、 23.7°和 24.4°显示有特征峰, 其
X-射线粉末衍射图谱如图 5所示。 实施例 28
将实施例 1中制备的左旋异戊酰螺旋霉素 I白色粉末状固体进一步制备成晶体。
左旋异戊酰螺旋霉素 I晶体化合物的制备方法:
1. 先将左旋异戊酰螺旋霉素 I化合物固体溶解于乙酸乙酯、 无水乙醇和无水丙酮的混合溶剂中, 所用混 合溶剂中乙酸乙酯、 无水乙醇和无水丙酮的体积比为 1 : 10: 1;
2. 然后加入纯水, 边加入边搅拌, 所加入的纯水的体积为乙酸乙酯、 无水乙醇和无水丙酮体积之和的 9 倍; 加入纯水的速度为 10ml/分钟; 所加入纯水的搅拌速度为 60转 /分钟;
3. 纯水加完后降温至 15 °C, 降温的速度为每小时 3 °C, 降温的同时继续搅拌, 搅拌速度为 10转 /分钟; 得到左旋异戊酰螺旋霉素 I晶体化合物。
该左旋异戊酰螺旋霉素 I晶体化合物使用 Cu-Κα射线测量得到的 X-射线粉末衍射图谱与图 5相似。 实施例 29左旋异戊酰螺旋霉素 I 晶体化合物的注射用水针剂的制备
取实施例 27制备的左旋异戊酰螺旋霉素 I 晶体化合物制备注射用水针剂, 制备方法同前。 实施例 30 左旋异戊酰螺旋霉素 I 晶体化合物注射用粉针剂的制备
取实施例 28制备的左旋异戊酰螺旋霉素 I 晶体化合物制备注射用粉针剂, 制备方法同前。 实施例 31 左旋异戊酰螺旋霉素 I 晶体化合物的片剂的制备
取实施例 27制备的左旋异戊酰螺旋霉素 I 晶体化合物制备片剂, 制备方法同前。 实施例 32
将实施例 1中制备的左旋异戊酰螺旋霉素 II白色粉末状固体进一步制备成晶体。
左旋异戊酰螺旋霉素 II晶体化合物的制备方法:
1. 先将实施例 1中得到的左旋异戊酰螺旋霉素 II化合物固体溶解于无甲醇、无水乙醇和无水丙酮的混合 溶剂中, 所用混合溶剂中无水甲醇、 无水丙酮和无水乙醇的体积比为 1 : 10: 1;
2. 然后加入纯水,边加入边搅拌,所加入的纯水的体积为无水甲醇、无水乙醇和无水丙酮体积之和的 2.5 倍; 加入纯水的速度为 4ml/分钟; 加入纯水时的搅拌速度为 30转 /分钟;
3. 纯水加完后降温至 5°C, 降温的速度为每小时 1 °C, 降温的同时继续搅拌, 搅拌速度为 10转 /分钟; 得 到左旋异戊酰螺旋霉素 II晶体化合物。
将制备得到的左旋异戊酰螺旋霉素 II晶体化合物使用 Cu-Κα射线测量得到的 X-射线粉末衍射在 2Θ 为 10.0°、 11.6°、 16.4°、 17.3°、 19.1°、 21.2°、 22.1°、 22.7°、 26.4°、 26.9°、 27.5°和 31.5°显示有特征峰, 其 X-射线粉末衍射图谱如附图 6所示。 实施例 33
将实施例 1中制备的左旋异戊酰螺旋霉素 II白色粉末状固体进一步制备成晶体。
左旋异戊酰螺旋霉素 II晶体化合物的制备方法:
1.先将左旋异戊酰螺旋霉素 II化合物固体溶解于无甲醇、 无水乙醇和无水丙酮的混合溶剂中, 所用混合溶 剂中无水甲醇、 无水丙酮和无水乙醇的体积比为 1 : 10: 0.8;
2.然后加入纯水, 边加入边搅拌, 所加入的纯水的体积为无水甲醇、无水乙醇和无水丙酮体积之和的 9倍; 加入纯水的速度为 10ml/分钟; 所加入纯水的搅拌速度为 60转 /分钟;
3.纯水加完后降温至 15°C, 降温的速度为每小时 3 °C, 降温的同时继续搅拌, 搅拌速度为 10转 /分钟; 得 到左旋异戊酰螺旋霉素 II晶体化合物。
该左旋异戊酰螺旋霉素 II晶体化合物使用 Cu-Κα射线测量得到的 X-射线粉末衍射图谱与附图 6相似。 实施例 34
将实施例 2中制备的左旋异戊酰螺旋霉素 II白色粉末状固体进一步制备成晶体。
左旋异戊酰螺旋霉素 II晶体化合物的制备方法:
1. 先将左旋异戊酰螺旋霉素 II化合物固体溶解于无甲醇、 无水乙醇和无水丙酮的混合溶剂中, 所用混合 溶剂中无水甲醇、 无水丙酮和无水乙醇的体积比为 1 : 5: 1;
2. 然后加入纯水, 边加入边搅拌, 所加入的纯水的体积为无水甲醇、 无水乙醇和无水丙酮体积之和的 7.5 倍; 加入纯水的速度为 6ml/分钟; 所加入纯水的搅拌速度为 40转 /分钟;
3. 纯水加完后降温至 10 °C, 降温的速度为每小时 2°C, 降温的同时继续搅拌, 搅拌速度为 15转 /分钟; 得到左旋异戊酰螺旋霉素 II晶体化合物。
该左旋异戊酰螺旋霉素 II晶体化合物使用 Cu-Κα射线测量得到的 X-射线粉末衍射图谱与附图 6相似。 实施例 35
将实施例 3中制备的左旋异戊酰螺旋霉素 II白色粉末状固体进一步制备成晶体。
左旋异戊酰螺旋霉素 II晶体化合物的制备方法:
1. 先将左旋异戊酰螺旋霉素 II化合物固体溶解于无甲醇、 无水乙醇和无水丙酮的混合溶剂中, 所用混合 溶剂中无水甲醇、 无水丙酮和无水乙醇的体积比为 1 : 3: 1;
2. 然后加入纯水, 边加入边搅拌, 所加入的纯水的体积为无水甲醇、 无水乙醇和无水丙酮体积之和的 7.5 倍; 加入纯水的速度为 8ml/分钟; 所加入纯水的搅拌速度为 45转 /分钟;
3. 纯水加完后降温至 12°C, 降温的速度为每小时 2.5°C, 降温的同时继续搅拌, 搅拌速度为 20转 /分钟; 得到左旋异戊酰螺旋霉素 II晶体化合物。
该左旋异戊酰螺旋霉素 II晶体化合物使用 Cu-Κα射线测量得到的 X-射线粉末衍射图谱与附图 6相似。 实施例 36
将实施例 3中制备的左旋异戊酰螺旋霉素 II白色粉末状固体进一步制备成晶体。
左旋异戊酰螺旋霉素 II晶体化合物的制备方法:
1. 先将左旋异戊酰螺旋霉素 II化合物固体溶解于无甲醇、 无水乙醇和无水丙酮的混合溶剂中, 所用混合 溶剂中无水甲醇、 无水丙酮和无水乙醇的体积比为 1 : 6: 0.8;
2. 然后加入纯水, 边加入边搅拌, 所加入的纯水的体积为无水甲醇、 无水乙醇和无水丙酮体积之和的 5 倍; 加入纯水的速度为 7ml/分钟; 所加入纯水的搅拌速度为 60转 /分钟;
3. 纯水加完后降温至 12°C, 降温的速度为每小时 1.2°C, 降温的同时继续搅拌, 搅拌速度为 15转 /分钟; 得到左旋异戊酰螺旋霉素 II晶体化合物。
该左旋异戊酰螺旋霉素 II晶体化合物使用 Cu-Κα射线测量得到的 X-射线粉末衍射图谱与附图 5相似。 实施例 37 左旋异戊酰螺旋霉素 II晶体化合物的注射用水针剂的制备
取实施例 34制备的左旋异戊酰螺旋霉素 II晶体化合物制备注射用水针剂, 制备方法同前。 实施例 38 左旋异戊酰螺旋霉素 II晶体化合物的注射用水针剂的制备
取实施例 33制备的左旋异戊酰螺旋霉素 II晶体化合物制备注射用水针剂, 制备方法同前。 实施例 39 左旋异戊酰螺旋霉素 II晶体化合物注射用粉针剂的制备
取实施例 36制备的左旋异戊酰螺旋霉素 II晶体化合物制备注射用粉针剂, 制备方法同前。 实施例 40左旋异戊酰螺旋霉素 II晶体化合物注射用粉针剂的制备
取实施例 35制备的左旋异戊酰螺旋霉素 II晶体化合物制备注射用粉针剂, 制备方法同前。 实施例 41 左旋异戊酰螺旋霉素 Π晶体化合物的片剂的制备
取实施例 36制备的左旋异戊酰螺旋霉素 II晶体化合物制备片剂, 制备方法同前。 实施例 42 左旋异戊酰螺旋霉素 II晶体化合物的胶囊剂的制备
取实施例 32制备的左旋异戊酰螺旋霉素 II晶体化合物制备胶囊剂, 制备方法同前。 实施例 43 左旋异戊酰螺旋霉素 II晶体化合物的颗粒剂的制备
取实施例 33制备的左旋异戊酰螺旋霉素 II晶体化合物制备颗粒剂, 制备方法同前。 实施例 44
将实施例 1中制备的左旋异戊酰螺旋霉素 III白色粉末状固体进一步制备成晶体。
左旋异戊酰螺旋霉素 in晶体化合物的制备方法:
1. 先将实施例 1中得到的左旋异戊酰螺旋霉素 III化合物固体溶解于无甲醇、无水乙醇和无水丙酮的混合 溶剂中, 所用混合溶剂中无水甲醇、 无水乙醇和无水丙酮的体积比为 1 : 10: 1;
2. 然后加入纯水, 边加入边搅拌, 所加入的纯水的体积为无水甲醇、 无水乙醇和无水丙酮体积之和的 2.5 倍; 加入纯水的速度为 4ml/分钟; 加入纯水时的搅拌速度为 30转 /分钟;
3. 纯水加完后降温至 5°C, 降温的速度为每小时 1 °C, 降温的同时继续搅拌, 搅拌速度为 10转 /分钟; 得 到左旋异戊酰螺旋霉素 in晶体化合物。
将制备得到的左旋异戊酰螺旋霉素 III晶体化合物使用 Cu-Κα射线测量得到的 X-射线粉末衍射在 2Θ 为 8.0°、 10.0°、 11.2°、 11.7°、 16.4°、 19.1°、 19.6°、 20.0°、 21.4°、 22.9°、 23.6°和 29.4°显示有特征峰, 其 X-射线粉末衍射图谱如附图 7所示。 实施例 45
将实施例 2中制备的左旋异戊酰螺旋霉素 III白色粉末状固体进一步制备成晶体。
左旋异戊酰螺旋霉素 III晶体化合物的制备方法:
1. 先将左旋异戊酰螺旋霉素 in化合物固体溶解于无甲醇、无水乙醇和无水丙酮的混合溶剂中, 所用混合 溶剂中无水甲醇、 无水乙醇和无水丙酮的体积比为 1 : 10: 1;
2. 然后加入纯水, 边加入边搅拌, 所加入的纯水的体积为无水甲醇、 无水乙醇和无水丙酮体积之和的 9 倍; 加入纯水的速度为 10ml/分钟; 所加入纯水的搅拌速度为 60转 /分钟;
3. 纯水加完后降温至 15 °C, 降温的速度为每小时 3 °C, 降温的同时继续搅拌, 搅拌速度为 10转 /分钟; 得到左旋异戊酰螺旋霉素 III晶体化合物。
该左旋异戊酰螺旋霉素 III晶体化合物使用 Cu-Κα射线测量得到的 X-射线粉末衍射图谱与附图 7相似。 实施例 46
将实施例 2中制备的左旋异戊酰螺旋霉素 III白色粉末状固体进一步制备成晶体。
左旋异戊酰螺旋霉素 III晶体化合物的制备方法:
1. 先将左旋异戊酰螺旋霉素 in化合物固体溶解于无甲醇、无水乙醇和无水丙酮的混合溶剂中, 所用混合 溶剂中无水甲醇、 无水乙醇和无水丙酮的体积比为 1 : 5: 0.8;
2. 然后加入纯水, 边加入边搅拌, 所加入的纯水的体积为无水甲醇、 无水乙醇和无水丙酮体积之和的 7.5 倍; 加入纯水的速度为 6ml/分钟; 所加入纯水的搅拌速度为 40转 /分钟;
3. 纯水加完后降温至 10 °C, 降温的速度为每小时 2°C, 降温的同时继续搅拌, 搅拌速度为 15转 /分钟; 得到左旋异戊酰螺旋霉素 III晶体化合物。
该左旋异戊酰螺旋霉素 III晶体化合物使用 Cu-Κα射线测量得到的 X-射线粉末衍射图谱与附图 7相似。 实施例 47
将实施例 3中制备的左旋异戊酰螺旋霉素 III白色粉末状固体进一步制备成晶体。
左旋异戊酰螺旋霉素 III晶体化合物的制备方法:
1. 先将左旋异戊酰螺旋霉素 in化合物固体溶解于无甲醇、无水乙醇和无水丙酮的混合溶剂中, 所用混合 溶剂中无水甲醇、 无水乙醇和无水丙酮的体积比为 1 : 2: 1;
2. 然后加入纯水, 边加入边搅拌, 所加入的纯水的体积为无水甲醇、 无水乙醇和无水丙酮体积之和的 7.5 倍; 加入纯水的速度为 8ml/分钟; 所加入纯水的搅拌速度为 45转 /分钟;
3. 纯水加完后降温至 12°C, 降温的速度为每小时 2.5°C, 降温的同时继续搅拌, 搅拌速度为 20转 /分钟; 得到左旋异戊酰螺旋霉素 III晶体化合物。
该左旋异戊酰螺旋霉素 III晶体化合物使用 Cu-Κα射线测量得到的 X-射线粉末衍射图谱与附图 7相似。 实施例 48 左旋异戊酰螺旋霉素 III晶体化合物的注射用水针剂的制备
取实施例 44制备的左旋异戊酰螺旋霉素 III晶体化合物制备注射用水针剂, 制备方法同前。 实施例 49 左旋异戊酰螺旋霉素 III晶体化合物注射用粉针剂的制备
取实施例 45制备的左旋异戊酰螺旋霉素 III晶体化合物制备注射用粉针剂, 制备方法同前。 实施例 50左旋异戊酰螺旋霉素 III晶体化合物的片剂的制备
取实施例 46制备的左旋异戊酰螺旋霉素 III晶体化合物制备片剂, 制备方法同前。 实施例 51 左旋异戊酰螺旋霉素 III晶体化合物的胶囊剂的制备
取实施例 47制备的左旋异戊酰螺旋霉素 III晶体化合物制备胶囊剂, 制备方法同前。 实验例 1 左旋异戊酰螺旋霉素 I、 II、 III的急性毒性试验
一、 试验方法:
小鼠、 大鼠口服给药 (实施例 1制得的左旋异戊酰螺旋霉素 I、 II、 III)
小鼠和大鼠试验前观察 2天, 动物未见异常者进行试验。 试验前小鼠和大鼠禁食过夜。 根据预试结 果, 试验药分别给小鼠和大鼠灌胃给药 4000mg/kg, 未见动物死亡。 本试验按 4000mg/kg分别给小鼠和大 鼠灌胃给药, 小鼠按 100mg/ml, 灌胃容量为 0.6-0.8ml/只; 大鼠按 173mg/ml, 灌胃容量 0.8〜1.0ml/50克。 灌胃给药后观察一周的动物毒性反应和死亡数。
二、 试验结果见表 1、 表 2
表 1. 试验药小鼠口服急性毒性 (LD5< 试验药 剂量 (mg kg) 动物数 (只) 死亡动物数 (只) 死亡率 (%) LD50 (mg kg) 左旋异戊 I 4000 20 35 >4000
左旋异戊 II 4000 20 35 >4000
左旋异戊 III 4000 20 35 >4000
表 2. 试验药大鼠口服急性毒性 (LD5(Q
试验药 剂量 (mg kg) 动物数 (只) 死亡动物数 (只) 死亡率 (%) LD50 (mg/kg) 左旋异戊 I 4500 20 15 >4500
左旋异戊 II 4500 20 15 >4500
左旋异戊 III 4500 20 15 >4500 对本发明其它实施例所制备的左旋异戊酰螺旋霉素 I、 II、 in或左旋异戊酰螺旋霉素 I、 II、 III制剂也 进行了相同的试验, 其获得的结果相似。 实验例 2左旋异戊酰螺旋霉素 I及其晶体的体内药效
试验方法: 感染菌液制备: 将 -80°C冰箱保存的试验菌液取出放在室温 lh左右, 然后将肺炎链球菌、 化脓性链球菌、肠球菌吸取 0.1ml菌液分别接种于 2ml MH汤中(加 10%灭活马血清), 金葡菌也按上述方 法接种 0.1ml菌液于 2ml MH汤中, 置 37°C孵箱中培养 18h后为原菌液, 用 5%胃膜素稀释原菌液, 使动 物感染 100%致死菌数作为感染菌液。
可利霉素的临床用药途径拟为口服, 因此可利霉素试验选择灌胃给药。 左旋异戊酰螺旋霉素 I (实施 例 1制得)、 左旋异戊酰螺旋霉素 I晶体 (实施例 27制备) 采用肌肉注射给药。
将小鼠腹腔注射 0.5ml致死菌量后动物出现活动明显减少、静卧、毛松等症状。感染后分别在 0.5〜6h 每一只小鼠灌胃一次 0.2ml, 无任何不良反应。 观察七日动物死亡数, 用 Bliss 程序, 分别计算各药对小鼠 感染后的半数保护剂量 (ED5。), 与各药物比较保护效果。
体内试验结果:
表 3 : 5种抗生素对小鼠腹腔感染 6株链球菌的疗效比较
Figure imgf000025_0001
异戊 I 0.03 9.51 异戊 I晶体 0.03 8.65 可利霉素 0.03 10.06 肺炎链球菌 18 9.6X104
阿奇霉素 0.06 14.87 乙酰螺旋霉素 0.06 37.93 红霉素 0.06 57.08 异戊 I 0.06 13.86 异戊 I晶体 0.06 12.82 可利霉素 0.12 16.02 肺炎链球菌 57 8.8X104
阿奇霉素 0.12 19.02 乙酰螺旋霉素 1 398.01 红霉素 0.25 102.33 异戊 I 0.06 26.15 异戊 I晶体 0.06 23.37 化脓性 可利霉素 0.12 26.30
6.9X103
链球菌 772 阿奇霉素 0.25 46.89 乙酰螺旋霉素 0.25 98.11 红霉素 0.5 101.33 异戊 I 0.12 66.40 异戊 I晶体 0.12 60.99 化脓性 可利霉素 0.25 87.84
7.8X104
链球菌 102 阿奇霉素 0.5 159.06 乙酰螺旋霉素 0.5 227.07 红霉素 0.5 361.01 异戊 I 0.12 57.25 异戊 I晶体 0.12 54.58 化脓性 可利霉素 0.25 68.48
4.9X104
链球菌 119 阿奇霉素 0.25 68.48 乙酰螺旋霉素 0.5 117.53 红霉素 0.5 233.72 表 4: 5种抗生素对小鼠腹腔感染肠球菌和金葡菌的疗比较
Figure imgf000026_0001
异戊 I 0. 5 23. 54
异戊 I晶体 0. 5 21. 33
可利霉素 0. 5 31. 98
金葡菌 16 5. 2 X 103
阿奇霉素 0. 5 31. 98
乙酰螺旋霉素 1 43. 58
红霉素 1 82. 36
异戊 I 0. 5 24. 40
异戊 I晶体 0. 5 22. 26
可利霉素 0. 5 31. 50
金葡菌 76 5. 8 X 104
阿奇霉素 1 58. 79
乙酰螺旋霉素 1 66. 63
红霉素 1 64. 17
异戊 I 1 110. 24
异戊 I晶体 1 107. 46
可利霉素 2 120. 35
金葡菌 12 4. 8 X 104
阿奇霉素 2 120. 35
乙酰螺旋霉素 2048 >500
红霉素 256 266. 11
异戊 I 0. 5 42. 67
异戊 I晶体 0. 5 38. 00
可利霉素 1 59. 30
金葡菌 21 4. 2 X 104
阿奇霉素 4 142. 99
乙酰螺旋霉素 2048 >500
红霉素 4 213. 67 体内试验结果:
异戊酰螺旋霉素 I对小鼠感染 12株细菌的疗效见表 3和表 4, 显示有良好的保护效果; 而异戊酰螺旋 霉素 I晶体化合物对小鼠感染 12株细菌显示出更加优良的保护效果。
对本发明其它实施例所制备的左旋异戊酰螺旋霉素 I、 左旋异戊酰螺旋霉素 I晶体或含有左旋异戊酰 螺旋霉素 I或其晶体的制剂也进行了相同的试验, 其获得的结果相似。 实验例 3: 左旋异戊酰螺旋霉素 II及其晶体化合物的体内药效
采用实施例 1制备的左旋异戊酰螺旋霉素 II, 以及实施例 36制备的左旋异戊酰螺旋霉素 II晶体化合 物, 试验方法同实验例 2。
体内试验结果见表 5和表 6:
表 5: 5种抗生素对小鼠腹腔感染 6株链球菌的疗效比较
Figure imgf000027_0001
异戊 Π 0.12 8.99 异戊 II晶体 0.12 7.69 可利霉素 0.12 10.41 肺炎链球菌 3 6.4x l04
阿奇霉素 0.12 18.29 乙酰螺旋霉素 0.5 66.96 红霉素 1 85.08 异戊 Π 0.03 8.98 异戊 II晶体 0.03 8.09 可利霉素 0.03 10.06 肺炎链球菌 18 9.6x l04
阿奇霉素 0.06 14.87 乙酰螺旋霉素 0.06 37.93 红霉素 0.06 57.08 异戊 Π 0.06 13.10 异戊 II晶体 0.06 12.04
8.8x l04 可利霉素 0.12 16.02 肺炎链球菌 57
阿奇霉素 0.12 19.02 乙酰螺旋霉素 1 398.01 红霉素 0.25 102.33 异戊 Π 0.06 24.61 异戊 II晶体 0.06 21.90 化脓性 可利霉素 0.12 26.30
6.9x l03
链球菌 772 阿奇霉素 0.25 46.89 乙酰螺旋霉素 0.25 98.11 红霉素 0.5 101.33 异戊 Π 0.12 63.21 异戊 II晶体 0.12 58.00 化脓性 7.8x l04 可利霉素 0.25 87.84 链球菌 102 阿奇霉素 0.5 159.06 乙酰螺旋霉素 0.5 227.07 红霉素 0.5 361.01 异戊 Π 0.12 52.77 异戊 II晶体 0.12 49.94 化脓性 4.9x l04 可利霉素 0.25 68.48 链球菌 119 阿奇霉素 0.25 68.48 乙酰螺旋霉素 0.5 117.53 红霉素 0.5 233.72 表 6 : 5种抗生素对小鼠腹腔感染肠球菌和金葡菌的疗比较
攻击量 MIC ED50 试验菌 药物
(CFU/0. 5ml/鼠) ( μ g/ml) (mg/kg) 异戊 II 0. 25 70. 16
异戊 II晶体 0. 25 56. 16
可利霉素 0. 5 89. 29
肠球菌 5. 4 X 104
阿奇霉素 1 146. 51
乙酰螺旋霉素 1 130. 34
红霉素 2 175. 23
异戊 II 0. 25 20. 87
异戊 II晶体 0. 25 16. 18
5. 2 X 103 可利霉素 0. 5 31. 98
金葡菌
阿奇霉素 0. 5 31. 98
乙酰螺旋霉素 1 43. 58
红霉素 1 82. 36
异戊 II 0. 25 22. 26
异戊 II晶体 0. 25 18. 71
可利霉素 0. 5 31. 50
金葡菌 5. 8 X 104
阿奇霉素 1 58. 79
乙酰螺旋霉素 1 66. 63
红霉素 1 64. 17
异戊 II 1 108. 04
异戊 II晶体 1 104. 67
4. 8 X 104 可利霉素 2 120. 35
金葡菌
阿奇霉素 2 120. 35
乙酰螺旋霉素 2048 >500
红霉素 256 266. 11
异戊 II 0. 5 38. 90
异戊 II晶体 0. 5 36. 09
4. 2 X 104 可利霉素 1 59. 30
金葡菌
阿奇霉素 4 142. 99
乙酰螺旋霉素 2048 >500
红霉素 4 213. 67 体内试验结果:
异戊酰螺旋霉素 II晶体化合物对小鼠感染 12株细菌的疗效见表 13和表 14, 显示有良好的保护效果, 并优于异戊酰螺旋霉素 II化合物。
对本发明其它实施例所制备的左旋异戊酰螺旋霉素 II晶体化合物或左旋异戊酰螺旋霉素 II晶体化合 物的制剂也进行了相同的试验, 其获得的结果相似。 实验例 4 : 左旋异戊酰螺旋霉素 III及其晶体化合物的体内药效
采用实施例 1制备的左旋异戊酰螺旋霉素 III和实施例 45制备的左旋异戊酰螺旋霉素 III晶体化合物, 试验方法同实验例 2。
体内试验结果见表 7和表 8 :
表 7: 5种抗生素对小鼠腹腔感染 6株链球菌的疗效比较 攻击量 MIC ED5„ 试验菌 药 物
(CFU/0.5ml/鼠) (μ g/ml) (mg/kg) 异戊 III 0.12 8.99 异戊 ΠΙ晶体 0.12 6.45 可利霉素 0.12 10.41 肺炎链球菌 6.4X104
阿奇霉素 0.12 18.29 乙酰螺旋霉素 0.5 66.96 红霉素 1 85.08 异戊 III 0.03 8.98 异戊 ΠΙ晶体 0.03 8.68 可利霉素 0.03 10.06 肺炎链球菌 18 9.6X104
阿奇霉素 0.06 14.87 乙酰螺旋霉素 0.06 37.93 红霉素 0.06 57.08 异戊 II 0.06 13.10 异戊 II晶体 0.06 11.08
8.8X104 可利霉素 0.12 16.02 肺炎链球菌 57
阿奇霉素 0.12 19.02 乙酰螺旋霉素 1 398.01 红霉素 0.25 102.33 异戊 III 0.06 24.61 异戊 ΠΙ晶体 0.06 22.81 化脓性 可利霉素 0.12 26.30
6.9X103
链球菌 阿奇霉素 0.25 46.89 乙酰螺旋霉素 0.25 98.11 红霉素 0.5 101.33 异戊 III 0.12 63.21 异戊 ΠΙ晶体 0.12 52.91 化脓性 7.8X104 可利霉素 0.25 87.84 链球菌 阿奇霉素 0.5 159.06 乙酰螺旋霉素 0.5 227.07 红霉素 0.5 361.01 异戊 III 0.12 52.77 异戊 ΠΙ晶体 0.12 49.94 化脓性 4.9X104 可利霉素 0.25 68.48 链球菌 阿奇霉素 0.25 68.48 乙酰螺旋霉素 0.5 117.53 红霉素 0.5 233.72 表 8: 5种抗生素对小鼠腹腔感染肠球菌和金葡菌的疗比较 攻击量 MIC ED5
试验菌 药 物
(CFU/0.5ml/鼠) (μ g/ml) (mg/kg)
异戊 III 0.25 70.16
异戊 ΠΙ晶体 0.25
可利霉素 0.5 89.29
肠球菌 5.4X104
阿奇霉素 1 146.51
乙酰螺旋霉素 1 130.34
红霉素 2 175.23
异戊 III 0.25 20.87
异戊 ΠΙ晶体 0.25 19.29
5.2X103 可利霉素 0.5 31.98
金葡菌
阿奇霉素 0.5 31.98
乙酰螺旋霉素 1 43.58
红霉素 1 82.36
异戊 III 0.25 22.26
异戊 ΠΙ晶体 0.25 18.71
可利霉素 0.5 31.50
金葡菌 5.8X104
阿奇霉素 1 58.79
乙酰螺旋霉素 1 66.63
红霉素 1 64.17
异戊 III 1 108.04
异戊 ΠΙ晶体 1 105.24
4.8X104 可利霉素 2 120.35
金葡菌
阿奇霉素 2 120.35
乙酰螺旋霉素 2048 >500
红霉素 256 266.11
异戊 III 0.5 38.90
异戊 ΠΙ晶体 0.5 36.09
4.2X104 可利霉素 1 59.30
金葡菌
阿奇霉素 4 142.99
乙酰螺旋霉素 2048 >500
红霉素 4 213.67 体内试验结果:
异戊酰螺旋霉素 III晶体化合物对小鼠感染 12株细菌的疗效见表 7和表 8, 显示有良好的保护效果, 并优于异戊酰螺旋霉素 III化合物。
对本发明其它实施例所制备的左旋异戊酰螺旋霉素 III晶体化合物或左旋异戊酰螺旋霉素 III晶体化合 物的制剂也进行了相同的试验, 其获得的结果相似。 实验例 5 体外药效实验:
一、 临床分离菌的测定: 试验方法:采用平皿二倍稀释法:将熔化琼脂培养基定量倒入含系列药物浓度的平皿内与药液混匀(链 球菌和肠球菌加入 5%去纤维羊血做成血培基、 流感杆菌加入 7%、 淋球菌用淋球菌培养基加入 7%去纤维 羊血做成巧克力培基), 待凝固后, 再将新鲜培养菌液稀释成 106CFU/mL,用多点接种仪接种于含抗菌药物 的平皿琼脂上,经 37°C培养 18h;淋球菌置 5%C02培养箱中孵育 24h;军团菌置 5%C02培养箱中培养 48h; 厌氧菌置厌氧箱内, 37°C厌氧培养 48h。 观察抗菌药抑制细菌生长的最低浓度即为最低抑菌浓度 (MIC), 并计算药物 MIC5。和 MIC9。与对照药比较。
附注: MIC5。抑制 50%细菌生长最低的抑菌浓度;
MIC9。抑制 90%细菌生长最低的抑菌浓度。
试验结果见表 9:
表 9 : 异戊酉 fe螺旋霉素 I、 II、 III与其他抗生素 1 床分离菌敏感分布的比较
MIC范围 (μ MICso MIC90
菌种及株数 药物
g/ml ) ( μ g/ml ) ( μ g/ml )
异戊 I 0. 005- >32 0. 12 2
异戊 II 0. 005- >32 0. 12 2
异戊 i n 0. 005- >64 0. 12 4
肺炎链球菌
可利霉素 0. 005- >64 0. 12 4
( 112 )
阿奇霉素 0. 005- >64 0. 25 8
乙酰螺旋霉素 0. 005- >64 0. 12 >64
红霉素 0. 005- >64 0. 25 64
异戊 I 0. 06- >32 0. 25 32
异戊 II 0. 06- >32 0. 25 32
异戊 i n 0. 06- >32 0. 25 32
化脓性链球菌
可利霉素 0. 06- >64 0. 25 64
(93 )
阿奇霉素 0. 25- >64 0. 5 >64
乙酰螺旋霉素 0. 005- >64 0. 25 >64
红霉素 0. 06- >64 0. 5 >64
异戊 I 0. 12->32 1 32
异戊 II 0. 12->32 1 16
异戊 i n 0. 12- >64 2 64
肠球菌
可利霉素 0. 5- >64 2 64
( 106 )
阿奇霉素 0. 25- >64 8 >64
乙酰螺旋霉素 0. 12- >64 4 >64
红霉素 0. 5- >64 4 >64
异戊 I 0. 06- >64 1 64
异戊 II 0. 06- >64 1 32
异戊 i n 0. 06- >64 2 32
金葡菌
可利霉素 0. 06- >64 2 64
丄 )
阿奇霉素 0. 5- >64 2 >64
乙酰螺旋霉素 0. 12- >64 64 >64
红霉素 0. 12- >64 1 >64
表葡菌 异戊 I 0. 12->32 1 32
( 115 ) 异戊 II 0. 12->64 1 64 异戊 I I I 0. 12->32 1 32
可利霉素 0. 12- >64 2 >64
阿奇霉素 0. 12- >64 8 >64
乙酰螺旋霉素 0. 03- >64 64 >64
红霉素 0. 06- >64 8 >64
异戊 I 0. 03-32 0. 12 1
异戊 II 0. 03-32 0. 12 1
异戊 I I I 0. 03-32 0. 12 1
流感杆菌
可利霉素 0. 03-32 0. 12 1
(37 )
阿奇霉素 0. 03- >64 0. 25 2
乙酰螺旋霉素 0. 03- >64 0. 12 4
红霉素 0. 03- >64 0. 06 32
异戊 I 0. 12-16 1 4
异戊 II 0. 12-16 1 4
异戊 i n 0. 12-16 1 4
淋球菌
可利霉素 0. 12-16 2 8
( 10 )
阿奇霉素 0. 12-64 2 8
乙酰螺旋霉素 0. 12-64 4 8
红霉素 0. 12-64 1 8
二、 体外抗沙眼衣原体和肺炎衣原体的测定
试验方法:
1. 将 HEp-2和 McCoy细胞系分别种植在 96孔细胞培养板 (Costar公司) 内, 37°C, 5 %C02培养 48 小时成为单层细胞。
2. 将待接种菌种稀释为 10000 20000 ifu (包涵体形成单位) /ml, 0.1ml/孔接种。 沙眼衣原体血清型 B/TW-5/OT, D/UW-3/Cx接种 McCoy细胞培养板, 肺炎衣原体 CWL-029接种 HEp-2细胞培养板。 首先吸 去 96孔培 ¾内的细胞培养液, 然后按 0.1ml/孔进行接种。其中 Al 1〜D11的 4个孔, C12和 D12的 2个孔不接种菌 种。
3. 菌种接种完毕离心 96 ¾ffl胞培 ¾, 使用 Beckman-Coulter公司的 J-6MC 离心机, 离心力 xl500g, 离 心温度 35°C, 离心时间 60分钟。
4. 离心完毕后, 吸取接种的沙眼衣原体或肺炎衣原体, 分别加入系列稀释的 4种抗生素药物, 0.1ml/ 孔。
5. 37°C, 5 %C02培养, 沙眼衣原体药敏试验板培养 48小时, 肺炎衣原体药敏试验板培养 72小时。 培养完毕, 吸取抗生素药物溶液, PBS (0.01M, pH 7.4) 洗涤 2次, 100%甲醇室温固定 15分钟。
6. 间接免疫荧光染色鉴定: 沙眼及肺炎衣原体药敏试验板分别加入纯化的抗沙眼衣原体单克隆抗体 (N54克隆) 和肺炎衣原体单克隆抗体 (P33克隆), 50μ1/孔, 37°C湿盒内温育 30分钟, 然后洗板机洗板
4次, 再加入兔抗鼠荧光抗体(Sigma公司), 50μ1/孔, 同样方法及条件温育及洗板。加入封片甘油, ΙΟΟμΙ/ 孔, 在 Nikon倒置荧光显微镜 (Diaphot-200)下观察结果。
7. MIC的定义: 96孔试验板中沙眼衣原体或肺炎衣原体包涵体生长完全被抑制孔 (全孔未发现荧光 染色的包涵体) 的最小抗生素稀释浓度。
表 10: 5种大环内脂类抗生素对沙眼及肺炎衣原体体外作用的最小抑菌浓度的比较 (MIC) 异戊 ic实施 异戊 lie实施 异戊 m实 可利霉素 乙酰螺旋霉 红霉素 阿奇霉素 例 1制得) 例 1制得) 施例 1制得) 素(AT-SPM) (EM) (AM) 沙眼衣原体 0.25 g/ml 0.25 g/ml 0.25 g/ml 0.25 g/ml 4 g/ml
B/TW-5/OT
沙眼衣原体 0.25 g/ml 0.25 g/ml 0.25 g/ml 0.25 g/ml 2 g/ml
Figure imgf000034_0001
0.25 g/ml DUW-3/Cx
肺炎衣原体 0.016 g/ml
Figure imgf000034_0002
0.016 g/ml 0.016 g/ml ≤0.016 g
CWL-029 /ml 1
1、 对于沙眼血清型 B/TW-5/OT, 异戊酰螺旋霉素 I、 II、 III优于可利霉素、 红霉素、 阿奇霉素, 乙酰螺旋 霉素 (MIC为 4 g/ml) 较差。
2、 对于沙眼血清型 D/UW-3/Cx, 异戊酰螺旋霉素 I、 II、 III和可利霉素、 阿奇霉素体外作用类似, MIC 为 0.25 g/ml, 属敏感; 红霉素 (0.5 g/ml) 其次, 乙酰螺旋霉素 (MIC为 2 g/ml) 较差。
3、 对于肺炎衣原体 CWL-029,异戊 II和红霉素体外作用最敏感, MIC≤0.016 g/ml, 阿奇霉素和可利霉素、 异戊 I、 异戊 III较敏感; 乙酰螺旋霉素 (MIC为 0.5 g/ml) 较差。
4、 总体来看异戊酰螺旋霉素对衣原体的效果优于其他试验药物。
三、 体外抗解脲支原体和肺炎支原体
1、 试验方法: 在无菌 12孔细胞培养板各孔加入 U-PPLO 0.8ml (菌液对照孔加入 0.9ml, 培养基对照孔 加入 1.0ml)。
2、 在各实验孔中加入 104CCU/ml的 Uu菌液 0.1ml, 孔中的最终菌量为 103CCU/ml (培养基对照孔不加菌 液)。
3、 分三组 (100μ§/ιη1、 10μ§/ιηΚ l g/ml抗生素原液) 按照二倍递降浓度梯度用无菌 Tip向各实验孔加入 实验用抗生素: ΙΟΟμΙ, 50μ1, 25μ1, 12.5μ1。 (菌液对照孔、 培养基对照孔不加抗生素, 同时设抗生素 对照孔)
4、 上述各孔混匀, 培养版用胶带封口, 放 37°C温箱培养。
5、 于实验后 17-24h观察记录 Uu生长情况。 当 Uu菌液对照孔呈现阳性生长时, 此时能抑制 Uu生长的最 低抗生素浓度为该药样的最低 MIC, 实验结束时的 MIC为最终 MIC (24h)。
对抗解脲支原体和肺炎支原体菌株进行 MIC测定, 进行 4次测定, 结果显示如下:
异戊 I的 MIC值为 0.025〜0.125 g/ml,
异戊 II的 MIC值为 0.025〜0.125 g/ml,
异戊 III的 MIC值为 0.025〜0.125 g/ml,
可利霉素 0.025〜0.125 g/ml,
乙酰螺旋霉素 0.5μΕ/ιη1,
红霉素 5 g/ml,
阿奇霉素 0.025〜0.125 g/ml。
上述结果表明, 异戊酰螺旋霉素 I、 II、 III、 可利霉素有良好的抗 Uu作用, 与阿奇霉素作用相似, 优 于乙酰螺旋霉素, 红霉素在本组药样中抗 Uu作用效果最差。 对本发明其它实施例所制备的左旋异戊酰螺旋霉素 I、 π、 in或左旋异戊酰螺旋霉素 I、 II、 III制剂 也进行了相同的试验, 其获得的结果相似。 实验例 4 左旋异戊酰螺旋霉素 I、 Π、 III临床试验
左旋异戊酰螺旋霉素 I、 II、 III (实施例 1制得)、 阿奇霉素治疗敏感菌引起的成人急性呼吸道感染包括 急性细菌性咽炎、 化脓性扁桃体炎、 急性气管 -支气管炎、 轻症肺炎等的疗效和安全性。
采用多中心、 随机、 双盲、 双模拟对照试验。 在 5家医院按统一临床试验方案同时进行。
一、 受试者入选标准
1、 年龄为 18 65岁的成年男女患者;
2、 敏感菌引起的急性呼吸道感染包括急性细菌性咽炎、 急性化脓性扁桃体炎、 急性气管 -支气管炎、 轻症 肺炎和急性鼻窦炎等;
3、 入选前必须签署知情同意书;
4、 所有受试者在研究期间及给药后至少 3个月内实施避孕。
二、 受试者排除标准
1、 有肝、 肾功能不全者 (血 Cr>1.5mg/dl ALT>正常上限);
2、 妊娠期或哺乳期妇女;
3、 有胃肠道疾患无法口服药物者;
4、 入选本试验前一周内曾服过抗菌药者;
5、 有长期酗酒史者。
试验结果经过统计学专家统计, 临床疗效 (FAS ) 为:
异戊 I、 异戊 II、 异戊 III、 阿奇霉素的疗效分别为 92.30%、 92.30%、 92.30%、 89.61%。
细菌清除率为:
异戊 I、 异戊 II、 异戊 III、 阿奇霉素的细菌清除率分别为: 97.56%、 97.56%、 97.56%、 92.86%。
不良反应为:
异戊 I、 异戊 II、 异戊 III、 阿奇霉素的不良反应分别为 2.5%、 2.5%、 2.5%、 7.6%。
通过临床试验表明, 异戊酰螺旋霉素 I、 II、 III是安全有效的抗感染类新药。 对本发明其它实施例所制备的左旋异戊酰螺旋霉素 I、 II、 III或左旋异戊酰螺旋霉素 I、 II、 III制剂也 进行了相同的试验, 其获得的结果相似。

Claims

权 利 要 求 书
1、一种左旋异戊酰螺旋霉素 I化合物,其特征在于,所述左旋异戊酰螺旋霉素 I的化学结构式如式(I) 所示, 以氯仿为溶剂, 25°C、 浓度 0.02g/ml的条件下测得比旋光度为 [a]D= -49°〜- 62°, 优选 -51°〜- 60°, 优选 -60。〜- 62°, 优选 -51°〜- 58°, 优选 -53°〜- 58°, 优选 -55°〜- 58°, 优选 -55°〜- 57°, 优选 -58°〜- 60°, 优 选 -51°〜- 55°, 优选 -53°〜- 55°, 优选 -49°〜- 51°; 熔点为 116〜122; 优选 118〜120°C ;
一种左旋异戊酰螺旋霉素 II化合物,其特征在于,所述左旋异戊酰螺旋霉素 II的化学结构式如式(II ) 所示, 以氯仿为溶剂, 25°C、 浓度 0.02g/ml的条件下测得比旋光度为 [a]D=-55°〜- 61°, 优选 -57°〜- 59°; 熔 点为 120°C〜128°C, 优选 123 °C〜125°C ;
一种左旋异戊酰螺旋霉素 III化合物,其特征在于,所述左旋异戊酰螺旋霉素 III的化学结构式如式 (III) 所示,以氯仿为溶剂, °C、浓度 0.02g/ml的条件下测得比旋光度为 [a]D= -49°〜- 51° ;熔点为 116°C〜118°C ;
Figure imgf000036_0001
(III ) 。
2、一种含有权利要求 1所述的左旋异戊酰螺旋霉素 I的制剂, 其特征在于, 所述制剂包括左旋异戊酰 螺旋霉素 I、 左旋异戊酰螺旋霉素 I的药用盐、左旋异戊酰螺旋霉素 I与药学上可接受的辅料、 或左旋异戊 酰螺旋霉素 I的药用盐与药学上可接受的辅料, 所述左旋异戊酰螺旋霉素 I的纯度大于 90 wt %, 优选大于 95 wt %, 更优选大于 98 wt %;
一种含有权利要求 1所述的左旋异戊酰螺旋霉素 II的制剂, 其特征在于, 所述制剂包括左旋异戊酰螺 旋霉素 II、左旋异戊酰螺旋霉素 II的药用盐、 左旋异戊酰螺旋霉素 Π与药学上可接受的辅料、或左旋异戊 酰螺旋霉素 II的药用盐与药学上可接受的辅料, 所述左旋异戊酰螺旋霉素 II的纯度大于 90 wt %, 优选纯 度大于 95 wt %, 更优选纯度大于 98 wt %。 一种含有权利要求 1所述的左旋异戊酰螺旋霉素 III的制剂, 其特征在于, 所述制剂包括左旋异戊酰 螺旋霉素 III、 左旋异戊酰螺旋霉素 III的药用盐、 左旋异戊酰螺旋霉素 III与药学上可接受的辅料、 或左旋 异戊酰螺旋霉素 III的药用盐与药学上可接受的辅料, 所述左旋异戊酰螺旋霉素 III的纯度大于 90 wt %, 优选纯度大于 95 wt %, 更优选纯度大于 98 wt %。
3、根据权利要求 2所述的分别含有左旋异戊酰螺旋霉素 I、左旋异戊酰螺旋霉素 II或左旋异戊酰螺旋 霉素 III 的制剂, 其特征在于, 所述制剂为液体制剂、 固体制剂、 半固体制剂或气体制剂, 所述的液体制 剂选自注射剂、 输液剂、 溶液剂、 合剂、 糖浆剂、 酊剂、 溶胶剂、 芳香水剂、 甘油剂、 胶体溶液剂、 胶浆 剂、 混悬剂或乳剂; 所述的固体制剂选自粉针、 冻干粉针、 片剂、 胶囊剂、 散剂、 颗粒剂、 丸剂、 丹剂或 膜剂; 所述的半固体制剂选自软膏剂、 硬膏剂、 栓剂、 浸膏剂、 凝胶剂; 所述的气体制剂选自气雾剂或喷 雾剂, 优选注射用水针剂、 注射用粉针剂、 冻干粉针剂。
4、根据权利要求 2所述的分别含有左旋异戊酰螺旋霉素 I、左旋异戊酰螺旋霉素 II或左旋异戊酰螺旋 霉素 III的制剂, 其特征在于, 所述制剂包含下述单位剂量: 左旋异戊酰螺旋霉素 I 、 左旋异戊酰螺旋霉 素 II或左旋异戊酰螺旋霉素 III分别为 10〜1500mg, 优选 50〜1000mg, 更优选 100〜500 mg。
5、根据权利要求 2所述的分别含有左旋异戊酰螺旋霉素 I、左旋异戊酰螺旋霉素 II或左旋异戊酰螺旋 霉素 III的制剂, 其特征在于, 所述制剂中左旋异戊酰螺旋霉素 I、左旋异戊酰螺旋霉素 II或左旋异戊酰螺 旋霉素 III的重量百分比分别为 10〜95%, 优选 50〜95%, 更优选 75〜95%。
6、 权利要求 1所述的左旋异戊酰螺旋霉素 I、 左旋异戊酰螺旋霉素 II或左旋异戊酰螺旋霉素 III化合 物的制备方法, 其特征在于, 所述制备方法包括左旋可利霉素的制备, 左旋异戊酰螺旋霉素 I、 左旋异戊 酰螺旋霉素 II或左旋异戊酰螺旋霉素 III的纯化, 其中, 左旋可利霉素的制备过程包括将含有 4"-异戊酰基 转移酶基因的螺旋霉素产生菌克隆菌株 WSP- 195培养后进行生物发酵, 并对发酵液进行提取;
在 pH值 6.0〜9.0, 优选 6.0〜8.0, 更优选 6.0〜7.5的条件下进行发酵, 且 pH值随时间的变化曲线呈 三个连续的阶段, 第一阶段满足方程式 yi=klXl+6. 0, 其中 0. 0227 ¾≡1^¾≡0. 1364, 0< Xl¾≡22 ; 第二阶段满足 方程式 y2=k2x2+b2, 其中- 0. 0735 ¾≡k2<0, 6. 5 <b2¾≡10. 62 , 22 ¾≡x2¾≡56 ; 第三阶段满足方程式 y3=k3x3+ b3, 其中 0<k3¾≡0. 0078, 6. 06¾≡b3<6. 5 , 56¾≡x3¾≡120 o
7、 根据权利要求 6所述的制备方法, 其特征在于, 所述 pH调节剂选自葡萄糖、 枸橼酸、 盐酸、 醋酸、 氨水、 氢氧化钠、 氢氧化钾中的至少一种, 优选葡萄糖或氨水。
8、 根据权利要求 6所述的制备方法, 其特征在于, 所述左旋可利霉素制备过程的培养过程为: 将含有 4"-异戊酰基转移酶基因的螺旋霉素产生菌克隆菌株 WSP-195 ,在含有黄豆饼粉 2%、葡萄糖 1%、淀粉 3%、 CaCO3 0.5%、 NaCl 0.4%和琼脂 2%的斜面培养基上, 于 pH6.5~7.5、 温度 28~38 °C的条件下培养 8~15天, 接种于含有黄豆饼粉 1.5%、 淀粉 3.0%、 NaCl 0.4%, CaC03 0.5%、 鱼蛋白胨 0.3%和 KH2P04 0.05%的种子 培养基, 于 pH6.5~7.5、 25~30°C的条件下培养 40 80小时, 以 0.1〜20%接种量种入含有葡萄糖 0.5%、 淀 粉 6.0%、酵母粉 0.5%、鱼粉 2.0%、 NH4N03 0.6%、 NaCl 1.0%、 CaC03 0.5%、 KH2P04 0.05%、 MgS04 0.1%、 豆油 0.5%和消沫剂 0.02%的发酵培养基, 26~30°C的条件下培养 72 120小时, 获得发酵液。
9、 根据权利要求 6所述的制备方法, 其特征在于, 所述生物发酵液提取的具体步骤包括: 将发酵液 用硫酸铝处理得到滤液, 调滤液的 pH 至 8.5〜9.0, 用乙酸丁酯提取, 乙酸丁酯提取液分别用无盐水及 l%NaH2P04洗涤, 再用 pH2.0〜2.5水提取, 得水相提取液, 调 pH至 4.5〜5.5, 挥发除去残余乙酸丁酯得 水提取液, 过滤, 滤液调 pH8.5〜9.0, 沉淀, 用纯化水进行淋洗, 得湿品, 干燥, 得左旋可利霉素。
2
10、 根据权利要求 9所述的制备方法, 其特征在于, 在生物发酵液提取过程中采用盐酸、 醋酸、 枸橼 酸、 氢氧化钠、 氢氧化钾、 碳酸氢钠、 碳酸钠中的至少一种来调节 pH值, 优选醋酸或枸橼酸。
11、 根据权利要求 6所述的制备方法, 其特征在于, 所述左旋异戊酰螺旋霉素 I、 左旋异戊酰螺旋霉 素 II或左旋异戊酰螺旋霉素 III纯化的具体步骤包括:采用色谱分离的方法对左旋可利霉素样品进行纯化, 采用 ODS色谱柱, 乙腈和醋酸氨缓冲液进行梯度洗脱, 对左旋异戊酰螺旋霉素 I组分目标峰、 左旋异戊 酰螺旋霉素 II组分目标峰或左旋异戊酰螺旋霉素 III组分目标峰进行分离。
12、 根据权利要求 11所述的制备方法, 其特征在于, 在左旋异戊酰螺旋霉素 I、 左旋异戊酰螺旋霉素 II或左旋异戊酰螺旋霉素 III的纯化过程中, 采用制备型高效液相色谱、 紫外检测, 记录分离的紫外谱图, 按照左旋异戊酰螺旋霉素 I的保留时间 44.759min收集异戊酰螺旋霉素 I样品, 按照左旋异戊酰螺旋霉素 II的保留时间 43.34min收集异戊酰螺旋霉素 Π样品, 按照左旋异戊酰螺旋霉素 III的保留时间 48.009min 收集异戊酰螺旋霉素 III样品。
13、 根据权利要求 11所述的制备方法, 其特征在于, 左旋异戊酰螺旋霉素 I、 左旋异戊酰螺旋霉素 Π 或左旋异戊酰螺旋霉素 in的纯化过程中, 将收集到的左旋异戊酰螺旋霉素 I、 II或 III分别采用旋转蒸发 除去乙腈, 然后用乙酸乙酯萃取, 蒸发除去萃取液中乙酸乙酯, 得膏状样品; 用石油醚重溶所得样品, 再 蒸发除去石油醚, 分别获得左旋异戊酰螺旋霉素 I、 II或 III白色粉末状固体。
14、根据权利要求 11所述的制备方法, 其特征在于, 所述的流动相为乙腈 A和 pH=8.5、 150mM醋酸 氨水溶液的混合溶剂。
15、 根据权利要求 11所述的制备方法, 其特征在于, 所述的左旋异戊酰螺旋霉素 I、 左旋异戊酰螺旋 霉素 II或左旋异戊酰螺旋霉素 III纯化的条件为: 采用线性梯度: 0〜60分钟, A为 25%〜65%; 61〜90 分钟, A为 65%〜90%;
流速: 260 mL/min;
进样量: 10mL;
进样浓度: 0.5g/mL;
检测波长: 231nm;
收集方式: 紫外触发收集。
16、权利要求 1所述的左旋异戊螺旋霉素 I、左旋异戊酰螺旋霉素 II或左旋异戊酰螺旋霉素 III或权利 要求 2〜5任意一项所述的异戊螺旋霉素 I、 左旋异戊酰螺旋霉素 II或左旋异戊酰螺旋霉素 III的制剂在制 备治疗和 /或预防感染性疾病药物中的应用。
17、 根据权利要求 16所述的应用, 其特征在于, 所述的感染性疾病为革兰氏阳性菌、 金黄色葡萄球 菌、 肺炎链球菌、 肺炎支原体、 肺炎衣原体、 解脲支原体、 沙眼衣原体、 化脓性链球菌、 卡他球菌、 淋球 菌、 流感杆菌、 军团菌或厌氧菌感染引起的疾病。
18、权利要求 1所述的左旋异戊螺旋霉素 I、左旋异戊酰螺旋霉素 II或左旋异戊酰螺旋霉素 III或权利 要求 2〜5任意一项所述的制剂在制备抗菌药物中的应用, 所述的菌为肺炎链球菌、 甲类链球菌、 化脓性 链球菌、 肠球菌、 金葡菌、 表葡菌、 卡他球菌、 淋球菌、 流感杆菌、 大肠杆菌、 产毒大肠杆菌、 致病性大 肠杆菌、 侵龚性大肠杆菌、 绿脓杆菌、 肺炎克雷伯氏菌、 普通变形杆菌、 伤寒杆菌、 伤寒杆菌、 不动杆菌、 不动杆菌、 枸橼酸杆菌枸橼酸杆菌、 粘质沙雷氏菌、 宋内氏痢疾杆菌、 福氏痢疾杆菌、 白色念球菌、 白色 念球菌; 军团菌如嗜肺军团菌、 高曼军团菌、 博茨曼军团菌、 杜莫夫军团菌、 佐丹军团菌、 米克戴德军团 菌; 厌氧菌如脆弱类杆菌、 多形类菌、 普通类杆菌、 吉氏类杆菌、 吉氏类杆菌、 栖瘤胃类杆菌、 不解糖普 氏杆菌、 口腔普氏杆菌、 具核酸杆菌、 拉式梭杆菌、 双岐杆菌、 乳杆菌、 消化链球菌、 疮疱丙酸杆菌、 产 气荚膜梭菌、 酵母样真菌。
19、 一种含有权利要求所述的左旋异戊酰螺旋霉素 I、 左旋异戊酰螺旋霉素 II或左旋异戊酰螺旋霉素 III的制剂, 其特征在于, 所述制剂包括左旋异戊酰螺旋霉素 I和枸橼酸、 己二酸、 马来酸中的至少一种制 备的注射用水针剂、 注射用粉针剂或冻干粉针剂; 左旋异戊酰螺旋霉素 II和枸橼酸、 己二酸、 马来酸中的 至少一种制备的注射用水针剂、 注射用粉针剂或冻干粉针剂; 左旋异戊酰螺旋霉素 III和枸橼酸、 己二酸、 马来酸中的至少一种制备的注射用水针剂、 注射用粉针剂或冻干粉针剂。
20、 根据权利要求 1所述的左旋异戊酰螺旋霉素 I化合物, 其特征在于, 所述的左旋异戊酰螺旋霉素 I 化合物为晶体, 使用 Cu-Κα射线测量得到的 X-射线粉末衍射在 2Θ为 7.6°、 8.0°、 10.0°、 11.4°、 16.4°、 17.0 °、 17.5°、 17.9°、 19.5°、 22.7°、 23.7°和 24.4°显示有特征峰。
21、根据权利要求 20所述的左旋异戊酰螺旋霉素 I化合物, 其特征在于, 所述的左旋异戊酰螺旋霉素 I晶体化合物的制备方法为, 先将左旋异戊酰螺旋霉素 I化合物固体溶解于乙酸乙酯、 无水乙醇和无水丙 酮的混合溶剂中, 然后加入纯水, 边加入边搅拌, 纯水加完后降温至 5°C〜15°C, 降温的同时继续搅拌, 得到左旋异戊酰螺旋霉素 I晶体化合物, 所用混合溶剂中乙酸乙酯、 无水乙醇和无水丙酮的体积比为 1 : 0.1〜10: 0.5—1 , 优选 1 : 2〜8: 0.8〜1。
22、根据权利要求 20所述的左旋异戊酰螺旋霉素 I化合物, 其特征在于, 所加入的纯水的体积为乙酸 乙酯、 无水乙醇和无水丙酮体积之和的 2〜9倍, 优选 2.5〜7.5倍; 加入纯水的速度为 4〜 10ml/分钟, 优 选 6〜 8ml/分钟。
23、 根据权利要求 20所述的左旋异戊酰螺旋霉素 I化合物, 其特征在于, 所加入纯水的搅拌速度为 30〜60转 /分钟, 优选 45〜60转 /分钟; 纯水加完后, 搅拌速度为 10〜30转 /分钟, 优选 10〜20转 /分钟; 纯水加完后降温的速度为每小时 1〜3 °C, 优选每小时 1〜1.5°C。
24、一种含有权利要求 20所述的左旋异戊酰螺旋霉素 I的制剂, 其特征在于, 所述制剂包括左旋异戊 酰螺旋霉素 I晶体化合物、 左旋异戊酰螺旋霉素 I晶体化合物的药用盐、 左旋异戊酰螺旋霉素 I晶体化合 物与药学上可接受的辅料、 或左旋异戊酰螺旋霉素 I晶体化合物的药用盐与药学上可接受的辅料, 所述左 旋异戊酰螺旋霉素 I晶体化合物的纯度大于 99 wt %。
25、 根据权利要求 1所述的左旋异戊酰螺旋霉素 II化合物, 其特征在于, 所述的左旋异戊酰螺旋霉素 II化合物为晶体, 使用 Cu-Κα射线测量得到的 X-射线粉末衍射在 2Θ为 10.0°、 11.6°、 16.4°、 17.3°、 19.1 °、 21.2°、 22.1°、 22.7°、 26.4°、 26.9°、 27.5°和 31.5°显示有特征峰, 所用混合溶剂中无水甲醇、 无水丙 酮和无水乙醇的体积比为 1 : 0.1〜10: 0.5- 1 , 优选 1 : 2〜8: 0.8- 1 =
26、 根据权利要求 25所述的左旋异戊酰螺旋霉素 II化合物, 其特征在于, 所述的左旋异戊酰螺旋霉 素 II晶体化合物的制备方法为,先将左旋异戊酰螺旋霉素 II化合物固体溶解于无甲醇、无水乙醇和无水丙 酮的混合溶剂中, 然后加入纯水, 边加入边搅拌, 纯水加完后降温至 5°C〜15°C, 降温的同时继续搅拌, 得到左旋异戊酰螺旋霉素 II晶体化合物。
27、 根据权利要求 25所述的左旋异戊酰螺旋霉素 II化合物, 其特征在于, 所加入的纯水的体积为无水 甲醇、 无水乙醇和无水丙酮体积之和的 2〜9倍, 优选 2.5〜7.5倍; 加入纯水的速度为 4〜 10ml/分钟, 优 选 6〜 8ml/分钟。
28、 根据权利要求 25所述的左旋异戊酰螺旋霉素 II化合物, 其特征在于, 所加入纯水的搅拌速度为 30〜60转 /分钟, 优选 45〜60转 /分钟; 纯水加完后, 搅拌速度为 10〜30转 /分钟, 优选 10〜20转 /分钟; 纯水加完后降温的速度为每小时 1〜3 °C, 优选每小时 1〜1.5°C。
29、 一种含有权利要求 25所述的左旋异戊酰螺旋霉素 II的制剂, 其特征在于, 所述制剂包括左旋异戊 酰螺旋霉素 II晶体化合物、 左旋异戊酰螺旋霉素 II晶体化合物的药用盐、 左旋异戊酰螺旋霉素 II晶体化 合物与药学上可接受的辅料、或左旋异戊酰螺旋霉素 II晶体化合物的药用盐与药学上可接受的辅料, 所述 左旋异戊酰螺旋霉素 II晶体化合物的纯度大于 99wt %。
30、根据权利要求 1所述的左旋异戊酰螺旋霉素 III化合物,其特征在于,所述的左旋异戊酰螺旋霉素 III 化合物为晶体, 使用 Cu-Κα射线测量得到的 X-射线粉末衍射在 2Θ为 8.0°、 10.0°、 11.2°、 11.7°、 16.4°、 19.1 °、 19.6°、 20.0°、 21.4°、 22.9°、 23.6°和 29.4°显示有特征峰。
31、 根据权利要求 30所述的左旋异戊酰螺旋霉素 III化合物, 其特征在于, 所述的左旋异戊酰螺旋霉 素 III晶体化合物的制备方法为, 先将左旋异戊酰螺旋霉素 III化合物固体溶解于无水甲醇、 无水乙醇和无 水丙酮的混合溶剂中, 然后加入纯水, 边加入边搅拌, 纯水加完后降温至 5°C〜15°C, 降温的同时继续搅 拌, 得到左旋异戊酰螺旋霉素 III 晶体化合物, 所用混合溶剂中无水甲醇、 无水乙醇和无水丙酮的体积比 为 1 : 0.1〜10: 0.5- 1 , 优选 1 : 2〜8: 0.8- 1 =
32、 根据权利要求 30所述的左旋异戊酰螺旋霉素 III化合物, 其特征在于, 所加入的纯水的体积为无 水甲醇、 无水乙醇和无水丙酮体积之和的 2〜9倍, 优选 2.5〜7.5倍; 加入纯水的速度为 4〜10ml/分钟, 优选 6〜 8ml/分钟。
33、 根据权利要求 30所述的左旋异戊酰螺旋霉素 III化合物, 其特征在于, 所加入纯水的搅拌速度为 30〜60转 /分钟, 优选 45〜60转 /分钟; 纯水加完后, 搅拌速度为 10〜30转 /分钟, 优选 10〜20转 /分钟; 纯水加完后降温的速度为每小时 1〜3°C, 优选每小时 1〜1.5°C。
34、 一种含有权利要求 30所述的左旋异戊酰螺旋霉素 III的制剂, 其特征在于, 所述制剂包括左旋异 戊酰螺旋霉素 III晶体化合物、 左旋异戊酰螺旋霉素 III晶体化合物的药用盐、 左旋异戊酰螺旋霉素 III晶 体化合物与药学上可接受的辅料、 或左旋异戊酰螺旋霉素 II晶体化合物的药用盐与药学上可接受的辅料, 所述左旋异戊酰螺旋霉素 III晶体化合物的纯度大于 99wt %。
PCT/CN2011/074644 2010-05-25 2011-05-25 左旋异戊酰螺旋霉素i、ii或iii,及其制剂、制备方法及应用 WO2011147313A1 (zh)

Priority Applications (17)

Application Number Priority Date Filing Date Title
PL17166117T PL3210990T3 (pl) 2010-05-25 2011-05-25 Lewoizowalerylospiramycyna III i jej preparaty, sposoby wytwarzania i zastosowania
DK11786085.8T DK2578595T3 (en) 2010-05-25 2011-05-25 CRYSTALLINE LEVOISOVALERYL PIRAMYCIN I
JP2013511523A JP5945868B2 (ja) 2010-05-25 2011-05-25 レボイソバレリルスピラマイシンi、ii又はiiiとその製剤、調製方法及び応用
US13/699,459 US8778896B2 (en) 2010-05-25 2011-05-25 Levoisovalerylspiramycin I, II or III, preparations, preparation methods and uses thereof
PL17166118T PL3210991T3 (pl) 2010-05-25 2011-05-25 Postać krystaliczna lewoizowalerylospiramycyny II oraz preparaty, sposoby wytwarzania i ich zastosowanie
EP17166118.4A EP3210991B1 (en) 2010-05-25 2011-05-25 Crystalline form of levoisovalerylspiramycin ii and preparations, preparation methods and uses thereof
KR1020167002374A KR101706518B1 (ko) 2010-05-25 2011-05-25 레보이소발레릴스피라마이신 ii 또는 iii, 제제, 제조 방법 및 용도
BR112012029913-1A BR112012029913B1 (pt) 2010-05-25 2011-05-25 levoisovalerilspiramicina i, ii, iii e preparações, métodos de preparação e uso dos mesmos
CA2800021A CA2800021C (en) 2010-05-25 2011-05-25 Levoisovalerylspiramycin i, ii, iii and preparations, preparation methods and uses thereof
ES11786085.8T ES2633723T3 (es) 2010-05-25 2011-05-25 Levoisovalerilespiramicina I cristalina
PL11786085T PL2578595T3 (pl) 2010-05-25 2011-05-25 Krystaliczna lewoizowalerylospiramycyna I
EP17166117.6A EP3210990B1 (en) 2010-05-25 2011-05-25 Levoisovalerylspiramycin iii and preparations, preparation methods and uses thereof
RU2012156420/04A RU2593498C2 (ru) 2010-05-25 2011-05-25 Левовращающие изовалерил-спирамицины 1, ii, iii, их препараты, способ приготовления и употребление
MX2012013470A MX340626B (es) 2010-05-25 2011-05-25 Levoisovalerilespiramicina i, ii, iii y preparaciones, métodos de preparación y sus usos.
KR1020127033721A KR20130041829A (ko) 2010-05-25 2011-05-25 레보이소발레릴스피라마이신 i, ii 또는 iii, 제제, 제조 방법 및 용도
EP11786085.8A EP2578595B1 (en) 2010-05-25 2011-05-25 Crystalline levoisovalerylspiramycin i
ZA2012/09738A ZA201209738B (en) 2010-05-25 2012-12-21 Levoisovalerylspiramycin i,ii,iii and preparations,preparation methods and uses thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201010182108.9 2010-05-25
CN201010182108 2010-05-25
CN201010182111 2010-05-25
CN201010182109.3 2010-05-25
CN201010182109 2010-05-25
CN201010182111.0 2010-05-25

Publications (1)

Publication Number Publication Date
WO2011147313A1 true WO2011147313A1 (zh) 2011-12-01

Family

ID=45003321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074644 WO2011147313A1 (zh) 2010-05-25 2011-05-25 左旋异戊酰螺旋霉素i、ii或iii,及其制剂、制备方法及应用

Country Status (15)

Country Link
US (1) US8778896B2 (zh)
EP (3) EP2578595B1 (zh)
JP (1) JP5945868B2 (zh)
KR (2) KR20130041829A (zh)
BR (1) BR112012029913B1 (zh)
CA (3) CA2800021C (zh)
DK (3) DK3210991T3 (zh)
ES (3) ES2754614T3 (zh)
MX (1) MX340626B (zh)
MY (1) MY164231A (zh)
PL (3) PL2578595T3 (zh)
PT (1) PT3210990T (zh)
RU (3) RU2647236C1 (zh)
WO (1) WO2011147313A1 (zh)
ZA (3) ZA201209738B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110051845A (zh) * 2018-01-19 2019-07-26 沈阳福洋医药科技有限公司 一种mTOR抑制剂、药物组合物及其应用
CN111939168A (zh) * 2019-05-16 2020-11-17 沈阳福洋医药科技有限公司 一种用于预防、缓解和/或治疗纤维化的药物、组合产品及其应用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2633737T3 (es) * 2010-05-25 2017-09-25 Shenyang Fuyang Pharmaceutical Technology Co., Ltd. Levocarrimicina, composiciones farmacéuticas, procedimientos de preparación y utilizaciones de la misma
CN105497053B (zh) * 2015-12-31 2018-02-13 沈阳福洋医药科技有限公司 可利霉素在抗结核分枝杆菌感染中的应用
DK3639829T3 (da) * 2017-07-04 2022-05-16 Shenyang Fuyang Pharmaceutical Tech Co Ltd Anvendelse af isovalerylspiramycin i eller iii ved fremstilling af lægemiddel til behandling og/eller forebyggelse af tumor samt lægemiddel
CA3088823A1 (en) 2018-01-19 2019-07-25 Shenyang Fuyang Pharmaceutical Technology Co., Ltd. Use of carrimycin or active ingredients thereof
CN110384710B (zh) * 2018-04-17 2023-01-10 沈阳福洋医药科技有限公司 一种用于预防和/或治疗疼痛的药物、组合产品及其应用
JP2021533144A (ja) * 2018-04-17 2021-12-02 上海同聯製薬有限公司Shanghai Tonglian Pharmaceutical Co., Ltd. 疼痛及び/又は発熱を予防及び/又は治療するための薬物、組成製品及びその応用
CN112239483B (zh) * 2019-07-18 2023-10-27 沈阳福洋医药科技有限公司 一种化合物及药物组合物
US11351185B2 (en) 2020-03-11 2022-06-07 Asclea Corporation Use of isovalerylspiramycins as anti-cancer agents to inhibit metastasis

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1405299A (zh) * 2002-11-19 2003-03-26 中国医学科学院医药生物技术研究所 必特螺旋霉素的基因工程菌株螺旋霉素链霉菌wsj-195
CN1554355A (zh) * 2003-12-23 2004-12-15 沈阳同联集团有限公司 必特螺旋霉素及其在抗感染性疾病中的应用
CN101773510A (zh) * 2010-03-09 2010-07-14 沈阳同联集团有限公司 异戊酰螺旋霉素iii的分离制备及其应用
CN101785778A (zh) * 2010-03-09 2010-07-28 沈阳同联集团有限公司 异戊酰螺旋霉素i的分离制备及其应用
CN101785779A (zh) * 2010-03-09 2010-07-28 沈阳同联集团有限公司 异戊酰螺旋霉素ii的分离制备及其应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334788A (en) * 1976-09-11 1978-03-31 Sanraku Inc Antibiotics spiramycin derivatives
CN1058295C (zh) 1997-06-03 2000-11-08 中国医学科学院医药生物技术研究所 一种利用基因工程技术制造生技霉素的方法
WO2006018698A2 (en) * 2004-08-12 2006-02-23 Glaxosmithkline Istrazivacki Centar Zagreb D.O.O. Use of cell-specific conjugates for treatment of inflammatory diseases of the gastrointestinal tract
CN101054553A (zh) * 2007-04-09 2007-10-17 中国医学科学院医药生物技术研究所 异戊酰螺旋霉素i基因工程菌株的构建
CN101649325B (zh) * 2009-07-03 2011-09-07 中国医学科学院医药生物技术研究所 一种提高基因工程异戊酰螺旋霉素主组分含量的基因串连技术
ES2633737T3 (es) * 2010-05-25 2017-09-25 Shenyang Fuyang Pharmaceutical Technology Co., Ltd. Levocarrimicina, composiciones farmacéuticas, procedimientos de preparación y utilizaciones de la misma

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1405299A (zh) * 2002-11-19 2003-03-26 中国医学科学院医药生物技术研究所 必特螺旋霉素的基因工程菌株螺旋霉素链霉菌wsj-195
CN1554355A (zh) * 2003-12-23 2004-12-15 沈阳同联集团有限公司 必特螺旋霉素及其在抗感染性疾病中的应用
CN101773510A (zh) * 2010-03-09 2010-07-14 沈阳同联集团有限公司 异戊酰螺旋霉素iii的分离制备及其应用
CN101785778A (zh) * 2010-03-09 2010-07-28 沈阳同联集团有限公司 异戊酰螺旋霉素i的分离制备及其应用
CN101785779A (zh) * 2010-03-09 2010-07-28 沈阳同联集团有限公司 异戊酰螺旋霉素ii的分离制备及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG YALI ET AL.: "Determination of the components of bitespiramycin by HPLC", ACTA PHARMACEUTICAL SINICA, vol. 44, no. 10, 2009, pages 1183 - 1186, XP009173043 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110051845A (zh) * 2018-01-19 2019-07-26 沈阳福洋医药科技有限公司 一种mTOR抑制剂、药物组合物及其应用
CN111939168A (zh) * 2019-05-16 2020-11-17 沈阳福洋医药科技有限公司 一种用于预防、缓解和/或治疗纤维化的药物、组合产品及其应用
WO2020228477A1 (zh) * 2019-05-16 2020-11-19 沈阳福洋医药科技有限公司 一种用于预防、缓解和/或治疗纤维化的药物、组合产品及其应用
CN111939168B (zh) * 2019-05-16 2023-02-03 沈阳福洋医药科技有限公司 一种用于预防、缓解和/或治疗纤维化的药物、组合产品及其应用

Also Published As

Publication number Publication date
ES2781425T3 (es) 2020-09-02
ZA201406381B (en) 2016-08-31
CA2800021C (en) 2016-03-22
MY164231A (en) 2017-11-30
EP3210991A1 (en) 2017-08-30
KR101706518B1 (ko) 2017-02-14
PL3210991T3 (pl) 2020-03-31
JP2013528166A (ja) 2013-07-08
BR112012029913A2 (pt) 2017-11-28
CA2915236A1 (en) 2011-12-01
JP5945868B2 (ja) 2016-07-13
EP3210990B1 (en) 2020-01-01
EP3210990A1 (en) 2017-08-30
EP2578595A4 (en) 2013-11-06
ZA201209738B (en) 2015-04-29
RU2012156420A (ru) 2014-06-27
RU2647237C1 (ru) 2018-03-14
RU2647236C1 (ru) 2018-03-14
BR112012029913A8 (pt) 2018-01-09
DK3210990T3 (da) 2020-03-23
ES2633723T3 (es) 2017-09-25
MX340626B (es) 2016-07-18
MX2012013470A (es) 2013-03-18
BR112012029913B1 (pt) 2021-02-02
US20130065848A1 (en) 2013-03-14
CA2915222A1 (en) 2011-12-01
ES2754614T3 (es) 2020-04-20
CA2800021A1 (en) 2011-12-01
KR20160017124A (ko) 2016-02-15
CA2915222C (en) 2019-03-12
US8778896B2 (en) 2014-07-15
PL2578595T3 (pl) 2017-10-31
DK2578595T3 (en) 2017-07-10
PL3210990T3 (pl) 2020-10-05
RU2593498C2 (ru) 2016-08-10
ZA201406382B (en) 2015-12-23
KR20130041829A (ko) 2013-04-25
DK3210991T3 (da) 2019-11-11
EP2578595B1 (en) 2017-04-19
EP2578595A1 (en) 2013-04-10
EP3210991B1 (en) 2019-08-07
CA2915236C (en) 2019-03-12
PT3210990T (pt) 2020-04-01

Similar Documents

Publication Publication Date Title
WO2011147313A1 (zh) 左旋异戊酰螺旋霉素i、ii或iii,及其制剂、制备方法及应用
WO2011147316A1 (zh) 左旋可利霉素、其药物组合物、制备方法及应用
CN102229634B (zh) 左旋异戊酰螺旋霉素i、其制剂、制备方法及应用
CN101785779B (zh) 异戊酰螺旋霉素ii的分离制备
CN102260308B (zh) 左旋异戊酰螺旋霉素iii、其制剂、制备方法及应用
WO2011110084A1 (zh) 异戊酰螺旋霉素ⅰ、ⅱ或ⅲ的分离制备方法、及含有它们的药用组合物及其应用
CN102311471B (zh) 左旋异戊酰螺旋霉素ii、其制剂、制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786085

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2800021

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13699459

Country of ref document: US

Ref document number: MX/A/2012/013470

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2013511523

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2624/MUMNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1201006053

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12012502323

Country of ref document: PH

REEP Request for entry into the european phase

Ref document number: 2011786085

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011786085

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127033721

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012156420

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012029913

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112012029913

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012029913

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121123