WO2011145797A1 - 탄소나노튜브가 침입된 금속산화물 복합막, 이의 제조방법 및 이를 이용한 광전변환효율 및 수명이 향상된 유기태양전지 - Google Patents

탄소나노튜브가 침입된 금속산화물 복합막, 이의 제조방법 및 이를 이용한 광전변환효율 및 수명이 향상된 유기태양전지 Download PDF

Info

Publication number
WO2011145797A1
WO2011145797A1 PCT/KR2010/009218 KR2010009218W WO2011145797A1 WO 2011145797 A1 WO2011145797 A1 WO 2011145797A1 KR 2010009218 W KR2010009218 W KR 2010009218W WO 2011145797 A1 WO2011145797 A1 WO 2011145797A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
carbon nanotubes
solar cell
organic solar
composite film
Prior art date
Application number
PCT/KR2010/009218
Other languages
English (en)
French (fr)
Inventor
임동찬
이규환
정용수
심원현
박선영
조성우
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to US13/695,984 priority Critical patent/US20130048078A1/en
Priority claimed from KR1020100132352A external-priority patent/KR101124618B1/ko
Publication of WO2011145797A1 publication Critical patent/WO2011145797A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • H10K30/352Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles the inorganic nanostructures being nanotubes or nanowires, e.g. CdTe nanotubes in P3HT polymer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/152Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising zinc oxide, e.g. ZnO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a metal oxide composite film in which carbon nanotubes are infiltrated, a manufacturing method thereof, and an organic solar cell having improved photoelectric conversion efficiency and lifetime.
  • the organic solar cells generally manufactured at present are in the form of a forward structure (see FIG. 12), and many organic solar cells having a reverse structure (see FIG. 1) are also manufactured.
  • Voc open circuit voltage
  • Jsc short circuit current
  • high-conductivity nanoparticles or carbon nanotubes such as new C 60 derivatives
  • metal or semiconductor nanowires can be used to expand the contact area with the photoactive layer to enhance exciton separation and charge mobility. Research is ongoing.
  • the method of applying carbon nanotubes to organic solar cells can be generally classified into three types. The first is to apply carbon nanotubes as a transparent conductive substrate replacement material (the CNT electrode layer is formed directly on the glass or polymer substrate), and the second is to penetrate the carbon nanotubes inside the photoactive layer. Lastly, organic solar cells have a problem of deterioration in efficiency due to increased contact resistance at the interface because each layer is formed in a layer-by-layer form. In order to solve this problem and improve conductivity, carbon nanotubes It was also proposed to apply a thin layer between each layer in the form of a spider web.
  • the present invention has been developed an organic solar cell having improved photoelectric conversion efficiency and lifetime, including a metal oxide composite film, a method for manufacturing the same, and a metal oxide composite film in which the carbon nanotubes are infiltrated, and completed the present invention.
  • Another object of the present invention is to provide an organic solar cell having improved photoelectric conversion efficiency and lifetime by using a metal oxide composite film in which carbon nanotubes are formed through the method as an N-type conductive film of an organic solar cell. .
  • the present invention provides a metal oxide composite film in which carbon nanotubes are infiltrated, wherein single-walled carbon nanotubes are uniformly dispersed in the metal oxides.
  • the present invention comprises the steps of preparing a metal oxide sol-gel solution by dissolving a metal oxide in an ethanol-based solution and then stabilizer (step 1); Adding and dispersing single-walled carbon nanotubes to the metal oxide sol-gel solution prepared in step 1 to disperse the single-walled carbon nanotubes, followed by centrifugation (step 2); Putting the single-walled carbon nanotubes surface-treated in step 2 into the metal oxide sol-gel solution prepared in step 1 and redispersing (step 3); And coating the transparent conductive electrode with the metal oxide sol-gel solution in which the single-walled carbon nanotubes prepared in step 3 are coated on a transparent conductive electrode (step 4).
  • step 1 preparing a metal oxide sol-gel solution by dissolving a metal oxide in an ethanol-based solution and then stabilizer
  • step 2 Adding and dispersing single-walled carbon nanotubes to the metal oxide sol-gel solution prepared in step 1 to disperse the single-walled carbon nanotubes, followed by centrifugation
  • the present invention is an organic solar cell laminated in the order of substrate / transparent conductive electrode / N-type metal oxide conductive film / photoactive layer / P-type metal oxide conductive film / metal electrode, the N-type conductive film is the carbon nanotube Provides an organic solar cell having improved photoelectric conversion efficiency and lifespan, characterized in that the metal oxide composite film is infiltrated.
  • Metal oxide composite film infiltrated carbon nanotubes according to the present invention by using the single-walled carbon nanotubes to improve the movement of electrons generated in the photoactive layer to improve the overall balance and speed of electrons and holes, absorbed into the photoactive layer It improves the light absorption efficiency by acting to amplify the amount of solar energy to be, and the method for producing a metal oxide composite film invaded carbon nanotubes according to the present invention can maintain a stable dispersion of carbon nanotubes by a simple solution method and spin Various methods such as coating method, spray coating method, and doctor blading can be used, and the organic solar cell including the metal oxide composite film in which the carbon nanotubes are infiltrated has improved photoelectric conversion efficiency and the ultraviolet light is affected by the carbon nanotubes. Low cost, high efficiency, long life organic solar cell due to increased blocking effect Books can be usefully used.
  • FIG. 1 is a schematic diagram (inverse structure form) of a conventional organic solar cell
  • FIG. 2 is a schematic diagram of an organic solar cell according to the present invention.
  • Figure 3 is a schematic diagram of a metal oxide infiltrated single-walled carbon nanotubes according to the present invention.
  • FIG. 4 is a photograph showing a zinc oxide sol-gel solution, a zinc oxide sol-gel solution containing single-walled carbon nanotubes, and a zinc oxide sol-gel solution containing single-walled carbon nanotubes treated with a surface;
  • FIG. 6 is a graph showing the transmittance of a metal oxide composite membrane infiltrated carbon nanotubes according to the present invention.
  • FIG. 9 is a graph showing photoluminescence characteristics of an organic solar cell according to the present invention.
  • Jsc photoelectric conversion efficiency
  • PCE photoelectric conversion efficiency
  • FIG. 14 is a transmission electron microscope photograph of a metal oxide composite membrane in which carbon nanotubes are infiltrated according to the present invention.
  • the present invention is a.
  • a metal oxide composite film in which carbon nanotubes are infiltrated, wherein single-walled carbon nanotubes are uniformly dispersed in a metal oxide.
  • the metal oxide is selected from the group consisting of TiO 2 , ZnO, SnO and the like; Two or more compounds thereof; A metal oxide doped with one or two or more elements selected from the group consisting of Al, Ga, Ng, In, Sn, and the like; Etc. can be used.
  • the thickness of the metal oxide composite film in which the carbon nanotubes are infiltrated is preferably 10-100 nm.
  • the thickness of the metal oxide composite film in which the carbon nanotubes are infiltrated is less than 10 nm, the thickness of the N-type conductive film in the organic solar cell is so thin that the interface property with the transparent conductive electrode is degraded, and the metal in which the carbon nanotubes are infiltrated.
  • the oxide composite film carbon nanotubes are more likely to be desorbed, and thus there is a problem in that they do not function as conductive films.
  • step 1 Dissolving a metal oxide in an ethanol-based solution and then dissolving a stabilizer to prepare a metal oxide sol-gel solution (step 1);
  • step 2 Adding and dispersing single-walled carbon nanotubes to the metal oxide sol-gel solution prepared in step 1 to surface-treat the single-walled carbon nanotubes and then centrifuging them (step 2);
  • step 3 Putting the single-walled carbon nanotubes surface-treated in step 2 into the metal oxide sol-gel solution prepared in step 1 and redispersing (step 3); And
  • Method of manufacturing a metal oxide composite film infiltrated carbon nanotubes comprising the step (step 4) of coating a metal oxide sol-gel solution in which the single-wall carbon nanotubes prepared in step 3 is dispersed on a transparent conductive electrode To provide.
  • step 1 is a step of preparing a metal oxide sol-gel solution by dissolving a metal oxide in an ethanol-based solution.
  • the metal oxide of step 1 is one N-type metal oxide selected from the group consisting of TiO 2 , ZnO, SnO and the like; Two or more compounds thereof; A metal oxide doped with one or two or more elements selected from the group consisting of Al, Ga, Ng, In, Sn, and the like; Etc. can be used.
  • the ethanol-based solution of step 1 may be used methoxy, butoxyethanol and the like, the stabilizer may be used ethanolamine and the like.
  • the content of the metal oxide of step 1 is preferably 0.1-1 M
  • the content of the stabilizer is preferably dissolved according to the metal oxide content, more preferably 0.1-1 M. If the content of the metal oxide is less than 0.1 M, there is a problem in that the metal oxide content is low to form a uniform metal oxide thin film layer, and when the content of the metal oxide exceeds 1 M, the metal ratio is high to stably disperse the solution. It takes a lot of time and there is a problem that can not form a uniform metal oxide thin film layer.
  • the metal oxide sol-gel solution of step 1 is preferably prepared by performing 50-70 minutes at 50-70 °C. If the temperature is 50 ° C. or less than 50 minutes, the powder made of metal oxide cannot be easily dissolved. If the temperature is more than 70 ° C. or 70 minutes, the metal oxide is aged.
  • step 2 is performed by adding and dispersing single-wall carbon nanotubes to the metal oxide sol-gel solution prepared in step 1 to disperse the single-wall.
  • the surface treatment of carbon nanotubes is followed by centrifugation.
  • the single-walled carbon nanotubes of step 2 is preferably added in an amount of 0.1 to 5% by weight to the metal oxide sol-gel solution. If the single-walled carbon nanotubes are less than 0.1% by weight, a small amount of carbon nanotubes penetrate into the metal oxides and thus do not affect or lower the photoelectric conversion efficiency. There is a problem in that the content of the carbon nanotubes is excessively entangled and the transmittance is lowered when the thin film is formed.
  • step 2 is preferably performed for 50 to 70 minutes by using an ultrasonic disperser, but is not limited thereto.
  • the metal oxide sol-gel solution before centrifugation in step 2 is left at room temperature for a predetermined time, carbon nanotubes surface-treated with metal oxides are precipitated, and the surface-treated carbon nanotubes are metal oxide sol-gel solutions. It is preferable to centrifuge to separate from the above, and the centrifugation is preferably performed at a speed of 14000-16000 rpm in consideration of the yield, but is not limited thereto.
  • step 3 is a metal oxide sol-gel solution prepared in step 1 using a single-walled carbon nanotubes surface-treated in step 2 To redispersed.
  • the redispersion of the step 3 is preferably performed by ultrasonic waves, it is possible to efficiently disperse heterogeneous solutions difficult to disperse using ultrasonic waves.
  • the single-walled carbon nanotubes surface-treated by the redispersion may be stably dispersed in the metal oxide sol-gel solution without being precipitated over time.
  • step 4 is a transparent conductive electrode using a metal oxide sol-gel solution redispersed with the single-wall carbon nanotubes prepared in step 3 After coating on the heat treatment step.
  • step 4 may be performed by spin coating, spray coating, or doctor blading.
  • a metal oxide composite film in which carbon nanotubes are infiltrated is deposited to a thickness of 10-100 nm, and single-wall carbon nanotubes are evenly deposited. It may be dispersed to prepare a metal oxide composite film bonded to the metal oxide.
  • step 4 is preferably carried out for 10 to 30 minutes in a 150-300 °C hot plate (hot plate). If the temperature is less than 150 ° C. or less than 10 minutes, the metal oxide sol-gel solution remains on the surface of the composite film and the metal oxide is not sufficiently formed in the metal oxide sol-gel solution. If it exceeds, there is a problem in that the grain size of the thin film becomes large and the electrical and optical properties of the thin film are degraded.
  • the present invention provides an organic solar cell including the metal oxide composite film in which the carbon nanotubes are infiltrated.
  • the N-type metal oxide conductive film is It provides an organic solar cell with improved photoelectric conversion efficiency and lifespan, characterized in that the carbon nanotubes are metal oxides infiltrated.
  • the metal oxide composite film infiltrating carbon nanotubes according to the present invention improves the movement balance and speed of electrons and holes in the photoactive layer by improving the movement of electrons generated in the photoactive layer using single-walled carbon nanotubes. It improves the light absorption efficiency by acting to amplify the amount of solar energy absorbed into the carbon nanotubes, and the method for preparing a metal oxide composite film in which the carbon nanotubes are infiltrated according to the present invention can maintain stable dispersion of carbon nanotubes by a simple solution method.
  • various methods such as spin coating, spray coating, doctor blading, and the like, and the organic solar cell having the metal oxide composite film in which the carbon nanotubes are infiltrated is improved due to the improvement of photoelectric conversion efficiency and the influence of carbon nanotubes.
  • the effect of blocking UV rays is increased, so the life is also improved.
  • a positive cell may be useful to use.
  • Zinc Zinc acetate
  • methoxy or butoxyethanol using a magnetic stick, and then stabilizer 0.1-1 M ethanolamine was added for 1 hour on a 60 °C hot plate. It was dissolved to prepare a zinc oxide (ZnO) sol-gel solution (see Fig. 4 (A)).
  • the ZnO sol-gel solution prepared above was added with 0.1 to 5 wt% of single-walled carbon nanotubes (Carbon Solution Inc., P3-SWNT) having a length of 100 to 1000 nm and dispersed using an ultrasonic disperser for 1 hour. After centrifugation at 15000 rpm to filter out only single-walled carbon nanotubes surface-treated with metal oxide (see FIG.
  • FIG. 4 (b) ZnO sol in which single-walled carbon nanotubes are dispersed If the gel solution is left at room temperature for 1 hour before centrifugation, the surface-treated single-walled carbon nanotubes will settle by themselves.
  • a transparent conductive electrode (ITO) was deposited by spin coating or spray coating, and heat-treated in an atmospheric atmosphere for 10-30 minutes on a hot plate of 150-300 °C to prepare a metal oxide composite film in which 10-100 nm thick carbon nanotubes were invaded. It was.
  • ITO transparent conductive electrode
  • NiO metal oxide nanoparticles were dispersed in an IPA, DMF or DMSO solution and deposited on the light absorbing layer by spin coating, spray coating, dip coating or doctor blading and heat-treated at 150 ° C. for 10 minutes. A 50 nm thick NiO conductive film was prepared.
  • An Ag electrode having a thickness of 100 to 150 nm was prepared by using an evaporator on the P-type conductive film prepared above.
  • the organic solar cell prepared by the above method was heat-treated for 5 minutes on a 150 °C hot plate (see Figure 2).
  • Example 2 Except for using a metal oxide composite membrane in which the carbon nanotubes prepared in the same manner as in Example 1 by using n-heptane and adding 1% by weight of carbon nanotubes as a stabilizer, In the same manner as in Example 2, an organic solar cell including a metal oxide composite film in which carbon nanotubes penetrated was manufactured.
  • Zinc Zinc acetate
  • methoxy or butoxyethanol using a magnetic stick
  • stabilizer 0.1-1 M ethanolamine was added for 1 hour on a 60 °C hot plate. It was dissolved to prepare a zinc oxide (ZnO) sol-gel solution.
  • ZnO sol-gel solution prepared above was deposited on a transparent conductive electrode (ITO) by spin coating or spray coating, and heat-treated in an atmospheric atmosphere for 10-30 minutes on a 150-300 ° C. hot plate to obtain a thickness of 10-100 nm.
  • ZnO metal oxide film was prepared.
  • An organic solar cell including a ZnO metal oxide film was manufactured in the same manner as in Example 2, except that the photoactive layer was prepared on the ZnO metal oxide film prepared in Comparative Example 1.
  • Example 1 shows a relatively rough surface
  • Comparative Example 1 shows a relatively rough surface
  • Comparative Example 1 shows a relatively rough surface
  • the root mean square (RMS) values of Example 1 and Example 1 are 4.23 nm and 8.86 nm, respectively, indicating that the ZnO thin film infiltrated with carbon nanotubes exhibits roughly twice as rough surfaces.
  • the short circuit current (Jsc) value has a correlation with the transmittance of the thin film, and when the transmittance of the transparent electrode is lowered, the amount of light that can be absorbed can be reduced, thereby reducing the short circuit current value.
  • FIG. 6 it can be seen that the transmittance of the composite film of Example 1 does not decrease in the visible light region.
  • the effective area of the battery was 0.38 cm 2, and the photoelectric conversion efficiency was measured using an artificial solar irradiator having conditions of AM 1.5 and 1 sun, and the photoelectric conversion efficiency, curvature factor, and open voltage through FIG. 7. And measured by the short circuit current is shown in Table 1 below.
  • the organic solar cell of Example 2 and the organic solar cell of Example 3 have higher photoelectric conversion efficiency than the organic solar cell of Comparative Example 2, in particular, a short circuit current. It can be seen that the value of (Jsc, short circuit current) is greatly increased. As shown in Experimental Example 1, the photoelectric conversion efficiency can be reduced by the surface roughness, but it can be seen that the short circuit current value is greatly increased by the carbon nanotubes.
  • the organic solar cell of Example 2 has a higher carrier mobility than the conventional organic solar cell of Comparative Example 2.
  • Photoluminescence (Hitachi, F-4500 FL) characteristics of the organic solar cell including the metal oxide composite film in which the carbon nanotubes were infiltrated were analyzed, and the results are shown in FIG. 9.
  • the organic solar cell of Example 2 (an organic solar cell including a metal oxide composite film in which carbon nanotubes are infiltrated) exhibits high photoluminescence characteristics compared to Comparative Example 2. In spite of showing the same transmittance, it can be seen that such high photoluminescence characteristics eventually increase the light absorption rate and thus increase the short circuit current value.
  • the conventional organic solar cell of Comparative Example 2 is vulnerable to interfacial properties between materials to be easily oxidized by oxygen or hydrogen, and it can be seen that the photoelectric conversion efficiency drops sharply.
  • the organic solar cell of Example 2 according to the present invention uses a stable N-type and P-type oxide semiconductor, it can be seen that the resistance to oxidation is relatively large by using an Ag electrode instead of Al.
  • the photoelectric conversion efficiency gradually increases up to about 3 days (see FIGS. 10A and 10B), which means that wetting and This is because the crystallinity of the organic material layer increases.
  • the metal oxide composite film infiltrated with carbon nanotubes according to the present invention exhibiting rough surface roughness takes a long time to be well wetted with the photoactive layer, and thus the efficiency gradually increases for a relatively longer time. have.
  • This increase is generally most dependent on the change in the value of the short-circuit current (Jsc), and in the case of a solar cell using a metal oxide film incorporating a carbon nanotube according to the present invention, the change in photoelectric conversion efficiency is relatively changed even after 50 days. It can be seen that it is low (see Fig. 11 (a), (b)).
  • UV ultraviolet
  • Example 2 As shown in FIG. 13, it can be seen that the organic photovoltaic cell of Example 2 according to the present invention slowly decreases photoelectric conversion efficiency by nearly twice as compared with the conventional organic solar cell.
  • the metal oxide composite film in which the carbon nanotubes used in Example 3 penetrated was made larger by making ZnO large and diverse in the size of 10-200 nm when manufacturing carbon nanotubes treated with ZnO. It can be seen that the surface is formed, and ZnO in the form of a dandelion hole seed is formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 유기태양전지의 N형 금속산화물 전도막으로 사용되는 탄소나노튜브가 침입된 금속산화물 복합막, 이의 제조방법 및 이를 이용한 광전변환효율 및 수명이 향상된 유기태양전지에 관한 것으로, 더욱 상세하게는 금속산화물로 표면처리된 단일벽 탄소나노튜브가 균일하게 분산되어 금속산화물에 결합된 것을 특징으로 하는 금속산화물-탄소나노튜브 복합막, 이의 제조방법 및 이를 포함하는 광전변환효율 및 수명이 향상된 유기태양전지에 관한 것이다.

Description

탄소나노튜브가 침입된 금속산화물 복합막, 이의 제조방법 및 이를 이용한 광전변환효율 및 수명이 향상된 유기태양전지
본 발명은 탄소나노튜브가 침입된 금속산화물 복합막, 이의 제조방법 및 이를 이용한 광전변환효율 및 수명이 향상된 유기태양전지에 관한 것이다.
현재 일반적으로 제작되고 있는 유기태양전지는 정구조 형태(도 12 참조)이며, 역구조를 가진 유기태양전지(도 1 참조)도 많이 제작되고 있다. 유기태양전지의 광전변환 효율을 향상시키기 위해서는 개방전압(open circuit voltage, 이하 "Voc") 또는 단락전류(short circuit current, 이하 "Jsc") 값을 증가시키는 방법이 있으며, Voc를 향상시키기 위해서 새로운 형태의 광활성 유기물질들이 개발되고 있다. 한편 Jsc를 올리기 위해서는 광활성층에서 생성된 엑시톤을 쉽게 분리하고, 분리된 전자와 정공을 각각의 전극으로 빠르게 이동시켜야 한다. 그러기 위해서 새로운 C60유도체와 같은 고전도성의 나노입자나 탄소나노튜브를 광활성층 내부에 침투시키거나 또는 금속이나 반도체 나노와이어를 이용해 광활성층과의 접촉 면적을 넓혀 엑시톤 분리 및 전하의 이동도를 높이는 연구들이 진행되고 있다.
한편, 탄소나노튜브를 유기태양전지에 적용하는 방식은 일반적으로 크게 세가지로 분류할 수 있다. 첫번째는 탄소나노튜브를 투명전도성 기판 대체 물질로 적용하는 경우(유리나 폴리머 기판위에 직접 CNT 전극층 형성)이며, 두번째는 광활성층 내부에 탄소나노튜브를 침투시키는 방법이다. 마지막으로, 유기태양전지는 각 층이 다층(layer-by-layer) 형태로 구성되어 있기 때문에 계면에서의 접촉 저항이 커져 효율 저하의 문제가 되고 있으며, 이를 해결하고 전도도를 향상시키기 위하여 탄소나노튜브를 거미줄 형태로 얇게 각 층 사이에 도포하는 방법도 제시가 되었다. 그러나 탄소나노튜브를 유기물 광활성층 내부에 사용한 경우 C60 유도체를 사용한 경우에 비해 상대적으로 낮은 효율을 보이고 있으며, 유기물과 복합체를 형성하더라도 첨가량에 따라 효율 변화가 심하고, 또한 탄소나노튜브의 쉽게 뭉치는 성질 및 마이크로 단위의 긴 길이 때문에 상기 제시되었던 방법으로 유기태양전지에 적용시, 쇼트가 발생할 수 있는 확률이 높아지는 문제가 있다.
한편 최근에는 상기와 같은 광전변환 효율 향상 이외에도 유기태양전지의 수명과 관련한 연구들이 진행이 되고 있다. 유기태양전지는 유기물을 기본으로 한다는 물질 특성상 대기 중에 있는 수분, 산소 및 태양광에 의해 직접적인 효율 저하가 나타나는 문제가 있다. 현재까지 유기태양전지의 효율 저하와 관련한 원인이 명쾌하게 규명되지 않은 상태이긴 하지만 최근에는 이러한 문제를 일으키는 원인을 차단하려는 많은 연구들이 진행되고 있다.
이에, 본 발명자들은 유기태양전지의 광전변환효율과 수명을 향상시킬 수 있는 방법을 연구하던 중 간단한 용액법으로 탄소나노튜브를 금속산화물 졸-겔 용액에 안정적으로 분산시켜 제조되는 탄소나노튜브가 침입된 금속산화물 복합막, 이의 제조방법 및 상기 탄소나노튜브가 침입된 금속산화물 복합막을 포함하여 광전변환효율과 수명이 향상된 유기태양전지를 개발하고, 본 발명을 완성하였다.
본 발명의 목적은 금속산화물 용액에 탄소나노튜브가 안정적으로 분산된 용액을 이용하여 탄소나노튜브가 침입된 금속산화물 복합막 및 이의 제조방법을 제공하는 데 있다.
또한, 본 발명의 또 다른 목적은 상기 방법을 통해 형성된 탄소나노튜브가 침입된 금속산화물 복합막을 유기태양전지의 N형 전도막으로 이용하여 광전변환효율 및 수명이 향상된 유기태양전지를 제공하는 데 있다.
상기 목적을 달성하기 위해, 본 발명은 단일벽 탄소나노튜브가 금속산화물에 균일하게 분산된, 탄소나노튜브가 침입된 금속산화물 복합막을 제공한다.
또한, 본 발명은 금속산화물을 에탄올계 용액에 용해시킨 후 안정화제를 용해시켜 금속산화물 졸-겔 용액을 제조하는 단계(단계 1); 상기 단계 1에서 제조된 금속산화물 졸-겔 용액에 단일벽 탄소나노튜브를 첨가하고 분산시켜 단일벽 탄소나노튜브를 표면처리한 후 원심분리하는 단계(단계 2); 상기 단계 2에서 표면처리된 단일벽 탄소나노튜브를 상기 단계 1에서 제조된 금속산화물 졸-겔 용액에 넣고 재분산시키는 단계(단계 3); 및 상기 단계 3에서 제조된 단일벽 탄소나노튜브가 분산된 금속산화물 졸-겔 용액을 투명전도성 전극에 코팅시킨 후 열처리하는 단계(단계 4)를 포함하는 탄소나노튜브가 침입된 금속산화물 복합막의 제조방법을 제공한다.
나아가, 본 발명은 기판/투명전도성 전극/N형 금속산화물 전도막/광활성층/P형 금속산화물 전도막/금속전극의 순서로 적층되는 유기태양전지에 있어서, 상기 N형 전도막이 상기 탄소나노튜브가 침입된 금속산화물 복합막인 것을 특징으로 하는 광전변환효율 및 수명이 향상된 유기태양전지를 제공한다.
본 발명에 따른 탄소나노튜브가 침입된 금속산화물 복합막은 단일벽 탄소나노튜브를 이용하여 광활성층에서 생성된 전자의 이동을 향상시켜 전체적인 전자와 정공의 이동 밸런스 및 속도를 향상시키며, 광활성층으로 흡수되는 태양에너지의 양을 증폭시키는 역할을 하여 광흡수 효율을 향상시키고, 본 발명에 따른 탄소나노튜브가 침입된 금속산화물 복합막의 제조방법은 간단한 용액법으로 탄소나노튜브의 안정적 분산을 유지할 수 있고 스핀코팅법, 스프레이코팅법, 닥터블레이딩 등의 다양한 방법을 사용할 수 있으며, 상기 탄소나노튜브가 침입된 금속산화물 복합막을 구비한 유기태양전지는 광전변환효율이 향상되고 탄소나노튜브의 영향으로 자외선을 차단하는 효과가 증대되어 수명 또한 향상되므로, 저비용, 고효율, 장수명의 유기태양전지로서 유용하게 이용할 수 있다.
도 1은 종래 유기태양전지의 모식도(역구조 형태)이고;
도 2는 본 발명에 따른 유기태양전지의 모식도이고;
도 3은 본 발명에 따른 단일벽 탄소나노튜브가 침입된 금속산화물의 모식도이고;
도 4는 산화아연 졸-겔 용액, 단일벽 탄소나노튜브가 포함된 산화아연 졸-겔 용액 및 표면처리된 단일벽 탄소나노튜브가 포함된 산화아연 졸-겔 용액을 나타낸 사진이고;
도 5는 본 발명에 따른 탄소나노튜브가 침입된 금속산화물 복합막의 원자힘 현미경 사진이고;
도 6은 본 발명에 따른 탄소나노튜브가 침입된 금속산화물 복합막의 투과율을 나타낸 그래프이고;
도 7은 본 발명에 따른 유기태양전지의 광전변환효율을 나타낸 그래프이고;
도 8은 본 발명에 따른 유기태양전지의 전자와 정공 이동도를 나타낸 그래프이고;
도 9는 본 발명에 따른 유기태양전지의 광발광 특성을 나타낸 그래프이고;
도 10은 본 발명에 따른 유기태양전지의 대기중에서의 광전변환효율(Jsc)을 나타낸 그래프이고;
도 11은 본 발명에 따른 유기태양전지의 대기중에서의 광전변환효율(PCE)을 나타낸 그래프이고;
도 12는 종래 유기태양전지(정구조 형태)의 대기중에서의 광전변환효율을 나타낸 그래프이고;
도 13은 본 발명에 따른 유기태양전지의 자외선 조건하에서의 광전변환효율을 나타낸 그래프이고; 및
도 14는 본 발명에 따른 탄소나노튜브가 침입된 금속산화물 복합막의 투과전자현미경 사진이다.
<도면의 주요부분에 대한 부호의 설명>
1: 투명전도성 전극
2: N형 금속산화물 전도막
3: 광활성층
4: P형 금속산화물 전도막
5: 금속전극
6: 탄소나노튜브가 침입된 금속산화물 복합막
7: 단일벽 탄소나노튜브
8: 금속산화물
본 발명은
단일벽 탄소나노튜브가 금속산화물에 균일하게 분산된, 탄소나노튜브가 침입된 금속산화물 복합막을 제공한다.
본 발명에 따른 탄소나노튜브가 침입된 금속산화물 복합막에 있어서, 상기 금속산화물은 TiO2, ZnO 및 SnO 등으로 이루어지는 군으로부터 선택되는 1종의 N형 금속산화물; 이들의 2종 이상의 화합물; 및 상기 금속산화물이 Al, Ga, Ng, In 및 Sn 등으로 이루어지는 군으로부터 선택되는 1종 또는 2 종 이상의 원소로 도핑된 금속산화물; 등을 사용할 수 있다. 상기 탄소나노튜브가 침입된 금속산화물 복합막의 두께는 10 - 100 ㎚인 것이 바람직하다. 만약, 상기 탄소나노튜브가 침입된 금속산화물 복합막의 두께가 10 ㎚ 미만인 경우에는 유기태양전지에서 N형 전도막의 두께가 너무 얇아 투명전도성 전극과의 계면 특성이 저하되며, 탄소나노튜브가 침입된 금속산화물 복합막에서 탄소나노튜브가 탈착될 가능성이 높아 전도막의 기능을 수행하지 못하는 문제가 있고, 100 ㎚를 초과하는 경우에는 전자의 이동거리가 길어져 광전변환효율이 저하되는 문제가 있다.
또한, 본 발명은
금속산화물을 에탄올계 용액에 용해시킨 후 안정화제를 용해시켜 금속산화물 졸-겔 용액을 제조하는 단계(단계 1);
상기 단계 1에서 제조된 금속산화물 졸-겔 용액에 단일벽 탄소나노튜브를 첨가하여 분산시켜 단일벽 탄소나노튜브를 표면처리한 후 원심분리하는 단계(단계 2);
상기 단계 2에서 표면처리된 단일벽 탄소나노튜브를 상기 단계 1에서 제조된 금속산화물 졸-겔 용액에 넣고 재분산시키는 단계(단계 3); 및
상기 단계 3에서 제조된 단일벽 탄소나노튜브가 분산된 금속산화물 졸-겔 용액을 투명전도성 전극에 코팅시킨 후 열처리하는 단계(단계 4)를 포함하는 탄소나노튜브가 침입된 금속산화물 복합막의 제조방법을 제공한다.
이하, 본 발명에 따른 탄소나노튜브가 침입된 금속산화물 복합막의 제조방법을 단계별로 상세히 설명한다.
본 발명에 따른 탄소나노튜브가 침입된 금속산화물 복합막의 제조방법에 있어서, 단계 1은 금속산화물을 에탄올계 용액에 용해시킨 후 안정화제를 용해시켜 금속산화물 졸-겔 용액을 제조하는 단계이다.
상기 단계 1의 금속산화물은 TiO2, ZnO 및 SnO 등으로 이루어지는 군으로부터 선택되는 1종의 N형 금속산화물; 이들의 2종 이상의 화합물; 및 상기 금속산화물이 Al, Ga, Ng, In 및 Sn 등으로 이루어지는 군으로부터 선택되는 1종 또는 2 종 이상의 원소로 도핑된 금속산화물; 등을 사용할 수 있다. 또한, 상기 단계 1의 에탄올계 용액은 메톡시, 부톡시에탄올 등을 사용할 수 있고, 안정화제는 에탄올아민 등을 사용할 수 있다.
또한, 상기 단계 1의 금속산화물의 함량은 0.1 - 1 M인 것이 바람직하며, 상기 안정화제의 함량은 금속산화물 함량에 따라 용해시키는 것이 바람직하고, 0.1 - 1 M인 것이 더욱 바람직하다. 만약, 상기 금속산화물의 함량이 0.1 M 미만인 경우에는 금속산화물의 함량이 적어 균일한 금속산화물 박막층을 형성할 수 없는 문제가 있고, 1 M을 초과하는 경우에는 금속 비율이 높아 용액을 안정적으로 분산시키는데 많은 시간이 소요되며 균일한 금속산화물 박막층을 형성할 수 없는 문제가 있다.
또한, 상기 단계 1의 금속산화물 졸-겔 용액은 50 - 70 ℃에서 50 - 70 분 동안 수행하여 제조되는 것이 바람직하다. 만약, 상기 온도가 50 ℃ 또는 50분 미만인 경우에는 금속산화물로 이루어진 파우더를 용이하게 용해시킬 수 없고, 70 ℃ 또는 70 분을 초과하는 경우에는 금속산화물이 숙성(aging)되는 문제가 있다.
다음으로, 본 발명에 따른 탄소나노튜브가 침입된 금속산화물 복합막의 제조방법에 있어서, 단계 2는 상기 단계 1에서 제조된 금속산화물 졸-겔 용액에 단일벽 탄소나노튜브를 첨가하여 분산시켜 단일벽 탄소나노튜브를 표면처리한 후 원심분리하는 단계이다.
이때, 상기 단계 2의 단일벽 탄소나노튜브는 금속산화물 졸-겔 용액에 0.1 - 5 중량%로 첨가하는 것이 바람직하다. 만약, 상기 단일벽 탄소나노튜브가 0.1 중량% 미만인 경우에는 금속산화물에 적은량의 탄소나노튜브가 침투되어 광전변환효율에 영향을 주지 못하거나 혹은 낮아지는 문제가 있고, 5 중량%를 초과하는 경우에는 탄소나노튜브의 함량이 과다하여 얽힘 현상이 발생하며 박막 형성시 투과율이 저하되는 문제가 있다.
또한, 상기 단계 2의 분산은 초음파 분산기를 이용하여 50 - 70 분 동안 수행하는 것이 바람직하나, 이에 제한되는 것은 아니다.
또한, 상기 단계 2의 원심분리 전 금속산화물 졸-겔 용액을 상온에서 일정시간 동안 놓아두면 금속산화물로 표면처리된 탄소나노튜브가 침전되며, 상기 표면처리된 탄소나노튜브를 금속산화물 졸-겔 용액으로부터 분리시키기 위해 원심분리하는 것이 바람직하고, 상기 원심분리는 수율을 고려하여 14000 - 16000 rpm의 속도로 수행하는 것이 바람직하나, 이에 제한되는 것은 아니다.
다음으로, 본 발명에 따른 탄소나노튜브가 침입된 금속산화물 복합막의 제조방법에 있어서, 단계 3은 상기 단계 2에서 표면처리된 단일벽 탄소나노튜브를 상기 단계 1에서 제조된 금속산화물 졸-겔 용액에 넣고 재분산시키는 단계이다.
이때, 상기 단계 3의 재분산은 초음파로 수행하는 것이 바람직하며, 초음파를 이용하여 분산되기 어려운 이종의 용액을 효율적으로 분산시킬 수 있다. 상기 재분산으로 표면처리된 단일벽 탄소나노튜브는 금속산화물 졸-겔 용액에 시간이 지나도 침전되지 않고 안정하게 분산될 수 있다.
다음으로, 본 발명에 따른 탄소나노튜브가 침입된 금속산화물 복합막의 제조방법에 있어서, 단계 4는 상기 단계 3에서 제조된 단일벽 탄소나노튜브가 재분산된 금속산화물 졸-겔 용액을 투명전도성 전극에 코팅시킨 후 열처리하는 단계이다.
상기 단계 4의 증착은 스핀코팅법, 스프레이 코팅법 또는 닥터블레이딩법 등으로 수행할 수 있으며, 탄소나노튜브가 침입된 금속산화물 복합막은 10 - 100 ㎚ 두께로 증착되고, 단일벽 탄소나노튜브가 고르게 분산되어 금속산화물에 결합된 금속산화물 복합막을 제조할 수 있다.
또한, 상기 단계 4의 열처리는 150 - 300 ℃ 핫플레이트(hot plate)에서 10 - 30 분 동안 수행하는 것이 바람직하다. 만약, 상기 온도가 150 ℃ 또는 10 분 미만인 경우에는 금속산화물 졸-겔 용액이 복합막 표면에 잔류하고 금속산화물 졸-겔 용액에 금속산화물이 충분히 형성되지 못하는 문제가 있고, 300 ℃ 또는 30 분을 초과하는 경우에는 박막의 입자크기(grain size)가 커져 박막의 전기적, 광학적 특성이 저하되는 문제가 있다.
나아가, 본 발명은 상기 탄소나노튜브가 침입된 금속산화물 복합막을 포함하는 유기태양전지를 제공한다.
구체적으로, 본 발명은 기판/투명전도성 전극/N형 금속산화물 전도막/광활성층/P형 금속산화물 전도막/금속전극의 순서로 적층되는 유기태양전지에 있어서, 상기 N형 금속산화물 전도막이 상기 탄소나노튜브가 침입된 금속산화물인 것을 특징으로 하는 광전변환효율과 수명이 향상된 유기태양전지를 제공한다.
본 발명에 따른 유기태양전지는 실험예 3, 6 및 7에 나타난 바와 같이, 종래 유기태양전지와 비교하여 탄소나노튜브가 침입된 금속산화물 복합막을 이용함으로써 광전변환효율과 수명이 향상된다.
따라서, 본 발명에 따른 탄소나노튜브가 침입된 금속산화물 복합막은 단일벽 탄소나노튜브를 이용하여 광활성층에서 생성된 전자의 이동을 향상시켜 전체적인 전자와 정공의 이동 밸런스 및 속도를 향상시키며, 광활성층으로 흡수되는 태양에너지의 양을 증폭시키는 역할을 하여 광흡수 효율을 향상시키고, 본 발명에 따른 탄소나노튜브가 침입된 금속산화물 복합막의 제조방법은 간단한 용액법으로 탄소나노튜브의 안정적 분산을 유지할 수 있고 스핀코팅법, 스프레이코팅법, 닥터블레이딩 등의 다양한 방법을 사용할 수 있으며, 상기 탄소나노튜브가 침입된 금속산화물 복합막을 구비한 유기태양전지는 광전변환효율이 향상되고 탄소나노튜브의 영향으로 자외선을 차단하는 효과가 증대되어 수명 또한 향상되므로, 저비용, 고효율, 장수명의 유기태양전지로서 유용하게 이용할 수 있다.
이하, 본 발명을 실시예에 의해 더욱 상세히 설명한다. 단, 하기의 실시예는 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 제한되는 것은 아니다.
<실시예 1> 탄소나노튜브가 침입된 금속산화물 복합막의 제조
0.1 - 1 M의 아세테이트 아연(Zinc acetate)을 메톡시 또는 부톡시에탄올에 마그네틱 스틱을 이용하여 용해시킨 후 안정화제인 0.1 - 1 M의 에탄올아민을 넣고 60 ℃ 핫플레이트(hot plate)에서 1 시간 동안 용해시켜 산화아연(ZnO) 졸-겔 용액을 제조하였다(도 4의 (A) 참조). 상기에서 제조된 ZnO 졸-겔 용액에 100 - 1000 ㎚ 길이를 가진 단일벽 탄소나노튜브(Carbon Solution inc., P3-SWNT)를 0.1 - 5 중량% 함량으로 넣고 1 시간 동안 초음파 분산기를 이용하여 분산시킨 후 15000 rpm의 속도로 원심분리하여 금속산화물로 표면처리된 단일벽 탄소나노튜브만을 걸러내는데(도 3 참조) 도 4의 (b)에 나타난 바와 같이, 단일벽 탄소나노튜브가 분산된 ZnO 졸-겔 용액을 원심분리하기 전에 상온에 1 시간 동안 놓아두면 표면처리된 단일벽 탄소나노튜브가 저절로 침전하게 된다. 상기에서 제조된 표면처리된 단일벽 탄소나노튜브를 상기 ZnO 졸-겔 용액과 동일한 방법으로 제조된 ZnO 졸-겔 용액에 넣고 초음파로 재분산시킨(도 4의 (C) 참조) 후 투명전도성 전극(ITO)에 스핀 코팅 또는 스프레이 코팅법을 이용하여 증착하고, 150 - 300 ℃ 핫플레이트에서 10 - 30 분 동안 대기 분위기에서 열처리하여 10 - 100 ㎚ 두께의 탄소나노튜브가 침입된 금속산화물 복합막을 제조하였다.
<실시예 2> 탄소나노튜브가 침입된 금속산화물 복합막을 포함하는 유기태양전지의 제조 1
1. 광활성층 제조
P3HT와 PCBM을 각각 1:0.7의 비율로 용매(DCB:CB=1:0.6)에 분산시킨 후 분산된 P3HT:PCBM 용액을 상기 실시예 1에서 제조된 탄소나노튜브가 침입된 금속산화물 복합막 위에 스핀코팅법, 스프레이코팅법, 딥코팅법 또는 닥터블레이딩법으로 증착하고 상온에서 2 시간 동안 건조시키거나 80 ℃ 핫플레이트에서 10 분 동안 열처리하여 100 - 400 ㎚ 두께의 광활성층을 제조하였다.
2. P형 전도막 제조
NiO 금속산화물 나노입자를 IPA, DMF 또는 DMSO 용액에 분산시킨 후 상기 광흡수층 위에 스핀코팅법, 스프레이코팅법, 딥코팅법 또는 닥터블레이딩법으로 증착하고 150 ℃ 핫플레이트에서 10 분 동안 열처리하여 10 - 50 ㎚ 두께의 NiO 전도막을 제조하였다.
3. 금속 전극 제조
상기에서 제조된 P형 전도막 위에 증발기를 이용하여 100 - 150 ㎚ 두께의 Ag 전극을 제조하였다.
상기 방법으로 제조된 유기태양전지를 150 ℃ 핫플레이트에서 5 분 동안 열처리하였다(도 2 참조).
<실시예 3> 탄소나노튜브가 침입된 금속산화물 복합막을 포함하는 유기태양전지의 제조 2
안정화제로 n-헵탄(n-heptane)을 사용하고 탄소나노튜브 1 중량%를 첨가하여 상기 실시예 1과 동일한 방법으로 제조된 탄소나노튜브가 침입된 금속산화물 복합막을 사용한 것을 제외하고는, 상기 실시예 2와 동일한 방법으로 탄소나노튜브가 침입된 금속산화물 복합막을 포함하는 유기태양전지를 제조하였다.
<비교예 1> ZnO 금속산화물 막의 제조
0.1 - 1 M의 아세테이트 아연(Zinc acetate)을 메톡시 또는 부톡시에탄올에 마그네틱 스틱을 이용하여 용해시킨 후 안정화제인 0.1 - 1 M의 에탄올아민을 넣고 60 ℃ 핫플레이트(hot plate)에서 1 시간 동안 용해시켜 산화아연(ZnO) 졸-겔 용액을 제조하였다. 상기에서 제조된 ZnO 졸-겔 용액을 투명전도성 전극(ITO)에 스핀 코팅 또는 스프레이 코팅법을 이용하여 증착하고 150 - 300 ℃ 핫플레이트에서 10 - 30 분 동안 대기 분위기에서 열처리하여 10 - 100 ㎚ 두께의 ZnO 금속산화물 막을 제조하였다.
<비교예 2> ZnO 금속산화물 막을 포함하는 유기태양전지의 제조
상기 비교예 1에서 제조된 ZnO 금속산화물 막 위에 광활성층을 제조한 것을 제외하고는, 상기 실시예 2와 동일한 방법을 수행하여 ZnO 금속산화물 막을 포함하는 유기태양전지를 제조하였다.
<실험예 1> 탄소나노튜브가 침입된 금속산화물 복합막의 표면 분석
본 발명에 따른 탄소나노튜브가 침입된 금속산화물 복합막의 표면을 알아보기 위해 원자힘 전자현미경(AFM, Vecco, MMAFM-2)으로 분석하고, 그 결과를 도 5에 나타내었다.
도 5에 나타난 바와 같이, 실시예 1의 박막(도 5의 (b) 및 (d))은 상대적으로 거친 표면을 나타냄을 알 수 있고, 비교예 1(도 5의 (a) 및 (c)) 및 실시예 1의 rms(root mean square, 표면 거칠기를 나타내는 표준편차) 값은 각각 4.23 ㎚와 8.86 ㎚로 탄소나노튜브가 침입된 ZnO 박막이 약 두배 이상 거친 표면을 나타냄을 알 수 있다.
<실험예 2> 탄소나노튜브가 침입된 금속산화물 복합막의 투과율 분석
본 발명에 따른 탄소나노튜브가 침입된 금속산화물 복합막의 투과율를 분석하고, 그 결과를 도 6에 나타내었다.
단락전류(Jsc, short circuit current) 값은 박막의 투과율과 상관관계를 가지고 있으며, 투명 전극의 투과율이 낮아지면 상대적으로 흡수할 수 있는 광량이 줄어들어 단락전류 값이 감소할 수 있다. 그러나, 도 6에 나타난 바와 같이, 실시예 1의 복합막은 가시광 영역에서 투과율이 저하되지 않는 것을 알 수 있다.
<실험예 3> 탄소나노튜브가 침입된 금속산화물 복합막을 포함하는 유기태양전지의 광전변환효율 분석
본 발명에 따른 탄소나노튜브가 침입된 금속산화물 복합막을 포함하는 유기태양전지의 광전변환효율을 측정하기 위해 인공 태양광 조사장치를 이용하여 광전변환효율을 측정하고, 그 결과를 도 7 및 표 1에 나타내었다.
전지의 유효 면적은 0.38 ㎠이며, AM 1.5, 1 sun의 조건을 가진 인공 태양광 조사장치(solar simulator)를 이용하여 광전변환효율을 측정하였으며, 도 7을 통해 광전변환효율, 곡률인자, 개방전압 및 단락전류를 측정하여 하기 표 1에 나타내었다.
표 1
광전변환효율 곡률인자 개방전압 단락전류
비교예 2 1.173 0.414 0.562 5.048
실시예 2 2.149 0.408 0.567 9.287
실시예 3 1.605 0.436 0.567 6.485
도 7 및 상기 표 1에 나타난 바와 같이, 실시예 2의 유기태양전지와 실시예 3의 유기태양전지가 비교예 2의 유기태양전지보다 더 높은 광전변환효율을 갖는 것을 알 수 있고, 특히 단락전류(Jsc, short circuit current) 값이 크게 증가한 것을 알 수 있다. 상기 실험예 1에 나타난 바와 같이, 표면 거칠기에 의해 광전변환효율이 감소할 수 있지만, 탄소나노튜브에 의해 단락전류 값이 크게 증가함을 알 수 있다.
<실험예 4> 탄소나노튜브가 침입된 금속산화물 복합막의 전자와 정공 이동도 분석
본 발명에 따른 탄소나노튜브가 침입된 금속산화물 복합막의 전자와 정공 이동도를 측정하고, 그 결과를 도 8에 나타내었다.
도 8에 나타난 바와 같이, 실시예 2인 유기태양전지가 비교예 2인 종래 유기태양전지보다 전하이동도(carrier mobility)가 더 높은 것을 알 수 있다.
<실험예 5> 유기태양전지의 광발광 특성 분석
본 발명에 따른 탄소나노튜브가 침입된 금속산화물 복합막을 포함하는 유기태양전지의 광발광(photoluminescence, Hitachi, F-4500 FL) 특성을 분석하고, 그 결과를 도 9에 나타내었다.
도 9에 나타난 바와 같이, 비교예 2에 비해 실시예 2(탄소나노튜브가 침입된 금속산화물 복합막을 포함하는 유기태양전지)인 유기태양전지가 높은 광발광 특성을 보이는 것을 알 수 있다. 동일한 투과도를 보임에도 불구하고 이와 같은 높은 광발광 특성은 결국 광흡수율을 증가시켜 단락전류 값을 증가시키는 것을 알 수 있다.
<실험예 6> 유기태양전지의 대기중에서의 광전변환효율 분석
본 발명에 따른 유기태양전지의 대기중에서의 광전변환효율을 측정하고, 그 결과를 도 10, 11 및 12에 나타내었다.
도 12에 나타난 바와 같이, 비교예 2인 종래 유기태양전지는 사용되는 소재들 간의 계면 특성이 취약하여 쉽게 산소 또는 수소에 의해 산화되며, 광전변환효율이 급격히 떨어지는 것을 알 수 있다. 반면, 본 발명에 따른 실시예 2인 유기태양전지는 안정한 N형 및 P형 산화물 반도체를 사용하고 있고, Al 대신 Ag 전극을 사용함으로써 산화에 대한 저항성이 상대적으로 큰 것을 알 수 있다.
또한, 도 10 및 도 11에 나타난 바와 같이, 평균적으로 약 3일 정도까지는 광전변환효율이 서서히 증가하는데(도 10의 (a), (b) 참조), 이는 각각의 계면의 웨팅(wetting) 및 유기물층의 결정성이 증가하기 때문이다. 거친 표면 거칠기를 나타내는 본 발명에 따른 탄소나노튜브가 침입된 금속산화물 복합막은 광활성층과의 웨팅(wetting)이 잘 되기까지 많은 시간이 걸리기 때문에 상대적으로 더 오랜시간 동안 효율이 서서히 증가하는 것을 알 수 있다. 이러한 증가는 일반적으로 단락전류(Jsc) 값의 변화에 가장 크게 의존하며, 본 발명에 따른 탄소나노튜브가 결합된 금속산화물 막을 사용한 태양전지의 경우 50일이 지난 상태에서도 상대적으로 광전변환효율 변화가 낮은 것을 알 수 있다(도 11의 (a), (b) 참조).
<실험예 7> 유기태양전지의 자외선 조건하에서의 광전변환효율 분석
본 발명에 따른 유기태양전지의 자외선 조건하에서의 광전변환효율을 측정하고, 그 결과를 도 13에 나타내었다.
자외선(UV) 조건하에서의 광전변환효율을 측정하기 위해 2000 mJ/㎠의 UV 조사기를 각각의 유기태양전지에 노출시켰다.
도 13에 나타난 바와 같이, 본 발명에 따른 실시예 2인 유기태양전지가 종래 유기태양전지와 비교하여 2 배 가까이 광전변환효율이 천천히 저하되는 것을 알 수 있다.
<실험예 8> 탄소나노튜브가 침입된 금속산화물 복합막의 표면 분석 2
본 발명에 따른 탄소나노튜브가 침입된 금속산화물 복합막의 표면을 알아보기 위해 투과전자현미경(TEM, JEOL 2010)으로 분석하고, 그 결과를 도 14에 나타내었다.
도 14에 나타난 바와 같이, 상기 실시예 3에서 사용된 탄소나노튜브가 침입된 금속산화물 복합막은 ZnO로 표면처리된 탄소나노튜브 제조시 ZnO의 크기를 10 - 200 ㎚로 크고 다양하게 만들어 좀 더 커친 표면이 형성되며, 민들레 홀씨 형상의 ZnO가 형성되는 것을 알 수 있다.
따라서, 표면이 더 거칠어짐에도 불구하고 상기 실험예 3에서 나타난 것처럼 단락전류 값이 증가함을 알 수 있으며, 탄소나노튜브의 침투가 유기태양전지의 광전변환효율을 증가시키는 것을 알 수 있다.

Claims (9)

  1. 단일벽 탄소나노튜브가 금속산화물에 균일하게 분산된, 탄소나노튜브가 침입된 금속산화물 복합막.
  2. 제1항에 있어서, 상기 금속산화물은 TiO2, ZnO 및 SnO로 이루어지는 군으로부터 선택되는 1종의 N형 금속산화물; 이들의 2종 이상의 화합물; 및 상기 금속산화물이 Al, Ga, Ng, In 및 Sn으로 이루어지는 군으로부터 선택되는 1종 이상의 원소로 도핑된 금속산화물;로 이루어지는 군으로부터 선택되는 어느 하나인 것을 특징으로 탄소나노튜브가 침입된 금속산화물 복합막.
  3. 제1항에 있어서, 상기 탄소나노튜브가 침입된 금속산화물 복합막의 두께는 10 - 100 ㎚인 것을 특징으로 탄소나노튜브가 침입된 금속산화물 복합막.
  4. 금속산화물을 에탄올계 용액에 용해시킨 후 안정화제를 용해시켜 금속산화물 졸-겔 용액을 제조하는 단계(단계 1);
    상기 단계 1에서 제조된 금속산화물 졸-겔 용액에 단일벽 탄소나노튜브를 첨가하여 분산시켜 단일벽 탄소나노튜브를 표면처리한 후 원심분리하는 단계(단계 2);
    상기 단계 2에서 표면처리된 단일벽 탄소나노튜브를 상기 단계 1에서 제조된 금속산화물 졸-겔 용액에 넣고 재분산시키는 단계(단계 3); 및
    상기 단계 3에서 제조된 단일벽 탄소나노튜브가 재분산된 금속산화물 졸-겔 용액을 투명전도성 전극에 코팅시킨 후 열처리하는 단계(단계 4)를 포함하는 제1항의 탄소나노튜브가 침입된 금속산화물 복합막의 제조방법.
  5. 제4항에 있어서, 상기 단계 1의 금속산화물은 TiO2, ZnO 및 SnO로 이루어지는 군으로부터 선택되는 1종; 이들의 2종 이상의 화합물; 및 상기 금속산화물이 Al, Ga, Ng, In 및 Sn으로 이루어지는 군으로부터 선택되는 1종 또는 2 종 이상의 원소로 도핑된 금속산화물;로 이루어지는 군으로부터 선택되는 어느 하나인 것을 특징으로 탄소나노튜브가 침입된 금속산화물 복합막의 제조방법.
  6. 제4항에 있어서, 상기 단계 2의 단일벽 탄소나노튜브는 금속산화물 졸-겔 용액에 0.1 - 5 중량%로 첨가하는 것을 특징으로 하는 탄소나노튜브가 침입된 금속산화물 복합막의 제조방법.
  7. 제4항에 있어서, 상기 단계 4의 코팅은 스핀코팅법, 스프레이 코팅법 또는 닥터블레이딩법으로 증착하는 것을 특징으로 하는 탄소나노튜브가 침입된 금속산화물 복합막의 제조방법.
  8. 제1항의 탄소나노튜브가 침입된 금속산화물 복합막을 포함하는 광전변환효율 및 수명이 향상된 유기태양전지.
  9. 제8항에 있어서, 상기 유기태양전지는 기판/투명전도성 전극/N형 금속산화물 전도막/광활성층/P형 금속산화물 전도막/금속전극의 순서로 적층되는 유기태양전지에 있어서, 상기 N형 금속산화물 전도막이 제1항의 탄소나노튜브가 침입된 금속산화물 복합막인 것을 특징으로 하는 광전변환효율 및 수명이 향상된 유기태양전지.
PCT/KR2010/009218 2010-05-20 2010-12-22 탄소나노튜브가 침입된 금속산화물 복합막, 이의 제조방법 및 이를 이용한 광전변환효율 및 수명이 향상된 유기태양전지 WO2011145797A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/695,984 US20130048078A1 (en) 2010-05-20 2010-12-22 Carbon nanotube-invaded metal oxide composite film, manufacturing method thereof, and organic solar cell with improved photoelectric conversion efficiency and improved duration using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2010-0047528 2010-05-20
KR20100047528 2010-05-20
KR10-2010-0132352 2010-12-22
KR1020100132352A KR101124618B1 (ko) 2010-05-20 2010-12-22 탄소나노튜브가 침입된 금속산화물 복합막, 이의 제조방법 및 이를 이용한 광전변환효율 및 수명이 향상된 유기태양전지

Publications (1)

Publication Number Publication Date
WO2011145797A1 true WO2011145797A1 (ko) 2011-11-24

Family

ID=44991867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/009218 WO2011145797A1 (ko) 2010-05-20 2010-12-22 탄소나노튜브가 침입된 금속산화물 복합막, 이의 제조방법 및 이를 이용한 광전변환효율 및 수명이 향상된 유기태양전지

Country Status (1)

Country Link
WO (1) WO2011145797A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111453761A (zh) * 2020-05-07 2020-07-28 天津翔龙电子有限公司 一种ZnO纳米粒子薄膜的制备方法
CN113248978A (zh) * 2020-04-17 2021-08-13 广东聚华印刷显示技术有限公司 墨水、薄膜晶体管及其制备方法、有源层薄膜、显示设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIANFENG, L. ET AL.: "Indium tin oxide modified transparent nanotube thin films as effective anodes for flexible organic light-emitting diodes", APPLIED PHYSICS LETTERS, vol. 93, 26 August 2008 (2008-08-26), pages 083306 *
MICHAEL, W. R. ET AL.: "Organic solar cells with carbon nanotube network electrodes", APPLIED PHYSICS LETTERS, vol. 88, 6 June 2006 (2006-06-06), pages 233506 *
ROSS, U. ET AL.: "Transparent carbon nanotube sheets as 3-D charge collectors in organic solar cells", SOLAR ENGERGY MATERIALS AND SOLAR CELLS, vol. 91, 18 December 2006 (2006-12-18), pages 416 - 419 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113248978A (zh) * 2020-04-17 2021-08-13 广东聚华印刷显示技术有限公司 墨水、薄膜晶体管及其制备方法、有源层薄膜、显示设备
CN111453761A (zh) * 2020-05-07 2020-07-28 天津翔龙电子有限公司 一种ZnO纳米粒子薄膜的制备方法

Similar Documents

Publication Publication Date Title
KR101124618B1 (ko) 탄소나노튜브가 침입된 금속산화물 복합막, 이의 제조방법 및 이를 이용한 광전변환효율 및 수명이 향상된 유기태양전지
WO2012053711A1 (ko) 그래핀을 전기영동법으로 증착시켜 제조하는 상대전극의 제조방법, 그 방법에 의하여 제조된 상대전극 및 이를 포함하는 염료감응형 태양전지
WO2011025216A2 (ko) 그래핀 박막과 나노 입자를 이용한 광검출기 및 그 제조 방법
WO2011090336A2 (ko) 전기장 향상 효과에 의하여 개선된 광전환 효율을 나타내는 태양전지
WO2011102677A2 (ko) 나노구조 무기-유기 이종 접합 태양전지의 제조방법
US8866265B2 (en) Carbon-based semiconductors
WO2012008761A2 (ko) 산화아연 나노 구조체 전극 제조방법 및 이를 이용한 염료감응형 태양전지 제조방법
WO2014200312A1 (ko) 유기태양전지 및 이의 제조방법
WO2010024644A2 (ko) 전기방사법에 의해 제조된 고분자 나노섬유를 포함하는 전해질 및 이를 이용한 고효율 염료감응형 태양전지 소자
WO2015041470A1 (ko) 태양전지
WO2011090300A2 (ko) 다양한 종류의 나노입자를 함유한 적층형 유기-무기 하이브리드 태양전지 및 그 제조방법
WO2010126314A2 (ko) 탄소나노튜브층을 포함하는 실리콘 태양전지
WO2017073974A1 (ko) 페로브스카이트 기반 광전변환소자의 재생방법
DE102006059369A1 (de) Fotoelement
WO2018012825A1 (ko) 유무기 복합 태양전지
WO2015167230A1 (ko) 태양전지 및 이의 제조방법
WO2012115392A2 (ko) 양면 구조를 가지는 태양전지 및 이의 제조방법
WO2015130054A1 (ko) 페로브스카이트계 염료를 이용한 고체형 박막 태양전지 및 제조 방법
WO2015167225A1 (ko) 유기태양전지 및 이의 제조방법
WO2014116026A1 (ko) 염료감응 태양전지용 그래핀 상대전극, 이의 제조방법 및 이를 포함하는 염료감응 태양전지
WO2015016542A1 (ko) 이중 소자 융합형 텐덤 태양 전지 및 그 제조 방법
WO2011078537A2 (ko) 유기태양전지의 p형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막, 이의 제조방법 및 이를 이용한 광전변환효율이 향상된 유기태양전지
WO2011145797A1 (ko) 탄소나노튜브가 침입된 금속산화물 복합막, 이의 제조방법 및 이를 이용한 광전변환효율 및 수명이 향상된 유기태양전지
WO2018016886A1 (ko) 유-무기 복합 태양전지용 적층체 제조방법 및 유-무기 복합 태양전지 제조방법
WO2018043910A1 (ko) 페로브 스카이트 태양전지 효율 향상을 위한 정공수송물질

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851843

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13695984

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10851843

Country of ref document: EP

Kind code of ref document: A1