WO2011142125A1 - プラズマ処理装置及び方法 - Google Patents

プラズマ処理装置及び方法 Download PDF

Info

Publication number
WO2011142125A1
WO2011142125A1 PCT/JP2011/002609 JP2011002609W WO2011142125A1 WO 2011142125 A1 WO2011142125 A1 WO 2011142125A1 JP 2011002609 W JP2011002609 W JP 2011002609W WO 2011142125 A1 WO2011142125 A1 WO 2011142125A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
gas
coil
chamber
plasma processing
Prior art date
Application number
PCT/JP2011/002609
Other languages
English (en)
French (fr)
Inventor
奥村 智洋
中山 一郎
齋藤 光央
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2011538783A priority Critical patent/JP4889834B2/ja
Priority to US13/582,557 priority patent/US8703613B2/en
Priority to CN201180012319.0A priority patent/CN102782817B/zh
Publication of WO2011142125A1 publication Critical patent/WO2011142125A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/30Plasma torches using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32366Localised processing
    • H01J37/32376Scanning across large workpieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32825Working under atmospheric pressure or higher
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Definitions

  • the present invention relates to a thermal plasma treatment in which a substrate is treated by irradiating the substrate with thermal plasma, or a low temperature plasma treatment in which the substrate is treated by simultaneously irradiating the substrate with plasma or a plasma and a reactive gas flow by a reactive gas.
  • the present invention relates to a plasma processing apparatus and method for performing plasma processing.
  • poly-Si polycrystalline silicon
  • the poly-Si TFT has high carrier mobility and can be manufactured on a transparent insulating substrate such as a glass substrate.
  • a poly-Si TFT is widely used as a switching element constituting a pixel circuit of a liquid crystal display device, a liquid crystal projector, an organic EL display device or the like, or as a circuit element of a liquid crystal driving driver. .
  • high temperature process As a method for producing a high-performance TFT on a glass substrate, there is a manufacturing method generally called “high temperature process”.
  • a process using a high temperature with a maximum temperature of about 1000 ° C. is generally called a “high temperature process”.
  • the characteristics of the high temperature process are that a relatively good quality polycrystalline silicon film can be formed by solid phase growth of silicon, a good quality gate insulating layer can be obtained by thermal oxidation of silicon, and a clean process. This is that an interface between the polycrystalline silicon and the gate insulating layer can be formed.
  • high-performance TFT with high mobility and high reliability can be stably manufactured due to these characteristics.
  • the high-temperature process is a process of crystallizing a silicon film by solid phase growth
  • a long-time heat treatment of about 48 hours is required at a temperature of about 600 ° C. This is a very long process, and in order to increase the process throughput, a large number of heat treatment furnaces are inevitably required, and it is difficult to reduce the cost.
  • quartz glass must be used as an insulating substrate with high heat resistance, so that the cost of the substrate is high and it is not suitable for large area.
  • a technique for lowering the maximum temperature in the process and producing a poly-Si TFT on an inexpensive large-area glass substrate is a technique called “low temperature process”.
  • a process for manufacturing poly-Si TFTs on a heat-resistant glass substrate that is relatively inexpensive in a temperature environment where the maximum temperature is approximately 600 ° C. or lower is generally called a “low-temperature process”.
  • a laser crystallization technique for crystallizing a silicon film using a pulse laser having an extremely short oscillation time is widely used.
  • Laser crystallization is a technology that uses the property that a silicon thin film on a substrate is melted instantaneously by irradiating a high-power pulsed laser beam and crystallizes in the process of solidification of the molten silicon thin film. is there.
  • laser crystallization technology generally uses a laser shaped in a line, and crystallization is performed by scanning this laser.
  • This line beam is shorter than the width of the substrate because of its limited laser output, and it is necessary to scan the laser several times in order to crystallize the entire surface of the substrate.
  • a line beam seam area is generated in the substrate, and an area that is scanned twice is formed.
  • This region is significantly different in crystallinity from the region crystallized by one scan. For this reason, the element characteristics of the two are greatly different, which causes a large variation in devices.
  • the laser crystallization apparatus has a problem that the apparatus configuration and running cost are high because the apparatus configuration is complicated and the cost of consumable parts is high. As a result, a TFT using a polysilicon film crystallized by a laser crystallization apparatus becomes an element with a high manufacturing cost.
  • thermo plasma jet crystallization method In order to overcome the problems such as the limitation of the substrate size and the high apparatus cost, a crystallization technique called “thermal plasma jet crystallization method” has been studied (for example, see Non-Patent Document 1). The technology is briefly described below. When a tungsten (W) cathode and a water-cooled copper (Cu) anode are opposed to each other and a DC voltage is applied, arc discharge occurs between the two electrodes. By flowing argon gas between these electrodes under atmospheric pressure, thermal plasma is ejected from the ejection holes vacated in the copper anode.
  • W tungsten
  • Cu water-cooled copper
  • the thermal plasma is a thermal equilibrium plasma, and is an ultra-high temperature heat source in which the temperatures of ions, electrons, neutral atoms, and the like are approximately equal and those temperatures are about 10,000K.
  • the thermal plasma can easily heat the object to be heated to a high temperature, and the substrate on which the a-Si film is deposited scans the front surface of the ultra-high temperature thermal plasma at a high speed. Can be crystallized.
  • the apparatus configuration is very simple and the crystallization process is performed under atmospheric pressure, it is not necessary to cover the apparatus with an expensive member such as a chamber, and the apparatus cost can be expected to be extremely low.
  • utilities required for crystallization are argon gas, electric power, and cooling water, which is a crystallization technique with low running cost.
  • FIG. 16 is a schematic diagram for explaining a semiconductor film crystallization method using this thermal plasma.
  • the thermal plasma generator 31 includes a cathode 32 and an anode 33 disposed opposite to the cathode 32 with a predetermined distance.
  • the cathode 32 is made of a conductor such as tungsten, for example.
  • the anode 33 is made of a conductor such as copper, for example. Further, the anode 33 is formed in a hollow shape, and is configured to be cooled through water through the hollow portion.
  • the anode 33 is provided with an ejection hole (nozzle) 34.
  • the thermal plasma 35 can be ejected from the ejection hole 34.
  • the “thermal plasma” is a thermal equilibrium plasma, and is an ultra-high temperature heat source in which the temperatures of ions, electrons, neutral atoms, and the like are approximately equal and those temperatures are about 10,000K.
  • Such thermal plasma can be used for heat treatment for crystallization of a semiconductor film.
  • a semiconductor film 37 for example, an amorphous silicon film
  • thermal plasma (thermal plasma jet) 35 is applied to the semiconductor film 37.
  • the thermal plasma 35 is applied to the semiconductor film 37 while relatively moving along a first axis (left and right direction in the illustrated example) parallel to the surface of the semiconductor film 37. That is, the thermal plasma 35 is applied to the semiconductor film 37 while scanning in the first axis direction.
  • “relatively move” means that the semiconductor film 37 (and the substrate 23 supporting it) and the thermal plasma 35 are relatively moved, and only one of them is moved and both are moved together. Any of the cases are included.
  • the semiconductor film 37 is heated by the high temperature of the thermal plasma 35 to obtain a crystallized semiconductor film 38 (polysilicon film in this example) (for example, see Patent Document 1). ).
  • FIG. 17 is a conceptual diagram showing the relationship between the depth from the outermost surface and the temperature. As shown in FIG. 17, by moving the thermal plasma 35 on the substrate 36 at a high speed, only the vicinity of the surface of the substrate 36 can be processed at a high temperature. After the thermal plasma 35 passes, the heated region is quickly cooled, so that the vicinity of the surface becomes high temperature for a very short time.
  • Such a thermal plasma is generally generated in a dotted region.
  • the thermal plasma is maintained by thermionic emission from the cathode 32, and thermionic emission becomes more active at a position where the plasma density is high. Therefore, positive feedback is applied, and the plasma density becomes higher. That is, arc discharge is concentrated on one point of the cathode, and thermal plasma is generated in a dotted region.
  • a method of broadening a plasma jet by simultaneously jetting a widening gas for widening the plasma jet from two locations in a direction intersecting the central axis of the outer nozzle onto a plasma jet ejected from the outer nozzle of the plasma torch Is disclosed (for example, see Patent Document 2).
  • a plasma nozzle is provided in which the mouth of the nozzle passage is inclined at a predetermined angle with respect to the axis of the nozzle passage, and a casing constituting the nozzle passage, or a part of the casing is provided.
  • a method of rotating the plasma nozzle around the longitudinal axis at high speed and moving the plasma nozzle along the workpiece is disclosed (for example, see Patent Document 3).
  • a rotating head having at least one eccentrically arranged plasma nozzle see, for example, Patent Document 4).
  • the low-temperature plasma processing apparatus is an apparatus capable of performing plasma processing such as etching or film formation by converting an etching gas or a gas for CVD (Chemical Vapor Deposition) into plasma.
  • JP 2008-53634 A Japanese Patent Application Laid-Open No. 08-118027 JP 2001-68298 A Special Table 2002-500818 Japanese Patent Laid-Open No. 04-284974 Special table 2009-545165 JP 2007-287454 A
  • the conventional technology for generating a large area of thermal plasma has not been effective for applications in which the vicinity of the surface of the substrate is subjected to high-temperature treatment for a very short time, such as semiconductor crystallization.
  • the thermal plasma is generated in a large area, and the heat plasma is essentially oscillated. Since the time is shorter than when scanning without rotating, the time for processing a large area is not particularly shortened. Further, for uniform processing, it is necessary to make the rotation speed sufficiently higher than the scanning speed, and it is inevitable that the nozzle configuration becomes complicated.
  • Patent Document 5 shown in the conventional example is a welding technique, and is not a configuration for uniformly processing a large area. Even if this is applied to a large area processing application, in this configuration, since a point-like arc vibrates along the strip electrode, plasma is generated uniformly when time averaged, but instantaneously non-uniform plasma is generated. Has occurred. Therefore, it cannot be applied to large area uniform processing.
  • Patent Document 6 shown in the conventional example is an inductively coupled high-frequency plasma torch, unlike the technique using DC arc discharge disclosed in Non-Patent Document 1 or Patent Document 1. It is a feature. Since it is an electrodeless discharge, it has the advantages of excellent thermal plasma stability (small time change) and less contamination (contamination) of electrode material into the substrate.
  • an object of the present invention is to provide a plasma processing apparatus and method capable of processing the entire desired region of the base material in a short time when the base material is subjected to low temperature plasma processing.
  • the present invention is configured as follows to achieve the above object.
  • the plasma processing apparatus of the present invention comprises a cylindrical chamber having a slit-shaped opening, A gas supply device for supplying gas into the chamber through a gas inlet; A solenoid coil having a coil extending direction parallel to the longitudinal direction of the opening and generating a high-frequency electromagnetic field in the chamber; A high frequency power source for supplying high frequency power to the coil; A substrate mounting table disposed facing the opening and mounting the substrate on the substrate mounting surface; A moving device that relatively moves the chamber and the substrate mounting table while maintaining a state in which the longitudinal direction of the opening is parallel to the substrate mounting surface of the substrate mounting table. It is characterized by that.
  • the moving device may relatively move the chamber and the substrate mounting table along a direction orthogonal to the longitudinal direction of the opening. If it does in this way, the whole desired to-be-processed area
  • the cylindrical chamber may be formed of a dielectric cylinder, and the coil may be provided outside the chamber.
  • the cylindrical chamber may be configured by a metal cylinder, and the coil may be provided inside the chamber.
  • the solenoid coil is not positioned between the plasma injection port and the substrate mounting table, so that there is an advantage that the uniformity of processing in the longitudinal direction is increased.
  • a plurality of gas inlets for supplying gas from the gas supply device to the chamber are provided in parallel to the longitudinal direction of the opening and on a surface facing the opening. You may comprise so that it may be provided. It is desirable.
  • Such a configuration has the advantage that the gas flow from the gas outlet toward the substrate mounting table becomes smooth and easily laminarized, enabling stable plasma treatment.
  • the linear portions at both ends of the coil are bent in a direction perpendicular to the extending direction of the coil, and the direction opposite to the opening of the cylindrical chamber, And you may comprise so that it may be drawn out of the said chamber.
  • Such a configuration makes it possible to realize an apparatus that is easy to assemble.
  • a space inside the chamber may be configured to be annular in a cross-sectional shape obtained by cutting the chamber along a plane perpendicular to the extending direction of the coil.
  • the space inside the chamber is configured to be U-shaped in a cross-sectional shape obtained by cutting the chamber along a plane perpendicular to the extending direction of the coil. Also good.
  • the gas flow from the gas ejection port toward the substrate mounting table becomes smooth and is easily made into a laminar flow, thereby enabling stable plasma processing.
  • the coil is housed in a space of a coil case of an insulating member, the coil is immersed in an insulating fluid in the space, and the insulating fluid is in the space.
  • the coil may be cooled by flowing.
  • the gas supply system supplied from the gas supply apparatus into the chamber via the gas inlet is composed of two or more systems for sheath gas and plasma gas. It may be made to become.
  • the gas type or gas flow rate is adjusted as appropriate by dividing it into plasma gas suitable for plasma generation and sheath gas that protects the inner wall of the cylindrical chamber or the wall surface of the insulating member housing the solenoid coil.
  • the number of turns per unit length of the coil may be configured so that the coil is not uniform in the extending direction, or the solenoid coil may be plural in the extending direction of the coil. It may be configured to be divided.
  • Such a configuration can improve the uniformity of processing in the longitudinal direction.
  • the plasma processing method is the substrate placed on the substrate placing surface of the substrate placing table from the slit-shaped opening formed in the chamber while supplying the gas into the cylindrical chamber.
  • a high-frequency electromagnetic field is generated in the chamber by ejecting a gas toward the solenoid valve and supplying high-frequency power to a solenoid coil having a coil extending direction parallel to the longitudinal direction of the opening, while maintaining the state in which the longitudinal direction of the opening and the substrate mounting surface of the substrate mounting table are parallel, the chamber and the substrate mounting table are moved relatively, This is a plasma processing method for heat-treating the surface.
  • the substrate may be processed in a state in which the wall forming the longitudinal direction of the cylindrical chamber is made of a dielectric and the solenoid coil is provided outside the cylindrical chamber, or
  • the base material may be processed in a state where the wall forming the longitudinal direction of the cylindrical chamber is made of metal and the solenoid coil is provided inside the cylindrical chamber.
  • the solenoid coil is not positioned between the plasma injection port and the substrate mounting table, so that there is an advantage that the uniformity of processing in the longitudinal direction is increased.
  • a plurality of gas inlets for supplying gas from the gas supply device to the chamber are provided in parallel to the longitudinal direction of the opening and on a surface facing the opening. It is desirable to treat the substrate in the provided state.
  • Such a configuration has the advantage that the gas flow from the gas outlet toward the substrate mounting table becomes smooth and easily laminarized, enabling stable plasma treatment.
  • the linear portions at both ends of the coil are bent in a direction perpendicular to the extending direction of the coil, and the direction opposite to the opening of the cylindrical chamber, And it is desirable to process a base material in the state pulled out of the said chamber.
  • the substrate is processed in a state in which the space inside the chamber is annular among the cross-sectional shape of the chamber cut by a plane perpendicular to the extending direction of the coil.
  • the space inside the chamber is U-shaped and the substrate is processed. Also good.
  • the gas flow from the gas ejection port toward the substrate mounting table becomes smooth and is easily made into a laminar flow, thereby enabling stable plasma processing.
  • the coil is housed in a space of a coil case of an insulating member, the coil is immersed in an insulating fluid in the space, and the insulating fluid is in the space. It is good also as a structure which processes a base material in the state by which the said coil is cooled by flowing.
  • the gas supply system supplied from the gas supply device into the chamber through the gas inlet is composed of two or more systems for sheath gas and plasma gas. It is desirable to treat the substrate in such a state.
  • the gas type or gas flow rate is appropriately adjusted by dividing the gas suitable for plasma generation into the gas that protects the inner wall of the cylindrical chamber or the wall of the insulating member that houses the solenoid coil.
  • the gas type or gas flow rate is appropriately adjusted by dividing the gas suitable for plasma generation into the gas that protects the inner wall of the cylindrical chamber or the wall of the insulating member that houses the solenoid coil.
  • the number of turns per unit length of the coil may be processed in a state where the coil is uneven in the extending direction, or the solenoid coil may be
  • the substrate may be processed in a state of being divided into a plurality of pieces in the extending direction of the coil.
  • Such a configuration can improve the uniformity of processing in the longitudinal direction.
  • the entire desired region to be treated of the base material can be processed in a short time.
  • FIG. 1A is a cross-sectional view showing the configuration of the plasma processing apparatus in the first embodiment of the present invention
  • FIG. 1B is a bottom view of the plasma processing apparatus showing a relationship between the plasma processing apparatus according to the first embodiment of the present invention, a square base material, and a base material mounting table
  • FIG. 1C is a bottom view of the plasma processing apparatus showing a relationship between the plasma processing apparatus according to the first embodiment of the present invention, a circular base material, and a base material mounting table
  • 2A is a cutaway end view of the AA line in FIG.
  • FIG. 1A showing the configuration of the plasma processing apparatus in the first embodiment of the present invention
  • FIG. 2B is a perspective view showing the moving device of the plasma processing apparatus in the first embodiment of the present invention
  • FIG. 3 is a cross-sectional view showing the configuration of the plasma processing apparatus in the first embodiment of the present invention
  • 4 is a cross-sectional end view taken along the line BB of FIG. 3, showing the configuration of the plasma processing apparatus in the first embodiment of the present invention.
  • FIG. 5A is a cross-sectional view showing the configuration of the plasma processing apparatus in the second embodiment of the present invention
  • FIG. 5B is a bottom view of the plasma processing apparatus showing the relationship between the plasma processing apparatus, the base material, and the base material mounting table in the second embodiment of the present invention of FIG. 5A;
  • FIG. 5A is a cross-sectional view showing the configuration of the plasma processing apparatus in the second embodiment of the present invention
  • FIG. 5B is a bottom view of the plasma processing apparatus showing the relationship between the plasma processing apparatus, the base material,
  • FIG. 6 is a cross-sectional end view taken along the line CC of FIG. 5A, showing the configuration of the plasma processing apparatus in the second embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing the configuration of the plasma processing apparatus in the third embodiment of the present invention.
  • FIG. 8 is a cross-sectional end view taken along the line DD of FIG. 7, showing the configuration of the plasma processing apparatus in the third embodiment of the present invention.
  • FIG. 9A is a cross-sectional view showing the configuration of the plasma processing apparatus in the fourth embodiment of the present invention
  • FIG. 9B is a bottom view of the plasma processing apparatus showing a relationship between the plasma processing apparatus, the base material, and the base material mounting table in the fourth embodiment of the present invention of FIG. 9A;
  • FIG. 9A is a cross-sectional view showing the configuration of the plasma processing apparatus, the base material, and the base material mounting table in the fourth embodiment of the present invention of FIG. 9A;
  • FIG. 10A is a cross-sectional end view taken along line EE of FIG. 9A, showing the configuration of the plasma processing apparatus in the fourth embodiment of the present invention.
  • FIG. 10B is a bottom view of the plasma processing apparatus showing a relationship between the plasma processing apparatus, the base material, and the base material mounting table in the fourth embodiment of the present invention of FIG. 9A;
  • FIG. 11 is a cross-sectional view showing the configuration of the plasma processing apparatus in the fifth embodiment of the present invention.
  • FIG. 12 is a cross-sectional view showing the configuration of the plasma processing apparatus in the fifth embodiment of the present invention.
  • FIG. 13 is sectional drawing which shows the structure of the plasma processing apparatus in 6th Embodiment of this invention, FIG.
  • FIG. 14 is a cross-sectional view showing the configuration of the plasma processing apparatus in the seventh embodiment of the present invention.
  • FIG. 15A is a cross-sectional view showing the configuration of the plasma processing apparatus in the ninth and eighth embodiments of the present invention.
  • FIG. 15B shows multiple helical coils that can be used in place of the helical solenoid coil in the various embodiments of the present invention;
  • FIG. 16 is a schematic diagram for explaining a conventional method for crystallizing a semiconductor film using thermal plasma
  • FIG. 17 is a conceptual diagram showing the relationship between the depth from the outermost surface and the temperature in the conventional example.
  • FIG. 18 is a cross-sectional view showing the configuration of the plasma processing apparatus in the ninth embodiment of the present invention.
  • FIG. 15A is a cross-sectional view showing the configuration of the plasma processing apparatus in the ninth and eighth embodiments of the present invention.
  • FIG. 15B shows multiple helical coils that can be used in place of the helical solenoid coil in the various embodiments of
  • FIG. 19A is a cross-sectional view showing a configuration of a plasma processing apparatus in a first modification of the embodiment of the present invention.
  • FIG. 19B is a cross-sectional view showing the configuration of the plasma processing apparatus in the first modification of the embodiment of the present invention;
  • FIG. 20 is a perspective view showing a configuration of a plasma processing apparatus in a first modification of the embodiment of the present invention.
  • FIG. 21 is a cross-sectional view showing a configuration of a plasma processing apparatus in a second modification of the embodiment of the present invention.
  • FIG. 22 is a cross-sectional view showing a configuration of a plasma processing apparatus in a third modification of the embodiment of the present invention.
  • FIG. 19B is a cross-sectional view showing the configuration of the plasma processing apparatus in the first modification of the embodiment of the present invention.
  • FIG. 20 is a perspective view showing a configuration of a plasma processing apparatus in a first modification of the embodiment of the present invention.
  • FIG. 21 is a cross-sectional view
  • FIG. 23 is a perspective view showing a configuration of a plasma processing apparatus in a fourth modification of the embodiment of the present invention.
  • FIG. 24 is a cross-sectional view showing a configuration of a plasma processing apparatus in a fifth modification of the embodiment of the present invention.
  • FIG. 25 is a perspective view showing a configuration of a plasma processing apparatus in a sixth modification of the embodiment of the present invention.
  • FIG. 26 is a cross-sectional view showing the configuration of the plasma processing apparatus in the seventh modification example of the embodiment of the present invention.
  • FIG. 1A shows the configuration of the thermal plasma processing apparatus in the first embodiment of the present invention.
  • FIG. 1B is a bottom view of the plasma processing apparatus showing the relationship between the plasma processing apparatus, the square base material 2 and the base material mounting table 1 in the first embodiment of the present invention.
  • 1A and 1B are cut in a plane parallel to the longitudinal direction of the inductively coupled plasma torch unit 3 and including the central axis 10 of the solenoid coil 9 and perpendicular to the surface of the substrate 2. It is sectional drawing.
  • FIG. 2A is an end view of the cut section taken along the broken line AA shown in FIG. 1A.
  • the base material 2 is described as a quadrangle, but as shown in FIG. 1C, the plasma processing apparatus according to the first embodiment of the present invention is a circular base material 2A (the base material mounting table 1 is (Not shown).
  • An example of the base material 2 is a semiconductor substrate.
  • the inductively coupled plasma torch unit 3 includes a cylindrical chamber 7, a gas outlet 8 as an example of a gas inlet, and a solenoid coil 9.
  • the cylindrical chamber 7 is provided with a rectangular slit-shaped plasma outlet 4 (sometimes referred to as an “opening”) at the lower end surface, and a cylinder 5 made of an insulating material, and the cylinder 5. It is comprised with the lid
  • the gas ejection port 8 is constituted by a gas ejection pipe inserted into the cylindrical chamber 7 from the center of each lid 6 and supplies gas from the gas supply device 40 into the cylindrical chamber 7 at a constant flow rate.
  • the solenoid coil 9 is disposed outside the cylinder 5 concentrically with the central axis 10 of the cylinder 5, and supplies high-frequency power from a high-frequency power source 41 to generate a high-frequency electromagnetic field in the cylindrical chamber 7.
  • the substrate mounting table 1 (or the substrate 2 mounted on the substrate mounting surface 1a of the substrate mounting table 1) is disposed so as to face the plasma ejection port 4.
  • high-frequency power is supplied from the high-frequency power source 41 to the solenoid coil 9 while supplying gas from the gas outlet 8 into the cylindrical chamber 7 and jetting the gas from the plasma outlet 4 toward the substrate 2.
  • plasma P is generated in the cylindrical chamber 7, and the substrate 2 is irradiated with the plasma P from the plasma outlet 4.
  • the direction of the central axis 10 of the solenoid coil 9, the longitudinal direction of the plasma outlet 4 (opening), and the substrate mounting surface 1 a (the surface of the substrate 2) of the substrate mounting table 1 are arranged in parallel. ing.
  • the direction of the central axis 10 of the solenoid coil 9 means the direction in which the solenoid coil 9 extends (coil extending direction).
  • the direction intersecting with the longitudinal direction of the plasma ejection port 4 (opening) for example, from the viewpoint of improving the production efficiency, the direction perpendicular (orthogonal) to the longitudinal direction of the plasma ejection port 4 (opening).
  • the plasma torch unit 3 including the cylindrical chamber 7 and the substrate mounting table 1 are relatively moved at a uniform speed by the moving device 42 (in the direction perpendicular to the paper surface in FIG. 1A and in the direction of the arrow in FIG. 2A).
  • the surface of the substrate can be heat-treated. In this way, the surface vicinity 11 of the substrate 2 can be uniformly heat-treated.
  • FIG. 2B shows an example of a moving device 42 that moves the plasma torch unit 3 at a uniform speed relative to the base material 2 on the fixed base table 1.
  • the moving device 42 includes a bracket 42b to which a plasma torch unit support arm 42a that supports the plasma torch unit 3 at both ends is fixed, and a rail that extends along the moving direction (coil extending direction) of the moving device 42. 42c and the bracket 42b are fixed, and the movement drive motor 42d provided as an example of the movement drive device is rotated forward and backward to move the bracket 42b along the rail 42c to which the screw shaft engaged with the motor 42d is fixed.
  • the moving stage 42e is moved at a uniform speed.
  • the moving drive motor 42d rotates forward to move the moving stage 42e forward or backward along the rail 42c at a uniform speed, via the bracket 42b and the pair of support arms 42a.
  • the plasma torch unit 3 can be moved relative to the substrate 2.
  • the plasma processing can be performed while the plasma torch unit 33 is moved on the substrate 2 at a uniform speed by the moving device 42.
  • the moving direction When moving the plasma torch unit 33 on the substrate 2 by the moving device 42, the moving direction may be one direction or may be reciprocated.
  • the moving device 42 can be applied to other embodiments or modifications described later.
  • the control device 43 controls the operations of the gas supply device 40, the high-frequency power source 41, the moving device 42, and the like so as to perform desired plasma processing.
  • the solenoid coil 9 is a spiral copper tube disposed coaxially with the cylinder 5 and outside the cylinder 5, and is cooled by flowing cooling water therein.
  • the surface of the solenoid coil 9 is covered with an insulating film in order to prevent copper from being mixed into the plasma and to suppress arc discharge.
  • water cooling pipes are also provided inside the members constituting the cylinder 5 and the inside of the lid 6, respectively, and cooling the cylinder 5 and the lid 6 by flowing cooling water through the water cooling pipes, and the heat from the plasma P Damage has been reduced.
  • a water-cooled pipe may be constituted by a gap between the two cylindrical members.
  • the wall that forms the longitudinal direction of the cylindrical chamber 7 is formed of a dielectric (cylinder 5), the solenoid coil 9 is provided outside the cylindrical chamber 7, and the plasma injection port 4 and the substrate are mounted. A part of the solenoid coil 9 is positioned between the base 1 and the mounting base 1.
  • the length of the plasma injection port 4 in the longitudinal direction is larger than the width of the base material 2, one-time scanning (moving the plasma torch unit 3 and the base material mounting table 1 relatively)
  • the entire surface vicinity 11 of the substrate 2 can be heat-treated.
  • gas outlets 8 for supplying gas into the cylindrical chamber 7 are provided on both the two lids 6 on a surface perpendicular to the central axis direction (extending direction) of the solenoid coil 9.
  • the cooling water is allowed to flow inside the solenoid coil 9 and the cooling water is also allowed to flow into the water cooling pipes inside the cylinder 5 and the lid 6, respectively.
  • a high frequency power of 13.56 MHz is supplied to the solenoid coil 9 from the high frequency power supply 41 while Ar or Ar + H 2 gas is supplied from the gas outlet 8 and gas is jetted from the plasma outlet 4 toward the substrate 2.
  • the plasma P is generated in the cylindrical chamber 7, and the substrate 2 is irradiated with the plasma P from the plasma outlet 4 and scanned, whereby heat treatment such as crystallization of the semiconductor film can be performed.
  • the direction of the central axis 10 of the solenoid coil 9, the longitudinal direction of the plasma ejection port 4, and the substrate mounting surface 1 a (the surface of the substrate 2) of the substrate mounting table 1 are arranged in parallel. Since the cylindrical chamber 7 and the substrate mounting table 1 are moved relative to each other in a direction perpendicular to the longitudinal direction of the plasma outlet 4, the length of the plasma P to be generated and the processing length of the substrate 2 are maintained. Can be configured to be substantially equal. If comprised in this way, if the cylindrical chamber 7 and the base material mounting base 1 are relatively moved once, since the heat processing of the base material 2 will be complete
  • the width of the cross section obtained by cutting the cylindrical chamber 7 along a plane perpendicular to the central axis thereof is the width of the plasma ejection port 4 (FIG. 2A and FIG. It is only necessary to be a little larger than the length of the gap in FIG. That is, the volume of the plasma P to be generated can be made extremely small as compared with the conventional case. As a result, power efficiency is dramatically increased.
  • the reason why the direction of the central axis 10 of the solenoid coil 9 and the longitudinal direction of the plasma outlet 4 are arranged in parallel is to ensure the uniformity of the thermal plasma in the longitudinal direction. . If this parallel relationship is greatly broken, the thermal plasma becomes non-uniform in the longitudinal direction, which is not preferable.
  • the direction of the central axis 10 of the solenoid coil 9, the longitudinal direction of the plasma ejection port 4, and the substrate mounting surface 1 a (the surface of the substrate 2) of the substrate mounting table 1 are arranged in parallel.
  • the purpose of maintaining is to increase production efficiency. Therefore, the parallel relationship among the direction of the central axis 10 of the solenoid coil 9, the longitudinal direction of the plasma ejection port 4, and the substrate mounting surface 1 a (the surface of the substrate 2) of the substrate mounting table 1 is the present embodiment. In addition, it is preferable to maintain not only in other embodiments.
  • the arrangement direction of the gas outlets 8 for supplying gas into the cylindrical chamber 7 is parallel to the direction of the central axis 10 of the solenoid coil 9 (in other words, the gas outlet 8
  • the gas outlet 8 It is also possible to adopt a configuration in which the gas is ejected from the surface in a direction perpendicular to the direction of the central axis 10 of the solenoid coil 9 and on the surface facing the plasma ejection port 4 (opening). In this configuration, the direction of gas flow in the cylindrical chamber 7 is perpendicular to the central axis 10 of the solenoid coil 9.
  • FIG. 4 is a sectional end view taken along the broken line BB shown in FIG.
  • a window made of an insulator material is provided in a cylinder made of a metal material.
  • the structure constituting the cylinder 5 may be used. For example, a plurality of strip windows parallel to the central axis 10 of the solenoid coil 9 can generate plasma without reducing the transmission efficiency of the high frequency electromagnetic field.
  • the width of the plasma nozzle 4 is 1 mm and the moving speed is 1 to several mm / sec.
  • the entire desired region to be treated of the base material 2 can be processed in a short time.
  • FIG. 5A shows the configuration of the thermal plasma processing apparatus in the second embodiment of the present invention, which is parallel to the longitudinal direction of the inductively coupled plasma torch unit 3A and includes the central axis 10A of the solenoid coil 9A. And it is sectional drawing cut by the surface perpendicular
  • FIG. 5B is a bottom view of the plasma processing apparatus showing the relationship between the plasma processing apparatus, the base material, and the base material mounting table in the second embodiment of the present invention shown in FIG. 5A. 6 is an end view of the cut portion taken along the broken line CC shown in FIG. 5A.
  • the inductively coupled plasma torch unit 3A includes a cylindrical chamber 7A, a gas outlet 8A as an example of a gas inlet, and a solenoid coil 9A.
  • the cylindrical chamber 7A is a cylinder in which a rectangular slit-shaped plasma outlet 4A (opening) is provided at the center of the lower end surface, is made of a metal material, has a quadrangular prism shape, and has a circular space inside. 12 and a lid 6A made of a metal material and closing both ends of the cylinder 12.
  • the gas ejection port 8A is constituted by a gas ejection pipe inserted into the cylindrical chamber 7A from the top of each lid 6A, and supplies gas into the cylindrical chamber 7A.
  • the solenoid coil 9A is disposed concentrically with the central axis 10A of the cylinder 12 in a circular space inside the cylinder 12, and supplies high-frequency power from the high-frequency power source 41 to generate a high-frequency electromagnetic field in the cylindrical chamber 7A.
  • a bush 13 made of an insulating material is inserted in the center of the two lids 6A in the axial direction, and is made of a conductive material such as copper at both ends of the solenoid coil 9A for power supply to the solenoid coil 9A.
  • the linear portion 14 is drawn out of the cylindrical chamber 7A.
  • Plasma P is generated in the cylindrical chamber 7, and the substrate 2 is irradiated with the plasma P from the plasma jet outlet 4A.
  • the direction of the central axis 10A of the solenoid coil 9A, the longitudinal direction of the plasma outlet 4A (opening), and the substrate mounting surface 1a (the surface of the substrate 2) of the substrate mounting table 1 are arranged in parallel. ing.
  • the direction of the central axis 10 of the solenoid coil 9A means the direction in which the solenoid coil 9A extends (coil extending direction).
  • the direction intersecting with the longitudinal direction of the plasma jet outlet 4A (opening) for example, from the viewpoint of improving the production efficiency, the direction perpendicular (orthogonal) to the longitudinal direction of the plasma jet outlet 4 (opening).
  • the plasma torch unit 3 ⁇ / b> A including the cylindrical chamber 7 ⁇ / b> A and the substrate mounting table 1 are moved while being relatively moved by the moving device 42 in the direction perpendicular to the paper surface in FIG. 5A and the direction of the arrow in FIG. 6.
  • the material surface can be heat-treated. In this way, the surface vicinity 11 of the substrate 2 can be uniformly heat-treated.
  • the solenoid coil 9A is a spiral copper tube that is coaxial with the cylinder 12 and disposed in a circular space inside the cylinder 12, and is cooled by flowing cooling water therein.
  • the surface of the solenoid coil 9A is covered with an insulating film.
  • water cooling pipes are also provided inside the members constituting the cylinder 12 and the inside of the lid 6A, respectively, and cooling the cylinder 12 and the lid 6A by flowing the cooling water into the water cooling pipe, and the heat from the plasma P Damage has been reduced.
  • the longitudinal wall of the cylindrical chamber 7A is made of metal (cylinder 12), the solenoid coil 9A is provided inside the cylindrical chamber 7A, and the plasma injection port 4A and the substrate mounting table are provided. Therefore, there is an advantage that the uniformity of processing in the longitudinal direction is higher than that of the configuration of the first embodiment.
  • the length of the plasma injection port 4A in the longitudinal direction is larger than the width of the base material 2, one-time scanning (moving the plasma torch unit 3A and the base material mounting table 1 relatively)
  • the entire surface vicinity 11 of the substrate 2 can be heat-treated.
  • gas outlets 8A for supplying gas into the cylindrical chamber 7A are provided on both surfaces of the two lids 6A on a surface perpendicular to the central axis direction (extending direction) of the solenoid coil 9A.
  • the high-frequency power source 41 is jetted from the plasma outlet 4A toward the substrate 2.
  • high frequency power of 13.56 MHz to the solenoid coil 9A, plasma P is generated in the cylindrical chamber 7A, and the substrate 2 is irradiated with the plasma P from the plasma outlet 4A and scanned.
  • Heat treatment such as crystallization of the semiconductor film can be performed.
  • the solenoid coil 9 is coupled to the plasma via the cylinder 5 made of an insulating material having a cooling water flow path inside.
  • the solenoid coil 9A is coupled to the plasma in such an arrangement that the solenoid coil 9A is in direct contact with the plasma, so that there is an advantage that the power efficiency is superior to the first embodiment.
  • FIG. 7 shows the configuration of the thermal plasma processing apparatus in the third embodiment of the present invention, which is parallel to the longitudinal direction of the inductively coupled plasma torch unit 3B and includes the central axis 10B of the solenoid coil 9B. And it is sectional drawing cut by the surface perpendicular
  • FIG. FIG. 8 is an end view of the cut section taken along the broken line DD shown in FIG.
  • the inductively coupled plasma torch unit 3B is roughly constituted by a cylindrical chamber 7B and a coil case 16 of an insulating member having a downward convex shape and a semicircular tip.
  • the cylindrical chamber 7 ⁇ / b> B includes a base block 15 and an elongated ring 17.
  • the base block 15 is a rectangular columnar metal material (for example, brass) having a rectangular slit-shaped plasma outlet 4B (opening) provided at the lower end surface and having a concave portion 15a that opens at the upper surface and is curved downward. ).
  • a plasma outlet 4B (opening) is formed at the lower end surface of the recess 15a.
  • the elongated ring 17 is a rectangular frame-shaped member disposed between the base block 15 and the coil case 16, and has a large number of sheath gas outlets 18 and a large number of plasma gas jets for supplying gas into the cylindrical chamber 7B.
  • the outlet 19 is formed so as to be discharged downward, that is, toward the substrate mounting table 1.
  • Each of the sheath gas jet port 18 and the plasma gas jet port 19 is constituted by a gas jet pipe inserted into the elongated ring 17, and the gas from the gas supply device 40 is independently supplied at a constant flow rate into the cylindrical chamber 7 ⁇ / b> B. Supply.
  • the sheath gas outlet 18 and the plasma gas outlet 19 for example, a plurality of openings are arranged in parallel with the coil extending direction, or one or a plurality of slit-shaped openings are respectively extended in the coil. It is preferable to arrange parallel to the direction.
  • the sheath gas supplied from the gas supply device 40 through the sheath gas outlet 18 at a constant flow rate is supplied to protect the wall surface of the insulating member (coil case 16) housing the solenoid coil 9B, and Ar + H 2 gas or the like is used.
  • the plasma gas supplied at a constant flow rate from the gas supply device 40 through the plasma gas outlet 19 is supplied because it is necessary for plasma generation, and Ar gas or the like is used.
  • the coil case 16 is made of an insulating material (for example, a dielectric (ceramic, quartz, etc.)) with a built-in solenoid coil 9B.
  • the coil case 16 is inserted into the recess 15 a of the base block 15 from above, and forms a space 45 having a U-shaped cross section between the bottom surface of the recess 15 a and the coil case 16.
  • the solenoid coil 9 generates a high-frequency electromagnetic field in the cylindrical chamber 7.
  • the coil case 16 is made of a dielectric, for example.
  • the linear portions 14B at both ends of the solenoid coil 9B are bent in a direction perpendicular to the direction of the central axis 10B of the solenoid coil 9B, and the direction opposite to the plasma outlet 4B To the outside of the coil case 16.
  • the coil case 16, the base block 15, and the ring 17 can be assembled in a state in which the solenoid coil 9B is pre-installed in the coil case 16, so that an apparatus that can be easily assembled can be realized.
  • a solenoid is supplied from a high-frequency power supply 41 while gas is jetted from the plasma jet port 4B toward the substrate 2 while gas is supplied from the gas jet port 18 and 19 from the gas feed port 40 into the cylindrical chamber 7B at a constant flow rate.
  • the plasma P is generated in the space 45 of the cylindrical chamber 7B, and the substrate 2 is irradiated with the plasma P from the plasma ejection port 4B.
  • the direction of the central axis 10B of the solenoid coil 9B, the longitudinal direction of the plasma ejection port 4B (opening), and the substrate mounting surface 1a of the substrate mounting table 1 are arranged in parallel.
  • a plasma torch unit 3B including a cylindrical chamber 7B and a base material in a direction perpendicular to the longitudinal direction of the plasma outlet 4B (opening) (perpendicular direction penetrating the paper surface in FIG. 7, direction of arrow in FIG. 8)
  • the substrate surface can be heat-treated while being moved relative to the mounting table 1 by the moving device 42. In this way, the surface vicinity 11 of the substrate 2 can be uniformly heat-treated.
  • the solenoid coil 9B is a spiral copper tube and is cooled by flowing cooling water therein. Thereby, cooling of the coil case 16 is also realized. Further, water cooling pipes are also provided inside the base block 15 and the ring 17, respectively, and cooling the base block 15 and the ring 17 by flowing the cooling water in the water cooling pipe, thereby causing thermal damage from the plasma P. Reduced.
  • the longitudinal wall of the cylindrical chamber 7B is made of metal (base block 15 and ring 17), the solenoid coil 9B is provided inside the cylindrical chamber 7B, and the plasma injection port 4B and There is no obstacle between the substrate mounting table 1 and the processing uniformity in the longitudinal direction is increased.
  • the length of the plasma injection port 4B in the longitudinal direction is larger than the width of the base material 2, one-time scanning (moving the plasma torch unit 3B and the base material mounting table 1 relatively)
  • the entire surface vicinity 11 of the substrate 2 can be heat-treated.
  • Gas jets 18 and 19 for supplying gas into the cylindrical chamber 7B at a constant flow rate are provided on a surface parallel to the direction of the central axis 10B of the solenoid coil 9B and facing the plasma jet 4B. Yes.
  • the direction of gas flow in the cylindrical chamber 7B is perpendicular to the central axis 10B of the solenoid coil 9B.
  • a plurality of shield gas injection ports 20 are provided on the surface of the base block 15 facing the substrate mounting surface 1a of the substrate mounting table 1 so as to sandwich the plasma injection port 4B. ing.
  • a plurality of shield gases are provided to the plasma jet port 4B along a direction perpendicular to the longitudinal direction of the plasma jet port 4B (opening) (a vertical direction penetrating the paper surface in FIG. 7, the direction of the arrow in FIG. 8). It is preferable that the injection ports 20 are arranged at equal intervals (in other words, symmetrically with respect to the central axis in the longitudinal direction of the plasma injection port 4B).
  • the shield gas supplied at a constant flow rate from the gas supply device 40B controlled by the control device 43 through the plurality of shield gas injection ports 20 is a gas that is unnecessary or adversely affects processing, such as oxygen or carbon dioxide in the atmosphere. N 2 gas or the like is used to reduce contamination of the plasma irradiation surface.
  • the shield gas injection port 20 has, for example, a plurality of openings arranged in parallel with the coil extending direction (see FIG. 9B), or one or a plurality of slit-shaped openings, respectively. It is preferable to arrange parallel to the direction.
  • the gas type is divided into a plasma gas suitable for plasma generation and a sheath gas that protects the inner wall of the cylindrical chamber 7B or the wall surface of the insulating member (coil case 16) housing the solenoid coil 9B.
  • a plasma gas suitable for plasma generation and a sheath gas that protects the inner wall of the cylindrical chamber 7B or the wall surface of the insulating member (coil case 16) housing the solenoid coil 9B.
  • shield gas is separately supplied from the plurality of shield gas injection ports 20 to eliminate oxygen, carbon dioxide, etc. in the atmosphere, Alternatively, it is possible to reduce the mixing of harmful gas into the plasma irradiation surface.
  • the solenoid coil 9B is coupled to the plasma in an arrangement close to the plasma, there is an advantage that the power efficiency is excellent. Further, since the solenoid coil 9B is housed in the coil case 16, the plasma P and the solenoid coil 9B are not in contact with each other, so that copper or arc discharge in the plasma P hardly occurs.
  • the longitudinal section of the space 45 inside the cylindrical chamber 7B in a cross section (FIG. 8) obtained by cutting the cylindrical chamber 7B along a plane perpendicular to the central axis 10B of the solenoid coil 9B has a U-shape.
  • the flow of gas from the gas ejection ports 18 and 19 toward the substrate mounting table 1 side becomes extremely smooth and is easy to be laminarized, and extremely stable plasma processing is possible.
  • FIG. 9A shows the configuration of the thermal plasma processing apparatus in the fourth embodiment of the present invention, which is parallel to the longitudinal direction of the inductively coupled plasma torch unit 3C and includes the central axis 10C of the solenoid coil 9C. And it is sectional drawing cut by the surface perpendicular
  • FIG. 9B is a bottom view of the plasma processing apparatus showing the relationship between the plasma processing apparatus, the base material, and the base material mounting table in the fourth embodiment of the present invention of FIG. 9A, and shows the arrangement of the shield gas injection ports. It is. 10A is an end view of the cut section taken along the broken line EE shown in FIG. 9A.
  • 10B is a bottom view of the plasma processing apparatus showing the relationship between the plasma processing apparatus, the base material, and the base material mounting table in the fourth embodiment of the present invention of FIG. 9A, and the illustration of the shield gas injection port 20 is omitted. Instead, it is a diagram showing the arrangement relationship between the sheath gas outlet 18 and the plasma gas outlet 19.
  • the coil case 16 has a space 16Ca in which the solenoid coil 9C is accommodated, and the space 16Ca is filled with the insulating fluid 21. Therefore, the solenoid coil 9C is immersed in the insulating fluid 21, and the insulating fluid 21 circulates by the chiller and flows through the coil case 16C, whereby the solenoid coil 9C and the coil case 16C are cooled.
  • both the solenoid coil 9C and the coil case 16C as an insulating member storing the solenoid coil 9C can be effectively cooled. Further, since it is not necessary to use a tube-shaped pipe as the solenoid coil 9C, there is an advantage that molding is easy.
  • As the insulating fluid 21 city water, pure water, reduced water, insulating oil, or the like can be used.
  • FIG. 11 and 12 show the configuration of the thermal plasma processing apparatus in the fifth embodiment of the present invention.
  • it is an end view of a cut portion taken along a plane perpendicular to the central axis of the solenoid coil 9D.
  • An end view of the cut portion taken along a plane parallel to the longitudinal direction of the inductively coupled plasma torch unit 3D and including the central axis of the solenoid coil 9D and perpendicular to the substrate 2 is shown in the third embodiment.
  • 7 and FIG. 11 and FIG. 12 are end views of the cut section taken along the broken line DD shown in FIG.
  • the base block 15 ⁇ / b> D is made of a quadrangular columnar metal material (for example, brass) having a recess 15 ⁇ / b> Da that is open on the upper surface and is recessed downward.
  • the inner shape of the concave portion 15Da of the base block 15D is configured by a pair of side walls 15Db that are straight downward from the upper part to the central part in the longitudinal cross-sectional shape, and is arranged at the center of the lower end surface from the central part toward the lower end. It is comprised by a pair of inclined surface 15Dc so that it may become so narrow that it is near the slit-shaped plasma jet nozzle 4B.
  • the inner cross section of the base block 15 has an arc shape.
  • a pair of straight lines downward from the top to the center is provided in the base block 15 of the fifth embodiment.
  • a side wall 15Db is formed, and a pair of inclined surfaces 15Dc are formed in a triangular shape so as to become narrower toward the lower end surface from the center portion toward the lower end surface as it is closer to the slit-like plasma jet port 4B. ing.
  • the flow of gas from the gas ejection ports 18 and 19 toward the substrate mounting table 1 side becomes smoother and easier to be laminarized, and extremely stable plasma processing is possible.
  • the internal shape of the base block 15 made of a metal material is configured so as to become narrower as it approaches the slit-like plasma ejection port 4 as described above, and in addition, the coil case 16D.
  • the outer shape is a downward convex shape and the tip is formed in a triangular shape so as to become narrower as it is closer to the plasma outlet 4.
  • the outer cross section of the coil case 16 is arcuate, but in the fifth embodiment, it is triangular as shown in FIG.
  • the lower portion of the space 45D formed between the bottom surface of the concave portion 15Da of the base block 15 and the coil case 16D has a V-shaped cross section, and the gas outlets 18 and 19 move toward the substrate mounting table 1 side.
  • the gas flow toward it becomes even smoother and easier to laminarize, enabling extremely stable plasma processing.
  • the solenoid coil 9D may have a triangular prism shape instead of a cylindrical spiral shape.
  • FIG. 13 shows the configuration of the thermal plasma processing apparatus in the sixth embodiment of the present invention, which is parallel to the longitudinal direction of the inductively coupled plasma torch unit 3E and includes the central axis 10 of the solenoid coil 9E. And it is sectional drawing cut by the surface perpendicular
  • FIG. 13 shows the configuration of a thermal plasma processing apparatus when the width of the base material 2 to be processed is large (for example, the width or diameter is 100 mm or more).
  • the difference from FIG. 7 in the third embodiment is that the inductively coupled plasma torch unit 3E is elongated in the longitudinal direction, the length of the solenoid coil 9E is increased, and the number of turns of the solenoid coil 9E is increased. . Since the other configuration is the same as that of the third embodiment, the description thereof is omitted here.
  • FIG. 14 shows the configuration of a thermal plasma processing apparatus in the seventh embodiment of the present invention, which is parallel to the longitudinal direction of the inductively coupled plasma torch unit 3F, includes the central axis 10 of the solenoid coil 9F, and FIG. 3 is a cross-sectional view taken along a plane perpendicular to the substrate 2.
  • FIG. 14 shows the configuration of a thermal plasma processing apparatus when the width of the base material 2 to be processed is large (for example, the width or diameter is 100 mm or more).
  • the difference from FIG. 13 in the sixth embodiment is how to wind the solenoid coil 9F.
  • the number of turns per unit length of both end portions 9Fb is larger than the number of turns per unit length of the central portion 9Fa of the solenoid coil 9F. That is, the number of turns per unit length of the solenoid coil 9F is intentionally non-uniform in the longitudinal direction of the solenoid coil 9F.
  • both end portions 9Fb are configured to be denser than the central portion 9Fa of the solenoid coil 9F.
  • the torch unit 3F has a structure in which the plasma density in the cylindrical chamber 7 tends to be low at both ends in the longitudinal direction. This is because plasma is lost to the inner wall surface of the base block 15 at both ends. Therefore, in the seventh embodiment, by winding the solenoid coil 9F so that the both end portions 9Fb are denser than the central portion 9Fa of the solenoid coil 9F, the plasma generation amount at both end portions is increased, and the longitudinal processing is performed. Improves uniformity.
  • the winding method of the solenoid coil 9F (how to make the number of windings per unit length non-uniform in the longitudinal direction) can be appropriately selected depending on the size of the cylindrical chamber 7, the type of gas used, and the like. . Since the other configuration is the same as that of the sixth embodiment, the description thereof is omitted here.
  • FIG. 15A shows the configuration of the thermal plasma processing apparatus according to the ninth embodiment and the eighth embodiment of the present invention.
  • the thermal plasma processing apparatus is parallel to the longitudinal direction of the inductively coupled plasma torch unit 3G and includes solenoid coils 22, 23, 24 is a cross-sectional view taken along a plane that includes 24 central axes 10 and is perpendicular to the substrate 2.
  • FIG. 15A shows the configuration of the thermal plasma processing apparatus according to the ninth embodiment and the eighth embodiment of the present invention.
  • the thermal plasma processing apparatus is parallel to the longitudinal direction of the inductively coupled plasma torch unit 3G and includes solenoid coils 22, 23, 24 is a cross-sectional view taken along a plane that includes 24 central axes 10 and is perpendicular to the substrate 2.
  • FIG. 15A shows the configuration of the thermal plasma processing apparatus when the width of the base material 2 to be processed is large (for example, the width or diameter is 100 mm or more).
  • a torch unit 3G is constituted by three solenoid coils 22, 23, and 24. That is, the solenoid coils 22, 23, and 24 divided into a plurality in the longitudinal direction are used.
  • These solenoid coils 22 to 24 are controlled by separate high-frequency power sources 41a, 41b, and 41c, and can control the plasma density distribution in the cylindrical chamber 7 in the longitudinal direction. In this case as well, with respect to the number of turns per unit length of the solenoid coil, as shown in FIG. May be.
  • FIG. 18 shows the configuration of the plasma processing apparatus in the ninth embodiment of the present invention, which is a cross-sectional view taken along a plane perpendicular to the longitudinal direction of the inductively coupled plasma torch unit T, and corresponds to FIG. 19A. .
  • the quartz block 64 is provided with a long hole provided in parallel with the long chamber and surrounded by a dielectric, and a long solenoid coil 63 is accommodated therein.
  • the plasma gas passes from the side of the torch unit T to the space 67 inside the long chamber from the plasma gas manifold 69 via the plasma gas supply pipe 70 and the plasma gas supply hole 71 that penetrate the brass block 65 and the quartz block 64.
  • a quartz block 64 is housed inside a brass block 65 as a grounded conductor case via an air layer.
  • the number of quartz parts can be reduced, and a plasma processing apparatus having a simple configuration can be realized. Furthermore, it is possible to effectively avoid abnormal discharge that may be generated when an inert gas such as Ar enters the gap between the quartz block 64 and the brass block 65 or the brass lid 66.
  • an inert gas such as Ar
  • a hole that allows the air layer to communicate with the space outside the torch unit is provided, or a fan or the like is used to create a space between the air layer gas and the space outside the torch unit. It is also effective to promote exchange with a certain gas.
  • the explanation was made on the assumption that the atmosphere in the space outside the torch unit is air, but the atmosphere in the space outside the torch unit is an inert gas such as N 2 that has a high discharge start voltage at atmospheric pressure. In some cases, there is a similar effect. Alternatively, it is also effective to supply air, N 2 or the like to the air layer using a flow rate control device and avoid retention of an inert gas such as Ar.
  • the plasma gas supply hole 71 may be a slit-like gas outlet parallel to the plasma outlet 68 or may be a number of hole-like gas outlets arranged in parallel to the plasma outlet 68. .
  • FIGS. 19A to 26 show various modified examples of the embodiment.
  • 61 is a substrate mounting table
  • 62 is a substrate
  • 66 is a brass lid
  • 72 is a quartz tube
  • 73 is a shield gas nozzle
  • 74 is a shield gas manifold
  • 75 is a cooling water pipe
  • 76 is a brass block
  • 77 is a resin case.
  • 78 is a cooling water manifold
  • 79 is a copper block
  • 80 is a plasma gas supply pipe
  • 81 is a thin film
  • 82 is a quartz pipe.
  • the plasma gas supply pipe 70 may be surrounded by a grounded conductor.
  • the plasma gas supply pipe 70 is made of a dielectric, a high frequency electromagnetic field is irradiated inside the pipe, and an undesirable discharge may occur inside the pipe.
  • a configuration in which the plasma gas supply pipe 70 is surrounded by a grounded conductor such an undesirable discharge can be effectively suppressed.
  • thermal plasma processing apparatus described above is merely a typical example of the application range of the present invention.
  • Various configurations of the present invention enable high-temperature treatment of the vicinity of the surface of the substrate 2, but can be applied to the crystallization of the TFT semiconductor film or the modification of the semiconductor film for the solar cell described in detail in the conventional example.
  • the protective layer of the plasma display panel is cleaned or reduced in degassing, or the surface of the dielectric layer composed of an aggregate of silica fine particles is reduced or reduced in degassing, or various electronic devices are used. It can be applied to various surface treatments such as reflow or plasma doping using a solid impurity source.
  • the present invention can also be applied to a method for obtaining a polycrystalline silicon film by applying a powder obtained by pulverizing a silicon ingot on a substrate and irradiating it with a plasma to melt it in a solar cell manufacturing method. It is.
  • the fixed plasma torch units 3, 3A, 3B, or T are scanned with respect to the fixed substrate mounting table 1 or 61 .
  • the spiral solenoid coils 9, 9A to 9F, 22 to 24, etc. are multiple spiral coils 9H as disclosed in Japanese Patent Laid-Open No. 8-83696 as shown in FIG. 15B. May be.
  • the inductance of a solenoid coil can be reduced and power efficiency can be improved. This is particularly effective when the width of the base material 2 to be treated is large, that is, when the inductively coupled plasma torch unit or the solenoid coil is elongated in the longitudinal direction.
  • gas when gas is supplied from the gas supply devices 40, 40B to the gas outlets 18, 19, 20, the gas is supplied from a plurality of openings of the gas outlets 18, 19, 20 through a manifold. You may make it supply.
  • the gas outlets 18, 19, and 20 may be arranged with a plurality of dot-like openings arranged in parallel to the coil extending direction.
  • a linear (slit-shaped) opening may be arranged in parallel with the outgoing direction.
  • the part which hits the inner wall of the cylindrical chamber 7 among the components comprised with a metal material is coated with an insulator material, The metal to a plasma It is possible to prevent mixing of materials and suppress arc discharge.
  • an ignition source in order to facilitate plasma ignition.
  • an ignition source an ignition spark device used for a gas water heater or the like can be used.
  • thermal plasma is used for the sake of simplicity, but it is strictly difficult to distinguish between thermal plasma and low-temperature plasma.
  • non-patent literature Yama Tanaka et al., As described in "Non-equilibrium in thermal plasma", Journal of Plasma Fusion, Vol.82, No.8 (2006) pp.479-483
  • the types of plasma are classified only by thermal equilibrium. It is also difficult.
  • One object of the present invention is to heat-treat the substrate 2, and the present invention can be applied to a technique for irradiating high-temperature plasma without being bound by terms such as thermal plasma, thermal equilibrium plasma, and high-temperature plasma.
  • Etching or CVD can be realized by irradiating the base material with plasma by the reactive gas by mixing the reactive gas with the plasma gas or the sheath gas.
  • a gas containing a reactive gas is supplied as a shielding gas, so that the plasma and the reactive gas flow can be simultaneously formed on the substrate.
  • plasma processing such as etching or CVD or doping.
  • a gas mainly composed of helium is used as the plasma gas or the sheath gas
  • a relatively low temperature plasma can be generated.
  • reaction gases used for etching include SF 6, it is possible to etch a silicon or silicon compound. If O 2 is used as the reaction gas, it is possible to remove organic substances, resist ashing, and the like. Examples of the reaction gas used for CVD include monosilane and disilane, and silicon or a silicon compound can be formed.
  • a silicon oxide film can be formed by using a mixed gas of O 2 and an organic gas containing silicon typified by TEOS (Tetraethoxysilane).
  • various low-temperature plasma treatments such as a surface treatment for modifying water repellency or hydrophilicity are possible.
  • TEOS Tetraethoxysilane
  • various low-temperature plasma treatments such as a surface treatment for modifying water repellency or hydrophilicity are possible.
  • Patent Document 7 since it is an inductive coupling type, even if a high power density per unit volume is applied, it is difficult to shift to arc discharge, so a higher density plasma is generated. As a result, a high reaction rate can be obtained, and the entire desired region to be treated of the substrate can be processed in a short time.
  • the plasma processing apparatus and method according to the present invention can be applied to the crystallization of the semiconductor film for TFT or the modification of the semiconductor film for solar cell, as well as the cleaning of the protective layer of the plasma display panel.
  • various surface treatments such as degassing reduction, surface planarization or degassing reduction of a dielectric layer composed of aggregates of silica fine particles, or reflow of various electronic devices, the vicinity of the surface of the substrate
  • This invention is useful for treating the entire desired region to be treated of the substrate in a short time when performing a high temperature heat treatment uniformly for a very short time.
  • the plasma processing apparatus and method according to the present invention can provide a desired entire processing region of a substrate in a short time in low temperature plasma processing such as etching or film formation or surface modification in the manufacture of various electronic devices. This invention is useful for processing.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Recrystallisation Techniques (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

 基材載置台(1)の基材載置面(1a)上に基材(2)が載置されている。誘導結合型プラズマトーチユニット(3)は、長方形のスリット状のプラズマ噴出口(4)が設けられ、絶縁体材料で構成される円筒(5)、及び、円筒(5)の両端を塞ぐ蓋(6)とで構成された筒状チャンバ(7)と、筒状チャンバ(7)内にガスを供給するガス噴出口(8)と、筒状チャンバ(7)内に高周波電磁界を発生させるソレノイドコイル(9)とで構成される。高周波電源(41)よりソレノイドコイル(9)に高周波電力を供給することにより、筒状チャンバ(7)内にプラズマ(P)を発生させ、プラズマ噴出口(4)から基材(2)に照射する。プラズマトーチユニット(3)と基材載置台(1)とを相対的に移動しながら基材表面を熱処理することができる。

Description

プラズマ処理装置及び方法
 本発明は、熱プラズマを基材に照射して基材を処理する熱プラズマ処理、又は、反応ガスによるプラズマ又はプラズマと反応ガス流を同時に基材へ照射して基材を処理する低温プラズマ処理などのプラズマ処理を行う、プラズマ処理装置及び方法に関するものである。
 従来、多結晶シリコン(poly-Si)等の半導体薄膜は、薄膜トランジスタ(TFT :Thin Film Transistor)又は太陽電池に広く利用されている。とりわけ、poly-SiTFTは、キャリア移動度が高いうえ、ガラス基板のような透明の絶縁基板上に作製できるという特徴がある。この特徴を活かして、例えば、液晶表示装置、液晶プロジェクタ又は有機EL表示装置などの画素回路を構成するスイッチング素子として、或いは、液晶駆動用ドライバの回路素子として、poly-SiTFTが広く用いられている。
 ガラス基板上に高性能なTFTを作製する方法としては、一般に「高温プロセス」と呼ばれる製造方法がある。TFTの製造プロセスの中でも、工程中の最高温度が1000℃程度の高温を用いるプロセスを、一般的に「高温プロセス」と呼んでいる。高温プロセスの特徴は、シリコンの固相成長により、比較的良質の多結晶シリコンを成膜することができる点、シリコンの熱酸化により良質のゲート絶縁層を得ることができる点、及び、清浄な多結晶シリコンとゲート絶縁層との界面を形成できる点である。高温プロセスでは、これらの特徴により、高移動度でしかも信頼性の高い高性能TFTを安定的に製造することができる。
 他方、高温プロセスは、固相成長によりシリコン膜の結晶化を行うプロセスであるために、600℃程度の温度で48時間程度の長時間の熱処理を必要とする。これは大変長時間の工程であり、工程のスループットを高めるためには必然的に熱処理炉を多数必要とし、低コスト化が難しいという点が課題である。加えて、耐熱性の高い絶縁性基板として石英ガラスを使わざるを得ないため、基板のコストが高く、大面積化には向かないとされている。
 一方、工程中の最高温度を下げ、安価な大面積のガラス基板上にpoly-SiTFTを作製するための技術が「低温プロセス」と呼ばれる技術である。TFTの製造プロセスの中でも、最高温度が概ね600℃以下の温度環境下において比較的安価な耐熱性のガラス基板上にpoly-SiTFTを製造するプロセスは、一般に「低温プロセス」と呼ばれている。低温プロセスでは、発振時間が極短時間のパルスレーザーを用いてシリコン膜の結晶化を行うレーザー結晶化技術が広く使われている。レーザー結晶化とは、基板上のシリコン薄膜に高出力のパルスレーザー光を照射することによってシリコン薄膜を瞬時に溶融させ、この溶融したシリコン薄膜が凝固する過程で結晶化する性質を利用する技術である。
 しかしながら、このレーザー結晶化技術には幾つかの大きな課題がある。一つは、レーザー結晶化技術によって形成したポリシリコン膜の内部に局在する多量の捕獲準位である。この捕獲準位の存在により、電圧の印加によって能動層を本来移動するはずのキャリアが捕獲され、電気伝導に寄与できず、TFTの移動度の低下、閾値電圧の増大といった悪影響を及ぼす。更に、レーザー出力の制限によって、ガラス基板のサイズが制限されるといった課題もある。レーザー結晶化工程のスループットを向上させるためには、一回で結晶化できる面積を増やす必要がある。しかしながら、現状のレーザー出力には制限があるため、第7世代(1800mm×2100mm)といった大型基板にこの結晶化技術を採用する場合には、基板一枚を結晶化するために長時間を要する。
 また、レーザー結晶化技術は一般的にライン状に成形されたレーザーが用いられ、これを走査させることによって結晶化を行なう。このラインビームは、レーザー出力に制限があるため基板の幅よりも短く、基板全面を結晶化するためには、レーザーを数回に分けて走査する必要がある。これによって基板内にはラインビームの継ぎ目の領域が発生し、二回走査されてしまう領域ができる。この領域は一回の走査で結晶化した領域とは結晶性が大きく異なる。そのため両者の素子特性は大きく異なり、デバイスのバラツキの大きな要因となる。最後に、レーザー結晶化装置は装置構成が複雑であり且つ、消耗部品のコストが高いため、装置コスト及びランニングコストが高いという課題がある。これによって、レーザー結晶化装置によって結晶化したポリシリコン膜を使用したTFTは製造コストが高い素子になってしまう。
 このような基板サイズの制限、及び、装置コストが高いといった課題を克服するため、「熱プラズマジェット結晶化法」と呼ばれる結晶化技術が研究されている(例えば、非特許文献1を参照)。本技術を以下に簡単に説明する。タングステン(W)陰極と水冷した銅(Cu)陽極とを対向させ、DC電圧を印加すると、両極間にアーク放電が発生する。この電極間に大気圧下でアルゴンガスを流すことによって、銅陽極に空いた噴出孔から熱プラズマが噴出する。熱プラズマとは、熱平衡プラズマであり、イオン、電子、及び、中性原子などの温度がほぼ等しく、それらの温度が10000K程度を有する超高温の熱源である。このことから、熱プラズマは、被熱物体を容易に高温に加熱することが可能であり、a-Si膜を堆積した基板が超高温の熱プラズマ前面を高速走査することによって、a-Si膜を結晶化することができる。
 このように装置構成が極めて単純であり、且つ大気圧下での結晶化プロセスであるため、装置をチャンバー等の高価な部材で覆う必要が無く、装置コストが極めて安くなることが期待できる。また、結晶化に必要なユーティリティは、アルゴンガスと電力と冷却水であるため、ランニングコストも安い結晶化技術である。
 図16は、この熱プラズマを用いた半導体膜の結晶化方法を説明するための模式図である。
 図16において、熱プラズマ発生装置31は、陰極32と、この陰極32と所定距離だけ離間して対向配置される陽極33とを備えて構成される。陰極32は、例えばタングステン等の導電体で構成される。陽極33は、例えば銅などの導電体で構成される。また、陽極33は、中空に形成され、この中空部分に水を通して冷却可能に構成されている。また、陽極33には噴出孔(ノズル)34が設けられている。陰極32と陽極33の間に直流(DC)電圧を印加すると、両極間にアーク放電が発生する。この状態において、陰極32と陽極33の間に大気圧下でアルゴンガス等のガスを流すことによって、上記の噴出孔34から熱プラズマ35を噴出させることができる。ここで、「熱プラズマ」とは、熱平衡プラズマであり、イオン、電子、及び、中性原子などの温度がほぼ等しく、それらの温度が10000K程度を有する超高温の熱源である。
 このような熱プラズマを、半導体膜の結晶化のための熱処理に利用することができる。具体的には、基板36上に半導体膜37(例えば、アモルファスシリコン膜)を形成しておき、当該半導体膜37に熱プラズマ(熱プラズマジェット)35を当てる。このとき、熱プラズマ35は、半導体膜37の表面と平行な第1軸(図示の例では左右方向)に沿って相対的に移動させながら半導体膜37に当てられる。すなわち、熱プラズマ35は、第1軸方向に走査しながら半導体膜37に当てられる。ここで「相対的に移動させる」とは、半導体膜37(及びこれを支持する基板23)と熱プラズマ35とを相対的に移動させることを言い、一方のみを移動させる場合と両者を共に移動させる場合のいずれも含まれる。このような熱プラズマ35の走査により、半導体膜37が熱プラズマ35の有する高温によって加熱され、結晶化された半導体膜38(本例ではポリシリコン膜)が得られる(例えば、特許文献1を参照)。
 図17は、最表面からの深さと温度の関係を示す概念図である。図17に示すように、熱プラズマ35を基板36上で高速で移動させることにより、基板36の表面近傍のみを高温で処理することができる。熱プラズマ35が通り過ぎた後、加熱された領域は速やかに冷却されるので、表面近傍はごく短時間だけ高温になる。
 このような熱プラズマは、点状領域に発生させるのが一般的である。熱プラズマは、陰極32からの熱電子放出によって維持されており、プラズマ密度の高い位置では熱電子放出がより盛んになるため、正のフィードバックがかかり、ますますプラズマ密度が高くなる。つまり、アーク放電は陰極の1点に集中して生じることとなり、熱プラズマは点状領域に発生する。
 半導体膜の結晶化など、平板状の基材を一様に処理したい場合には、点状の熱プラズマを基材全体に渡って走査する必要があるが、走査回数を減らしてより短時間で処理できるプロセスを構築するには、熱プラズマの照射領域を広くすることが有効である。このため、古くから熱プラズマを大面積に発生させる技術が検討されている。
 例えば、プラズマトーチの外ノズルより噴射するプラズマジェットに、外ノズルの中心軸線と交差する方向でプラズマジェットを広幅化させるための広幅化ガスを2ケ所から同時に噴出し、プラズマジェットを広幅化させる方法が開示されている(例えば、特許文献2を参照)。あるいは、ノズル通路の口部が、当該ノズル通路の軸芯に対して所定角度で傾斜していることを特徴とするプラズマノズルを設け、ノズル通路を構成するケーシング、又は、そのケーシングの一部を、その長手軸芯回りに高速で回転させ、プラズマノズルをワークピースに沿って通過移動させる方法が開示されている(例えば、特許文献3を参照)。また、少なくとも一つの偏芯して配置されたプラズマノズルを持つ回転ヘッドを設けたものが開示されている(例えば、特許文献4を参照)。
 なお、大面積を短時間で処理することを目的としたものではないが、熱プラズマを用いた溶接方法として、帯状電極を用い、その幅方向が溶接線方向となるように配置して溶接することを特徴とする高速ガスシールドアーク溶接方法が開示されている(例えば、特許文献5を参照)。
 また、扁平な直方体状の絶縁体材料を用いた、線状の細長い形状をなす誘導結合型プラズマトーチが開示されている(例えば、特許文献6を参照)。
 なお、長尺の電極を用いた細長い線状のプラズマを生成する方法が開示されている(例えば、特許文献7を参照)。熱プラズマを発生させるものと記載されているが、これは低温プラズマを発生させるものであり、熱処理に適した構成ではない。仮に熱プラズマを発生させたとすると、電極を用いた容量結合型であるため、アーク放電が一箇所に集中し、長尺方向に均一な熱プラズマを発生させることは困難と推察される。一方、低温プラズマ処理装置としては、エッチングガス又はCVD(Chemical Vapor Depo sition)用のガスをプラズマ化することにより、エッチング又は成膜などのプラズマ処理が可能な装置である。
特開2008-53634号公報 特開平08-118027号公報 特開2001-68298号公報 特表2002-500818号公報 特開平04-284974号公報 特表2009-545165号公報 特開2007-287454号公報
"Crystallization of Si in Millisecond Time Domain Induced by Thermal Jet Irradiation" S.Higashi, H.Kaku, T.Okada, H.Murakami, and S.Miyazaki, Japanese Journal of Applied Physics, Vol.45,No.5B,(2006)pp.4313-4320
 しかしながら、半導体の結晶化など、ごく短時間だけ基材の表面近傍を高温処理する用途に対して、従来の熱プラズマを大面積に発生させる技術は有効ではなかった。
 従来例に示した特許文献2に記載の、熱プラズマを大面積に発生させる技術においては、広幅化はされるものの、広幅化された領域における温度分布は100℃以上となっており、均一な熱処理の実現は不可能である。
 また、従来例に示した特許文献3、4に記載の、熱プラズマを大面積に発生させる技術においては、本質的には熱プラズマを揺動させるものであるから、実質的に熱処理されている時間は、回転させずに走査した場合と比べて短くなるので、大面積を処理する時間が特段短くなるものではない。また、均一処理のためには回転速度を走査速度に比べて十分に大きくする必要があり、ノズルの構成が複雑化することは避けられない。
 また、従来例に示した特許文献5に記載の技術は溶接技術であり、大面積を均一に処理するための構成ではない。仮にこれを大面積処理用途に適用しようとしても、この構成においては点状のアークが帯状電極に沿って振動するので、時間平均すると均一にプラズマが発生するものの、瞬間的には不均一なプラズマが生じている。したがって、大面積の均一処理には適用できない。
 また、従来例に示した特許文献6に記載の技術は、非特許文献1又は特許文献1に開示されているDCアーク放電を用いたものと異なり、誘導結合型の高周波プラズマトーチであることが特徴である。無電極放電であることから、熱プラズマの安定性に優れ(時間変化が小さい)、電極材料の基材への混入(コンタミネーション)が少ないという利点がある。
 さて、誘導結合型プラズマトーチにおいては、高温プラズマから絶縁体材料を保護するために、絶縁体材料を二重管構成としてその間に冷媒を流す方法が一般的に採用されている。しかしながら、従来例に示した特許文献6に記載の技術においては、絶縁体材料が扁平な直方体状をなしていることから、これを単純に二重管構成としただけでは、十分な流量の冷媒を流すことができない。なぜなら、絶縁体材料は一般に金属に比べて機械的強度に劣るため、絶縁体材料を長尺方向に余りに長くすると、二重管の内圧を高くできなくなるからである。このため、大面積を均一に処理するのに限界がある。
 また、仮に絶縁体材料の冷却の問題がないと仮定しても、従来例に示した特許文献6に記載の技術においては、絶縁体材料の内部空間に形成した高温プラズマは、その最下部から噴出するごく一部のみが基材に直接作用する構成であるため、電力効率が悪いという問題点がある。また、絶縁体材料の内部空間においては、中心付近のプラズマ密度が高くなるので、長尺方向にプラズマが不均一となり、基材を均一に処理することができないという問題点がある。
 なお、点状の熱プラズマであっても、その直径が大きければ大面積処理の際の走査回数を減らせるため、用途によっては短時間で処理できる。しかし、熱プラズマの直径が大きいと、走査時に熱プラズマが基材上を通過する時間が実質的に長くなるため、ごく短時間だけ基材の表面近傍のみを高温処理することはできず、基材のかなり深い領域までが高温になり、例えばガラス基板の割れ又は膜剥がれなどの不具合を生じることがある。
 本発明は、このような課題に鑑みなされたもので、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、あるいは、反応ガスによるプラズマ又はプラズマと反応ガス流を同時に基材へ照射して基材を低温プラズマ処理するに際して、基材の所望の被処理領域全体を短時間で処理することのできるプラズマ処理装置及び方法を提供することを目的としている。
 本発明は、上記目的を達成するため、以下のように構成している。
 本発明のプラズマ処理装置は、スリット状の開口部を備える筒状チャンバと、
 前記チャンバ内にガス導入口を介してガスを供給するガス供給装置と、
 前記開口部の長手方向と平行なコイル延出方向を有しかつ前記チャンバ内に高周波電磁界を発生させるソレノイドコイルと、
 前記コイルに高周波電力を供給する高周波電源と、
 前記開口部と対向して配置され、かつ基材を基材載置面に載置する基材載置台と、
 前記開口部の長手方向と前記基材載置台の前記基材載置面とが平行な状態を維持しながら、前記チャンバと前記基材載置台とを相対的に移動させる移動装置と、を備えることを特徴とする。
 このような構成により、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、あるいは、反応ガスによるプラズマ又はプラズマと反応ガス流を同時に基材へ照射して基材を低温プラズマ処理するに際して、基材の所望の被処理領域全体を短時間で処理することができる。
 本発明のプラズマ処理装置において、前記移動装置は、前記開口部の長手方向に対して直交する方向沿いに、前記チャンバと前記基材載置台とを相対的に移動させるようにしてもよい。このようにすれば、基材の所望の被処理領域全体をより短時間で処理することができる。
 また、本発明のプラズマ処理装置において、前記筒状チャンバは誘電体の円筒で構成されるとともに、前記チャンバの外側に前記コイルが設けられてなるように構成してもよい。また、本発明のプラズマ処理装置において、前記筒状チャンバは金属の円筒で構成されるとともに、前記チャンバの内側に前記コイルが設けられてなるように構成してもよい。特に、後者の場合、プラズマ噴射口と基材載置台との間にソレノイドコイルが位置しない構成となるので、長手方向の処理の均一性が高くなるという利点がある。
 また、本発明のプラズマ処理装置において、前記ガス供給装置から前記チャンバにガスを供給する複数のガス導入口は、前記開口部の長手方向と平行に設けられ、かつ前記開口部と対向する面に設けられているように構成してもよい。ことが望ましい。
 このような構成により、ガス噴出口から基材載置台に向かうガスの流れがスムーズになって層流化しやすく、安定したプラズマ処理が可能となる利点がある。
 また、本発明のプラズマ処理装置において、前記コイルの両端部の線状部は、前記コイルの延出方向に対して垂直な向きに曲げられ、前記筒状チャンバの開口部とは逆の向き、かつ前記チャンバの外側に引出されているように構成してもよい。
 このような構成により、組み立てやすい装置を実現できる。
 また、本発明のプラズマ処理装置において、前記チャンバを前記コイルの延出方向に対して垂直な面で切った断面形状のうち、前記チャンバ内部の空間は、環状であるように構成してもよい。また、本発明のプラズマ処理装置において、前記チャンバを前記コイルの延出方向に対して垂直な面で切った断面形状のうち、前記チャンバ内部の空間は、U字状であるように構成してもよい。特に、後者の場合、ガス噴出口から基材載置台に向かうガスの流れがスムーズになって層流化しやすく、安定したプラズマ処理が可能となる利点がある。
 また、本発明のプラズマ処理装置において、前記コイルは絶縁部材のコイルケースの空間内に収納され、前記空間内の絶縁性流体に前記コイルが浸され、かつ、前記絶縁性流体が前記空間内で流れることによって前記コイルが冷却される構成としてもよい。
 このような構成により、ソレノイドコイルと、ソレノイドコイルを格納した絶縁部材の双方を、効果的に冷却することが可能となる。
 また、本発明のプラズマ処理装置において、前記ガス供給装置から前記ガス導入口を介して前記チャンバ内に供給する前記ガスの供給系統は、シースガス用とプラズマガス用との2系統以上で構成されてなるようにしてもよい。
 このような構成により、プラズマ生成に適したプラズマガスと、筒状チャンバの内壁、又は、ソレノイドコイルを格納した絶縁部材の壁面を保護するシースガスとに分けて、ガス種又はガス流量などを適宜調整することにより、安定したプラズマ処理が可能となる利点がある。
 また、前記コイルの単位長さ当たりの巻き数は、前記コイルが延出方向において不均一であるように構成してもよいし、あるいは、前記ソレノイドコイルは、前記コイルの延出方向において複数に分割されて構成されてなるようにしてもよい。
 このような構成により、長手方向の処理の均一性を高めることができる。
 第2発明のプラズマ処理方法は、筒状チャンバ内にガスを供給しつつ、前記チャンバに形成されたスリット状の開口部から、基材載置台の基材載置面に載置された基材に向けてガスを噴出すると共に、前記開口部の長手方向と平行なコイル延出方向を有するソレノイドコイルに高周波電力を供給することで、前記チャンバ内に高周波電磁界を発生させ、
 前記開口部の長手方向と前記基材載置台の前記基材載置面とが平行な状態を維持しながら、前記チャンバと前記基材載置台とを相対的に移動しながら、前記基材の表面を熱処理するプラズマ処理方法である。
 本発明のプラズマ処理方法において、筒状チャンバの長手方向をなす壁が誘電体で構成され、ソレノイドコイルが筒状チャンバの外側に設けられている状態で基材を処理してもよいし、あるいは、筒状チャンバの長手方向をなす壁が金属で構成され、ソレノイドコイルが筒状チャンバの内側に設けられている状態で基材を処理してもよい。特に、後者の場合、プラズマ噴射口と基材載置台との間にソレノイドコイルが位置しない構成となるので、長手方向の処理の均一性が高くなるという利点がある。
 また、本発明のプラズマ処理方法において、前記ガス供給装置から前記チャンバにガスを供給する複数のガス導入口は、前記開口部の長手方向と平行に設けられ、かつ前記開口部と対向する面に設けられている状態で基材を処理することが望ましい。
 このような構成により、ガス噴出口から基材載置台に向かうガスの流れがスムーズになって層流化しやすく、安定したプラズマ処理が可能となる利点がある。
 また、本発明のプラズマ処理方法において、前記コイルの両端部の線状部は、前記コイルの延出方向に対して垂直な向きに曲げられ、前記筒状チャンバの開口部とは逆の向き、かつ前記チャンバの外側に引出されている状態で基材を処理することが望ましい。
 このような構成により、組み立てやすい装置での処理を実現できる。
 また、本発明のプラズマ処理方法において、前記チャンバを前記コイルの延出方向に対して垂直な面で切った断面形状のうち、前記チャンバ内部の空間は、環状である状態で基材を処理してもよいし、あるいは、前記チャンバを前記コイルの延出方向に対して垂直な面で切った断面形状のうち、前記チャンバ内部の空間は、U字状である状態で基材を処理してもよい。特に、後者の場合、ガス噴出口から基材載置台に向かうガスの流れがスムーズになって層流化しやすく、安定したプラズマ処理が可能となる利点がある。
 また、本発明のプラズマ処理方法において、前記コイルは絶縁部材のコイルケースの空間内に収納され、前記空間内の絶縁性流体に前記コイルが浸され、かつ、前記絶縁性流体が前記空間内で流れることによって前記コイルが冷却される状態で基材を処理する構成としてもよい。
 このような構成により、ソレノイドコイルと、ソレノイドコイルを格納した絶縁部材の双方を、効果的に冷却することが可能となる。
 また、本発明のプラズマ処理方法において、前記ガス供給装置から前記ガス導入口を介して前記チャンバ内に供給する前記ガスの供給系統は、シースガス用とプラズマガス用との2系統以上で構成されてなる状態で基材を処理することが望ましい。
 このような構成により、プラズマ生成に適したガスと、筒状チャンバの内壁、又は、ソレノイドコイルを格納した絶縁部材の壁面を保護するガスとに分けて、ガス種又はガス流量などを適宜調整することにより、安定したプラズマ処理が可能となる利点がある。
 また、本発明のプラズマ処理方法において、前記コイルの単位長さ当たりの巻き数は、前記コイルが延出方向において不均一である状態で基材を処理してもよく、あるいは、前記ソレノイドコイルは、前記コイルの延出方向において複数に分割されて構成されてなる状態で基材を処理してもよい。
 このような構成により、長手方向の処理の均一性を高めることができる。
 本発明によれば、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、基材の所望の被処理領域全体を短時間で処理することができる。
 本発明のこれらと他の目的と特徴は、添付された図面についての好ましい実施形態に関連した次の記述から明らかになる。この図面においては、
図1Aは、本発明の第1実施形態におけるプラズマ処理装置の構成を示す断面図であり、 図1Bは、本発明の第1実施形態におけるプラズマ処理装置と四角形の基材及び基材載置台との関係を示すプラズマ処理装置の底面図であり、 図1Cは、本発明の第1実施形態におけるプラズマ処理装置と円形の基材及び基材載置台との関係を示すプラズマ処理装置の底面図であり、 図2Aは、本発明の第1実施形態におけるプラズマ処理装置の構成を示す、図1AのA-A線の切断部端面図であり、 図2Bは、本発明の第1実施形態におけるプラズマ処理装置の移動装置を示す斜視図であり、 図3は、本発明の第1実施形態におけるプラズマ処理装置の構成を示す断面図であり、 図4は、本発明の第1実施形態におけるプラズマ処理装置の構成を示す、図3のB-B線の切断部端面図であり、 図5Aは、本発明の第2実施形態におけるプラズマ処理装置の構成を示す断面図であり、 図5Bは、図5Aの本発明の第2実施形態におけるプラズマ処理装置と基材及び基材載置台との関係を示すプラズマ処理装置の底面図であり、 図6は、本発明の第2実施形態におけるプラズマ処理装置の構成を示す、図5AのC-C線の切断部端面図であり、 図7は、本発明の第3実施形態におけるプラズマ処理装置の構成を示す断面図であり、 図8は、本発明の第3実施形態におけるプラズマ処理装置の構成を示す、図7のD-D線の切断部端面図であり、 図9Aは、本発明の第4実施形態におけるプラズマ処理装置の構成を示す断面図であり、 図9Bは、図9Aの本発明の第4実施形態におけるプラズマ処理装置と基材及び基材載置台との関係を示すプラズマ処理装置の底面図であり、 図10Aは、本発明の第4実施形態におけるプラズマ処理装置の構成を示す、図9AのE-E線の切断部端面図であり、 図10Bは、図9Aの本発明の第4実施形態におけるプラズマ処理装置と基材及び基材載置台との関係を示すプラズマ処理装置の底面図であり、 図11は、本発明の第5実施形態におけるプラズマ処理装置の構成を示す断面図であり、 図12は、本発明の第5実施形態におけるプラズマ処理装置の構成を示す断面図であり、 図13は、本発明の第6実施形態におけるプラズマ処理装置の構成を示す断面図であり、 図14は、本発明の第7実施形態におけるプラズマ処理装置の構成を示す断面図であり、 図15Aは、本発明の第9実施形態第8実施形態におけるプラズマ処理装置の構成を示す断面図であり、 図15Bは、本発明の前記種々の実施形態において、螺旋形のソレノイドコイルに代えて使用可能な、多重の螺旋形のコイルを示す図であり、 図16は、従来例の熱プラズマを用いた半導体膜の結晶化方法を説明するための模式図であり、 図17は、従来例における最表面からの深さと温度の関係を示す概念図であり、 図18は、本発明の第9実施形態におけるプラズマ処理装置の構成を示す断面図であり、 図19Aは、本発明の実施形態の第1変形例におけるプラズマ処理装置の構成を示す断面図であり、 図19Bは、本発明の実施形態の第1変形例におけるプラズマ処理装置の構成を示す断面図であり、 図20は、本発明の実施形態の第1変形例におけるプラズマ処理装置の構成を示す斜視図であり、 図21は、本発明の実施形態の第2変形例におけるプラズマ処理装置の構成を示す断面図であり、 図22は、本発明の実施形態の第3変形例におけるプラズマ処理装置の構成を示す断面図であり、 図23は、本発明の実施形態の第4変形例におけるプラズマ処理装置の構成を示す斜視図であり、 図24は、本発明の実施形態の第5変形例におけるプラズマ処理装置の構成を示す断面図であり、 図25は、本発明の実施形態の第6変形例におけるプラズマ処理装置の構成を示す斜視図であり、 図26は、本発明の実施形態の第7変形例におけるプラズマ処理装置の構成を示す断面図ある。
 以下、図面を参照して本発明における第1実施形態を詳細に説明する。
 以下、本発明の実施の形態における熱プラズマ処理装置について図面を用いて説明する。
 (第1実施形態)
 以下、本発明の第1実施形態について、図1A~図4を参照して説明する。
 図1Aは、本発明の第1実施形態における熱プラズマ処理装置の構成を示すものである。図1Bは、本発明の第1実施形態におけるプラズマ処理装置と四角形の基材2及び基材載置台1との関係を示すプラズマ処理装置の底面図である。図1A及び図1Bは、誘導結合型プラズマトーチユニット3の長尺方向に平行で、かつ、ソレノイドコイル9の中心軸10を含み、かつ、基材2の表面に対して垂直な面で切った断面図である。また、図2Aは、図1Aに示した破線A-Aで切った切断部端面図である。なお、以下の説明では、基材2は四角形で説明しているが、図1Cに示すように、本発明の第1実施形態におけるプラズマ処理装置は円形の基材2A(基材載置台1は図示を省略)にも適用可能である。
 基材2の一例としては、半導体基板などが挙げられる。
 図1A及び図2Aにおいて、基材載置台1の矩形又は円形の基材載置面1a上に基材2が載置されている。誘導結合型プラズマトーチユニット3は、筒状チャンバ7と、ガス導入口の一例としてのガス噴出口8と、ソレノイドコイル9とで構成されている。
 筒状チャンバ7は、長方形のスリット状のプラズマ噴出口4(これを「開口部」と称する場合もある。)が下端面に設けられ、絶縁体材料で構成される円筒5、及び、円筒5の両端をそれぞれ塞ぐ蓋6とで構成されている。
 ガス噴出口8は、各蓋6の中央部から筒状チャンバ7内に挿入されたガス噴出管で構成されて、筒状チャンバ7内にガス供給装置40からガスを一定流速で供給する。
 ソレノイドコイル9は、円筒5の外側に、円筒5の中心軸10と同心に配置されて、高周波電力を高周波電源41から供給して筒状チャンバ7内に高周波電磁界を発生させる。
 基材載置台1(或いは、基材載置台1の基材載置面1a上に載置された基材2)は、プラズマ噴出口4と対向して配置されている。この状態で、筒状チャンバ7内にガス噴出口8よりガスを供給しつつ、プラズマ噴出口4から基材2に向けてガスを噴出させながら、高周波電源41よりソレノイドコイル9に高周波電力を供給することにより、筒状チャンバ7内にプラズマPを発生させ、プラズマ噴出口4からプラズマPを基材2に照射する。
 ソレノイドコイル9の中心軸10の方向と、プラズマ噴出口4(開口部)の長手方向と、基材載置台1の基材載置面1a(基材2の表面)とは、平行に配置されている。ソレノイドコイル9の中心軸10の方向とは、ソレノイドコイル9が延びる方向(コイル延出方向)を意味する。また、プラズマ噴出口4(開口部)の長手方向とは交差する向き、例えば、生産効率を向上させる観点からは、プラズマ噴出口4(開口部)の長手方向とは垂直な(直交する)向き(図1Aにおける紙面と垂直な向き、図2Aにおける矢印の向き)に、筒状チャンバ7を含むプラズマトーチユニット3と基材載置台1とを、移動装置42により、均一速度で相対的に移動しながら基材表面を熱処理することができる。このようにして、基材2の表面近傍11を均一に熱処理することができる。
 固定された基材載置台1上の基材2に対して、プラズマトーチユニット3を均一速度で移動させる移動装置42の一例を図2Bに示す。図2Bにおいて、移動装置42は、プラズマトーチユニット3を両端で支持するプラズマトーチユニット支持アーム42aが固定されるブラケット42bと、移動装置42の移動方向(コイル延出方向)沿いに延在したレール42cと、ブラケット42bが固定され、かつ移動駆動装置の一例として備えられた移動駆動用モータ42dを正逆回転させて、モータ42dに係合したネジ軸が固定されたレール42c沿いにブラケット42bを均一速度で移動させる移動ステージ42eとより構成されている。よって、制御装置43の制御の元に、移動駆動用モータ42dが正回転することにより移動ステージ42eがレール42c沿いに均一速度で前進又は後退して、ブラケット42b及び一対の支持アーム42aを介してプラズマトーチユニット3を基材2に対して移動させることができる。
 このように、制御装置43での制御の元に、移動装置42でプラズマトーチユニット33を基材2上で均一速度で移動させつつ、プラズマ処理を行わせることができる。
 移動装置42でプラズマトーチユニット33を基材2上で移動させるとき、移動方向は一方向でもよいし、往復移動させるようにしてもよい。
 この移動装置42は、後述する他の実施形態又は変形例にも適用可能である。
 制御装置43は、ガス供給装置40と、高周波電源41と、移動装置42などとの動作をそれぞれ制御して、所望のプラズマ処理を行うように制御している。
 ソレノイドコイル9は、円筒5と同軸にかつ円筒5の外側に配置された螺旋形の銅管であり、内部に冷却水を流して冷却している。プラズマへの銅の混入を防ぐとともにアーク放電を抑制するため、ソレノイドコイル9の表面は絶縁膜で被覆されている。また、円筒5を構成する部材の内部及び蓋6の内部にも水冷配管がそれぞれ設けられ、水冷配管内に冷却水を流すことにより、円筒5及び蓋6の冷却を行い、プラズマPからの熱ダメージを低減している。円筒5を直径の異なる2つの絶縁材料の円筒部材で構成することで、それらの2つの円筒部材間の隙間で水冷配管を構成してもよい。
 この構成においては、筒状チャンバ7の長手方向をなす壁が誘電体(円筒5)で構成され、ソレノイドコイル9が筒状チャンバ7の外側に設けられており、プラズマ噴射口4と基材載置台1との間にソレノイドコイル9の一部が位置する構成となっている。
 また、プラズマ噴射口4の長尺方向の長さが、基材2の幅より大きくなっているので、一度の走査(プラズマトーチユニット3と基材載置台1とを相対的に移動すること)で基材2の表面近傍11の全体を熱処理することができる。
 また、筒状チャンバ7内にガスを供給するガス噴出口8が、2つの蓋6の両方に、ソレノイドコイル9の中心軸方向(延出方向)と垂直な面に設けられている。
 このような熱プラズマ処理装置において、ソレノイドコイル9の内部に冷却水を流しかつ円筒5及び蓋6の内部の水冷配管内にも冷却水を流して冷却をそれぞれ行いつつ、筒状チャンバ7内にガス噴出口8よりAr又はAr+Hガスを供給しつつ、プラズマ噴出口4から基材2に向けてガスを噴出させながら、高周波電源41より13.56MHzの高周波電力を、ソレノイドコイル9に供給することにより、筒状チャンバ7内にプラズマPを発生させ、プラズマ噴出口4からプラズマPを基材2に照射するとともに走査することで、半導体膜の結晶化などの熱処理を行うことができる。
 このように、ソレノイドコイル9の中心軸10の方向と、プラズマ噴出口4の長手方向と、基材載置台1の基材載置面1a(基材2の表面)とが平行に配置されたまま、プラズマ噴出口4の長手方向とは垂直な向きに、筒状チャンバ7と基材載置台1とを相対的に移動するので、生成すべきプラズマPの長さと、基材2の処理長さがほぼ等しくなるように構成することが可能となる。このように構成すれば、筒状チャンバ7と基材載置台1とを相対的に1回移動させれば、基材2の熱処理が終了するので、生産効率が高くなる。ただし、生成すべきプラズマPの長さを基材2の処理長さよりも短くしても、筒状チャンバ7と基材載置台1とを相対的に2,3回移動させるだけでよい場合には、数百回往復移動させていた従来の場合よりも、生産効率が高くすることができる。
 また、筒状チャンバ7をその中心軸に垂直な面で切った断面の幅(図2A及び図4における、筒状チャンバ7の内部空間の幅)は、プラズマ噴出口4の幅(図2A及び図4における隙間の長さ)より少しでも大きければよい。つまり、生成すべきプラズマPの体積を、従来と比較して極めて小さくすることができる。その結果、電力効率が飛躍的に高まる。
 また、ソレノイドコイル9の中心軸10の方向と、プラズマ噴出口4の長手方向とが平行に配置されている状態を維持するのは、熱プラズマの長尺方向の均一性を確保するため、筒状チャンバ7の内部空間においては、中心軸10の向きに比較的均一なプラズマを生成することができるので、長尺方向にプラズマが均一となり、基材2を均一に処理することができる。すなわち、ソレノイドコイル9の中心軸10の方向と、プラズマ噴出口4の長手方向とが平行に配置されている状態を維持するのは、熱プラズマの長尺方向の均一性を確保するためである。この平行関係が大幅に崩れると、熱プラズマが長尺方向に不均一となってしまい、好ましくない。また、ソレノイドコイル9の中心軸10の方向と、プラズマ噴出口4の長手方向と、基材載置台1の基材載置面1a(基材2の表面)とが平行に配置されている状態を維持するのは、生産効率を上げるためである。よって、ソレノイドコイル9の中心軸10の方向と、プラズマ噴出口4の長手方向と、基材載置台1の基材載置面1a(基材2の表面)との平行関係は、本実施形態のみならず、他の実施形態でも維持されることが好ましい。
 なお、図3及び図4に示すように、筒状チャンバ7内にガスを供給するガス噴出口8の配列方向が、ソレノイドコイル9の中心軸10の方向と平行(言い換えれば、ガス噴出口8からのガスの噴出方向がソレノイドコイル9の中心軸10の方向と直交する方向)で、かつ、プラズマ噴出口4(開口部)と対向する面に設けられている構成も可能である。この構成においては、筒状チャンバ7内のガス流れの向きが、ソレノイドコイル9の中心軸10とは垂直な方向になる。このような構成により、ガス噴出口8から基材載置台1側に向かうガスの流れがスムーズになって層流化しやすく、安定したプラズマ処理が可能となる利点がある。なお、図4は、図3に示した破線B-Bで切った切断部端面図である。
 なお、これまでは、円筒5の全部を絶縁体材料から構成する場合を例示している。しかしながら、ソレノイドコイル9に高周波電力を供給することによって発生する高周波電磁界を、筒状チャンバ7内に放射できればよいので、金属材料から構成した筒に、絶縁体材料で構成される窓を設けて、円筒5を構成する構造であってもよい。例えば、ソレノイドコイル9の中心軸10に平行な、複数の短冊状の窓であれば、高周波電磁界の透過効率をさほど落とさずに、プラズマを発生させることができる。
 また、熱処理を可能な限り短くする観点から、一例として、プラズマ噴出口4の幅を1mmとし、移動速度を1~数mm/secとするのが好ましい。
 本発明の第1実施形態によれば、基材2の表面近傍をごく短時間だけ均一に高温熱処理するに際して、基材2の所望の被処理領域全体を短時間で処理することができる。
 (第2実施形態)
 以下、本発明の第2実施形態について、図5A~図6を参照して説明する。
 図5Aは、本発明の第2実施形態における熱プラズマ処理装置の構成を示すもので、誘導結合型プラズマトーチユニット3Aの長尺方向に平行で、かつ、ソレノイドコイル9Aの中心軸10Aを含み、かつ、基材2の表面に対して垂直な面で切った断面図である。また、図5Bは、図5Aの本発明の第2実施形態におけるプラズマ処理装置と基材及び基材載置台との関係を示すプラズマ処理装置の底面図である。図6は、図5Aに示した破線C-Cで切った切断部端面図である。
 図5A及び図6において、基材載置台1の基材載置面1a上に基材2が載置されている。誘導結合型プラズマトーチユニット3Aは、筒状チャンバ7Aと、ガス導入口の一例としてのガス噴出口8Aと、ソレノイドコイル9Aとで構成している。
 筒状チャンバ7Aは、長方形のスリット状のプラズマ噴出口4A(開口部)が下端面の中央部に設けられ、金属材料で構成され、外形が四角柱状で内部に円形空間が形成されている円筒12、及び、金属材料で構成されかつ円筒12の両端を塞ぐ蓋6Aで構成されている。
 ガス噴出口8Aは、各蓋6Aの上部から筒状チャンバ7A内に挿入されたガス噴出管で構成されて、筒状チャンバ7A内にガスを供給する。
 ソレノイドコイル9Aは、円筒12の内側の円形空間内に、円筒12の中心軸10Aと同心に配置されて、高周波電力を高周波電源41から供給して筒状チャンバ7A内に高周波電磁界を発生させる。2つの蓋6Aの中央部には、絶縁材料で構成されるブッシュ13が軸方向に挿入され、ソレノイドコイル9Aへの給電のために、ソレノイドコイル9Aの両端部の銅などの導電材料で構成される線状部14が、筒状チャンバ7Aの外部に引出されている。筒状チャンバ7A内にガス噴出口8Aよりガスを供給しつつ、プラズマ噴出口4Aから基材2に向けてガスを噴出させながら、高周波電源41よりソレノイドコイル9Aに高周波電力を供給することにより、筒状チャンバ7内にプラズマPを発生させ、プラズマ噴出口4AからプラズマPを基材2に照射する。
 ソレノイドコイル9Aの中心軸10Aの方向と、プラズマ噴出口4A(開口部)の長手方向と、基材載置台1の基材載置面1a(基材2の表面)とは、平行に配置されている。ソレノイドコイル9Aの中心軸10の方向とは、ソレノイドコイル9Aが延びる方向(コイル延出方向)を意味する。また、プラズマ噴出口4A(開口部)の長手方向とは交差する向き、例えば、生産効率を向上させる観点からは、プラズマ噴出口4(開口部)の長手方向とは垂直な(直交する)向き(図5Aにおける紙面と垂直な向き、図6における矢印の向き)に、筒状チャンバ7Aを含むプラズマトーチユニット3Aと基材載置台1とを、移動装置42により、相対的に移動しながら基材表面を熱処理することができる。このようにして、基材2の表面近傍11を均一に熱処理することができる。
 ソレノイドコイル9Aは、円筒12と同軸にかつ円筒12の内側の円形空間内に配置された螺旋形の銅管であり、内部に冷却水を流して冷却している。プラズマへの銅の混入を防ぐとともにアーク放電を抑制するため、ソレノイドコイル9Aの表面は絶縁膜で被覆されている。また、円筒12を構成する部材の内部及び蓋6Aの内部にも水冷配管がそれぞれ設けられ、水冷配管内に冷却水を流すことにより、円筒12及び蓋6Aの冷却を行い、プラズマPからの熱ダメージを低減している。
 この構成においては、筒状チャンバ7Aの長手方向をなす壁が金属(円筒12)で構成され、ソレノイドコイル9Aが筒状チャンバ7Aの内側に設けられており、プラズマ噴射口4Aと基材載置台1との間にソレノイドコイル9Aの一部が位置しない構成となるので、長手方向の処理の均一性が、第1実施形態の構成よりも高くなるという利点がある。
 また、プラズマ噴射口4Aの長尺方向の長さが、基材2の幅より大きくなっているので、一度の走査(プラズマトーチユニット3Aと基材載置台1とを相対的に移動すること)で基材2の表面近傍11の全体を熱処理することができる。
 また、筒状チャンバ7A内にガスを供給するガス噴出口8Aが、2つの蓋6Aの両方に、ソレノイドコイル9Aの中心軸方向(延出方向)と垂直な面に設けられている。
 このような熱プラズマ処理装置において、筒状チャンバ7A内にガス噴出口8AよりAr又はAr+Hガスを供給しつつ、プラズマ噴出口4Aから基材2に向けてガスを噴出させながら、高周波電源41より13.56MHzの高周波電力を、ソレノイドコイル9Aに供給することにより、筒状チャンバ7A内にプラズマPを発生させ、プラズマ噴出口4AからプラズマPを基材2に照射するとともに走査することで、半導体膜の結晶化などの熱処理を行うことができる。
 先の第1実施形態では、ソレノイドコイル9が、内部に冷却水の流路を設けた絶縁材料で構成される円筒5を介してプラズマと結合している。これに対して、第2実施形態では、ソレノイドコイル9Aは直接プラズマに触れるほど近接した配置でプラズマと結合するため、第1実施形態よりも、電力効率に優れるという利点がある。
 (第3実施形態)
 以下、本発明の第3実施形態について、図7~図8を参照して説明する。
 図7は、本発明の第3実施形態における熱プラズマ処理装置の構成を示すもので、誘導結合型プラズマトーチユニット3Bの長尺方向に平行で、かつ、ソレノイドコイル9Bの中心軸10Bを含み、かつ、基材2の表面に対して垂直な面で切った断面図である。また、図8は、図7に示した破線D-Dで切った切断部端面図である。
 図7及び図8において、基材載置台1の基材載置面1a上に基材2が載置されている。誘導結合型プラズマトーチユニット3Bは、筒状チャンバ7Bと、下向き凸形状でかつ先端が半円形状の絶縁部材のコイルケース16とで大略構成されている。
 筒状チャンバ7Bは、ベースブロック15と細長いリング17とで構成されている。
 ベースブロック15は、長方形のスリット状のプラズマ噴出口4B(開口部)が下端面に設けられ、かつ、上面で開口しかつ大きく下向きに湾曲した凹部15aを有する四角柱状の金属材料(例えば、真ちゅう)で構成される。凹部15aの下端面にはプラズマ噴出口4B(開口部)が形成されている。
 細長いリング17は、ベースブロック15とコイルケース16との間に配置される四角枠形状の部材であり、筒状チャンバ7B内にガスをそれぞれ供給する多数のシースガス噴出口18と多数のプラズマガス噴出口19とが下向きに、すなわち、基材載置台1に向けて吐出されるように、形成されている。シースガス噴出口18及びプラズマガス噴出口19は、それぞれ、細長いリング17に挿入されたガス噴出管で構成されて、筒状チャンバ7B内にガス供給装置40からのガスをそれぞれ独立して一定流速で供給する。シースガス噴出口18及びプラズマガス噴出口19は、例えば、それぞれ、複数個の開口をコイル延出方向と平行に配置するか、又は、それぞれ、1個又は複数個のスリット形状の開口をコイル延出方向と平行に配置することが好ましい。ガス供給装置40からシースガス噴出口18を経て一定流速で供給されるシースガスは、ソレノイドコイル9Bを格納した絶縁部材(コイルケース16)の壁面を保護するために供給され、Ar+Hガスなどが使用される。ガス供給装置40からプラズマガス噴出口19を経て一定流速で供給されるプラズマガスは、プラズマ生成に必要なために供給され、Arガスなどが使用される。
 コイルケース16は、ソレノイドコイル9Bを内蔵した絶縁材料(例えば、誘電体(セラミック、石英など))で構成されている。コイルケース16は、ベースブロック15の凹部15aに上部から挿入されて、凹部15aの底面とコイルケース16との間に、断面U字形状の空間45を構成している。
 ソレノイドコイル9は、筒状チャンバ7内に高周波電磁界を発生させるものである。コイルケース16は、例えば誘電体で構成される。
 ソレノイドコイル9Bへの給電のために、ソレノイドコイル9Bの両端部の線状部14Bが、ソレノイドコイル9Bの中心軸10Bの方向とは垂直な向きに曲げられ、プラズマ噴出口4Bとは逆の向きにコイルケース16の外部に引出されている。
 このような構成により、ソレノイドコイル9Bをあらかじめコイルケース16に組み込んだ状態で、コイルケース16と、ベースブロック15と、リング17とを組み立てることができるので、組み立てやすい装置を実現できる。
 筒状チャンバ7B内にガス供給装置40からガス噴出口18及び19よりガスをそれぞれ一定流速で供給しつつ、プラズマ噴出口4Bから基材2に向けてガスを噴出させながら、高周波電源41よりソレノイドコイル9Bに高周波電力を供給することにより、筒状チャンバ7Bの空間45内にプラズマPを発生させ、プラズマ噴出口4BからプラズマPを基材2に照射する。ソレノイドコイル9Bの中心軸10Bの方向と、プラズマ噴出口4B(開口部)の長手方向と、基材載置台1の基材載置面1aとは、平行に配置されている。プラズマ噴出口4B(開口部)の長手方向とは垂直な向き(図7における紙面を貫通する垂直な向き、図8における矢印の向き)に、筒状チャンバ7Bを含むプラズマトーチユニット3Bと基材載置台1とを移動装置42により相対的に移動しながら基材表面を熱処理することができる。このようにして、基材2の表面近傍11を均一に熱処理することができる。
 ソレノイドコイル9Bは、螺旋形の銅管であり、内部に冷却水を流して冷却している。これにより、コイルケース16の冷却も実現される。また、ベースブロック15とリング17との内部にも水冷配管がそれぞれ設けられ、水冷配管内に冷却水を流すことにより、ベースブロック15とリング17との冷却を行い、プラズマPからの熱ダメージを低減している。
 この構成においては、筒状チャンバ7Bの長手方向をなす壁が金属(ベースブロック15及びリング17)で構成され、ソレノイドコイル9Bが筒状チャンバ7Bの内側に設けられており、プラズマ噴射口4Bと基材載置台1との間に障害物は無く、長手方向の処理の均一性が高くなる。
 また、プラズマ噴射口4Bの長尺方向の長さが、基材2の幅より大きくなっているので、一度の走査(プラズマトーチユニット3Bと基材載置台1とを相対的に移動すること)で基材2の表面近傍11の全体を熱処理することができる。
 また、筒状チャンバ7B内にガスを一定流速で供給するガス噴出口18、19が、ソレノイドコイル9Bの中心軸10Bの方向と平行で、かつ、プラズマ噴出口4Bと対向する面に設けられている。
 この構成においては、筒状チャンバ7B内のガス流れの向きが、ソレノイドコイル9Bの中心軸10Bとは垂直な方向になる。このような構成により、ガス噴出口18、19から基材載置台1側に向かうガスの流れがスムーズになって層流化しやすく、安定したプラズマ処理が可能となる。
 また、図8に示すように、ベースブロック15の基材載置台1の基材載置面1aに対向する面に、プラズマ噴出口4Bを挟むように、複数のシールドガス噴射口20が設けられている。プラズマ噴出口4B(開口部)の長手方向とは垂直な向き(図7における紙面を貫通する垂直な向き、図8における矢印の向き)沿いに、プラズマ噴出口4Bに対して、複数のシールドガス噴射口20が等間隔離れて(言い換えれば、プラズマ噴出口4Bの長手方向中心軸に対して対称に)配置されるのが好ましい。制御装置43で制御されるガス供給装置40Bから複数のシールドガス噴射口20を経て一定流速で供給されるシールドガスは、大気中の酸素又は二酸化炭素など、処理に不要、あるいは、悪影響を及ぼすガスのプラズマ照射面への混入を低減するために供給され、Nガスなどが使用される。シールドガス噴射口20は、例えば、それぞれ、複数個の開口をコイル延出方向と平行に配置するか(図9B参照)、又は、それぞれ、1個又は複数個のスリット形状の開口をコイル延出方向と平行に配置することが好ましい。
 このような構成により、プラズマ生成に適したプラズマガスと、筒状チャンバ7Bの内壁、又は、ソレノイドコイル9Bを格納した絶縁部材(コイルケース16)の壁面を保護するシースガスとに分けて、ガス種又はガス流量などを適宜調整することにより、安定したプラズマ処理を可能とするほか、複数のシールドガス噴射口20からシールドガスを別途供給して、大気中の酸素、二酸化炭素など、処理に不要、あるいは悪影響を及ぼすガスのプラズマ照射面への混入を低減することが可能となる。
 このような熱プラズマ処理装置において、筒状チャンバ7B内にシースガス噴出口18よりAr+Hガス、プラズマガス噴出口19よりArガス、シールドガス噴出口20からNガスをそれぞれ一定流速で供給しつつ、プラズマ噴出口4から基材2に向けてガスを噴出させながら、高周波電源41より13.56MHzの高周波電力を、ソレノイドコイル9Bに供給する。このように動作させることにより、筒状チャンバ7内にプラズマPを発生させ、プラズマ噴出口4からプラズマPを基材2に照射するとともに誘導結合型プラズマトーチユニット3Bを基材2に対して相対的に走査することで、半導体膜の結晶化などの熱処理を行うことができる。
 第3実施形態においては、ソレノイドコイル9Bはプラズマに近接した配置でプラズマと結合するため、電力効率に優れるという利点がある。また、ソレノイドコイル9Bはコイルケース16に格納されているので、プラズマPとソレノイドコイル9Bとが接触せず、プラズマPへの銅の混入又はアーク放電が非常に起きにくい。
 また、筒状チャンバ7Bをソレノイドコイル9Bの中心軸10Bとは垂直な面で切った断面(図8)における筒状チャンバ7Bの内部の空間45の縦断面がU字状形状となっており、ガス噴出口18、19から基材載置台1側に向かうガスの流れが極めてスムーズになって層流化しやすく、非常に安定したプラズマ処理が可能となる。
 (第4実施形態)
 以下、本発明の第4実施形態について、図9A~図10Bを参照して説明する。
 図9Aは、本発明の第4実施形態における熱プラズマ処理装置の構成を示すもので、誘導結合型プラズマトーチユニット3Cの長尺方向に平行で、かつ、ソレノイドコイル9Cの中心軸10Cを含み、かつ、基材に垂直な面で切った断面図である。図9Bは、図9Aの本発明の第4実施形態におけるプラズマ処理装置と基材及び基材載置台との関係を示すプラズマ処理装置の底面図であって、シールドガス噴射口の配置を示す図である。また、図10Aは、図9Aに示した破線E-Eで切った切断部端面図である。図10Bは、図9Aの本発明の第4実施形態におけるプラズマ処理装置と基材及び基材載置台との関係を示すプラズマ処理装置の底面図であって、シールドガス噴射口20の図示を省略して、代わりに、シースガス噴出口18とプラズマガス噴出口19との配置関係を示す図である。
 図9A及び図10において、コイルケース16は内部にソレノイドコイル9Cを収納する空間16Caがあり、その空間16Ca内に絶縁性流体21が満たされている。よって、ソレノイドコイル9Cは、絶縁性流体21に浸され、かつ、絶縁性流体21がチラーによって循環し、コイルケース16C内を流れることで、ソレノイドコイル9C及びコイルケース16Cが冷却される。
 このような構成により、ソレノイドコイル9Cと、ソレノイドコイル9Cを格納した絶縁部材としてのコイルケース16Cの双方を、効果的に冷却することが可能となる。また、ソレノイドコイル9Cとしてチューブ形のパイプを用いる必要がないので、成形がしやすいという利点がある。絶縁性流体21としては、市水、純水、還元水、又は、絶縁オイルなどを用いることができる。
 なお、それ以外の構成については、第3実施形態と同じであるため、同じ符号を付して、ここでは説明を省略する。
 (第5実施形態)
 以下、本発明の第5実施形態について、図11~図12を参照して説明する。
 図11、図12は、本発明の第5実施形態における熱プラズマ処理装置の構成を示すものである。これらの図において、ソレノイドコイル9Dの中心軸に垂直な面で切った切断部端面図である。誘導結合型プラズマトーチユニット3Dの長尺方向に平行で、かつ、ソレノイドコイル9Dの中心軸を含み、かつ、基材2に垂直な面で切った切断部端面図は、第3実施形態における図7と同じであり、図11及び図12は、図7に示した破線D-Dで切った切断部端面図である。
 図11において、ベースブロック15Dは、上面で開口しかつ大きく下向きにくぼんだ凹部15Daを有する四角柱状の金属材料(例えば真鍮)で構成されている。るベースブロック15Dの凹部15Daの内部形状は、縦断面形状において、上部から中央部までは下向きに真っ直ぐな一対の側壁15Dbで構成し、中央部から下端に向けて、下端面の中央に配置されたスリット状のプラズマ噴出口4Bに近いほど狭くなるように一対の傾斜面15Dcで構成されている。
 第3実施形態では、ベースブロック15の内部断面を円弧状としているが、第5実施形態のベースブロック15では、図11及び図12のように、上部から中央部までは下向きに真っ直ぐな一対の側壁15Dbで構成し、中央部から下端に向けて、下端面の中央に配置されたスリット状のプラズマ噴出口4Bに近いほど狭くなるように一対の傾斜面15Dcで三角形状に構成するようになっている。このような構成により、ガス噴出口18、19から基材載置台1側に向かうガスの流れがさらにスムーズになって層流化しやすく、非常に安定したプラズマ処理が可能となる。なお、それ以外の構成については、第3実施形態と同じであるため、同じ符号を付して、ここでは説明を省略する。また、制御装置43などの装置も、第3実施形態と同じであるため、ここでは図示及び説明を省略する。
 また、図12においては、金属材料で構成されるベースブロック15の内部形状が、前記したようにスリット状のプラズマ噴出口4に近いほど狭くなるように構成されていることに加え、コイルケース16Dの外形も、プラズマ噴出口4に近いほど狭くなるように下向き凸形状でかつ先端が三角形状に構成されている。第3実施形態では、コイルケース16の外形断面を円弧状としたが、第5実施形態では、図12のように、三角形状となっている。このような構成により、ベースブロック15の凹部15Daの底面とコイルケース16Dとの間に形成される空間45Dの下部が断面V字形状となり、ガス噴出口18、19から基材載置台1側に向かうガスの流れがさらにスムーズになって層流化しやすく、非常に安定したプラズマ処理が可能となる。この構成では、ソレノイドコイル9Dを円筒状の螺旋形状とするのではなく、三角柱状の螺旋形状としてもよい。
 なお、それ以外の構成については、第3実施形態と同じであるため、ここでは説明を省略する。
 (第6実施形態)
 以下、本発明の第6実施形態について、図13を参照して説明する。なお、この第6実施形態においては、制御装置43とガス供給装置40と高周波電源41と移動装置42となどとの関係は先の実施形態と同様であるため、図示は省略する。
 図13は、本発明の第6実施形態における熱プラズマ処理装置の構成を示すもので、誘導結合型プラズマトーチユニット3Eの長尺方向に平行で、かつ、ソレノイドコイル9Eの中心軸10を含み、かつ、基材2に垂直な面で切った断面図である。
 図13においては、処理したい基材2の幅が大きい(例えば、幅又は直径が100mm以上)場合の熱プラズマ処理装置の構成を示している。第3実施形態における図7との違いは、誘導結合型プラズマトーチユニット3Eが長尺方向に長くなるとともに、ソレノイドコイル9Eの長さも長くなり、また、ソレノイドコイル9Eの巻き数も多くなっている。なお、それ以外の構成については、第3実施形態と同じであるため、ここでは説明を省略する。
 (第7実施形態)
 以下、本発明の第7実施形態について、図14を参照して説明する。なお、この第7実施形態においては、制御装置43とガス供給装置40と高周波電源41と移動装置42となどとの関係は先の実施形態と同様であるため、図示は省略する。
 図14は本発明の第7実施形態における熱プラズマ処理装置の構成を示すもので、誘導結合型プラズマトーチユニット3Fの長尺方向に平行で、かつ、ソレノイドコイル9Fの中心軸10を含み、かつ、基材2に垂直な面で切った断面図である。
 図14においては、処理したい基材2の幅が大きい(例えば、幅又は直径が100mm以上)場合の熱プラズマ処理装置の構成を示している。第6実施形態における図13との違いは、ソレノイドコイル9Fの巻き方である。第7実施形態においては、ソレノイドコイル9Fの中央部9Faの単位長さ当たりの巻き数よりも、両端部9Fbの単位長さ当たりの巻き数を増している。つまり、ソレノイドコイル9Fの単位長さ当たりの巻き数を、意図的に、ソレノイドコイル9Fの長手方向に不均一としている。さらに言い換えると、ソレノイドコイル9Fの単位長さ当たりの巻き数に関して、ソレノイドコイル9Fの中央部9Faよりも両端部9Fbの方が密となるように構成している。
 トーチユニット3Fは、その構造上、筒状チャンバ7内のプラズマ密度が長手方向の両端部では低くなりがちである。これは、両端部ではベースブロック15の内壁面へのプラズマの損失が生じるためである。そこで、第7実施形態では、ソレノイドコイル9Fの中央部9Faよりも両端部9Fbの方が密となるようにソレノイドコイル9Fを巻くことにより、両端部のプラズマ生成量を高め、長手方向の処理の均一性を高めている。
 ソレノイドコイル9Fの巻き方(単位長さ当たりの巻き数を、どのように長手方向に不均一とするか)は、筒状チャンバ7の大きさ、用いるガス種などによって、適宜選択することができる。なお、それ以外の構成については、第6実施形態と同じであるため、ここでは説明を省略する。
 (第9実施形態第8実施形態)
 以下、本発明の第9実施形態第8実施形態について、図15Aを参照して説明する。
 図15Aは、本発明の第9実施形態第8実施形態における熱プラズマ処理装置の構成を示すもので、誘導結合型プラズマトーチユニット3Gの長尺方向に平行で、かつ、ソレノイドコイル22,23,24の中心軸10を含み、かつ、基材2に垂直な面で切った断面図である。
 図15Aにおいては、処理したい基材2の幅が大きい(例えば、幅又は直径が100mm以上)場合の熱プラズマ処理装置の構成を示している。第6実施形態における図13との違いは、3つのソレノイドコイル22、23、24でトーチユニット3Gを構成している点である。つまり、長手方向に複数に分割されたソレノイドコイル22,23,24を用いている。これらのソレノイドコイル22~24は、別個の高周波電源41a,41b,41cによって制御され、筒状チャンバ7内のプラズマ密度分布を長手方向に制御することができる。なお、この場合も、ソレノイドコイルの単位長さ当たりの巻き数に関して、図14のように、中央部のソレノイドコイル23よりも両端部のソレノイドコイル22,24の方が密となるように構成してもよい。
 ソレノイドコイル22~24の長さを異なるものの組合せとすること、ソレノイドコイルの数を3以外の任意数とすること、複数のソレノイドコイルを直列又は並列に接続し、1つの高周波電源41で駆動すること、なども可能である。なお、それ以外の構成については、第6実施形態と同じであるため、ここでは説明を省略する。
 (第9実施形態)
 以下、本発明の第9実施形態について、図18を参照して説明する。
 図18は、本発明の第9実施形態におけるプラズマ処理装置の構成を示すもので、誘導結合型プラズマトーチユニットTの長尺方向に垂直な面で切った断面図であり、図19Aに相当する。
 図18において、石英ブロック64に、長尺チャンバに平行に設けられ、かつ、誘電体で囲まれた長尺の穴が設けられ、その内部に長尺のソレノイドコイル63が収納されている。プラズマガスは、プラズマガスマニホールド69から、真鍮ブロック65及び石英ブロック64を貫通するプラズマガス供給配管70、プラズマガス供給穴71を介して、トーチユニットTの側方から長尺チャンバ内部の空間67に供給される。また、石英ブロック64が、空気層を介して、接地された導体ケースとしての真鍮ブロック65の内部に収納されている。
 このような構成によれば、石英製部品の点数を少なくすることができ、簡単な構成のプラズマ処理装置を実現できる。さらに、石英ブロック64と真鍮ブロック65又は真鍮蓋66の間の隙間にArなどの不活性ガスが侵入することで発生する恐れのある異常放電を、効果的に避けることができる。Arなどの不活性ガスの滞留をより確実に抑制するには、空気層をトーチユニット外部の空間と連通させる穴を設けたり、ファンなどを使って、空気層の気体とトーチユニット外部の空間にある気体との交換を促進したりすることも有効である。
 なお、ここでは、トーチユニット外部の空間の雰囲気が空気であることを前提に説明したが、トーチユニット外部の空間の雰囲気がNなどの不活性かつ大気圧での放電開始電圧が高いガスである場合も、同様の効果がある。あるいは、この空気層に空気やNなどを流量制御機器を用いて供給し、Arなどの不活性ガスの滞留を避けることも有効である。
 また、本第9実施形態においては、石英ブロック64、ひいては誘導結合型プラズマトーチユニットTの軽量化を図ることができるという利点もある。
 なお、プラズマガス供給穴71は、プラズマ噴出口68と平行なスリット状のガス出口であってもよいし、プラズマ噴出口68と平行に配置された多数の穴状のガス出口であってもよい。
 図19A~図26には、前記実施形態の種々の変型例を示している。なお、61は基材載置台、62は基材、66は真鍮蓋、72は石英管、73はシールドガスノズル、74はシールドガスマニホールド、75は冷却水配管、76は真鍮ブロック、77は樹脂ケース、78は冷却水マニホールド、79は銅ブロック、80はプラズマガス供給管、81は薄膜、82は石英管である。
 また、プラズマガス供給配管70が接地された導体に囲まれる構成としてもよい。プラズマガス供給配管70が誘電体製である場合は、配管内部に高周波電磁界が照射され、配管内部で望ましくない放電を生じることがある。プラズマガス供給配管70が接地された導体に囲まれる構成とすることにより、このような望ましくない放電を効果的に抑制できる。
 以上述べた熱プラズマ処理装置は、本発明の適用範囲のうちの典型例を例示したに過ぎない。
 本発明の種々の構成によって、基材2の表面近傍を高温処理することが可能となるが、従来例で詳しく述べたTFT用半導体膜の結晶化又は太陽電池用半導体膜の改質に適用可能であることは勿論、プラズマディスプレイパネルの保護層の清浄化若しくは脱ガス低減、又は、シリカ微粒子の集合体で構成される誘電体層の表面平坦化若しくは脱ガス低減、又は、種々の電子デバイスのリフロー、又は、固体不純物源を用いたプラズマドーピングなど、様々な表面処理に適用できる。また、本発明は、太陽電池の製造方法において、シリコンインゴットを粉砕して得られる粉末を基材上に塗布し、これにプラズマを照射して溶融させ多結晶シリコン膜を得る方法にも適用可能である。
 また、プラズマトーチユニット3,3A,3B,又は,Tなどを、固定された基材載置台1又は61に対して走査する場合を例示したが、固定されたプラズマトーチユニット3,3A,3B,又は,Tなどに対して、基材載置台1又は61を移動装置で走査するようにしてもよい。
 また、螺旋形のソレノイドコイル9,9A~9F,22~24などは、図15Bに示すように、特開平8-83696号公報に開示されているような、多重の螺旋形のコイル9Hであってもよい。このような構成とすることにより、ソレノイドコイルのインダクタンスを低減し、電力効率の改善を図ることができる。これは、処理したい基材2の幅が大きい場合、すなわち、誘導結合型プラズマトーチユニット又はソレノイドコイルが長尺方向に長くなる場合に特に有効である。
 また、ガス供給装置40,40Bから各ガス噴出口18,19,20へガスを供給するとき、各ガス噴出口18,19,20の複数の開口から均一なガス供給を行うため、マニホールドを介して供給するようにしてもよい。
 また、図9B又は図10Bに示すように、コイル延出方向と平行に、各ガス噴出口18,19,20は点状の開口が複数並べられて配置されていてもよく、あるいは、コイル延出方向と平行に線状(スリット状)の開口が配置されていてもよい。
 また、金属材料で構成される部品を用いた構成を例示したが、金属材料で構成される部品のうち、筒状チャンバ7の内壁にあたる部分を絶縁体材料でコーティングすることにより、プラズマへの金属材料の混入を防ぐとともにアーク放電を抑制することも可能である。
 また、プラズマの着火を容易にするために、着火源を用いることも可能である。着火源としては、ガス給湯器などに用いられる点火用スパーク装置などを利用できる。
 また、この明細書においては、簡単のため「熱プラズマ」という言葉を用いているが、熱プラズマと低温プラズマとの区分けは厳密には難しく、また、例えば、非特許文献(田中康規ほか、「熱プラズマにおける非平衡性」プラズマ核融合学会誌、Vol.82、No.8(2006)pp.479-483)において解説されているように、熱的平衡性のみでプラズマの種類を区分することも困難である。本発明は、基材2を熱処理することを一つの目的としており、熱プラズマ、熱平衡プラズマ、高温プラズマなどの用語にとらわれず、高温のプラズマを照射する技術に関するものに適用可能である。
 また、基材2の表面近傍をごく短時間だけ均一に高温熱処理する場合について詳しく例示したが、反応ガスによるプラズマ又はプラズマと反応ガス流を同時に基材へ照射して基材を低温プラズマ処理する場合においても、本発明は適用できる。プラズマガス又はシースガスに反応ガスを混ぜることにより、反応ガスによるプラズマを基材へ照射し、エッチング又はCVDが実現できる。あるいは、プラズマガス又はシースガスとしては希ガス又は希ガスに少量のHガスを加えたガスを用いつつ、シールドガスとして反応ガスを含むガスを供給することによって、プラズマと反応ガス流を同時に基材へ照射し、エッチング又はCVD又はドーピングなどのプラズマ処理を実現することもできる。プラズマガス又はシースガスとしてアルゴンを主成分とするガスを用いると、実施例で詳しく例示したように、熱プラズマが発生する。
 一方、プラズマガス又はシースガスとしてヘリウムを主成分とするガスを用いると、比較的低温のプラズマを発生させることができる。このような方法で、基材をあまり加熱することなく、エッチング又は成膜などの処理が可能となる。
 エッチングに用いる反応ガスとしては、ハロゲン含有ガス、例えば、C(x、yは自然数)、SFなどがあり、シリコン又はシリコン化合物などをエッチングすることができる。反応ガスとしてOを用いれば、有機物の除去、レジストアッシングなどが可能となる。CVDに用いる反応ガスとしては、モノシラン、ジシランなどがあり、シリコン又はシリコン化合物の成膜が可能となる。
 あるいは、TEOS(Tetraethoxysilane)に代表されるシリコンを含有した有機ガスとOの混合ガスを用いれば、シリコン酸化膜を成膜することができる。その他、撥水性又は親水性を改質する表面処理など、種々の低温プラズマ処理が可能である。従来技術(例えば、特許文献7に記載のもの)に比較すると、誘導結合型であるため、単位体積あたり高いパワー密度を投入してもアーク放電に移行しにくいため、より高密度なプラズマが発生可能であり、その結果、速い反応速度が得られ、基材の所望の被処理領域全体を短時間で処理することが可能となる。
 なお、上記様々な実施形態又は変形例のうちの任意の実施形態又は変形例を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
 本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形又は修正は明白である。そのような変形又は修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
 以上のように、本発明にかかるプラズマ処理装置及び方法は、TFT用半導体膜の結晶化又は太陽電池用半導体膜の改質に適用可能であることは勿論、プラズマディスプレイパネルの保護層の清浄化若しくは脱ガス低減、又は、シリカ微粒子の集合体で構成される誘電体層の表面平坦化若しくは脱ガス低減、又は、種々の電子デバイスのリフローなど、様々な表面処理において、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、基材の所望の被処理領域全体を短時間で処理する上で有用な発明である。
 また、本発明にかかるプラズマ処理装置及び方法は、種々の電子デバイスなどの製造における、エッチング又は成膜又は表面改質などの低温プラズマ処理において、基材の所望の被処理領域全体を短時間で処理する上で有用な発明である。

Claims (13)

  1.  スリット状の開口部を備える筒状チャンバと、
     前記チャンバ内にガス導入口を介してガスを供給するガス供給装置と、
     前記開口部の長手方向と平行なコイル延出方向を有しかつ前記チャンバ内に高周波電磁界を発生させるソレノイドコイルと、
     前記コイルに高周波電力を供給する高周波電源と、
     前記開口部と対向して配置され、かつ基材を基材載置面に載置する基材載置台と、
     前記開口部の長手方向と前記基材載置台の前記基材載置面とが平行な状態を維持しながら、前記チャンバと前記基材載置台とを相対的に移動させる移動装置と、を備えるプラズマ処理装置。
  2.  前記移動装置は、前記開口部の長手方向に対して直交する方向沿いに、前記チャンバと前記基材載置台とを相対的に移動させる、請求項1に記載のプラズマ処理装置。
  3.  前記筒状チャンバは誘電体の円筒で構成されるとともに、前記チャンバの外側に前記コイルが設けられてなる、請求項1又は2に記載のプラズマ処理装置。
  4.  前記筒状チャンバは金属の円筒で構成されるとともに、前記チャンバの内側に前記コイルが設けられてなる、請求項1又は2に記載のプラズマ処理装置。
  5.  前記ガス供給装置から前記チャンバにガスを供給する複数のガス導入口は、前記開口部の長手方向と平行に設けられ、かつ前記開口部と対向する面に設けられている、請求項1又は2に記載のプラズマ処理装置。
  6.  前記コイルの両端部の線状部は、前記コイルの延出方向に対して垂直な向きに曲げられ、前記筒状チャンバの開口部とは逆の向き、かつ前記チャンバの外側に引出されている、請求項1又は2に記載のプラズマ処理装置。
  7.  前記チャンバを前記コイルの延出方向に対して垂直な面で切った断面形状のうち、前記チャンバ内部の空間は、環状である、請求項1又は2に記載のプラズマ処理装置。
  8.  前記チャンバを前記コイルの延出方向に対して垂直な面で切った断面形状のうち、前記チャンバ内部の空間は、U字状である、請求項1又は2に記載のプラズマ処理装置。
  9.  前記コイルは絶縁部材のコイルケースの空間内に収納され、前記空間内の絶縁性流体に前記コイルが浸され、かつ、前記絶縁性流体が前記空間内で流れることによって前記コイルが冷却される、請求項1又は2に記載のプラズマ処理装置。
  10.  前記ガス供給装置から前記ガス導入口を介して前記チャンバ内に供給する前記ガスの供給系統は、シースガス用とプラズマガス用との2系統以上で構成されてなる、請求項1又は2に記載のプラズマ処理装置。
  11.  前記コイルの単位長さ当たりの巻き数は、前記コイルが延出方向において不均一である、請求項1又は2に記載のプラズマ処理装置。
  12.  前記ソレノイドコイルは、前記コイルの延出方向において複数に分割されて構成されてなる、請求項1又は2に記載のプラズマ処理装置。
  13.  筒状チャンバ内にガスを供給しつつ、前記チャンバに形成されたスリット状の開口部から、基材載置台の基材載置面に載置された基材に向けてガスを噴出すると共に、前記開口部の長手方向と平行なコイル延出方向を有するソレノイドコイルに高周波電力を供給することで、前記チャンバ内に高周波電磁界を発生させ、
     前記開口部の長手方向と前記基材載置台の前記基材載置面とが平行な状態を維持しながら、前記チャンバと前記基材載置台とを相対的に移動しながら、前記基材の表面を熱処理するプラズマ処理方法。
PCT/JP2011/002609 2010-05-13 2011-05-11 プラズマ処理装置及び方法 WO2011142125A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011538783A JP4889834B2 (ja) 2010-05-13 2011-05-11 プラズマ処理装置及び方法
US13/582,557 US8703613B2 (en) 2010-05-13 2011-05-11 Plasma processing apparatus and plasma processing method
CN201180012319.0A CN102782817B (zh) 2010-05-13 2011-05-11 等离子体处理装置及方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010-110743 2010-05-13
JP2010110743 2010-05-13
JP2010196387 2010-09-02
JP2010-196387 2010-09-02
JP2011-039787 2011-02-25
JP2011039787 2011-02-25

Publications (1)

Publication Number Publication Date
WO2011142125A1 true WO2011142125A1 (ja) 2011-11-17

Family

ID=44914185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002609 WO2011142125A1 (ja) 2010-05-13 2011-05-11 プラズマ処理装置及び方法

Country Status (4)

Country Link
US (1) US8703613B2 (ja)
JP (1) JP4889834B2 (ja)
CN (1) CN102782817B (ja)
WO (1) WO2011142125A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013503430A (ja) * 2009-08-27 2013-01-31 モザイク・クリスタルズ・リミテッド 高真空チャンバー用貫通型プラズマ発生装置
JP2013157101A (ja) * 2012-01-27 2013-08-15 E Square:Kk プラズマ表面処理装置
JP2013211244A (ja) * 2012-03-02 2013-10-10 Panasonic Corp プラズマ処理装置及び方法
WO2014045565A1 (ja) * 2012-09-18 2014-03-27 パナソニック株式会社 プラズマ処理装置及び方法
WO2014045547A1 (ja) * 2012-09-18 2014-03-27 パナソニック株式会社 プラズマ処理装置及びプラズマ処理方法
US20140291290A1 (en) * 2013-03-28 2014-10-02 Panasonic Corporation Plasma processing apparatus and method thereof
US20150299897A1 (en) * 2012-09-24 2015-10-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for forming an epitaxial silicon layer
US9209043B2 (en) 2014-05-08 2015-12-08 Panasonic Intellectual Property Management Co., Ltd. Semiconductor manufacturing method and semiconductor manufacturing apparatus
JP2016001611A (ja) * 2013-03-28 2016-01-07 パナソニックIpマネジメント株式会社 プラズマ処理装置及び方法
JP2016015322A (ja) * 2015-08-05 2016-01-28 パナソニックIpマネジメント株式会社 誘導結合型プラズマ処理装置及び方法
JP2016062803A (ja) * 2014-09-19 2016-04-25 パナソニックIpマネジメント株式会社 プラズマ処理装置及び方法、電子デバイスの製造方法
JP2017212195A (ja) * 2016-05-18 2017-11-30 パナソニックIpマネジメント株式会社 プラズマ処理装置及びプラズマ処理方法、電子デバイスの製造方法
US10115565B2 (en) 2012-03-02 2018-10-30 Panasonic Intellectual Property Management Co., Ltd. Plasma processing apparatus and plasma processing method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102387653B (zh) * 2010-09-02 2015-08-05 松下电器产业株式会社 等离子体处理装置及等离子体处理方法
JP5617817B2 (ja) * 2011-10-27 2014-11-05 パナソニック株式会社 誘導結合型プラズマ処理装置及び誘導結合型プラズマ処理方法
CN103052249A (zh) * 2013-01-11 2013-04-17 哈尔滨工业大学 一种射流等离子体密度分布调节器
US9273393B2 (en) * 2014-01-25 2016-03-01 Yuri Glukhoy Torch system for depositing protective coatings on interior walls and recesses present on the flat surface of an object
EP2960358A1 (en) * 2014-06-25 2015-12-30 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Plasma source and surface treatment method
JP6379355B2 (ja) * 2015-04-02 2018-08-29 パナソニックIpマネジメント株式会社 プラズマ処理装置及び方法、電子デバイスの製造方法
JP6295439B2 (ja) * 2015-06-02 2018-03-20 パナソニックIpマネジメント株式会社 プラズマ処理装置及び方法、電子デバイスの製造方法
CN105491779B (zh) * 2016-02-22 2017-09-29 衢州昀睿工业设计有限公司 一种电离协同的等离子体热解装置
US11345991B2 (en) * 2018-09-27 2022-05-31 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device, method and machine of manufacture
CN114836736A (zh) * 2021-02-01 2022-08-02 江苏菲沃泰纳米科技股份有限公司 等离子体镀膜设备和镀膜方法
CN115029686A (zh) * 2022-07-21 2022-09-09 深圳市拉普拉斯能源技术有限公司 一种线性icp等离子体处理装置及其处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02504046A (ja) * 1988-04-23 1990-11-22 グリコ‐メタル‐ウエルケ・デーレン・ウント・ロース・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 支持層の上に設けた機能層、特に摩擦軸受層を持つ積層材料または積層加工物
JP2003109799A (ja) * 2001-09-27 2003-04-11 Sakamoto Fujio プラズマ処理装置
JP2004296729A (ja) * 2003-03-26 2004-10-21 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2006060130A (ja) * 2004-08-23 2006-03-02 Saitama Univ 薄膜結晶化方法及び装置
JP2007505451A (ja) * 2003-09-08 2007-03-08 ロート・ウント・ラウ・アクチェンゲゼルシャフト 直線プラズマ放電開口部を有するecrプラズマ源

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2504046B2 (ja) 1987-04-09 1996-06-05 トヨタ自動車株式会社 内燃機関の2次空気制御装置
JPH04284974A (ja) 1991-03-13 1992-10-09 Nippon Steel Corp 高速ガスシールドアーク溶接方法
JPH08118027A (ja) 1994-10-17 1996-05-14 Nippon Steel Corp プラズマジェットの広幅化方法
DE29805999U1 (de) 1998-04-03 1998-06-25 Agrodyn Hochspannungstechnik GmbH, 33803 Steinhagen Vorrichtung zur Plasmabehandlung von Oberflächen
KR100277833B1 (ko) * 1998-10-09 2001-01-15 정선종 라디오파 유도 플라즈마 소스 발생장치
DE29911974U1 (de) 1999-07-09 2000-11-23 Agrodyn Hochspannungstechnik GmbH, 33803 Steinhagen Plasmadüse
JP4284974B2 (ja) 2001-11-15 2009-06-24 住友電気工業株式会社 光モジュール
WO2004031440A1 (ja) * 2002-09-30 2004-04-15 Toppan Printing Co., Ltd. 薄膜成膜方法、薄膜成膜装置および薄膜成膜プロセスの監視方法
US8136479B2 (en) * 2004-03-19 2012-03-20 Sharp Kabushiki Kaisha Plasma treatment apparatus and plasma treatment method
JP2007227069A (ja) * 2006-02-22 2007-09-06 Noritsu Koki Co Ltd プラズマ発生方法および装置ならびにそれを用いるワーク処理装置
JP2007287454A (ja) 2006-04-14 2007-11-01 Seiko Epson Corp プラズマ装置
US20080023070A1 (en) 2006-07-28 2008-01-31 Sanjai Sinha Methods and systems for manufacturing polycrystalline silicon and silicon-germanium solar cells
JP2008053634A (ja) 2006-08-28 2008-03-06 Seiko Epson Corp 半導体膜の製造方法、半導体素子の製造方法、電気光学装置、電子機器
CN102387653B (zh) * 2010-09-02 2015-08-05 松下电器产业株式会社 等离子体处理装置及等离子体处理方法
JP5263266B2 (ja) * 2010-11-09 2013-08-14 パナソニック株式会社 プラズマドーピング方法及び装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02504046A (ja) * 1988-04-23 1990-11-22 グリコ‐メタル‐ウエルケ・デーレン・ウント・ロース・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 支持層の上に設けた機能層、特に摩擦軸受層を持つ積層材料または積層加工物
JP2003109799A (ja) * 2001-09-27 2003-04-11 Sakamoto Fujio プラズマ処理装置
JP2004296729A (ja) * 2003-03-26 2004-10-21 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2007505451A (ja) * 2003-09-08 2007-03-08 ロート・ウント・ラウ・アクチェンゲゼルシャフト 直線プラズマ放電開口部を有するecrプラズマ源
JP2006060130A (ja) * 2004-08-23 2006-03-02 Saitama Univ 薄膜結晶化方法及び装置

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013503430A (ja) * 2009-08-27 2013-01-31 モザイク・クリスタルズ・リミテッド 高真空チャンバー用貫通型プラズマ発生装置
JP2013157101A (ja) * 2012-01-27 2013-08-15 E Square:Kk プラズマ表面処理装置
JP2015144129A (ja) * 2012-03-02 2015-08-06 パナソニックIpマネジメント株式会社 プラズマ処理装置
JP2013211244A (ja) * 2012-03-02 2013-10-10 Panasonic Corp プラズマ処理装置及び方法
US10115565B2 (en) 2012-03-02 2018-10-30 Panasonic Intellectual Property Management Co., Ltd. Plasma processing apparatus and plasma processing method
JPWO2014045547A1 (ja) * 2012-09-18 2016-08-18 パナソニックIpマネジメント株式会社 プラズマ処理装置及びプラズマ処理方法
WO2014045547A1 (ja) * 2012-09-18 2014-03-27 パナソニック株式会社 プラズマ処理装置及びプラズマ処理方法
KR20150043445A (ko) 2012-09-18 2015-04-22 파나소닉 아이피 매니지먼트 가부시키가이샤 플라스마 처리 장치 및 플라스마 처리 방법
CN104641730A (zh) * 2012-09-18 2015-05-20 松下知识产权经营株式会社 等离子体处理装置以及等离子体处理方法
JP2014060036A (ja) * 2012-09-18 2014-04-03 Panasonic Corp 誘導結合型プラズマ処理装置及び方法
WO2014045565A1 (ja) * 2012-09-18 2014-03-27 パナソニック株式会社 プラズマ処理装置及び方法
US9601330B2 (en) 2012-09-18 2017-03-21 Panasonic Intellectual Property Management Co., Ltd. Plasma processing device, and plasma processing method
KR101688338B1 (ko) * 2012-09-18 2016-12-20 파나소닉 아이피 매니지먼트 가부시키가이샤 플라스마 처리 장치 및 플라스마 처리 방법
US20150299897A1 (en) * 2012-09-24 2015-10-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for forming an epitaxial silicon layer
US20140291290A1 (en) * 2013-03-28 2014-10-02 Panasonic Corporation Plasma processing apparatus and method thereof
JP2016001611A (ja) * 2013-03-28 2016-01-07 パナソニックIpマネジメント株式会社 プラズマ処理装置及び方法
US9209043B2 (en) 2014-05-08 2015-12-08 Panasonic Intellectual Property Management Co., Ltd. Semiconductor manufacturing method and semiconductor manufacturing apparatus
JP2016062803A (ja) * 2014-09-19 2016-04-25 パナソニックIpマネジメント株式会社 プラズマ処理装置及び方法、電子デバイスの製造方法
US10181406B2 (en) 2014-09-19 2019-01-15 Panasonic Intellectual Property Management Co., Ltd. Plasma processing apparatus, plasma processing method, and method for manufacturing electronic device
JP2016015322A (ja) * 2015-08-05 2016-01-28 パナソニックIpマネジメント株式会社 誘導結合型プラズマ処理装置及び方法
JP2017212195A (ja) * 2016-05-18 2017-11-30 パナソニックIpマネジメント株式会社 プラズマ処理装置及びプラズマ処理方法、電子デバイスの製造方法

Also Published As

Publication number Publication date
JP4889834B2 (ja) 2012-03-07
JPWO2011142125A1 (ja) 2013-07-22
US20120325777A1 (en) 2012-12-27
US8703613B2 (en) 2014-04-22
CN102782817B (zh) 2015-04-22
CN102782817A (zh) 2012-11-14

Similar Documents

Publication Publication Date Title
JP4889834B2 (ja) プラズマ処理装置及び方法
JP5510436B2 (ja) プラズマ処理装置及びプラズマ処理方法
JP5467371B2 (ja) 誘導結合型プラズマ処理装置及び誘導結合型プラズマ処理方法
JP5429268B2 (ja) プラズマ処理装置及びプラズマ処理方法
JP5500098B2 (ja) 誘導結合型プラズマ処理装置及び方法
JP6191887B2 (ja) プラズマ処理装置
KR101688338B1 (ko) 플라스마 처리 장치 및 플라스마 처리 방법
JP5617817B2 (ja) 誘導結合型プラズマ処理装置及び誘導結合型プラズマ処理方法
JP2013229211A (ja) プラズマ処理装置及び方法
JP5861045B2 (ja) プラズマ処理装置及び方法
JP2013120687A (ja) プラズマ処理装置及びプラズマ処理方法
JP5500097B2 (ja) 誘導結合型プラズマ処理装置及び方法
JP5617818B2 (ja) 誘導結合型プラズマ処理装置及び誘導結合型プラズマ処理方法
JP5182340B2 (ja) プラズマ処理装置及び方法
JP5821984B2 (ja) 電子デバイスの製造方法
JP5413421B2 (ja) 誘導結合型プラズマ処理装置及び方法
JP5056926B2 (ja) プラズマ処理装置及び方法
JP2013098067A (ja) プラズマ処理装置及び方法
JP5187367B2 (ja) プラズマ処理装置及び方法
JP2014060036A (ja) 誘導結合型プラズマ処理装置及び方法
JP6264762B2 (ja) プラズマ処理装置及び方法
JP5578155B2 (ja) プラズマ処理装置及び方法
JP2016015322A (ja) 誘導結合型プラズマ処理装置及び方法
JP2014060037A (ja) プラズマ処理装置及び方法
JP2013037978A (ja) プラズマ処理装置及びプラズマ処理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180012319.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011538783

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780384

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13582557

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11780384

Country of ref document: EP

Kind code of ref document: A1