WO2011142014A1 - 電力変換器の接続装置 - Google Patents

電力変換器の接続装置 Download PDF

Info

Publication number
WO2011142014A1
WO2011142014A1 PCT/JP2010/058057 JP2010058057W WO2011142014A1 WO 2011142014 A1 WO2011142014 A1 WO 2011142014A1 JP 2010058057 W JP2010058057 W JP 2010058057W WO 2011142014 A1 WO2011142014 A1 WO 2011142014A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
converters
power converters
board
lead
Prior art date
Application number
PCT/JP2010/058057
Other languages
English (en)
French (fr)
Inventor
フィゲロア ルベン アレクシス インスンサ
伸広 高橋
井川 英一
岳士 角屋
藤井 洋介
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to EP10851397.9A priority Critical patent/EP2571120B1/en
Priority to JP2012514641A priority patent/JPWO2011142014A1/ja
Priority to CN201080066677.5A priority patent/CN102884689B/zh
Priority to PCT/JP2010/058057 priority patent/WO2011142014A1/ja
Publication of WO2011142014A1 publication Critical patent/WO2011142014A1/ja
Priority to US13/673,457 priority patent/US9252600B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a connection device for a power converter that connects a plurality of single-unit power converters.
  • a single power converter is connected in parallel and operated as a large-capacity power converter.
  • An object of the present invention is to provide a power converter connection device that can easily connect a plurality of single power converters in parallel.
  • a connection device for a power converter is provided with a lead-in board that draws in AC power output from each of a plurality of power converters including a power conversion circuit that converts DC power into AC power,
  • a power converter connection device provided with a plurality of frames for installing each of the plurality of power converters, each of which is provided in each of the plurality of frames and outputs an AC power of the power converter;
  • AC output connection means for connecting, a plurality of cables electrically connecting the AC output connection means and the lead-in board respectively provided in the plurality of frames,
  • a parallel circuit for connecting the plurality of cables in parallel, and a plurality of opening / closing means provided on the lead-in board, each for opening and closing a plurality of AC power electrical paths respectively connecting the plurality of power converters and the parallel circuit.
  • FIG. 1 is a configuration diagram showing a configuration of a main circuit of the power conversion device according to the first embodiment of the present invention.
  • FIG. 2 is a configuration diagram illustrating a configuration of a control system circuit of the power conversion device according to the first embodiment.
  • FIG. 3 is a configuration diagram illustrating the configuration of the power converter connection device according to the first embodiment.
  • FIG. 4 is a configuration diagram showing the configuration of the main circuit of the power conversion device according to the second embodiment of the present invention.
  • FIG. 1 is a configuration diagram showing a configuration of a main circuit of the power conversion device 10 according to the first embodiment of the present invention.
  • FIG. 2 is a configuration diagram illustrating a configuration of a control system circuit of the power conversion device 10 according to the present embodiment.
  • FIG. 3 is a configuration diagram showing the configuration of the power converter connection device 20 according to the present embodiment.
  • symbol is attached
  • the power conversion device 10 includes a power converter connection device 20 and four power converters 3A, 3B, 3C, and 3D.
  • the power converter connection device 20 includes a pull-in board 1 and a connection base 2.
  • the lead-in board 1 includes a circuit that connects the AC sides of the four power converters 3A to 3D in parallel.
  • the lead-in board 1 draws in AC power from the four power converters 3A to 3D.
  • the AC power output from the four power converters 3A to 3D is synthesized by a circuit connected in parallel.
  • the lead-in board 1 outputs AC power synthesized by a circuit connected in parallel.
  • the lead-in board 1 supplies the synthesized large-capacity AC power to the AC load. Further, the lead-in board 1 supplies power to all the power converters 3A to 3D and the control power sources of the lead-in board 1 based on the combined AC power.
  • connection base 2 is a base for installing the lead-in board 1 and the four power converters 3A to 3D on the ground.
  • the lead-in board 1 is installed on the connection base 2.
  • the four power converters 3A to 3D are installed on the connection base 2, the main circuit and the control circuit of the pull-in board 1 and the four power converters 3A to 3D are connected.
  • the power converters 3A to 3D are devices installed in the connection device 20 of the power converter.
  • the power converters 3A to 3D are single power converters that can be operated independently.
  • the power converters 3A to 3D are, for example, power conditioners (PCS, “Power Conditioning System”).
  • PCS power conditioners
  • solar cells 9A, 9B, 9C, and 9D are connected to the DC side, respectively.
  • the AC side of the power converters 3A to 3D is connected to the main circuit of the lead-in board 1 via cables CA, CB, CC, and CD, respectively.
  • the power converters 3A to 3D are connected to the lead-in board 1 via LAN (local area network) lines LA to LD.
  • LAN local area network
  • the main circuit of the power converter 10 will be described with reference to FIG.
  • Each of the power converters 3A to 3D includes a power conversion unit 35, a DC breaker 36, a contactor 37, and a control power switch S3.
  • the power conversion unit 35 includes a power conversion circuit that converts DC power input from the solar cells 9A to 9D into three-phase AC power.
  • the power converter 35 outputs the converted three-phase AC power.
  • the DC breaker 36 is provided on the DC input side of the power conversion unit 35. When the DC breaker 36 is turned on, DC power from the solar cells 9A to 9D is input to the power converter 35. When the DC breaker 36 is opened, DC power from the solar cells 9A to 9D is not input to the power converter 35.
  • the contactor 37 is provided on the AC output side of the power conversion unit 35.
  • the AC output side of the contactor 37 is connected to cables CA to CD.
  • the control power switch S3 is a switch for operating or stopping the power converters 3A to 3D.
  • the lead-in board 1 includes breakers 13A, 13B, 13C, 13D, a transformer 15, a UPS (uninterruptible power system) 16, and a control power switch S1.
  • UPS uninterruptible power system
  • Breakers 13A to 13D are connected to AC output sides of power converters 3A to 3D, respectively, via cables CA to CD, respectively.
  • the output sides of the four breakers 13A to 13D are connected in parallel. Therefore, the AC power output from the four breakers 13A to 13D is combined.
  • the synthesized AC power is supplied as an AC output of the power converter 10 to the AC load and the control power supply of all the power converters 3A to 3D.
  • breakers 13A to 13D When breakers 13A to 13D are turned on, AC power is output from power converters 3A to 3D, respectively.
  • the breakers 13A to 13D When the breakers 13A to 13D are opened, the output of AC power output from the corresponding power converters 3A to 3D is stopped.
  • the transformer 15 converts the synthesized AC power into an AC voltage suitable for the input of the UPS 16.
  • the UPS 16 supplies AC power to the control power sources of all the power converters 3A to 3D and the pull-in board 1 based on the AC power supplied from the transformer 15.
  • the control power switch S1 is a switch for operating or stopping the lead-in board 1.
  • Each of the power converters 3A to 3D includes a display operation unit 31 and a control board 33.
  • the display operation unit 31 has an operation function for operating the power converters 3A to 3D and a display function for displaying information used for monitoring and the like.
  • the display operation unit 31 transmits / receives information to / from the lead-in board 1 or other power converters 3A to 3D via the LAN wirings LA to LD.
  • the operation function is a function for operating the power converters 3A to 3D, the other power converters 3A to 3D, or the devices constituting the pull-in board 1.
  • the DC breaker 36 open / close operation, the contactor 37 open / close operation, or the operation related to the power conversion unit 35 (start operation, There are operations such as adjusting the contents or stopping the operation.
  • the pull-in board 1 there are opening / closing operations of the breakers 13A to 13D.
  • the opening / closing operation of the breakers 13A to 13D As the opening / closing operation of the breakers 13A to 13D with respect to the lead-in board 1, the opening / closing operation of the breakers 13A to 13D corresponding to its own power converters 3A to 3D, the opening / closing operation of the arbitrarily selected breakers 13A to 13D, and all the breakers There is an open / close operation that collectively performs 13A to 13D.
  • the contents displayed on the display / operation unit 31 include the open / close state of the DC breaker 36, the open / close state of the contactor 37, the operating state of the power conversion unit 35, and the like.
  • the control board 33 performs processing related to the control of the power converter 10.
  • the control board 33 receives control commands such as operations transmitted from the display operation unit 31, the lead-in board 1, or other power converters 3A to 3D for the devices constituting the power converters 3A to 3D. do.
  • the control board 33 controls the devices constituting its own power converters 3A to 3D, and outputs control commands to the pull-in board 1 or other power converters 3A to 3D by operations from the display operation unit 31. .
  • the lead-in board 1 includes a display operation unit 11, a HUB 12, the above-described breakers 13A to 13D, and an emergency stop button 14.
  • the HUB 12 is connected to the display operation unit 31 of each of the power converters 3A to 3D by LAN wirings LA to LD.
  • the display operation unit 11 has a function for operating all devices constituting the power conversion device 10 and a function for displaying all information related to the power conversion device 10.
  • the display operation unit 11 has a function equivalent to the display operation unit 31 of each of the power converters 3A to 3D as an operation function for the power converters 3A to 3D.
  • the display operation unit 11 instructs the arbitrary power converters 3A to 3D to display device operations, display an abnormality or warning, send / receive information, and the like.
  • the display operation unit 11 receives information on all the power converters 3A to 3D based on the information received from the HUB 12. Based on the received information, the display operation unit 11 displays arbitrary information related to the power conversion device 10. The display operation unit 11 transmits information to any of the power converters 3A to 3D by transmitting information via the HUB 12.
  • the display operation unit 11 has a function equivalent to that of the display operation unit 31 of each of the power converters 3A to 3D as a function of displaying information regarding the power converters 3A to 3D.
  • the display operation unit 11 displays a state such as current, voltage, or power supplied to the load.
  • the display operation unit 11 displays information such as abnormality, warning, and monitoring of the devices that constitute the power conversion device 10.
  • the emergency stop button 14 is a button for urgently stopping the operation of the power conversion device 10 in an emergency.
  • the emergency stop button 14 When the operator presses the emergency stop button 14, the DC breakers 36 and the contactors 37 of all the breakers 13A to 13D and all the power converters 3A to 3D are opened. In this case, the power conversion operation of the power converters 35 of all the power converters 3A to 3D may be stopped.
  • the configuration of the power converter connection device 20 will be described with reference to FIG.
  • the power converter connection device 20 has a configuration in which the lead-in board 1 is attached to the connection base 2.
  • connection base 2 is a base provided with four frames UA, UB, UC, and UD for installing the four power converters 3A to 3D, respectively.
  • the connection base 2 is made of, for example, a shape steel.
  • the frames UA to UD are provided with AC output connections 21A, 21B, 21C, 21D and connectors 22A, 22B, 22C, 22D.
  • the AC output connection portions 21A to 21D are connection locations for connecting to the AC output ends of the power converters 3A to 3D, respectively.
  • the AC output terminals of the power converters 3A to 3D are connected to the AC output connection portions 21A to 21D, the U-phase, V-phase, and W-phase of the three-phase AC are pulled in by the cables CA, CB, CC, and CD. Connected. Thereby, the main circuit of the power converter device 10 is formed.
  • Connectors 22A to 22D are connection points for connecting LAN wirings LA, LB, LC, and LD for transmitting / receiving information to / from power converters 3A to 3D.
  • a network is formed through which the information can be transmitted and received between the power converters 3A to 3D and the pull-in board 1 by the LAN wirings LA to LD.
  • a large-capacity power conversion device 10 in which a plurality of single-unit power converters 3A to 3D are connected in parallel can be easily configured.
  • a large-capacity power conversion device 10 in which the plurality of power converters 3A to 3D are connected in parallel is used.
  • the work time for configuring can be shortened.
  • the plurality of power converters 3A to 3D can be collectively operated, monitored and managed. . Furthermore, since the lead-in board 1 and each of the power converters 3A to 3D are connected by the connection base 2 via the LAN wirings LA to LD, mutual information transmission / reception between the lead-in board 1 and each of the power converters 3A to 3D is performed. be able to. Thus, the operation, monitoring and management of the entire power conversion device 10 can be performed in any of the lead-in board 1 and each of the power converters 3A to 3D.
  • the operation of the power converter 10 can be easily stopped in an emergency by the emergency stop button 14 provided on the pull-in board 1.
  • breakers 13A to 13D corresponding to the respective power converters 3A to 3D in the draw-in board 1, it is possible to protect the main circuit in the draw-in board 1.
  • FIG. 4 is a configuration diagram showing the configuration of the main circuit of the power conversion device 10A according to the second embodiment of the present invention.
  • the power conversion device 10A is a configuration diagram showing a configuration of a main circuit of the power conversion device 10A according to the first embodiment shown in FIG.
  • the power conversion device 10A replaces the AC power based on the solar cells 9A to 9D with each control power source of all the power converters 3A to 3D and the lead-in panel 1A, and receives AC power supplied from another system AC power source PW. Supply. Others are the same as in the first embodiment.
  • the drawing board 1A has a configuration in which the transformer 15 and the UPS 16 are removed from the drawing board 1 according to the first embodiment shown in FIG.
  • the connection base 2A has a configuration in which the connection base 2 according to the first embodiment shown in FIG. 1 is wired to take in AC power from an external AC power supply PW. Others are the same as in the first embodiment.
  • connection base 2A supplies AC power supplied from an external AC power source PW to the control power sources of the lead-in board 1 and the four power converters 3A to 3D.
  • the power converter 10A can be configured to supply AC power from the external AC power supply PW to the control power supplies of the lead-in panel 1A and the power converters 3A to 3D. Thereby, the effect similar to 1st Embodiment can be acquired.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
  • constituent elements over different embodiments may be appropriately combined.

Abstract

 電力変換器(3A~3D)から引き込む交流電力を並列に接続する引込盤(1)と、各電力変換器(3A~3D)を設置するための枠(UA~UD)が設けられた接続ベース(2)とを備えた電力変換器の接続装置(20)であって、各枠(UA~UD)には、各電力変換器(3A~3D)の主回路を接続するための接続部(21A~21D)が設けられ、引込盤(1)は、各電力変換器(3A~3D)からの交流電力を遮断するブレーカ(13A~13D)を備えている。

Description

電力変換器の接続装置
 本発明は、複数の単機の電力変換器を接続する電力変換器の接続装置に関する。
 一般に、太陽光発電などにおいて、単機の電力変換器を並列に接続して、大容量の電力変換器として運転することが行われている。
 しかしながら、複数の単機の電力変換器を並列に接続する作業は、設置や配線などにおいて多くの労力を要する。
特開平7-67346号公報
 本発明の目的は、複数の単機の電力変換器を容易に並列接続することのできる電力変換器の接続装置を提供することにある。
 本発明の観点に従った電力変換器の接続装置は、直流電力を交流電力に変換する電力変換回路を備えた複数の電力変換器からそれぞれ出力される交流電力を引き込む引込盤が設けられ、前記複数の電力変換器をそれぞれ設置するための複数の枠が設けられた電力変換器の接続装置であって、前記複数の枠にそれぞれ設けられ、前記電力変換器の交流電力を出力する出力端と接続するための交流出力接続手段と、前記複数の枠にそれぞれ設けられた前記交流出力接続手段と前記引込盤とを電気的にそれぞれ接続する複数のケーブルと、
 前記複数のケーブルを並列に接続する並列回路と、前記引込盤に設けられ、前記複数の電力変換器と前記並列回路とをそれぞれ接続する複数の交流電力の電気経路をそれぞれ開閉する複数の開閉手段とを備えている。
図1は、本発明の第1の実施形態に係る電力変換装置の主回路の構成を示す構成図である。 図2は、第1の実施形態に係る電力変換装置の制御系の回路の構成を示す構成図である。 図3は、第1の実施形態に係る電力変換器の接続装置の構成を示す構成図である。 図4は、本発明の第2の実施形態に係る電力変換装置の主回路の構成を示す構成図である。
 以下、図面を参照して、本発明の実施形態を説明する。
(第1の実施形態)
 図1は、本発明の第1の実施形態に係る電力変換装置10の主回路の構成を示す構成図である。図2は、本実施形態に係る電力変換装置10の制御系の回路の構成を示す構成図である。図3は、本実施形態に係る電力変換器の接続装置20の構成を示す構成図である。なお、図中における同一部分には同一符号を付してその詳しい説明を省略し、異なる部分について主に述べる。以降の実施形態も同様にして重複した説明を省略する。
 電力変換装置10は、電力変換器の接続装置20と、4つの電力変換器3A,3B,3C,3Dとを備えている。電力変換器の接続装置20は、引込盤1と、接続ベース2とを備えている。
 引込盤1は、4つの電力変換器3A~3Dの交流側を並列に接続する回路を備えている。引込盤1は、4つの電力変換器3A~3Dの交流電力を引き込む。4つの電力変換器3A~3Dから出力される交流電力は、並列に接続された回路により合成される。引込盤1は、並列に接続する回路により合成された交流電力を出力する。引込盤1は、この合成された大容量の交流電力を交流負荷に供給する。また、引込盤1は、この合成された交流電力に基づいて、全ての電力変換器3A~3D及び引込盤1のそれぞれの制御電源に電力を供給する。
 接続ベース2は、引込盤1及び4つの電力変換器3A~3Dを地面に据え付けるためのベースである。引込盤1は、接続ベース2に設置されている。4つの電力変換器3A~3Dを接続ベース2に設置すると、引込盤1と4つの電力変換器3A~3Dとの主回路及び制御回路が接続される。
 電力変換器3A~3Dは、電力変換器の接続装置20に設置される機器である。電力変換器3A~3Dは、単独で動作させることのできる単機の電力変換器である。電力変換器3A~3Dは、例えばパワーコンディショナー(PCS, Power Conditioning System)である。電力変換器3A~3Dは、それぞれ太陽電池9A,9B,9C,9Dが直流側に接続されている。電力変換器3A~3Dの交流側は、それぞれケーブルCA,CB,CC,CDを介して引込盤1の主回路に接続されている。電力変換器3A~3Dは、LAN(local area network)配線LA~LDを介して引込盤1に接続されている。
 図1を参照して、電力変換装置10の主回路について説明する。
 各電力変換器3A~3Dは、電力変換部35と、直流ブレーカ36と、コンタクター37と、制御電源スイッチS3とを備えている。
 電力変換部35は、太陽電池9A~9Dから入力される直流電力を三相交流電力に変換する電力変換回路を備えている。電力変換部35は、変換した三相交流電力を出力する。
 直流ブレーカ36は、電力変換部35の直流入力側に設けられている。直流ブレーカ36が投入されると、太陽電池9A~9Dからの直流電力が電力変換部35に入力される。直流ブレーカ36が開放されると、太陽電池9A~9Dからの直流電力が電力変換部35に入力されない。
 コンタクター37は、電力変換部35の交流出力側に設けられている。コンタクター37の交流出力側は、ケーブルCA~CDと接続されている。コンタクター37が投入されると、電力変換部35から交流電力が出力される。コンタクター37が開放されると、電力変換部35から交流電力が出力されない。
 制御電源スイッチS3は、電力変換器3A~3Dの運転又は停止をするためのスイッチである。
 引込盤1は、ブレーカ13A,13B,13C,13Dと、変圧器15と、UPS(uninterruptible power system)16と、制御電源スイッチS1とを備えている。
 ブレーカ13A~13Dは、それぞれ電力変換器3A~3Dの交流出力側とそれぞれケーブルCA~CDを介して接続されている。4つのブレーカ13A~13Dの出力側は、並列に接続されている。従って、4つのブレーカ13A~13Dから出力される交流電力は合成される。
 この合成された交流電力は、電力変換装置10の交流出力として、交流負荷及び全ての電力変換器3A~3Dの制御電源に供給される。ブレーカ13A~13Dが投入されると、それぞれ電力変換器3A~3Dから交流電力が出力される。ブレーカ13A~13Dが開放されると、対応する電力変換器3A~3Dから出力された交流電力の出力が停止する。
 変圧器15は、合成された交流電力をUPS16の入力に適した交流電圧に変換する。
 UPS16は、変圧器15から供給された交流電力に基づいて、全ての電力変換器3A~3D及び引込盤1のそれぞれの制御電源に交流電力を供給する。
 制御電源スイッチS1は、引込盤1の運転又は停止をするためのスイッチである。
 図2を参照して、電力変換装置10の制御系の回路について説明する。
 各電力変換器3A~3Dは、表示操作部31と、制御基板33とを備えている。
 表示操作部31は、電力変換器3A~3Dを操作するための操作機能及び監視等に用いる情報を表示するための表示機能を有している。表示操作部31は、LAN配線LA~LDを介して、引込盤1又は他の電力変換器3A~3Dとの情報の送受信を行う。
 操作機能は、自己の電力変換器3A~3D、他の電力変換器3A~3D、又は引込盤1を構成する各機器に対する操作を行なうための機能である。
 例えば、表示操作部31により行なう操作としては、全ての電力変換器3A~3Dに対しては、直流ブレーカ36の開閉操作、コンタクター37の開閉操作、又は電力変換部35に関する操作(運転開始、運転内容の調整、又は運転停止など)の操作がある。引込盤1に対する操作としては、ブレーカ13A~13Dの開閉操作がある。引込盤1に対するブレーカ13A~13Dの開閉操作としては、自己の電力変換器3A~3Dに対応するブレーカ13A~13Dの開閉操作と、任意に選択したブレーカ13A~13Dの開閉操作と、全てのブレーカ13A~13Dを一括して行う開閉操作がある。
 例えば、表示操作部31に表示する内容としては、直流ブレーカ36の開閉状態、コンタクター37の開閉状態、電力変換部35の運転状態などがある。
 制御基板33は、電力変換装置10の制御に関する処理をする。制御基板33は、表示操作部31、引込盤1、又は、自己の電力変換器3A~3Dを構成する機器に対する他の電力変換器3A~3Dから送信された操作等の制御指令を受けて制御をする。制御基板33は、表示操作部31からの操作により、自己の電力変換器3A~3Dを構成する機器の制御、引込盤1、又は他の電力変換器3A~3Dへの制御指令の出力を行う。
 引込盤1は、表示操作部11と、HUB12と、前述したブレーカ13A~13Dと、非常停止ボタン14とを備えている。
 HUB12は、各電力変換器3A~3Dの表示操作部31とLAN配線LA~LDで接続されている。
 表示操作部11は、電力変換装置10を構成する全ての機器を操作するための機能及び電力変換装置10に関する全ての情報を表示する機能を有している。
 表示操作部11は、電力変換器3A~3Dに対する操作機能としては、各電力変換器3A~3Dの表示操作部31と同等の機能を有している。表示操作部11は、任意の電力変換器3A~3Dに対して、機器操作、異常又は警告などの表示、情報の送受信などの指令をする。引込盤1内に対する操作機能としては、任意のブレーカ13A~13Dの開閉操作などがある。
 表示操作部11は、HUB12から受信する情報により、全ての電力変換器3A~3Dに関する情報を受信する。このように受信した情報に基づいて、表示操作部11は、電力変換装置10に関する任意の情報を表示する。表示操作部11は、HUB12を介して情報を送信することにより、任意の電力変換器3A~3Dに情報を送信する。
 表示操作部11は、電力変換器3A~3Dに関する情報を表示する機能としては、各電力変換器3A~3Dの表示操作部31と同等の機能を有している。表示操作部11は、負荷に供給する電流、電圧、又は電力などの状態を表示する。表示操作部11は、電力変換装置10を構成する機器の異常、警告、監視などの情報を表示する。
 非常停止ボタン14は、非常時に電力変換装置10の運転を緊急停止させるためのボタンである。作業者が非常停止ボタン14を押すと、全てのブレーカ13A~13D、及び全ての電力変換器3A~3Dの直流ブレーカ36及びコンタクター37が開放される。なお、この場合において、全ての電力変換器3A~3Dの電力変換部35の電力変換動作を停止させるようにしてもよい。
 図3を参照して、電力変換器の接続装置20の構成について説明する。
 電力変換器の接続装置20は、接続ベース2に引込盤1を取り付けた構成である。
 接続ベース2は、4つの電力変換器3A~3Dをそれぞれ設置するための4つの枠UA,UB,UC,UDが設けられたベースである。接続ベース2は、例えば形鋼で出来ている。
 枠UA~UDには、交流出力接続部21A,21B,21C,21D及びコネクタ22A,22B,22C,22Dが設けられている。
 交流出力接続部21A~21Dは、電力変換器3A~3Dの交流出力端とそれぞれ接続するための接続箇所である。電力変換器3A~3Dの交流出力端を交流出力接続部21A~21Dに接続すると、三相交流のU相,V相,W相の各相がケーブルCA,CB,CC,CDにより引込盤1と接続される。これにより、電力変換装置10の主回路が形成される。
 コネクタ22A~22Dは、電力変換器3A~3Dに情報の送受信するためのLAN配線LA,LB,LC,LDを接続するための接続箇所である。電力変換器3A~3DをLAN配線LA~LDでコネクタ22A~22Dに接続すると、LAN配線LA~LDにより、電力変換器3A~3Dと引込盤1との情報の送受信が可能なネットワークが形成される。
 本実施形態によれば、電力変換器の接続装置20を用いることで、複数の単機の電力変換器3A~3Dを並列接続した大容量の電力変換装置10を容易に構成することができる。例えば、既存の複数の電力変換器3A~3Dが設置されている場合、電力変換器の接続装置20を用いることで、複数の電力変換器3A~3Dを並列接続した大容量の電力変換装置10に構成するための作業時間を短縮することができる。
 また、電力変換器の接続装置20を用いて、複数の電力変換器3A~3Dを並列接続することにより、複数の電力変換器3A~3Dを一括して操作、監視及び管理をすることができる。さらに、引込盤1と各電力変換器3A~3Dは、接続ベース2によりLAN配線LA~LDで接続されるため、引込盤1と各電力変換器3A~3Dとの相互の情報の送受信を行うことができる。これにより、引込盤1又は各電力変換器3A~3Dのいずれにおいても電力変換装置10全体の操作、監視及び管理をすることができる。
 さらに、引込盤1に設けられている非常停止ボタン14により、非常時に容易に電力変換装置10の運転を停止させることができる。
 また、各電力変換器3A~3Dに対応するブレーカ13A~13Dを引込盤1に設けることで、引込盤1において主回路の保護をすることができる。
 さらに、これらのブレーカ13A~13Dを選択して開放することにより、作業者は、主回路を容易に解列することができる。これにより、電力変換装置10のメンテナンス性を向上させることができる。
(第2の実施形態)
 図4は、本発明の第2の実施形態に係る電力変換装置10Aの主回路の構成を示す構成図である。
 電力変換装置10Aは、図1に示す第1の実施形態に係る電力変換装置10Aの主回路の構成を示す構成図である。電力変換装置10Aは、全ての電力変換器3A~3D及び引込盤1Aのそれぞれの制御電源に、太陽電池9A~9Dに基づく交流電力に代えて、別系統の交流電源PWから供給される交流電力を供給する。その他は、第1の実施形態と同様である。
 引込盤1Aは、図1に示す第1の実施形態に係る引込盤1において、変圧器15及びUPS16を取り除いた構成である。接続ベース2Aは、図1に示す第1の実施形態に係る接続ベース2において、外部の交流電源PWから交流電力を取り込む配線をした構成である。その他は、第1の実施形態と同様である。
 接続ベース2Aは、外部の交流電源PWから供給される交流電力を、引込盤1及び4つの電力変換器3A~3Dのそれぞれの制御電源に供給する。
 本実施形態によれば、外部の交流電源PWから引込盤1A及び電力変換器3A~3Dのそれぞれの制御電源に交流電力を供給する電力変換装置10Aの構成とすることができる。これにより、第1の実施形態と同様の作用効果を得ることができる。
 なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
 本発明によれば、複数の単機の電力変換器を容易に並列接続することのできる電力変換器の接続装置を提供することができる。

Claims (14)

  1.  直流電力を交流電力に変換する電力変換回路を備えた複数の電力変換器からそれぞれ出力される交流電力を引き込む引込盤が設けられ、前記複数の電力変換器をそれぞれ設置するための複数の枠が設けられた電力変換器の接続装置であって、
     前記複数の枠にそれぞれ設けられ、前記電力変換器の交流電力を出力する出力端と接続するための交流出力接続手段と、
     前記複数の枠にそれぞれ設けられた前記交流出力接続手段と前記引込盤とを電気的にそれぞれ接続する複数のケーブルと、
     前記複数のケーブルを並列に接続する並列回路と、
     前記引込盤に設けられ、前記複数の電力変換器と前記並列回路とをそれぞれ接続する複数の交流電力の電気経路をそれぞれ開閉する複数の開閉手段と
    を備えたことを特徴とする電力変換器の接続装置。
  2.  前記引込盤は、前記複数の開閉手段を一括して開放させる一括開放手段を備えたこと
    を特徴とする請求項1に記載の電力変換器の接続装置。
  3.  前記各電力変換器は、前記電力変換回路の交流側に設けられ、開放されると交流電力の出力が停止する交流側開閉手段を備え、
     前記引込盤は、前記複数の電力変換器のそれぞれに設けられた前記交流側開閉手段を一括して開放させる一括開放手段を備えたこと
    を特徴とする請求項1に記載の電力変換器の接続装置。
  4.  前記各電力変換器は、前記電力変換回路の直流側に設けられ、開放されると直流電力の入力が停止する直流側開閉手段を備え、
     前記引込盤は、前記複数の電力変換器のそれぞれに設けられた前記直流側開閉手段を一括して開放させる一括開放手段を備えたこと
    を特徴とする請求項1に記載の電力変換器の接続装置。
  5.  前記引込盤及び前記複数の電力変換器は、前記並列回路により合成される前記複数の電力変換器から出力される交流電力に基づいて、制御電源に電力が供給されること
    を特徴とする請求項1から請求項4のいずれか1項に記載の電力変換器の接続装置。
  6.  前記複数の枠にそれぞれ設けられ、前記電力変換器を、前記電力変換器と前記引込盤との間で情報の送受信をするための情報経路と接続するための情報経路接続手段
    を備えたことを特徴とする請求項1から請求項5のいずれか1項に記載の電力変換器の接続装置。
  7.  前記引込盤は、前記情報経路接続手段に接続された前記情報経路を介して前記複数の電力変換器と送受信する情報に基づいて、前記複数の電力変換器を操作する電力変換器操作手段を備えたこと
    を特徴とする請求項6に記載の電力変換器の接続装置。
  8.  直流電力を交流電力に変換する電力変換回路を備えた複数の電力変換器と、
     前記複数の電力変換器をそれぞれ設置するための複数の枠が設けられた接続ベースと、
     前記複数の電力変換器からそれぞれ出力される交流電力を引き込む引込盤とを備え、
     前記接続ベースは、
     前記複数の枠にそれぞれ設けられ、前記電力変換器の交流電力を出力する出力端と接続するための交流出力接続手段と、
     前記複数の枠にそれぞれ設けられた前記交流出力接続手段と前記引込盤とを電気的にそれぞれ接続する複数のケーブルとを備え、
     前記引込盤は、
     前記複数のケーブルを並列に接続する並列回路と、
     前記複数の電力変換器と前記並列回路とを接続する複数の交流電力の電気経路をそれぞれ開閉する複数の開閉手段とを備えたこと
    を特徴とする電力変換装置。
  9.  前記引込盤は、前記複数の開閉手段を一括して開放させる一括開放手段を備えたこと
    を特徴とする請求項8に記載の電力変換装置。
  10.  前記各電力変換器は、前記電力変換回路の交流側に設けられ、開放されると交流電力の出力が停止する交流側開閉手段を備え、
     前記引込盤は、前記複数の電力変換器のそれぞれに設けられた前記交流側開閉手段を一括して開放させる一括開放手段を備えたこと
    を特徴とする請求項8に記載の電力変換装置。
  11.  前記各電力変換器は、前記電力変換回路の直流側に設けられ、開放されると直流電力の入力が停止する直流側開閉手段を備え、
     前記引込盤は、前記複数の電力変換器のそれぞれに設けられた前記直流側開閉手段を一括して開放させる一括開放手段を備えたこと
    を特徴とする請求項8に記載の電力変換装置。
  12.  前記引込盤及び前記複数の電力変換器は、前記並列回路により合成される前記複数の電力変換器から出力される交流電力に基づいて、制御電源に電力が供給されること
    を特徴とする請求項8から請求項11のいずれか1項に記載の電力変換装置。
  13.  前記接続ベースは、前記複数の枠にそれぞれ設けられ、前記電力変換器を、前記電力変換器と前記引込盤との間で情報の送受信をするための情報経路と接続するための情報経路接続手段を備えたこと
    を特徴とする請求項8から請求項12のいずれか1項に記載の電力変換装置。
  14.  前記引込盤は、前記情報経路接続手段に接続された前記情報経路を介して前記複数の電力変換器と送受信する情報に基づいて、前記複数の電力変換器を操作する電力変換器操作手段を備えたこと
    を特徴とする請求項13に記載の電力変換装置。
PCT/JP2010/058057 2010-05-12 2010-05-12 電力変換器の接続装置 WO2011142014A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10851397.9A EP2571120B1 (en) 2010-05-12 2010-05-12 Connection device for electric power converters
JP2012514641A JPWO2011142014A1 (ja) 2010-05-12 2010-05-12 電力変換器の接続装置
CN201080066677.5A CN102884689B (zh) 2010-05-12 2010-05-12 功率转换器的连接装置
PCT/JP2010/058057 WO2011142014A1 (ja) 2010-05-12 2010-05-12 電力変換器の接続装置
US13/673,457 US9252600B2 (en) 2010-05-12 2012-11-09 Connection apparatus for power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/058057 WO2011142014A1 (ja) 2010-05-12 2010-05-12 電力変換器の接続装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/673,457 Continuation US9252600B2 (en) 2010-05-12 2012-11-09 Connection apparatus for power converter

Publications (1)

Publication Number Publication Date
WO2011142014A1 true WO2011142014A1 (ja) 2011-11-17

Family

ID=44914082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058057 WO2011142014A1 (ja) 2010-05-12 2010-05-12 電力変換器の接続装置

Country Status (5)

Country Link
US (1) US9252600B2 (ja)
EP (1) EP2571120B1 (ja)
JP (1) JPWO2011142014A1 (ja)
CN (1) CN102884689B (ja)
WO (1) WO2011142014A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017221851A1 (ja) * 2016-06-20 2017-12-28 株式会社福元技研 直流電力の切替制御装置および発電システム
TWI672880B (zh) * 2018-05-17 2019-09-21 大陸商光寶電子(廣州)有限公司 適用不同尺寸功率元件之功率轉換器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0946909A (ja) * 1995-07-27 1997-02-14 Nissin Electric Co Ltd 並列多重連系分散電源の単独運転検出装置
JPH09201061A (ja) * 1996-01-17 1997-07-31 Meidensha Corp 太陽光発電システム
JP2000166097A (ja) * 1998-11-25 2000-06-16 Daiwa House Ind Co Ltd 太陽光発電用インバータの並列運転システム
JP2000341959A (ja) * 1999-05-31 2000-12-08 Kawasaki Steel Corp 発電システム
JP2005086969A (ja) * 2003-09-11 2005-03-31 Toshiba Corp 無停電電源システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266838A (en) * 1991-12-05 1993-11-30 Thinking Machines Corporation Power supply system including power sharing control arrangement
JP3254839B2 (ja) * 1993-08-27 2002-02-12 富士電機株式会社 系統連系用インバータの並列運転制御方法
JP3250354B2 (ja) * 1993-12-24 2002-01-28 オムロン株式会社 電源装置
AUPN592095A0 (en) * 1995-10-11 1995-11-02 Invetech Operations Pty Ltd Modular power supply
US6285572B1 (en) * 1999-04-20 2001-09-04 Sanyo Electric Co., Ltd. Method of operating a power supply system having parallel-connected inverters, and power converting system
US7050312B2 (en) * 2004-03-09 2006-05-23 Eaton Power Quality Corporation Multi-mode uninterruptible power supplies and methods of operation thereof
AT501422B1 (de) * 2005-02-10 2009-05-15 Fronius Int Gmbh Wechselrichtersystem zum einspeisen in ein 3-phasennetz sowie wechselrichteranlage für ein 3-phasennetz
DE102006050289B4 (de) * 2006-10-23 2015-11-12 Rittal Gmbh & Co. Kg Leistungsversorgungseinrichtung
US7772716B2 (en) * 2007-03-27 2010-08-10 Newdoll Enterprises Llc Distributed maximum power point tracking system, structure and process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0946909A (ja) * 1995-07-27 1997-02-14 Nissin Electric Co Ltd 並列多重連系分散電源の単独運転検出装置
JPH09201061A (ja) * 1996-01-17 1997-07-31 Meidensha Corp 太陽光発電システム
JP2000166097A (ja) * 1998-11-25 2000-06-16 Daiwa House Ind Co Ltd 太陽光発電用インバータの並列運転システム
JP2000341959A (ja) * 1999-05-31 2000-12-08 Kawasaki Steel Corp 発電システム
JP2005086969A (ja) * 2003-09-11 2005-03-31 Toshiba Corp 無停電電源システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017221851A1 (ja) * 2016-06-20 2017-12-28 株式会社福元技研 直流電力の切替制御装置および発電システム
JPWO2017221851A1 (ja) * 2016-06-20 2019-05-16 株式会社福元技研 直流電力の切替制御装置および発電システム
JP7018649B2 (ja) 2016-06-20 2022-02-14 トランスパシフィックPowers株式会社 直流電力の切替制御装置および発電システム
TWI672880B (zh) * 2018-05-17 2019-09-21 大陸商光寶電子(廣州)有限公司 適用不同尺寸功率元件之功率轉換器

Also Published As

Publication number Publication date
JPWO2011142014A1 (ja) 2013-07-22
US9252600B2 (en) 2016-02-02
EP2571120B1 (en) 2019-04-24
US20130063992A1 (en) 2013-03-14
EP2571120A4 (en) 2016-07-06
CN102884689B (zh) 2015-09-02
CN102884689A (zh) 2013-01-16
EP2571120A1 (en) 2013-03-20

Similar Documents

Publication Publication Date Title
US9899867B2 (en) DC power server for a DC microgrid
US9013063B2 (en) Uninterruptible power supply system
CN109275346B (zh) 逆变器和用于操作逆变器的方法
US9728960B2 (en) Multimode distribution systems and methods for providing power from power sources to power consuming devices
JP5948116B2 (ja) 無停電電源システム
JP5502091B2 (ja) 電力変換装置
WO2011142014A1 (ja) 電力変換器の接続装置
US9188970B2 (en) Circuit assembly having a converter part comprising a central control unit
JP2010172115A (ja) 電力供給方法及び交直流電車用電源システム
JP5953077B2 (ja) インバータ試験装置
JP5926673B2 (ja) 無停電電源装置
WO2015091504A1 (en) Switchgear assembly and power distribution system
US8223499B2 (en) Automated mechanical disconnection of an electrical converter module in a frequency converter arrangement
KR20080001240U (ko) 세대별 직류컨버터를 이용한 전원공급 시스템
JPH0686567A (ja) 電力変換装置
JP2022500981A (ja) 電源供給装置及び電源供給システム
JP6566942B2 (ja) 効率的な電力供給及びバックアップのためのシステム及び方法
US20230216281A1 (en) Converter, method of installing a power system, and use of a converter
CZ20012068A3 (cs) Usměrňovací obvod a způsob připojení elektrické napájecí sítě
US11374523B2 (en) Electric motor drive device and outdoor unit of air conditioner
JP5335645B2 (ja) 配電盤及び配電システム
WO2023208814A1 (en) Supplying power to auxiliary wind turbine equipment
JP2014011914A (ja) 太陽光発電システム
JP2014138490A (ja) 太陽光発電装置、ならびにその電力処理装置および制御装置
JP2016131469A (ja) 直流発電システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080066677.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851397

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012514641

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010851397

Country of ref document: EP